1
|
Yu X, Wu Y, Tang W, Duan X. A lysosome-targeted triazole near-infrared cyanine fluorescent probe for in vivo long-term cell tracking. Analyst 2023; 148:5117-5123. [PMID: 37675662 DOI: 10.1039/d3an01238g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In vivo visualization of cell migration and engraftment in small animals provides crucial information for the development and clinical translation of cell-based therapies. Therefore, a good quality near-infrared (NIR) fluorescent probe with high optical properties and excellent cellular retention ability is desired for in vivo cell tracking. Herein, we designed and synthesized a lysosome-targeted triazole NIR cyanine fluorescent probe, named IR780-NT-NH2, for in vivo long-term cell tracking. For the design, the heptamethine cyanine dye IR780 was used as the NIR fluorescent skeleton to ensure that the absorption and emission wavelengths fall within the NIR window. The substituent N-triazole group endowed the probe with high photostability and brightness. It has a quantum yield of 17.3% and the brightness remained above 85% after continuous illumination for 30 min. Due to the primary amine docking group, IR780-NT-NH2 has excellent lysosomal targeting and retention abilities as it becomes protonated in an acidic environment. The strong signal strength of IR780-NT-NH2 was maintained in well-shaped cells after an additional 12 h incubation. Moreover, this NIR probe exhibited ideal cellular permeability and biosafety. Finally, we realized long-term cell tracking with IR780-NT-NH2 labeled PC-3 cells using a NIR imaging system. The present study provides evidence that IR780-NT-NH2 exhibits ideal optical properties, excellent cellular permeation and retention, and good biosafety, which are useful for in vivo long-term observation of cells, and thus it shows promising potential for visualization in cell-based therapy.
Collapse
Affiliation(s)
- Xianrong Yu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Yu Wu
- College of Life Science, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| |
Collapse
|
2
|
Jiang Y, Hou X, Zhao X, Jing J, Sun L. Tracking adoptive natural killer cells via ultrasound imaging assisted with nanobubbles. Acta Biomater 2023; 169:542-555. [PMID: 37536495 DOI: 10.1016/j.actbio.2023.07.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
The recent years has witnessed an exponential growth in the field of natural killer (NK) cell-based immunotherapy for cancer treatment. As a prerequisite to precise evaluations and on-demand interventions, the noninvasive tracking of adoptive NK cells plays a crucial role not only in post-treatment monitoring, but also in offering opportunities for preclinical studies on therapy optimizations. Here, we describe an NK cell tracking strategy for cancer immunotherapy based on ultrasound imaging modality. Nanosized ultrasound contrast agents, gas vesicles (GVs), were surface-functionalized to label NK cells. Unlike traditional microbubble contrast agents, nanosized GVs with their unique thermodynamical stability enable the detection of labeled NK cells under nonlinear contrast-enhanced ultrasound (nCEUS), without a noticeable impact on cellular viability or migration. By such labeling, we were able to monitor the trafficking of systematically infused NK cells to a subcutaneous tumor model. Upon co-treatment with interleukin (IL)-2, we observed a rapid enhancement in NK cell trafficking at the tumor site as early as 3 h post-infusion. Altogether, we show that the proposed ultrasound-based tracking strategy is able to capture the dynamical changes of cell trafficking in NK cell-based immunotherapy, providing referencing information for early-phase monotherapy evaluation, as well as understanding the effects of modulatory co-treatment. STATEMENT OF SIGNIFICANCE: In cellular immunotherapies, the post-infusion monitoring of the living therapeutics has been challenging. Several popular imaging modalities have been explored the monitoring of the adoptive immune cells, evaluating their trafficking and accumulation in the tumor. Here we demonstrated, for the first time, the ultrasound imaging-based immune cell tracking strategy. We showed that the acoustic labeling of adoptive immune cells was feasible with nanosized ultrasound contrast agents, overcoming the size and stability limitations of traditional microbubbles, enabling dynamical tracking of adoptive natural killer cells in both monotherapy and synergic treatment with cytokines. This article introduced the cost-effective and ubiquitous ultrasound imaging modality into the field of cellular immunotherapies, with broad prospectives in early assessment and on-demand image-guided interventions.
Collapse
Affiliation(s)
- Yizhou Jiang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China
| | - Xuandi Hou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China
| | - Xinyi Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China
| | - Jianing Jing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Room ST409 Hung Hom, Hong Kong SAR 999077, PR China.
| |
Collapse
|
3
|
Xia W, Singh N, Goel S, Shi S. Molecular Imaging of Innate Immunity and Immunotherapy. Adv Drug Deliv Rev 2023; 198:114865. [PMID: 37182699 DOI: 10.1016/j.addr.2023.114865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
The innate immune system plays a key role as the first line of defense in various human diseases including cancer, cardiovascular and inflammatory diseases. In contrast to tissue biopsies and blood biopsies, in vivo imaging of the innate immune system can provide whole body measurements of immune cell location and function and changes in response to disease progression and therapy. Rationally developed molecular imaging strategies can be used in evaluating the status and spatio-temporal distributions of the innate immune cells in near real-time, mapping the biodistribution of novel innate immunotherapies, monitoring their efficacy and potential toxicities, and eventually for stratifying patients that are likely to benefit from these immunotherapies. In this review, we will highlight the current state-of-the-art in noninvasive imaging techniques for preclinical imaging of the innate immune system particularly focusing on cell trafficking, biodistribution, as well as pharmacokinetics and dynamics of promising immunotherapies in cancer and other diseases; discuss the unmet needs and current challenges in integrating imaging modalities and immunology and suggest potential solutions to overcome these barriers.
Collapse
Affiliation(s)
- Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
4
|
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS, Khatua S. Advances in NK cell therapy for brain tumors. NPJ Precis Oncol 2023; 7:17. [PMID: 36792722 PMCID: PMC9932101 DOI: 10.1038/s41698-023-00356-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Despite advances in treatment regimens that comprise surgery, chemotherapy, and radiation, outcome of many brain tumors remains dismal, more so when they recur. The proximity of brain tumors to delicate neural structures often precludes complete surgical resection. Toxicity and long-term side effects of systemic therapy remain a concern. Novel therapies are warranted. The field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. This provides a new avenue for the treatment of cancerous lesions in the brain. In this review, we explore the mechanisms by which the brain tumor microenvironment suppresses NK cell mediated tumor control, and the methods being used to create NK cell products that subvert immune suppression. We discuss the pre-clinical studies evaluating NK cell-based immunotherapies that target several neuro-malignancies and highlight advances in molecular imaging of NK cells that allow monitoring of NK cell-based therapeutics. We review current and ongoing NK cell based clinical trials in neuro-oncology.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary B Davis
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA.
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Hosseini M, Habibi Z, Hosseini N, Abdoli S, Rezaei N. Preclinical studies of chimeric antigen receptor-modified natural killer cells in cancer immunotherapy: a review. Expert Opin Biol Ther 2021; 22:349-366. [PMID: 34541989 DOI: 10.1080/14712598.2021.1983539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION As one of the most efficacious methods of cancer immunotherapy, chimeric antigen receptor-modified immune cells have recently drawn enormous attention. After the great success achieved with CAR-T-cells in cancer treatment both in preclinical setting and in the clinic, other types of immune cells, including natural killer (NK)-cells and macrophages, have been evaluated for their anti-cancer effects along with their potential superiority against CAR-T-cells, especially in terms of safety. First introduced by Tran et al. almost 26 years ago, CAR-NK-cells are now being considered as efficient immunotherapeutic modalities in various types of cancers, not only in preclinical setting but also in numerous phase I and II clinical studies. AREAS COVERED In this review, we aim to provide a comprehensive survey of the preclinical studies on CAR-NK-cells' development, with an evolutional approach on CAR structures and their associated signaling moieties. Current NK-cell sources and modes of gene transfer are also reviewed. EXPERT OPINION CAR-NK-cells have appeared as safe and effective immunotherapeutic tools in preclinical settings; however, designing CAR structures with an eye on their specific biology, along with choosing the optimal cell source and gene transfer method require further investigation to support clinical studies.
Collapse
Affiliation(s)
- Mina Hosseini
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Habibi
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Abdoli
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Sim T, Choi B, Kwon SW, Kim KS, Choi H, Ross A, Kim DH. Magneto-Activation and Magnetic Resonance Imaging of Natural Killer Cells Labeled with Magnetic Nanocomplexes for the Treatment of Solid Tumors. ACS NANO 2021; 15:12780-12793. [PMID: 34165964 DOI: 10.1021/acsnano.1c01889] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural killer (NK) cell-based immunotherapy has been considered a promising cell-based cancer treatment strategy with low side effects for early tumors and metastasis. However, the therapeutic efficacy is generally low in established solid tumors. Ex vivo activation of NK cells with exogenous cytokines is often essential but ineffective to generate high doses of functional NK cells for cancer treatment. Image-guided local delivery of NK cells is also suggested for the therapy. However, there is a lack of noninvasive tools for monitoring NK cells. Herein, magnetic nanocomplexes are fabricated with clinically available materials (hyaluronic acid, protamine, and ferumoxytol; HAPF) for labeling NK cells. The prepared HAPF-nanocomplexes effectively attach to the NK cells (HAPF-NK). An exogenous magnetic field application effectively achieves magneto-activation of NK cells, promoting the generation and secretion of lytic granules of NK cells. The magneto-activated HAPF-NK cells also allow an MR image-guided NK cell therapy to treat hepatocellular carcinoma (HCC) solid tumors via transcatheter intra-arterial infusion. Suppressed tumor growth after the treatment of IA infused magneto-activated NK cells demonstrated a potential enhanced therapeutic efficacy of image guided local delivery of magneto-activated HAPF-NK cells. Given the potential challenges of NK cell cancer immunotherapy against established solid tumors, the effective NK cell labeling with HAPF, magneto-activation, and MRI contrast effect of NK cells will be beneficial to enhance the NK cell-therapeutic efficacy in various cancers.
Collapse
Affiliation(s)
- Taehoon Sim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Bongseo Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Soon Woo Kwon
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Kwang-Soo Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Alexander Ross
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| |
Collapse
|
7
|
Uong TNT, Yoon MS, Lee KH, Hyun H, Nam TK, Min JJ, Nguyen HPQ, Kim SK. Live cell imaging of highly activated natural killer cells against human hepatocellular carcinoma in vivo. Cytotherapy 2021; 23:799-809. [PMID: 34176769 DOI: 10.1016/j.jcyt.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND AIMS Tracking administered natural killer (NK) cells in vivo is critical for developing an effective NK cell-based immunotherapy against human hepatocellular carcinoma (HCC). Here the authors established a new molecular imaging using ex vivo-activated NK cells and investigated real-time biodistribution of administered NK cells during HCC progression. METHODS Ex vivo-expanded NK cells from healthy donors were labeled with a near-infrared lipophilic cytoplasmic dye, and their proliferation, surface receptor expression and cytotoxicity activity were evaluated. Human HCC HepG2 cells were implanted into the livers of NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice. The authors administered 1,1'-dioctadecyltetramethyl indotricarbocyanine iodide (DiR)-labeled NK cells intravenously to non-tumor-bearing and intrahepatic HCC tumor-bearing NSG mice. Fluorescent imaging was performed using a fluorescence-labeled organism bioimaging instrument. Single cell suspensions from the resected organs were analyzed using flow cytometry. RESULTS The fluorescent DiR dye was nontoxic and did not affect the proliferation or surface receptor expression levels of the NK cells, even at high doses. The administered DiR-labeled NK cells immediately migrated to the lungs of the non-tumor-bearing NSG mice, with increased NK cell signals evident in the liver and spleen after 4 h. NK cells migrated to the intrahepatic tumor-bearing livers of both early- and late-stage HCC mice within 1 h of injection. In early-stage intrahepatic tumor-bearing mice, the fluorescence signal increased in the liver until 48 h post-injection and decreased 7 days after NK injection. In late-stage HCC, the NK cell fluorescence signal was the highest in the liver for 7 days after NK injection and persisted for 14 days. The purity of long-term persistent CD45+CD56+CD3- NK cells was highest in early- and late-stage HepG2-bearing liver compared with normal liver 2 weeks after NK injection, whereas highest purity was still observed in the lungs of non-tumor-bearing mice. In addition, Ki-67 expression was detected in migrated human NK cells in the liver and lung up to 72 h after administration. With HepG2 tumor progression, NK cells reduced the expression of NKp30 and NKG2D. CONCLUSIONS Administered NK cells were successfully tracked in vivo by labeling the NK cells with near-infrared DiR dye. Highly expanded, activated NK cells migrated rapidly to the tumor-bearing liver, where they persisted for 14 days after administration, with high purity of CD45+CD56+CD3- NK cells. Liver biodistribution and persistence of administered NK cells showed significantly different accumulation patterns during HCC progression.
Collapse
Affiliation(s)
- Tung Nguyen Thanh Uong
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Mee Sun Yoon
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea.
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Taek-Keun Nam
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Gwangju, Republic of Korea
| | - Huy Phuoc Quang Nguyen
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Republic of Korea
| |
Collapse
|
8
|
Galli F, Varani M, Lauri C, Silveri GG, Onofrio L, Signore A. Immune cell labelling and tracking: implications for adoptive cell transfer therapies. EJNMMI Radiopharm Chem 2021; 6:7. [PMID: 33537909 PMCID: PMC7859135 DOI: 10.1186/s41181-020-00116-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background The understanding of the role of different immune cell subsets that infiltrate tumors can help researchers in developing new targeted immunotherapies to reactivate or reprogram them against cancer. In addition to conventional drugs, new cell-based therapies, like adoptive cell transfer, proved to be successful in humans. Indeed, after the approval of anti-CD19 CAR-T cell therapy, researchers are trying to extend this approach to other cancer or cell types. Main body This review focuses on the different approaches to non-invasively monitor the biodistribution, trafficking and fate of immune therapeutic cells, evaluating their efficacy at preclinical and clinical stages. PubMed and Scopus databases were searched for published articles on the imaging of cell tracking in humans and preclinical models. Conclusion Labelling specific immune cell subtypes with specific radiopharmaceuticals, contrast agents or optical probes can elucidate new biological mechanisms or predict therapeutic outcome of adoptive cell transfer therapies. To date, no technique is considered the gold standard to image immune cells in adoptive cell transfer therapies.
Collapse
Affiliation(s)
- Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy.
| | - Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Guido Gentiloni Silveri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Livia Onofrio
- Medical Oncology B, Department of Radiology and Pathology, "Sapienza" University of Rome, Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
9
|
Pietrobon V, Cesano A, Marincola F, Kather JN. Next Generation Imaging Techniques to Define Immune Topographies in Solid Tumors. Front Immunol 2021; 11:604967. [PMID: 33584676 PMCID: PMC7873485 DOI: 10.3389/fimmu.2020.604967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, cancer immunotherapy experienced remarkable developments and it is nowadays considered a promising therapeutic frontier against many types of cancer, especially hematological malignancies. However, in most types of solid tumors, immunotherapy efficacy is modest, partly because of the limited accessibility of lymphocytes to the tumor core. This immune exclusion is mediated by a variety of physical, functional and dynamic barriers, which play a role in shaping the immune infiltrate in the tumor microenvironment. At present there is no unified and integrated understanding about the role played by different postulated models of immune exclusion in human solid tumors. Systematically mapping immune landscapes or "topographies" in cancers of different histology is of pivotal importance to characterize spatial and temporal distribution of lymphocytes in the tumor microenvironment, providing insights into mechanisms of immune exclusion. Spatially mapping immune cells also provides quantitative information, which could be informative in clinical settings, for example for the discovery of new biomarkers that could guide the design of patient-specific immunotherapies. In this review, we aim to summarize current standard and next generation approaches to define Cancer Immune Topographies based on published studies and propose future perspectives.
Collapse
Affiliation(s)
| | | | | | - Jakob Nikolas Kather
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
10
|
Pogue BW, Zhang R, Cao X, Jia JM, Petusseau A, Bruza P, Vinogradov SA. Review of in vivo optical molecular imaging and sensing from x-ray excitation. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200308VR. [PMID: 33386709 PMCID: PMC7778455 DOI: 10.1117/1.jbo.26.1.010902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
SIGNIFICANCE Deep-tissue penetration by x-rays to induce optical responses of specific molecular reporters is a new way to sense and image features of tissue function in vivo. Advances in this field are emerging, as biocompatible probes are invented along with innovations in how to optimally utilize x-ray sources. AIM A comprehensive review is provided of the many tools and techniques developed for x-ray-induced optical molecular sensing, covering topics ranging from foundations of x-ray fluorescence imaging and x-ray tomography to the adaptation of these methods for sensing and imaging in vivo. APPROACH The ways in which x-rays can interact with molecules and lead to their optical luminescence are reviewed, including temporal methods based on gated acquisition and multipoint scanning for improved lateral or axial resolution. RESULTS While some known probes can generate light upon x-ray scintillation, there has been an emergent recognition that excitation of molecular probes by x-ray-induced Cherenkov light is also possible. Emission of Cherenkov radiation requires a threshold energy of x-rays in the high kV or MV range, but has the advantage of being able to excite a broad range of optical molecular probes. In comparison, most scintillating agents are more readily activated by lower keV x-ray energies but are composed of crystalline inorganic constituents, although some organic biocompatible agents have been designed as well. Methods to create high-resolution structured x-ray-optical images are now available, based upon unique scanning approaches and/or a priori knowledge of the scanned x-ray beam geometry. Further improvements in spatial resolution can be achieved by careful system design and algorithm optimization. Current applications of these hybrid x-ray-optical approaches include imaging of tissue oxygenation and pH as well as of certain fluorescent proteins. CONCLUSIONS Discovery of x-ray-excited reporters combined with optimized x-ray scan sequences can improve imaging resolution and sensitivity.
Collapse
Affiliation(s)
- Brian W. Pogue
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States
| | - Rongxiao Zhang
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States
| | - Xu Cao
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Jeremy Mengyu Jia
- Stanford University School of Medicine, Department of Radiation Oncology, Palo Alto, California, United States
| | - Arthur Petusseau
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Petr Bruza
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts of Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| |
Collapse
|
11
|
Ji Y, Jones C, Baek Y, Park GK, Kashiwagi S, Choi HS. Near-infrared fluorescence imaging in immunotherapy. Adv Drug Deliv Rev 2020; 167:121-134. [PMID: 32579891 DOI: 10.1016/j.addr.2020.06.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Near-infrared (NIR) light possesses many suitable optophysical properties for medical imaging including low autofluorescence, deep tissue penetration, and minimal light scattering, which together allow for high-resolution imaging of biological tissue. NIR imaging has proven to be a noninvasive and effective real-time imaging methodology that provides a high signal-to-background ratio compared to other potential optical imaging modalities. In response to this, the use of NIR imaging has been extensively explored in the field of immunotherapy. To date, NIR fluorescence imaging has successfully offered reliable monitoring of the localization, dynamics, and function of immune responses, which are vital in assessing not only the efficacy but also the safety of treatments to design immunotherapies optimally. This review aims to provide an overview of the current research on NIR imaging of the immune response. We expect that the use of NIR imaging will expand further in response to the recent success in cancer immunotherapy. We will also offer our insights on how this technology will meet rapidly growing expectations in the future.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Scientific Research Centre, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Catherine Jones
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yoonji Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - G Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
12
|
Park HS, Kim J, Cho MY, Cho YJ, Suh YD, Nam SH, Hong KS. Effectual Labeling of Natural Killer Cells with Upconverting Nanoparticles by Electroporation for In Vivo Tracking and Biodistribution Assessment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49362-49370. [PMID: 33050704 DOI: 10.1021/acsami.0c12849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Natural killer (NK) cells, which are cytotoxic lymphocytes of the innate immune system and recognize cancer cells via various immune receptors, are promising agents in cell immunotherapy. To utilize NK cells as a therapeutic agent, their biodistribution and pharmacokinetics need to be evaluated following systemic administration. Therefore, in vivo imaging and tracking with efficient labeling and quantitative analysis of NK cells are required. However, the lack of the phagocytic capacity of NK cells makes it difficult to establish breakthroughs in cell labeling and subsequent in vivo studies. Herein, an effective labeling of upconverting nanoparticles (UCNPs) in NK cells is proposed using electroporation with high sensitivity and stability. The labeling performance of UCNPs functionalized with carboxy-polyethylene glycol (PEG) is better than with methoxy-PEG or with amine-PEG. The labeling efficiency becomes higher, but cell damage is greater as electric field increases; thus, there is an optimum electroporation condition for internalization of UCNPs into NK cells. The tracking and biodistribution imaging analyses of intravenously injected NK cells show that the labeled NK cells are initially distributed primarily in lungs and then spread to the liver and spleen. These advances will accelerate the application of NK cells as key components of immunotherapy against cancer.
Collapse
Affiliation(s)
- Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Jongwoo Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Mi Young Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Youn-Joo Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Yung Doug Suh
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang Hwan Nam
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
13
|
Shaffer TM, Aalipour A, Schürch CM, Gambhir SS. PET Imaging of the Natural Killer Cell Activation Receptor NKp30. J Nucl Med 2020; 61:1348-1354. [PMID: 32532927 PMCID: PMC7456168 DOI: 10.2967/jnumed.119.233163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Redirecting the immune system in cancer treatment has led to remarkable responses in a subset of patients. Natural killer (NK) cells are innate lymphoid cells being explored as they engage tumor cells in different mechanisms compared with T cells, which could be exploited for treatment of nonresponders to current immunotherapies. NK cell therapies are monitored through measuring peripheral NK cell concentrations or changes in tumor volume over time. The former does not detect NK cells at the tumor site, and the latter is inaccurate for immunotherapies because of pseudoprogression. Therefore, new imaging methods are required as companion diagnostics for optimizing immunotherapies. Methods: In this study, we developed and completed preclinical in vivo validation of 2 antibody-based PET probes specific for NKp30, an activation natural cytotoxicity receptor expressed by human NK cells. Quantitative, multicolor flow cytometry during a variety of NK cell activation conditions was completed on primary human NK cells and the NK92MI cell line. Human renal cell carcinoma (RCC) tumors were stained for the NK cell receptors CD56, NKp30, and NKp46 to determine expression on tumor-infiltrating NK cells. An NKp30 antibody was radiolabeled with 64Cu or 89Zr and evaluated in subcutaneous xenografts and adoptive cell transfer mouse models. Results: Quantitative flow cytometry showed consistent expression of the NKp30 receptor during different activation conditions. NKp30 and NKp46 costained in RCC samples, demonstrating the expression of these receptors on tumor-infiltrating NK cells in human tumors, whereas tumor cells in one RCC sample expressed the peripheral NK marker CD56. Both PET tracers showed high stability and specificity in vitro and in vivo. Notably, 89Zr-NKp30Ab had higher on-target contrast than 64Cu-NKp30Ab at their respective terminal time points. 64Cu-NKp30Ab delineated NK cell trafficking to the liver and spleen in an adoptive cell transfer model. Conclusion: The consistent expression of NKp30 on NK cells makes it an attractive target for quantitative imaging. Immunofluorescence staining on human RCC samples demonstrated the advantages of NKp30 targeting versus CD56 for detection of tumor infiltrating NK cells. This work advances PET imaging of NK cells and supports the translation of imaging agents for immunotherapy monitoring.
Collapse
Affiliation(s)
- Travis M Shaffer
- Department of Radiology, Stanford University, Stanford, California
| | - Amin Aalipour
- Department of Bioengineering, Stanford University, Stanford, California
| | - Christian M Schürch
- Department of Microbiology and Immunology, Stanford University, Stanford, California; and
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University, Stanford, California .,Department of Bioengineering, Stanford University, Stanford, California.,Bio-X Program and Molecular Imaging Program at Stanford, Stanford University, Stanford, California
| |
Collapse
|
14
|
Gangadaran P, Rajendran RL, Ahn BC. Application of In Vivo Imaging Techniques for Monitoring Natural Killer Cell Migration and Tumor Infiltration. Cancers (Basel) 2020; 12:1318. [PMID: 32455886 PMCID: PMC7281416 DOI: 10.3390/cancers12051318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
In recent years, the use of natural killer (NK) cell-based immunotherapy has shown promise against various cancer types. To some extent therapeutic potential of NK cell-based immunotherapy depends on migration of NK cells towards tumors in animal models or human subjects and subsequent infiltration. Constant improvement in the pharmacological and therapeutic properties of NK cells is driving the performance and use of NK cell-based immunotherapies. In this review, we summarize the molecular imaging techniques used in monitoring the migration and infiltration of NK cells in vivo at preclinical and clinical levels. A review of pros and cons of each molecular imaging modality is done. Finally, we provide our perception of the usefulness of molecular imaging approaches for in vivo monitoring of NK cells in preclinical and clinical scenarios.
Collapse
Affiliation(s)
- Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (R.L.R.)
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (R.L.R.)
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (R.L.R.)
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University Hospital, Daegu 41944, Korea
| |
Collapse
|
15
|
Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J Exp Clin Cancer Res 2020; 39:89. [PMID: 32423420 PMCID: PMC7236372 DOI: 10.1186/s13046-020-01586-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor-infiltrating immune cells play a key role against cancer. However, malignant cells are able to evade the immune response and establish a very complex balance in which different immune subtypes may drive tumor progression, metastatization and resistance to therapy. New immunotherapeutic approaches aim at restoring the natural balance and increase immune response against cancer by different mechanisms. The complexity of these interactions and the heterogeneity of immune cell subpopulations are a real challenge when trying to develop new immunotherapeutics and evaluate or predict their efficacy in vivo. To this purpose, molecular imaging can offer non-invasive diagnostic tools like radiopharmaceuticals, contrast agents or fluorescent dyes. These agents can be useful for preclinical and clinical purposes and can overcome [18F]FDG limitations in discriminating between true-progression and pseudo-progression. This review provides a comprehensive overview of immune cells involved in microenvironment, available immunotherapies and imaging agents to highlight the importance of new therapeutic biomarkers and their in vivo evaluation to improve the management of cancer patients.
Collapse
Affiliation(s)
- Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, S. Andrea University Hospital, Roma, Italy.
| | - Jesus Vera Aguilera
- Department of oncology and Department of Immunology, Mayo Clinic, (MN), Rochester, USA
| | - Belinda Palermo
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Svetomir N Markovic
- Department of oncology and Department of Immunology, Mayo Clinic, (MN), Rochester, USA
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, S. Andrea University Hospital, Roma, Italy
| |
Collapse
|
16
|
Son SH, Oh JM, Gangadaran P, Ji HD, Lee HW, Rajendran RL, Baek SH, Gopal A, Kalimuthu S, Jeong SY, Lee SW, Lee J, Ahn BC. White blood cell labeling with Technetium-99m ( 99mTc) using red blood cell extracellular vesicles-mimetics. Blood Cells Mol Dis 2020; 80:102375. [PMID: 31655394 DOI: 10.1016/j.bcmd.2019.102375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Extracellular vesicles, have gained increasing attention for their application in drug delivery. Here, we developed a novel method for radiolabeling WBCs with 99mTc using RBC-derived extracellular vesicles -mimetics (EVMs), and monitored in vivo inflammation tracking of 99mTc-WBC using gamma camera in acute inflammation mouse model. METHODS Engineered EVMs from RBCs were produced by a one-step extrusion method. RBC-EVMs were analyzed by NTA and TEM. Cells were labeled with 99mTc by using 99mTc-RBC-EVMs. Inflammation mice model was prepared and confirmed by 18F-FDG PET/CT. 99mTc-WBCs were injected in mice, and their biodistribution was analyzed by gamma camera. FINDING The radiochemical purity of 99mTc-RBC-EVMs was 100%. The 99mTc-labeling did't affect the size and morphology. The 99mTc in the cytoplasm of RBC-EVMs was successfully confirmed by high angle annular dark field STEM (scanning transmission electron microscope). Cells were successfully labeled with 99mTc using 99mTc-RBC-EVMs, and the counts per minute was increased in dose- and time-dependent manners. The 18F-FDG PET/CT images confirmed establishment of acute inflammation (left mouse foot). 99mTc-WBCs showed higher uptake in the inflamed foot than non-inflamed foot. INTERPRETATION This novel method for radiolabeling WBCs using RBC-EVMs. 99mTc labeling may be a feasible method to monitor the in vivo biodistribution of cells.
Collapse
Affiliation(s)
- Seung Hyun Son
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun Dong Ji
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Arunnehru Gopal
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
17
|
Yang C, Li Y, Yang Y, Chen Z. Overview of Strategies to Improve Therapy against Tumors Using Natural Killer Cell. J Immunol Res 2020; 2020:8459496. [PMID: 32411806 PMCID: PMC7201677 DOI: 10.1155/2020/8459496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/24/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
NK cells are lymphocytes with antitumor properties and can directly lyse tumor cells in a non-MHC-restricted manner. However, the tumor microenvironment affects the immune function of NK cells, which leads to immune evasion. This may be related to the pathogenesis of some diseases. Therefore, great efforts have been made to improve the immunotherapy effect of natural killer cells. NK cells from different sources can meet different clinical needs, in order to minimize the inhibition of NK cells and maximize the response potential of NK cells, for example, modification of NK cells can increase the number of NK cells in tumor target area, change the direction of NK cells, and improve their targeting ability to malignant cells. Checkpoint blocking is also a promising strategy for NK cells to kill tumor cells. Combination therapy is another strategy for improving antitumor ability, especially in combination with oncolytic viruses and nanomaterials. In this paper, the mechanisms affecting the activity of NK cells were reviewed, and the therapeutic potential of different basic NK cell strategies in tumor therapy was focused on. The main strategies for improving the immune function of NK cells were described, and some new strategies were proposed.
Collapse
Affiliation(s)
- Chaopin Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Yaozhang Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| |
Collapse
|
18
|
State of the Art of Natural Killer Cell Imaging: A Systematic Review. Cancers (Basel) 2019; 11:cancers11070967. [PMID: 31324064 PMCID: PMC6678345 DOI: 10.3390/cancers11070967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cell therapy is a promising alternative to conventional T cell-based treatments, although there is a lack of diagnostic tools to predict and evaluate therapeutic outcomes. Molecular imaging can offer several approaches to non-invasively address this issue. In this study, we systematically reviewed the literature to evaluate the state of the art of NK cell imaging and its translational potential. PubMed and Scopus databases were searched for published articles on the imaging of NK cells in humans and preclinical models. Study quality was evaluated following Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria. We pooled studies as follows: Optical, magnetic resonance imaging (MRI) and nuclear medicine imaging with a total of 21 studies (n = 5, n = 8 and n = 8, respectively). Considering the limitation of comparing different imaging modalities, it appears that optical imaging (OI) of NK cells is very useful in a preclinical setting, but has the least translational potential. MRI provides high quality images without ionizing radiations with lower sensitivity. Nuclear medicine is the only imaging technique that has been applied in humans (four papers), but results were not outstanding due to a limited number of enrolled patients. At present, no technique emerged as superior over the others and more standardization is required in conducting human and animal studies.
Collapse
|
19
|
Shapovalova M, Pyper SR, Moriarity BS, LeBeau AM. The Molecular Imaging of Natural Killer Cells. Mol Imaging 2019; 17:1536012118794816. [PMID: 30203710 PMCID: PMC6134484 DOI: 10.1177/1536012118794816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The recent success of autologous T cell-based therapies in hematological malignancies has spurred interest in applying similar immunotherapy strategies to the treatment of solid tumors. Identified nearly 4 decades ago, natural killer (NK) cells represent an arguably better cell type for immunotherapy development. Natural killer cells are cytotoxic lymphocytes that mediate the direct killing of transformed cells with reduced or absent major histocompatibility complex (MHC) and are the effector cells in antibody-dependent cell-mediated cytotoxicity. Unlike T cells, they do not require human leukocyte antigen (HLA) matching allowing for the adoptive transfer of allogeneic NK cells in the clinic. The development of NK cell-based therapies for solid tumors is complicated by the presence of an immunosuppressive tumor microenvironment that can potentially disarm NK cells rendering them inactive. The molecular imaging of NK cells in vivo will be crucial for the development of new therapies allowing for the immediate assessment of therapeutic response and off-target effects. A number of groups have investigated methods for detecting NK cells by optical, nuclear, and magnetic resonance imaging. In this review, we will provide an overview of the advances made in imaging NK cells in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Mariya Shapovalova
- 1 Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sean R Pyper
- 2 Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Branden S Moriarity
- 2 Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Aaron M LeBeau
- 1 Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
20
|
Natural Killer Cells and Current Applications of Chimeric Antigen Receptor-Modified NK-92 Cells in Tumor Immunotherapy. Int J Mol Sci 2019; 20:ijms20020317. [PMID: 30646574 PMCID: PMC6358726 DOI: 10.3390/ijms20020317] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells that can be activated rapidly to target abnormal and virus-infected cells without prior sensitization. With significant advancements in cell biology technologies, many NK cell lines have been established. Among these cell lines, NK-92 cells are not only the most widely used but have also been approved for clinical applications. Additionally, chimeric antigen receptor-modified NK-92 cells (CAR-NK-92 cells) have shown strong antitumor effects. In this review, we summarize established human NK cell lines and their biological characteristics, and highlight the applications of NK-92 cells and CAR-NK-92 cells in tumor immunotherapy.
Collapse
|
21
|
Abstract
The recent clinical success of cancer immunotherapy has renewed interest in the development of tools to image the immune system. In general, immunotherapies attempt to enable the body's own immune cells to seek out and destroy malignant disease. Molecular imaging of the cells and molecules that regulate immunity could provide unique insight into the mechanisms of action, and failure, of immunotherapies. In this article, we will provide a comprehensive overview of the current state-of-the-art immunoimaging toolbox with a focus on imaging strategies and their applications toward immunotherapy.
Collapse
Affiliation(s)
- Aaron T Mayer
- Department of Bioengineering, Stanford University, Stanford, California; and
| | - Sanjiv S Gambhir
- Department of Bioengineering, Stanford University, Stanford, California; and
- Department of Radiology, Department of Materials Science and Engineering, Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| |
Collapse
|
22
|
Gangadaran P, Hong CM, Oh JM, Rajendran RL, Kalimuthu S, Son SH, Gopal A, Zhu L, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. In vivo Non-invasive Imaging of Radio-Labeled Exosome-Mimetics Derived From Red Blood Cells in Mice. Front Pharmacol 2018; 9:817. [PMID: 30104975 PMCID: PMC6078013 DOI: 10.3389/fphar.2018.00817] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Exosomes are natural nano-sized membrane vesicles that have garnered recent interest owing to their potential as drug delivery vehicles. Though exosomes are effective drug carriers, their production and in vivo biodistribution are still not completely elucidated. We analyzed the production of exosome mimetics (EMs) from red blood cells (RBCs) and the radio-labeling of the RBC-EMs for in vivo imaging. Engineered EMs from RBCs were produced in large-scale by a one-step extrusion method, and further purified by density-gradient centrifugation. RBC-EMs were labeled with technetium-99m (99mTc). For non-invasive imaging, 99mTc (free) or 99mTc-RBC-EMs were injected in mice, and their biodistribution was analyzed by gamma camera imaging. Animals were sacrificed, and organs were collected for further biodistribution analysis. RBC-EMs have similar characteristics as the RBC exosomes but have a 130-fold higher production yield in terms of particle numbers. Radiochemical purity of 99mTc-RBC-EMs was almost 100% till 2 h reduced to 97% at 3 h. Radio-labeling did not affect the size and morphology of RBC-EMs. In contrast to free 99mTc, in vivo imaging of 99mTc-RBC-EMs in mice showed higher uptake in the liver and spleen, and no uptake in the thyroid. Ex vivo imaging confirmed the in vivo findings. Furthermore, fluorescent imaging confirmed the nuclear imaging findings. Immunofluorescent imaging revealed that the hepatic uptake of RBC-EMs was significantly mediated by kupffer cells (resident hepatic macrophages). Our results demonstrate a simple yet large-scale production method for a novel type of RBC-EMs, which can be effectively labeled with 99mTc, and feasibly monitored in vivo by nuclear imaging. The RBC-EMs may be used as in vivo drug delivery vehicles.
Collapse
Affiliation(s)
- Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Seung Hyun Son
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Arunnehru Gopal
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
23
|
Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 2018; 37:163. [PMID: 30031396 PMCID: PMC6054736 DOI: 10.1186/s13046-018-0817-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Biomarkers are an integral part of cancer management due to their use in risk assessment, screening, differential diagnosis, prognosis, prediction of response to treatment, and monitoring progress of disease. Recently, with the advent of Chimeric Antigen Receptor (CAR) T cell therapy, a new category of targetable biomarkers has emerged. These biomarkers are associated with the surface of malignant cells and serve as targets for directing cytotoxic T cells. The first biomarker target used for CAR T cell therapy was CD19, a B cell marker expressed highly on malignant B cells. With the success of CD19, the last decade has shown an explosion of new targetable biomarkers on a range of human malignancies. These surface targets have made it possible to provide directed, specific therapy that reduces healthy tissue destruction and preserves the patient's immune system during treatment. As of May 2018, there are over 100 clinical trials underway that target over 25 different surface biomarkers in almost every human tissue. This expansion has led to not only promising results in terms of patient outcome, but has also led to an exponential growth in the investigation of new biomarkers that could potentially be utilized in CAR T cell therapy for treating patients. In this review, we discuss the biomarkers currently under investigation and point out several promising biomarkers in the preclinical stage of development that may be useful as targets.
Collapse
Affiliation(s)
- Michelle H. Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Gajendra Shrestha
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
- Thunder Biotech, Highland, UT USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| |
Collapse
|
24
|
Uong TNT, Lee KH, Ahn SJ, Kim KW, Min JJ, Hyun H, Yoon MS. Real-Time Tracking of Ex Vivo-Expanded Natural Killer Cells Toward Human Triple-Negative Breast Cancers. Front Immunol 2018; 9:825. [PMID: 29770131 PMCID: PMC5941970 DOI: 10.3389/fimmu.2018.00825] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction Ex vivo-expanded natural killer (NK) cells are a potential candidate for cancer immunotherapy based on high cytotoxicity against malignant tumor cells. However, a limited understanding of the migration of activated NK cells toward solid tumors is a critical dilemma in the development of effective and adoptive NK cell-based immunotherapy. Methods Ex vivo-expanded NK cells from healthy donors were stained with near-infrared fluorophores at different concentrations. NK cell proliferation and cytotoxicity were assessed using a WST-8 assay, while the expression levels of surface molecules were analyzed by flow cytometry. To investigate the biodistribution of NK cells in both normal and tumor-bearing NSG mice, NK cells labeled with ESNF13 were subjected to NIR fluorescence imaging using the Mini-FLARE imaging system. Finally, mice were sacrificed and histopathological tests were performed in resected organs. Results The signal intensity of ESNF-stained NK cells was long-lasting at 72 h using concentrations as low as 0.04 µM. At a low dose range, ESNF13 did not affect NK cell purity, expression levels of surface receptors, or cytotoxic functions against MDA-MB-231 cancer cells. Ex vivo-expanded NK cells labeled with ESNF13 had a 4-h biodistribution in non-tumor-bearing NSG mice that mainly localized to the lungs immediately after injection and then fully migrated to the kidney after 4 h. In an MDA-MB-231 tumor-bearing NSG mice with extensive metastasis in both lungs, the fluorescence signal was dominant in both lungs and steady at 1, 2, and 4 h post-injection. In a early phase of tumor progression, administered NK cell migrated to the lungs and tumor sites within 30 min post-injection, the signal dominated the tumor site after 1 h, and remained steady at 4 h. Conclusion Optical imaging with NIR fluorophore ESNF13 is a highly sensitive, applicable, and inexpensive method for the real-time tracking of ex vivo-expanded NK cells both in vitro and in vivo. Administered NK cells had different patterns of NK cell distribution and accumulation to the tumor site according to tumor progression in triple-negative breast cancer xenograft models.
Collapse
Affiliation(s)
- Tung Nguyen Thanh Uong
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea.,Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Sung-Ja Ahn
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Kyung Won Kim
- Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | - Mee Sun Yoon
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea.,Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea.,Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeollanam-do, South Korea
| |
Collapse
|
25
|
Lin C, Zhang J. Reformation in chimeric antigen receptor based cancer immunotherapy: Redirecting natural killer cell. Biochim Biophys Acta Rev Cancer 2018; 1869:200-215. [DOI: 10.1016/j.bbcan.2018.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/20/2018] [Indexed: 01/05/2023]
|
26
|
Anderson CJ, Lewis JS. Current status and future challenges for molecular imaging. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2017.0023. [PMID: 29038378 DOI: 10.1098/rsta.2017.0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Molecular imaging (MI), used in its wider sense of biology at the molecular level, is a field that lies at the intersection of molecular biology and traditional medical imaging. As advances in medicine have exponentially expanded over the last few decades, so has our need to better understand the fundamental behaviour of living organisms in a non-invasive and timely manner. This commentary draws from topics the authors addressed in their presentations at the 2017 Royal Society Meeting 'Challenges for chemistry in molecular imaging', as well as a discussion of where MI is today and where it is heading in the future.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
Collapse
Affiliation(s)
- Carolyn J Anderson
- Departments of Medicine, Radiology, Bioengineering, and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jason S Lewis
- Department of Radiology and the Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
27
|
Gangadaran P, Ahn BC. Molecular Imaging: A Useful Tool for the Development of Natural Killer Cell-Based Immunotherapies. Front Immunol 2017; 8:1090. [PMID: 28955332 PMCID: PMC5600950 DOI: 10.3389/fimmu.2017.01090] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
Molecular imaging is a relatively new discipline that allows visualization, characterization, and measurement of the biological processes in living subjects, including humans, at a cellular and molecular level. The interaction between cancer cells and natural killer (NK) cells is complex and incompletely understood. Despite our limited knowledge, progress in the search for immune cell therapies against cancer could be significantly improved by dynamic and non-invasive visualization and tracking of immune cells and by visualization of the response of cancer cells to therapies in preclinical and clinical studies. Molecular imaging is an essential tool for these studies, and a multimodal molecular imaging approach can be applied to monitor immune cells in vivo, for instance, to visualize therapeutic effects. In this review, we discuss the usefulness of NK cells in cancer therapies and the preclinical and clinical usefulness of molecular imaging in NK cell-based therapies. Furthermore, we discuss different molecular imaging modalities for use with NK cell-based therapies, and their preclinical and clinical applications in animal and human subjects. Molecular imaging has contributed to the development of NK cell-based therapies against cancers in animal models and to the refinement of current cell-based cancer immunotherapies. Developing sensitive and reproducible non-invasive molecular imaging technologies for in vivo NK cell monitoring and for real-time assessment of therapeutic effects will accelerate the development of NK cell therapies.
Collapse
Affiliation(s)
- Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, South Korea
| |
Collapse
|
28
|
Zhu L, Li XJ, Kalimuthu S, Gangadaran P, Lee HW, Oh JM, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. Natural Killer Cell (NK-92MI)-Based Therapy for Pulmonary Metastasis of Anaplastic Thyroid Cancer in a Nude Mouse Model. Front Immunol 2017; 8:816. [PMID: 28785259 PMCID: PMC5519537 DOI: 10.3389/fimmu.2017.00816] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Natural killer (NK) cells represent the third largest population of lymphocytes, and they play an important role in immune surveillance against tumors. The lungs are a common metastatic site for anaplastic thyroid cancer (ATC), and metastasis is one of the most frequent causes of mortality in this type of cancer. In the current study, we evaluated the effects of NK cell-based immunotherapy for pulmonary metastasis of ATC and determined how it affects the effector molecules of NK cells. METHODS Human NK cells (NK-92MI) were retrovirally transduced to express the effluc gene. Human ATC cells (CAL-62) were transduced with the effluc and Rluc genes. The cytotoxicity of NK cells against CAL-62 cells was assessed using the CytoTox 96® Non-Radioactive Cytotoxicity Assay system. Pulmonary metastases of ATC were developed by i.v. injection of CAL-62, and metastasis growth was monitored using bioluminescence imaging (BLI). To treat the metastases, five million NK-92MI cells were injected twice into the caudal vein of nude mice. To assess the targetability of NK cells to ATC tumors, NK-92MI cells expressing the effluc gene (NK/F) were administered through the tail vein of nude mice with a pulmonary metastasis or tumor xenograft. BLI was subsequently performed at 1, 3, 24, and 48 h. RESULTS NK/F and CAL-62 cells expressing the effluc or Rluc gene (CAL-62/F, CAL-62/R) were successfully established. Expression of the effluc and Rluc genes in NK/F, CAL-62/F, and CAL-62/R cells was verified by RT-polymerase chain reaction, western blotting, and luciferase assay. After coculture of NK-92MI and CAL-62/F cells for 24 h, the BLI signal intensity of CAL-62/F cells proportionally decreased with the number of cocultured NK cells. An ATC pulmonary metastasis mouse model was successfully generated, and NK cells significantly inhibited the growth of the metastasis (p < 0.01). The NK/F cells exhibited targetability to the pulmonary metastasis and tumor xenograft in the mouse model. CONCLUSION The results of present study suggest that NK cells are able to target ATC tumors and that NK cell-based immunotherapy may serve as an effective therapeutic approach for pulmonary metastases of ATC.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Xiu Juan Li
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- Department of Radiology, Taian City Central Hospital, Taian, China
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
29
|
Seth A, Park HS, Hong KS. Current Perspective on In Vivo Molecular Imaging of Immune Cells. Molecules 2017; 22:molecules22060881. [PMID: 28587110 PMCID: PMC6152742 DOI: 10.3390/molecules22060881] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/19/2017] [Indexed: 12/31/2022] Open
Abstract
Contemporaneous development of improved immune cell-based therapies, and powerful imaging tools, has prompted growth in technologies for immune cell tracking in vivo. Over the past couple of decades, imaging tools such as magnetic resonance imaging (MRI) and optical imaging have successfully monitored the trafficking patterns of therapeutic immune cells and assisted the evaluation of the success or failure of immunotherapy. Recent advancements in imaging technology have made imaging an indispensable module of immune cell-based therapies. In this review, emerging applications of non-radiation imaging modalities for the tracking of a range of immune cells are discussed. Applications of MRI, NIR, and other imaging tools have demonstrated the potential of non-invasively surveying the fate of both phagocytic and non-phagocytic immune cells in vivo.
Collapse
Affiliation(s)
- Anushree Seth
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju 28119, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Hye Sun Park
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju 28119, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Kwan Soo Hong
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju 28119, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
30
|
Zhang C, Oberoi P, Oelsner S, Waldmann A, Lindner A, Tonn T, Wels WS. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity. Front Immunol 2017; 8:533. [PMID: 28572802 PMCID: PMC5435757 DOI: 10.3389/fimmu.2017.00533] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022] Open
Abstract
Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs) composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future prospects of CAR-engineered NK-92 cells as off-the-shelf cellular therapeutics, with special emphasis on ErbB2 (HER2)-specific NK-92 cells that are approaching clinical application.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Sarah Oelsner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Anja Waldmann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Aline Lindner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Torsten Tonn
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany.,Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
Saadatpour Z, Bjorklund G, Chirumbolo S, Alimohammadi M, Ehsani H, Ebrahiminejad H, Pourghadamyari H, Baghaei B, Mirzaei HR, Sahebkar A, Mirzaei H, Keshavarzi M. Molecular imaging and cancer gene therapy. Cancer Gene Ther 2016:cgt201662. [PMID: 27857058 DOI: 10.1038/cgt.2016.62] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/30/2022]
Abstract
Gene therapy is known as one of the most advanced approaches for therapeutic prospects ranging from tackling genetic diseases to combating cancer. In this approach, different viral and nonviral vector systems such as retrovirus, lentivirus, plasmid and transposon have been designed and employed. These vector systems are designed to target different therapeutic genes in various tissues and cells such as tumor cells. Therefore, detection of the vectors containing therapeutic genes and monitoring of response to the treatment are the main issues that are commonly faced by researchers. Imaging techniques have been critical in guiding physicians in the more accurate and precise diagnosis and monitoring of cancer patients in different phases of malignancies. Imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are non-invasive and powerful tools for monitoring of the distribution of transgene expression over time and assessing patients who have received therapeutic genes. Here, we discuss most recent advances in cancer gene therapy and molecular approaches as well as imaging techniques that are utilized to detect cancer gene therapeutics and to monitor the patients' response to these therapies worldwide, particularly in Iranian Academic Medical Centers and Hospitals.Cancer Gene Therapy advance online publication, 18 November 2016; doi:10.1038/cgt.2016.62.
Collapse
Affiliation(s)
- Z Saadatpour
- Bozorgmehr Imaging Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - G Bjorklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - S Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - M Alimohammadi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - H Ehsani
- Department of Periodontology, School of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - H Ebrahiminejad
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - H Pourghadamyari
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - B Baghaei
- Department of Endodontics, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - H R Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Keshavarzi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
32
|
Saadatpour Z, Rezaei A, Ebrahimnejad H, Baghaei B, Bjorklund G, Chartrand M, Sahebkar A, Morovati H, Mirzaei HR, Mirzaei H. Imaging techniques: new avenues in cancer gene and cell therapy. Cancer Gene Ther 2016; 24:1-5. [PMID: 27834357 DOI: 10.1038/cgt.2016.61] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
Abstract
Cancer is one of the world's most concerning health problems and poses many challenges in the range of approaches associated with the treatment of cancer. Current understanding of this disease brings to the fore a number of novel therapies that can be useful in the treatment of cancer. Among them, gene and cell therapies have emerged as novel and effective approaches. One of the most important challenges for cancer gene and cell therapies is correct monitoring of the modified genes and cells. In fact, visual tracking of therapeutic cells, immune cells, stem cells and genetic vectors that contain therapeutic genes and the various drugs is important in cancer therapy. Similarly, molecular imaging, such as nanosystems, fluorescence, bioluminescence, positron emission tomography, single photon-emission computed tomography and magnetic resonance imaging, have also been found to be powerful tools in monitoring cancer patients who have received therapeutic cell and gene therapies or drug therapies. In this review, we focus on these therapies and their molecular imaging techniques in treating and monitoring the progress of the therapies on various types of cancer.
Collapse
Affiliation(s)
- Z Saadatpour
- Bozorgmehr Imaging Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Rezaei
- Khanevadeh Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H Ebrahimnejad
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - B Baghaei
- Department of Endodontics, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - G Bjorklund
- Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - M Chartrand
- DigiCare Behavioral Research, Casa Grande, AZ, USA
| | - A Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Morovati
- Department of Medical Parasitology and Medical Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H R Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - H Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Campos AK, Hoving HD, Rosati S, van Leenders GJLH, de Jong IJ. EpCAM Expression in Lymph Node and Bone Metastases of Prostate Carcinoma: A Pilot Study. Int J Mol Sci 2016; 17:ijms17101650. [PMID: 27690012 PMCID: PMC5085683 DOI: 10.3390/ijms17101650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/11/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022] Open
Abstract
There is an urgent need for new imaging modalities in prostate carcinoma staging. A non-invasive modality that can assess lymph node and bone metastases simultaneously is preferred. Epithelial cell adhesion molecule (EpCAM) is a membranous protein of interest as an imaging target since it is overexpressed in prostatic carcinoma compared with benign prostate epithelium and compared with stroma. However, EpCAM expression in lymph node metastases is sparsely available in the literature and EpCAM expression in bone metastases is yet unknown. The current study evaluates the expression of EpCAM in prostate carcinoma lymph nodes, in matched normal lymph nodes, in prostate carcinoma bone metastases, and in normal bone by immunohistochemistry. EpCAM was expressed in 100% of lymph node metastases (21 out of 21), in 0% of normal lymph nodes (0 out of 21), in 95% of bone metastases (19 out of 20), and in 0% of normal bone (0 out of 14). Based on these results, EpCAM may be a feasible imaging target in prostate carcinoma lymph node and bone metastases. Prospective clinical trials are needed to confirm current results. Preoperative visualization of prostate carcinoma metastases will improve disease staging and will prevent unnecessary invasive surgery.
Collapse
Affiliation(s)
- Anna K Campos
- Laboratory of Neuroimmunology, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 Mexico City, Mexico.
| | - Hilde D Hoving
- Department of Urology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, Groningen 9700 RB, The Netherlands.
| | - Stefano Rosati
- Department of Pathology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, Groningen 9700 RB, The Netherlands.
| | - Geert J L H van Leenders
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, P.O. Box 2040, Rotterdam 3000 CA, The Netherlands.
| | - Igle J de Jong
- Department of Urology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, Groningen 9700 RB, The Netherlands.
| |
Collapse
|
34
|
Lee HW, Gangadaran P, Kalimuthu S, Ahn BC. Advances in Molecular Imaging Strategies for In Vivo Tracking of Immune Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1946585. [PMID: 27725934 PMCID: PMC5048043 DOI: 10.1155/2016/1946585] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/12/2016] [Accepted: 08/23/2016] [Indexed: 01/25/2023]
Abstract
Tracking of immune cells in vivo is a crucial tool for development and optimization of cell-based therapy. Techniques for tracking immune cells have been applied widely for understanding the intrinsic behavior of immune cells and include non-radiation-based techniques such as optical imaging and magnetic resonance imaging (MRI), radiation-based techniques such as computerized tomography (CT), and nuclear imaging including single photon emission computerized tomography (SPECT) and positron emission tomography (PET). Each modality has its own strengths and limitations. To overcome the limitations of each modality, multimodal imaging techniques involving two or more imaging modalities are actively applied. Multimodal techniques allow integration of the strengths of individual modalities. In this review, we discuss the strengths and limitations of currently available preclinical in vivo immune cell tracking techniques and summarize the value of immune cell tracking in the development and optimization of immune cell therapy for various diseases.
Collapse
Affiliation(s)
- Ho Won Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
| |
Collapse
|
35
|
Li K, Gordon AC, Zheng L, Li W, Guo Y, Sun J, Zhang G, Han G, Larson AC, Zhang Z. Clinically applicable magnetic-labeling of natural killer cells for MRI of transcatheter delivery to liver tumors: preclinical validation for clinical translation. Nanomedicine (Lond) 2016; 10:1761-74. [PMID: 26080698 DOI: 10.2217/nnm.15.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To test the hypothesis that MRI can monitor intraportal vein (IPV) transcatheter delivery of clinically applicable heparin-protamine-ferumoxytol (HPF) nanocomplex-labeled natural killer (NK) cells to liver tumor. MATERIALS & METHODS Liver tumor rat models underwent catheterization for IPV infusion of HPF-labeled NK cells (NK-92MI cell line). MRI measurements within tumor and adjacent liver tissues were compared pre- and post-NK cell infusion. Histology studies were used to identify NK cells in the target tumors. RESULTS For first time, we demonstrated that MRI tracks HPF-labeled NK cells migration within liver following IPV delivery. CONCLUSION IPV transcatheter infusion permitted selective delivery of NK cells to liver tissues and MRI allowed tracking NK cell biodistributions within the tumors.
Collapse
Affiliation(s)
- Kangan Li
- Department of Radiology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P. R. China.,Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, 675 N St Clair, 21st Floor, Suite 100, Chicago, IL 60611, USA
| | - Andrew C Gordon
- Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA
| | - Linfeng Zheng
- Department of Radiology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P. R. China.,Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, 675 N St Clair, 21st Floor, Suite 100, Chicago, IL 60611, USA
| | - Weiguo Li
- Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA
| | - Yang Guo
- Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA
| | - Jing Sun
- Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA
| | - Guixiang Zhang
- Department of Radiology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P. R. China
| | - Guohong Han
- Department of Liver Disease & Digestive Interventional Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Andrew C Larson
- Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, 675 N St Clair, 21st Floor, Suite 100, Chicago, IL 60611, USA
| | - Zhuoli Zhang
- Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, 675 N St Clair, 21st Floor, Suite 100, Chicago, IL 60611, USA
| |
Collapse
|
36
|
Bouchlaka MN, Ludwig KD, Gordon JW, Kutz MP, Bednarz BP, Fain SB, Capitini CM. (19)F-MRI for monitoring human NK cells in vivo. Oncoimmunology 2016; 5:e1143996. [PMID: 27467963 DOI: 10.1080/2162402x.2016.1143996] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 01/13/2023] Open
Abstract
The availability of clinical-grade cytokines and artificial antigen-presenting cells has accelerated interest in using natural killer (NK) cells as adoptive cellular therapy (ACT) for cancer. One of the technological shortcomings of translating therapies from animal models to clinical application is the inability to effectively and non-invasively track these cells after infusion in patients. We have optimized the nonradioactive isotope fluorine-19 ((19)F) as a means to label and track NK cells in preclinical models using magnetic resonance imaging (MRI). Human NK cells were expanded with interleukin (IL)-2 and labeled in vitro with increasing concentrations of (19)F. Doses as low as 2 mg/mL (19)F were detected by MRI. NK cell viability was only decreased at 8 mg/mL (19)F. No effects on NK cell cytotoxicity against K562 leukemia cells were observed with 2, 4 or 8 mg/mL (19)F. Higher doses of (19)F, 4 mg/mL and 8 mg/mL, led to an improved (19)F signal by MRI with 3 × 10(11) (19)F atoms per NK cell. The 4 mg/mL (19)F labeling had no effect on NK cell function via secretion of granzyme B or interferon gamma (IFNγ), compared to NK cells exposed to vehicle alone. (19)F-labeled NK cells were detectable immediately by MRI after intratumoral injection in NSG mice and up to day 8. When (19)F-labeled NK cells were injected subcutaneously, we observed a loss of signal through time at the site of injection suggesting NK cell migration to distant organs. The (19)F perfluorocarbon is a safe and effective reagent for monitoring the persistence and trafficking of NK cell infusions in vivo, and may have potential for developing novel imaging techniques to monitor ACT for cancer.
Collapse
Affiliation(s)
- Myriam N Bouchlaka
- Department of Pediatrics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| | - Kai D Ludwig
- Department of Medical Physics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| | - Jeremy W Gordon
- Department of Medical Physics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| | - Matthew P Kutz
- Department of Pediatrics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| | - Bryan P Bednarz
- Department of Medical Physics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| | - Sean B Fain
- Department of Medical Physics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Radiology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biomedical Engineering, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christian M Capitini
- Department of Pediatrics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| |
Collapse
|
37
|
Somanchi SS, Kennis BA, Gopalakrishnan V, Lee DA, Bankson JA. In Vivo (19)F-Magnetic Resonance Imaging of Adoptively Transferred NK Cells. Methods Mol Biol 2016; 1441:317-32. [PMID: 27177678 DOI: 10.1007/978-1-4939-3684-7_27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In order to assess the biodistribution, homing, and persistence of adoptively transferred natural killer (NK) cell immunotherapies, there is a need for imaging methodology suitable for use in preclinical studies with relevance to clinical translation. Amongst the available approaches, (19)F-MRI is very appealing for in vivo imaging due to the absence of background signal, enabling clear detection of (19)F labeled cells in vivo. Here we describe a methodology for in vivo imaging of adoptively transferred NK cells labeled with (19)F nano-emulsion, using clinically translatable technology of (19)F/(1)H magnetic resonance imaging.
Collapse
Affiliation(s)
- Srinivas S Somanchi
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Bridget A Kennis
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Vidya Gopalakrishnan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Dean A Lee
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - James A Bankson
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.
| |
Collapse
|
38
|
Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol Ther 2014; 23:330-8. [PMID: 25373520 DOI: 10.1038/mt.2014.219] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are an important effector cell type for adoptive cancer immunotherapy. Similar to T cells, NK cells can be modified to express chimeric antigen receptors (CARs) to enhance antitumor activity, but experience with CAR-engineered NK cells and their clinical development is still limited. Here, we redirected continuously expanding and clinically usable established human NK-92 cells to the tumor-associated ErbB2 (HER2) antigen. Following GMP-compliant procedures, we generated a stable clonal cell line expressing a humanized CAR based on ErbB2-specific antibody FRP5 harboring CD28 and CD3ζ signaling domains (CAR 5.28.z). These NK-92/5.28.z cells efficiently lysed ErbB2-expressing tumor cells in vitro and exhibited serial target cell killing. Specific recognition of tumor cells and antitumor activity were retained in vivo, resulting in selective enrichment of NK-92/5.28.z cells in orthotopic breast carcinoma xenografts, and reduction of pulmonary metastasis in a renal cell carcinoma model, respectively. γ-irradiation as a potential safety measure for clinical application prevented NK cell replication, while antitumor activity was preserved. Our data demonstrate that it is feasible to engineer CAR-expressing NK cells as a clonal, molecularly and functionally well-defined and continuously expandable cell therapeutic agent, and suggest NK-92/5.28.z cells as a promising candidate for use in adoptive cancer immunotherapy.
Collapse
|
39
|
Liu TW, MacDonald TD, Jin CS, Gold JM, Bristow RG, Wilson BC, Zheng G. Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS NANO 2013; 7:4221-32. [PMID: 23544841 PMCID: PMC3667620 DOI: 10.1021/nn400669r] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/01/2013] [Indexed: 05/18/2023]
Abstract
Prostate cancer is the most common cancer among men and the second cause of male cancer-related deaths. There are currently three critical needs in prostate cancer imaging to personalize cancer treatment: (1) accurate intraprostatic imaging for multiple foci and extra-capsular extent; (2) monitoring local and systemic treatment response and predicting recurrence; and (3) more sensitive imaging of occult prostate cancer bone metastases. Recently, our lab developed porphysomes, inherently multimodal, all-organic nanoparticles with flexible and robust radiochemistry. Herein, we validate the first in vivo application of (64)Cu-porphysomes in clinically relevant orthotopic prostate and bony metastatic cancer models. We demonstrate clear multimodal delineation of orthotopic tumors on both the macro- and the microscopic scales (using both PET and fluorescence) and sensitively detected small bony metastases (<2 mm). The unique and multifaceted properties of porphysomes offers a promising all-in-one prostate cancer imaging agent for tumor detection and treatment response/recurrence monitoring using both radionuclide- and photonic-based strategies.
Collapse
Affiliation(s)
- Tracy W. Liu
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON Canada M5G 2M9
| | - Thomas D. MacDonald
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON Canada M5S 3M2
| | - Cheng S. Jin
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON Canada M5S 3M2
| | - Joseph M. Gold
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON Canada M5G 2M9
| | - Robert G. Bristow
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Princess Margaret Cancer Center, UHN, 610 University Avenue, Toronto, ON Canada M5T 2M9
| | - Brian C. Wilson
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON Canada M5G 2M9
| | - Gang Zheng
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON Canada M5S 3M2
- Address correspondence to
| |
Collapse
|
40
|
Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 2013; 10:230-52. [PMID: 23604045 DOI: 10.1038/cmi.2013.10] [Citation(s) in RCA: 476] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play critical roles in host immunity against cancer. In response, cancers develop mechanisms to escape NK cell attack or induce defective NK cells. Current NK cell-based cancer immunotherapy aims to overcome NK cell paralysis using several approaches. One approach uses expanded allogeneic NK cells, which are not inhibited by self histocompatibility antigens like autologous NK cells, for adoptive cellular immunotherapy. Another adoptive transfer approach uses stable allogeneic NK cell lines, which is more practical for quality control and large-scale production. A third approach is genetic modification of fresh NK cells or NK cell lines to highly express cytokines, Fc receptors and/or chimeric tumor-antigen receptors. Therapeutic NK cells can be derived from various sources, including peripheral or cord blood cells, stem cells or even induced pluripotent stem cells (iPSCs), and a variety of stimulators can be used for large-scale production in laboratories or good manufacturing practice (GMP) facilities, including soluble growth factors, immobilized molecules or antibodies, and other cellular activators. A list of NK cell therapies to treat several types of cancer in clinical trials is reviewed here. Several different approaches to NK-based immunotherapy, such as tissue-specific NK cells, killer receptor-oriented NK cells and chemically treated NK cells, are discussed. A few new techniques or strategies to monitor NK cell therapy by non-invasive imaging, predetermine the efficiency of NK cell therapy by in vivo experiments and evaluate NK cell therapy approaches in clinical trials are also introduced.
Collapse
Affiliation(s)
- Min Cheng
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|
41
|
Radom-Aizik S, Zaldivar F, Haddad F, Cooper DM. Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults. J Appl Physiol (1985) 2013; 114:628-36. [PMID: 23288554 DOI: 10.1152/japplphysiol.01341.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Natural killers (NK) cells are unique innate immune cells that increase up to fivefold in the circulating blood with brief exercise and are known to play a key role in first-response defense against pathogens and cancer immunosurveillance. Whether exercise alters NK cell gene and microRNA (miRNA) expression is not known. Thirteen healthy men (20-29 yr old) performed ten 2-min bouts of cycle ergometer exercise at a constant work equivalent to an average of 77% of maximum O2 consumption interspersed with 1-min rest. Blood was drawn before and immediately after the exercise challenge. NK cells were isolated from peripheral blood mononuclear cells using a negative magnetic cell separation method. We used Affymetrix U133+2.0 arrays for gene expression and Agilent Human miRNA V2 Microarray for miRNAs. A stringent statistical approach (false discovery rate < 0.05) was used to determine that exercise significantly altered the expression of 986 genes and 23 miRNAs. Using in silico analysis, we found exercise-related gene pathways where there was a high likelihood of gene-miRNA interactions. These pathways were predominantly associated with cancer and cell communication, including p53 signaling pathway, melanoma, glioma, prostate cancer, adherens junction, and focal adhesion. These data support the hypothesis that exercise affects the gene and miRNA expression pattern in the population of NK cells in the circulation and suggest mechanisms through which physical activity could alter health through the innate immune system.
Collapse
Affiliation(s)
- Shlomit Radom-Aizik
- Pediatric Exercise Research Center, Department of Pediatrics, University of California, Irvine, Irvine, California 92697-4094, USA.
| | | | | | | |
Collapse
|
42
|
Sahm C, Schönfeld K, Wels WS. Expression of IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modified effectors that carry a tumor-specific antigen receptor. Cancer Immunol Immunother 2012; 61:1451-61. [PMID: 22310931 PMCID: PMC11029748 DOI: 10.1007/s00262-012-1212-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/22/2012] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells hold promise for adoptive cancer immunotherapy but are dependent on cytokines such as interleukin (IL)-2 for growth and cytotoxicity. Here, we investigated the consequences of ectopic expression of IL-15 in human NK cells. IL-2 and IL-15 belong to the common γ chain family of cytokines and have overlapping activities. Transduction of clinically applicable NK-92 cells with lentiviral vectors encoding human IL-15 resulted in predominantly intracellular expression of the cytokine, and STAT5 activation, proliferation and cytotoxicity of the producer cells in the absence of IL-2. Growth of non-transduced bystander cells was not supported, allowing rapid enrichment of gene-modified cells solely by IL-2 withdrawal. This was also the case upon transduction of NK-92 and NKL cells with a bicistronic lentiviral vector encoding IL-15 and a chimeric antigen receptor (CAR) targeting the pancarcinoma antigen EpCAM. Effector cells co-expressing CAR and IL-15 continued to proliferate in the absence of exogenous cytokines and displayed high and selective cell-killing activity against EpCAM-expressing breast carcinoma cells that were resistant to the natural cytotoxicity of unmodified NK cells. This strategy facilitates rapid isolation and continuous expansion of retargeted NK cells and may extend their potential clinical utility.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Breast Neoplasms/immunology
- Breast Neoplasms/therapy
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Line, Tumor
- Cytokines/biosynthesis
- Cytokines/genetics
- Cytokines/immunology
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/immunology
- DNA, Complementary/genetics
- Epithelial Cell Adhesion Molecule
- Humans
- Immunotherapy/methods
- Interleukin-15/biosynthesis
- Interleukin-15/genetics
- Interleukin-15/immunology
- Interleukin-2/immunology
- Interleukin-2/pharmacology
- K562 Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, Erythroblastic, Acute/immunology
- Leukemia, Erythroblastic, Acute/therapy
- Melanoma/immunology
- Melanoma/therapy
- Mice
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Antigen/biosynthesis
- Receptors, Antigen/genetics
- Receptors, Antigen/immunology
Collapse
Affiliation(s)
- Christiane Sahm
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
| | - Kurt Schönfeld
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
| | - Winfried S. Wels
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
| |
Collapse
|
43
|
Esser R, Müller T, Stefes D, Kloess S, Seidel D, Gillies SD, Aperlo-Iffland C, Huston JS, Uherek C, Schönfeld K, Tonn T, Huebener N, Lode HN, Koehl U, Wels WS. NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J Cell Mol Med 2012; 16:569-81. [PMID: 21595822 PMCID: PMC3822932 DOI: 10.1111/j.1582-4934.2011.01343.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Treatment of high-risk neuroblastoma (NB) represents a major challenge in paediatric oncology. Alternative therapeutic strategies include antibodies targeting the disialoganglioside GD2, which is expressed at high levels on NB cells, and infusion of donor-derived natural killer (NK) cells. To combine specific antibody-mediated recognition of NB cells with the potent cytotoxic activity of NK cells, here we generated clonal derivatives of the clinically applicable human NK cell line NK-92 that stably express a GD2-specific chimeric antigen receptor (CAR) comprising an anti-GD2 ch14.18 single chain Fv antibody fusion protein with CD3-ζ chain as a signalling moiety. CAR expression by gene-modified NK cells facilitated effective recognition and elimination of established GD2 expressing NB cells, which were resistant to parental NK-92. In the case of intrinsically NK-sensitive NB cell lines, we observed markedly increased cell killing activity of retargeted NK-92 cells. Enhanced cell killing was strictly dependent on specific recognition of the target antigen and could be blocked by GD2-specific antibody or anti-idiotypic antibody occupying the CAR’s cell recognition domain. Importantly, strongly enhanced cytotoxicity of the GD2-specific NK cells was also found against primary NB cells and GD2 expressing tumour cells of other origins, demonstrating the potential clinical utility of the retargeted effector cells.
Collapse
Affiliation(s)
- Ruth Esser
- Pediatric Hematology and Oncology, University Hospital, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mallett CL, McFadden C, Chen Y, Foster PJ. Migration of iron-labeled KHYG-1 natural killer cells to subcutaneous tumors in nude mice, as detected by magnetic resonance imaging. Cytotherapy 2012; 14:743-51. [PMID: 22443465 DOI: 10.3109/14653249.2012.667874] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS A novel cell line of cytotoxic natural killer (NK) cells, KHYG-1, was examined in vivo for immunotherapy against prostate cancer. The feasibility of using magnetic resonance imaging (MRI) tracking to monitor the fate of injected NK cells following intravenous (i.v.), intraperitoneal (i.p.) and subcutaneous (s.c.) administration was assessed. METHODS PC-3M human prostate cancer cells were injected s.c. into the flank of nude mice (day 0). KHYG-1 NK cells were labeled with an iron oxide contrast agent and injected s.c., i.v. or i.p. on day 8. Mice were imaged by MRI on days 7, 9 and 12. Tumor sections were examined with fluorescence microscopy and immunohistologic staining for NK cells. RESULTS NK cells were detected in the tumors by histology after all three administration routes. NK cells and fluorescence from the iron label were co-localized. Signal loss was seen in the areas around the tumors and between the tumor lobes in the s.c. group. CONCLUSIONS We are the first to label this cell line of NK cells with an iron oxide contrast agent. Accumulation of NK cells was visualized by MRI after s.c. injection but not after i.v. and i.p. injection.
Collapse
Affiliation(s)
- Christiane L Mallett
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
Hall MA, Kwon S, Robinson H, Lachance PA, Azhdarinia A, Ranganathan R, Price RE, Chan W, Sevick-Muraca EM. Imaging prostate cancer lymph node metastases with a multimodality contrast agent. Prostate 2012; 72:129-46. [PMID: 21538422 DOI: 10.1002/pros.21413] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/06/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND Methods to detect lymph node (LN) metastases in prostate cancer (PCa) are limited. Pelvic LN dissection is commonly performed during prostatectomy, but often followed by morbid complications. More refined methods for detecting LN invasion are needed. METHODS We developed a dual-labeled targeting agent having a near-infrared (NIR) fluorophore for intraoperative guidance, and a conventional radiotracer for detection of LN metastasis. Nu/Nu mice were orthotopically implanted with DsRed-expressing human PCa (PC3) cells. Antibody (Ab) specific for epithelial cell adhesion molecule was conjugated to DOTA, IRDye 800CW, and radiolabeled with (64) Cu. Dual-labeled Ab was administered intravenously at 10-12 weeks post-implantation, and positron emission tomography/computed tomography (PET/CT) and fluorescence imaging were performed within 18-24 hr. RESULTS Metastasis to lumbar LNs was detected by DsRed fluorescence imaging, as well as pathology, in 75% of mice having pathology-confirmed primary prostate tumors. These metastases were also detected by NIR fluorescence imaging. In some cases, metastases to sciatic, medial, renal, and axillary nodes were also detected. For all LNs examined, no significant differences were found between the percentages of metastases detected by NIR imaging (63%) and µPET/CT (64%) (P = 0.93), or between those detected by DsRed imaging (25%) and pathological examination (19%) (P = 0.12). CONCLUSION This study demonstrates that a multimodality contrast agent is useful for early detection of metastatic disease, and has applications for intraoperative PCa treatment. Further agent optimization is necessary to enhance specificity, and provide validation for prostate and other LN metastasizing epithelial cancers.
Collapse
Affiliation(s)
- Mary A Hall
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Boddington SE, Sutton EJ, Henning TD, Nedopil AJ, Sennino B, Kim A, Daldrup-Link HE. Labeling human mesenchymal stem cells with fluorescent contrast agents: the biological impact. Mol Imaging Biol 2011; 13:3-9. [PMID: 20379785 PMCID: PMC3023037 DOI: 10.1007/s11307-010-0322-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose This study aims to determine the effect of human mesenchymal stem cell (hMSC) labeling with the fluorescent dye DiD and the iron oxide nanoparticle ferucarbotran on chondrogenesis. Procedures hMSCs were labeled with DiD alone or with DiD and ferucarbotran (DiD/ferucarbotran). hMSCs underwent confocal microscopy, optical imaging (OI), and magnetic resonance (MR) imaging. Chondrogenesis was induced by transforming growth factor-b and confirmed by histopathology and glycosaminoglycan (GAG) production. Data of labeled and unlabeled hMSCs were compared with a t test. Results Cellular uptake of DiD and ferucarbotran was confirmed with confocal microscopy. DiD labeling caused a significant fluorescence on OI, and ferucarbotran labeling caused a significant T2* effect on MR images. Compared to nonlabeled controls, progenies of labeled MSCs exhibited similar chondrocyte morphology after chondrogenic differentiation, but the labeled cells demonstrated significantly reduced GAG production (p < 0.05). Conclusion DiD and DiD/ferucarbotran labeling of hMSC does not interfere with cell viability or morphologic differentiation into chondrocytes, but labeled cells exhibit significantly less GAG production compared to unlabeled cells.
Collapse
Affiliation(s)
- Sophie E Boddington
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Liu G, Swierczewska M, Niu G, Zhang X, Chen X. Molecular imaging of cell-based cancer immunotherapy. MOLECULAR BIOSYSTEMS 2011; 7:993-1003. [PMID: 21308113 DOI: 10.1039/c0mb00198h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell-based cancer immunotherapy represents a new and powerful weapon in the arsenal of anticancer treatments. Non-invasive monitoring of the disposition, migration and destination of therapeutic cells will facilitate the development of cell based therapy. The therapeutic cells can be modified intrinsically by a reporter gene or labeled extrinsically by introducing imaging probes into the cells or on the cell surface before transplant. Various advanced non-invasive molecular imaging techniques are playing important roles in optimizing cellular therapy by tracking cells and monitoring the therapeutic effects of transplanted cells in vivo. This review will summarize the application of multiple molecular imaging modalities in cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Gang Liu
- Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong 637007, China
| | | | | | | | | |
Collapse
|
48
|
Meier R, Golovko D, Tavri S, Henning TD, Knopp C, Piontek G, Rudelius M, Heinrich P, Wels WS, Daldrup-Link H. Depicting adoptive immunotherapy for prostate cancer in an animal model with magnetic resonance imaging. Magn Reson Med 2010; 65:756-63. [PMID: 20928869 DOI: 10.1002/mrm.22652] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 08/16/2010] [Accepted: 08/26/2010] [Indexed: 11/11/2022]
Abstract
Genetically modified natural killer (NK) cells that recognize tumor-associated surface antigens have recently shown promise as a novel approach for cancer immunotherapy. To determine NK cell therapy response early, a real-time, noninvasive method to quantify NK cell homing to the tumor is desirable. The purpose of this study was to evaluate if MR imaging could provide a noninvasive, in vivo diagnosis of NK cell accumulation in epithelial cell adhesion molecule (EpCAM)-positive prostate cancers in a rat xenograft model. Genetically engineered NK-92-scFv(MOC31)-ζ cells, which express a chimeric antigen receptor specific to the tumor-associated EpCAM antigen, and nontargeted NK-92 cells were labeled with superparamagnetic particles of iron-oxides (SPIO) ferumoxides. Twelve athymic rats with implanted EpCAM positive DU145 prostate cancers received intravenous injections of 1.5×10(7) SPIO labeled NK-92 and NK-92-scFv(MOC31)-ζ cells. EpCAM-positive prostate cancers demonstrated a progressive and a significant decline in contrast-to-noise-ratio data at 1 and 24 h after injection of SPIO-labeled NK-92-scFv(MOC31)-ζ cells. Conversely, tumor contrast-to-noise-ratio data did not change significantly after injection of SPIO-labeled parental NK-92 cells. Histopathology confirmed an accumulation of the genetically engineered NK-92-scFv(MOC31)-ζ cells in prostate cancers. Thus, the presence or absence of a tumor accumulation of therapeutic NK cells can be monitored with cellular MR imaging. EpCAM-directed, SPIO labeled NK-92-scFv(MOC31)-ζ cells accumulate in EpCAM-positive prostate cancers.
Collapse
Affiliation(s)
- Reinhard Meier
- Department of Radiology, Technical University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jha P, Golovko D, Bains S, Hostetter D, Meier R, Wendland MF, Daldrup-Link HE. Monitoring of natural killer cell immunotherapy using noninvasive imaging modalities. Cancer Res 2010; 70:6109-13. [PMID: 20631071 DOI: 10.1158/0008-5472.can-09-3774] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer immunotherapies can be guided by cellular imaging techniques, which can identify the presence or absence of immune cell accumulation in the tumor tissue in vivo and in real time. This review summarizes various new and evolving imaging techniques employed for tracking and monitoring of adoptive natural killer cell immunotherapies.
Collapse
Affiliation(s)
- Priyanka Jha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94107, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Lim YT, Cho MY, Noh YW, Chung JW, Chung BH. Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy. NANOTECHNOLOGY 2009; 20:475102. [PMID: 19875875 DOI: 10.1088/0957-4484/20/47/475102] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study describes the development of near-infrared optical imaging technology for the monitoring of immunotherapeutic cell-based cancer therapy using natural killer (NK) cells labeled with fluorescent nanocrystals. Although NK cell-based immunotherapeutic strategies have drawn interest as potent preclinical or clinical methods of cancer therapy, there are few reports documenting the molecular imaging of NK cell-based cancer therapy, primarily due to the difficulty of labeling of NK cells with imaging probes. Human natural killer cells (NK92MI) were labeled with anti-human CD56 antibody-coated quantum dots (QD705) for fluorescence imaging. FACS analysis showed that the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 have no effect on the cell viability. The effect of anti-human CD56 antibody-coated QD705 labeling on the NK92MI cell function was investigated by measuring interferon gamma (IFN-gamma) production and cytolytic activity. Finally, the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 showed a therapeutic effect similar to that of unlabeled NK92MI cells. Images of intratumorally injected NK92MI cells labeled with anti-human CD56 antibody-coated could be acquired using near-infrared optical imaging both in vivo and in vitro. This result demonstrates that the immunotherapeutic cells labeled with fluorescent nanocrystals can be a versatile platform for the effective tracking of injected therapeutic cells using optical imaging technology, which is very important in cell-based cancer therapies.
Collapse
Affiliation(s)
- Yong Taik Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 52 Eoeun-dong, Yusung-gu, Daejeon 305-333, Republic of Korea
| | | | | | | | | |
Collapse
|