1
|
Utpal BK, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Madhuri YB, Gupta JK, Yaidikar L, Tummala T, Suseela R, Durairaj A, Reddy KTK, Al Fahaid AAF, Rab SO, Almahjari MS, Emran TB. Alkaloids as neuroprotectors: targeting signaling pathways in neurodegenerative diseases. Mol Cell Biochem 2025. [DOI: 10.1007/s11010-025-05258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/16/2025] [Indexed: 05/04/2025]
|
2
|
Xiong J, Lu H, Jiang Y. Mechanisms of Azole Potentiation: Insights from Drug Repurposing Approaches. ACS Infect Dis 2025; 11:305-322. [PMID: 39749640 DOI: 10.1021/acsinfecdis.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The emergence of azole resistance and tolerance in pathogenic fungi has emerged as a significant public health concern, emphasizing the urgency for innovative strategies to bolster the efficacy of azole-based treatments. Drug repurposing stands as a promising and practical avenue for advancing antifungal therapy, with the potential for swift clinical translation. This review offers a comprehensive overview of azole synergistic agents uncovered through drug repurposing strategies, alongside an in-depth exploration of the mechanisms by which these agents augment azole potency. Drawing from these mechanisms, we delineate strategies aimed at enhancing azole effectiveness, such as inhibiting efflux pumps to elevate azole concentrations within fungal cells, intensifying ergosterol synthesis inhibition, mitigating fungal cell resistance to azoles, and disrupting biological processes extending beyond ergosterol synthesis. This review is beneficial for the development of these potentiators, as it meticulously examines instances and provides nuanced discussions on the mechanisms underlying the progression of azole potentiators through drug repurposing strategies.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
3
|
Cui Y, Zhou Q, Jin M, Jiang S, Shang P, Dong X, Li L. Research progress on pharmacological effects and bioavailability of berberine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8485-8514. [PMID: 38888754 DOI: 10.1007/s00210-024-03199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Berberine (BBR), a benzylisoquinoline alkaloid obtained from natural medicines such as coptidis rhizoma, has a wide range of pharmacological activities such as protecting the nervous system, protecting the cardiovascular system, anti-inflammatory, antidiabetic, antihyperlipidemic, antitumor, antibacterial, and antidiarrheal. However, factors such as poor solubility, low permeability, P-glycoprotein (P-gp) efflux, and hepatic-intestinal metabolism result in BBR having a low bioavailability (< 1%), which restricts its application in clinical settings. Therefore, improving its bioavailability is a prerequisite for its clinical applications. This review summarizes the various pharmacological effects of BBR and analyzes the main reasons for its poor bioavailability. It introduces methods to improve the bioavailability of BBR through the use of absorption enhancers and P-gp inhibitors, structural modification of BBR, and preparation of BBR salts and cocrystals as well as the development of new formulations and focuses on the bioavailability study of the new formulations of BBR. The research of BBR was also prospected in order to provide reference for the further research of BBR.
Collapse
Affiliation(s)
- Yulong Cui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quanying Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Jin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siqi Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizhao Shang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
AbouAitah K, Geioushy RA, Nour SA, Emam MTH, Zakaria MA, Fouad OA, Shaker YM, Kim BS. A Combined Phyto- and Photodynamic Delivery Nanoplatform Enhances Antimicrobial Therapy: Design, Preparation, In Vitro Evaluation, and Molecular Docking. ACS APPLIED BIO MATERIALS 2024; 7:6873-6889. [PMID: 39374427 DOI: 10.1021/acsabm.4c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Microbial combating is one of the hot research topics, and finding an alternative strategy is considerably required nowadays. Here, we report on a developed combined chemo- and photodynamic delivery system with a core of zinc oxide nanoparticles (ZnO NPs), porphyrin photosensitizer (POR) connected to alginate polymer (ALG), and berberine (alkaloid natural agent, BER) with favorable antimicrobial effects. According to the achieved main designs, the results demonstrated that the loading capacity and entrapment efficiency reached 22.2 wt % and 95.2%, respectively, for ZnO@ALG-POR/BER nanoformulation (second design) compared to 5.88 wt % and 45.1% for ZnOBER@ALG-POR design (first design). Importantly, when the intended nanoformulations were combined with laser irradiation for 10 min, they showed effective antifungal and antibacterial action against Candida albicans, Escherichia coli, and Staphylococcus aureus. Comparing these treatments to ZnO NPs and free BER, a complete (100%) suppression of bacterial and fungal growth was observed by ZnO@ALG-POR/BER nanoformulation treated E. coli, and by ZnOBER treated C. albicans. Also, after laser treatments, most data showed that E. coli was more sensitive to treatments using nanoformulations than S. aureus. The nanoformulations like ZnOBER@ALG-POR were highly comparable to traditional antibiotics against C. albicans and E. coli before laser application. The results of the cytotoxicity assessment demonstrated that the nanoformulations exhibited moderate biocompatibility on normal human immortalized retinal epithelial (RPE1) cells. Notably, the most biocompatible nanoformulation was ZnOBER@ALG-POR, which possessed ∼9% inhibition of RPE1 cells compared to others. High binding affinities were found between all three microbial strains' receptor proteins and ligands in the molecular docking interaction between the receptor proteins and the ligand molecules (mostly BER and POR). In conclusion, our findings point to the possible use of hybrid nanoplatform delivery systems that combine natural agents and photodynamic therapy into a single therapeutic agent, effectively combating microbial infections. Therapeutic efficiency correlates with nanoformulation design and microorganisms, demonstrating possible optimization for further development.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Ramadan A Geioushy
- Nanostructured Materials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Maha T H Emam
- Department of Genetics and Cytology, Biotechnology Research Institute, National Research Centre, 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Mohammed A Zakaria
- Spectroscopy Department, Physics Research Institute, National Research Centre, 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Osama A Fouad
- Nanostructured Materials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - Yasser M Shaker
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
5
|
Piekarz J, Picheta N, Burdan O, Kurek M, Chrościńska-Krawczyk M. Phytotherapy in Alzheimer's Disease-A Narrative Review. Biomedicines 2024; 12:1812. [PMID: 39200276 PMCID: PMC11351709 DOI: 10.3390/biomedicines12081812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) affects 50-70% of patients with dementia, making it the leading cause of dementia. The condition is classified as a neurodegenerative, progressive and incurable disease. The disease is affecting more and more people around the world. AD has a multifactorial nature, spreading from beta-amyloid deposition to inflammation in patients' brains. Patients experience cognitive impairment and functional decline. Although it is a disease that occurs mainly in the elderly, it is increasingly being diagnosed in young people between the ages of 30 and 40. It not only affects the patient themself but also reduces the quality of life of their closest caregivers. According to the WHO, the treatment of AD consumes USD 1.3 trillion globally, but it is only symptomatic, as there are no drugs to prevent the onset of AD or treat the cause of its onset. Due to the numerous side effects of therapy and the lack of proactive drugs that act on the pathomechanism of AD, alternative therapies are being sought. One possible option that has many studies confirming its effect is phytotherapy. Many herbs have pharmacological properties, such as antioxidant, anti-inflammatory, or neuroprotective effects, making them the future of cognitive disorders and AD treatment. This review focuses on some of the most promising herbs that have potentially potent properties and effects in AD therapy. These include Curcuma longa, Panax ginseng, Berberis and Crocus sativus. These herbs may perhaps be key in the future to make functioning and life easier for patients struggling with AD.
Collapse
Affiliation(s)
- Julia Piekarz
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Natalia Picheta
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Oliwia Burdan
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Marcelina Kurek
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | | |
Collapse
|
6
|
Wu J, Li K, Zhou M, Gao H, Wang W, Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J Pharm Anal 2024; 14:100946. [PMID: 39258172 PMCID: PMC11386058 DOI: 10.1016/j.jpha.2024.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Collapse
Affiliation(s)
- Jiabin Wu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Li
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Muge Zhou
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoyang Gao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
7
|
Owumi S, Chimezie J, Otunla M, Oluwawibe B, Agbarogi H, Anifowose M, Arunsi U, Owoeye O. Prepubertal Repeated Berberine Supplementation Enhances Cerebrocerebellar Functions by Modulating Neurochemical and Behavioural Changes in Wistar Rats. J Mol Neurosci 2024; 74:72. [PMID: 39042258 DOI: 10.1007/s12031-024-02250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Antioxidant-rich supplementation plays an essential role in the function of mammals' central nervous system. However, no research has documented the effect of berberine (BER) supplementation on the cerebrocerebellar function of prepubertal rats. The present study was designed to investigate the impact of BER supplementation on neurochemical and behavioural changes in prepubertal male rats. Five groups (90 ± 5 g, n = 7 each) of experimental rats were orally treated with corn oil or different doses of BER (25, 50, 100, and 200 mg/kg bw) from the 28th at 68 post-natal days. On the 69 days of life, animals underwent behavioural assessment in the open field, hanging wire, and negative geotaxis tests. The result revealed that BER administration improved locomotive and motor behaviour by increasing distance travelled, line crossings, average speed, time mobile, and absolute turn angle in open field test and decrease in time to re-orient on an incline plane, a decrease in immobility time relative to the untreated control. Furthermore, BER supplementation increased (p < 0.05) antioxidant enzyme activities such as SOD, CAT, GPx, GSH, and TSH and prevented increases (p < 0.05) in oxidative and inflammatory levels as indicated by decreases in RONS, LPO, XO, carbonyl protein, NO, MPO, and TNF-α compared to the untreated control. BER-treated animals a lessened number of dark-stained Nissl cells compared to the untreated control rats. Our findings revealed that BER minimised neuronal degeneration and lesions, improved animal behaviour, and suppressed oxidative and inflammatory mediators, which may probably occur through its agonistic effect on PPAR-α, PPAR-δ, and PPAR-γ - essential proteins known to resolve inflammation and modulate redox signalling towards antioxidant function.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria.
| | - Joseph Chimezie
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Moses Otunla
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Bayode Oluwawibe
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Harieme Agbarogi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Mayowa Anifowose
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Uche Arunsi
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Olatunde Owoeye
- Neuroanatomy Research Laboratories, Department of Anatomy, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| |
Collapse
|
8
|
Yadawa AK, Srivastava P, Singh A, Kumar R, Arya JK, Rizvi SI. Berberine attenuates brain aging via stabilizing redox homeostasis and inflammation in an accelerated senescence model of Wistar rats. Metab Brain Dis 2024; 39:649-659. [PMID: 38727934 DOI: 10.1007/s11011-024-01350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Aging is a multifaceted and progressive physiological change of the organism categorized by the accumulation of deteriorating processes, which ultimately compromise the biological functions. The objective of this study was to investigate the anti-aging potential of berberine (BBR) in D-galactose (D-Gal) induced aging in rat models. In this study, male Wistar rats were divided into four groups: The control group was given only vehicle, the BBR group was treated with berberine orally, the D-Gal group was treated with D-galactose subcutaneously and the BBR + D-Gal group was treated with D-galactose and berberine simultaneously. D-galactose exposure elevated the pro-oxidants such as malondialdehyde (MDA) level, protein carbonyl and advanced oxidation protein products (AOPP) in the brain. It decreased the anti-oxidants such as reduced glutathione (GSH) and ferric reducing antioxidant potential (FRAP) in the brain. D-galactose treatment also reduced the mitochondrial complexes (I, II, III and IV) activities and elevated the inflammatory markers such as interleukine-6 (IL-6), tumor necrosis factor- α (TNF-α) and C-reactive protein (CRP). The mRNA expressions of IL-6 and TNF-α in the brain were upregulated following D-galactose exposure. Berberine co-treatment in D-galactose induced aging rat model prevented the alteration of pro-oxidant and anti-oxidant in the brain. Berberine treatment restored the mitochondrial complex activities in the brain and also normalized the inflammatory markers. Based on these findings we conclude that berberine treatment has the potential to mitigate brain aging in rats via stabilizing the redox equilibrium and neuroinflammation.
Collapse
Affiliation(s)
- Arun Kumar Yadawa
- Department of Biochemistry, University of Allahabad, 211002, Allahabad, India
| | - Parisha Srivastava
- Department of Biochemistry, University of Allahabad, 211002, Allahabad, India
| | - Akanksha Singh
- Department of Biochemistry, University of Allahabad, 211002, Allahabad, India
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, 211002, Allahabad, India
| | - Jitendra Kumar Arya
- Department of Biochemistry, University of Allahabad, 211002, Allahabad, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, 211002, Allahabad, India.
| |
Collapse
|
9
|
Song Z, Wang KW, Hagar HTC, Chen HR, Kuan CY, Zhang K, Kuo MH. Hyperphosphorylated Tau Inflicts Intracellular Stress Responses that Are Mitigated by Apomorphine. Mol Neurobiol 2024; 61:2653-2671. [PMID: 37919601 PMCID: PMC11043184 DOI: 10.1007/s12035-023-03689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/30/2023] [Indexed: 11/04/2023]
Abstract
Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlies neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, unfolded protein response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress-associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. p-Tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hsiao-Tien Chien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hong-Ru Chen
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
- Present address: Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, 112304
| | - Chia-Yi Kuan
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
10
|
Dar NJ, John U, Bano N, Khan S, Bhat SA. Oxytosis/Ferroptosis in Neurodegeneration: the Underlying Role of Master Regulator Glutathione Peroxidase 4 (GPX4). Mol Neurobiol 2024; 61:1507-1526. [PMID: 37725216 DOI: 10.1007/s12035-023-03646-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Oxytosis/ferroptosis is an iron-dependent oxidative form of cell death triggered by lethal accumulation of phospholipid hydroperoxides (PLOOHs) in membranes. Failure of the intricate PLOOH repair system is a principle cause of ferroptotic cell death. Glutathione peroxidase 4 (GPX4) is distinctly vital for converting PLOOHs in membranes to non-toxic alcohols. As such, GPX4 is known as the master regulator of oxytosis/ferroptosis. Ferroptosis has been implicated in a number of disorders such as neurodegenerative diseases (amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), etc.), ischemia/reperfusion injury, and kidney degeneration. Reduced function of GPX4 is frequently observed in degenerative disorders. In this study, we examine how diminished GPX4 function may be a critical event in triggering oxytosis/ferroptosis to perpetuate or initiate the neurodegenerative diseases and assess the possible therapeutic importance of oxytosis/ferroptosis in neurodegenerative disorders. These discoveries are important for advancing our understanding of neurodegenerative diseases because oxytosis/ferroptosis may provide a new target to slow the course of the disease.
Collapse
Affiliation(s)
- Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
- School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nargis Bano
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Sameera Khan
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Shahnawaz Ali Bhat
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India.
| |
Collapse
|
11
|
Sen D, Rathee S, Pandey V, Jain SK, Patil UK. Comprehensive Insights into Pathophysiology of Alzheimer's Disease: Herbal Approaches for Mitigating Neurodegeneration. Curr Alzheimer Res 2024; 21:625-648. [PMID: 38623983 DOI: 10.2174/0115672050309057240404075003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and functional impairment. Despite extensive research, the exact etiology remains elusive. This review explores the multifaceted pathophysiology of AD, focusing on key hypotheses such as the cholinergic hypothesis, hyperphosphorylated Tau Protein and Amyloid β hypothesis, oxidative stress hypothesis, and the metal ion hypothesis. Understanding these mechanisms is crucial for developing effective therapeutic strategies. Current treatment options for AD have limitations, prompting the exploration of alternative approaches, including herbal interventions. Cholinesterase inhibitors, targeting the cholinergic hypothesis, have shown modest efficacy in managing symptoms. Blocking Amyloid β (Aβ) and targeting hyperphosphorylated tau protein are under investigation, with limited success in clinical trials. Oxidative stress, implicated in AD pathology, has led to the investigation of antioxidants. Natural products, such as Punica granatum Linn, Radix Scutellariae, and Curcuma longa have demonstrated antioxidant properties, along with anti-inflammatory effects, offering potential neuroprotective benefits. Several herbal extracts, including Ginkgo biloba, Bacopa monnieri, and Withania somnifera, have shown promise in preclinical studies. Compounds like Huperzine A, Melatonin, and Bryostatin exhibit neuroprotective effects through various mechanisms, including cholinergic modulation and anti-inflammatory properties. However, the use of herbal drugs for AD management faces limitations, including standardization issues, variable bioavailability, and potential interactions with conventional medications. Additionally, the efficacy and safety of many herbal products remain to be established through rigorous clinical trials. This review also highlights promising natural products currently in clinical trials, such as Resveratrol and Homotaurine, and their potential impact on AD progression. DHA, an omega-3 fatty acid, has shown cognitive benefits, while Nicotine is being explored for its neuroprotective effects. In conclusion, a comprehensive understanding of the complex pathophysiology of AD and the exploration of herbal interventions offer a holistic approach for managing this devastating disease. Future research should address the limitations associated with herbal drugs and further evaluate the efficacy of promising natural products in clinical settings.
Collapse
Affiliation(s)
- Debasis Sen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Vishal Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
12
|
Nayab DE, Din FU, Ali H, Kausar WA, Urooj S, Zafar M, Khan I, Shabbir K, Khan GM. Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: an up-to-date perspective. J Nanobiotechnology 2023; 21:477. [PMID: 38087359 PMCID: PMC10716964 DOI: 10.1186/s12951-023-02250-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Neurons and their connecting axons gradually degenerate in neurodegenerative diseases (NDs), leading to dysfunctionality of the neuronal cells and eventually their death. Drug delivery for the treatment of effected nervous system is notoriously complicated because of the presence of natural barriers, i.e., the blood-brain barrier and the blood cerebrospinal fluid barrier. Palliative care is currently the standard care for many diseases. Therefore, treatment programs that target the disease's origin rather than its symptoms are recommended. Nanotechnology-based drug delivery platforms offer an innovative way to circumvent these obstacles and deliver medications directly to the central nervous system, thereby enabling treatment of several common neurological problems, i.e., Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. Interestingly, the combination of nanomedicine and gene therapy enables targeting of selective mutant genes responsible for the progression of NDs, which may provide a much-needed boost in the struggle against these diseases. Herein, we discussed various central nervous system delivery obstacles, followed by a detailed insight into the recently developed techniques to restore neurological function via the differentiation of neural stem cells. Moreover, a comprehensive background on the role of nanomedicine in controlling neurogenesis via differentiation of neural stem cells is explained. Additionally, numerous phytoconstituents with their neuroprotective properties and molecular targets in the identification and management of NDs are also deliberated. Furthermore, a detailed insight of the ongoing clinical trials and currently marketed products for the treatment of NDs is provided in this manuscript.
Collapse
Affiliation(s)
- Dur E Nayab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan.
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Warda Arooj Kausar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shaiza Urooj
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Maryam Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ibrahim Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kanwal Shabbir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
13
|
Phukan BC, Roy R, Gahatraj I, Bhattacharya P, Borah A. Therapeutic considerations of bioactive compounds in Alzheimer's disease and Parkinson's disease: Dissecting the molecular pathways. Phytother Res 2023; 37:5657-5699. [PMID: 37823581 DOI: 10.1002/ptr.8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Leading neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the impairment of memory and motor functions, respectively. Despite several breakthroughs, there exists a lack of disease-modifying treatment strategies for these diseases, as the available drugs provide symptomatic relief and bring along side effects. Bioactive compounds are reported to bear neuroprotective properties with minimal toxicity, however, a detailed elucidation of their modes of neuroprotection is lacking. The review elucidates the neuroprotective mechanism(s) of some of the major phyto-compounds in pre-clinical and clinical studies of AD and PD to understand their potential in combating these diseases. Curcumin, eugenol, resveratrol, baicalein, sesamol and so on have proved efficient in countering the pathological hallmarks of AD and PD. Curcumin, resveratrol, caffeine and so on have reached the clinical phases of these diseases, while aromadendrin, delphinidin, cyanidin and xanthohumol are yet to be extensively explored in pre-clinical phases. The review highlights the need for extensive investigation of these compounds in the clinical stages of these diseases so as to utilize their disease-modifying abilities in the real field of treatment. Moreover, poor pharmacokinetic properties of natural compounds are constraints to their therapeutic yields and this review suggests a plausible contribution of nanotechnology in overcoming these limitations.
Collapse
Affiliation(s)
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
14
|
Leimann FV, de Souza LB, de Oliveira BPM, Rossi BF, da Silva PS, Shiraishi CSH, Kaplum V, Abreu RM, Pereira C, Barros L, Peron AP, Ineu RP, Oechsler BF, Sayer C, de Araújo PHH, Gonçalves OH. Evaluation of berberine nanoparticles as a strategy to modulate acetylcholinesterase activity. Food Res Int 2023; 173:113295. [PMID: 37803607 DOI: 10.1016/j.foodres.2023.113295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 10/08/2023]
Abstract
Researchers have concentrated efforts in the search for natural-based reversible inhibitors for cholinesterase enzymes as they may play a key role in the treatment of degenerative diseases. Diverse plant alkaloids can inhibit the action of acetylcholinesterase and, among them, berberine is a promising bioactive. However, berberine has poor water solubility and low bioavailability, which makes it difficult to use in treatment. The solid dispersion technique can improve the water affinity of hydrophobic substances, but berberine solid dispersions have not been extensively studied. Safety testing is also essential to ensure that the berberine-loaded solid dispersions are safe for use. This study investigated the effectiveness of berberine-loaded solid dispersions (SD) as inhibitors of acetylcholinesterase enzyme (AChE). Docking simulation was used to investigate the influence of berberine on AChE, and in vitro assays were conducted to confirm the enzymatic kinetics of AChE in the presence of berberine. Berberine SD also showed improved cytotoxic effects on tumoral cells when dispersed in aqueous media. In vivo assays using Allium cepa were implemented, and no cytotoxicity/genotoxicity was found for the berberine solid dispersion. These results suggest that berberine SD could be a significant step towards safe nanostructures for use in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.
| | - Luma Borges de Souza
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil
| | | | - Bruna Franzon Rossi
- Food and Chemical Engineering Academic Department (DAAEQ), Federal University of Technology - Paraná - UTFPR, Brazil
| | | | - Carlos Seiti Hurtado Shiraishi
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vanessa Kaplum
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil
| | - Rui Miguel Abreu
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Paula Peron
- Biodiversity and Nature Conservation Department, Federal University of Technology - Paraná - UTFPR, Brazil
| | - Rafael Porto Ineu
- Department of Technology and Food Science, Federal University of Santa Maria - UFSM, Brazil
| | - Bruno Francisco Oechsler
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | | | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.
| |
Collapse
|
15
|
Tananta VL, Costa EV, Mary YS, Mary YS, S Al-Otaibi J, Costa RA. DFT, ADME studies and evaluation of the binding with HSA and MAO-B inhibitory potential of protoberberine alkaloids from Guatteria friesiana: theoretical insights of promising candidates for the treatment of Parkinson's disease. J Mol Model 2023; 29:353. [PMID: 37907772 DOI: 10.1007/s00894-023-05756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
CONTEXT Parkinson's disease is a chronic neurodegenerative condition that has no cure, characterized by the progressive degeneration of specific brain cells responsible for producing dopamine, a crucial neurotransmitter for controlling movement and muscle coordination. Parkinson's disease is estimated to affect around 1% of the world's population over the age of 60, but it can be diagnosed at younger ages. One of the treatment strategies for Parkinson's disease involves the use of drugs that aim to increase dopamine levels or simulate the action of dopamine in the brain. A class of commonly prescribed drugs are the so-called monoamine oxidase B (MAO-B) inhibitors due to the fact that this enzyme is responsible for metabolizing dopamine, thus reducing its levels in the brain. Studies have shown that berberine-derived alkaloids have the ability to selectively inhibit MAO-B activity, resulting in increased dopamine availability in the brain. In this context, berberine derivatives 13-hydroxy-discretinine and 7,8-dihydro-8-hydroxypalmatine, isolated from Guatteria friesiana, were evaluated via density functional theory followed by ADME studies, docking and molecular dynamic simulations with MAO-B, aiming to evaluate their anti-Parkinson potential, which have not been reported yet. Docking simulations with HSA were carried out aiming to evaluate the transport of these molecules through the circulatory system. METHODS The 3D structures of the berberine-derived alkaloids were modeled via the DFT approach at B3LYP-D3(BJ)/6-311 + + G(2df, 2pd) theory level using Gaussian 09 software. Solvation free energies were determined through Truhlar's solvation model. MEP and ALIE maps were generated with Multiwfn software. Autodock Vina software was used for molecular docking simulations and analysis of the interactions in the binding sites. The 3D structure of MAO-B was obtained from the Protein Data Bank website under PDB code 2V5Z. For the interaction of studied alkaloids with human serum albumin (HSA) drug sites, 3D structures with PDB codes 2BXD, 2BXG, and 4L9K were used. Molecular dynamics simulations were carried out using GROMACS 2019.4 software, with the GROMOS 53A6 force field at 100 ns simulation time. The estimation of the ligand's binding free energies was obtained via molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method.
Collapse
Affiliation(s)
- Victor L Tananta
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, AM, 69080-900, Brazil
| | - Emmanoel V Costa
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, AM, 69080-900, Brazil
| | | | | | - Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 8442811671, Riyadh, Saudi Arabia
| | - Renyer A Costa
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, AM, 69080-900, Brazil.
| |
Collapse
|
16
|
Tian E, Sharma G, Dai C. Neuroprotective Properties of Berberine: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2023; 12:1883. [PMID: 37891961 PMCID: PMC10604532 DOI: 10.3390/antiox12101883] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid natural product, is isolated primarily from Coptis chinensis and other Berberis plants. BBR possesses various bioactivities, including antioxidant, anti-inflammation, anticancer, immune-regulation, and antimicrobial activities. Growing scientific evidence underscores BBR's substantial neuroprotective potential, prompting increased interest and scrutiny. In this comprehensive review, we elucidate the neuroprotective attributes of BBR, delineate the underlying molecular mechanisms, and assess its clinical safety and efficacy. The multifaceted molecular mechanisms responsible for BBR's neuroprotection encompass the attenuation of oxidative stress, mitigation of inflammatory responses, inhibition of apoptotic pathways, facilitation of autophagic processes, and modulation of CYP450 enzyme activities, neurotransmitter levels, and gut microbiota composition. Furthermore, BBR engages numerous signaling pathways, including the PI3K/Akt, NF-κB, AMPK, CREB, Nrf2, and MAPK pathways, to confer its neuroprotective effects. This comprehensive review aims to provide a substantial knowledge base, stimulate broader scientific discourse, and facilitate advancements in the application of BBR for neuroprotection.
Collapse
Affiliation(s)
- Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
17
|
Han C, Wang J, Chen YL, Guan CP, Zhang YA, Wang MS. The role of Bacillus Calmette-Guérin administration on the risk of dementia in bladder cancer patients: a systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1243588. [PMID: 37693645 PMCID: PMC10484104 DOI: 10.3389/fnagi.2023.1243588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Background Previous cohort studies have found an association between Bacillus Calmette-Guérin (BCG) administration and incident dementia. In the systematic review and meta-analysis, we aimed to summarize the current evidence of the effect of BCG use on the risk of developing dementia. Methods We searched six databases until 20 May 2023 for studies investigating the risk of dementia and BCG administration. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were pooled in the meta-analysis. Meta-regression, subgroup, and sensitivity analysis were conducted as well. Results Of the 4,043 records initially evaluated, five articles were included for final analysis, with a total of 45,407 bladder cancer (BC) patients. All five studies were evaluated and rated as with high quality, and a low possibility of publication bias was indicated. A significant association between BCG and the incidence of dementia in BC patients was found in all five studies. Although a high heterogeneity (I2 = 84.5%, p < 0.001) was observed, the pooled HR was 0.55 (0.42-0.73), indicating that BCG exposure or treatment reduced the risk of incident dementia by 45%. Moreover, the sensitivity analysis showed good robustness of the overall effect with no serious publication bias. Conclusion BCG administration is associated with a significantly lower risk of developing dementia. However, an epidemiological cohort is needed to establish a relationship between BCG use and incident dementia in the normal population. Once the relationship is confirmed, more people may benefit from the association. Systematic review registration identifier: CRD42023428317.
Collapse
Affiliation(s)
- Chao Han
- Department of Outpatient, Shandong Mental Health Center, Jinan, China
| | - Juan Wang
- Department of Geriatrics, Shandong Mental Health Center, Jinan, China
| | - Ya-Li Chen
- Department of Lab Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
| | - Cui-Ping Guan
- Department of Lab Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
| | - Yan-An Zhang
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Department of Cardiovascular Surgery, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Mao-Shui Wang
- Department of Lab Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
| |
Collapse
|
18
|
Colavitta MF, Barrantes FJ. Therapeutic Strategies Aimed at Improving Neuroplasticity in Alzheimer Disease. Pharmaceutics 2023; 15:2052. [PMID: 37631266 PMCID: PMC10459958 DOI: 10.3390/pharmaceutics15082052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia among elderly people. Owing to its varied and multicausal etiopathology, intervention strategies have been highly diverse. Despite ongoing advances in the field, efficient therapies to mitigate AD symptoms or delay their progression are still of limited scope. Neuroplasticity, in broad terms the ability of the brain to modify its structure in response to external stimulation or damage, has received growing attention as a possible therapeutic target, since the disruption of plastic mechanisms in the brain appear to correlate with various forms of cognitive impairment present in AD patients. Several pre-clinical and clinical studies have attempted to enhance neuroplasticity via different mechanisms, for example, regulating glucose or lipid metabolism, targeting the activity of neurotransmitter systems, or addressing neuroinflammation. In this review, we first describe several structural and functional aspects of neuroplasticity. We then focus on the current status of pharmacological approaches to AD stemming from clinical trials targeting neuroplastic mechanisms in AD patients. This is followed by an analysis of analogous pharmacological interventions in animal models, according to their mechanisms of action.
Collapse
Affiliation(s)
- María F. Colavitta
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP-UCA), Facultad de Psicología, Av. Alicia Moreau de Justo, Buenos Aires C1107AAZ, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
| |
Collapse
|
19
|
Tufail M. DNA repair pathways in breast cancer: from mechanisms to clinical applications. Breast Cancer Res Treat 2023:10.1007/s10549-023-06995-z. [PMID: 37289340 DOI: 10.1007/s10549-023-06995-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Breast cancer (BC) is a complex disease with various subtypes and genetic alterations that impact DNA repair pathways. Understanding these pathways is essential for developing effective treatments and improving patient outcomes. AREA COVERED This study investigates the significance of DNA repair pathways in breast cancer, specifically focusing on various pathways such as nucleotide excision repair, base excision repair, mismatch repair, homologous recombination repair, non-homologous end joining, fanconi anemia pathway, translesion synthesis, direct repair, and DNA damage tolerance. The study also examines the role of these pathways in breast cancer resistance and explores their potential as targets for cancer treatment. CONCLUSION Recent advances in targeted therapies have shown promise in exploiting DNA repair pathways for BC treatment. However, much research is needed to improve the efficacy of these therapies and identify new targets. Additionally, personalized treatments that target specific DNA repair pathways based on tumor subtype or genetic profile are being developed. Advances in genomics and imaging technologies can potentially improve patient stratification and identify biomarkers of treatment response. However, many challenges remain, including toxicity, resistance, and the need for more personalized treatments. Continued research and development in this field could significantly improve BC treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
20
|
Riaz M, Khalid R, Afzal M, Anjum F, Fatima H, Zia S, Rasool G, Egbuna C, Mtewa AG, Uche CZ, Aslam MA. Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Sci Nutr 2023; 11:2500-2529. [PMID: 37324906 PMCID: PMC10261751 DOI: 10.1002/fsn3.3308] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/17/2023] Open
Abstract
Phytobioactive compounds are plant secondary metabolites and bioactive compounds abundantly present in medicinal plants and have remarkable therapeutic potential. Oxidative stress and antibiotic resistance are major causes of present-day ailments such as diabetes, atherosclerosis, cardiovascular disorders, cancer, and inflammation. The data for this review were collected from Google Scholar, PubMed, Directory of Open Access Journals (DOAJ), and Science Direct by using keywords: "Medicinal plants, Phytobioactive compounds, Polyphenols, Alkaloids, Carotenoids etc." Several studies have reported the pharmacological and therapeutic potential of the phytobioactives. Polyphenols, alkaloids, terpenes, and polysaccharides isolated from medicinal plants showed remarkable antioxidant, anticancer, cytotoxic, anti-inflammatory, cardioprotective, hepatoprotective, immunomodulatory, neuroprotective, and antidiabetic activities. This literature review was planned to provide comprehensive insight into the biopharmacological and therapeutic potential of phytobioactive compounds. The techniques used for the extraction and isolation of phytobioactive compounds, and bioassays required for their biological activities such as antioxidant, antimicrobial, anti-inflammatory, and cytotoxic activities, have been discussed. Characterization techniques for the structural elucidation of phytobioactive compounds such as HPLC, TLC, FTIR, GC-MS/MS, and NMR have also been discussed. This review concludes that phytobioactive compounds may be used as potential alternative to synthetic compounds as therapeutic agents for the treatment of various diseases.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Allied Health SciencesUniversity of SargodhaSargodhaPakistan
| | - Ramsha Khalid
- Department of BiochemistryUniversity of AgricultureFaisalabadPakistan
| | | | - Fozia Anjum
- Department of ChemistryGovernment College UniversityFaisalabadPakistan
| | - Hina Fatima
- Department of BiochemistryUniversity of AgricultureFaisalabadPakistan
- Department of Basic and Applied Chemistry, Faculty of Science and TechnologyUniversity of Central PunjabLahorePakistan
| | - Saadiya Zia
- Department of BiochemistryUniversity of AgricultureFaisalabadPakistan
| | - Ghulam Rasool
- Department of Allied Health SciencesUniversity of SargodhaSargodhaPakistan
| | - Chukwuebuka Egbuna
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE‐PUTOR), Nutritional Biochemistry and Toxicology UnitUniversity of Port‐HarcourtPort HarcourtNigeria
| | - Andrew G. Mtewa
- Chemistry Section, Malawi Institute of TechnologyMalawi University of Science and TechnologyLimbeMalawi
| | - Chukwuemelie Zedech Uche
- Department of Medical Biochemistry and Molecular Biology, Faculty of Basic Medical SciencesUniversity of NigeriaEnuguNigeria
| | | |
Collapse
|
21
|
Song Z, Wang KW, Hagar HTC, Chen HR, Kuan CY, Zhang K, Kuo MH. Hyperphosphorylated tau Inflicts Intracellular Stress Responses That Are Mitigated by Apomorphine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540661. [PMID: 37292976 PMCID: PMC10245566 DOI: 10.1101/2023.05.13.540661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlie neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Methods Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Results Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, Unfolded Protein Response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. P-tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Conclusion Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.
Collapse
|
22
|
Sun Z, Zhang X, Fu J, Zhang L, Cheng M, Yang L, Liu Y. Collective Syntheses of 8-Oxoprotoberberines via Sequential In(OTf) 3-Catalyzed Cyclization and Pd(OAc) 2-Catalyzed Heck Coupling. J Org Chem 2023. [PMID: 37172220 DOI: 10.1021/acs.joc.3c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Six 8-oxoprotoberberines were synthesized collectively in four steps with acceptable yields (14-19%), of which the products 8-oxopalmatine, 8-oxopseudopalmatine, 8-oxoberberine, and 8-oxopseudoberberine come from nature. The synthetic route was featured with the In(OTf)3-catalyzed cyclization and Heck coupling. Moreover, the syntheses of the natural products berberine, canadine, and iambertine were achieved via various reductions from 8-oxoberberine, which provided a concise approach to the syntheses of this kind of alkaloids.
Collapse
Affiliation(s)
- Zenghui Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Xinhang Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Jiayue Fu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lianjie Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
23
|
Wei W, Yao JX, Zhang TT, Wen JY, Zhang Z, Luo YM, Cao Y, Li H. Network pharmacology reveals that Berberine may function against Alzheimer's disease via the AKT signaling pathway. Front Neurosci 2023; 17:1059496. [PMID: 37214397 PMCID: PMC10192713 DOI: 10.3389/fnins.2023.1059496] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Objective To investigate the mechanism underlying the effects of berberine (BBR) in the treatment of Alzheimer's disease (AD). Methods 3 × Tg AD mice were treated with BBR for 3 months, then the open field test (OFT), the novel object recognition test (NOR) and the Morris water maze (MWM) test were performed to assess behavioral performance. Hematoxylin-eosin (HE) staining, Nissl staining were used to examine histopathological changes. The pharmacological and molecular properties of BBR were obtained from the TCMSP database. BBR-associated AD targets were identified using the PharmMapper (PM), the comparative toxicogenomics database (CTD), DisGeNet and the human gene database (GeneCards). Core networks and BBR targets for the treatment of AD were identified using PPI network and functional enrichment analyses. AutoDock software was used to model the interaction between BBR and potential targets. Finally, RT-qPCR, western blotting were used to validate the expression of core targets. Results Behavioral experiments, HE staining and Nissl staining have shown that BBR can improve memory task performance and neuronal damage in the hippocampus of AD mice. 117 BBR-associated targets for the treatment of AD were identified, and 43 genes were used for downstream functional enrichment analysis in combination with the results of protein-protein interaction (PPI) network analysis. 2,230 biological processes (BP) terms, 67 cell components (CC) terms, 243 molecular function (MF) terms and 118 KEGG terms were identified. ALB, EGFR, CASP3 and five targets in the PI3K-AKT signaling pathway including AKT1, HSP90AA1, SRC, HRAS, IGF1 were selected by PPI network analysis, validated by molecular docking analysis and RT-q PCR as core targets for further analysis. Akt1 mRNA expression levels were significantly decreased in AD mice and significantly increased after BBR treatment (p < 0.05). Besides, AKT and ERK phosphorylation decreased in the model group, and BBR significantly increased their phosphorylation levels. Conclusion AKT1, HSP90AA1, SRC, HRAS, IGF1 and ALB, EGFR, CASP3 were core targets of BBR in the treatment of AD. BBR may exert a neuroprotective effect by modulating the ERK and AKT signaling pathways.
Collapse
Affiliation(s)
- Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, China
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jiu-xiu Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ting-ting Zhang
- Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jia-yu Wen
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Zhen Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Yi-miao Luo
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
24
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
25
|
Ailioaie LM, Ailioaie C, Litscher G. Photobiomodulation in Alzheimer's Disease-A Complementary Method to State-of-the-Art Pharmaceutical Formulations and Nanomedicine? Pharmaceutics 2023; 15:916. [PMID: 36986776 PMCID: PMC10054386 DOI: 10.3390/pharmaceutics15030916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Alzheimer's disease (AD), as a neurodegenerative disorder, usually develops slowly but gradually worsens. It accounts for approximately 70% of dementia cases worldwide, and is recognized by WHO as a public health priority. Being a multifactorial disease, the origins of AD are not satisfactorily understood. Despite huge medical expenditures and attempts to discover new pharmaceuticals or nanomedicines in recent years, there is no cure for AD and not many successful treatments are available. The current review supports introspection on the latest scientific results from the specialized literature regarding the molecular and cellular mechanisms of brain photobiomodulation, as a complementary method with implications in AD. State-of-the-art pharmaceutical formulations, development of new nanoscale materials, bionanoformulations in current applications and perspectives in AD are highlighted. Another goal of this review was to discover and to speed transition to completely new paradigms for the multi-target management of AD, to facilitate brain remodeling through new therapeutic models and high-tech medical applications with light or lasers in the integrative nanomedicine of the future. In conclusion, new insights from this interdisciplinary approach, including the latest results from photobiomodulation (PBM) applied in human clinical trials, combined with the latest nanoscale drug delivery systems to easily overcome protective brain barriers, could open new avenues to rejuvenate our central nervous system, the most fascinating and complex organ. Picosecond transcranial laser stimulation could be successfully used to cross the blood-brain barrier together with the latest nanotechnologies, nanomedicines and drug delivery systems in AD therapy. Original, smart and targeted multifunctional solutions and new nanodrugs may soon be developed to treat AD.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- President of ISLA (International Society for Medical Laser Applications), Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
26
|
Kandeel M, Morsy MA, Abd El-Lateef HM, Marzok M, El-Beltagi HS, Al Khodair KM, Albokhadaim I, Venugopala KN. Cognitive- and memory-enhancing effects of Augmentin in Alzheimer’s rats through regulation of gene expression and neuronal cell apoptosis. Front Pharmacol 2023; 14:1154607. [PMID: 36969860 PMCID: PMC10033694 DOI: 10.3389/fphar.2023.1154607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction: Alzheimer’s disease (AD) is the most common type of dementia among older persons. This study looked at how Augmentin affected behavior, gene expression, and apoptosis in rats in which AD had been induced by scopolamine.Methods: The rats were divided into five groups: control, sham, memantine, Augmentin, and pre-Augmentin (the last group received Augmentin before scopolamine administration and was treated with memantine). A Morris water maze was utilized to measure spatial memory in the animals, and real-time quantitative reverse transcription PCR (qRT-PCR) and flow cytometry were employed to analyze gene expression and neuronal cell apoptosis, respectively.Results: Memantine and Augmentin increased spatial memory in healthy rats. The use of scopolamine impaired spatial memory. Both Augmentin and memantine improved spatial memory in AD rats, particularly in the group that received memantine; however, the outcomes were more substantial when Augmentin was administered before scopolamine was given to induce AD. Furthermore, the expression of presenilin-2 (PSEN2) and inositol-trisphosphate 3-kinase B (ITPKB) increased, whereas the expression of DEAD-box helicase 5 (DDX5) fell in the AD-treated groups; however, the results were more substantial after combination therapy. According to flow cytometry studies, Augmentin pre-treatment reduced apoptosis in AD rats.Discussion: The results showed that administering Augmentin to AD rats before memantine improved their spatial memory, reduced neuronal cell death, upregulated protective genes, and suppressed genes involved in AD pathogenesis.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- *Correspondence: Mahmoud Kandeel,
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed Marzok
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Surgery, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Khalid M. Al Khodair
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
27
|
Vrabec R, Blunden G, Cahlíková L. Natural Alkaloids as Multi-Target Compounds towards Factors Implicated in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054399. [PMID: 36901826 PMCID: PMC10003045 DOI: 10.3390/ijms24054399] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in elderly people; currently, there is no efficient treatment. Considering the increase in life expectancy worldwide AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. A great amount of experimental and clinical evidence indicated that AD is a complex disorder characterized by widespread neurodegeneration of the CNS, with major involvement of the cholinergic system, causing progressive cognitive decline and dementia. The current treatment, based on the cholinergic hypothesis, is only symptomatic and mainly involves the restoration of acetylcholine (ACh) levels through the inhibition of acetylcholinesterase (AChE). Since the introduction of the Amaryllidaceae alkaloid galanthamine as an antidementia drug in 2001, alkaloids have been one of the most attractive groups for searching for new AD drugs. The present review aims to comprehensively summarize alkaloids of various origins as multi-target compounds for AD. From this point of view, the most promising compounds seem to be the β-carboline alkaloid harmine and several isoquinoline alkaloids since they can simultaneously inhibit several key enzymes of AD's pathophysiology. However, this topic remains open for further research on detailed mechanisms of action and the synthesis of potentially better semi-synthetic analogues.
Collapse
Affiliation(s)
- Rudolf Vrabec
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Gerald Blunden
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Lucie Cahlíková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
- Correspondence:
| |
Collapse
|
28
|
A Review on Phyto-Therapeutic Approaches in Alzheimer's Disease. J Funct Biomater 2023; 14:jfb14010050. [PMID: 36662097 PMCID: PMC9861153 DOI: 10.3390/jfb14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases occur due to progressive and sometimes irreversible loss of function and death of nerve cells. A great deal of effort is being made to understand the pathogenesis of neurodegenerative diseases. In particular, the prevalence of Alzheimer's disease (AD) is quite high, and only symptomatic therapy is available due to the absence of radical treatment. The aim of this review is to try to elucidate the general pathogenesis of AD, to provide information about the limit points of symptomatic treatment approaches, and to emphasize the potential neurologic effects of phytocompounds as new tools as therapeutic agents for disease prevention, retardation, and therapy. This survey also covers the notable properties of herbal compounds such as their effects on the inhibition of an enzyme called acetylcholinesterase, which has significant value in the treatment of AD. It has been proven that phytopharmaceuticals have long-term effects that could protect nervous system health, eliminate inflammatory responses, improve cognitive damage, provide anti-aging effects in the natural aging process, and alleviate dementia sequelae. Herbal-based therapeutic agents can afford many advantages and can be used as potentially as new-generation therapeutics or complementary agents with high compliance, fewer adverse effects, and lower cost in comparison to the traditional pharmaceutical agents in the fight against AD.
Collapse
|
29
|
Atpadkar PP, Gopavaram S, Chaudhary S. Natural-product-inspired bioactive alkaloids agglomerated with potential antioxidant activity: Recent advancements on structure-activity relationship studies and future perspectives. VITAMINS AND HORMONES 2023; 121:355-393. [PMID: 36707140 DOI: 10.1016/bs.vh.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alkaloids derived from natural sources have been shown to have substantial antioxidant activity, suggesting that these natural-product-inspired bioactive entities may have major beneficial influence on human health and food processing sector. The primary process intricates in the etiology of several disorders such as neurodegenerative, inflammatory cardiovascular, and other chronic diseases appear to be either oxidative injury or a cellular damage caused by reactive oxygen species (ROS) or free-radicals. The alkaloid class of bio-heterocycles have been divided into numerous groups based on their biosynthetic precursor and heterocyclic ring systems i.e., piperidine, imidazole, purine, pyrrolizidine, indole, quinolozidine, isoquinoline, tropane, and pyrrolidine alkaloids. Distinct biological properties have been attributed to various compounds belonging to this chemical groups, including antirheumatic, cardiovascular, antispasmodic, anti-ulcer, anti-inflammatory, antibacterial, antinociceptive etc. For many years, natural products and their analogs have been recognized as a possible source of medicinal agents. Recently, research has been concentrated on the synthesis, separation/purification, and identification of new alkaloids derived from a variety of natural sources. This book chapter aims to summarize on the latest developments on the current knowledge on the relationship between the structural features of promising class of bioactive alkaloids with their antioxidant activities.
Collapse
Affiliation(s)
- Pooja Prakash Atpadkar
- Laboratory of Bioactive heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Lucknow, UP, India
| | - Sumanth Gopavaram
- Laboratory of Bioactive heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Lucknow, UP, India
| | - Sandeep Chaudhary
- Laboratory of Bioactive heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Lucknow, UP, India; Laboratory of Organic and Medicinal Chemistry (OMC Lab), Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India.
| |
Collapse
|
30
|
Wang S, Ma Y, Huang Y, Hu Y, Huang Y, Wu Y. Potential bioactive compounds and mechanisms of Fibraurea recisa Pierre for the treatment of Alzheimer's disease analyzed by network pharmacology and molecular docking prediction. Front Aging Neurosci 2022; 14:1052249. [PMID: 36570530 PMCID: PMC9772884 DOI: 10.3389/fnagi.2022.1052249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Heat-clearing and detoxifying Chinese medicines have been documented to have anti-Alzheimer's disease (AD) activities according to the accumulated clinical experience and pharmacological research results in recent decades. In this study, Fibraurea recisa Pierre (FRP), the classic type of Heat-clearing and detoxifying Chinese medicine, was selected as the object of research. Methods 12 components with anti-AD activities were identified in FRP by a variety of methods, including silica gel column chromatography, multiple databases, and literature searches. Then, network pharmacology and molecular docking were adopted to systematically study the potential anti-AD mechanism of these compounds. Consequently, it was found that these 12 compounds could act on 235 anti-AD targets, of which AKT and other targets were the core targets. Meanwhile, among these 235 targets, 71 targets were identified to be significantly correlated with the pathology of amyloid beta (Aβ) and Tau. Results and discussion In view of the analysis results of the network of active ingredients and targets, it was observed that palmatine, berberine, and other alkaloids in FRP were the key active ingredients for the treatment of AD. Further, Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis revealed that the neuroactive ligand-receptor interaction pathway and PI3K-Akt signaling pathway were the most significant signaling pathways for FRP to play an anti-AD role. Findings in our study suggest that multiple primary active ingredients in FRP can play a multitarget anti-AD effect by regulating key physiological processes such as neurotransmitter transmission and anti-inflammation. Besides, key ingredients such as palmatine and berberine in FRP are expected to be excellent leading compounds of multitarget anti-AD drugs.
Collapse
Affiliation(s)
- Shishuai Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yuping Huang
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, China
| | - Yuhui Hu
- Medical College, Jinggangshan University, Ji’an, China,*Correspondence: Yuhui Hu,
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,Yushan Huang,
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China,Yi Wu,
| |
Collapse
|
31
|
Qin Y, Chen F, Tang Z, Ren H, Wang Q, Shen N, Lin W, Xiao Y, Yuan M, Chen H, Bu T, Li Q, Huang L. Ligusticum chuanxiong Hort as a medicinal and edible plant foods: Antioxidant, anti-aging and neuroprotective properties in Caenorhabditis elegans. Front Pharmacol 2022; 13:1049890. [PMID: 36386171 PMCID: PMC9643709 DOI: 10.3389/fphar.2022.1049890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 02/05/2023] Open
Abstract
Ligusticum chuanxiong Hort. (CX) is a medicinal and edible plant including a variety of active substances, which may be an available resource for the treatment of related diseases. To expand the medicinal uses of CX, this study aims to explore the antioxidant, anti-aging and neuroprotective effects of the Ligusticum chuanxiong leaves (CXL) and rhizome (CXR) extracts. We first characterize CX phytochemical spectrum by LC-MS as well as antioxidant capacity. Acute toxicity, anti-oxidative stress capacity, lifespan and healthspan was evaluated in C elegans N2. Neuroprotective effect was evaluated in vitro and in vivo (C elegans CL4176 and CL2355). In this study, we detected 74 and 78 compounds from CXR and CXL, respectively, including phthalides, alkaloids, organic acids, terpenes, polyphenols and others. Furthermore, we found that CXs not only protect against oxidative stress, but also prolong the lifespan, alleviate lipofuscin, malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation, and improve movement level, antioxidant enzyme activity in C elegans N2. However, only CXR reduced the β-amyloid peptide (Aβ)-induced paralysis phenotype in CL4176s and alleviated chemosensory behavior dysfunction in CL2355s. In addition, CXR treatment reduced the production of Aβ and ROS, enhanced SOD activity in CL4176s. The possible mechanism of anti-aging of CXL and CXR is to promote the expression of related antioxidant pathway genes, increase the activity of antioxidant enzymes, and reduce the accumulation of ROS, which is dependent on DAF-16 and HSF-1 (only in CXR). CXR was able to activate antioxidase-related (sod-3 and sod-5) and heat shock protein genes (hsp-16.1 and hsp-70) expression, consequently ameliorating proteotoxicity related to Aβ aggregation. In summary, these findings demonstrate the antioxidant, anti-aging and neuroprotective (only in CXR) activities of the CX, which provide an important pharmacological basis for developing functional foods and drugs to relieve the symptoms of aging and AD. However, the material basis of neuroprotective activity and antiaging effects need to be elucidated, and the relationship between these activities should also be clarified in future studies.
Collapse
Affiliation(s)
- Yihan Qin
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Fangfang Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China,*Correspondence: Zizhong Tang,
| | - Hongjiao Ren
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Qing Wang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Nayu Shen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Wenjie Lin
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Sichuan Agricultural University, Ya’an, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
32
|
Rhaman MM, Islam MR, Akash S, Mim M, Noor alam M, Nepovimova E, Valis M, Kuca K, Sharma R. Exploring the role of nanomedicines for the therapeutic approach of central nervous system dysfunction: At a glance. Front Cell Dev Biol 2022; 10:989471. [PMID: 36120565 PMCID: PMC9478743 DOI: 10.3389/fcell.2022.989471] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022] Open
Abstract
In recent decades, research scientists, molecular biologists, and pharmacologists have placed a strong emphasis on cutting-edge nanostructured materials technologies to increase medicine delivery to the central nervous system (CNS). The application of nanoscience for the treatment of neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), Huntington’s disease (HD), brain cancer, and hemorrhage has the potential to transform care. Multiple studies have indicated that nanomaterials can be used to successfully treat CNS disorders in the case of neurodegeneration. Nanomedicine development for the cure of degenerative and inflammatory diseases of the nervous system is critical. Nanoparticles may act as a drug transporter that can precisely target sick brain sub-regions, boosting therapy success. It is important to develop strategies that can penetrate the blood–brain barrier (BBB) and improve the effectiveness of medications. One of the probable tactics is the use of different nanoscale materials. These nano-based pharmaceuticals offer low toxicity, tailored delivery, high stability, and drug loading capacity. They may also increase therapeutic effectiveness. A few examples of the many different kinds and forms of nanomaterials that have been widely employed to treat neurological diseases include quantum dots, dendrimers, metallic nanoparticles, polymeric nanoparticles, carbon nanotubes, liposomes, and micelles. These unique qualities, including sensitivity, selectivity, and ability to traverse the BBB when employed in nano-sized particles, make these nanoparticles useful for imaging studies and treatment of NDs. Multifunctional nanoparticles carrying pharmacological medications serve two purposes: they improve medication distribution while also enabling cell dynamics imaging and pharmacokinetic study. However, because of the potential for wide-ranging clinical implications, safety concerns persist, limiting any potential for translation. The evidence for using nanotechnology to create drug delivery systems that could pass across the BBB and deliver therapeutic chemicals to CNS was examined in this study.
Collapse
Affiliation(s)
- Md. Mominur Rhaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Md. Mominur Rhaman, ; Rohit Sharma,
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mobasharah Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Noor alam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- *Correspondence: Md. Mominur Rhaman, ; Rohit Sharma,
| |
Collapse
|
33
|
Sundram S, Malviya R, Awasthi R. Genetic Causes of Alzheimer's Disease and the Neuroprotective Role of Melatonin in its Management. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126085. [PMID: 36056839 DOI: 10.2174/1871527321666220901125730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Dementia is a global health concern owing to its complexity, which also poses a great challenge to pharmaceutical scientists and neuroscientists. The global dementia prevalence is approximately 47 million, which may increase by three times by 2050. Alzheimer's disease (AD) is the most common cause of dementia. AD is a severe age-related neurodegenerative disorder characterized by short-term memory loss, aphasia, mood imbalance, and executive function. The etiology of AD is still unknown, and the exact origin of the disease is still under investigation. Aggregation of Amyloid β (Aβ) plaques or neurotoxic Aβo oligomers outside the neuron is the most common cause of AD development. Amyloid precursor protein (APP) processing by β secretase and γ secretase produces abnormal Aβ monomers. This aggregation of Aβ and NFT is promoted by various genes like BACE1, ADAM10, PIN1, GSK-3, APOE, PPARα, etc. Identification of these genes can discover several therapeutic targets that can be useful in studying pathogenesis and underlying treatments. Melatonin modulates the activities of these genes, thereby reducing Aβ production and increasing its clearance. Melatonin also reduces the expression of APP by attenuating cAMP, thereby enhancing the non-amyloidogenic process. Present communication explored and discussed the neuroprotective role of melatonin against Aβ-dependent AD pathogenesis. The manuscript also discussed potential molecular and genetic mechanisms of melatonin in the production and clearance of Aβ that could ameliorate neurotoxicity.
Collapse
Affiliation(s)
- Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Science and Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, Bidholi, Via-Prem Nagar, Dehradun - 248 007, Uttarakhand, India
| |
Collapse
|
34
|
Rastegar-Moghaddam SH, Bigham M, Hosseini M, Ebrahimzadeh-Bideskan A, Malvandi AM, Mohammadipour A. Grape seed extract effects on hippocampal neurogenesis, synaptogenesis and dark neurons production in old mice. Can this extract improve learning and memory in aged animals? Nutr Neurosci 2022; 25:1962-1972. [PMID: 33970818 DOI: 10.1080/1028415x.2021.1918983] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND During the elderly, hippocampal neurogenesis and synaptogenesis reduce and dark neurons (DNs) increase, leading to cognitive impairment. It is believed that natural products can protect the neural cells and system by protecting from damages or promoting regeneration. Therefore, the effects of grape seed extract (GSE) on the hippocampus of aged mice were investigated in this study. METHODS twelve old mice were divided into two groups of control and GSE. Animals in the GSE group received 300 mg/kg of GSE for eight weeks via gavage. At the end of treatment, cognition performance was evaluated by Morris water maze (MWM) and passive avoidance tests. Hippocampal neurogenesis, synaptogenesis and DNs production were evaluated with immunohistochemistry and histological evaluations on 5-micron coronal tissue sections. RESULTS The hippocampal mean number of double cortin positive cells (DCX+) per unit area, as well as synaptophysin expression in the GSE group, were significantly higher than the control group (p < 0.01). The frequency of DNs in the GSE group was lower than the control group (p < 0.05). Behavioral tests showed that GSE improves memory and learning performance. CONCLUSION Consuming GSE in the elderly can potentially alleviate the age-related reduction of hippocampal neurogenesis and synaptogenesis. It is also able to decrease hippocampal DNs production and increase memory and learning.
Collapse
Affiliation(s)
| | - Maryam Bigham
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Fang W, Huang X, Wu K, Zong Y, Yu J, Xu H, Shi J, Wei J, Zhou X, Jiang C. Activation of the GABA-alpha receptor by berberine rescues retinal ganglion cells to attenuate experimental diabetic retinopathy. Front Mol Neurosci 2022; 15:930599. [PMID: 36017075 PMCID: PMC9396352 DOI: 10.3389/fnmol.2022.930599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe aim of this study was to investigate the role and mechanism of berberine (BBR) in the protection of injured retinal ganglion cells (RGCs) in diabetic retinopathy (DR).MethodsExperimental diabetic retinopathy rat model was successfully induced by a single intraperitoneal injection of streptozotocin (STZ, 60 mg/kg) in male SD rats with sufficient food and water for 8 weeks. Animals were randomly divided into four groups: (1) non-diabetic, (2) diabetic, (3) diabetic + BBR + PBS, and (4) diabetic + BBR + SR95531. BBR (100 mg/kg) was given daily by gavage to rats in the group (3) and group (4) for 8 weeks, and weekly intravitreal injections were conducted to rats in the group (3) with 5 μL of 1×PBS and rats in the group (4) with 5 μL of GABA-alpha receptor antagonist SR95531 to investigate the underlying mechanisms. The survival and apoptosis of RGCs were observed by fluorescence gold labeling technology and TUNEL staining. Visual function was evaluated by visual electrophysiological examination. Western blotting and immunofluorescence staining were used to analyze the expression of GABA-alpha receptors in RGCs.ResultsIn an animal model, BBR can increase the survival of RGCs, reduce RGCs apoptosis, and significantly improve the visual function. The reduction of GABA, PKC-α, and Bcl-2 protein expression caused by DR can be considerably increased by BBR. SR95531 inhibits BBR's protective effect on RGC and visual function, as well as its upregulation of PKC-α and Bcl-2.ConclusionBBR is a promising preventive or adjuvant treatment for DR complications, and its key protective effect may involve the regulation of RGC apoptosis through the GABA-alpha receptor/protein kinase C-alpha (GABAAR/PKC-α) pathway.
Collapse
Affiliation(s)
- Wangyi Fang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- Department of Ophthalmology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Huang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Kaicheng Wu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yuan Zong
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Huan Xu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiemei Shi
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiaojiao Wei
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Xujiao Zhou
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- Xujiao Zhou
| | - Chunhui Jiang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- *Correspondence: Chunhui Jiang
| |
Collapse
|
36
|
New insights into the role and mechanisms of ginsenoside Rg1 in the management of Alzheimer's disease. Biomed Pharmacother 2022; 152:113207. [PMID: 35667236 DOI: 10.1016/j.biopha.2022.113207] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder in the elderly characterized by memory loss and cognitive dysfunction. The pathogenesis of AD is complex. One-targeted anti-AD drugs usually fail to delay AD progression. Traditional Chinese medicine records have documented the use of the roots of Panax ginseng (ginseng roots) and its prescriptions to treat dementia. Ginsenoside Rg1, the main ginsenoside component of ginseng roots, exhibits a certain therapeutic effect in the abovementioned diseases, suggesting its potential in the management of AD. Therefore, we combed the pathogenesis of AD and currently used anti-AD drugs, and reviewed the availability, pharmacokinetics, and pharmaceutic studies of ginsenoside Rg1. This review summarizes the therapeutic effects and mechanisms of ginsenoside Rg1 and its deglycosylated derivatives in AD in vivo and in vitro. The main mechanisms include improvement in Aβ and Tau pathologies, regulation of synaptic function and intestinal microflora, and reduction of inflammation, oxidative stress, and apoptosis. The underlying mechanisms mainly involve the regulation of PKC, MAPK, PI3K/Akt, CDK5, GSK-3β, BDNF/TrkB, PKA/CREB, FGF2/Akt, p21WAF1/CIP1, NF-κB, NLRP1, TLR3, and TLR4 signaling pathways. As the effects and underlying mechanisms of ginsenoside Rg1 on AD have not been systematically reviewed, we have provided a comprehensive review and shed light on the future directions in the utilization of ginsenoside Rg1 and ginseng roots as well as the development of anti-AD drugs.
Collapse
|
37
|
Role of Natural Compounds and Target Enzymes in the Treatment of Alzheimer’s Disease. Molecules 2022; 27:molecules27134175. [PMID: 35807418 PMCID: PMC9268689 DOI: 10.3390/molecules27134175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurological condition. The rising prevalence of AD necessitates the rapid development of efficient therapy options. Despite substantial study, only a few medications are capable of delaying the disease. Several substances with pharmacological activity, derived from plants, have been shown to have positive benefits for the treatment of AD by targeting various enzymes, such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, and monoamine oxidases (MAOs), which are discussed as potential targets. Medicinal plants have already contributed a number of lead molecules to medicine development, with many of them currently undergoing clinical trials. A variety of medicinal plants have been shown to diminish the degenerative symptoms associated with AD, either in their raw form or as isolated compounds. The aim of this review was to provide a brief summary of AD and its current therapies, followed by a discussion of the natural compounds examined as therapeutic agents and the processes underlying the positive effects, particularly the management of AD.
Collapse
|
38
|
Mesenchymal Stem Cell Therapy: A Potential Treatment Targeting Pathological Manifestations of Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4645021. [PMID: 35757508 PMCID: PMC9217616 DOI: 10.1155/2022/4645021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
Abstract
Traumatic brain injury (TBI) makes up a large proportion of acute brain injuries and is a major cause of disability globally. Its complicated etiology and pathogenesis mainly include primary injury and secondary injury over time, which can cause cognitive deficits, physical disabilities, mood changes, and impaired verbal communication. Recently, mesenchymal stromal cell- (MSC-) based therapy has shown significant therapeutic potential to target TBI-induced pathological processes, such as oxidative stress, neuroinflammation, apoptosis, and mitochondrial dysfunction. In this review, we discuss the main pathological processes of TBI and summarize the underlying mechanisms of MSC-based TBI treatment. We also discuss research progress in the field of MSC therapy in TBI as well as major shortcomings and the great potential shown.
Collapse
|
39
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Mohamed NM, Ross SA. Protective effects of berberine on various kidney diseases: Emphasis on the promising effects and the underlined molecular mechanisms. Life Sci 2022; 306:120697. [PMID: 35718235 DOI: 10.1016/j.lfs.2022.120697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Berberine (BBR) is a pentacyclic benzylisoquinoline alkaloid that can be found in diversity of medicinal plants. BBR has a wide range of pharmacological bioactivities, in addition when administrated orally, it has a broad safety margin. It has been used as an antidiarrheal, antimicrobial, and anti-diabetic drug in Ayurvedic and Chinese medicine. Several scholars have found that BBR has promising renoprotective effects against different renal illnesses, including diabetic nephropathy, renal fibrosis, renal ischemia, renal aging, and renal stones. Also, it has renoprotective effects against nephrotoxicity induced by chemotherapy, heavy metal, aminoglycosides, NSAID, and others. These effects imply that BBR has an evolving therapeutic potential against acute renal failure and chronic renal diseases. Hence, we report herein the beneficial therapeutic renoprotective properties of BBR, as well as the highlighted molecular mechanism. In conclusion, the studies discussed throughout this review will afford a comprehensive overview about renoprotective effect of BBR and its therapeutic impact on different renal diseases.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
40
|
Expatiating the Pharmacological and Nanotechnological Aspects of the Alkaloidal Drug Berberine: Current and Future Trends. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123705. [PMID: 35744831 PMCID: PMC9229453 DOI: 10.3390/molecules27123705] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022]
Abstract
Traditionally, herbal compounds have been the focus of scientific interest for the last several centuries, and continuous research into their medicinal potential is underway. Berberine (BBR) is an isoquinoline alkaloid extracted from plants that possess a broad array of medicinal properties, including anti-diarrheal, anti-fibrotic, antidiabetic, anti-inflammatory, anti-obesity, antihyperlipidemic, antihypertensive, antiarrhythmic, antidepressant, and anxiolytic effects, and is frequently utilized as a traditional Chinese medicine. BBR promotes metabolisms of glucose and lipids by activating adenosine monophosphate-activated protein kinase, stimulating glycolysis and inhibiting functions of mitochondria; all of these ameliorate type 2 diabetes mellitus. BBR has also been shown to have benefits in congestive heart failure, hypercholesterolemia, atherosclerosis, non-alcoholic fatty liver disease, Alzheimer’s disease, and polycystic ovary syndrome. BBR has been investigated as an interesting pharmacophore with the potential to contribute significantly to the research and development of novel therapeutic medicines for a variety of disorders. Despite its enormous therapeutic promise, the clinical application of this alkaloid was severely limited because of its unpleasant pharmacokinetic characteristics. Poor bioavailability, limited absorption, and poor water solubility are some of the obstacles that restricted its use. Nanotechnology has been suggested as a possible solution to these problems. The present review aims at recent updates on important therapeutic activities of BBR and different types of nanocarriers used for the delivery of BBR in different diseases.
Collapse
|
41
|
Molecular Mechanistic Pathways Targeted by Natural Antioxidants in the Prevention and Treatment of Chronic Kidney Disease. Antioxidants (Basel) 2021; 11:antiox11010015. [PMID: 35052518 PMCID: PMC8772744 DOI: 10.3390/antiox11010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic kidney disease (CKD) is the progressive loss of renal function and the leading cause of end-stage renal disease (ESRD). Despite optimal therapy, many patients progress to ESRD and require dialysis or transplantation. The pathogenesis of CKD involves inflammation, kidney fibrosis, and blunted renal cellular antioxidant capacity. In this review, we have focused on in vitro and in vivo experimental and clinical studies undertaken to investigate the mechanistic pathways by which these compounds exert their effects against the progression of CKD, particularly diabetic nephropathy and kidney fibrosis. The accumulated and collected data from preclinical and clinical studies revealed that these plants/bioactive compounds could activate autophagy, increase mitochondrial bioenergetics and prevent mitochondrial dysfunction, act as modulators of signaling pathways involved in inflammation, oxidative stress, and renal fibrosis. The main pathways targeted by these compounds include the canonical nuclear factor kappa B (NF-κB), canonical transforming growth factor-beta (TGF-β), autophagy, and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid factor 2-related factor 2 (Nrf2)/antioxidant response element (ARE). This review presented an updated overview of the potential benefits of these antioxidants and new strategies to treat or reduce CKD progression, although the limitations related to the traditional formulation, lack of standardization, side effects, and safety.
Collapse
|
42
|
Raghu SV, Kudva AK, Rao S, Prasad K, Mudgal J, Baliga MS. Dietary agents in mitigating chemotherapy-related cognitive impairment (chemobrain or chemofog): first review addressing the benefits, gaps, challenges and ways forward. Food Funct 2021; 12:11132-11153. [PMID: 34704580 DOI: 10.1039/d1fo02391h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemobrain or chemofog is one of the important but less investigated side effects, where the cancer survivors treated with chemotherapy develop long-term cognitive impairments, affecting their quality of life. The biological mechanisms triggering the development of chemobrain are largely unknown. However, a literature study suggests the generation of free radicals, oxidative stress, inflammatory cytokines, epigenetic chromatin remodeling, decreased neurogenesis, secretion of brain-derived neurotropic factor (BDNF), dendritic branching, and neurotransmitter release to be the cumulative contributions to the ailment. Unfortunately, there is no means to prevent/mitigate the development and intensity of chemobrain. Given the lack of effective prevention strategies or treatments, preclinical studies have been underway to ascertain the usefulness of natural products in mitigating chemobrain in the recent past. Natural products used in diets have been shown to provide beneficial effects by inhibition of free radicals, oxidative stress, inflammatory processes, and/or concomitant upregulation of various cell survival proteins. For the first time, this review focuses on the published effects of astaxanthin, omega-3 fatty acids, ginsenoside, cotinine, resveratrol, polydatin, catechin, rutin, naringin, curcumin, dehydrozingerone, berberine, C-phycocyanin, the higher fungi Cordyceps militaris, thyme (Thymus vulgaris) and polyherbal formulation Mulmina™ in mitigating cognitive impairments in preclinical models of study, and also addresses their potential neuro-therapeutic mechanisms and applications in preventing/ameliorating chemobrain.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Krishna Prasad
- Medical Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | |
Collapse
|
43
|
Inhibitory Role of Berberine, an Isoquinoline Alkaloid, on NLRP3 Inflammasome Activation for the Treatment of Inflammatory Diseases. Molecules 2021; 26:molecules26206238. [PMID: 34684819 PMCID: PMC8537060 DOI: 10.3390/molecules26206238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
The pyrin domain-containing multiprotein complex NLRP3 inflammasome, consisting of the NLRP3 protein, ASC adaptor, and procaspase-1, plays a vital role in the pathophysiology of several inflammatory disorders, including neurological and metabolic disorders, chronic inflammatory diseases, and cancer. Several phytochemicals act as promising anti-inflammatory agents and are usually regarded to have potential applications as complementary or alternative therapeutic agents against chronic inflammatory disorders. Various in vitro and in vivo studies have reported the anti-inflammatory role of berberine (BRB), an organic heteropentacyclic phytochemical and natural isoquinoline, in inhibiting NLRP3 inflammasome-dependent inflammation against many disorders. This review summarizes the mechanism and regulation of NLRP3 inflammasome activation and its involvement in inflammatory diseases, and discusses the current scientific evidence on the repressive role of BRB on NLRP3 inflammasome pathways along with the possible mechanism(s) and their potential in counteracting various inflammatory diseases.
Collapse
|
44
|
Akbar M, Shabbir A, Rehman K, Akash MSH, Shah MA. Neuroprotective potential of berberine in modulating Alzheimer's disease via multiple signaling pathways. J Food Biochem 2021; 45:e13936. [PMID: 34523148 DOI: 10.1111/jfbc.13936] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022]
Abstract
Berberine is one of the most important quinoline alkaloids, which has shown numerous pharmacological activities. There are pieces of evidence that berberine serves as a promising substance for treating Alzheimer's disease (AD). Recently, numerous studies on animal models have shown the neuroprotective role of berberine. AD is a complex disease having multiple pathological factors. Berberine restrains the deposition of amyloid plaques and neurofibrillary tangles. Substantial studies have demonstrated that berberine may also exhibit the protective effect against the risk factors associated with AD. This review illustrates the role of berberine in neuroinflammation, oxidative stress and its activity against acetylcholinesterase enzyme. It also focuses on the bioavailability and safety of berberine in AD. However, more investigations are required to explore the bioavailability and safety assessment of berberine and its new perspectives in limiting the AD-related pathogenesis and risk factors. PRACTICAL APPLICATIONS: Current therapeutic measures only provide symptomatic relief against AD by slowing memory loss, resolving thinking problems and behavioral issues. In recent past years, many biological actions and potential therapeutic applications have been observed by berberine particularly in neurological diseases. Berberine has been investigated by various researchers for its activity against AD. This review demonstrates a variety of mechanisms by which berberine imparts its neuroprotective roles and provides the possible mechanism of action of berberine by which it prevents the formation of neurofibrillary tangles and disaggregation of amyloid beta plaques in AD. It also focuses that berberine limits the neuroinflammation and oxidative stress in AD. Pre-clinical aspects of berberine against AD are also discussed. Eventually, a prospect is formulated that berberine might be a therapeutically significant agent for treating and preventing AD.
Collapse
Affiliation(s)
- Moazzama Akbar
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Anam Shabbir
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Government College University, Faisalabad, Pakistan
| |
Collapse
|
45
|
Singh AK, Rai SN, Maurya A, Mishra G, Awasthi R, Shakya A, Chellappan DK, Dua K, Vamanu E, Chaudhary SK, Singh MP. Therapeutic Potential of Phytoconstituents in Management of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5578574. [PMID: 34211570 PMCID: PMC8208882 DOI: 10.1155/2021/5578574] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
Since primitive times, herbs have been extensively used in conventional remedies for boosting cognitive impairment and age-associated memory loss. It is mentioned that medicinal plants have a variety of dynamic components, and they have become a prominent choice for synthetic medications for the care of cognitive and associated disorders. Herbal remedies have played a major role in the progression of medicine, and many advanced drugs have already been developed. Many studies have endorsed practicing herbal remedies with phytoconstituents, for healing Alzheimer's disease (AD). All the information in this article was collated from selected research papers from online scientific databases, such as PubMed, Web of Science, and Scopus. The aim of this article is to convey the potential of herbal remedies for the prospect management of Alzheimer's and related diseases. Herbal remedies may be useful in the discovery and advancement of drugs, thus extending new leads for neurodegenerative diseases such as AD. Nanocarriers play a significant role in delivering herbal medicaments to a specific target. Therefore, many drugs have been described for the management of age-linked complaints such as dementia, AD, and the like. Several phytochemicals are capable of managing AD, but their therapeutic claims are restricted due to their lower solubility and metabolism. These limitations of natural therapeutics can be overcome by using a targeted nanocarrier system. This article will provide the primitive remedies as well as the development of herbal remedies for AD management.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Anand Maurya
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, Uttar Pradesh, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Assam 786004, Dibrugarh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, New South Wales, Australia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 1 District, 011464, Bucharest, Romania
| | - Sushil Kumar Chaudhary
- Faculty of Pharmacy, DIT University, Mussoorie-Diversion Road, Makkawala, Dehradun 248 009, Uttarakhand, India
| | - M P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
46
|
Gaba S, Saini A, Singh G, Monga V. An insight into the medicinal attributes of berberine derivatives: A review. Bioorg Med Chem 2021; 38:116143. [PMID: 33848698 DOI: 10.1016/j.bmc.2021.116143] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
In the last few decades, traditional natural products have been the center of attention for the scientific community and exploration of their therapeutic abilities is proceeding perpetually. Berberine, with remarkable therapeutic diversity, is a plant derived isoquinoline alkaloid which is widely used as a traditional medicine in China. Berberine has been tackled as a fascinating pharmacophore to make great contributions to the discovery and development of new therapeutic agents against variegated diseases. Despite its tremendous therapeutic potential, clinical utility of this alkaloid was significantly compromised due to undesirable pharmacokinetic properties. To overcome this limitation, several structural modifications were performed on this scaffold to improve its therapeutic efficacy. The collective efforts of the community have achieved the tremendous advancements, bringing berberine to clinical use and discovering new therapeutic opportunities by structural modifications on the berberine scaffold. In this review, recent advancements in the medicinal chemistry of berberine and its derivatives in the last few years (2016-2020) have been compiled to represent inclusive data associated with various biological activities of this alkaloid. The comprehensive structure-activity relationship studies along with molecular modelling and mechanistic studies have also been summarized. This article would be highly helpful for the scientific community to get better insight into medicinal research of berberine and become a compelling guide for the rational design of berberine based compounds.
Collapse
Affiliation(s)
- Sobhi Gaba
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Anjali Saini
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India.
| |
Collapse
|
47
|
Li S, Wu Z, Le W. Traditional Chinese medicine for dementia. Alzheimers Dement 2021; 17:1066-1071. [PMID: 33682261 DOI: 10.1002/alz.12258] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 01/14/2023]
Abstract
In Western medicine, dementia refers to a spectrum of diseases affecting cognition, mental health, and physical abilities. Ancient medical literatures of traditional Chinese medicine (TCM) also recorded dementia-like symptoms, but described the disease from a totally distinct theoretical point of view. The earliest records of memory loss in ancient China can be traced back 2000 years earlier. In TCM, dementia can be attributed mainly to the Brain dystrophy, Spleen-Kidney weakness, Blood stasis, and Phlegm stagnation. Of interest, ancient Chinese physicians have proposed that dementia manifests as not only cognitive but also noncognitive symptoms including psychiatric disorders and sleep disturbance, which have been investigated widely nowadays in Western medicine. Various TCM prescriptions, herbal medicines, and acupunctures have also been proposed for dementia prevention and therapy. Some of these strategies are still used in current clinical practice. Reviewing and highlighting the unique TCM recognition of treating dementia may shed light on future dementia research.
Collapse
Affiliation(s)
- Song Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, P.R. China
| | - Zhengzhi Wu
- Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, P.R. China.,Department of Neurology & Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, P.R. China
| |
Collapse
|
48
|
Noori T, Dehpour AR, Sureda A, Sobarzo-Sanchez E, Shirooie S. Role of natural products for the treatment of Alzheimer's disease. Eur J Pharmacol 2021; 898:173974. [PMID: 33652057 DOI: 10.1016/j.ejphar.2021.173974] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Negative psychological and physiological consequences of neurodegenerative disorders represent a high social and health cost. Among the neurodegenerative disorders Alzheimer's disease (AD) is recognized as a leading neurodegenerative condition and a primary cause of dementia in the elderlys. AD is considered as neurodegenerative disorder that progressively impairs cognitive function and memory. According to current epidemiological data, about 50 milLion people worldwide are suffering from AD. The primary symptoms of AD are almost inappreciable and usually comprise forgetfulness of recent events. Numerous processes are involved in the development of AD, for example oxidative stress (OS) mainly due to mitochondrial dysfunction, intracellular the accumulation of hyperphosphorylated tau (τ) proteins in the form of neurofibrillary tangles, excessive the accumulation of extracellular plaques of beta-amyloid (Aβ), genetic and environmental factors. Running treatments only attenuate symptoms and temporarily reduce the rate of cognitive progression associated with AD. This means that most treatments focus only on controlLing symptoms, particularly in the initial stages of the disease. In the past, the first choice of treatment was based on natural ingredients. In this sense, diverse natural products (NPs) are capable to decrease the symptoms and alleviate the development of several diseases including AD attracting the attention of the scientific community and the pharmaceutical industry. Specifically, numerous NPs including flavonoids, gingerols, tannins, anthocyanins, triterpenes and alkaloids have been shown anti-inflammatory, antioxidant, anti-amyloidogenic, and anti-choLinesterase properties. This review provide a summary of the pathogenesis and the therapeutic goals of AD. It also discusses the available data on various plants and isolated natural compounds used to prevent and diminish the symptoms of AD.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, TUMS, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), University Research Institute of Health Sciences (IUNICS), and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile; Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
49
|
Potential of Naturally Derived Alkaloids as Multi-Targeted Therapeutic Agents for Neurodegenerative Diseases. Molecules 2021; 26:molecules26030728. [PMID: 33573300 PMCID: PMC7866829 DOI: 10.3390/molecules26030728] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023] Open
Abstract
Alkaloids are a class of secondary metabolites that can be derived from plants, fungi and marine sponges. They are widely known as a continuous source of medicine for the management of chronic disease including cancer, diabetes and neurodegenerative diseases. For example, galanthamine and huperzine A are alkaloid derivatives currently being used for the symptomatic management of neurodegenerative disease. The etiology of neurodegenerative diseases is polygenic and multifactorial including but not limited to inflammation, oxidative stress and protein aggregation. Therefore, natural-product-based alkaloids with polypharmacology modulation properties are potentially useful for further drug development or, to a lesser extent, as nutraceuticals to manage neurodegeneration. This review aims to discuss and summarise recent developments in relation to naturally derived alkaloids for neurodegenerative diseases.
Collapse
|
50
|
Bobadilla M, García-Sanmartín J, Martínez A. Natural Food Supplements Reduce Oxidative Stress in Primary Neurons and in the Mouse Brain, Suggesting Applications in the Prevention of Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10010046. [PMID: 33401699 PMCID: PMC7824423 DOI: 10.3390/antiox10010046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/23/2022] Open
Abstract
Neurodegenerative diseases pose a major health problem for developed countries, and stress has been identified as one of the main risk factors in the development of these disorders. Here, we have examined the protective properties against oxidative stress of several bioactive natural food supplements. We found that MecobalActive®, Olews®, and red and white grape seed polyphenol extracts may have a neuroprotective effect in vitro, both in the SH-SY 5Y cell line and in hippocampal neuron cultures, mainly by reducing reactive oxygen species levels and decreasing caspase-3 activity. In vivo, we demonstrated that oral administration of the supplements reduces the expression of genes involved in inflammation and oxidation mechanisms, whereas it increments the expression of genes related to protection against oxidative stress. Furthermore, we found that preventive treatment with these natural extracts increases the activity of antioxidant enzymes and prevents lipid peroxidation in the brain of stressed mice. Thus, our results indicate that some natural bioactive supplements may have important protective properties against oxidative stress processes occurring in the brain.
Collapse
|