1
|
Anish TS, Aravind R, Radhakrishnan C, Gupta N, Yadav PD, Cherian JJ, Sahay R, Chenayil S, A S AK, Moorkoth AP, Ashadevi, Lathika VR, Moideen S, Kuriakose SL, Reena KJ, Mathew T. Pandemic potential of the Nipah virus and public health strategies adopted during outbreaks: Lessons from Kerala, India. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003926. [PMID: 39700307 DOI: 10.1371/journal.pgph.0003926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Kerala, a south Indian state witnessed several outbreaks of Nipah encephalitis since 2018, a zoonotic viral disease with significant pandemic potential. This review highlights the relevance of surveillance and health system preparedness, infection control, early diagnosis and treatment with broad-spectrum antivirals, environmental conservation, and community engagement in mitigating Nipah outbreaks. Additionally, it emphasises the importance of developing new biologicals and anti-viral drugs to combat the disease. The article discusses the available evidence on the spillover mechanisms, genetic attributes of the circulating virus, ecological factors, risk of hospital-based superspreading, treatment outcomes and successful strategies employed in Kerala in response to the recurrent Nipah outbreaks.
Collapse
Affiliation(s)
- Thekkumkara Surendran Anish
- Kerala One Health Centre for Nipah Research and Resilience, Kozhikode, Kerala, India
- Department of Community Medicine, Government Medical College, Wayanad, Kerala, India
| | - Reghukumar Aravind
- Department of Infectious Diseases, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Chandni Radhakrishnan
- Department of Internal Medicine, Government Medical College, Kozhikode, Kerala, India
| | | | - Pragya D Yadav
- Indian Council of Medical Research- National Institute of Virology, Pune, Maharashtra, India
| | - Jerin Jose Cherian
- Indian Council of Medical Research, New Delhi, India
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Rima Sahay
- Indian Council of Medical Research- National Institute of Virology, Pune, Maharashtra, India
| | | | | | | | - Ashadevi
- Department of Health Services, Kozhikode, Kerala, India
| | | | - Shamsudeen Moideen
- IQRAA International Hospital and Research Centre, Kozhikode, Kerala, India
| | | | | | - Thomas Mathew
- Department of Medical Education, Thiruvananthapuram, Kerala, India
| |
Collapse
|
2
|
Sharma N, Jamwal VL, Nagial S, Ranjan M, Rath D, Gandhi SG. Current status of diagnostic assays for emerging zoonotic viruses: Nipah and Hendra. Expert Rev Mol Diagn 2024; 24:473-485. [PMID: 38924448 DOI: 10.1080/14737159.2024.2368591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Nipah and Hendra viruses belong to the Paramyxoviridae family, which pose a significant threat to human health, with sporadic outbreaks causing severe morbidity and mortality. Early symptoms include fever, cough, sore throat, and headache, which offer little in terms of differential diagnosis. There are no specific therapeutics and vaccines for these viruses. AREAS COVERED This review comprehensively covers a spectrum of diagnostic techniques for Nipah and Hendra virus infections, discussed in conjunction with appropriate type of samples during the progression of infection. Serological assays, reverse transcriptase Real-Time PCR assays, and isothermal amplification assays are discussed in detail, along with a listing of few commercially available detection kits. Patents protecting inventions in Nipah and Hendra virus detection are also covered. EXPERT OPINION Despite several outbreaks of Nipah and Hendra infections in the past decade, in-depth research into their pathogenesis, Point-of-Care diagnostics, specific therapies, and human vaccines is lacking. A prompt and accurate diagnosis is pivotal for efficient outbreak management, patient treatment, and the adoption of preventative measures. The emergence of rapid point-of-care tests holds promise in enhancing diagnostic capabilities in real-world settings. The patent landscape emphasizes the importance of innovation and collaboration within the legal and business realms.
Collapse
Affiliation(s)
- Nancy Sharma
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijay Lakshmi Jamwal
- Microfluidics Design and Bioengineering Lab, Chemical Engineering Department, Indian Institute of Technology Jammu (IIT), Jammu, India
| | - Sakshi Nagial
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| | - Manish Ranjan
- Department of Microbiology, All India Institute of Medical Sciences Jammu (AIIMS), Jammu, India
| | - Dharitri Rath
- Microfluidics Design and Bioengineering Lab, Chemical Engineering Department, Indian Institute of Technology Jammu (IIT), Jammu, India
| | - Sumit G Gandhi
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Satterfield BA, Mire CE, Geisbert TW. Overview of Experimental Vaccines and Antiviral Therapeutics for Henipavirus Infection. Methods Mol Biol 2023; 2682:1-22. [PMID: 37610570 DOI: 10.1007/978-1-0716-3283-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are highly pathogenic paramyxoviruses, which have emerged in recent decades and cause sporadic outbreaks of respiratory and encephalitic disease in Australia and Southeast Asia, respectively. Over two billion people currently live in regions potentially at risk due to the wide range of the Pteropus fruit bat reservoir, yet there are no approved vaccines or therapeutics to protect against or treat henipavirus disease. In recent years, significant progress has been made toward developing various experimental vaccine platforms and therapeutics. Here, we describe these advances for both human and livestock vaccine candidates and discuss the numerous preclinical studies and the few that have progressed to human phase 1 clinical trial and the one approved veterinary vaccine.
Collapse
Affiliation(s)
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- National Bio- and Agro-defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, NY, USA.
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Gamble A, Yeo YY, Butler AA, Tang H, Snedden CE, Mason CT, Buchholz DW, Bingham J, Aguilar HC, Lloyd-Smith JO. Drivers and Distribution of Henipavirus-Induced Syncytia: What Do We Know? Viruses 2021; 13:1755. [PMID: 34578336 PMCID: PMC8472861 DOI: 10.3390/v13091755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Syncytium formation, i.e., cell-cell fusion resulting in the formation of multinucleated cells, is a hallmark of infection by paramyxoviruses and other pathogenic viruses. This natural mechanism has historically been a diagnostic marker for paramyxovirus infection in vivo and is now widely used for the study of virus-induced membrane fusion in vitro. However, the role of syncytium formation in within-host dissemination and pathogenicity of viruses remains poorly understood. The diversity of henipaviruses and their wide host range and tissue tropism make them particularly appropriate models with which to characterize the drivers of syncytium formation and the implications for virus fitness and pathogenicity. Based on the henipavirus literature, we summarized current knowledge on the mechanisms driving syncytium formation, mostly acquired from in vitro studies, and on the in vivo distribution of syncytia. While these data suggest that syncytium formation widely occurs across henipaviruses, hosts, and tissues, we identified important data gaps that undermined our understanding of the role of syncytium formation in virus pathogenesis. Based on these observations, we propose solutions of varying complexity to fill these data gaps, from better practices in data archiving and publication for in vivo studies, to experimental approaches in vitro.
Collapse
Affiliation(s)
- Amandine Gamble
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Yao Yu Yeo
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14850, USA; (Y.Y.Y.); (D.W.B.); (H.C.A.)
| | - Aubrey A. Butler
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Hubert Tang
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Celine E. Snedden
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Christian T. Mason
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - David W. Buchholz
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14850, USA; (Y.Y.Y.); (D.W.B.); (H.C.A.)
| | - John Bingham
- CSIRO Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia;
| | - Hector C. Aguilar
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14850, USA; (Y.Y.Y.); (D.W.B.); (H.C.A.)
| | - James O. Lloyd-Smith
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| |
Collapse
|
5
|
Rajput A, Thakur A, Rastogi A, Choudhury S, Kumar M. Computational identification of repurposed drugs against viruses causing epidemics and pandemics via drug-target network analysis. Comput Biol Med 2021; 136:104677. [PMID: 34332351 PMCID: PMC8299294 DOI: 10.1016/j.compbiomed.2021.104677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
Viral epidemics and pandemics are considered public health emergencies. However, traditional and novel antiviral discovery approaches are unable to mitigate them in a timely manner. Notably, drug repurposing emerged as an alternative strategy to provide antiviral solutions in a timely and cost-effective manner. In the literature, many FDA-approved drugs have been repurposed to inhibit viruses, while a few among them have also entered clinical trials. Using experimental data, we identified repurposed drugs against 14 viruses responsible for causing epidemics and pandemics such as SARS-CoV-2, SARS, Middle East respiratory syndrome, influenza H1N1, Ebola, Zika, Nipah, chikungunya, and others. We developed a novel computational "drug-target-drug" approach that uses the drug-targets extracted for specific drugs, which are experimentally validated in vitro or in vivo for antiviral activity. Furthermore, these extracted drug-targets were used to fetch the novel FDA-approved drugs for each virus and prioritize them by calculating their confidence scores. Pathway analysis showed that the majority of the extracted targets are involved in cancer and signaling pathways. For SARS-CoV-2, our method identified 21 potential repurposed drugs, of which 7 (e.g., baricitinib, ramipril, chlorpromazine, enalaprilat, etc.) have already entered clinical trials. The prioritized drug candidates were further validated using a molecular docking approach. Therefore, we anticipate success during the experimental validation of our predicted FDA-approved repurposed drugs against 14 viruses. This study will assist the scientific community in hastening research aimed at the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Akanksha Rajput
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Anamika Thakur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amber Rastogi
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shubham Choudhury
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Jiang W, Wong J, Tan HX, Kelly HG, Whitney PG, Barr I, Layton DS, Kent SJ, Wheatley AK, Juno JA. Screening and development of monoclonal antibodies for identification of ferret T follicular helper cells. Sci Rep 2021; 11:1864. [PMID: 33479388 PMCID: PMC7820401 DOI: 10.1038/s41598-021-81389-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023] Open
Abstract
The ferret is a key animal model for investigating the pathogenicity and transmissibility of important human viruses, and for the pre‐clinical assessment of vaccines. However, relatively little is known about the ferret immune system, due in part to a paucity of ferret‐reactive reagents. In particular, T follicular helper (Tfh) cells are critical in the generation of effective humoral responses in humans, mice and other animal models but to date it has not been possible to identify Tfh in ferrets. Here, we describe the screening and development of ferret-reactive BCL6, CXCR5 and PD-1 monoclonal antibodies. We found two commercial anti-BCL6 antibodies (clone K112-91 and clone IG191E/A8) had cross-reactivity with lymph node cells from influenza-infected ferrets. We next developed two murine monoclonal antibodies against ferret CXCR5 (clone feX5-C05) and PD-1 (clone fePD-CL1) using a single B cell PCR-based method. We were able to clearly identify Tfh cells in lymph nodes from influenza infected ferrets using these antibodies. The development of ferret Tfh marker antibodies and the identification of ferret Tfh cells will assist the evaluation of vaccine-induced Tfh responses in the ferret model and the design of novel vaccines against the infection of influenza and other viruses, including SARS-CoV2.
Collapse
Affiliation(s)
- Wenbo Jiang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Julius Wong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Paul G Whitney
- WHO Collaborating Centre for Reference and Research On Influenza, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research On Influenza, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel S Layton
- CSIRO Health and Biosecurity, Australian Animal Health Laboratories, Geelong, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Clinic and Infectious Diseases Department, Alfred Hospital, Monash University Central Clinical School, Carlton, VIC, Australia.,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Marcink TC, Wang T, des Georges A, Porotto M, Moscona A. Human parainfluenza virus fusion complex glycoproteins imaged in action on authentic viral surfaces. PLoS Pathog 2020; 16:e1008883. [PMID: 32956394 PMCID: PMC7529294 DOI: 10.1371/journal.ppat.1008883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/01/2020] [Accepted: 08/13/2020] [Indexed: 01/21/2023] Open
Abstract
Infection by human parainfluenza viruses (HPIVs) causes widespread lower respiratory diseases, including croup, bronchiolitis, and pneumonia, and there are no vaccines or effective treatments for these viruses. HPIV3 is a member of the Respirovirus species of the Paramyxoviridae family. These viruses are pleomorphic, enveloped viruses with genomes composed of single-stranded negative-sense RNA. During viral entry, the first step of infection, the viral fusion complex, comprised of the receptor-binding glycoprotein hemagglutinin-neuraminidase (HN) and the fusion glycoprotein (F), mediates fusion upon receptor binding. The HPIV3 transmembrane protein HN, like the receptor-binding proteins of other related viruses that enter host cells using membrane fusion, binds to a receptor molecule on the host cell plasma membrane, which triggers the F glycoprotein to undergo major conformational rearrangements, promoting viral entry. Subsequent fusion of the viral and host membranes allows delivery of the viral genetic material into the host cell. The intermediate states in viral entry are transient and thermodynamically unstable, making it impossible to understand these transitions using standard methods, yet understanding these transition states is important for expanding our knowledge of the viral entry process. In this study, we use cryo-electron tomography (cryo-ET) to dissect the stepwise process by which the receptor-binding protein triggers F-mediated fusion, when forming a complex with receptor-bearing membranes. Using an on-grid antibody capture method that facilitates examination of fresh, biologically active strains of virus directly from supernatant fluids and a series of biological tools that permit the capture of intermediate states in the fusion process, we visualize the series of events that occur when a pristine, authentic viral particle interacts with target receptors and proceeds from the viral entry steps of receptor engagement to membrane fusion.
Collapse
Affiliation(s)
- Tara C. Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
| | - Tong Wang
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, United States of America
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, United States of America
- Department of Chemistry and Biochemistry, City College of New York, New York, New York, United States of America
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Department of Microbiology & Immunology, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Department of Physiology & Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
| |
Collapse
|
8
|
Aggarwal M, Plemper RK. Structural Insight into Paramyxovirus and Pneumovirus Entry Inhibition. Viruses 2020; 12:E342. [PMID: 32245118 PMCID: PMC7150754 DOI: 10.3390/v12030342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/04/2023] Open
Abstract
Paramyxoviruses and pneumoviruses infect cells through fusion (F) protein-mediated merger of the viral envelope with target membranes. Members of these families include a range of major human and animal pathogens, such as respiratory syncytial virus (RSV), measles virus (MeV), human parainfluenza viruses (HPIVs), and highly pathogenic Nipah virus (NiV). High-resolution F protein structures in both the metastable pre- and the postfusion conformation have been solved for several members of the families and a number of F-targeting entry inhibitors have progressed to advanced development or clinical testing. However, small-molecule RSV entry inhibitors have overall disappointed in clinical trials and viral resistance developed rapidly in experimental settings and patients, raising the question of whether the available structural information may provide a path to counteract viral escape through proactive inhibitor engineering. This article will summarize current mechanistic insight into F-mediated membrane fusion and examine the contribution of structural information to the development of small-molecule F inhibitors. Implications are outlined for future drug target selection and rational drug engineering strategies.
Collapse
Affiliation(s)
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
9
|
Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora KS, Latheef SK, Karthik K, Singh Malik Y, Singh R, Chaicumpa W, Mourya DT. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Vet Q 2019; 39:26-55. [PMID: 31006350 PMCID: PMC6830995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 10/20/2023] Open
Abstract
Nipah (Nee-pa) viral disease is a zoonotic infection caused by Nipah virus (NiV), a paramyxovirus belonging to the genus Henipavirus of the family Paramyxoviridae. It is a biosafety level-4 pathogen, which is transmitted by specific types of fruit bats, mainly Pteropus spp. which are natural reservoir host. The disease was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Human-to-human transmission also occurs. Outbreaks have been reported also from other countries in South and Southeast Asia. Phylogenetic analysis affirmed the circulation of two major clades of NiV as based on currently available complete N and G gene sequences. NiV isolates from Malaysia and Cambodia clustered together in NiV-MY clade, whereas isolates from Bangladesh and India clusterered within NiV-BD clade. NiV isolates from Thailand harboured mixed population of sequences. In humans, the virus is responsible for causing rapidly progressing severe illness which might be characterized by severe respiratory illness and/or deadly encephalitis. In pigs below six months of age, respiratory illness along with nervous symptoms may develop. Different types of enzyme-linked immunosorbent assays along with molecular methods based on polymerase chain reaction have been developed for diagnostic purposes. Due to the expensive nature of the antibody drugs, identification of broad-spectrum antivirals is essential along with focusing on small interfering RNAs (siRNAs). High pathogenicity of NiV in humans, and lack of vaccines or therapeutics to counter this disease have attracted attention of researchers worldwide for developing effective NiV vaccine and treatment regimens.
Collapse
Affiliation(s)
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, West Tripura, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Senthilkumar Natesan
- Biomac Life Sciences Pvt Ltd., Indian Institute of Public Health Gandhinagar, Gujarat, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Kranti Suresh Vora
- Wheels India Niswarth (WIN) Foundation, Maternal and Child Health (MCH), University of Canberra, Gujarat, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Devendra T. Mourya
- National Institute of Virology, Ministry of Health and Family Welfare, Govt of India, Pune, India
| |
Collapse
|
10
|
Olival KJ, Latinne A, Islam A, Epstein JH, Hersch R, Engstrand RC, Gurley ES, Amato G, Luby SP, Daszak P. Population genetics of fruit bat reservoir informs the dynamics, distribution and diversity of Nipah virus. Mol Ecol 2019; 29:970-985. [PMID: 31652377 DOI: 10.1111/mec.15288] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022]
Abstract
The structure and connectivity of wildlife host populations may influence zoonotic disease dynamics, evolution and therefore spillover risk to people. Fruit bats in the genus Pteropus, or flying foxes, are the primary natural reservoir for henipaviruses-a group of emerging paramyxoviruses that threaten livestock and public health. In Bangladesh, Pteropus medius is the reservoir for Nipah virus-and viral spillover has led to human fatalities nearly every year since 2001. Here, we use mitochondrial DNA and nuclear microsatellite markers to measure the population structure, demographic history and phylogeography of P. medius in Bangladesh. We combine this with a phylogeographic analysis of all known Nipah virus sequences and strains currently available to better inform the dynamics, distribution and evolutionary history of Nipah virus. We show that P. medius is primarily panmictic, but combined analysis of microsatellite and morphological data shows evidence for differentiation of two populations in eastern Bangladesh, corresponding to a divergent strain of Nipah virus also found in bats from eastern Bangladesh. Our demographic analyses indicate that a large, expanding population of flying foxes has existed in Bangladesh since the Late Pleistocene, coinciding with human population expansion in South Asia, suggesting repeated historical spillover of Nipah virus likely occurred. We present the first evidence of mitochondrial introgression, or hybridization, between P. medius and flying fox species found in South-East Asia (P. vampyrus and P. hypomelanus), which may help to explain the distribution of Nipah virus strains across the region.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca Hersch
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Rachel C Engstrand
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | | | - George Amato
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | | | | |
Collapse
|
11
|
Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora KS, Latheef SK, Karthik K, Singh Malik Y, Singh R, Chaicumpa W, Mourya DT. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Vet Q 2019. [PMID: 31006350 PMCID: PMC6830995 DOI: 10.1080/01652176.2019.1580827] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nipah (Nee-pa) viral disease is a zoonotic infection caused by Nipah virus (NiV), a paramyxovirus belonging to the genus Henipavirus of the family Paramyxoviridae. It is a biosafety level-4 pathogen, which is transmitted by specific types of fruit bats, mainly Pteropus spp. which are natural reservoir host. The disease was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Human-to-human transmission also occurs. Outbreaks have been reported also from other countries in South and Southeast Asia. Phylogenetic analysis affirmed the circulation of two major clades of NiV as based on currently available complete N and G gene sequences. NiV isolates from Malaysia and Cambodia clustered together in NiV-MY clade, whereas isolates from Bangladesh and India clusterered within NiV-BD clade. NiV isolates from Thailand harboured mixed population of sequences. In humans, the virus is responsible for causing rapidly progressing severe illness which might be characterized by severe respiratory illness and/or deadly encephalitis. In pigs below six months of age, respiratory illness along with nervous symptoms may develop. Different types of enzyme-linked immunosorbent assays along with molecular methods based on polymerase chain reaction have been developed for diagnostic purposes. Due to the expensive nature of the antibody drugs, identification of broad-spectrum antivirals is essential along with focusing on small interfering RNAs (siRNAs). High pathogenicity of NiV in humans, and lack of vaccines or therapeutics to counter this disease have attracted attention of researchers worldwide for developing effective NiV vaccine and treatment regimens.
Collapse
Affiliation(s)
- Raj Kumar Singh
- a ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Sandip Chakraborty
- c Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry , West Tripura , India
| | - Ruchi Tiwari
- d Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences , Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Senthilkumar Natesan
- e Biomac Life Sciences Pvt Ltd. , Indian Institute of Public Health Gandhinagar , Gujarat , India
| | - Rekha Khandia
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Ashok Munjal
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Kranti Suresh Vora
- g Wheels India Niswarth (WIN) Foundation, Maternal and Child Health (MCH) , University of Canberra , Gujarat , India
| | - Shyma K Latheef
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kumaragurubaran Karthik
- h Central University Laboratory , Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - Yashpal Singh Malik
- i Division of Biological Standardization , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rajendra Singh
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Wanpen Chaicumpa
- j Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Devendra T Mourya
- k National Institute of Virology , Ministry of Health and Family Welfare, Govt of India , Pune , India
| |
Collapse
|
12
|
Henipavirus Infection: Natural History and the Virus-Host Interplay. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2018. [DOI: 10.1007/s40506-018-0155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Laing ED, Amaya M, Navaratnarajah CK, Feng YR, Cattaneo R, Wang LF, Broder CC. Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species. Virol J 2018; 15:56. [PMID: 29587789 PMCID: PMC5869790 DOI: 10.1186/s12985-018-0964-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/13/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hendra virus and Nipah virus are zoonotic viruses that have caused severe to fatal disease in livestock and human populations. The isolation of Cedar virus, a non-pathogenic virus species in the genus Henipavirus, closely-related to the highly pathogenic Hendra virus and Nipah virus offers an opportunity to investigate differences in pathogenesis and receptor tropism among these viruses. METHODS We constructed full-length cDNA clones of Cedar virus from synthetic oligonucleotides and rescued two replication-competent, recombinant Cedar virus variants: a recombinant wild-type Cedar virus and a recombinant Cedar virus that expresses a green fluorescent protein from an open reading frame inserted between the phosphoprotein and matrix genes. Replication kinetics of both viruses and stimulation of the interferon pathway were characterized in vitro. Cellular tropism for ephrin-B type ligands was qualitatively investigated by microscopy and quantitatively by a split-luciferase fusion assay. RESULTS Successful rescue of recombinant Cedar virus expressing a green fluorescent protein did not significantly affect virus replication compared to the recombinant wild-type Cedar virus. We demonstrated that recombinant Cedar virus stimulated the interferon pathway and utilized the established Hendra virus and Nipah virus receptor, ephrin-B2, but not ephrin-B3 to mediate virus entry. We further characterized virus-mediated membrane fusion kinetics of Cedar virus with the known henipavirus receptors ephrin-B2 and ephrin-B3. CONCLUSIONS The recombinant Cedar virus platform may be utilized to characterize the determinants of pathogenesis across the henipaviruses, investigate their receptor tropisms, and identify novel pan-henipavirus antivirals. Moreover, these experiments can be conducted safely under BSL-2 conditions.
Collapse
Affiliation(s)
- Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| | | | - Yan-Ru Feng
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
14
|
Biophysical Properties and Antiviral Activities of Measles Fusion Protein Derived Peptide Conjugated with 25-Hydroxycholesterol. Molecules 2017; 22:molecules22111869. [PMID: 29088094 PMCID: PMC5775476 DOI: 10.3390/molecules22111869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Measles virus (MV) infection is re-emerging, despite the availability of an effective vaccine. The mechanism of MV entry into a target cell relies on coordinated action between the MV hemagglutinin (H) receptor binding protein and the fusion envelope glycoprotein (F) which mediates fusion between the viral and cell membranes. Peptides derived from the C-terminal heptad repeat (HRC) of F can interfere with this process, blocking MV infection. As previously described, biophysical properties of HRC-derived peptides modulate their antiviral potency. In this work, we characterized a MV peptide fusion inhibitor conjugated to 25-hydroxycholesterol (25HC), a cholesterol derivative with intrinsic antiviral activity, and evaluated its interaction with membrane model systems and human blood cells. The peptide (MV.
Collapse
|
15
|
Layton DS, Xiao X, Bentley JD, Lu L, Stewart CR, Bean AGD, Adams TE. Development of an anti-ferret CD4 monoclonal antibody for the characterisation of ferret T lymphocytes. J Immunol Methods 2017; 444:29-35. [PMID: 28216237 PMCID: PMC7094458 DOI: 10.1016/j.jim.2017.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/01/2017] [Accepted: 02/14/2017] [Indexed: 12/21/2022]
Abstract
The ferret is an established animal model for a number of human respiratory viral infections, such as influenza virus and more recently, Ebola virus. However, a paucity of immunological reagents has hampered the study of cellular immune responses. Here we describe the development and characterisation of a novel monoclonal antibody (mAb) against the ferret CD4 antigen and the characterisation of ferret CD4 T lymphocytes. Recombinant production and purification of the ferret CD4 ectodomain soluble protein allowed hybridoma generation and the generation of a mAb (FeCD4) showing strong binding to ferret CD4 protein and lymphoid cells by flow cytometry. FeCD4 bound to its cognate antigen post-fixation with paraformaldehyde (PFA) which is routinely used to inactivate highly pathogenic viruses. We have also used FeCD4 in conjunction with other immune cell markers to characterise ferret T cells in both primary and secondary lymphoid organs. In summary, we have developed an important reagent for the study of cellular immunological responses in the ferret model of infectious disease.
Collapse
Affiliation(s)
- Daniel S Layton
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia.
| | - Xiaowen Xiao
- CSIRO Manufacturing, Parkville, Victoria, Australia
| | | | - Louis Lu
- CSIRO Manufacturing, Parkville, Victoria, Australia
| | - Cameron R Stewart
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Andrew G D Bean
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | | |
Collapse
|
16
|
Thibault PA, Watkinson RE, Moreira-Soto A, Drexler JF, Lee B. Zoonotic Potential of Emerging Paramyxoviruses: Knowns and Unknowns. Adv Virus Res 2017; 98:1-55. [PMID: 28433050 PMCID: PMC5894875 DOI: 10.1016/bs.aivir.2016.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The risk of spillover of enzootic paramyxoviruses and the susceptibility of recipient human and domestic animal populations are defined by a broad collection of ecological and molecular factors that interact in ways that are not yet fully understood. Nipah and Hendra viruses were the first highly lethal zoonotic paramyxoviruses discovered in modern times, but other paramyxoviruses from multiple genera are present in bats and other reservoirs that have unknown potential to spillover into humans. We outline our current understanding of paramyxovirus reservoir hosts and the ecological factors that may drive spillover, and we explore the molecular barriers to spillover that emergent paramyxoviruses may encounter. By outlining what is known about enzootic paramyxovirus receptor usage, mechanisms of innate immune evasion, and other host-specific interactions, we highlight the breadth of unexplored avenues that may be important in understanding paramyxovirus emergence.
Collapse
Affiliation(s)
| | - Ruth E Watkinson
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jan F Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
17
|
Electron tomography imaging of surface glycoproteins on human parainfluenza virus 3: association of receptor binding and fusion proteins before receptor engagement. mBio 2015; 6:e02393-14. [PMID: 25691596 PMCID: PMC4337575 DOI: 10.1128/mbio.02393-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to deliver their genetic material to host cells during infection, enveloped viruses use specialized proteins on their surfaces that bind cellular receptors and induce fusion of the viral and host membranes. In paramyxoviruses, a diverse family of single-stranded RNA (ssRNA) viruses, including several important respiratory pathogens, such as parainfluenza viruses, the attachment and fusion machinery is composed of two separate proteins: a receptor binding protein (hemagglutinin-neuraminidase [HN]) and a fusion (F) protein that interact to effect membrane fusion. Here we used negative-stain and cryo-electron tomography to image the 3-dimensional ultrastructure of human parainfluenza virus 3 (HPIV3) virions in the absence of receptor engagement. We observed that HN exists in at least two organizations. The first were arrays of tetrameric HN that lacked closely associated F proteins: in these purely HN arrays, HN adopted a “heads-down” configuration. In addition, we observed regions of complex surface density that contained HN in an apparently extended “heads-up” form, colocalized with prefusion F trimers. This colocalization with prefusion F prior to receptor engagement supports a model for fusion in which HN in its heads-up state and F may interact prior to receptor engagement without activating F, and that interaction with HN in this configuration is not sufficient to activate F. Only upon receptor engagement by HN’s globular head does HN transmit its activating signal to F. Human parainfluenza virus 3 (HPIV3) is an enveloped, ssRNA virus that can cause serious respiratory illness, especially in children. HPIV3, like most other paramyxoviruses, uses two specialized proteins to mediate cell entry: the fusion protein (F) and the receptor binding protein, hemagglutinin-neuraminidase (HN). F becomes activated to mediate fusion during entry when it is triggered by a signal from HN. Here we used electron tomography to reconstruct the 3-dimensional ultrastructure of HPIV3. From these structures, we could discern the distribution and, in some cases, conformation of HN and F proteins, which provided an understanding of their interrelationship on virions. HN is found in arrays alone in one conformation and interspersed with prefusion F trimers in another. The data support a model of paramyxovirus membrane fusion in which HN associates with F before receptor engagement, and receptor engagement by the globular head of HN switches the HN-F interaction into one of fusion activation.
Collapse
|
18
|
Christopher-Hennings J, Araujo KPC, Souza CJH, Fang Y, Lawson S, Nelson EA, Clement T, Dunn M, Lunney JK. Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories. J Vet Diagn Invest 2013; 25:671-91. [DOI: 10.1177/1040638713507256] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bead-based multiplex assays (BBMAs) are applicable for high throughput, simultaneous detection of multiple analytes in solution (from several to 50–500 analytes within a single, small sample volume). Currently, few assays are commercially available for veterinary applications, but they are available to identify and measure various cytokines, growth factors and their receptors, inflammatory proteins, kinases and inhibitors, neurobiology proteins, and pathogens and antibodies in human beings, nonhuman primates, and rodent species. In veterinary medicine, various nucleic acid and protein-coupled beads can be used in, or for the development of, antigen and antibody BBMAs, with the advantage that more data can be collected using approximately the same amount of labor as used for other antigen and antibody assays. Veterinary-related BBMAs could be used for detection of pathogens, genotyping, measurement of hormone levels, and in disease surveillance and vaccine assessment. It will be important to evaluate whether BBMAs are “fit for purpose,” how costs and efficiencies compare between assays, which assays are published or commercially available for specific veterinary applications, and what procedures are involved in the development of the assays. It is expected that many veterinary-related BBMAs will be published and/or become commercially available in the next few years. The current review summarizes the BBMA technology and some of the currently available BBMAs developed for veterinary settings. Some of the human diagnostic BBMAs are also described, providing an example of possible templates for future development of new veterinary-related BBMAs.
Collapse
Affiliation(s)
- Jane Christopher-Hennings
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD (Christopher-Hennings, Fang, Lawson, Nelson, Clement, Dunn)
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (Araujo, Souza, Lunney)
- Brazilian Agricultural Research Corp. (EMBRAPA), Pecuaria Sul, Bage, Rio Grande do Sul, Brazil (Souza)
| | - Karla P. C. Araujo
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD (Christopher-Hennings, Fang, Lawson, Nelson, Clement, Dunn)
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (Araujo, Souza, Lunney)
- Brazilian Agricultural Research Corp. (EMBRAPA), Pecuaria Sul, Bage, Rio Grande do Sul, Brazil (Souza)
| | - Carlos J. H. Souza
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD (Christopher-Hennings, Fang, Lawson, Nelson, Clement, Dunn)
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (Araujo, Souza, Lunney)
- Brazilian Agricultural Research Corp. (EMBRAPA), Pecuaria Sul, Bage, Rio Grande do Sul, Brazil (Souza)
| | - Ying Fang
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD (Christopher-Hennings, Fang, Lawson, Nelson, Clement, Dunn)
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (Araujo, Souza, Lunney)
- Brazilian Agricultural Research Corp. (EMBRAPA), Pecuaria Sul, Bage, Rio Grande do Sul, Brazil (Souza)
| | - Steven Lawson
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD (Christopher-Hennings, Fang, Lawson, Nelson, Clement, Dunn)
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (Araujo, Souza, Lunney)
- Brazilian Agricultural Research Corp. (EMBRAPA), Pecuaria Sul, Bage, Rio Grande do Sul, Brazil (Souza)
| | - Eric A. Nelson
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD (Christopher-Hennings, Fang, Lawson, Nelson, Clement, Dunn)
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (Araujo, Souza, Lunney)
- Brazilian Agricultural Research Corp. (EMBRAPA), Pecuaria Sul, Bage, Rio Grande do Sul, Brazil (Souza)
| | - Travis Clement
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD (Christopher-Hennings, Fang, Lawson, Nelson, Clement, Dunn)
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (Araujo, Souza, Lunney)
- Brazilian Agricultural Research Corp. (EMBRAPA), Pecuaria Sul, Bage, Rio Grande do Sul, Brazil (Souza)
| | - Michael Dunn
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD (Christopher-Hennings, Fang, Lawson, Nelson, Clement, Dunn)
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (Araujo, Souza, Lunney)
- Brazilian Agricultural Research Corp. (EMBRAPA), Pecuaria Sul, Bage, Rio Grande do Sul, Brazil (Souza)
| | - Joan K. Lunney
- Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD (Christopher-Hennings, Fang, Lawson, Nelson, Clement, Dunn)
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (Araujo, Souza, Lunney)
- Brazilian Agricultural Research Corp. (EMBRAPA), Pecuaria Sul, Bage, Rio Grande do Sul, Brazil (Souza)
| |
Collapse
|
19
|
Abstract
Measles virus (MV) infection causes an acute childhood disease that can include infection of the central nervous system and can rarely progress to severe neurological disease for which there is no specific treatment. We generated potent antiviral peptide inhibitors of MV entry and spreading and MV-induced cell fusion. Dimers of MV-specific peptides derived from the C-terminal heptad repeat region of the MV fusion protein, conjugated to cholesterol, efficiently protect SLAM transgenic mice from fatal MV infection. Fusion inhibitors hold promise for the prophylaxis of MV infection in unvaccinated and immunocompromised people, as well as potential for the treatment of grave neurological complications of measles.
Collapse
|
20
|
Abstract
Paramyxoviruses, including the human pathogen measles virus (MV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral envelope with the target cell membrane. This fusion is driven by the concerted action of two viral envelope glycoproteins: the receptor binding protein and the fusion protein (F). The MV receptor binding protein (hemagglutinin [H]) attaches to proteinaceous receptors on host cells, while the receptor binding protein of NDV (hemagglutinin-neuraminidase [HN]) interacts with sialic acid-containing receptors. The receptor-bound HN/H triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. The mechanism of fusion activation has been proposed to be different for sialic acid-binding viruses and proteinaceous receptor-binding viruses. We report that a chimeric protein containing the NDV HN receptor binding region and the MV H stalk domain can activate MV F to fuse, suggesting that the signal to the stalk of a protein-binding receptor binding molecule can be transmitted from a sialic acid binding domain. By engineering the NDV HN globular domain to interact with a proteinaceous receptor, the fusion activation signal was preserved. Our findings are consistent with a unified mechanism of fusion activation, at least for the Paramyxovirinae subfamily, in which the receptor binding domains of the receptor binding proteins are interchangeable and the stalk determines the specificity of F activation.
Collapse
|
21
|
Sample CJ, Hudak KE, Barefoot BE, Koci MD, Wanyonyi MS, Abraham S, Staats HF, Ramsburg EA. A mastoparan-derived peptide has broad-spectrum antiviral activity against enveloped viruses. Peptides 2013; 48:96-105. [PMID: 23891650 PMCID: PMC3899704 DOI: 10.1016/j.peptides.2013.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 12/19/2022]
Abstract
Broad-spectrum antiviral drugs are urgently needed to treat individuals infected with new and re-emerging viruses, or with viruses that have developed resistance to antiviral therapies. Mammalian natural host defense peptides (mNHP) are short, usually cationic, peptides that have direct antimicrobial activity, and which in some instances activate cell-mediated antiviral immune responses. Although mNHP have potent activity in vitro, efficacy trials in vivo of exogenously provided mNHP have been largely disappointing, and no mNHP are currently licensed for human use. Mastoparan is an invertebrate host defense peptide that penetrates lipid bilayers, and we reasoned that a mastoparan analog might interact with the lipid component of virus membranes and thereby reduce infectivity of enveloped viruses. Our objective was to determine whether mastoparan-derived peptide MP7-NH2 could inactivate viruses of multiple types, and whether it could stimulate cell-mediated antiviral activity. We found that MP7-NH2 potently inactivated a range of enveloped viruses. Consistent with our proposed mechanism of action, MP7-NH2 was not efficacious against a non-enveloped virus. Pre-treatment of cells with MP7-NH2 did not reduce the amount of virus recovered after infection, which suggested that the primary mechanism of action in vitro was direct inactivation of virus by MP7-NH2. These results demonstrate for the first time that a mastoparan derivative has broad-spectrum antiviral activity in vitro and suggest that further investigation of the antiviral properties of mastoparan peptides in vivo is warranted.
Collapse
Affiliation(s)
- Christopher J. Sample
- Duke University Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, United States
| | - Kathryn E. Hudak
- Duke University Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, United States
| | - Brice E. Barefoot
- Duke University Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, United States
| | - Matthew D. Koci
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27605, United States
| | - Moses S. Wanyonyi
- Duke University Department of Pathology, Durham, NC 27710, United States
| | - Soman Abraham
- Duke University Department of Pathology, Durham, NC 27710, United States
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore
| | - Herman F. Staats
- Duke University Department of Pathology, Durham, NC 27710, United States
| | - Elizabeth A. Ramsburg
- Duke University Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, United States
- Duke University Department of Pathology, Durham, NC 27710, United States
- Corresponding author at: Duke University Medical Center, Research Park III Building, Suite 112, 102 Circuit Drive, Durham, NC 27710, United States. Tel.: +1 919 684 8183; fax: +1 919 668 4418. (E.A. Ramsburg)
| |
Collapse
|
22
|
Paramyxovirus activation and inhibition of innate immune responses. J Mol Biol 2013; 425:4872-92. [PMID: 24056173 DOI: 10.1016/j.jmb.2013.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 12/18/2022]
Abstract
Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells.
Collapse
|
23
|
Endom EE. Bioterrorism and the Pediatric Patient: An Update. CLINICAL PEDIATRIC EMERGENCY MEDICINE 2013. [DOI: 10.1016/j.cpem.2013.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Abstract
Nipah (NiV) and Hendra (HeV) viruses are the deadliest human pathogens within the Paramyxoviridae family, which include human and animal pathogens of global biomedical importance. NiV and HeV infections cause respiratory and encephalitic illness with high mortality rates in humans. Henipaviruses (HNV) are the only Paramyxoviruses classified as biosafety level 4 (BSL4) pathogens due to their extreme pathogenicity, potential for bioterrorism, and lack of licensed vaccines and therapeutics. HNV use ephrin-B2 and ephrin-B3, highly conserved proteins, as viral entry receptors. This likely accounts for their unusually broad species tropism, and also provides opportunities to study how receptor usage, cellular tropism, and end-organ pathology relates to the pathobiology of HNV infections. The clinical and pathologic manifestations of NiV and HeV virus infections are reviewed in the chapters by Wong et al. and Geisbert et al. in this issue. Here, we will review the biology of the HNV receptors, and how receptor usage relates to HNV cell tropism in vitro and in vivo.
Collapse
Affiliation(s)
- Olivier Pernet
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1489, USA
| | | | | |
Collapse
|
25
|
DeBuysscher BL, de Wit E, Munster VJ, Scott D, Feldmann H, Prescott J. Comparison of the pathogenicity of Nipah virus isolates from Bangladesh and Malaysia in the Syrian hamster. PLoS Negl Trop Dis 2013; 7:e2024. [PMID: 23342177 PMCID: PMC3547834 DOI: 10.1371/journal.pntd.0002024] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022] Open
Abstract
Nipah virus is a zoonotic pathogen that causes severe disease in humans. The mechanisms of pathogenesis are not well described. The first Nipah virus outbreak occurred in Malaysia, where human disease had a strong neurological component. Subsequent outbreaks have occurred in Bangladesh and India and transmission and disease processes in these outbreaks appear to be different from those of the Malaysian outbreak. Until this point, virtually all Nipah virus studies in vitro and in vivo, including vaccine and pathogenesis studies, have utilized a virus isolate from the original Malaysian outbreak (NiV-M). To investigate potential differences between NiV-M and a Nipah virus isolate from Bangladesh (NiV-B), we compared NiV-M and NiV-B infection in vitro and in vivo. In hamster kidney cells, NiV-M-infection resulted in extensive syncytia formation and cytopathic effects, whereas NiV-B-infection resulted in little to no morphological changes. In vivo, NiV-M-infected Syrian hamsters had accelerated virus replication, pathology and death when compared to NiV-B-infected animals. NiV-M infection also resulted in the activation of host immune response genes at an earlier time point. Pathogenicity was not only a result of direct effects of virus replication, but likely also had an immunopathogenic component. The differences observed between NiV-M and NiV-B pathogeneis in hamsters may relate to differences observed in human cases. Characterization of the hamster model for NiV-B infection allows for further research of the strain of Nipah virus responsible for the more recent outbreaks in humans. This model can be used to study NiV-B pathogenesis, transmission, and countermeasures that could be used to control outbreaks. Nipah virus causes severe disease in humans and outbreaks have occurred in two geographic regions, Malaysia and Bangladesh, and viruses have been isolated during outbreaks from both of these regions (NiV-M and NiV-B, respectively). The original outbreak of Nipah virus occurred in Malaysia and caused severe encephalitis in humans. All subsequent outbreaks of Nipah virus have occurred in Bangladesh or India and disease has been characterized as having a strong respiratory component. Nipah virus is a public health concern that can cause up to 100% lethality in humans and there is no approved treatment or vaccine. Current research should focus on understanding disease progression and pathogenicity. We compared NiV-M and NiV-B infection and disease progression using the Syrian hamster model. We found that NiV-M is more destructive in cultured hamster cells and has faster onset of cytopathogenicity compared to NiV-B. This is also true in hamsters, where although both viruses are pathogenic and cause a similar disease, pathology caused by NiV-M infection is accelerated. These data show that there is a difference in disease progression between the two strains of Nipah virus and will allow for a more detailed understanding of the events leading to disease caused by these viruses.
Collapse
Affiliation(s)
- Blair L. DeBuysscher
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- * E-mail: (HF); (JP)
| | - Joseph Prescott
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- * E-mail: (HF); (JP)
| |
Collapse
|
26
|
Ferron F, Decroly E, Selisko B, Canard B. The viral RNA capping machinery as a target for antiviral drugs. Antiviral Res 2012; 96:21-31. [PMID: 22841701 PMCID: PMC7114304 DOI: 10.1016/j.antiviral.2012.07.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 12/18/2022]
Abstract
Most viruses modify their genomic and mRNA 5′-ends with the addition of an RNA cap, allowing efficient mRNA translation, limiting degradation by cellular 5′–3′ exonucleases, and avoiding its recognition as foreign RNA by the host cell. Viral RNA caps can be synthesized or acquired through the use of a capping machinery which exhibits a significant diversity in organization, structure and mechanism relative to that of their cellular host. Therefore, viral RNA capping has emerged as an interesting field for antiviral drug design. Here, we review the different pathways and mechanisms used to produce viral mRNA 5′-caps, and present current structures, mechanisms, and inhibitors known to act on viral RNA capping.
Collapse
Affiliation(s)
- François Ferron
- Centre National de la Recherche Scientifique and Aix-Marseille Université, UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
27
|
Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. J Virol 2012; 86:3736-45. [PMID: 22278224 DOI: 10.1128/jvi.06628-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proteolytic activation of the fusion protein of the highly pathogenic Nipah virus (NiV F) is a prerequisite for the production of infectious particles and for virus spread via cell-to-cell fusion. Unlike other paramyxoviral fusion proteins, functional NiV F activation requires endocytosis and pH-dependent cleavage at a monobasic cleavage site by endosomal proteases. Using prototype Vero cells, cathepsin L was previously identified to be a cleavage enzyme. Compared to Vero cells, MDCK cells showed substantially higher F cleavage rates in both NiV-infected and NiV F-transfected cells. Surprisingly, this could not be explained either by an increased F endocytosis rate or by elevated cathepsin L activities. On the contrary, MDCK cells did not display any detectable cathepsin L activity. Though we could confirm cathepsin L to be responsible for F activation in Vero cells, inhibitor studies revealed that in MDCK cells, cathepsin B was required for F-protein cleavage and productive replication of pathogenic NiV. Supporting the idea of an efficient F cleavage in early and recycling endosomes of MDCK cells, endocytosed F proteins and cathepsin B colocalized markedly with the endosomal marker proteins early endosomal antigen 1 (EEA-1), Rab4, and Rab11, while NiV F trafficking through late endosomal compartments was not needed for F activation. In summary, this study shows for the first time that endosomal cathepsin B can play a functional role in the activation of highly pathogenic NiV.
Collapse
|
28
|
Porotto M, Palmer SG, Palermo LM, Moscona A. Mechanism of fusion triggering by human parainfluenza virus type III: communication between viral glycoproteins during entry. J Biol Chem 2011; 287:778-793. [PMID: 22110138 DOI: 10.1074/jbc.m111.298059] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parainfluenza viruses enter host cells by fusing the viral and target cell membranes via concerted action of their two envelope glycoproteins: the hemagglutinin-neuraminidase (HN) and the fusion protein (F). Receptor-bound HN triggers F to undergo conformational changes that render it fusion-competent. To address the role of receptor engagement and to elucidate how HN and F interact during the fusion process, we used bimolecular fluorescence complementation to follow the dynamics of human parainfluenza virus type 3 (HPIV3) HN/F pairs in living cells. We show that HN and F associate before receptor engagement. HN drives the formation of HN-F clusters at the site of fusion, and alterations in HN-F interaction determine the fusogenicity of the glycoprotein pair. An interactive site, at the HN dimer interface modulates HN fusion activation property, which is critical for infection of the natural host. This first evidence for the sequence of initial events that lead to viral entry may indicate a new paradigm for understanding Paramyxovirus infection.
Collapse
Affiliation(s)
- Matteo Porotto
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Samantha G Palmer
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Laura M Palermo
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Anne Moscona
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021.
| |
Collapse
|
29
|
Abstract
In recent years, several paramyxoviruses have emerged to infect humans, including previously unidentified zoonoses. Hendra and Nipah viruses (henipaviruses within this family) were first identified in the 1990s in Australia, Malaysia and Singapore, causing epidemics with high mortality and morbidity rates in affected animals and humans. Other paramyxoviruses, such as Menangle virus, Tioman virus, human metapneumovirus and avian paramyxovirus 1, which cause less morbidity in humans, have also been recently identified. Although the Paramyxoviridae family of viruses has been previously recognised as biomedically and veterinarily important, the recent emergence of these paramyxoviruses has focused our attention on this family. Antiviral drugs can be designed to target specific important determinants of the viral life cycle. Therefore, identifying and understanding the mechanistic underpinnings of viral entry, replication, assembly and budding will be critical in the development of antiviral therapeutic agents. This review focuses on the molecular mechanisms discovered and the antiviral strategies pursued in recent years for emerging paramyxoviruses, with particular emphasis on viral entry and exit mechanisms.
Collapse
|