1
|
Firoozi P, Ghaznavi D, Fekrazad R. The Effect of Photobiomodulation on Periodontal Clinical Status of Patients with Cancer During Chemotherapy: A Randomized Clinical Trial. Photobiomodul Photomed Laser Surg 2025; 43:124-132. [PMID: 39950255 DOI: 10.1089/photob.2024.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Objective: This interventional prospective double-blind randomized study investigated the adjunctive inflammation-modulatory effects of photobiomodulation therapy on the periodontal clinical parameters of patients undergoing chemotherapy. Methods: Twenty diagnosed patients with cancer were enrolled in this split-mouth trial. Patients were randomized to implantation with either SRP alone in one quadrant or with five sessions of adjunctive photobiomodulation using a diode laser (density of energy = 2 J/cm2 | wavelength = 635 nm | power = 50 mW | spot diameter = 4 mm | exposure time = 5 s | continuous mode) on the other quadrant. The gingiva was radiated buccally and lingually. The laser beam was positioned 3 mm vertically away from the gingival surface and at a right angle to it. Before chemotherapy, all participants were given oral hygiene training and received SRP. In the same session, the patient's baseline clinical measures were taken immediately after the beginning of one chemotherapy session, interventions for each side were started and clinical parameters including gingival index (GI), plaque index (PI), clinical attachment level (CAL), and pain/burning sensation after one chemotherapy session were obtained. Results: Regarding GI and PI, both control and test groups showed favorable results compared with baseline. However, the adjunctive photobiomodulation group outperformed the control group in one chemotherapy session regarding both abovementioned indices (p < 0.05). The photobiomodulation+scaling and root planing (SRP) group showed promising results in terms of gingival discomfort reduction and SRP alone was not effective. No significant effect was observed regarding CAL in both groups (p > 0.05). Conclusion: Based on the results of this study, it can be concluded that photobiomodulation promotes gingival health and reduces PI and GI indices. Photobiomodulation also alleviates pain or burning in the gingiva. Accordingly, adjunctive photobiomodulation therapy may be suggested as a supplementary treatment in patients with cancer.
Collapse
Affiliation(s)
- Parsa Firoozi
- Radiation Sciences Research Centre, Laser Research Centre in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Dara Ghaznavi
- Department of Periodontics, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Fekrazad
- Professor of Radiation Sciences Research Centre, Laser Research Centre in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Ait Atmane S, Batır MB, Özbek ZA, Ergönül PG, Balcan E, Ait Eldjoudi D, Özkale E, Bribi N, Khettal B. Cold pressed Pinus halepensis Mill. seed oil for potential health applications: Analgesic, anti-inflammatory effects, and assessment of inflammatory mediators by RT-qPCR in skin wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117157. [PMID: 37696441 DOI: 10.1016/j.jep.2023.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinus halepensis Mill. seed (Pinaceae), commonly known as "Zgougou," is widely consumed in the Mediterranean region and has long been used to treat diseases including bronchitis, rheumatism, infection, and inflammation. AIM OF THE STUDY The present study was focused on the investigation of some pharmacological activities, such as analgesic, anti-inflammatory, and wound healing effects, of cold-pressed oil of Pinus halepensis Mill. seed (COPHS). MATERIALS AND METHODS The fixed oil of Pinus halepensis seed was extracted by a cold pressing process. The analgesic activity of COPHS was examined by acetic acid and formalin-induced contortion and pain tests. The anti-inflammatory effects were evaluated in carrageenan and formalin induced paw and ear edema models. Wound healing potential was assessed on an experimental skin wound, and the expression levels of inflammation mediators were determined by RT-qPCR in skin wound healing. RESULTS The results showed analgesic efficacy through significant inhibition of abdominal cramps (59.15%) and pain (75.91%). In addition, this oil exerted an anti-inflammatory effect by inhibiting ear (62.25%) and paw (70.00%) edema. The COPHS stimulated wound contraction in experimental skin wound healing with a contraction rate of 89.23% with notable reduction of TNF-α and NF-kB expression levels in the treated groups. CONCLUSIONS This study provided for the first time the pharmacological profile, particularly the analgesic, anti-inflammatory, and healing effects, of fixed oil extracted by cold pressing from the seed of Pinus halepensis Mill.
Collapse
Affiliation(s)
- Sihem Ait Atmane
- Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Natural and Life Sciences, University of Bejaia, 06000, Algeria.
| | - Muhammet Burak Batır
- Department of Biology, Faculty of Sciences and Arts, Manisa Celal Bayar University, Manisa, 45140, Turkey
| | - Zeynep Aksoylu Özbek
- Department of Food Engineering, Faculty of Engineering, Manisa Celal Bayar University, Manisa, 45140, Turkey; Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Pelin Günç Ergönül
- Department of Food Engineering, Faculty of Engineering, Manisa Celal Bayar University, Manisa, 45140, Turkey
| | - Erdal Balcan
- Department of Biology, Faculty of Sciences and Arts, Manisa Celal Bayar University, Manisa, 45140, Turkey
| | - Djedjiga Ait Eldjoudi
- Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Natural and Life Sciences, University of Bejaia, 06000, Algeria
| | - Evrim Özkale
- Department of Biology, Faculty of Sciences and Arts, Manisa Celal Bayar University, Manisa, 45140, Turkey
| | - Noureddine Bribi
- Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Natural and Life Sciences, University of Bejaia, 06000, Algeria
| | - Bachra Khettal
- Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Natural and Life Sciences, University of Bejaia, 06000, Algeria
| |
Collapse
|
3
|
Matsuzaki R, Gunnigle E, Geissen V, Clarke G, Nagpal J, Cryan JF. Pesticide exposure and the microbiota-gut-brain axis. THE ISME JOURNAL 2023:10.1038/s41396-023-01450-9. [PMID: 37328570 DOI: 10.1038/s41396-023-01450-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
The gut microbiota exist within a dynamic ecosystem shaped by various factors that includes exposure to xenobiotics such as pesticides. It is widely regarded that the gut microbiota plays an essential role in maintaining host health, including a major influence on the brain and behaviour. Given the widespread use of pesticides in modern agriculture practices, it is important to assess the long-term collateral effects these xenobiotic exposures have on gut microbiota composition and function. Indeed, exposure studies using animal models have shown that pesticides can induce negative impacts on the host gut microbiota, physiology and health. In tandem, there is a growing body of literature showing that the effects of pesticide exposure can be extended to the manifestation of behavioural impairments in the host. With the increasing appreciation of the microbiota-gut-brain axis, in this review we assess whether pesticide-induced changes in gut microbiota composition profiles and functions could be driving these behavioural alterations. Currently, the diversity of pesticide type, exposure dose and variation in experimental designs hinders direct comparisons of studies presented. Although many insights presented, the mechanistic connection between the gut microbiota and behavioural changes remains insufficiently explored. Future experiments should therefore focus on causal mechanisms to examine the gut microbiota as the mediator of the behavioural impairments observed in the host following pesticide exposure.
Collapse
Affiliation(s)
- Rie Matsuzaki
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20, Cork, Ireland
| | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
| | - Violette Geissen
- Department of Environmental Sciences, Wageningen University & Research, 6700AA, Wageningen, The Netherlands
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Sciences, University College Cork, T12 YT20, Cork, Ireland
| | - Jatin Nagpal
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
- School of Pharmacy and Department of Pharmacology & Therapeutics, University College Cork, T12 YT20, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20, Cork, Ireland.
| |
Collapse
|
4
|
Pixelated Microfluidics for Drug Screening on Tumour Spheroids and Ex Vivo Microdissected Tumour Explants. Cancers (Basel) 2023; 15:cancers15041060. [PMID: 36831403 PMCID: PMC9954565 DOI: 10.3390/cancers15041060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Anticancer drugs have the lowest success rate of approval in drug development programs. Thus, preclinical assays that closely predict the clinical responses to drugs are of utmost importance in both clinical oncology and pharmaceutical research. 3D tumour models preserve the tumoral architecture and are cost- and time-efficient. However, the short-term longevity, limited throughput, and limitations of live imaging of these models have so far driven researchers towards less realistic tumour models such as monolayer cell cultures. Here, we present an open-space microfluidic drug screening platform that enables the formation, culture, and multiplexed delivery of several reagents to various 3D tumour models, namely cancer cell line spheroids and ex vivo primary tumour fragments. Our platform utilizes a microfluidic pixelated chemical display that creates isolated adjacent flow sub-units of reagents, which we refer to as fluidic 'pixels', over tumour models in a contact-free fashion. Up to nine different treatment conditions can be tested over 144 samples in a single experiment. We provide a proof-of-concept application by staining fixed and live tumour models with multiple cellular dyes. Furthermore, we demonstrate that the response of the tumour models to biological stimuli can be assessed using the platform. Upscaling the microfluidic platform to larger areas can lead to higher throughputs, and thus will have a significant impact on developing treatments for cancer.
Collapse
|
5
|
Sterin I, Santos AC, Park S. Neuronal Activity Reporters as Drug Screening Platforms. MICROMACHINES 2022; 13:1500. [PMID: 36144123 PMCID: PMC9504476 DOI: 10.3390/mi13091500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Understanding how neuronal activity changes and detecting such changes in both normal and disease conditions is of fundamental importance to the field of neuroscience. Neuronal activity plays important roles in the formation and function of both synapses and circuits, and dysregulation of these processes has been linked to a number of debilitating diseases such as autism, schizophrenia, and epilepsy. Despite advances in our understanding of synapse biology and in how it is altered in disease, the development of therapeutics for these diseases has not advanced apace. Many neuronal activity assays have been developed over the years using a variety of platforms and approaches, but major limitations persist. Current assays, such as fluorescence indicators are not designed to monitor neuronal activity over a long time, they are typically low-throughput or lack sensitivity. These are major barriers to the development of new therapies, as drug screening needs to be both high-throughput to screen through libraries of compounds, and longitudinal to detect any effects that may emerge after continued application of the drug. This review will cover existing assays for measuring neuronal activity and highlight a live-cell assay recently developed. This assay can be performed with easily accessible lab equipment, is both scalable and longitudinal, and can be combined with most other established methods.
Collapse
Affiliation(s)
- Igal Sterin
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ana C. Santos
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Sungjin Park
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
Stratification of radiosensitive brain metastases based on an actionable S100A9/RAGE resistance mechanism. Nat Med 2022; 28:752-765. [PMID: 35411077 PMCID: PMC9018424 DOI: 10.1038/s41591-022-01749-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
AbstractWhole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9–RAGE–NF-κB–JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.
Collapse
|
7
|
Oo A, Zandi K, Shepard C, Bassit LC, Musall K, Goh SL, Cho YJ, Kim DH, Schinazi RF, Kim B. Elimination of Aicardi-Goutières syndrome protein SAMHD1 activates cellular innate immunity and suppresses SARS-CoV-2 replication. J Biol Chem 2022; 298:101635. [PMID: 35085552 PMCID: PMC8786443 DOI: 10.1016/j.jbc.2022.101635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/23/2022] Open
Abstract
The lack of antiviral innate immune responses during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is characterized by limited production of interferons (IFNs). One protein associated with Aicardi-Goutières syndrome, SAMHD1, has been shown to negatively regulate the IFN-1 signaling pathway. However, it is unclear whether elevated IFN signaling associated with genetic loss of SAMHD1 would affect SARS-CoV-2 replication. In this study, we established in vitro tissue culture model systems for SARS-CoV-2 and human coronavirus OC43 infections in which SAMHD1 protein expression was absent as a result of CRISPR-Cas9 gene KO or lentiviral viral protein X-mediated proteosomal degradation. We show that both SARS-CoV-2 and human coronavirus OC43 replications were suppressed in SAMHD1 KO 293T and differentiated THP-1 macrophage cell lines. Similarly, when SAMHD1 was degraded by virus-like particles in primary monocyte-derived macrophages, we observed lower levels of SARS-CoV-2 RNA. The loss of SAMHD1 in 293T and differentiated THP-1 cells resulted in upregulated gene expression of IFNs and innate immunity signaling proteins from several pathways, with STAT1 mRNA being the most prominently elevated ones. Furthermore, SARS-CoV-2 replication was significantly increased in both SAMHD1 WT and KO cells when expression and phosphorylation of STAT1 were downregulated by JAK inhibitor baricitinib, which over-rode the activated antiviral innate immunity in the KO cells. This further validates baricitinib as a treatment of SARS-CoV-2-infected patients primarily at the postviral clearance stage. Overall, our tissue culture model systems demonstrated that the elevated innate immune response and IFN activation upon genetic loss of SAMHD1 effectively suppresses SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Keivan Zandi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Caitlin Shepard
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Leda C Bassit
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Katie Musall
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Shu Ling Goh
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Young-Jae Cho
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dong-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
8
|
Rudek LS, Zimmermann K, Galla M, Meyer J, Kuehle J, Stamopoulou A, Brand D, Sandalcioglu IE, Neyazi B, Moritz T, Rossig C, Altvater B, Falk CS, Abken H, Morgan MA, Schambach A. Generation of an NFκB-Driven Alpharetroviral "All-in-One" Vector Construct as a Potent Tool for CAR NK Cell Therapy. Front Immunol 2021; 12:751138. [PMID: 34804035 PMCID: PMC8595471 DOI: 10.3389/fimmu.2021.751138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Immune cell therapeutics are increasingly applied in oncology. Especially chimeric antigen receptor (CAR) T cells are successfully used to treat several B cell malignancies. Efforts to engineer CAR T cells for improved activity against solid tumors include co-delivery of pro-inflammatory cytokines in addition to CARs, via either constitutive cytokine expression or inducible cytokine expression triggered by CAR recognition of its target antigen-so-called "T cells redirected for universal cytokine-mediated killing" (TRUCKs) or fourth-generation CARs. Here, we tested the hypothesis that TRUCK principles could be expanded to improve anticancer functions of NK cells. A comparison of the functionality of inducible promoters responsive to NFAT or NFκB in NK cells showed that, in contrast to T cells, the inclusion of NFκB-responsive elements within the inducible promoter construct was essential for CAR-inducible expression of the transgene. We demonstrated that GD2CAR-specific activation induced a tight NFκB-promoter-driven cytokine release in NK-92 and primary NK cells together with an enhanced cytotoxic capacity against GD2+ target cells, also shown by increased secretion of cytolytic cytokines. The data demonstrate biologically relevant differences between T and NK cells that are important when clinically translating the TRUCK concept to NK cells for the treatment of solid malignancies.
Collapse
Affiliation(s)
- Loreen Sophie Rudek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johannes Kuehle
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Andriana Stamopoulou
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Daniel Brand
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - I Erol Sandalcioglu
- Department of Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Hinrich Abken
- Regensburg Centre for Interventional Immunology, Department of Genetic Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Jadav A, Truong K. Creation of a synthesis-friendly inflammation-inducible promoter suitable for cell therapy. Integr Biol (Camb) 2021; 13:230-236. [PMID: 34632498 DOI: 10.1093/intbio/zyab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022]
Abstract
The development of 'smart' cell-based therapeutics requires cells that first recognize conditions consistent with disease (e.g. inflammation) and then subsequently release therapeutic proteins, thereby reducing potential toxicity from otherwise continuous expression. Promoters containing NF-κB response elements are often used as reporters of inflammation; however, endogenous promoters have crosstalk with other pathways, and current synthetic promoters have many exact sequence repeats of NF-κB response elements which make them both difficult to synthesize and inherently genetically unstable. Herein, a synthesis-friendly inflammation-inducible promoter (named SFNp) was created by the packing of 14 NF-κB response elements, which have no repeats >9 bp, followed by a minimal cytomegalovirus promoter. In stably expressing human embryonic kidney 293 cells, we assessed the ability of SFNp to inducibly transcribe genes for reporting expression, changing cell morphology, and performing cell fusion. These experiments represent simple milestones for potentially using SFNp in the development of cell-based therapeutics. As strongly repeated DNA can compromise the long-term stability of genetic circuits, new designs used in 'smart' cell therapy will become more reliant on synthesis-friendly components like SFNp.
Collapse
Affiliation(s)
- Anish Jadav
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Kevin Truong
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada.,Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Circle, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
10
|
Kawasaki H, Amano H. Anti‑inflammatory role of microRNA‑429 in human gingival epithelial cells‑inhibition of IL‑8 production through direct binding to IKKβ mRNA. Mol Med Rep 2021; 24:581. [PMID: 34132371 PMCID: PMC8223109 DOI: 10.3892/mmr.2021.12220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs), a family of small non‑coding RNAs, serve a pivotal role in the regulation of the inflammation by modulating the expression of various genes. However, the molecular mechanism by which miRNAs regulate inflammation‑associated molecules in oral epithelial cells remains to be elucidated. The present study examined the biological function of miR‑429 by performing the gain‑/loss‑of‑function studies of miR‑429 in a gingival squamous cell carcinoma line Ca9‑22 cells that either over‑ or under‑expressed miR‑429 through transient transfection with miR‑429 mimic or miR‑429 inhibitor, respectively. The results demonstrated that the over‑expression of miR‑429 suppressed the mRNA level of several interleukins, including IL‑8. In addition, the over‑expression of miR‑429 reduced IL‑8 secretion under the basal and TNF‑α stimulated conditions, whereas the secretion of IL‑8 was enhanced when miR‑429 was under‑expressed. The over‑expression of miR‑429 inhibited the activation of the transcription factor NF‑κB. Furthermore, we found that miR‑429 suppressed both mRNA and protein levels of IKKβ via its direct binding to the 3'‑untranslated region of IKKβ mRNA. In addition, the downregulation of IKKβ by small interfering RNA reduced both NF‑kB activity and IL‑8 production in Ca9‑22 cells. Taken together, the findings revealed the molecular mechanism of miR‑429 to regulate the inflammatory mediator in gingival cells and suggested that it could be useful as a therapeutic target of oral inflammatory diseases.
Collapse
Affiliation(s)
- Hiromichi Kawasaki
- Central Research Institute, Wakunaga Pharmaceutical Co. Ltd., Koda‑cho, Akitakata‑shi, Hiroshima 739‑1195, Japan
| | - Hirotaka Amano
- Central Research Institute, Wakunaga Pharmaceutical Co. Ltd., Koda‑cho, Akitakata‑shi, Hiroshima 739‑1195, Japan
| |
Collapse
|
11
|
Mostafizar M, Cortes-Pérez C, Snow W, Djordjevic J, Adlimoghaddam A, Albensi BC. Challenges with Methods for Detecting and Studying the Transcription Factor Nuclear Factor Kappa B (NF-κB) in the Central Nervous System. Cells 2021; 10:1335. [PMID: 34071243 PMCID: PMC8228352 DOI: 10.3390/cells10061335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
The transcription factor nuclear factor kappa B (NF-κB) is highly expressed in almost all types of cells. NF-κB is involved in many complex biological processes, in particular in immunity. The activation of the NF-κB signaling pathways is also associated with cancer, diabetes, neurological disorders and even memory. Hence, NF-κB is a central factor for understanding not only fundamental biological presence but also pathogenesis, and has been the subject of intense study in these contexts. Under healthy physiological conditions, the NF-κB pathway promotes synapse growth and synaptic plasticity in neurons, while in glia, NF-κB signaling can promote pro-inflammatory responses to injury. In addition, NF-κB promotes the maintenance and maturation of B cells regulating gene expression in a majority of diverse signaling pathways. Given this, the protein plays a predominant role in activating the mammalian immune system, where NF-κB-regulated gene expression targets processes of inflammation and host defense. Thus, an understanding of the methodological issues around its detection for localization, quantification, and mechanistic insights should have a broad interest across the molecular neuroscience community. In this review, we summarize the available methods for the proper detection and analysis of NF-κB among various brain tissues, cell types, and subcellular compartments, using both qualitative and quantitative methods. We also summarize the flexibility and performance of these experimental methods for the detection of the protein, accurate quantification in different samples, and the experimental challenges in this regard, as well as suggestions to overcome common challenges.
Collapse
Affiliation(s)
- Marina Mostafizar
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Claudia Cortes-Pérez
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Wanda Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Benedict C. Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
12
|
Zhang S, Luo T, Wang J. Stable Cells with NF-κB-ZsGreen Fused Genes Created by TALEN Editing and Homology Directed Repair for Screening Anti-inflammation Drugs. J Inflamm Res 2021; 14:917-928. [PMID: 33762839 PMCID: PMC7982563 DOI: 10.2147/jir.s298938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background NF-κB is a sequence-specific DNA-binding transcription factor that plays key roles in inflammation and cancer. It is well known that NF-κB is over-activated in these diseases. NF-κB inhibitors are therefore developed as promising drugs for these diseases. However, finding NF-κB inhibitors is dependent on effective screening platforms. Methods For providing an easy and visualizable tool for screening NF-κB inhibitors, and other NF-κB-related studies, this study edited all five genes of NF-κB family (RELA, RELB, CREL, NF-κB1, NF-κB2) in three different cell lines (293T, HepG2, and PANC1) with both TALEN and CRISPR. The edited NF-κB genes were repaired by homology-dependent repair using a linear homologous donor containing ZsGreen coding sequence. The edit efficiency was thus directly evaluated by detecting cellular fluorescence. The editing efficiency was also confirmed by PCR detection of NF-κB-ZsGreen fused genes. Results It was found that all genes were more efficiently edited by TALEN in all cells than CRISPR. The positive cells were then isolated from the TALEN-edited cell pool by flow cytometry. The purified positive cells were finally evaluated by regulating NF-κB activity with a known NF-κB inhibitor, BAY 11-7082, and an NF-κB-targeting artificial microRNA, miR533. The results revealed that all the labeled NF-κB genes responded well to the two kinds of NF-κB activity regulators in all cell lines. Conclusion This study thus obtained 15 cell lines with NF-κB-ZsGreen fused genes, which provide an easy and visualizable tool for screening NF-κB inhibitors and other NF-κB-related studies.
Collapse
Affiliation(s)
- Shuyan Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Tao Luo
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
13
|
Hunter TTJ, Fear D, Lavender P, Spencer J, Peakman M, Ibrahim MAA. Quantitative assessment of NFκB transcription factor activity. J Immunol Methods 2021; 492:112954. [PMID: 33388338 DOI: 10.1016/j.jim.2020.112954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 11/18/2022]
Abstract
The Nuclear Factor Kappa B (NFκB) pathway is an important signalling pathway in the immune system. Single gene defects in the NFκB pathway are described in a number of immunodeficiency diseases. These conditions provide a unique opportunity to investigate the mechanisms of NFκB function and how genetic mutations that disrupt this function lead to human disease. Here we describe a robust method for quantifying small differences in the functional activity of the NFκB pathway. Peripheral blood mononuclear cells from healthy donors were stimulated over several days, with a combination of anti-IgM antibody and multimeric CD40 ligand. Nuclear proteins were thereafter extracted and tested for the ability of activated transcription factors, to bind known NFκB DNA binding motifs. Repeatability experiments showed that the DNA binding Activity can be quantified with an average inter and intra assay coefficient of variation of less than 10% (RelB and p52) and less than 15% (p50 and RelA). In healthy individuals there is a significant increase in the DNA binding activity of NFκB transcription factors in response to stimulation, although the magnitude of this response varies across individuals. The kinetics of the DNA binding activity also differs between the canonical and non-canonical transcription factors. P50 and RelA DNA binding activity responds within hours of stimulation, whilst RelB and p52 response was delayed to more than a day after stimulation. Activation of NFκB signalling in response to B cell specific stimulation, can be precisely measured to distinguish individuals with differences in the functional activity of this pathway. This test may prove to be an important biomarker for investigating the functional impact of genetic variants on NFκB signalling.
Collapse
Affiliation(s)
- Terrence T J Hunter
- King's College London, King's Health Partners, King's College Hospital NHS Foundation Trust, School of Immunology & Microbial Sciences, Denmark Hill, London, UK; Viapath LLP, King's College Hospital, Denmark Hill, London, UK
| | - David Fear
- Immunobiology, School of Immunology & Microbial Sciences, King's College London, UK
| | - Paul Lavender
- Immunobiology, School of Immunology & Microbial Sciences, King's College London, UK
| | - Jo Spencer
- Immunobiology, School of Immunology & Microbial Sciences, King's College London, UK
| | - Mark Peakman
- Immunobiology, School of Immunology & Microbial Sciences, King's College London, UK
| | - Mohammad A A Ibrahim
- King's College London, King's Health Partners, King's College Hospital NHS Foundation Trust, School of Immunology & Microbial Sciences, Denmark Hill, London, UK.
| |
Collapse
|
14
|
The effects of low-dose 2-hydroxyethyl methacrylate on apoptosis and survival in human dental pulp cells. J Formos Med Assoc 2020; 120:1332-1339. [PMID: 33341348 DOI: 10.1016/j.jfma.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND/PURPOSE 2-hydroxyethyl methacrylate (HEMA) is one of the most major components in dentin bonding systems. Uncured HEMA is eluted through the dentin and harmful to pulp cells. The study aimed to investigate the death pattern, morphological change and factors of human dental pulp cells (HDPCs) cultured with low-dose HEMA. METHODS HDPCs were cultured with low-dose concentration of HEMA at 0 mM (control), 0.125 mM, 0.25 mM, 1 mM, 2 mM and 4 mM on Day 3 and 5. The cell morphology was observed with F-actin immunocytochemical staining. The flow cytometry was used to analyze the death pattern. NF-κB and Trx-1 were measured using ELISA kits. RESULTS The major death pattern was early apoptosis and late apoptosis. The morphological characteristics of apoptosis were observed clearly at 4 mM on Day 3 and Day 5. The phosphorylated NF-κB normalized to total NF-κB protein was significantly higher at 2 mM and 4 mM on Day 5. There was no difference of Trx-1 on Day 3, but significantly higher at 0.25 mM and 1 mM on Day 5. The trend line of phosphorylated NF-κB and Trx-1 showed highly positive correlations with HEMA concentration. CONCLUSION The significant cellular morphology characteristics of apoptosis can be observed at higher dose and longer period after exposed to uncured HEMA. The expression of NF-κB was following the ratio of late apoptosis at longer exposure period. Clinically, the remaining dentin thickness should be enough to decrease HEMA concentration and thus to protect pulp cells free from harm.
Collapse
|
15
|
Schweiger MW, Li M, Giovanazzi A, Fleming RL, Tabet EI, Nakano I, Würdinger T, Chiocca EA, Tian T, Tannous BA. Extracellular Vesicles Induce Mesenchymal Transition and Therapeutic Resistance in Glioblastomas through NF-κB/STAT3 Signaling. ADVANCED BIOSYSTEMS 2020; 4:e1900312. [PMID: 32519463 PMCID: PMC7718424 DOI: 10.1002/adbi.201900312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor and despite optimal treatment, long-term survival remains uncommon. GBM can be roughly divided into three different molecular subtypes, each varying in aggressiveness and treatment resistance. Recent evidence shows plasticity between these subtypes in which the proneural (PN) glioma stem-like cells (GSCs) undergo transition into the more aggressive mesenchymal (MES) subtype, leading to therapeutic resistance. Extracellular vesicles (EVs) are membranous structures secreted by nearly every cell and are shown to play a key role in GBM progression by acting as multifunctional signaling complexes. Here, it is shown that EVs derived from MES cells educate PN cells to increase stemness, invasiveness, cell proliferation, migration potential, aggressiveness, and therapeutic resistance by inducing mesenchymal transition through nuclear factor-κB/signal transducer and activator of transcription 3 signaling. The findings could potentially help explore new treatment strategies for GBM and indicate that EVs may also play a role in mesenchymal transition of different tumor types.
Collapse
Affiliation(s)
- Markus W. Schweiger
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Mao Li
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Alberta Giovanazzi
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Renata L. Fleming
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
| | - Elie I. Tabet
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
- Department of Biomedical Engineering, University of South Dakota, 4800 N. Career Ave, Suite 221, Sioux Falls, SD USA
| | - Ichiro Nakano
- Department of Neurosurgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Thomas Würdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Tian Tian
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
| |
Collapse
|
16
|
Tamayo AG, Shukor S, Burr A, Erickson P, Parekkadan B. Tracking leukemic T-cell transcriptional dynamics in vivo with a blood-based reporter assay. FEBS Open Bio 2020; 10:1868-1879. [PMID: 32710494 PMCID: PMC7459418 DOI: 10.1002/2211-5463.12940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
Transcriptional dynamics of cancer cells govern cell fate decisions and are therapeutically actionable drug targets. In this study, we engineered a circulating cancer cell line that secretes a luciferase reporter to capture constitutive and circadian clock-driven transcription dynamics over the course of a day. Engineered human leukemic T cells (Jurkat) were observed to rhythmically secrete luciferase in a continuous flow cell culture system. When transplanted in vivo, engineered leukemic cells caused circadian plasma luciferase activity and had expected pathological signs of leukemic disease. This technique is rapid and noninvasive, requiring only a few microliters of media or blood, and can aid in investigating relationships between in vivo cancer cell signaling and behavior, such as diet or sleep.
Collapse
Affiliation(s)
- Alfred G. Tamayo
- Center for Surgery, Innovation, and BioengineeringDepartment of SurgeryHarvard Medical SchoolMassachusetts General HospitalShriners Hospitals for ChildrenBostonMAUSA
| | - Syukri Shukor
- Center for Surgery, Innovation, and BioengineeringDepartment of SurgeryHarvard Medical SchoolMassachusetts General HospitalShriners Hospitals for ChildrenBostonMAUSA
| | - Alexandra Burr
- Department of Biomedical EngineeringRutgers UniversityPiscatawayNJUSA
| | - Patrick Erickson
- Department of Biomedical EngineeringRutgers UniversityPiscatawayNJUSA
| | - Biju Parekkadan
- Center for Surgery, Innovation, and BioengineeringDepartment of SurgeryHarvard Medical SchoolMassachusetts General HospitalShriners Hospitals for ChildrenBostonMAUSA
- Department of Biomedical EngineeringRutgers UniversityPiscatawayNJUSA
- Harvard Stem Cell InstituteCambridgeMAUSA
| |
Collapse
|
17
|
El-Nikhely N, Karger A, Sarode P, Singh I, Weigert A, Wietelmann A, Stiewe T, Dammann R, Fink L, Grimminger F, Barreto G, Seeger W, Pullamsetti SS, Rapp UR, Savai R. Metastasis-Associated Protein 2 Represses NF-κB to Reduce Lung Tumor Growth and Inflammation. Cancer Res 2020; 80:4199-4211. [PMID: 32816854 DOI: 10.1158/0008-5472.can-20-1158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/05/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022]
Abstract
Although NF-κB is known to play a pivotal role in lung cancer, contributing to tumor growth, microenvironmental changes, and metastasis, the epigenetic regulation of NF-κB in tumor context is largely unknown. Here we report that the IKK2/NF-κB signaling pathway modulates metastasis-associated protein 2 (MTA2), a component of the nucleosome remodeling and deacetylase complex (NuRD). In triple transgenic mice, downregulation of IKK2 (Sftpc-cRaf-IKK2DN) in cRaf-induced tumors in alveolar epithelial type II cells restricted tumor formation, whereas activation of IKK2 (Sftpc-cRaf-IKK2CA) supported tumor growth; both effects were accompanied by altered expression of MTA2. Further studies employing genetic inhibition of MTA2 suggested that in primary tumor growth, independent of IKK2, MTA2/NuRD corepressor complex negatively regulates NF-κB signaling and tumor growth, whereas later dissociation of MTA2/NuRD complex from the promoter of NF-κB target genes and IKK2-dependent positive regulation of MTA2 leads to activation of NF-κB signaling, epithelial-mesenchymal transition, and lung tumor metastasis. These findings reveal a previously unrecognized biphasic role of MTA2 in IKK2/NF-κB-driven primary-to-metastatic lung tumor progression. Addressing the interaction between MTA2 and NF-κB would provide potential targets for intervention of tumor growth and metastasis. SIGNIFICANCE: These findings strongly suggest a prominent role of MTA2 in primary tumor growth, lung metastasis, and NF-κB signaling modulatory functions.
Collapse
Affiliation(s)
- Nefertiti El-Nikhely
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Annika Karger
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Poonam Sarode
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Indrabahadur Singh
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Astrid Wietelmann
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Reinhard Dammann
- Institute for Genetics; member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Ludger Fink
- Institute of Pathology and Cytology, UEGP, Wetzlar, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Guillermo Barreto
- Institute of Molecular Oncology, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany.,Brain and Lung Epigenetics (BLUE), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Soni S Pullamsetti
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Ulf R Rapp
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany. .,Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| |
Collapse
|
18
|
Quercetin improves immune function in Arbor Acre broilers through activation of NF-κB signaling pathway. Poult Sci 2020; 99:906-913. [PMID: 32029167 PMCID: PMC7587811 DOI: 10.1016/j.psj.2019.12.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
Quercetin, the main component of flavonoids, has a wide range of biological actions. Quercetin can be made into a variety of additives for practice, because of the stable chemical structure and water-soluble derivatives. This study was intended to explore the effects of quercetin on immune function and its regulatory mechanism in Arbor Acre broiler to provide a practical basis for improving poultry immune function and figure out the optimum supplementation as functional feed additives. A total of 240 one-day-old healthy Arbor Acre broilers, similar in body weight, were randomly allotted to 4 treatments with 6 replicates, 10 broilers in each replicate and fed with diets containing quercetin at 0, 0.02, 0.04, and 0.06% for 6 wk. Blood and immune organs (spleen, thymus, and bursa) were collected from chickens at the end of the experiment. Growth performance, immune organs indexes, contents of serum immune molecules, splenic T lymphocyte proliferative responses, and expression of immune related genes were evaluated. The results showed that dietary quercetin had no significant effect (P > 0.05) on growth performance of broilers. Compared with control, 0.06% quercetin supplementation in diet significantly increased spleen index and thymus index (P < 0.05). It also increased the secretion of immune molecules including immunoglobulin A (IgA), interleukin-4 (IL-4) (P < 0.001), immunoglobulin M (IgM) (P = 0.007), complement component 4 (C4) (P = 0.001), and tumor necrosis factor-α (TNF-α) (P < 0.05). On the other hand, 0.02% quercetin supplementation significantly increased complement component 3 (C3) (P < 0.05). Additionally, both 0.04 and 0.06% quercetin supplementation significantly increased expression of TNF-α, TNF receptor associated factor-2 (TRAF-2), TNF receptor superfamily member 1B (TNFRSF1B), nuclear factor kappa-B p65 subunit (NF-κBp65), and interferon-γ (IFN-γ) mRNA (P < 0.05), and expression of NF-κB inhibitor-alpha (IκB-α) mRNA were significantly decreased (P < 0.05). Thus, quercetin improved immune function via NF-κB signaling pathway triggered by TNF-α.
Collapse
|
19
|
Pferdehirt L, Ross AK, Brunger JM, Guilak F. A Synthetic Gene Circuit for Self-Regulating Delivery of Biologic Drugs in Engineered Tissues. Tissue Eng Part A 2019; 25:809-820. [PMID: 30968743 DOI: 10.1089/ten.tea.2019.0027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
IMPACT STATEMENT We engineered a synthetic transcription system based on nuclear factor kappa-light-chain-enhancer of activated B cells signaling that can attenuate the effects of the inflammatory cytokine interleukin (IL)-1α in a self-regulating manner. This system responds in a time- and dose-dependent manner to rapidly produce therapeutic levels of IL-1 receptor antagonist (IL-1Ra). The use of lentiviral gene therapy allows this system to be utilized through different transduction methods and in different cell types for a variety of applications. Broadly, this approach may be applicable in developing autoregulated biologic systems for tissue engineering and drug delivery in a range of disease applications.
Collapse
Affiliation(s)
- Lara Pferdehirt
- 1 Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,3 Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri.,4 Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| | - Alison K Ross
- 1 Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,3 Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri.,4 Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| | - Jonathan M Brunger
- 5 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Farshid Guilak
- 1 Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,3 Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri.,4 Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| |
Collapse
|
20
|
Kulemzin SV, Matvienko DA, Sabirov AH, Sokratyan AM, Chernikova DS, Belovezhets TN, Chikaev AN, Taranin AV, Gorchakov AA. Design and analysis of stably integrated reporters for inducible transgene expression in human T cells and CAR NK-cell lines. BMC Med Genomics 2019; 12:44. [PMID: 30871576 PMCID: PMC6417161 DOI: 10.1186/s12920-019-0489-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Cytotoxic activity of T- and NK-cells can be efficiently retargeted against cancer cells using chimeric antigen receptors (CARs) and rTCRs. In the context of solid cancers, use of armored CAR T- and NK cells secreting additional anti-cancer molecules such as cytokines, chemokines, antibodies, BiTEs, inverted cytokine receptors, and checkpoint inhibitors, appears particularly promising, as this may help overcome immunosuppressive tumor microenvironment, attract bystander immune cells, and boost CAR T/NK-cell persistence. Placing the expression of such molecules under the transcriptional control downstream of CAR-mediated T/NK-cell activation offers the advantage of targeted delivery, high local concentration, and reduced toxicity. Several canonic DNA sequences that are known to function as activation-inducible promoters in human T and B cells have been described to date and typically encompass the multimers of NFkB and NFAT binding sites. However, relatively little is known about the DNA sequences that may function as activation-driven switches in the context of NK cells. We set out to compare the functionality of several activation-inducible promoters in primary human T cells, as well as in NK cell lines NK-92 and YT. Methods Lentiviral constructs were engineered to express two fluorescent reporters: mCherry under 4xNFAT, 2xNFkB, 5xNFkB, 10xNFkB, 30xNFkB promoters, as well as two variants of the CD69 promoter, and copGFP under the strong constitutive promoter of the human EF1a gene. Pseudotyped lentiviral particles obtained using these constructs were transduced into primary human T cells and NK-92 and YT cell lines expressing a CAR specific for PSMA. The transgenic cells obtained were activated by CD3/CD28 beads (T cells) or via a CAR (CAR-NK cell lines). Promoter activity before and after activation was assayed using FACS analysis. Results In T cells, the CD69 promoter encompassing CNS1 and CNS2 regions displayed the highest signal/noise ratio. Intriguingly, in the context of CAR-YT cell line neither of the seven promoters tested displayed acceptable activation profile. In CAR-NK-92 cells, the largest fold activation (which was modest) was achieved with the 10xNFkB and 30xNFkB promoters, however its expression was clearly leaky in “resting” non-activated cells. Conclusions Unlike in T cells, the robust activation-driven inducible expression of genetic cassettes in NK cells requires unbiased genome-wide identification of promoter sequences. Electronic supplementary material The online version of this article (10.1186/s12920-019-0489-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergey V Kulemzin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Daria A Matvienko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Artur H Sabirov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Arpine M Sokratyan
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Daria S Chernikova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana N Belovezhets
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Anton N Chikaev
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Aleksandr V Taranin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Andrey A Gorchakov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia. .,Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
21
|
Sustained NF-κB-STAT3 signaling promotes resistance to Smac mimetics in Glioma stem-like cells but creates a vulnerability to EZH2 inhibition. Cell Death Discov 2019; 5:72. [PMID: 30854231 PMCID: PMC6399311 DOI: 10.1038/s41420-019-0155-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma is an incurable and highly aggressive brain tumor. Understanding therapeutic resistance and survival mechanisms driving this tumor type is key to finding effective therapies. Smac mimetics (SM) emerged as attractive cancer therapeutics particularly for tumor populations that are highly resistant to conventional apoptosis-inducing therapies. We evaluated the therapeutic efficacy of SM on Glioma stem-like cells (GSCs) and showed that this family of compounds stimulates an adaptive response triggered by TNFα. Increased expression of TNFα results in a prolonged and sustained activation of NF-κB and STAT3 signaling thus activating several tumor cell resistance mechanisms in GSCs. We show that STAT3 activation is contingent on EZH2 activation and uncover a synergistic lethality between SM and EZH2 inhibitors. Therapeutic inhibition of EZH2 impaired the viability of SM-treated GSCs. Our study outlines the molecular underpinnings of SM resistance in glioblastoma and provides mechanistic insight to overcome this resistance and increase therapeutic efficacy.
Collapse
|
22
|
Photobiomodulation therapy modulates epigenetic events and NF-κB expression in oral epithelial wound healing. Lasers Med Sci 2019; 34:1465-1472. [DOI: 10.1007/s10103-019-02745-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/06/2019] [Indexed: 01/13/2023]
|
23
|
Hell D. Self-Adjusting Cytokine Neutralizer Cells as a Closed-Loop Delivery System of Anti-Inflammatory Biologicals. ACS Synth Biol 2018; 7:2518-2528. [PMID: 30358982 DOI: 10.1021/acssynbio.8b00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytokines tumor necrosis factor α (TNFα) and interleukin 1 β (IL-1β) are both strong NF-κB activators and some of the first cytokines to be released in an inflammatory process. TNFα and IL-1β are present in many autoimmune diseases, such as rheumatoid arthritis (RA). TNFα and IL-1β-blocking therapies are quite successful and established in the treatment of RA, but may also be promising in other diseases. For the treatment of recurring autoimmune diseases, strong controlled sensor-effector cells inhibiting TNFα or IL-1β appear highly predestined. Such cells detect a disease biomarker and autonomously react with the dose-dependent production of therapeutic proteins. Hence, we aim to harness and assemble the interactions of TNFα, IL-1β, and NF-κB, which are an ideal match for synthetic biology-based circuits to rewire the transmission to approved TNFα- or IL-1β-blocking biologicals. Considering the high impact of environmental influences on the dynamics of cell-based systems, we established closed-loop controllable cytokine neutralizer cells, monitoring cytokine levels and autonomously delivering powerful biologicals. This real-time processing system may provide dose-dependent drug delivery, which may be tailored for prospective cell and gene therapies against RA, and may offer a more personalized medicine than calculated drug dosing based on body weight.
Collapse
Affiliation(s)
- Dennis Hell
- University Hospital Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
24
|
Volak A, LeRoy SG, Natasan JS, Park DJ, Cheah PS, Maus A, Fitzpatrick Z, Hudry E, Pinkham K, Gandhi S, Hyman BT, Mu D, GuhaSarkar D, Stemmer-Rachamimov AO, Sena-Esteves M, Badr CE, Maguire CA. Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery. J Neurooncol 2018; 139:293-305. [PMID: 29767307 PMCID: PMC6454875 DOI: 10.1007/s11060-018-2889-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Abstract
The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.
Collapse
Affiliation(s)
- Adrienn Volak
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Stanley G LeRoy
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Jeya Shree Natasan
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - David J Park
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Pike See Cheah
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Andreas Maus
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Fitzpatrick
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Eloise Hudry
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Kelsey Pinkham
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Sheetal Gandhi
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Dakai Mu
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Christian E Badr
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.
| | - Casey A Maguire
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Pseudopterosin Inhibits Proliferation and 3D Invasion in Triple-Negative Breast Cancer by Agonizing Glucocorticoid Receptor Alpha. Molecules 2018; 23:molecules23081992. [PMID: 30103404 PMCID: PMC6222322 DOI: 10.3390/molecules23081992] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/18/2022] Open
Abstract
Pseudopterosin, produced by the sea whip of the genus Antillogorgia, possesses a variety of promising biological activities, including potent anti-inflammatory effects. However, few studies examined pseudopterosin in the treatment of cancer cells and, to our knowledge, the ability to inhibit triple-negative breast cancer (TNBC) proliferation or invasion has not been explored. Thus, we evaluated the as-yet unknown mechanism of action of pseudopterosin: Pseudopterosin was able to inhibit proliferation of TNBC. Interestingly, analyzing breast cancer cell proliferation after knocking down glucocorticoid receptor α (GRα) revealed that the antiproliferative effects of pseudopterosin were significantly inhibited when GRα expression was reduced. Furthermore, pseudopterosin inhibited the invasion of MDA-MB-231 3D tumor spheroids embedded in an extracellular-like matrix. Remarkably, the knockdown of GRα in 3D tumor spheroids revealed increased ability of cells to invade the surrounding matrix. In a coculture, encompassing peripheral blood mononuclear cells (PBMC) and MDA-MB-231 cells, and the production of interleukin 6 (IL-6) and interleukin 8 (IL-8) significantly increased compared to a monoculture. Notably, pseudopterosin indicated to block cytokine elevation, representing key players in tumor progression in the coculture. Thus, our results reveal pseudopterosin treatment as a potential novel approach in TNBC therapy.
Collapse
|
26
|
Hui Mingalone CK, Liu Z, Hollander JM, Garvey KD, Gibson AL, Banks RE, Zhang M, McAlindon TE, Nielsen HC, Georgakoudi I, Zeng L. Bioluminescence and second harmonic generation imaging reveal dynamic changes in the inflammatory and collagen landscape in early osteoarthritis. J Transl Med 2018; 98:656-669. [PMID: 29540857 PMCID: PMC7735372 DOI: 10.1038/s41374-018-0040-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is a leading cause of chronic disability whose mechanism of pathogenesis is largely elusive. Local inflammation is thought to play a key role in OA progression, especially in injury-associated OA. While multiple inflammatory cytokines are detected, the timing and extent of overall inflammatory activities in early OA and the manner by which joint inflammation correlates with cartilage structural damage are still unclear. We induced OA via destabilization of the medial meniscus (DMM) in NFκB luciferase reporter mice, whose bioluminescent signal reflects the activity of NFκB, a central mediator of inflammation. Bioluminescence imaging data showed that DMM and sham control joints had a similar surge of inflammation at 1-week post-surgery, but the DMM joint exhibited a delay in resolution of inflammation in subsequent weeks. A similar trend was observed with synovitis, which we found to be mainly driven by synovial cell density and inflammatory infiltration rather than synovial lining thickness. Interestingly, an association between synovitis and collagen structural damage was observed in early OA. Using Second Harmonic Generation (SHG) imaging, we analyzed collagen fiber organization in articular cartilage. Zonal differences in collagen fiber thickness and organization were observed as soon as OA initiated after DMM surgery, and persisted over time. Even at 1-week post-surgery, the DMM joint showed a decrease in collagen fiber thickness in the deep zone and an increase in collagen fiber disorganization in the superficial zone. Since we were able detect and quantify collagen structural changes very early in OA development by SHG imaging, we concluded that SHG imaging is a highly sensitive tool to evaluate pathological changes in OA. In summary, this study uncovered a dynamic profile of inflammation and joint cartilage damage during OA initiation and development, providing novel insights into OA pathology.
Collapse
Affiliation(s)
- Carrie K. Hui Mingalone
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Judith M. Hollander
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Kirsten D. Garvey
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Averi L. Gibson
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Rose E. Banks
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ming Zhang
- Division of Rheumatology, Tufts Medical Center, Boston, MA 02111, USA
| | | | - Heber C. Nielsen
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Li Zeng
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA. .,Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA. .,Department of Orthopaedics, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
27
|
Hu J, Chen X, Zhang X, Yuan X, Yang M, Dai H, Yang W, Zhou Q, Wen W, Wang Q, Qin W, Zhao A. A fusion-protein approach enabling mammalian cell production of tumor targeting protein domains for therapeutic development. Protein Sci 2018; 27:933-944. [PMID: 29500915 PMCID: PMC5916118 DOI: 10.1002/pro.3399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/11/2018] [Accepted: 03/01/2018] [Indexed: 02/05/2023]
Abstract
A single chain Fv fragment (scFv) is a fusion of the variable regions of heavy (VH ) and light (VL ) chains of immunoglobulins. They are important elements of chimeric antigen receptors for cancer therapy. We sought to produce a panel of 16 extracellular protein domains of tumor markers for use in scFv yeast library screenings. A series of vectors comprising various combinations of expression elements was made, but expression was unpredictable and more than half of the protein domains could not be produced using any of the constructs. Here we describe a novel fusion expression system based on mouse TEM7 (tumor endothelial marker 7), which could facilitate protein expression. With this approach we could produce all but one of the tumor marker domains that could not otherwise be expressed. In addition, we demonstrated that the tumor associated antigen hFZD10 produced as a fusion protein with mTEM7 could be used to enrich scFv antibodies from a yeast display library. Collectively our study demonstrates the potential of specific fusion proteins based on mTEM7 in enabling mammalian cell production of tumor targeting protein domains for therapeutic development.
Collapse
Affiliation(s)
- Jia Hu
- Lung Cancer Research CenterWest China Hospital, Sichuan UniversityChengduChina
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Xiang Chen
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Xuhua Zhang
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Xiaopeng Yuan
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Zhujiang Hospital, SouthernMedical UniversityGuangzhouChina
| | - Mingjuan Yang
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Hui Dai
- Xinjiang Karamay Central HospitalKaramay CityXinjiangChina
| | - Wei Yang
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Qinghua Zhou
- Lung Cancer Research CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Weihong Wen
- State Key Laboratory of Cancer Biology, Department of ImmunologyXijing Hospital, Fourth Military Medical UniversityChinaXi'an
| | - Qirui Wang
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
- College of Traditional Chinese MedicineSouthernMedical UniversityGuang DongChina
| | - Weijun Qin
- Department of UrologyXijing Hospital, Fourth Military Medical UniversityChinaXi'an
| | - Aizhi Zhao
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
28
|
Teng J, da Hora CC, Kantar RS, Nakano I, Wakimoto H, Batchelor TT, Chiocca EA, Badr CE, Tannous BA. Dissecting inherent intratumor heterogeneity in patient-derived glioblastoma culture models. Neuro Oncol 2018; 19:820-832. [PMID: 28062830 DOI: 10.1093/neuonc/now253] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Molecular profile of glioblastoma multiforme (GBM) revealed 4 subtypes, 2 of which, proneural and mesenchymal, have been predominantly observed, with the latter displaying a more aggressive phenotype and increased therapeutic resistance. Single-cell RNA sequencing revealed that multiple subtypes actually reside within the same tumor, suggesting cellular heterogeneity in GBM. Further, plasticity between these 2 subtypes is observed during tumor recurrence and in response to radiation therapy. Methods Patient-derived GBM stemlike cells were cultured as neurospheres. These cells were differentiated in serum by attaching to the culture dishes. The "floating" cells that were not attached/differentiated were harvested from the conditioned medium. The characteristics of these cells were studied with limiting dilution assays and immunofluorescence staining. Cell growth and nuclear factor-kappaB (NFkB) activation were monitored using bioluminescent assays as well as quantitative polymerase chain reaction and western blotting. In vivo tumorigenesis was evaluated in orthotopic xenograft models using bioluminescence imaging. Results Patient-derived GBM stemlike cells undergo differentiation by attaching to the culture dish in serum-containing medium. We observed that a small subset of these cells escape this adhesion/differentiation and grow as floating cells. These cells displayed enhanced cancer stem cell properties with a molecular and phenotypic mesenchymal signature, including resistance to radiation and targeted therapies, a more aggressive tumor formation, and NFkB activation. Conclusion Our results endorse inherent intratumor molecular subtype heterogeneity in glioblastoma and provide a valuable approach to study phenotypic plasticity, which could be applied to find novel therapeutic strategies to eradicate this aggressive tumor and can be extended to other cancer types.
Collapse
Affiliation(s)
- Jian Teng
- Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Cintia C da Hora
- Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Rami S Kantar
- Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Ichiro Nakano
- Department of Neurological Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tracy T Batchelor
- Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Christian E Badr
- Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Kiełbus M, Czapiński J, Odrzywolski A, Stasiak G, Szymańska K, Kałafut J, Kos M, Giannopoulos K, Stepulak A, Rivero-Müller A. Optogenetics in cancer drug discovery. Expert Opin Drug Discov 2018; 13:459-472. [DOI: 10.1080/17460441.2018.1437138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Grażyna Stasiak
- Department of Experimental Haematooncology, Medical University of Lublin, Lublin, Poland
| | - Kamila Szymańska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Michał Kos
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Haematooncology, Medical University of Lublin, Lublin, Poland
- Department of Hematology, St. John’s Cancer Center, Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
30
|
Gabner S, Hlavaty J, Velde K, Renner M, Jenner F, Egerbacher M. Inflammation-induced transgene expression in genetically engineered equine mesenchymal stem cells. J Gene Med 2018; 18:154-64. [PMID: 27272202 DOI: 10.1002/jgm.2888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Osteoarthritis, a chronic and progressive degenerative joint disorder, ranks amongst the top five causes of disability. Given the high incidence, associated socioeconomic costs and the absence of effective disease-modifying therapies of osteoarthritis, cell-based treatments offer a promising new approach. Owing to their paracrine, differentiation and self-renewal abilities, mesenchymal stem cells (MSCs) have great potential for regenerative medicine, which might be further enhanced by targeted gene therapy. Hence, the development of systems allowing transgene expression, particularly when regulated by natural disease-dependent occuring substances, is of high interest. METHODS Bone marrow-isolated equine MSCs were stably transduced with an HIV-1 based lentiviral vector expressing the luciferase gene under control of an inducible nuclear factor κB (NFκB)-responsive promoter. Marker gene expression was analysed by determining luciferase activity in transduced cells stimulated with different concentrations of interleukin (IL)-1β or tumour necrosis factor (TNF)α. RESULTS A dose-dependent increase in luciferase expression was observed in transduced MSCs upon cytokine stimulation. The induction effect was more potent in cells treated with TNFα compared to those treated with IL-1β. Maximum transgene expression was obtained after 48 h of stimulation and the same time was necessary to return to baseline luciferase expression levels after withdrawal of the stimulus. Repeated cycles of induction allowed on-off modulation of transgene expression without becoming refractory to induction. The NFκB-responsive promoter retained its inducibility also in chondrogenically differentiated MSC/Luc cells. CONCLUSIONS The results of the present study demonstrate that on demand transgene expression from the NFκB-responsive promoter using naturally occurring inflammatory cytokines can be induced in undifferentiated and chondrogenically differentiated equine MSCs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Simone Gabner
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Juraj Hlavaty
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karsten Velde
- Equine University Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Matthias Renner
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Florien Jenner
- Equine University Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Egerbacher
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
31
|
Sperlich J, Kerr R, Teusch N. The Marine Natural Product Pseudopterosin Blocks Cytokine Release of Triple-Negative Breast Cancer and Monocytic Leukemia Cells by Inhibiting NF-κB Signaling. Mar Drugs 2017; 15:E262. [PMID: 28832545 PMCID: PMC5618401 DOI: 10.3390/md15090262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 12/30/2022] Open
Abstract
Pseudopterosins are a group of marine diterpene glycosides which possess an array of biological activities including anti-inflammatory effects. However, despite the striking in vivo anti-inflammatory potential, the underlying in vitro molecular mode of action remains elusive. To date, few studies have examined pseudopterosin effects on cancer cells. However, to our knowledge, no studies have explored their ability to block cytokine release in breast cancer cells and the respective bidirectional communication with associated immune cells. The present work demonstrates that pseudopterosins have the ability to block the key inflammatory signaling pathway nuclear factor κB (NF-κB) by inhibiting the phosphorylation of p65 and IκB (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor) in leukemia and in breast cancer cells, respectively. Blockade of NF-κB leads to subsequent reduction of the production of the pro-inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα) and monocyte chemotactic protein 1 (MCP-1). Furthermore, pseudopterosin treatment reduces cytokine expression induced by conditioned media in both cell lines investigated. Interestingly, the presence of pseudopterosins induces a nuclear translocation of the glucocorticoid receptor. When knocking down the glucocorticoid receptor, the natural product loses the ability to block cytokine expression. Thus, we hypothesize that pseudopterosins inhibit NF-κB through activation of the glucocorticoid receptor in triple negative breast cancer.
Collapse
Affiliation(s)
- Julia Sperlich
- Bio-Pharmaceutical Chemistry & Molecular Pharmacology, Faculty of Applied Natural Sciences, Technische Hochschule Koeln, Chempark, 51368 Leverkusen, Germany.
| | - Russell Kerr
- Department of Chemistry, and Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Nicole Teusch
- Bio-Pharmaceutical Chemistry & Molecular Pharmacology, Faculty of Applied Natural Sciences, Technische Hochschule Koeln, Chempark, 51368 Leverkusen, Germany.
| |
Collapse
|
32
|
Vaine CA, Shin D, Liu C, Hendriks WT, Dhakal J, Shin K, Sharma N, Bragg DC. X-linked Dystonia-Parkinsonism patient cells exhibit altered signaling via nuclear factor-kappa B. Neurobiol Dis 2016; 100:108-118. [PMID: 28017799 DOI: 10.1016/j.nbd.2016.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/17/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022] Open
Abstract
X-linked Dystonia-Parkinsonism (XDP) is a progressive neurodegenerative disease involving the loss of medium spiny neurons within the striatum. An XDP-specific haplotype has been identified, consisting of seven sequence variants which cluster around the human TAF1 gene, but a direct relationship between any of these variants and disease pathogenesis has not yet been demonstrated. Because the pathogenic gene lesion remains unclear, it has been difficult to predict cellular pathways which are affected in XDP cells. To address that issue, we assayed expression of defined gene sets in XDP vs. control fibroblasts to identify networks of functionally-related transcripts which may be dysregulated in XDP patient cells. That analysis derived a 51-gene signature distinguishing XDP vs. control fibroblasts which mapped strongly to nuclear factor-kappa B (NFκB), a transcription factor pathway also implicated in the pathogenesis of other neurodegenerative diseases, including Parkinson's (PD) and Huntington's disease (HD). Constitutive and TNFα-evoked NFκB signaling was further evaluated in XDP vs. control fibroblasts based on luciferase reporter activity, DNA binding of NFκB subunits, and endogenous target gene transcription. Compared to control cells, XDP fibroblasts exhibited decreased basal NFκB activity and decreased levels of the active NFκB p50 subunit, but increased target gene expression in response to TNFα. NFκB signaling was further examined in neural stem cells differentiated from XDP and control induced pluripotent stem cell (iPSC) lines, revealing a similar pattern of increased TNFα responses in the patient lines compared to controls. These data indicate that an NFκB signaling phenotype is present in both patient fibroblasts and neural stem cells, suggesting this pathway as a site of dysfunction in XDP.
Collapse
Affiliation(s)
- Christine A Vaine
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - David Shin
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Christina Liu
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - William T Hendriks
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Jyotsna Dhakal
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Kyle Shin
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - D Cristopher Bragg
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
33
|
Kuri P, Ellwanger K, Kufer TA, Leptin M, Bajoghli B. A high-sensitivity bi-directional reporter to monitor NF-κB activity in cell culture and zebrafish in real time. J Cell Sci 2016; 130:648-657. [PMID: 27980067 DOI: 10.1242/jcs.196485] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor (NF)-κB transcription factors play major roles in numerous biological processes including development and immunity. Here, we engineered a novel bi-directional NF-κB-responsive reporter, pSGNluc, in which a high-affinity NF-κB promoter fragment simultaneously drives expression of luciferase and GFP. Treatment with TNFα (also known as TNF) induced a strong, dose-dependent luciferase signal in cell culture. The degree of induction over background was comparable to that of other NF-κB-driven luciferase reporters, but the absolute level of expression was at least 20-fold higher. This extends the sensitivity range of otherwise difficult assays mediated exclusively by endogenously expressed receptors, as we show for Nod1 signaling in HEK293 cells. To measure NF-κB activity in the living organism, we established a transgenic zebrafish line carrying the pSGNluc construct. Live in toto imaging of transgenic embryos revealed the activation patterns of NF-κB signaling during embryonic development and as responses to inflammatory stimuli. Taken together, by integrating qualitative and quantitative NF-κB reporter activity, pSGNluc is a valuable tool for studying NF-κB signaling at high spatiotemporal resolution in cultured cells and living animals that goes beyond the possibilities provided by currently available reporters.
Collapse
Affiliation(s)
- Paola Kuri
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - Maria Leptin
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany .,Institute of Genetics, University of Cologne, Zülpicherstrasse 47a, 50674 Cologne, Germany.,EMBO, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Baubak Bajoghli
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
34
|
Mann JK, Shen J, Park S. Enhancement of Muramyl Dipeptide-Dependent NOD2 Activity by a Self-Derived Peptide. J Cell Biochem 2016; 118:1227-1238. [PMID: 27791288 DOI: 10.1002/jcb.25778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022]
Abstract
Nucleotide-binding and oligomerization domain like receptors (NLR) are pattern recognition receptors used to provide rapid immune response by detecting intracellular pathogen-associated molecules. Loss of NLR activity is implicated in genetic disorders, disruption of adaptive immunity, and chronic inflammation. One NLR protein, NOD2, is frequently mutated in Crohn's disease (CD), which is an inflammatory disease of the gastrointestinal tract. Three commonly occurring CD-associated NOD2 mutations, R702W, G908R, and L1007fs, are clustered near the regulatory domain, leucine rich region (LRR), and lowers the activity of NOD2 in response to muramyl dipeptide (MDP). As LRR is also the ligand binding domain, this suggests that the mutations either affect the binding of MDP or how the molecule responds to ligand binding. To model the role of R702 in ligand-dependent activation of NOD2, we used homology modeling to map the residue R702 to the interface between the oligomerization domain and LRR. We show that a peptide derived from NOD2(697-718) binds LRR in vitro, and upon co-expressing or importing the peptide into HEK293 expressing NOD2, there is an increase in the MDP-dependent NOD2 activity. The study thus suggests that the R702W mutation interferes with the conformational changes needed for MDP binding and activation. J. Cell. Biochem. 118: 1227-1238, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jasdeep K Mann
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, 14260
| | - Jiaochen Shen
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, 14260
| | - Sheldon Park
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, 14260
| |
Collapse
|
35
|
Kim SH, Ezhilarasan R, Phillips E, Gallego-Perez D, Sparks A, Taylor D, Ladner K, Furuta T, Sabit H, Chhipa R, Cho JH, Mohyeldin A, Beck S, Kurozumi K, Kuroiwa T, Iwata R, Asai A, Kim J, Sulman EP, Cheng SY, Lee LJ, Nakada M, Guttridge D, DasGupta B, Goidts V, Bhat KP, Nakano I. Serine/Threonine Kinase MLK4 Determines Mesenchymal Identity in Glioma Stem Cells in an NF-κB-dependent Manner. Cancer Cell 2016; 29:201-13. [PMID: 26859459 PMCID: PMC4837946 DOI: 10.1016/j.ccell.2016.01.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 06/26/2015] [Accepted: 01/11/2016] [Indexed: 12/24/2022]
Abstract
Activation of nuclear factor κB (NF-κB) induces mesenchymal (MES) transdifferentiation and radioresistance in glioma stem cells (GSCs), but molecular mechanisms for NF-κB activation in GSCs are currently unknown. Here, we report that mixed lineage kinase 4 (MLK4) is overexpressed in MES but not proneural (PN) GSCs. Silencing MLK4 suppresses self-renewal, motility, tumorigenesis, and radioresistance of MES GSCs via a loss of the MES signature. MLK4 binds and phosphorylates the NF-κB regulator IKKα, leading to activation of NF-κB signaling in GSCs. MLK4 expression is inversely correlated with patient prognosis in MES, but not PN high-grade gliomas. Collectively, our results uncover MLK4 as an upstream regulator of NF-κB signaling and a potential molecular target for the MES subtype of glioblastomas.
Collapse
Affiliation(s)
- Sung-Hak Kim
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Emma Phillips
- Division of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Daniel Gallego-Perez
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA; Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda Sparks
- Department of Neurosurgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - David Taylor
- Department of Neurosurgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Katherine Ladner
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Takuya Furuta
- Department of Neurosurgery, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Kanazawa University, Kanazawa 920-8641, Japan
| | - Rishi Chhipa
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45242, USA
| | - Ju Hwan Cho
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed Mohyeldin
- Department of Neurosurgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Samuel Beck
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kazuhiko Kurozumi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshihiko Kuroiwa
- Department of Neurosurgery, Osaka Medical College, Osaka 569-8686, Japan
| | - Ryoichi Iwata
- Department of Neurosurgery, Kansai Medical University, Osaka 573-1191, Japan
| | - Akio Asai
- Department of Neurosurgery, Kansai Medical University, Osaka 573-1191, Japan
| | - Jonghwan Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology & Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - L James Lee
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA; Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, OH 43210, USA; Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Kanazawa University, Kanazawa 920-8641, Japan
| | - Denis Guttridge
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Biplab DasGupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45242, USA
| | - Violaine Goidts
- Division of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
36
|
Quaglio AEV, Castilho ACS, Di Stasi LC. Experimental evidence of heparanase, Hsp70 and NF-κB gene expression on the response of anti-inflammatory drugs in TNBS-induced colonic inflammation. Life Sci 2015; 141:179-87. [PMID: 26434698 DOI: 10.1016/j.lfs.2015.09.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022]
Abstract
AIM Etiopathogenesis of inflammatory bowel disease is unclear and results from a complex interplay of genetic, microbial, environmental and immune factors. Elucidating the mechanisms that drive IBD depends on the detailed characterization of human inflammatory mediators in animal models. Therefore, we studied how intestinal inflammation affects heparanase, NF-κB and Hsp70 gene expression in rats, and if current intestinal anti-inflammatory drugs (sulphasalazine, prednisolone and azathioprine) act on these expressions. Moreover, we investigated the relationships among these genes with colonic cytokines levels (IL-1β, TNF-α, IL-6, INF-γ and IL-10) and oxidative stress that have fundamental role in IBD. MATERIAL AND METHODS Macroscopic parameters (diarrhea, extension of lesion, colonic weight/length ratio and damage score), biochemical markers (myeloperoxidase and alkaline phosphatase activities, and glutathione, IL-1β, TNF-α, IL-6, INF-γ and IL-10 levels), gene expressions (heparanase, NF-κB and Hsp70), and microscopic evaluations (optic, electronic scanning and transmission microscopic) were performed in rats. KEY FINDINGS Expression of heparanase, Hsp70 and NF-κB and oxidative stress were increased by inflammatory process and differentially modulated by sulphasalazine, prednisolone and azathioprine treatments. Protective effects of drugs were also related to differential modulation of cytokine changes induced by inflammatory process, showing different mechanisms to control inflammation. SIGNIFICANCE Heparanase, NF-κB and Hsp70 gene expression participate in the inflammatory response induced by TNBS and represent pharmacological targets of the intestinal anti-inflammatory drugs. In addition, current drugs used to treat IBD (sulphasalazine, prednisolone and azathioprine) differentially modulate heparanase, NF-κB and Hsp70 gene expression, cytokine production and oxidative stress.
Collapse
Affiliation(s)
- Ana E V Quaglio
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Pharmacology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo CEP 18618-000, Brazil
| | - Anthony C S Castilho
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Pharmacology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo CEP 18618-000, Brazil
| | - Luiz C Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Pharmacology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo CEP 18618-000, Brazil.
| |
Collapse
|
37
|
Minami SS, Shen V, Le D, Krabbe G, Asgarov R, Perez-Celajes L, Lee CH, Li J, Donnelly-Roberts D, Gan L. Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with α7 nicotinic acetylcholine receptor agonists. Biochem Pharmacol 2015. [PMID: 26206194 DOI: 10.1016/j.bcp.2015.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mutations in the progranulin gene cause frontotemporal dementia (FTD), a debilitating neurodegenerative disease that involves atrophy of the frontal and temporal lobes and affects personality, behavior, and language. Progranulin-deficient mouse models of FTD exhibit deficits in compulsive and social behaviors reminiscent of patients with FTD, and develop excessive microgliosis and increased release of inflammatory cytokines. Activation of nicotinic acetylcholine receptors (nAChRs) by nicotine or specific α7 nAChR agonists reduces neuroinflammation. Here, we investigated whether activation of nAChRs by nicotine or α7 agonists improved the excessive inflammatory and behavioral phenotypes of a progranulin-deficient FTD mouse model. We found that treatment with selective α7 agonists, PHA-568487 or ABT-107, strongly suppressed the activation of NF-κB in progranulin-deficient cells. Treatment with ABT-107 also reduced microgliosis, decreased TNFα levels, and reduced compulsive behavior in progranulin-deficient mice. Collectively, these data suggest that targeting activation of the α7 nAChR pathway may be beneficial in decreasing neuroinflammation and reversing some of the behavioral deficits observed in progranulin-deficient FTD.
Collapse
Affiliation(s)
- S Sakura Minami
- Gladstone Institute of Neurological Diseases, 1650 Owens St., San Francisco, CA 94158, United States; Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Vivian Shen
- Gladstone Institute of Neurological Diseases, 1650 Owens St., San Francisco, CA 94158, United States
| | - David Le
- Gladstone Institute of Neurological Diseases, 1650 Owens St., San Francisco, CA 94158, United States
| | - Grietje Krabbe
- Gladstone Institute of Neurological Diseases, 1650 Owens St., San Francisco, CA 94158, United States; Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Rustam Asgarov
- Gladstone Institute of Neurological Diseases, 1650 Owens St., San Francisco, CA 94158, United States; Graduate Program in Neurochemistry and Molecular Neurobiology, Stockholm University, Sweden
| | - Liberty Perez-Celajes
- Gladstone Institute of Neurological Diseases, 1650 Owens St., San Francisco, CA 94158, United States
| | | | - Jinhe Li
- AbbVie Inc., North Chicago, IL 60064, United States
| | | | - Li Gan
- Gladstone Institute of Neurological Diseases, 1650 Owens St., San Francisco, CA 94158, United States; Department of Neurology, University of California, San Francisco, CA 94158, United States.
| |
Collapse
|
38
|
Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 2015; 6:7029. [PMID: 25967391 PMCID: PMC4435621 DOI: 10.1038/ncomms8029] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Accurate spatiotemporal assessment of extracellular vesicle (EV) delivery and cargo RNA translation requires specific and robust live-cell imaging technologies. Here we engineer optical reporters to label multiple EV populations for visualization and tracking of tumour EV release, uptake and exchange between cell populations both in culture and in vivo. Enhanced green fluorescence protein (EGFP) and tandem dimer Tomato (tdTomato) were fused at NH2-termini with a palmitoylation signal (PalmGFP, PalmtdTomato) for EV membrane labelling. To monitor EV-RNA cargo, transcripts encoding PalmtdTomato were tagged with MS2 RNA binding sequences and detected by co-expression of bacteriophage MS2 coat protein fused with EGFP. By multiplexing fluorescent and bioluminescent EV membrane reporters, we reveal the rapid dynamics of both EV uptake and translation of EV-delivered cargo mRNAs in cancer cells that occurred within 1-hour post-horizontal transfer between cells. These studies confirm that EV-mediated communication is dynamic and multidirectional between cells with delivery of functional mRNA. Extracellular vesicles (EVs) act as a conduit for intercellular communication through the exchange of cellular materials without direct cell-to-cell contacts. Here the authors develop a multiplexed reporter system that allows monitoring of EV exchange, cargo delivery and protein translation between different cell populations.
Collapse
|
39
|
Orabi AI, Sah S, Javed TA, Lemon KL, Good ML, Guo P, Xiao X, Prasadan K, Gittes GK, Jin S, Husain SZ. Dynamic imaging of pancreatic nuclear factor κB (NF-κB) activation in live mice using adeno-associated virus (AAV) infusion and bioluminescence. J Biol Chem 2015; 290:11309-20. [PMID: 25802340 PMCID: PMC4416837 DOI: 10.1074/jbc.m115.647933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor κB (NF-κB) is an important signaling molecule that plays a critical role in the development of acute pancreatitis. Current methods for examining NF-κB activation involve infection of an adenoviral NF-κB-luciferase reporter into cell lines or electrophoretic mobility shift assay of lysate. The use of adeno-associated viruses (AAVs) has proven to be an effective method of transfecting whole organs in live animals. We examined whether intrapancreatic duct infusion of AAV containing an NF-κB-luciferase reporter (AAV-NF-κB-luciferase) can reliably measure pancreatic NF-κB activation. We confirmed the infectivity of the AAV-NF-κB-luciferase reporter in HEK293 cells using a traditional luciferase readout. Mice were infused with AAV-NF-κB-luciferase 5 weeks before induction of pancreatitis (caerulein, 50 μg/kg). Unlike transgenic mice that globally express NF-κB-luciferase, AAV-infused mice showed a 15-fold increase in pancreas-specific NF-κB bioluminescence following 12 h of caerulein compared with baseline luminescence (p < 0.05). The specificity of the NF-κB-luciferase signal to the pancreas was confirmed by isolating the pancreas and adjacent organs and observing a predominant bioluminescent signal in the pancreas compared with liver, spleen, and stomach. A complementary mouse model of post-ERCP-pancreatitis also induced pancreatic NF-κB signals. Taken together these data provide the first demonstration that NF-κB activation can be examined in a live, dynamic fashion during pancreatic inflammation. We believe this technique offers a valuable tool to study real-time activation of NF-κB in vivo.
Collapse
Affiliation(s)
| | - Swati Sah
- From the Department of Pediatrics and
| | | | | | | | - Ping Guo
- Surgery, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Xiangwei Xiao
- Surgery, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Krishna Prasadan
- Surgery, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - George K Gittes
- Surgery, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | | | | |
Collapse
|
40
|
HT-29 and Caco-2 reporter cell lines for functional studies of nuclear factor kappa B activation. Mediators Inflamm 2015; 2015:860534. [PMID: 25861164 PMCID: PMC4377483 DOI: 10.1155/2015/860534] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 01/12/2023] Open
Abstract
The NF-κB is a transcription factor which plays a key role in regulating biological processes. In response to signals, NF-κB activation occurs via phosphorylation of its inhibitor, which dissociates from the NF-κB dimer allowing the translocation to the nucleus, inducing gene expression. NF-κB activation has direct screening applications for drug discovery for several therapeutic indications. Thus, pathway-specific reporter cell systems appear as useful tools to screen and unravel the mode of action of probiotics and natural and synthetic compounds. Here, we describe the generation, characterization, and validation of human epithelial reporter cell lines for functional studies of NF-κB activation by different pro- and anti-inflammatory agents. Caco-2 and HT-29 cells were transfected with a pNF-κB-hrGFP plasmid which contains the GFP gene under the control of NF-κB binding elements. Three proinflammatory cytokines (TNF-α, IL-1β, and LPS) were able to activate the reporter systems in a dose-response manner, which corresponds to the activation of the NF-κB signaling pathway. Finally, the reporter cell lines were validated using lactic acid bacteria and a natural compound. We have established robust Caco-2-NF-κB-hrGFP and HT-29-NF-κB-hrGFP reporter cell lines which represent a valuable tool for primary screening and identification of bacterial strains and compounds with a potential therapeutic interest.
Collapse
|
41
|
Gaikwad SM, Thakur B, Sakpal A, Singh RK, Ray P. Differential activation of NF-κB signaling is associated with platinum and taxane resistance in MyD88 deficient epithelial ovarian cancer cells. Int J Biochem Cell Biol 2015; 61:90-102. [PMID: 25681684 DOI: 10.1016/j.biocel.2015.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/23/2015] [Accepted: 02/03/2015] [Indexed: 12/18/2022]
Abstract
Development of chemoresistance is a major impediment to successful treatment of patients suffering from epithelial ovarian carcinoma (EOC). Among various molecular factors, presence of MyD88, a component of TLR-4/MyD88 mediated NF-κB signaling in EOC tumors is reported to cause intrinsic paclitaxel resistance and poor survival. However, 50-60% of EOC patients do not express MyD88 and one-third of these patients finally relapses and dies due to disease burden. The status and role of NF-κB signaling in this chemoresistant MyD88(negative) population has not been investigated so far. Using isogenic cellular matrices of cisplatin, paclitaxel and platinum-taxol resistant MyD88(negative) A2780 ovarian cancer cells expressing a NF-κB reporter sensor, we showed that enhanced NF-κB activity was required for cisplatin but not for paclitaxel resistance. Immunofluorescence and gel mobility shift assay demonstrated enhanced nuclear localization of NF-κB and subsequent binding to NF-κB response element in cisplatin resistant cells. The enhanced NF-κB activity was measurable from in vivo tumor xenografts by dual bioluminescence imaging. In contrast, paclitaxel and the platinum-taxol resistant cells showed down regulation in NF-κB activity. Intriguingly, silencing of MyD88 in cisplatin resistant and MyD88(positive) TOV21G and SKOV3 cells showed enhanced NF-κB activity after cisplatin but not after paclitaxel or platinum-taxol treatments. Our data thus suggest that NF-κB signaling is important for maintenance of cisplatin resistance but not for taxol or platinum-taxol resistance in absence of an active TLR-4/MyD88 receptor mediated cell survival pathway in epithelial ovarian carcinoma.
Collapse
Affiliation(s)
- Snehal M Gaikwad
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, 410210, India
| | - Bhushan Thakur
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, 410210, India
| | - Asmita Sakpal
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, 410210, India
| | - Ram K Singh
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, 410210, India
| | - Pritha Ray
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, 410210, India.
| |
Collapse
|
42
|
Jagannathan S, Vad N, Vallabhapurapu S, Vallabhapurapu S, Anderson KC, Driscoll JJ. MiR-29b replacement inhibits proteasomes and disrupts aggresome+autophagosome formation to enhance the antimyeloma benefit of bortezomib. Leukemia 2014; 29:727-38. [PMID: 25234165 PMCID: PMC4360212 DOI: 10.1038/leu.2014.279] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 12/24/2022]
Abstract
Evading apoptosis is a cancer hallmark that remains a serious obstacle in current treatment approaches. Although proteasome inhibitors (PIs) have transformed management of multiple myeloma (MM), drug resistance emerges through induction of the aggresome+autophagy pathway as a compensatory protein clearance mechanism. Genome-wide profiling identified microRNAs (miRs) differentially expressed in bortezomib-resistant myeloma cells compared with drug-naive cells. The effect of individual miRs on proteasomal degradation of short-lived fluorescent reporter proteins was then determined in live cells. MiR-29b was significantly reduced in bortezomib-resistant cells as well as in cells resistant to second-generation PIs carfilzomib and ixazomib. Luciferase reporter assays demonstrated that miR-29b targeted PSME4 that encodes the proteasome activator PA200. Synthetically engineered miR-29b replacements impaired the growth of myeloma cells, patient tumor cells and xenotransplants. MiR-29b replacements also decreased PA200 association with proteasomes, reduced the proteasome's peptidase activity and inhibited ornithine decarboxylase turnover, a proteasome substrate degraded through ubiquitin-independent mechanisms. Immunofluorescence studies revealed that miR-29b replacements enhanced the bortezomib-induced accumulation of ubiquitinated proteins but did not reveal aggresome or autophagosome formation. Taken together, our study identifies miR-29b replacements as the first-in-class miR-based PIs that also disrupt the autophagy pathway and highlight their potential to synergistically enhance the antimyeloma effect of bortezomib.
Collapse
Affiliation(s)
- S Jagannathan
- 1] The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH, USA [2] Division of Hematology and Oncology, The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - N Vad
- 1] The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH, USA [2] Division of Hematology and Oncology, The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - S Vallabhapurapu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - S Vallabhapurapu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - K C Anderson
- Jerome Lipper Multiple Myeloma Center and LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - J J Driscoll
- 1] The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH, USA [2] Division of Hematology and Oncology, The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH, USA [3] Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
43
|
Triple bioluminescence imaging for in vivo monitoring of cellular processes. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e99. [PMID: 23778500 PMCID: PMC3696905 DOI: 10.1038/mtna.2013.25] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bioluminescence imaging (BLI) has shown to be crucial for monitoring in vivo biological processes. So far, only dual bioluminescence imaging using firefly (Fluc) and Renilla or Gaussia (Gluc) luciferase has been achieved due to the lack of availability of other efficiently expressed luciferases using different substrates. Here, we characterized a codon-optimized luciferase from Vargula hilgendorfii (Vluc) as a reporter for mammalian gene expression. We showed that Vluc can be multiplexed with Gluc and Fluc for sequential imaging of three distinct cellular phenomena in the same biological system using vargulin, coelenterazine, and D-luciferin substrates, respectively. We applied this triple imaging system to monitor the effect of soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) delivered using an adeno-associated viral vector (AAV) on brain tumors in mice. Vluc imaging showed efficient sTRAIL gene delivery to the brain, while Fluc imaging revealed a robust antiglioma therapy. Further, nuclear factor-κB (NF-κB) activation in response to sTRAIL binding to glioma cells death receptors was monitored by Gluc imaging. This work is the first demonstration of trimodal in vivo bioluminescence imaging and will have a broad applicability in many different fields including immunology, oncology, virology, and neuroscience.
Collapse
|
44
|
Clinical predictors of testicular torsion in children. Urology 2012; 79:670-4. [PMID: 22386422 DOI: 10.1016/j.urology.2011.10.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To distinguish the prognostic factors that decrease the probability of a negative exploration for "acute scrotum." In some institutes, patients with "acute scrotum" undergo immediate exploration after clinical evaluation. Because testicular torsion (TT) accounts only for a fraction of these cases, most infants can be treated conservatively. METHODS We performed a retrospective study of all patients treated at our institute from January 2008 to December 2009 for the diagnosis of "acute scrotum." Differences between groups were calculated using the chi-square test or analysis of variance and Mann-Whitney-Wilcoxon test for univariate or multivariate analysis, expressed as odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The data from 138 patients were analyzed. The mean age was 9 years, 8 months. Of the 138 patients, 19 (13.8%) had TT. This group was compared with the boys without TT at exploration. The patients with TT were older on average (11 years, 1 month vs 9 years, 1 month, p = .035). Pain for <24 hours (OR 4.2, 95% CI 1.3-13.4), nausea and/or vomiting (OR 21.6, 95% CI 4.9-93.4), abnormal cremasteric reflex (OR 4.8 95% CI 0.7-35.2), and a high position of the testis (OR 18.0 95% CI 1.8-177.1) were associated with an increased likelihood of torsion. In the group of boys with ≥ 2 of these findings present, 100% had TT at exploration, with 0% false-positive results. CONCLUSION TT is uncommon among the group of boys treated for "acute scrotum." In particular, a pain duration <24 hours, nausea or vomiting, a high position of the testis, and an abnormal cremasteric reflex had a positive prognostic value for TT. A clinical score might help to avoid unnecessary explorations. In the future, we intend to test the diagnostic set described combined with ultrasonography.
Collapse
|
45
|
Secreted blood reporters: insights and applications. Biotechnol Adv 2011; 29:997-1003. [PMID: 21920429 DOI: 10.1016/j.biotechadv.2011.08.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 11/23/2022]
Abstract
Secreted reporters detected in body fluids (blood, serum or urine) have shown to be simple and useful tools for ex vivo real-time monitoring of in vivo biological processes. Here we explore the most commonly used secreted blood reporters in experimental animals: secreted alkaline phosphatase, soluble marker peptides derived from human carcinoembryonic antigen and human chorionic gonadotropin, as well as Gaussia luciferase. We also comment on other recently discovered secreted luciferases and their potential use as blood reporters for multiplexing applications.
Collapse
|
46
|
Badr CE, Tannous BA. Bioluminescence imaging: progress and applications. Trends Biotechnol 2011; 29:624-33. [PMID: 21788092 DOI: 10.1016/j.tibtech.2011.06.010] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/06/2011] [Accepted: 06/15/2011] [Indexed: 01/14/2023]
Abstract
Application of bioluminescence imaging has increased tremendously in the past decade and has significantly contributed to core conceptual advances in biomedical research. This technology provides valuable means for monitoring of different biological processes in immunology, oncology, virology and neuroscience. In this review, we discuss current trends in bioluminescence and its application in different fields with an emphasis on cancer research.
Collapse
Affiliation(s)
- Christian E Badr
- Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
47
|
Badr CE, Wurdinger T, Nilsson J, Niers JM, Whalen M, Degterev A, Tannous BA. Lanatoside C sensitizes glioblastoma cells to tumor necrosis factor-related apoptosis-inducing ligand and induces an alternative cell death pathway. Neuro Oncol 2011; 13:1213-24. [PMID: 21757445 DOI: 10.1093/neuonc/nor067] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human glioblastoma (GBM) cells are notorious for their resistance to apoptosis-inducing therapeutics. We have identified lanatoside C as a sensitizer of GBM cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death partly by upregulation of the death receptor 5. We show that lanatoside C sensitizes GBM cells to TRAIL-induced apoptosis in a GBM xenograft model in vivo. Lanatoside C on its own serves as a therapeutic agent against GBM by activating a caspase-independent cell death pathway. Cells treated with lanatoside C showed necrotic cell morphology with absence of caspase activation, low mitochondrial membrane potential, and early intracellular ATP depletion. In conclusion, lanatoside C sensitizes GBM cells to TRAIL-induced cell death and mitigates apoptosis resistance of glioblastoma cells by inducing an alternative cell death pathway. To our knowledge, this is one of the first examples of use of caspase-independent cell death inducers to trigger tumor regression in vivo. Activation of such mechanism may be a useful strategy to counter resistance of cancer cells to apoptosis.
Collapse
Affiliation(s)
- Christian E Badr
- Neuroscience Center and Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Badr CE, Niers JM, Morse D, Koelen JA, Vandertop P, Noske D, Wurdinger T, Zalloua PA, Tannous BA. Suicidal gene therapy in an NF-κB-controlled tumor environment as monitored by a secreted blood reporter. Gene Ther 2010; 18:445-51. [PMID: 21150937 DOI: 10.1038/gt.2010.156] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nuclear factor-κB (NF-κB) is known to be activated in many cancer types including lung, ovarian, astrocytomas, melanoma, prostate as well as glioblastoma, and has been shown to correlate with disease progression. We have cloned a novel NF-κB-based reporter system (five tandem repeats of NF-κB responsive genomic element (NF; 14 bp each)) to drive the expression cassette for both a fusion between the yeast cytosine deaminase and uracil phosphoribosyltransferase (CU) as a therapeutic gene and the secreted Gaussia luciferase (Gluc) as a blood reporter, separated by an internal ribosomal entry site (NF-CU-IGluc). We showed that malignant tumor cells have high expression of Gluc, which correlates to high activation of NF-κB. When NF-κB was further activated by tumor necrosis factor-α in these cells, we observed up to 10-fold increase in Gluc levels and therefore transgene expression in human glioma cells served to greatly enhance the sensitization of these cells to the prodrug, 5-fluorocytosine both in cultured cells and in vivo subcutaneous tumor xenograft model. This inducible system provides a tool to enhance the expression of imaging and therapeutic genes for cancer therapy.
Collapse
Affiliation(s)
- C E Badr
- Department of Neurology, Neuroscience Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|