1
|
Morris R, Bu K, Han W, Wood S, Hernandez Velez PM, Ward J, Crescitelli A, Martin M, Cheng F. The Association Between Statin Drugs and Rhabdomyolysis: An Analysis of FDA Adverse Event Reporting System (FAERS) Data and Transcriptomic Profiles. Genes (Basel) 2025; 16:248. [PMID: 40149400 PMCID: PMC11942242 DOI: 10.3390/genes16030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Rhabdomyolysis, a dangerous breakdown of skeletal muscle, has been reported as an adverse event in those prescribed a statin therapy for the treatment of hypercholesterolemia. Statin drugs are some of the most prescribed treatments for elevated cholesterol levels. The purpose of this comparative study was to determine the association between the statin drugs used and the risk of rhabdomyolysis using the FDA Adverse Event Reporting System (FAERS) and transcriptomic data. METHODS A disproportionality analysis was performed to compare the risk of rhabdomyolysis between the reference statin drug (simvastatin) and the treatment group, with patient age assessed as a possible confounder. In addition, association rule mining was utilized to both identify other adverse events that frequently presented with rhabdomyolysis and identify possible drug-drug interactions (DDIs). Finally, public transcriptomic data were explored to identify the possible genetic underpinnings highlighting these differences in rhabdomyolysis risk across statins. RESULTS Rhabdomyolysis is a commonly reported adverse event for patients treated with statins, particularly those prescribed simvastatin. Simvastatin was associated with a more than 2-fold increased likelihood of rhabdomyolysis compared to other statins. Men were twice as likely to report rhabdomyolysis than women regardless of statin treatment, with the highest risk observed for pravastatin (ROR = 2.30, p < 0.001) and atorvastatin (ROR = 2.03, p < 0.0001). Several possible DDIs were identified, including furosemide/Lasix, allopurinol clopidogrel/Plavix, and pantoprazole, which may elevate rhabdomyolysis risk through impaired muscle function and delayed statin metabolism. Finally, nine myopathic genes were identified as possible regulators of statin-induced rhabdomyolysis, including DYSF, DES, PLEC, CAPN3, SCN4A, TNNT1, SDHA, MYH7, and PYGM in primary human muscle cells. CONCLUSIONS Simvastatin was associated with the highest risk of rhabdomyolysis. The risk of rhabdomyolysis was more pronounced in men than women. Several possible DDIs were identified including furosemide/Lasix, allopurinol clopidogrel/Plavix, and pantoprazole.
Collapse
Affiliation(s)
- Robert Morris
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| | - Kun Bu
- Department of Mathematics & Statistics, College of Art and Science, University of South Florida, Tampa, FL 33620, USA; (K.B.); (W.H.)
| | - Weiru Han
- Department of Mathematics & Statistics, College of Art and Science, University of South Florida, Tampa, FL 33620, USA; (K.B.); (W.H.)
| | - Savanah Wood
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| | - Paola M. Hernandez Velez
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| | - Jacob Ward
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| | - Ariana Crescitelli
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| | - Madison Martin
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| | - Feng Cheng
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| |
Collapse
|
2
|
Billi M, Soloperto S, Bonora S, D’Avolio A, De Nicolò A. Clinical Pharmacology of Bulevirtide: Focus on Known and Potential Drug-Drug Interactions. Pharmaceutics 2025; 17:250. [PMID: 40006617 PMCID: PMC11859527 DOI: 10.3390/pharmaceutics17020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Hepatitis D virus (HDV) is a defective virus requiring co-infection with hepatitis B virus (HBV) to replicate, occurring in 5% of HBV+ patients. Bulevirtide (BLV) is now the first-in-class specific anti-HDV agent, inhibiting HDV binding to NTCP, with good tolerability and good virological and biochemical response rates. Currently, little is known about its pharmacokinetic/pharmacodynamic (PK/PD), as well as potential drug-drug interaction (DDI) profile. In this work we provide a systematic review of the current knowledge on these aspects. Methods: A literature review of PK, PD and DDI profiles of BLV was conducted from Pubmed and EMA websites. Experimentally tested interactions and hypothetical mechanisms of interaction were evaluated, mostly focusing on usually co-administered anti-infective agents and other drugs interacting on NTCP. Results: BLV shows non-linear PK, due to target-mediated drug disposition, so its PK as well as PD is expected to be influenced by interactions of other drugs with NTCP, while it is not substrate of CYPs and ABC transporters. In-vivo investigated DDIs showed no clinically relevant interactions, but a weak inhibitory effect was suggested on CYP3A4 in a work when used at high doses (10 mg instead of 2 mg). In vitro, a weak inhibitory effect on OATP transporters was observed, but at much higher concentrations than the ones expected in vivo. Conclusions: The drug-drug interaction potential of BLV can be considered generally very low, particularly at the currently approved dose of 2 mg/day. Some attention should be paid to the coadministration of drugs with known binding and/or inhibition of NTCP.
Collapse
|
3
|
Shi Z, Han S. Personalized statin therapy: Targeting metabolic processes to modulate the therapeutic and adverse effects of statins. Heliyon 2025; 11:e41629. [PMID: 39866414 PMCID: PMC11761934 DOI: 10.1016/j.heliyon.2025.e41629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Statins are widely used for treating lipid disorders and cardiovascular diseases. However, the therapeutic efficiency and adverse effects of statins vary among different patients, which numerous clinical and epidemiological studies have attributed to genetic polymorphisms in statin-metabolizing enzymes and transport proteins. The metabolic processes of statins are relatively complex, involving spontaneous or enzyme-catalyzed interconversion between more toxic lactone metabolites and active acid forms in the liver and bloodstream, influenced by multiple factors, including the expression levels of many metabolic enzymes and transporters. Addressing the variable statin therapeutic outcomes is a pressing clinical challenge. Transcription factors and epigenetic modifications regulate the metabolic enzymes and transporters involved in statin metabolism and disposition and, therefore, hold promise as 'personalized' targets for achieving optimized statin therapy. In this review, we explore the potential for customizing therapy by targeting the metabolism of statin medications. The biochemical bases of adverse reactions to statin drugs and their correlation with polymorphisms in metabolic enzymes and transporters are summarized. Next, we mainly focus on the regulatory roles of transcription factors and epigenetic modifications in regulating the gene expression of statin biochemical machinery. The recommendations for future therapies are finally proposed by targeting the central regulatory factors of statin metabolism.
Collapse
Affiliation(s)
- Zhuangqi Shi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
4
|
Pantho AF, Mohamed S, Govande JV, Rane R, Vora N, Kelso KR, Kuehl TJ, Lindheim SR, Uddin MN. Pravastatin Protects Cytotrophoblasts from Hyperglycemia-Induced Preeclampsia Phenotype. Cells 2024; 13:1534. [PMID: 39329718 PMCID: PMC11430553 DOI: 10.3390/cells13181534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
There are no effective therapies to prevent preeclampsia (PE). Pravastatin shows promise by attenuating processes associated with PE such as decreased cytotrophoblast (CTB) migration, aberrant angiogenesis, and increased oxidative stress. This study assesses the effects of pravastatin on hyperglycemia-induced CTB dysfunction. METHODS Human CTB cells were treated with 100, 150, 200, 300, or 400 mg/dL glucose for 48 h. Some cells were pretreated with pravastatin (1 µg/mL), while others were cotreated with pravastatin and glucose. The expression of urokinase plasminogen activator (uPA), plasminogen activator inhibitor 1 (PAI-1) mRNA, vascular endothelial growth factor (VEGF), placenta growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), and soluble endoglin (sEng) were measured. CTB migration was assayed using a CytoSelect migration assay kit. Statistical comparisons were performed using an analysis of variance with Duncan's post hoc test. RESULTS The hyperglycemia-induced downregulation of uPA was attenuated in CTB cells pretreated with pravastatin at glucose levels > 200 mg/dL and cotreated at glucose levels > 300 mg/dL (p < 0.05). Hyperglycemia-induced decreases in VEGF and PlGF and increases in sEng and sFlt-1 were attenuated in both the pretreatment and cotreatment samples regardless of glucose dose (p < 0.05). Pravastatin attenuated hyperglycemia-induced dysfunction of CTB migration. CONCLUSIONS Pravastatin mitigates stress signaling responses in hyperglycemic conditions, weakening processes leading to abnormal CTB migration and invasion associated with PE in pregnancy.
Collapse
Affiliation(s)
- Ahmed F. Pantho
- Artemis Biotechnologies LLC, Temple, TX 76504, USA; (A.F.P.); (T.J.K.)
| | - Sara Mohamed
- Baylor Scott & White Health, Temple, TX 76508, USA; (S.M.); (N.V.); (K.R.K.); (S.R.L.)
| | | | - Riddhi Rane
- Texas A&M University College of Medicine, College Station, TX 77807, USA;
| | - Niraj Vora
- Baylor Scott & White Health, Temple, TX 76508, USA; (S.M.); (N.V.); (K.R.K.); (S.R.L.)
| | - Kelsey R. Kelso
- Baylor Scott & White Health, Temple, TX 76508, USA; (S.M.); (N.V.); (K.R.K.); (S.R.L.)
| | - Thomas J. Kuehl
- Artemis Biotechnologies LLC, Temple, TX 76504, USA; (A.F.P.); (T.J.K.)
| | - Steven R. Lindheim
- Baylor Scott & White Health, Temple, TX 76508, USA; (S.M.); (N.V.); (K.R.K.); (S.R.L.)
| | - Mohammad N. Uddin
- Artemis Biotechnologies LLC, Temple, TX 76504, USA; (A.F.P.); (T.J.K.)
- Baylor Scott & White Health, Temple, TX 76508, USA; (S.M.); (N.V.); (K.R.K.); (S.R.L.)
- Texas A&M University College of Medicine, College Station, TX 77807, USA;
| |
Collapse
|
5
|
Hartauer M, Murphy WA, Brouwer KLR, Southall R, Neuhoff S. Hepatic OATP1B zonal distribution: Implications for rifampicin-mediated drug-drug interactions explored within a PBPK framework. CPT Pharmacometrics Syst Pharmacol 2024; 13:1513-1527. [PMID: 38898552 PMCID: PMC11533104 DOI: 10.1002/psp4.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
OATP1B facilitates the uptake of xenobiotics into hepatocytes and is a prominent target for drug-drug interactions (DDIs). Reduced systemic exposure of OATP1B substrates has been reported following multiple-dose rifampicin; one explanation for this observation is OATP1B induction. Non-uniform hepatic distribution of OATP1B may impact local rifampicin tissue concentrations and rifampicin-mediated protein induction, which may affect the accuracy of transporter- and/or metabolizing enzyme-mediated DDI predictions. We incorporated quantitative zonal OATP1B distribution data from immunofluorescence imaging into a PBPK modeling framework to explore rifampicin interactions with OATP1B and CYP substrates. PBPK models were developed for rifampicin, two OATP1B substrates, pravastatin and repaglinide (also metabolized by CYP2C8/CYP3A4), and the CYP3A probe, midazolam. Simulated hepatic uptake of pravastatin and repaglinide increased from the periportal to the pericentral region (approximately 2.1-fold), consistent with OATP1B distribution data. Simulated rifampicin unbound intracellular concentrations increased in the pericentral region (1.64-fold) compared to simulations with uniformly distributed OATP1B. The absolute average fold error of the rifampicin PBPK model for predicting substrate maximal concentration (Cmax) and area under the plasma concentration-time curve (AUC) ratios was 1.41 and 1.54, respectively (nine studies). In conclusion, hepatic OATP1B distribution has a considerable impact on simulated zonal substrate uptake clearance values and simulated intracellular perpetrator concentrations, which regulate transporter and metabolic DDIs. Additionally, accounting for rifampicin-mediated OATP1B induction in parallel with inhibition improved model predictions. This study provides novel insight into the effect of hepatic OATP1B distribution on site-specific DDI predictions and the impact of accounting for zonal transporter distributions within PBPK models.
Collapse
Affiliation(s)
- Mattie Hartauer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - William A. Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Kim L. R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | | |
Collapse
|
6
|
Akbar MIA, Azis MA, Riu DS, Wawengkang E, Ernawati E, Bachnas MA, Sulistyowati S, Dachlan EG, Mose JC, Dekker G. INOVASIA Study: A Multicenter Randomized Clinical Trial of Pravastatin to Prevent Preeclampsia in High-Risk Patients. Am J Perinatol 2024; 41:1203-1211. [PMID: 35292944 DOI: 10.1055/a-1798-1925] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Our objective was to determine if treatment with pravastatin prevents preeclampsia in pregnant patients at risk of preeclampsia. MATERIALS AND METHODS The study was performed in four major tertiary hospitals in Surabaya, Bandung, and Makassar between 2017 and 2021. Pregnant women at high risk of developing preeclampsia were recruited and randomized into an intervention group and control group. The control group received low-dose aspirin (80 mg) and calcium (1 g) daily, while the intervention group received additional pravastatin (20 mg twice daily) starting from 14 to 20 weeks' gestation until delivery. The pregnancy was followed until delivery, and the clinical data were collected. The primary outcome was the occurrence of preeclampsia. RESULT A total of 173 people participated in this study, including 86 in the control group and 87 in the pravastatin group. The pravastatin group had a significantly lower rate of preterm preeclampsia (13.8 vs. 26.7%; p = 0.034; odds ratio [OR] = 0.034, 95% confidence interval [CI] = 0.202-0.905) and preterm birth (16.1 vs. 36%; p = 0.003; OR = 0.340, 95% CI = 0.165-0.7), mostly indicated preterm birth. Preeclampsia occurred later in the pravastatin group than in the control group (36.39 + 2.32 vs. 34.89 + 3.38 weeks, p = 0.048). Overall, the pravastatin group showed better perinatal outcomes. Neonates with low Apgar scores (<7) at 1 minute (5.7 vs. 25.6%, p = 0.000) and 5 minutes (2.3 vs. 25.6%, p = 0.028) were significantly less common in the pravastatin group. Additionally, the rate of low birthweight babies (<2,500 g) was lower in the pravastatin group (27.6 vs. 40.7%; p = 0.069). CONCLUSION Pravastatin (20 mg bid) significantly reduces the risk of preterm preeclampsia and preterm birth in women at a high risk of developing preeclampsia. KEY POINTS · This is an open-label multicenter RCT to evaluate pravastatin effect to prevent preeclampsia.. · Pravastatin significantly reduces the risk of preterm preeclampsia (PE) and preterm birth in high risk PE women.. · Pravastatin had a beneficial effect on perinatal outcomes, including Apgar scores and birth weight..
Collapse
Affiliation(s)
- Muhammad Ilham Aldika Akbar
- Faculty of Medicine Universitas Airlangga, Department Obstetrics and Gynecology, Universitas Airlangga Hospital, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Muhammad Alamsyah Azis
- Faculty of Medicine Universitas Padjajaran, Department Obstetrics and Gynecology, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Deviana Soraya Riu
- Faculty of Medicine Universitas Hasanudin, Department Obstetrics and Gynecology, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Indonesia
| | - Ellen Wawengkang
- Faculty of Medicine Universitas Hasanudin, Department Obstetrics and Gynecology, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Indonesia
| | - Ernawati Ernawati
- Faculty of Medicine Universitas Airlangga, Department Obstetrics and Gynecology, Universitas Airlangga Hospital, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Muhammad Adrianes Bachnas
- Faculty of Medicine Universitas Sebelas Maret, Department Obstetrics and Gynecology, Dr. Moewardi General Hospital, Surakarta, Indonesia
| | - Sri Sulistyowati
- Faculty of Medicine Universitas Sebelas Maret, Department Obstetrics and Gynecology, Dr. Moewardi General Hospital, Surakarta, Indonesia
| | - Erry Gumilar Dachlan
- Faculty of Medicine Universitas Airlangga, Department Obstetrics and Gynecology, Universitas Airlangga Hospital, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Johanes Cornelius Mose
- Faculty of Medicine Universitas Padjajaran, Department Obstetrics and Gynecology, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Gus Dekker
- Faculty of Medicine Universitas Airlangga, Department Obstetrics and Gynecology, Universitas Airlangga Hospital, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department Obstetrics and Gynecology, Lyell McEwin Hospital, The University of Adelaide, Adelaide, South Australia
| |
Collapse
|
7
|
Nakamura S, Masuda S, Oda S, Yamakawa D, Yamaguchi S, Ishima T, Kimura N, Aizawa K. Polypharmacy-related Shock Symptoms and Complications Associated with Phenothiazine. Intern Med 2024; 63:1829-1835. [PMID: 37952960 PMCID: PMC11239264 DOI: 10.2169/internalmedicine.2012-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/18/2023] [Indexed: 11/14/2023] Open
Abstract
This report describes a case of shock symptoms in a 72-year-old woman with epilepsy who had been in a state of polypharmacy, taking multiple antipsychotic drugs. After receiving a normal dose of periciazine, she exhibited impaired consciousness, hypothermia, and hypotension and was admitted to hospital. Despite poor response to vasopressors, conservative treatment led to gradual improvement. Subsequent pharmacokinetic analysis showed non-toxic blood concentrations of periciazine, suggesting that even small doses of phenothiazines could result in toxic symptoms. This case highlights the importance of monitoring for adverse reactions when prescribing multiple antipsychotic drugs, particularly in older polypharmacy patients.
Collapse
Affiliation(s)
| | - Shingo Masuda
- Department of General Internal Medicine, Kamigoto Hospital, Japan
| | - Shinya Oda
- Department of General Internal Medicine, Kamigoto Hospital, Japan
| | - Daisuke Yamakawa
- Department of General Internal Medicine, Kamigoto Hospital, Japan
| | - Shota Yamaguchi
- Department of General Internal Medicine, Kamigoto Hospital, Japan
| | - Tamaki Ishima
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Japan
| | - Natsuka Kimura
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Japan
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Japan
- Clinical Pharmacology Center, Jichi Medical University Hospital, Japan
| |
Collapse
|
8
|
Alsmadi MM, Abudaqqa AA, Idkaidek N, Qinna NA, Al-Ghazawi A. The Effect of Inflammatory Bowel Disease and Irritable Bowel Syndrome on Pravastatin Oral Bioavailability: In vivo and in silico evaluation using bottom-up wbPBPK modeling. AAPS PharmSciTech 2024; 25:86. [PMID: 38605192 DOI: 10.1208/s12249-024-02803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
The common disorders irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) can modify the drugs' pharmacokinetics via their induced pathophysiological changes. This work aimed to investigate the impact of these two diseases on pravastatin oral bioavailability. Rat models for IBS and IBD were used to experimentally test the effects of IBS and IBD on pravastatin pharmacokinetics. Then, the observations made in rats were extrapolated to humans using a mechanistic whole-body physiologically-based pharmacokinetic (wbPBPK) model. The rat in vivo studies done herein showed that IBS and IBD decreased serum albumin (> 11% for both), decreased PRV binding in plasma, and increased pravastatin absolute oral bioavailability (0.17 and 0.53 compared to 0.01) which increased plasma, muscle, and liver exposure. However, the wbPBPK model predicted muscle concentration was much lower than the pravastatin toxicity thresholds for myotoxicity and rhabdomyolysis. Overall, IBS and IBD can significantly increase pravastatin oral bioavailability which can be due to a combination of increased pravastatin intestinal permeability and decreased pravastatin gastric degradation resulting in higher exposure. This is the first study in the literature investigating the effects of IBS and IBD on pravastatin pharmacokinetics. The high interpatient variability in pravastatin concentrations as induced by IBD and IBS can be reduced by oral administration of pravastatin using enteric-coated tablets. Such disease (IBS and IBD)-drug interaction can have more drastic consequences for narrow therapeutic index drugs prone to gastric degradation, especially for drugs with low intestinal permeability.
Collapse
Affiliation(s)
- Motasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
- Nanotechnology Institute, Jordan University of Science and Technology, Irbid, Jordan.
| | - Alla A Abudaqqa
- Faculty of Pharmacy and Biomedical Sciences, University of Petra, Amman, Jordan
| | - Nasir Idkaidek
- Faculty of Pharmacy and Biomedical Sciences, University of Petra, Amman, Jordan
| | - Nidal A Qinna
- Faculty of Pharmacy and Biomedical Sciences, University of Petra, Amman, Jordan
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan
| | | |
Collapse
|
9
|
Akbar MIA, Yosediputra A, Pratama RE, Fadhilah NL, Sulistyowati S, Amani FZ, Ernawati E, Dachlan EG, Angsar MD, Dekker G. INOVASIA Study: A Randomized Open Controlled Trial to Evaluate Pravastatin to Prevent Preeclampsia and Its Effects on sFlt1/PlGF Levels. Am J Perinatol 2024; 41:300-309. [PMID: 34666379 DOI: 10.1055/a-1673-5603] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effect of pravastatin to prevent preeclampsia (PE) in pregnant women at a high risk of developing PE and the maternal and perinatal outcomes and the soluble fms-like tyrosine kinase 1/placental growth factor (sFlt1/PlGF) ratio. STUDY DESIGN This is an open-labeled randomized controlled trial (RCT), a part of INOVASIA (Indonesia Pravastatin to Prevent Preeclampsia study) trial. Pregnant women at a high risk of developing PE were recruited and randomized into an intervention group (40) and a control group (40). The inclusion criteria consisted of pregnant women with positive clinical risk factor and abnormal uterine artery Doppler examination at 10 to 20 weeks' gestational age. The control group received low dose aspirin (80 mg/day) and calcium (1 g/day), while the intervention group received additional pravastatin (20-mg twice daily) starting from 14 to 20 weeks' gestation until delivery. Research blood samples were collected before the first dose of pravastatin and before delivery. The main outcome was the rate of maternal PE, maternal-perinatal outcomes, and sFlt-1, PlGF, sFlt-1/PlGF ratio, and soluble endoglin (sEng) levels. RESULTS The rate of PE was (nonsignificantly) lower in the pravastatin group compared with the control group (17.5 vs. 35%). The pravastatin group also had a (nonsignificant) lower rate of severe PE, HELLP (hemolysis, elevated liver enzymes and low platelets) syndrome, acute kidney injury, and severe hypertension. The rate of (iatrogenic) preterm delivery was significantly (p = 0.048) lower in the pravastatin group (n = 4) compared with the controls (n = 12). Neonates in the pravastatin group had significantly higher birth weights (2,931 ± 537 vs. 2,625 ± 872 g; p = 0.006), lower Apgar's scores < 7 (2.5 vs. 27.5%, p = 0.002), composite neonatal morbidity (0 vs. 20%, p = 0.005), and NICU admission rates (0 vs. 15%, p = 0.026). All biomarkers show a significant deterioration in the control group compared with nonsignificant changes in the pravastatin group. CONCLUSION Pravastatin holds promise in the secondary prevention of PE and placenta-mediated adverse perinatal outcomes by improving the angiogenic imbalance. KEY POINTS · Prophylactic pravastatin was associated with a significantly lower rate of adverse perinatal outcome.. · The sFlt1/PlGF ratio stabilized in the pravastatin group compared with a deterioration in the control group.. · Pravastatin holds promise in the secondary prevention of PE and placenta-mediated adverse perinatal outcomes..
Collapse
Affiliation(s)
- Muhammad Ilham Aldika Akbar
- Department of Obstetrics and Gynecology Faculty of Medicine Universitas Airlangga, Mayjen Prof Dr. Moestopo Street No. 47, Surabaya, Indonesia
- Department of Obstetrics and Gynecology Universitas Airlangga Hospital, Mulyorejo Street, Surabaya, Indonesia
| | - Angelia Yosediputra
- Department of Obstetrics and Gynecology Dr. Soetomo General Academic Hospital, Mayjen Prof Dr. Moestopo Street No. 6-8, Surabaya, Indonesia
| | - Raditya E Pratama
- Department of Obstetrics and Gynecology Ibnu Sina General Hospital, Dr. Wahidin Sudirohusodo Street No243B, Gresik, Indonesia
| | - Nur L Fadhilah
- Department of Obstetrics and Gynecology, Semen Gresik General Hospital, RA. Kartini Street No. 280, Gresik, Indonesia
| | - Sulistyowati Sulistyowati
- Department Obstetrics and Gynecology Blambangan General Hospital, Letkol Istiqlah Street No. 49, Banyuwangi, Indonesia
| | - Fariska Z Amani
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Nadhlatul Ulama, Raya Jemursari Street No. 57, Surabaya, Indonesia
| | - Ernawati Ernawati
- Department of Obstetrics and Gynecology Faculty of Medicine Universitas Airlangga, Mayjen Prof Dr. Moestopo Street No. 47, Surabaya, Indonesia
- Department of Obstetrics and Gynecology Dr. Soetomo General Academic Hospital, Mayjen Prof Dr. Moestopo Street No. 6-8, Surabaya, Indonesia
| | - Erry G Dachlan
- Department of Obstetrics and Gynecology Faculty of Medicine Universitas Airlangga, Mayjen Prof Dr. Moestopo Street No. 47, Surabaya, Indonesia
- Department of Obstetrics and Gynecology Dr. Soetomo General Academic Hospital, Mayjen Prof Dr. Moestopo Street No. 6-8, Surabaya, Indonesia
| | - Muhammad D Angsar
- Department of Obstetrics and Gynecology Faculty of Medicine Universitas Airlangga, Mayjen Prof Dr. Moestopo Street No. 47, Surabaya, Indonesia
- Department of Obstetrics and Gynecology Universitas Airlangga Hospital, Mulyorejo Street, Surabaya, Indonesia
- Department of Obstetrics and Gynecology Dr. Soetomo General Academic Hospital, Mayjen Prof Dr. Moestopo Street No. 6-8, Surabaya, Indonesia
| | - Gus Dekker
- Department of Obstetrics and Gynecology Faculty of Medicine Universitas Airlangga, Mayjen Prof Dr. Moestopo Street No. 47, Surabaya, Indonesia
- Department of Obstetrics and Gynecology Lyell McEwin Hospital, The University of Adelaide, Adelaide, South Australia
| |
Collapse
|
10
|
Bodgi L, Bou-Gharios J, Azzi J, Challita R, Feghaly C, Baalbaki K, Kharroubi H, Chhade F, Geara F, Abou-Kheir W, Ayoub Z. Effect of bisphosphonates and statins on the in vitro radiosensitivity of breast cancer cell lines. Pharmacol Rep 2024; 76:171-184. [PMID: 38151641 DOI: 10.1007/s43440-023-00560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Early-stage breast cancer is usually treated with breast-conserving surgery followed by adjuvant radiation therapy. Acute skin toxicity is a common radiation-induced side effect experienced by many patients. Recently, a combination of bisphosphonates (zoledronic acid) and statins (pravastatin), or ZOPRA, was shown to radio-protect normal tissues by enhancing DNA double-strand breaks (DSB) repair mechanism. However, there are no studies assessing the effect of ZOPRA on cancerous cells. The purpose of this study is to characterize the in vitro effect of the zoledronic acid (ZO), pravastatin (PRA), and ZOPRA treatment on the molecular and cellular radiosensitivity of breast cancer cell lines. MATERIALS Two breast cancer cell lines, MDA MB 231 and MCF-7, were tested. Cells were treated with different concentrations of pravastatin (PRA), zoledronate (ZO), as well as their ZOPRA combination, before irradiation. Anti-γH2AX and anti-pATM immunofluorescence were performed to study DNA DSB repair kinetics. MTT assay was performed to assess cell proliferation and viability, and flow cytometry was performed to analyze the effect of the drugs on the cell cycle distribution. The clonogenic assay was used to assess cell survival. RESULTS ZO, PRA, and ZOPRA treatments were shown to increase the residual number of γH2AX foci for both cell lines. ZOPRA treatment was also shown to reduce the activity of the ATM kinase in MCF-7. ZOPRA induced a significant decrease in cell survival for both cell lines. CONCLUSIONS Our findings show that pretreatment with ZOPRA can decrease the radioresistance of breast cancer cells at the molecular and cellular levels. The fact that ZOPRA was previously shown to radioprotect normal tissues, makes it a good candidate to become a therapeutic window-widening drug.
Collapse
Affiliation(s)
- Larry Bodgi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jolie Bou-Gharios
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Joyce Azzi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rafka Challita
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Charbel Feghaly
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Khanom Baalbaki
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein Kharroubi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fatima Chhade
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fady Geara
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Zeina Ayoub
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
11
|
Kammala AK, Richardson LS, Radnaa E, Han A, Menon R. Microfluidic technology and simulation models in studying pharmacokinetics during pregnancy. Front Pharmacol 2023; 14:1241815. [PMID: 37663251 PMCID: PMC10469630 DOI: 10.3389/fphar.2023.1241815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Preterm birth rates and maternal and neonatal mortality remain concerning global health issues, necessitating improved strategies for testing therapeutic compounds during pregnancy. Current 2D or 3D cell models and animal models often fail to provide data that can effectively translate into clinical trials, leading to pregnant women being excluded from drug development considerations and clinical studies. To address this limitation, we explored the utility of in silico simulation modeling and microfluidic-based organ-on-a-chip platforms to assess potential interventional agents. Methods: We developed a multi-organ feto-maternal interface on-chip (FMi-PLA-OOC) utilizing microfluidic channels to maintain intercellular interactions among seven different cell types (fetal membrane-decidua-placenta). This platform enabled the investigation of drug pharmacokinetics in vitro. Pravastatin, a model drug known for its efficacy in reducing oxidative stress and inflammation during pregnancy and currently in clinical trials, was used to test its transfer rate across both feto-maternal interfaces. The data obtained from FMi-PLA-OOC were compared with existing data from in vivo animal models and ex vivo placenta perfusion models. Additionally, we employed mechanistically based simulation software (Gastroplus®) to predict pravastatin pharmacokinetics in pregnant subjects based on validated nonpregnant drug data. Results: Pravastatin transfer across the FMi-PLA-OOC and predicted pharmacokinetics in the in silico models were found to be similar, approximately 18%. In contrast, animal models showed supraphysiologic drug accumulation in the amniotic fluid, reaching approximately 33%. Discussion: The results from this study suggest that the FMi-PLA-OOC and in silico models can serve as alternative methods for studying drug pharmacokinetics during pregnancy, providing valuable insights into drug transport and metabolism across the placenta and fetal membranes. These advanced platforms offer promising opportunities for safe, reliable, and faster testing of therapeutic compounds, potentially reducing the number of pregnant women referred to as "therapeutic orphans" due to the lack of consideration in drug development and clinical trials. By bridging the gap between preclinical studies and clinical trials, these approaches hold great promise in improving maternal and neonatal health outcomes.
Collapse
Affiliation(s)
- Ananth K. Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
12
|
Costantine MM, Clifton RG, Boekhoudt TM, Lawrence K, Gyamfi-Bannerman C, Wisner KL, Grobman W, Caritis SN, Simhan HN, Hebert MF, Longo M, Saade GR. Long-term neurodevelopmental follow-up of children exposed to pravastatin in utero. Am J Obstet Gynecol 2023; 229:153.e1-153.e12. [PMID: 36842489 PMCID: PMC10440254 DOI: 10.1016/j.ajog.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND Preeclampsia, especially before term, increases the risk of child neurodevelopmental adverse outcomes. Biological plausibility, preclinical studies, and pilot clinical trials conducted by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the Obstetric-Fetal Pharmacology Research Centers Network support the safety and use of pravastatin to prevent preeclampsia. OBJECTIVE This study aimed to determine the effect of antenatal pravastatin treatment in high-risk pregnant individuals on their child's health, growth, and neurodevelopment. STUDY DESIGN This was an ancillary follow-up cohort study of children born to mothers who participated in the Obstetric-Fetal Pharmacology Research Centers Network pilot trials of pravastatin vs placebo in individuals at high risk of preeclampsia (ClinicalTrials.gov; identifier NCT01717586). After obtaining written informed consent (and assent as appropriate), the parent was instructed to complete the Child Behavior Checklist. To assess the child's motor, cognitive, and developmental outcomes, a certified and blinded study psychologist completed child motor, cognitive, emotional, and behavioral assessments using validated tools. Given the small number of individuals in the studies, the 10- and 20-mg pravastatin groups were combined into 1 group, and the results of the pravastatin group were compared with that of the placebo group. RESULTS Of 40 children born to mothers in the original trial, 30 (15 exposed in utero to pravastatin and 15 to placebo) were enrolled in this follow-up study. The time of follow-up, which was 4.7 years (interquartile range, 2.5-6.9), was not different between children in the pravastatin group and children in the placebo group. There was no difference in the child's body mass index percentiles per sex and corrected age, the rates of extremes of body mass index percentiles, or the report of any other medical or developmental complications between the 2 groups. No child born in the pravastatin group had any limitation in motor assessment compared with 2 children (13.3%) who walked with difficulty and 4 children (26.7%) who had reduced manual abilities in the placebo group. Moreover, children born to mothers who received pravastatin had a higher general mean conceptual ability score (98.2±16.7 vs 89.7±11.0; P=.13) and a lower frequency (15.4% vs 35.7%; P=.38) of having a score of <85 (ie, 1 standard deviation lower than the mean) compared with those in the placebo group. Finally, there was no difference in the parents' report on the Child Behavior Checklist between the 2 groups. CONCLUSION This study reported on the long-term neuromotor, cognitive, and behavioral outcomes among children exposed to pravastatin in utero during the second and third trimesters of pregnancy. Although the data were limited by the original trial's sample size, no identifiable long-term neurodevelopmental safety signal was evident with the use of pravastatin during pregnancy. This favorable neonatal risk-benefit analysis justifies continued research using pravastatin in clinical trials.
Collapse
Affiliation(s)
- Maged M Costantine
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH; Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX.
| | | | | | - Kirsten Lawrence
- Department of Obstetrics and Gynecology, Columbia University, New York, NY
| | | | - Katherine L Wisner
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL
| | - William Grobman
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL
| | - Steve N Caritis
- Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, PA
| | - Hyagriv N Simhan
- Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, PA
| | - Mary F Hebert
- Department of Pharmacy and Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Monica Longo
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - George R Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX
| |
Collapse
|
13
|
Toghi CJ, Martins LZ, Pacheco LL, Caetano ESP, Mattos BR, Rizzi E, Dias-Junior CA. Pravastatin Prevents Increases in Activity of Metalloproteinase-2 and Oxidative Stress, and Enhances Endothelium-Derived Nitric Oxide-Dependent Vasodilation in Gestational Hypertension. Antioxidants (Basel) 2023; 12:antiox12040939. [PMID: 37107314 PMCID: PMC10135677 DOI: 10.3390/antiox12040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Pre-eclampsia (PE) is a hypertensive disorder of pregnancy and has been associated with placental growth restriction. The pre-eclamptic placenta releases free radicals to maternal circulation, thus increasing oxidative stress. An impaired redox state leads to reduction in circulating nitric oxide (NO) levels and activation of extracellular matrix metalloproteinases (MMPs). However, activation of MMPs induced by oxidative stress is still unclear in PE. Antioxidant effects have been demonstrated with the use of pravastatin. Therefore, we hypothesized that pravastatin protects against oxidative stress-induced activation of MMPs in a rat model of PE. The animals were divided into four groups: normotensive pregnant rats (Norm-Preg); pregnant rats treated with pravastatin (Norm-Preg + Prava); hypertensive pregnant rats (HTN-Preg); and hypertensive pregnant rats treated with pravastatin (HTN-Preg + Prava). The deoxycorticosterone acetate (DOCA) and sodium chloride (DOCA-salt) model was used to induce hypertension in pregnancy. Blood pressure, and fetal and placental parameters were recorded. The gelatinolytic activity of MMPs, NO metabolites and lipid peroxide levels were also determined. Endothelium function was also examined. Pravastatin attenuated maternal hypertension, prevented placental weight loss, increased NO metabolites, inhibited increases in lipid peroxide levels, and reduced the activity of MMP-2, and these effects were observed along with enhanced endothelium-derived NO-dependent vasodilation. The present results provide evidence that pravastatin protects against activation of MMP-2 induced by oxidative stress in pre-eclamptic rats. These findings may also involve improvement in endothelial function related to NO and antihypertensive effects of pravastatin, thus suggesting pravastatin as a therapeutic intervention for PE.
Collapse
Affiliation(s)
- Cristal Jesus Toghi
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Laisla Zanetoni Martins
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Leonardo Lopes Pacheco
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Edileia Souza Paula Caetano
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Bruna Rahal Mattos
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, SP, Brazil
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, SP, Brazil
| | - Carlos Alan Dias-Junior
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| |
Collapse
|
14
|
Liang R, Ge W, Li B, Cui W, Ma X, Pan Y, Li G. Evodiamine decreased the systemic exposure of pravastatin in non-alcoholic steatohepatitis rats due to the up-regulation of hepatic OATPs. PHARMACEUTICAL BIOLOGY 2022; 60:359-373. [PMID: 35171063 PMCID: PMC8856114 DOI: 10.1080/13880209.2022.2036767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Patients with non-alcoholic steatohepatitis (NASH) may have a simultaneous intake of pravastatin and evodiamine-containing herbs. OBJECTIVE The effect of evodiamine on the pharmacokinetics of pravastatin and its potential mechanisms were investigated in NASH rats. MATERIALS AND METHODS The NASH model was conducted with feeding a methionine choline-deficient (MCD) diet for 8 weeks. Sprague-Dawley rats were randomised equally (n = 6) into NASH group, evodiamine group (10 mg/kg), pravastatin group (10 mg/kg), and evodiamine (10 mg/kg) + pravastatin (10 mg/kg) group. Normal control rats were fed a standard diet. Effects of evodiamine on the pharmacokinetics, distribution, and uptake of pravastatin were investigated. RESULTS Evodiamine decreased Cmax (159.43 ± 26.63 vs. 125.61 ± 22.17 μg/L), AUC0-t (18.17 ± 2.52 vs. 14.91 ± 2.03 mg/min/L) and AUC0-∞ (22.99 ± 2.62 vs. 19.50 ± 2.31 mg/min/L) of orally administered pravastatin in NASH rats, but had no significant effect in normal rats. Evodiamine enhanced the uptake (from 154.85 ± 23.17 to 198.48 ± 26.31 pmol/mg protein) and distribution (from 736.61 ± 108.07 to 911.89 ± 124.64 ng/g tissue) of pravastatin in NASH rat liver. The expression of Oatp1a1, Oatp1a4, and Oatp1b2 was up-regulated 1.48-, 1.38-, and 1.51-fold by evodiamine. Evodiamine decreased the levels of IL-1β, IL-6, and TNF-α by 27.82%, 24.76%, and 29.72% in NASH rats, respectively. DISCUSSION AND CONCLUSIONS Evodiamine decreased the systemic exposure of pravastatin by up-regulating the expression of OATPs. These results provide a reference for further validation of this interaction in humans.
Collapse
Affiliation(s)
- Ruifeng Liang
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
- School of Pharmacology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wenjing Ge
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Bingjie Li
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
- School of Pharmacology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Weifeng Cui
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiaofan Ma
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuying Pan
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Gengsheng Li
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
15
|
Richardson LS, K Kammala A, Costantine MM, Fortunato SJ, Radnaa E, Kim S, Taylor RN, Han A, Menon R. Testing of drugs using human feto-maternal interface organ-on-chips provide insights into pharmacokinetics and efficacy. LAB ON A CHIP 2022; 22:4574-4592. [PMID: 36322152 PMCID: PMC9682442 DOI: 10.1039/d2lc00691j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/07/2022] [Indexed: 06/01/2023]
Abstract
Objectives: To improve preclinical drug testing during pregnancy, we developed multiple microfluidic organ-on-chip (OOC) devices that represent the structure, functions, and responses of the two feto-maternal interfaces (FMis) in humans (fetal membrane [FMi-OOC] and placenta [PLA-OOC]). This study utilized feto-maternal interface OOCs to test the kinetics and efficacy of drugs during pregnancy. Study design: The FMi-OOC contained amnion epithelial, mesenchymal, chorion trophoblast, and decidual cells. The PLA-OOC contained cytotrophoblasts (BeWo), syncytiotrophoblasts (BeWo + forskolin), and human umbilical vein endothelial cell lines. Therapeutic concentrations of either pravastatin or rosuvastatin (200 ng mL-1), a model drug for these experiments, were applied to either decidua (in FMi-OOC) and syncytiotrophoblasts (in PLA-OOC) chambers under normal and oxidative stress conditions (induced by cigarette smoke extract [CSE 1 : 25]) to evaluate maternal drug exposure during normal pregnancy or oxidative stress (OS) associated pathologies, respectively. We determined statin pharmacokinetics and metabolism (LC-MS/MS), drug-induced cytotoxicity (LDH assay), and efficacy to reduce OS-induced inflammation (multiplex cytokine assay). Results: Both OOCs mimicked two distinct human feto-maternal interfaces. The drugs tested permeated the maternal-fetal cell layers of the FMi-OOC and PLA-OOC within 4 hours and generated cell and time-specific statin metabolites from various cell types without causing any cytotoxicity. OS-induced pro-inflammatory cytokines were effectively reduced by statins by increasing anti-inflammatory cytokine response across the FMi-OOC and PLA-OOC. Conclusion: Two distinct feto-maternal interface OOCs were developed, tested, and validated for their utility to conduct preclinical trials during pregnancy. We demonstrated that the placenta and fetal membranes-decidual interface both are able to transport and metabolize drugs and that the safety and efficacy of a drug can be determined using the anatomical structures recreated on OOCs.
Collapse
Affiliation(s)
- Lauren S Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| | - Ananth K Kammala
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| | - Maged M Costantine
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Fortunato
- Obstetrics and Gynecology, Maternal-Fetal Medicine, Ochsner Medical Center, New Orleans, LA, USA
| | - Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, Division of Basic Science and Translational Medicine, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, Texas, USA.
| |
Collapse
|
16
|
Singh S, Zahoor I, Sharma N, Behl T, Kanojia N, Sehgal A, Mohan S, Almoshari Y, Salawi A, Aleya L, Bungau S. Insights into the pivotal role of statins and its nanoformulations in hyperlipidemia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76514-76531. [PMID: 36161571 DOI: 10.1007/s11356-022-23043-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Hyperlipidemia is the primary cause of heart disorders and has been manifested as the condition with remarkable higher levels of very-low-density lipoproteins, low-density lipoproteins, intermediate-density lipoprotein, triglycerides, and cholesterol in blood circulation. Genetic causes or systemic metabolic illnesses like diabetes mellitus, increased alcohol consumption, hypothyroidism, and primary biliary cirrhosis are several reasons behind development of hyperlipidemia. Higher levels of lipids and lipoproteins in plasma are responsible for various health disorders in human body like occlusion of blood vessels, acute pancreatitis, and reduced artery lumen elasticity. Both primary and secondary prophylaxis of heart disease can be achieved through combination of pharmacologic therapy with therapeutic lifestyle adjustments. Statins which belongs to HMG-CoA reductase inhibitors are preferred for primary prevention of hyperlipidemia particularly for individuals at higher risk of development of heart disease. This review discusses the recent advancements and outcomes of nanoparticle drug carriers for statins in the therapy of hyperlipidemia.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi-248007, Dehradun, Uttarakhand, India
| | - Neha Kanojia
- School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
17
|
Kang MH, Kim W, Kim JS, Jeong KH, Jeong MH, Hwang J, Hur SH, Hwang HS. Hydrophilic Versus Lipophilic Statin Treatments in Patients With Renal Impairment After Acute Myocardial Infarction. J Am Heart Assoc 2022; 11:e024649. [PMID: 35656978 PMCID: PMC9238700 DOI: 10.1161/jaha.121.024649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Hydrophilic and lipophilic statins have similar efficacies in treating coronary artery disease. However, specific factors relevant to renal impairment and different arterial pathogeneses could modify the clinical effects of statin lipophilicity, and create differences in protective effects between statin types in patients with renal impairment. Methods and Results A total of 2062 patients with acute myocardial infarction with an estimated glomerular filtration rate <60 mL/min per 1.73 m2 were enrolled from the Korea Acute Myocardial Infarction Registry between November 2011 and December 2015. The primary end point was a composite of 2-year major adverse cardiac and cerebrovascular events (MACEs) after acute myocardial infarction occurrence. MACEs were defined as all-cause death, recurrent myocardial infarction, revascularization, and stroke. Propensity-score matching and Cox proportional hazards regression were performed. A total of 529 patients treated with hydrophilic statins were matched to 529 patients treated with lipophilic statins. There was no difference in the statin equivalent dose between the 2 statin groups. The cumulative event rate of MACEs, all-cause mortality, and recurrent myocardial infarction were significantly lower in patients treated with hydrophilic statins in the propensity-score matched population (all P<0.05). In the multivariable Cox regression analysis, patients treated with hydrophilic statins had a lower risk for composite MACEs (hazard ratio [HR], 0.70 [95% CI, 0.55-0.90]), all-cause mortality (HR, 0.67 [95% CI, 0.49-0.93]), and recurrent myocardial infarction (HR, 0.40 [95% CI, 0.21-0.73]), but not for revascularization and ischemic stroke. Conclusions Hydrophilic statin treatment was associated with lower risk of MACEs and all-cause mortality than lipophilic statin in a propensity-score matched observational cohort of patients with renal impairment following acute myocardial infarction.
Collapse
Affiliation(s)
- Min Hye Kang
- Division of NephrologyDepartment of Internal MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Weon Kim
- Division of CardiologyDepartment of Internal MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Jin Sug Kim
- Division of NephrologyDepartment of Internal MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Kyung Hwan Jeong
- Division of NephrologyDepartment of Internal MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Myung Ho Jeong
- Department of Internal Medicine and Heart CenterChonnam National University HospitalGwangjuRepublic of Korea
| | - Jin‐Yong Hwang
- Department of Internal MedicineGyeongsang National University HospitalJinjuRepublic of Korea
| | - Seung Ho Hur
- Division of CardiologyKeimyung University Medical CenterTaeguRepublic of Korea
| | - Hyeon Seok Hwang
- Division of NephrologyDepartment of Internal MedicineKyung Hee UniversitySeoulRepublic of Korea
| |
Collapse
|
18
|
Smith DD, Costantine MM. The role of statins in the prevention of preeclampsia. Am J Obstet Gynecol 2022; 226:S1171-S1181. [PMID: 32818477 PMCID: PMC8237152 DOI: 10.1016/j.ajog.2020.08.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/26/2020] [Accepted: 08/14/2020] [Indexed: 02/03/2023]
Abstract
Preeclampsia is a common hypertensive disorder of pregnancy associated with considerable neonatal and maternal morbidities and mortalities. However, the exact cause of preeclampsia remains unknown; it is generally accepted that abnormal placentation resulting in the release of soluble antiangiogenic factors, coupled with increased oxidative stress and inflammation, leads to systemic endothelial dysfunction and the clinical manifestations of the disease. Statins have been found to correct similar pathophysiological pathways that underlie the development of preeclampsia. Pravastatin, specifically, has been reported in various preclinical and clinical studies to reverse the pregnancy-specific angiogenic imbalance associated with preeclampsia, to restore global endothelial health, and to prevent oxidative and inflammatory injury. Human studies have found a favorable safety profile for pravastatin, and more recent evidence does not support the previous teratogenic concerns surrounding statins in pregnancy. With reassuring and positive findings from pilot studies and strong biological plausibility, statins should be investigated in large clinical randomized-controlled trials for the prevention of preeclampsia.
Collapse
Affiliation(s)
- Devin D Smith
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH.
| | - Maged M Costantine
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
19
|
Costantine MM, West H, Wisner KL, Caritis S, Clark S, Venkataramanan R, Stika CS, Rytting E, Wang X, Ahmed MS. A randomized pilot clinical trial of pravastatin versus placebo in pregnant patients at high risk of preeclampsia. Am J Obstet Gynecol 2021; 225:666.e1-666.e15. [PMID: 34033812 DOI: 10.1016/j.ajog.2021.05.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Preeclampsia remains a major cause of maternal and neonatal morbidity and mortality. Biologic plausibility, compelling preliminary data, and a pilot clinical trial support the safety and utility of pravastatin for the prevention of preeclampsia. OBJECTIVE We previously reported the results of a phase I clinical trial using a low dose (10 mg) of pravastatin in high-risk pregnant women. Here, we report a follow-up, randomized trial of 20 mg pravastatin versus placebo among pregnant women with previous preeclampsia who required delivery before 34+6 weeks' gestation with the objective of evaluating the safety and pharmacokinetic parameters of pravastatin. STUDY DESIGN This was a pilot, multicenter, blinded, placebo-controlled, randomized trial of women with singleton, nonanomalous pregnancies at high risk for preeclampsia. Women between 12+0 and 16+6 weeks of gestation were assigned to receive a daily pravastatin dose of 20 mg or placebo orally until delivery. In addition, steady-state pravastatin pharmacokinetic studies were conducted in the second and third trimesters of pregnancy and at 4 to 6 months postpartum. Primary outcomes included maternal-fetal safety and pharmacokinetic parameters of pravastatin during pregnancy. Secondary outcomes included maternal and umbilical cord blood chemistries and maternal and neonatal outcomes, including rates of preeclampsia and preterm delivery, gestational age at delivery, and birthweight. RESULTS Of note, 10 women assigned to receive pravastatin and 10 assigned to receive the placebo completed the trial. No significant differences were observed between the 2 groups in the rates of adverse or serious adverse events, congenital anomalies, or maternal and umbilical cord blood chemistries. Headache followed by heartburn and musculoskeletal pain were the most common side effects. We report the pravastatin pharmacokinetic parameters including pravastatin area under the curve (total drug exposure over a dosing interval), apparent oral clearance, half-life, and others during pregnancy and compare it with those values measured during the postpartum period. In the majority of the umbilical cord and maternal samples at the time of delivery, pravastatin concentrations were below the limit of quantification of the assay. The pregnancy and neonatal outcomes were more favorable in the pravastatin group. All newborns passed their brainstem auditory evoked response potential or similar hearing screening tests. The average maximum concentration and area under the curve values were more than 2-fold higher following a daily 20 mg dose compared with a 10 mg daily pravastatin dose, but the apparent oral clearance, half-life, and time to reach maximum concentration were similar, which is consistent with the previously reported linear, dose-independent pharmacokinetics of pravastatin in nonpregnant subjects. CONCLUSION This study confirmed the overall safety and favorable pregnancy outcomes for pravastatin in women at high risk for preeclampsia. This favorable risk-benefit analysis justifies a larger clinical trial to evaluate the efficacy of pravastatin for the prevention of preeclampsia. Until then, pravastatin use during pregnancy remains investigational.
Collapse
Affiliation(s)
- Maged M Costantine
- Department of Obstetrics and Gynecology, the Ohio State University, Columbus, OH; Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX.
| | - Holly West
- Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Katherine L Wisner
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL
| | - Steve Caritis
- Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, PA
| | - Shannon Clark
- Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Raman Venkataramanan
- Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, PA
| | - Catherine S Stika
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Xiaoming Wang
- Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Mahmoud S Ahmed
- Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX
| |
Collapse
|
20
|
Amin F, Fathi F, Reiner Ž, Banach M, Sahebkar A. The role of statins in lung cancer. Arch Med Sci 2021; 18:141-152. [PMID: 35154535 PMCID: PMC8826694 DOI: 10.5114/aoms/123225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most common causes of cancer-related mortality in the 21st century. Statins as inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase not only reduce the cholesterol levels in the blood and decrease the risk of cardiovascular disease but may also play an important role in the prevention and treatment of lung cancer. Statins have several antitumor properties including the ability to reduce cell proliferation and angiogenesis, decrease invasion and synergistic suppression of lung cancer progression. Statins induce tumor cell apoptosis by inhibition of downstream products such as small GTP-binding proteins, Rho, Ras and Rac, which are dependent on isoprenylation. Statins reduce angiogenesis in tumors by down-regulation of pro-angiogenic factors, such as vascular endothelial growth factor. In this review, the feasibility and efficacy of statins in the prevention and treatment of lung cancer are discussed.
Collapse
Affiliation(s)
- Fatemeh Amin
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Biosensor and Bioelectronic Department, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Feng B, Pemberton R, Dworakowski W, Ye Z, Zetterberg C, Wang G, Morikawa Y, Kumar S. Evaluation of the Utility of PXB Chimeric Mice for Predicting Human Liver Partitioning of Hepatic Organic Anion-Transporting Polypeptide Transporter Substrates. Drug Metab Dispos 2021; 49:254-264. [PMID: 33376106 DOI: 10.1124/dmd.120.000276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022] Open
Abstract
The ability to predict human liver-to-plasma unbound partition coefficient (Kpuu) is important to estimate unbound liver concentration for drugs that are substrates of hepatic organic anion-transporting peptide (OATP) transporters with asymmetric distribution into the liver relative to plasma. Herein, we explored the utility of PXB chimeric mice with humanized liver that are highly repopulated with human hepatocytes to predict human hepatic disposition of OATP substrates, including rosuvastatin, pravastatin, pitavastatin, valsartan, and repaglinide. In vitro total uptake clearance and transporter-mediated active uptake clearance in C57 mouse hepatocytes were greater than in PXB chimeric mouse hepatocytes for rosuvastatin, pravastatin, pitavastatin, and valsartan. Consistent with in vitro uptake data, enhanced hepatic uptake and resulting total systemic clearance were observed with the above four compounds in severely compromised immune-deficient (SCID) control mice compared with the PXB chimeric mice, which suggest that mouse has a stronger transporter-mediated hepatic uptake than human. In vivo liver-to-plasma Kpuu from PXB chimeric and SCID control mice were also compared, and rosuvastatin and pravastatin Kpuu in SCID mice were more than 10-fold higher than that in PXB chimeric mice, whereas pitavastatin, valsartan, and repaglinide Kpuu in SCID mice were comparable with Kpuu in PXB chimeric mice. Finally, PXB chimeric mouse liver-to-plasma Kpuu values were compared with the reported human Kpuu, and a good correlation was observed as the PXB Kpuu vales were within 3-fold of human Kpuu Our results indicate that PXB mice could be a useful tool to delineate hepatic uptake and enable prediction of human liver-to-plasma Kpuu of hepatic uptake transporter substrates. SIGNIFICANCE STATEMENT: We evaluated PXB mouse with humanized liver for its ability to predict human liver disposition of five organic anion-transporting polypeptide transporter substrates. Both in vitro and in vivo data suggest that mouse liver has a stronger transporter-mediated hepatic uptake than the humanized liver in PXB mouse. More importantly, PXB liver-to-plasma unbound partition coefficient (Kpuu) values were compared with the reported human Kpuu, and a good correlation was observed. PXB mice could be a useful tool to project human liver-to-plasma Kpuu of hepatic uptake transporter substrates.
Collapse
Affiliation(s)
- Bo Feng
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Rachel Pemberton
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Wojciech Dworakowski
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Zhengqi Ye
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Craig Zetterberg
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Guanyu Wang
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Yoshio Morikawa
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Sanjeev Kumar
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| |
Collapse
|
22
|
Ahmadi M, Amiri S, Pecic S, Machaj F, Rosik J, Łos MJ, Alizadeh J, Mahdian R, da Silva Rosa SC, Schaafsma D, Shojaei S, Madrakian T, Zeki AA, Ghavami S. Pleiotropic effects of statins: A focus on cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165968. [PMID: 32927022 DOI: 10.1016/j.bbadis.2020.165968] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
The statin drugs ('statins') potently inhibit hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase by competitively blocking the active site of the enzyme. Statins decrease de novo cholesterol biosynthesis and thereby reduce plasma cholesterol levels. Statins exhibit "pleiotropic" properties that are independent of their lipid-lowering effects. For example, preclinical evidence suggests that statins inhibit tumor growth and induce apoptosis in specific cancer cell types. Furthermore, statins show chemo-sensitizing effects by impairing Ras family GTPase signaling. However, whether statins have clinically meaningful anti-cancer effects remains an area of active investigation. Both preclinical and clinical studies on the potential mechanisms of action of statins in several cancers have been reviewed in the literature. Considering the contradictory data on their efficacy, we present an up-to-date summary of the pleiotropic effects of statins in cancer therapy and review their impact on different malignancies. We also discuss the synergistic anti-cancer effects of statins when combined with other more conventional anti-cancer drugs to highlight areas of potential therapeutic development.
Collapse
Affiliation(s)
- Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Shayan Amiri
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, R4046 - 351 Taché Ave, Winnipeg, Manitoba R2H 2A6, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, CA, USA
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Department of Pathology, Pomeranian Medical University in Szczecin, Poland
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Department of Pathology, Pomeranian Medical University in Szczecin, Poland
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Reza Mahdian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Shahla Shojaei
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Amir A Zeki
- University of California, Davis School of Medicine. Division of Pulmonary, Critical Care, and Sleep Medicine. U.C. Davis Lung Center, Davis, California, USA; Veterans Affairs Medical Center, Mather, California, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
23
|
Ananthakumar A, Liu Y, Fernandez CE, Truskey GA, Voora D. Modeling statin myopathy in a human skeletal muscle microphysiological system. PLoS One 2020; 15:e0242422. [PMID: 33237943 PMCID: PMC7688150 DOI: 10.1371/journal.pone.0242422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023] Open
Abstract
Statins are used to lower cholesterol and prevent cardiovascular disease. Musculoskeletal side effects known as statin associated musculoskeletal symptoms (SAMS), are reported in up to 10% of statin users, necessitating statin therapy interruption and increasing cardiovascular disease risk. We tested the hypothesis that, when exposed to statins ex vivo, engineered human skeletal myobundles derived from individuals with (n = 10) or without (n = 14) SAMS and elevated creatine-kinase levels exhibit statin-dependent muscle defects. Myoblasts were derived from muscle biopsies of individuals (median age range of 62-64) with hyperlipidemia with (n = 10) or without (n = 14) SAMS. Myobundles formed from myoblasts were cultured with growth media for 4 days, low amino acid differentiation media for 4 days, then dosed with 0 and 5μM of statins for 5 days. Tetanus forces were subsequently measured. To model the change of tetanus forces among clinical covariates, a mixed effect model with fixed effects being donor type, statin concentration, statin type and their two way interactions (donor type*statin concentration and donor type* statin type) and the random effect being subject ID was applied. The results indicate that statin exposure significantly contributed to decrease in force (P<0.001) and the variability in data (R2C [R square conditional] = 0.62). We found no significant differences in force between myobundles from patients with/without SAMS, many of whom had chronic diseases. Immunofluorescence quantification revealed a positive correlation between the number of straited muscle fibers and tetanus force (R2 = 0.81,P = 0.015) and negative correlation between number of fragmented muscle fibers and tetanus force (R2 = 0.482,P = 0.051) with no differences between donors with or without SAMS. There is also a correlation between statin exposure and presence of striated fibers (R2 = 0.833, P = 0.047). In patient-derived myobundles, statin exposure results in myotoxicity disrupting SAA organization and reducing force. We were unable to identify differences in ex vivo statin myotoxicity in this system. The results suggest that it is unlikely that there is inherent susceptibility to or persistent effects of statin myopathy using patient-derived myobundles.
Collapse
Affiliation(s)
- Anandita Ananthakumar
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Yiling Liu
- Duke Center for Applied Genomics & Precision Medicine, Durham, NC, United States of America
| | - Cristina E. Fernandez
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Deepak Voora
- Duke Center for Applied Genomics & Precision Medicine, Durham, NC, United States of America
| |
Collapse
|
24
|
The Role of Structure and Biophysical Properties in the Pleiotropic Effects of Statins. Int J Mol Sci 2020; 21:ijms21228745. [PMID: 33228116 PMCID: PMC7699354 DOI: 10.3390/ijms21228745] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Statins are a class of drugs used to lower low-density lipoprotein cholesterol and are amongst the most prescribed medications worldwide. Most statins work as a competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), but statin intolerance from pleiotropic effects have been proposed to arise from non-specific binding due to poor enzyme-ligand sensitivity. Yet, research into the physicochemical properties of statins, and their interactions with off-target sites, has not progressed much over the past few decades. Here, we present a concise perspective on the role of statins in lowering serum cholesterol levels, and how their reported interactions with phospholipid membranes offer a crucial insight into the mechanism of some of the more commonly observed pleiotropic effects of statin administration. Lipophilicity, which governs hepatoselectivity, is directly related to the molecular structure of statins, which dictates interaction with and transport through membranes. The structure of statins is therefore a clinically important consideration in the treatment of hypercholesterolaemia. This review integrates the recent biophysical studies of statins with the literature on the physiological effects and provides new insights into the mechanistic cause of statin pleiotropy, and prospective means of understanding the cholesterol-independent effects of statins.
Collapse
|
25
|
Sabeel S, Motaung B, Ozturk M, Mukasa S, Kengne AP, Blom D, Sliwa K, Nepolo E, Günther G, Wilkinson RJ, Schacht C, Thienemann F, Guler R. Protocol for systematic review and meta-analysis: impact of statins as immune-modulatory agents on inflammatory markers in adults with chronic diseases. BMJ Open 2020; 10:e039034. [PMID: 32792452 PMCID: PMC7430409 DOI: 10.1136/bmjopen-2020-039034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Statins, also known as 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors, are lipid-lowering agents that are central in preventing or reducing the complications of atherosclerotic cardiovascular disease. Because statins have anti-inflammatory properties, there is considerable interest in their therapeutic potential in other chronic inflammatory conditions. We aim to identify the statin with the greatest ability to reduce systemic inflammation, independent of the underlying disease entity. METHODS AND ANALYSIS We aim to conduct a comprehensive search of published and peer-reviewed randomised controlled clinical trials, with at least one intervention arm of a Food & Drug Administration-licensed or European Medicines Agency-licensed statin and a minimum treatment duration of 12 weeks. Our objective is to investigate the effect of statins (atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin) on lipid profile, particularly, cholesterol low-density lipoprotein and inflammation markers such as high-sensitive C reactive protein (hsCRP), CRP, tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8, soluble cluster of differentiation 14 (sCD14) or sCD16 in adults, published in the last 20 years (between January 1999 and December 2019). We aim to identify the most potent statin to reduce systemic inflammation and optimal dosing. The following databases will be searched: Medline, Scopus, Web of Science and Cochrane Library of Systematic Reviews. The risk of bias of included studies will be assessed by Cochrane Risk of Bias Tool and Quality Assessment Tool for Quantitative Studies. The quality of studies will be assessed, to show uncertainty, by the Jadad Score. If sufficient evidence is identified, a meta-analysis will be conducted with risk ratios or ORs with 95% CIs in addition to mean differences. ETHICS AND DISSEMINATION Ethics approval is not required as no primary data will be collected. Results will be presented at conferences and published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42020169919.
Collapse
Affiliation(s)
- Solima Sabeel
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town Component, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Bongani Motaung
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town Component, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town Component, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandra Mukasa
- General Medicine & Global Health, Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andre Pascal Kengne
- South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Dirk Blom
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Karen Sliwa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Gunar Günther
- University of Namibia School of Medicine, Windhoek, Namibia
- Inselspital Bern, Bern, Switzerland
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Infectious Diseases, Imperial College London, London W12 0NN, United Kingdom
| | | | - Friedrich Thienemann
- General Medicine & Global Health, Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Internal Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town Component, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
Hirota T, Fujita Y, Ieiri I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin Drug Metab Toxicol 2020; 16:809-822. [PMID: 32729746 DOI: 10.1080/17425255.2020.1801634] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins) lower cholesterol synthesis in patients with hypercholesterolemia. Increased statin exposure is an important risk factor for skeletal muscle toxicity. Potent inhibitors of cytochrome P450 (CYP) 3A4 significantly increase plasma concentrations of the active forms of simvastatin, lovastatin, and atorvastatin. Fluvastatin is metabolized by CYP2C9, whereas pravastatin, rosuvastatin, and pitavastatin are unaffected by inhibition by either CYP. Statins also have different affinities for membrane transporters involved in processes such as intestinal absorption, hepatic absorption, biliary excretion, and renal excretion. AREAS COVERED In this review, the pharmacokinetic aspects of drug-drug interactions with statins and genetic polymorphisms of CYPs and drug transporters involved in the pharmacokinetics of statins are discussed. EXPERT OPINION Understanding the mechanisms underlying statin interactions can help minimize drug interactions and reduce the adverse side effects caused by statins. Since recent studies have shown the involvement of drug transporters such as OATP and BCRP as well as CYPs in statin pharmacokinetics, further clinical studies focusing on the drug transporters are necessary. The establishment of biomarkers based on novel mechanisms, such as the leakage of microRNAs into the peripheral blood associated with the muscle toxicity, is important for the early detection of statin side effects.
Collapse
Affiliation(s)
- Takeshi Hirota
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| | - Yuito Fujita
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| |
Collapse
|
27
|
Zhou M, Leonard CE, Brensinger CM, Bilker WB, Kimmel SE, Hecht TEH, Hennessy S. Pharmacoepidemiologic Screening of Potential Oral Anticoagulant Drug Interactions Leading to Thromboembolic Events. Clin Pharmacol Ther 2020; 108:377-386. [PMID: 32275326 DOI: 10.1002/cpt.1845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
Drug-drug interactions (DDIs) with oral anticoagulants may lead to under-anticoagulation and increased risk of thromboembolism. Although warfarin is susceptible to numerous DDIs, few studies have examined DDIs resulting in thromboembolism or those involving direct-acting oral anticoagulants (DOACs). We aimed to identify medications that increase the rate of hospitalization for thromboembolic events when taken concomitantly with oral anticoagulants. We conducted a high-throughput pharmacoepidemiologic screening study using Optum Clinformatics Data Mart, 2000-2016. We performed self-controlled case series studies among adult users of oral anticoagulants (warfarin, dabigatran, rivaroxaban, apixaban, and edoxaban) with at least one hospitalization for a thromboembolic event. Among eligible patients, we identified all oral medications frequently co-prescribed with oral anticoagulants as potential interacting precipitants. Conditional Poisson regression was used to estimate rate ratios comparing precipitant exposed vs. unexposed time for each anticoagulant-precipitant pair. To minimize within-person confounding by indication for the precipitant, we used pravastatin as a negative control object drug. Multiple estimation was adjusted using semi-Bayes shrinkage. We screened 1,622 oral anticoagulant-precipitant drug pairs and identified 226 (14%) drug pairs associated with statistically significantly elevated risk of thromboembolism. Using pravastatin as the negative control object drug, this list was reduced to 69 potential DDI signals for thromboembolism, 33 (48%) of which were not documented in the DDI knowledge databases Lexicomp and/or Micromedex. There were more DDI signals associated with warfarin than DOACs. This study reproduced several previously documented oral anticoagulant DDIs and identified potential DDI signals that deserve to be examined in future etiologic studies.
Collapse
Affiliation(s)
- Meijia Zhou
- Department of Biostatistics, Epidemiology, and Informatics, Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Charles E Leonard
- Department of Biostatistics, Epidemiology, and Informatics, Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Colleen M Brensinger
- Department of Biostatistics, Epidemiology, and Informatics, Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Warren B Bilker
- Department of Biostatistics, Epidemiology, and Informatics, Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephen E Kimmel
- Department of Biostatistics, Epidemiology, and Informatics, Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Todd E H Hecht
- Division of General Internal Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sean Hennessy
- Department of Biostatistics, Epidemiology, and Informatics, Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW To review the rationale and biological plausibility and discuss the current research on novel interventions for the prevention of preeclampsia. RECENT FINDINGS Preeclampsia affects up to 8% of pregnancies worldwide and remains a major cause of maternal and neonatal morbidity and mortality. Multiple medications have been investigated or repurposed as potential effective interventions for preeclampsia prevention. Aspirin is currently the only drug for which there is some evidence of benefit for preeclampsia prevention, and its use is recommended by professional societies for pregnancies at risk. Statins have shown promise for prevention of preeclampsia in animal models and human pilot studies, without any trend or concerns for safety signals or teratogenicity. The use of metformin has also gained popularity in experimental studies, but observations from randomized clinical trials were not consistent on its utility as a possible intervention for preeclampsia prevention. While initial studies evaluating esomeprazole were promising, randomized trials failed to show benefit. Contemporary research shows exciting new opportunities for prophylactic treatment for preeclampsia, to prevent this debilitating and life-threatening disease.
Collapse
Affiliation(s)
- Marwan Ma'ayeh
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, 395 W 12th Avenue, Columbus, OH, 43210, USA. Marwan.Ma'
| | - Kara M Rood
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, 395 W 12th Avenue, Columbus, OH, 43210, USA
| | - Douglas Kniss
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, 395 W 12th Avenue, Columbus, OH, 43210, USA
| | - Maged M Costantine
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, 395 W 12th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
29
|
Drozdzik M, Szelag‐Pieniek S, Post M, Zeair S, Wrzesinski M, Kurzawski M, Prieto J, Oswald S. Protein Abundance of Hepatic Drug Transporters in Patients With Different Forms of Liver Damage. Clin Pharmacol Ther 2019; 107:1138-1148. [PMID: 31697849 DOI: 10.1002/cpt.1717] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Marek Drozdzik
- Department of Experimental and Clinical Pharmacology Pomeranian Medical University Szczecin Poland
| | - Sylwia Szelag‐Pieniek
- Department of Experimental and Clinical Pharmacology Pomeranian Medical University Szczecin Poland
| | - Mariola Post
- Department of General and Transplantation Surgery County Hospital Szczecin Poland
| | - Samir Zeair
- Department of General and Transplantation Surgery County Hospital Szczecin Poland
| | - Maciej Wrzesinski
- Department of General and Transplantation Surgery County Hospital Szczecin Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology Pomeranian Medical University Szczecin Poland
| | - Jesus Prieto
- Center for Applied Medical Research University of Navarra Pamplona Spain
| | - Stefan Oswald
- Department of Clinical Pharmacology University Medicine of Greifswald Greifswald Germany
| |
Collapse
|
30
|
Herminghaus A, Laser E, Schulz J, Truse R, Vollmer C, Bauer I, Picker O. Pravastatin and Gemfibrozil Modulate Differently Hepatic and Colonic Mitochondrial Respiration in Tissue Homogenates from Healthy Rats. Cells 2019; 8:cells8090983. [PMID: 31461874 PMCID: PMC6769625 DOI: 10.3390/cells8090983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023] Open
Abstract
Statins and fibrates are widely used for the management of hypertriglyceridemia but they also have limitations, mostly due to pharmacokinetic interactions or side effects. It is conceivable that some adverse events like liver dysfunction or gastrointestinal discomfort are caused by mitochondrial dysfunction. Data about the effects of statins and fibrates on mitochondrial function in different organs are inconsistent and partially contradictory. The aim of this study was to investigate the effect of pravastatin (statin) and gemfibrozil (fibrate) on hepatic and colonic mitochondrial respiration in tissue homogenates. Mitochondrial oxygen consumption was determined in colon and liver homogenates from 48 healthy rats after incubation with pravastatin or gemfibrozil (100, 300, 1000 μM). State 2 (substrate dependent respiration) and state 3 (adenosine diphosphate: ADP-dependent respiration) were assessed. RCI (respiratory control index)—an indicator for coupling between electron transport chain system (ETS) and oxidative phosphorylation (OXPHOS) and ADP/O ratio—a parameter for the efficacy of OXPHOS, was calculated. Data were presented as a percentage of control (Kruskal–Wallis + Dunn’s correction). In the liver both drugs reduced state 3 and RCI, gemfibrozil-reduced ADP/O (complex I). In the colon both drugs reduced state 3 but enhanced ADP/O. Pravastatin at high concentration (1000 µM) decreased RCI (complex II). Pravastatin and gemfibrozil decrease hepatic but increase colonic mitochondrial respiration in tissue homogenates from healthy rats.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| | - Eric Laser
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Jan Schulz
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Richard Truse
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| |
Collapse
|
31
|
Korani S, Korani M, Bahrami S, Johnston TP, Butler AE, Banach M, Sahebkar A. Application of nanotechnology to improve the therapeutic benefits of statins. Drug Discov Today 2019; 24:567-574. [PMID: 30292917 DOI: 10.1016/j.drudis.2018.09.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/16/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022]
Abstract
Hyperlipidemia is defined as an elevated level of lipids and lipoproteins in the blood and is considered to be a significant risk factor for accelerating the process of atherosclerosis and, consequently, cardiovascular disease. The level of cholesterol, especially low-density lipoprotein cholesterol (LDL-C), is commonly elevated in hyperlipidemia and represents the primary therapeutic target. Statins are a group of drugs that function by inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and are extremely efficacious in reducing elevated LDL-C in the serum and preventing atherosclerotic cardiovascular disease. However, statins have some limitations, such as poor aqueous solubility, low oral absorption, and, consequently, limited bioavailability when administered by the oral route. The field of nanotechnology is now well developed and some of these newer nanotechnology strategies offer systems with enhanced aqueous solubility of the statin, increased absorption, bioavailability, and controlled release of the statin at the site of administration. Here, we discuss nano-sized drug delivery systems to enhance the therapeutic potential of statins.
Collapse
Affiliation(s)
- Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Korani
- Nanotechnology Research Center, Buali (Avicenna) Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Samira Bahrami
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Mehanna MM, Shabarek MI, Elmaradny HA, Elmartadny HA. Spray-dried pH-sensitive microparticles: effectual methodology to ameliorate the bioavailability of acid labile pravastatin. Drug Dev Ind Pharm 2018; 45:485-497. [PMID: 30575415 DOI: 10.1080/03639045.2018.1562465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pravastatin is a promising drug utilized in the treatment of hyperlipidemia, yet, its main clinical limitation is due to gastric liability which fractions its oral bioavailability to less than 18%. The purpose of the current study is to encapsulate pravastatin into Eudragit®-based spray-dried microparticles aspiring to overcome its acid liability. With the aim to optimize the microparticles, formulation and process parameters were studied through acid resistance challenging test. Physicochemical characterization of the optimized spray-dried pH-sensitive microparticles namely; in-vitro dissolution, surface morphology, compatibility, and solid-state studies were performed. Moreover, in-vivo evaluation of the microparticles and accelerated stability studies were carried out. The results outlined that polymer to drug ratio at 5:1 and pravastatin concentration at 1%w/w in spray-drying feed solution showed 38.55% and 53.97% encapsulation efficiency, respectively. The significance of process parameters specifically; the flow rate and the inlet temperature on microparticles surface integrity were observed, and optimized until encapsulating efficiency reached 72.37%. The scanning electron microscopical examination of the optimized microparticles illustrate uniform smooth surface spheres entrapping the drug in an amorphous state as proved through Differential Scanning Calorimetry (DSC) and Fourier Transfer Infrared (FTIR) studies. The in-vivo evaluation demonstrated a 5-fold enhancement in pravastatin bioavailability compared to the marketed product. The results provided evidence for the significance of spray-dried pH-sensitive microparticles as a promising carrier for pravastatin, decreasing its acid liability, and improving its bioavailability.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- a Faculty of Pharmacy, Pharmaceutical Technology Department , Beirut Arab University , Beirut , Lebanon.,b Faculty of Pharmacy, Industrial Pharmacy Department , Alexandria University , Alexandria , Egypt
| | | | | | - Hoda A Elmartadny
- a Faculty of Pharmacy, Pharmaceutical Technology Department , Beirut Arab University , Beirut , Lebanon
| |
Collapse
|
33
|
Marshall SA, Cox AG, Parry LJ, Wallace EM. Targeting the vascular dysfunction: Potential treatments for preeclampsia. Microcirculation 2018; 26:e12522. [PMID: 30556222 DOI: 10.1111/micc.12522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a pregnancy-specific disorder, primarily characterized by new-onset hypertension in combination with a variety of other maternal or fetal signs. The pathophysiological mechanisms underlying the disease are still not entirely clear. Systemic maternal vascular dysfunction underlies the clinical features of preeclampsia. It is a result of oxidative stress and the actions of excessive anti-angiogenic factors, such as soluble fms-like tyrosine kinase, soluble endoglin, and activin A, released by a dysfunctional placenta. The vascular dysfunction then leads to impaired regulation and secretion of relaxation factors and an increase in sensitivity/production of constrictors. This results in a more constricted vasculature rather than the relaxed vasodilated state associated with normal pregnancy. Currently, the only effective "treatment" for preeclampsia is delivery of the placenta and therefore the baby. Often, this means a preterm delivery to save the life of the mother, with all the attendant risks and burdens associated with fetal prematurity. To lessen this burden, there is a pressing need for more effective treatments that target the maternal vascular dysfunction that underlies the hypertension. This review details the vascular effects of key drugs undergoing clinical assessment as potential treatments for women with preeclampsia.
Collapse
Affiliation(s)
- Sarah A Marshall
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Annie G Cox
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Euan M Wallace
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
34
|
Su C, Zhang D, Bao N, Ji A, Feng Y, Chen L, Ni Y, Zhang J, Yin Z. Evaluation of Radioiodinated 1,4-Naphthoquinones as Necrosis Avid Agents for Rapid Myocardium Necrosis Imaging. Mol Imaging Biol 2018; 20:74-84. [PMID: 28470585 DOI: 10.1007/s11307-017-1089-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Identifying necrotic myocardium in ischemic regions is of great importance for risk stratification and clinical decision-making. However, rapid noninvasive imaging of necrotic myocardium is still challenging. This study sought to evaluate the potential of 1,4-naphthoquinones to rapidly visualize necrotic myocardium and the possible mechanisms of necrosis avidity. PROCEDURES Six 1,4-naphthoquinones were radiolabeled with iodine-131 and the necrosis avidity was estimated in mouse models with muscular necrosis by gamma counting and autoradiography. The necrotic myocardium imaging property and biodistribution of [131I]naphthazarin (6) were determined in rat models with re-perfused myocardial infarction. A possible mechanism of necrosis avidity was explored by in vitro DNA-binding and in vivo blocking experiments. RESULTS The radiochemical purities of the six radiotracers were greater than 95 %. The uptakes in necrotic muscles of all six radiotracers were higher than those in viable muscles, and [131I]naphthazarin (6) showed the highest necrotic-to-viable ratio and necrosis-to-blood ratio at all tested time points. The necrotic myocardium could be clearly visualized by single-photon emission computed tomography/x-ray computed tomography (SPECT/CT) using [131I]naphthazarin (6) as early as 3 h post-injection. Post-mortem biodistribution showed the uptake of [131I]naphthazarin (6) in necrotic myocardium was 11.67-fold higher than that in viable myocardium. Absorption spectra and emission spectra suggested naphthazarin (6) could bind to DNA through intercalation. The uptake of [131I]naphthazarin (6) in necrotic muscle could be significantly blocked by excessive ethidium bromide (a typical DNA intercalator) and cold naphthazarin (6) with 63.49 and 71.96 % decline at 3 h post-injection in vivo, respectively. CONCLUSIONS 1,4-Naphthoquinones retained necrosis avidity and [131I]naphthazarin (6) rapidly visualized necrotic myocardium. The necrosis avidity mechanism of [131I]naphthazarin (6) may be attributed to its binding with exposed DNA in necrotic tissues.
Collapse
Affiliation(s)
- Chang Su
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24, Tongjiaxiang, Gulou District, Nanjing, 210009, Jiangsu Province, People's Republic of China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Na Bao
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24, Tongjiaxiang, Gulou District, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Aiyan Ji
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24, Tongjiaxiang, Gulou District, Nanjing, 210009, Jiangsu Province, People's Republic of China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Yuanbo Feng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, 3000, Leuven, Belgium
| | - Li Chen
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24, Tongjiaxiang, Gulou District, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Yicheng Ni
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, 3000, Leuven, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China. .,Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24, Tongjiaxiang, Gulou District, Nanjing, 210009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
35
|
Tsur A, Kalish F, Burgess J, Nayak NR, Zhao H, Casey KM, Druzin ML, Wong RJ, Stevenson DK. Pravastatin improves fetal survival in mice with a partial deficiency of heme oxygenase-1. Placenta 2018; 75:1-8. [PMID: 30712660 DOI: 10.1016/j.placenta.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/21/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Statins induce heme oxygenase-1 (HO-1) expression in vitro and in vivo. Low HO-1 expression is associated with pregnancy complications, e.g. preeclampsia and recurrent miscarriages. Here, we investigated the effects of pravastatin on HO-1 expression, placental development, and fetal survival in mice with a partial HO-1 deficiency. METHODS At E14.5, untreated pregnant wild-type (WT, n=13-18), untreated HO-1+/- (Het, n=6-9), and Het mice treated with pravastatin (Het+Pravastatin, n=12-14) were sacrificed. Numbers of viable fetuses/resorbed concepti were recorded. Maternal livers and placentas were harvested for HO activity. Hematoxylin and eosin (H&E) and CD31 immunohistochemical staining were performed on whole placentas. RESULTS Compared with WT, HO activity in Het livers (65±18%, P<0.001) and placentas (74±7%, P<0.001) were significantly decreased. Number of viable fetuses per dam was significantly lower in Untreated Het dams (6.0±2.2) compared with WT (9.1±1.4, P<0.01), accompanied by a higher relative risk (RR) for concepti resorption (17.1, 95% CI 4.0-73.2). In Hets treated with pravastatin, maternal liver and placental HO activity increased, approaching levels of WT controls (to 83±7% and 87±14%, respectively). The number of viable fetuses per dam increased to 7.7±2.5 with a decreased RR for concepti resorption (2.7, 95% CI 1.2-5.9). In some surviving Untreated Het placentas, there were focal losses of cellular architecture and changes suggestive of reduced blood flow in the labyrinth. These findings were absent in Het+Pravastatin placentas. DISCUSSION Pravastatin induces maternal liver and placental HO activity, may affect placental function and improve fetal survival in the context of a partial deficiency of HO-1.
Collapse
Affiliation(s)
- Abraham Tsur
- Dept of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Flora Kalish
- Dept of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jordan Burgess
- Dept of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nihar R Nayak
- Dept of Obstetrics & Gynecology, Wayne State University, Detroit, MI, USA
| | - Hui Zhao
- Dept of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kerriann M Casey
- Dept of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maurice L Druzin
- Dept of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J Wong
- Dept of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - David K Stevenson
- Dept of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
36
|
Afrouzian M, Al-Lahham R, Patrikeeva S, Xu M, Fokina V, Fischer WG, Abdel-Rahman SZ, Costantine M, Ahmed MS, Nanovskaya T. Role of the efflux transporters BCRP and MRP1 in human placental bio-disposition of pravastatin. Biochem Pharmacol 2018; 156:467-478. [PMID: 30217571 DOI: 10.1016/j.bcp.2018.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
The expression and activity of human placental transporters during pregnancy could be altered by several factors including pathological changes associated with preeclampsia. The aims of this study were to identify the placental efflux transporters involved in the bio-disposition of pravastatin, determine the protein expression of these transporters and their encoding genes as well as the activity of pravastatin uptake in placentas obtained from patients with preeclampsia. ATP-dependent uptake of [3H]-pravastatin by trophoblast tissue apical and basal membrane vesicles exhibited sigmoidal kinetics. The curved shapes of Eadie-Hofstee plots indicate that more than one placental transporter are involved in the uptake of pravastatin. ATP-dependent uptake of [3H]-pravastatin into vesicles expressing MRP1-5, BCRP, and P-gp, as well as the results of inhibition studies suggest that BCRP and MRP1 are the major placental efflux transporters responsible for the in vitro uptake of pravastatin. Compared to placentas from healthy pregnancies, preeclamptic placentas had increased number of syncytial knots with increased expression of BCRP in their apical membrane and increased expression of MRP1 in the cytoplasm of the syncytiotrophoblast and in cytoplasm of syncytial knots. There was a concomitant increase in ABCC1 but not in ABCG2 gene expressions in preeclamptic placentas. ATP-dependent uptake of [3H]-pravastatin by vesicles prepared from apical membranes of preeclamptic placentas was similar to the uptake by vesicles prepared from placentas obtained after uncomplicated pregnancies (13.9 ± 6.5 vs 14.1 ± 5.8 pmol·mg protein-1 min-1). The transporter-specific changes in the expression of BCRP and MRP1 in preeclamptic placentas did not affect the efflux activity of transporters localized on the apical membrane of the syncytiotrophoblast.
Collapse
Affiliation(s)
- Marjan Afrouzian
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rabab Al-Lahham
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Svetlana Patrikeeva
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Meixiang Xu
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Valentina Fokina
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wayne G Fischer
- Department of Qulity Management & Patient Safety, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sherif Z Abdel-Rahman
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maged Costantine
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mahmoud S Ahmed
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tatiana Nanovskaya
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
37
|
Jurisic A, Jurisic Z, Lefkou E, Pombo J, Girardi G. Pravastatin and-L-arginine combination improves umbilical artery blood flow and neonatal outcomes in dichorionic twin pregnancies through an nitric oxide-dependent vasorelaxant effect. Vascul Pharmacol 2018; 110:64-70. [PMID: 29879462 DOI: 10.1016/j.vph.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/25/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
Abstract
The increase in fetal and neonatal morbidity and mortality associated with twin pregnancies correlates with an increased risk of preterm delivery, low birth weight, and intrauterine growth restriction (IUGR). Although the pathogenesis of IUGR is unclear and thus management remains a major challenge, feto-placental blood vessels are compromised, and altered umbilical blood flow is observed. In this pilot observational study we investigated the effects of pravastatin plus l-arginine on umbilical artery (umb art) blood flow. Between 2013 and 2016, five women received daily doses l-arginine and pravastatin when an umb art pulsatility index above limits for gestational age was observed and concerns about selective growth restrictions arose. All patients showed selective absent or reversed end-diastolic umbilical artery Doppler flow (AREDV) associated with increased perinatal mortality. Pravastatin (PRAV) plus l-arginine (l-Arg) treatment diminished umb art resistance significantly and allowed pregnancy to continue. No signs of acidosis or hypoxia, normal cardiotocography tracing, normal fetal movement and fetal weight gain were observed in the twins that showed abnormal umb art Dopplers. All neonates were born around 33 weeks (median 33 weeks, IQR [31.4-33.0]), thus diminishing substantially the chances for any prematurity-associated adverse neonatal outcomes. The infants now show normal growth and development. In in vitro studies, pravastatin induced relaxation of aortic rings. Murine studies identified were performed to investigate the mechanism behind PRAV+L-Arg beneficial effects. A nitric oxide (NO)-dependent synergistic vasorelaxant effect of PRAV+L-Arg was demonstrated using aortic rings. Increased levels of placental NO and increased synthesis of eNOS in placental endothelial cells were observed in mice treated with PRAV+L-Arg compared to untreated mice and mice treated with PRAV- or L-Arg alone. This study suggests that PRAV plus L-Arg might be a good therapeutic option to improve blood flow in umbilical arteries prolonging pregnancy and improving pregnancy outcomes in twins. A RCT should be organized to confirm these results.
Collapse
Affiliation(s)
- Aleksandar Jurisic
- University of Belgrade Medical School, Narodni Front University Hospital, Belgrade, Serbia
| | | | | | - Joaquim Pombo
- Division of Women and Children's Health, King's College London, United Kingdom
| | - Guillermina Girardi
- Division of Women and Children's Health, King's College London, United Kingdom.
| |
Collapse
|
38
|
Liu L, Cheeti S, Yoshida K, Choo E, Chen E, Chen B, Gates M, Singel S, Morley R, Ware J, Sahasranaman S. Effect of OATP1B1/1B3 Inhibitor GDC-0810 on the Pharmacokinetics of Pravastatin and Coproporphyrin I/III in Healthy Female Subjects. J Clin Pharmacol 2018; 58:1427-1435. [PMID: 29786857 DOI: 10.1002/jcph.1261] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/17/2018] [Indexed: 11/09/2022]
Abstract
Developed as an oral anticancer drug to treat estrogen receptor-positive breast cancer, GDC-0810 was shown to be a potent inhibitor of organic anion-transporting polypeptide 1B1 and 1B3 (OATP1B1/1B3) from an in vitro assay. A clinical study was conducted to assess the drug-drug interaction potential between GDC-0810 and pravastatin, which is a relatively selective and sensitive OATP1B1/1B3 substrate. Fifteen healthy female subjects of non-childbearing potential were enrolled in the study. On day 1 in period 1, a single 10-mg dose of pravastatin was administered to all subjects. Following a 4-day washout period, 600 mg of GDC-0810 was administered once daily on days 5 through 8 in period 2 to achieve steady-state concentrations. On day 7, a single dose of 10-mg pravastatin was coadministered with the 600-mg GDC-0810 dose. Concentrations of pravastatin (periods 1 and 2) and GDC-0810 (period 2 only) were quantified in blood samples and subsequently used to calculate the pharmacokinetics (PK) parameters. The pravastatin mean maximal concentration and area under the curve values were approximately 20% and 41% higher, respectively, following pravastatin coadministration with GDC-0810 compared to pravastatin alone. Based on the magnitude of change in this drug-drug interaction study, dose adjustments for pravastatin (and other OATP1B1/1B3 substrates) were not considered necessary when administered with GDC-0810. Retrospectively, the endogenous biomarkers of OATP1B1/1B3, coproporphyrin I and III, were also measured and showed changes comparable to those of pravastatin, indicating their utility in detecting weak inhibition of OATP1B1/1B3 in the clinical setting.
Collapse
Affiliation(s)
- Lichuan Liu
- Clinical Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Sravanthi Cheeti
- Clinical Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Kenta Yoshida
- Clinical Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Edna Choo
- Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA, USA
| | - Eugene Chen
- Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA, USA
| | - Buyun Chen
- Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA, USA
| | - Mary Gates
- Early Clinical Development, Genentech Inc., South San Francisco, CA, USA
| | - Stina Singel
- Early Clinical Development, Genentech Inc., South San Francisco, CA, USA
| | - Roland Morley
- Clinical Safety, Genentech Inc., South San Francisco, CA, USA
| | - Joseph Ware
- Clinical Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | | |
Collapse
|
39
|
Yadav J, Korzekwa K, Nagar S. Improved Predictions of Drug-Drug Interactions Mediated by Time-Dependent Inhibition of CYP3A. Mol Pharm 2018; 15:1979-1995. [PMID: 29608318 PMCID: PMC5938745 DOI: 10.1021/acs.molpharmaceut.8b00129] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Time-dependent inactivation (TDI) of cytochrome P450s (CYPs) is a leading cause of clinical drug-drug interactions (DDIs). Current methods tend to overpredict DDIs. In this study, a numerical approach was used to model complex CYP3A TDI in human-liver microsomes. The inhibitors evaluated included troleandomycin (TAO), erythromycin (ERY), verapamil (VER), and diltiazem (DTZ) along with the primary metabolites N-demethyl erythromycin (NDE), norverapamil (NV), and N-desmethyl diltiazem (NDD). The complexities incorporated into the models included multiple-binding kinetics, quasi-irreversible inactivation, sequential metabolism, inhibitor depletion, and membrane partitioning. The resulting inactivation parameters were incorporated into static in vitro-in vivo correlation (IVIVC) models to predict clinical DDIs. For 77 clinically observed DDIs, with a hepatic-CYP3A-synthesis-rate constant of 0.000 146 min-1, the average fold difference between the observed and predicted DDIs was 3.17 for the standard replot method and 1.45 for the numerical method. Similar results were obtained using a synthesis-rate constant of 0.000 32 min-1. These results suggest that numerical methods can successfully model complex in vitro TDI kinetics and that the resulting DDI predictions are more accurate than those obtained with the standard replot approach.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
40
|
Min JJ, Shin BS, Lee JH, Jeon Y, Ryu DK, Kim S, Shin YH. Effects of Pravastatin on Type 1 Diabetic Rat Heart with or without Blood Glycemic Control. J Diabetes Res 2018; 2018:1067853. [PMID: 29682576 PMCID: PMC5850894 DOI: 10.1155/2018/1067853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/29/2017] [Indexed: 01/11/2023] Open
Abstract
Although statins have been suggested to attenuate the progression of diabetic cardiomyopathy, its effect without glycemic control remains unclear. Therefore, we evaluated the effect of pravastatin on diabetic rat hearts according to glycemic control. Rats were randomly divided into five groups: control (C), diabetes (D), diabetes with insulin (I), diabetes with pravastatin (P), and diabetes with insulin and pravastatin (IP). Eight weeks after allocated treatments, the heart was extracted and analyzed following echocardiography. Cardiac fibrosis was measured using Masson's trichrome stain. Cardiac expression of collagen I/III, matrix metalloproteinase (MMP)-2, MMP-9, and angiotensin-converting enzyme (ACE)/ACE2 was evaluated by immunohistochemistry and/or Western blot. Enzyme-linked immunosorbent assay was used for measuring reactive oxygen species (ROS). Diabetic groups without glycemic control (D and P) showed significantly impaired diastolic function and increased levels of cardiac fibrosis, collagen I/III, MMP-2, MMP-9, and ROS production. However, there were little significant differences in the outcomes among the control and two glucose-controlled diabetic groups (I and IP). Groups C and IP showed more preserved ACE2 and lower ACE expressions than the other groups did (D, I, and P). Our study suggested glycemic control would be more important to attenuate the progression of diabetic cardiomyopathy than pravastatin medication.
Collapse
Affiliation(s)
- Jeong Jin Min
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung-Seop Shin
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Hwan Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yunseok Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dae Kyun Ryu
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sojin Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Hee Shin
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
41
|
Mao J, Doshi U, Wright M, Hop CECA, Li AP, Chen Y. Prediction of the Pharmacokinetics of Pravastatin as an OATP Substrate Using Plateable Human Hepatocytes With Human Plasma Data and PBPK Modeling. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:251-258. [PMID: 29388346 PMCID: PMC5915609 DOI: 10.1002/psp4.12283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 01/15/2023]
Abstract
Plateable human hepatocytes with human plasma were utilized to generate the uptake transporter kinetic data for pravastatin, an organic anion-transporting polypeptide (OATP) transporter substrate. The active hepatic uptake of pravastatin was determined with a Jmax value of 134.4 pmol/min/million cells and Km of 76.77 µM in plateable human hepatocytes with human plasma. The physiologically-based pharmacokinetic (PBPK) model with incorporation of these in vitro kinetic data successfully simulated the i.v. pharmacokinetic profile of pravastatin without applying scaling factor (the mean predicted area under the curve (AUC) is within 1.5-fold of the observed). Furthermore, the PBPK model also adequately described the oral plasma concentration-time profiles of pravastatin at different dose levels. The current investigation demonstrates an approach allowing us to build upon the translation of in vitro OATP uptake transporter data to in vivo, with a hope of utilizing the in vitro data for the prospective human pharmacokinetic (PK) prediction.
Collapse
Affiliation(s)
- Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Utkarsh Doshi
- In Vitro ADMET Laboratories Inc. (IVAL), Columbia, Maryland, USA
| | - Matthew Wright
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Cornelis E C A Hop
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Albert P Li
- In Vitro ADMET Laboratories Inc. (IVAL), Columbia, Maryland, USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, California, USA
| |
Collapse
|
42
|
Zeybek B, Costantine M, Kilic GS, Borahay MA. Therapeutic Roles of Statins in Gynecology and Obstetrics: The Current Evidence. Reprod Sci 2018; 25:802-817. [PMID: 29320955 DOI: 10.1177/1933719117750751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Statins are a class of drugs, which act by inhibiting the rate-limiting enzyme of cholesterol biosynthesis (3-hydroxy-3-methyl-glutaryl-CoA reductase). The inhibition of mevalonate synthesis leads to subsequent inhibition of downstream products of this pathway, which explains the pleiotropic effects of these agents in addition to their well-known lipid-lowering effects. Accumulating evidence suggests that statins might be beneficial in various obstetric and gynecologic conditions. METHODS Literature searches were performed in PubMed and EMBASE for articles with content related to statins in obstetrics and gynecology. The findings are hereby reviewed and discussed. RESULTS Inhibition of mevalonate pathway leads to subsequent inhibition of downstream products such as geranyl pyrophosphate, farnesyl pyrophosphate, and geranylgeranyl pyrophosphate. These products are required for proper intracellular localization of several proteins, which play important roles in signaling pathways by regulating membrane trafficking, motility, proliferation, differentiation, and cytoskeletal organization. The pleiotropic effects of statins can be summarized in 4 categories: antiproliferative, anti-invasive, anti-inflammatory, and antiangiogenic. The growing body of evidence is promising for these agents to be beneficial in endometriosis, polycystic ovary syndrome, adhesion prevention, ovarian cancer, preeclampsia, and antiphospholipid syndrome. Although in vivo studies showed varying degrees of benefit on fibroids and preterm birth, appropriately designed clinical trials are needed to make definitive conclusions. CONCLUSION Statins might play a role in the treatment of endometriosis, polycystic ovary syndrome, adhesion prevention, ovarian cancer, preeclampsia, and antiphospholipid syndrome.
Collapse
Affiliation(s)
- Burak Zeybek
- 1 Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Maged Costantine
- 1 Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gokhan S Kilic
- 1 Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Mostafa A Borahay
- 2 Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Abstract
RATIONALE Pravastatin has emerged for prevention and treatment of preeclampsia; no reports are available on pravastatin and HELLP (hemolysis, elevated liver enzymes and low platelets) syndrome. PATIENT CONCERNS The first pregnancy necessitated termination of pregnancy at gestational age (GA) 20+5 for HELLP. Intrauterine fetal death at GA 22+5 occurred in the second pregnancy, whilst on temporizing management of HELLP. DIAGNOSES Severe, recurrent early-onset HELLP syndrome. INTERVENTIONS In her fourth pregnancy, pravastatin was commenced at GA 13. OUTCOMES The course of pregnancy was uncomplicated, and a healthy, appropriate for gestational age fetus was delivered at term. LESSONS Pravastatin may be effective in prevention of HELLP. The hepatic uptake may be of particular advantage.
Collapse
Affiliation(s)
| | - Katrin van der Ven
- Department of Gynecologic Endocrinology and Reproductive Medicine, University Bonn Medical School, Bonn, Germany
| | - Marietta Kühr
- Department of Gynecologic Endocrinology and Reproductive Medicine, University Bonn Medical School, Bonn, Germany
| | | | | |
Collapse
|
44
|
Mauro M, Lepera JS, Borsari B, Capela JMV, de Moraes NV. Effect of inhalation exposure to toluene on the activity of organic anion transporting polypeptide (Oatp) using pravastatin as a probe drug in rats. Xenobiotica 2017; 48:734-738. [PMID: 28686078 DOI: 10.1080/00498254.2017.1353717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. Toluene, used as a pure substance or in solvent mixtures, is the cause of occupational exposures of large numbers of workers in the world. The organic anion transporting polypeptides (OATP: human; Oatp: rodents) are drug carriers which have been frequently associated to drug-drug interactions. The objective of this study was to evaluate the influence of inhalation exposure to toluene in Oatp in vivo activity using pravastatin as a probe drug in rats. 2. Male Wistar rats ((n = 6 per sampling time) were exposed to 85 mg/m3 toluene by inhalation or air in a nose only exposure system for 6 h/d, 5 d/week during 4 weeks, in order to simulate the occupational exposure to toluene at level slightly above the occupational exposure limit proposed by the American Conference of Governmental Industrial Hygienists (ACGIH). After 4 weeks of exposure, animals received a single dose of 20 mg/kg pravastatin orally. 3. Areas under concentration × time curves extrapolated to infinite (AUC0-∞) were calculated by Gauss Laguerre quadrature. Non-exposed animals showed AUC0-∞ of 726.0 (261.8) ng h/mL for pravastatin and rats exposed to toluene 85 mg/m3 showed AUC0-∞ of 681.8 (80.1) ng h/mL [data presented as mean (standard error of the mean)]. No significant difference was observed in pravastatin kinetic disposition between groups in terms of 95% confidence interval for the difference between means. 4. Toluene exposure by inhalation did not change the in vivo activity of Oatp evaluated by pravastatin kinetic disposition in rats.
Collapse
Affiliation(s)
- Mariana Mauro
- a Departamento de Princípios Ativos Naturais e Toxicologia , Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista , Araraquara , Brazil and
| | - Jose Salvador Lepera
- a Departamento de Princípios Ativos Naturais e Toxicologia , Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista , Araraquara , Brazil and
| | - Bruno Borsari
- a Departamento de Princípios Ativos Naturais e Toxicologia , Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista , Araraquara , Brazil and
| | - Jorge Manuel Vieira Capela
- b Departamento de Físico-Química , Instituto de Química, UNESP - Universidade Estadual Paulista , Araraquara , Brazil
| | - Natália Valadares de Moraes
- a Departamento de Princípios Ativos Naturais e Toxicologia , Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista , Araraquara , Brazil and
| |
Collapse
|
45
|
Schenk A, Ghallab A, Hofmann U, Hassan R, Schwarz M, Schuppert A, Schwen LO, Braeuning A, Teutonico D, Hengstler JG, Kuepfer L. Physiologically-based modelling in mice suggests an aggravated loss of clearance capacity after toxic liver damage. Sci Rep 2017; 7:6224. [PMID: 28740200 PMCID: PMC5524914 DOI: 10.1038/s41598-017-04574-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/17/2017] [Indexed: 02/05/2023] Open
Abstract
Diseases and toxins may lead to death of active liver tissue, resulting in a loss of total clearance capacity at the whole-body level. However, it remains difficult to study, whether the loss of metabolizing tissue is sufficient to explain loss of metabolic capacity of the liver or whether the surviving tissue undergoes an adaptive response to compensate the loss. To understand the cellular impact of toxic liver damage in an in vivo situation, we here used physiologically-based pharmacokinetic modelling to investigate pharmacokinetics of a specifically designed drug cocktail at three different sampling sites of the body in healthy mice and mice treated with carbon tetrachloride (CCl4). Liver zonation was explicitly quantified in the models through immunostaining of cytochrome P450s enzymes. Comparative analyses between the simulated decrease in clearance capacity and the experimentally measured loss in tissue volume indicated that CCl4-induced impairment of metabolic functions goes beyond the mere loss of metabolically active tissue. The here established integrative modelling strategy hence provides mechanistic insights into functional consequences of toxic liver damage in an in vivo situation, which would not have been accessible by conventional methods.
Collapse
Affiliation(s)
- Arne Schenk
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Michael Schwarz
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Andreas Schuppert
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
- Systems Pharmacology, Bayer AG, Leverkusen, Germany
| | | | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Donato Teutonico
- Systems Pharmacology, Bayer AG, Leverkusen, Germany
- Clinical PK and Pharmacometrics, Institut de Recherches Internationales Servier, Suresnes, France
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Lars Kuepfer
- Systems Pharmacology, Bayer AG, Leverkusen, Germany.
| |
Collapse
|
46
|
Marrs CC, Costantine MM. Should We Add Pravastatin to Aspirin for Preeclampsia Prevention in High-risk Women? Clin Obstet Gynecol 2017; 60:161-168. [PMID: 27906745 PMCID: PMC5250542 DOI: 10.1097/grf.0000000000000248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preeclampsia is a multisystem disorder that affects 3% to 5% of pregnant women and remains a significant source of short-term and long-term maternal and neonatal mortality and morbidity. Many professional societies recommend the use of low-dose aspirin to prevent preeclampsia in high-risk women. Owing to the similarities in pathophysiology between preeclampsia and atherosclerotic cardiovascular disease, and the encouraging data from preclinical and pilot clinical studies, pravastatin has been proposed for preventing preeclampsia. However, before statin administration becomes part of routine clinical practice, a large, well-designed, and adequately powered randomized-controlled trial is needed.
Collapse
Affiliation(s)
- Caroline C. Marrs
- Fellow, Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, the University of Texas Medical Branch, Galveston Texas
| | - Maged M. Costantine
- Associate Professor, Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, the University of Texas Medical Branch, Galveston Texas
| |
Collapse
|
47
|
Rondini EA, Duniec-Dmuchowski Z, Cukovic D, Dombkowski AA, Kocarek TA. Differential Regulation of Gene Expression by Cholesterol Biosynthesis Inhibitors That Reduce (Pravastatin) or Enhance (Squalestatin 1) Nonsterol Isoprenoid Levels in Primary Cultured Mouse and Rat Hepatocytes. J Pharmacol Exp Ther 2016; 358:216-29. [PMID: 27225895 PMCID: PMC4959097 DOI: 10.1124/jpet.116.233312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/24/2016] [Indexed: 01/09/2023] Open
Abstract
Squalene synthase inhibitors (SSIs), such as squalestatin 1 (SQ1), reduce cholesterol biosynthesis but cause the accumulation of isoprenoids derived from farnesyl pyrophosphate (FPP), which can modulate the activity of nuclear receptors, including the constitutive androstane receptor (CAR), farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs). In comparison, 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (e.g., pravastatin) inhibit production of both cholesterol and nonsterol isoprenoids. To characterize the effects of isoprenoids on hepatocellular physiology, microarrays were used to compare orthologous gene expression from primary cultured mouse and rat hepatocytes that were treated with either SQ1 or pravastatin. Compared with controls, 47 orthologs were affected by both inhibitors, 90 were affected only by SQ1, and 51 were unique to pravastatin treatment (P < 0.05, ≥1.5-fold change). When the effects of SQ1 and pravastatin were compared directly, 162 orthologs were found to be differentially coregulated between the two treatments. Genes involved in cholesterol and unsaturated fatty acid biosynthesis were up-regulated by both inhibitors, consistent with cholesterol depletion; however, the extent of induction was greater in rat than in mouse hepatocytes. SQ1 induced several orthologs associated with microsomal, peroxisomal, and mitochondrial fatty acid oxidation and repressed orthologs involved in cell cycle regulation. By comparison, pravastatin repressed the expression of orthologs involved in retinol and xenobiotic metabolism. Several of the metabolic genes altered by isoprenoids were inducible by a PPARα agonist, whereas cytochrome P450 isoform 2B was inducible by activators of CAR. Our findings indicate that SSIs uniquely influence cellular lipid metabolism and cell cycle regulation, probably due to FPP catabolism through the farnesol pathway.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Institute of Environmental Health Sciences (E.A.R., Z.D.-D., T.A.K.), and Department of Pediatrics, Division of Clinical Pharmacology and Toxicology (D.C., A.A.D.), Wayne State University, Detroit, Michigan
| | - Zofia Duniec-Dmuchowski
- Institute of Environmental Health Sciences (E.A.R., Z.D.-D., T.A.K.), and Department of Pediatrics, Division of Clinical Pharmacology and Toxicology (D.C., A.A.D.), Wayne State University, Detroit, Michigan
| | - Daniela Cukovic
- Institute of Environmental Health Sciences (E.A.R., Z.D.-D., T.A.K.), and Department of Pediatrics, Division of Clinical Pharmacology and Toxicology (D.C., A.A.D.), Wayne State University, Detroit, Michigan
| | - Alan A Dombkowski
- Institute of Environmental Health Sciences (E.A.R., Z.D.-D., T.A.K.), and Department of Pediatrics, Division of Clinical Pharmacology and Toxicology (D.C., A.A.D.), Wayne State University, Detroit, Michigan
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences (E.A.R., Z.D.-D., T.A.K.), and Department of Pediatrics, Division of Clinical Pharmacology and Toxicology (D.C., A.A.D.), Wayne State University, Detroit, Michigan
| |
Collapse
|
48
|
Costantine MM. Pravastatin to prevent obstetrical complications in women with antiphospholipid syndrome. J Clin Invest 2016; 126:2792-4. [PMID: 27454294 DOI: 10.1172/jci89137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pregnant women with antiphospholipid syndrome (APS) are at a high risk of obstetrical complications. The current standard of care, including the use of low-dose aspirin and heparin, has not been shown to prevent preeclampsia or intrauterine growth restriction (IUGR). Due to the similarities in pathophysiology among preeclampsia, IUGR, and atherosclerotic cardiovascular disease, statins have been proposed for treating and/or preventing these obstetrical complications. In this issue of the JCI, Lefkou et al. report on a small, observational trial that showed a dramatic improvement in both maternal and fetal/neonatal outcomes in women with APS given pravastatin after the onset of preeclampsia and/or IUGR compared with women in the control group. These results, along with other recent clinical studies, support further evaluation of statins for prevention of preeclampsia in a large-scale randomized clinical trial.
Collapse
|
49
|
Comparison of the Risk of Gastrointestinal Bleeding among Different Statin Exposures with Concomitant Administration of Warfarin: Electronic Health Record-Based Retrospective Cohort Study. PLoS One 2016; 11:e0158130. [PMID: 27386858 PMCID: PMC4936673 DOI: 10.1371/journal.pone.0158130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/11/2016] [Indexed: 11/26/2022] Open
Abstract
Background and Objective Patients who should be treated with both warfarin and a statin are frequently seen in vascular clinics. The risk for bleeding and potential drug interactions should be considered when prescribing both medications together. This study aimed to compare the risk for gastrointestinal bleeding among different statin exposures with concomitant administration of warfarin. Materials and Methods This is a single-hospital retrospective cohort study. We included patients who were concomitantly exposed to one of four statins (pravastatin, simvastatin, atorvastatin, and rosuvastatin) and warfarin for up to 2 years (730 days). The observation period ended when a gastrointestinal bleeding event occurred or the observation was censored. Within-class comparisons were used, and 1:1 matching using a propensity score was performed for comparisons between each statin and all of the other statins. Kaplan-Meier analyses with log-rank tests and Cox proportional hazard regression analyses were conducted to determine associations with the risk of gastrointestinal bleeding. Results Data were analyzed for 1,686 patients who were concomitantly administered a statin and warfarin. Log-rank tests for the gastrointestinal bleeding-free survival rate showed that the risk for gastrointestinal bleeding was significantly lower in the pravastatin group (p = 0.0499) and higher in the rosuvastatin group (p = 0.009). In the Cox proportional hazard regression analysis, the hazard ratio of 5.394 for gastrointestinal bleeding based on statin exposure in the rosuvastatin group was significant (95% confidence interval, 1.168–24.916). Conclusions There was a relatively high risk of gastrointestinal bleeding with rosuvastatin when administered concomitantly with warfarin.
Collapse
|
50
|
Johnson TN, Jamei M, Rowland-Yeo K. How Does In Vivo Biliary Elimination of Drugs Change with Age? Evidence from In Vitro and Clinical Data Using a Systems Pharmacology Approach. Drug Metab Dispos 2016; 44:1090-8. [PMID: 26862026 DOI: 10.1124/dmd.115.068643] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/08/2016] [Indexed: 02/13/2025] Open
Abstract
Information on the developmental changes in biliary excretion (BE) of drugs is sparse. The aims of this study were to collate literature data on the pharmacokinetics of biliary excretion of drugs used in pediatrics and to apply a physiologically based pharmacokinetic (PBPK) model to predict their systemic clearance (CL) with a view to elucidating age-related changes in biliary excretion. Drug parameters for azithromycin, ceftriaxone, and digoxin administered intravenously and buprenorphine (intravenous and sublingual) were collated from the literature and used in the Simcyp Simulator to predict adult CL values, which were then validated against observed data. The change in CL with age was simulated in the pediatric model and compared with observed data; where necessary, the ontogeny function associated with BE was applied to recover the age-related CL. For azithromycin a fraction of adult BE activity of 15% was necessary to predict the CL in neonates (26 weeks gestational age) and 100% activity was apparent by 7 months. For ceftriaxone and digoxin full BE activity appeared to be present at term birth; for digoxin, an adult BE activity of 10% was needed to predict the CL in premature neonates (30 weeks gestational age). The CL of buprenorphine with age was described by the ontogeny of the major elimination pathways (CYP3A4 and UGT1A1) with no ontogeny assumed for the biliary component. Thus, the ontogeny of BE for all four drugs appears to be rapid and they attain adult levels at birth or within the first few months of postnatal age.
Collapse
Affiliation(s)
| | - Masoud Jamei
- Simcyp Limited (a Certara company), Sheffield, United Kingdom
| | | |
Collapse
|