1
|
Ren H, Mu C, Wang Y, Cheng Y, Hou Y, Li Y, Liu N, Yin Z, Xiong H, Chen Y, Yang T, Yu Y, Shen Y. Notch2 Inhibition and Kidney Cyst Growth in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2025; 36:781-797. [PMID: 39745791 PMCID: PMC12059103 DOI: 10.1681/asn.0000000592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Key Points Notch2 activation promotes kidney cyst growth. Silencing Notch2 ameliorated cyst growth in mice with autosomal dominant polycystic kidney disease. Background Notch signaling, a conserved mechanism of cell-to-cell communication, plays a crucial role in regulating cellular processes, such as proliferation and differentiation, in a context-dependent manner. However, the specific contribution of Notch signaling to the progression of polycystic kidney disease (PKD) remains unclear. Methods We investigated the changes in Notch signaling activity (Notch1–4) in the kidneys of patients with autosomal dominant PKD (ADPKD) and two ADPKD mouse models (early and late onset). Multiple genetic and pharmacologic approaches were used to explore Notch2 signaling during kidney cyst formation in PKD. Results Notch2 expression was significantly increased in the kidney tissues of patients with ADPKD and ADPKD mice. Targeted expression of Notch2 intracellular domain in renal epithelial cells resulted in cyst formation and kidney failure in neonatal and adult mice. Mechanistically, Notch2/Hey2 signaling promoted renal epithelial cell proliferation by driving the expression of the E26 transformation–specific homologous factor (Ehf). Depletion of Ehf delayed Notch2 intracellular domain overexpression–induced cyst formation and kidney failure in mice. A gain-of-function mutation in exon 34 of NOTCH2 (c.6426dupT), which caused PKD in patients with Hajdu–Cheney syndrome, accelerated cell growth in cultured human renal epithelial cells by activating HEY2/EHF signaling. Finally, ablation of Notch2 or treatment of a kidney-targeting nanoparticle carrying the liposome/Notch2–small interfering RNA complex, significantly suppressed kidney cyst growth in early-onset ADPKD mice. Conclusions Notch2 signaling promoted kidney cyst growth, partially by upregulating Ehf expression.
Collapse
Affiliation(s)
- Huiwen Ren
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chengsen Mu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuhan Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Cheng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yayan Hou
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yizhe Li
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Na Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhuming Yin
- Department of Breast Oncoplastic Surgery, Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Sino-Russian Joint Research Center for Oncoplastic Breast Surgery, Tianjin Medical University, Tianjin, China
| | - Hui Xiong
- Department of Urology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Xi X, Li J, Jia J, Meng Q, Li C, Wang X, Wei L, Zhang X. A mechanism-informed deep neural network enables prioritization of regulators that drive cell state transitions. Nat Commun 2025; 16:1284. [PMID: 39900922 PMCID: PMC11790924 DOI: 10.1038/s41467-025-56475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Cells are regulated at multiple levels, from regulations of individual genes to interactions across multiple genes. Some recent neural network models can connect molecular changes to cellular phenotypes, but their design lacks modeling of regulatory mechanisms, limiting the decoding of regulations behind key cellular events, such as cell state transitions. Here, we present regX, a deep neural network incorporating both gene-level regulation and gene-gene interaction mechanisms, which enables prioritizing potential driver regulators of cell state transitions and providing mechanistic interpretations. Applied to single-cell multi-omics data on type 2 diabetes and hair follicle development, regX reliably prioritizes key transcription factors and candidate cis-regulatory elements that drive cell state transitions. Some regulators reveal potential new therapeutic targets, drug repurposing possibilities, and putative causal single nucleotide polymorphisms. This method to analyze single-cell multi-omics data demonstrates how the interpretable design of neural networks can better decode biological systems.
Collapse
Affiliation(s)
- Xi Xi
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Jiaqi Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Jinmeng Jia
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Qiuchen Meng
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Chen Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Xiaowo Wang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Lei Wei
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Dekker E, Triñanes J, Muñoz Garcia A, de Graaf N, de Koning E, Carlotti F. Enhanced BMP Signaling Alters Human β-Cell Identity and Function. Adv Biol (Weinh) 2025; 9:e2400470. [PMID: 39499224 PMCID: PMC11760635 DOI: 10.1002/adbi.202400470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 11/07/2024]
Abstract
Inflammation contributes to the pathophysiology of diabetes. Identifying signaling pathways involved in pancreatic β-cell failure and identity loss can give insight into novel potential treatment strategies to prevent the loss of functional β-cell mass in diabetes. It is reported earlier that the immunosuppressive drug tacrolimus has a detrimental effect on human β-cell identity and function by activating bone morphogenetic protein (BMP) signaling. Here it is hypothesized that enhanced BMP signaling plays a role in inflammation-induced β-cell failure. Single-cell transcriptomics analyses of primary human islets reveal that IL-1β+IFNγ and IFNα treatment activated BMP signaling in β-cells. These findings are validated by qPCR. Furthermore, enhanced BMP signaling with recombinant BMP2 or 4 triggers a reduced expression of key β-cell maturity genes, associated with increased ER stress, and impaired β-cell function. Altogether, these results indicate that inflammation-activated BMP signaling is detrimental to pancreatic β-cells and that BMP-signaling can be a target to preserve β-cell identity and function in a pro-inflammatory environment.
Collapse
Affiliation(s)
- Esmée Dekker
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Javier Triñanes
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Amadeo Muñoz Garcia
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Natascha de Graaf
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Eelco de Koning
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Françoise Carlotti
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| |
Collapse
|
4
|
Hatano R, Zhang X, Lee E, Kaneda A, Tanaka T, Miki T. Mosaic ablation of pancreatic β cells induces de-differentiation and repetitive proliferation of residual β cells in adult mice. iScience 2024; 27:110656. [PMID: 39310764 PMCID: PMC11416228 DOI: 10.1016/j.isci.2024.110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetes mellitus is induced by quantitative and qualitative decline in pancreatic β cells. Although its radical therapy has not yet been established, β cell regeneration is a promising option. We investigate here two mouse models of β cell regeneration induced after ∼80% reduction in β cell number: Cre/loxP-mediated β cell ablation and partial pancreatectomy. Cre/loxP-mediated, mosaic-pattern of β cell ablation by diphtheria toxin (DT) prompted rapid β cell replenishment through repeated proliferation of rare, highly proliferative DT receptor-negative β cells along with increase in Hes1, Neurog3, Ascl1, and Aldh1a3 (immature/dedifferentiated β cell markers) and decrease in Mafa (a mature β cell marker) in the islets. In contrast, pancreatectomy also prompted active proliferation, but with no change in these immature/dedifferentiated or mature β cell markers. Our findings demonstrate that the mode of β cell regeneration differs between Cre/loxP-mediated β cell ablation and surgical β cell reduction, and the former involves β cell dedifferentiation followed by active repetitive cell proliferation of a small population of β cells.
Collapse
Affiliation(s)
- Ryo Hatano
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Xilin Zhang
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Eunyoung Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomoaki Tanaka
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Molecular Diagnosis, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
- Research Institute of Disaster Medicine (RIDM), Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
5
|
Niu F, Liu W, Ren Y, Tian Y, Shi W, Li M, Li Y, Xiong Y, Qian L. β-cell neogenesis: A rising star to rescue diabetes mellitus. J Adv Res 2024; 62:71-89. [PMID: 37839502 PMCID: PMC11331176 DOI: 10.1016/j.jare.2023.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Diabetes Mellitus (DM), a chronic metabolic disease characterized by elevated blood glucose, is caused by various degrees of insulin resistance and dysfunctional insulin secretion, resulting in hyperglycemia. The loss and failure of functional β-cells are key mechanisms resulting in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). AIM OF REVIEW Elucidating the underlying mechanisms of β-cell failure, and exploring approaches for β-cell neogenesis to reverse β-cell dysfunction may provide novel strategies for DM therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Emerging studies reveal that genetic susceptibility, endoplasmic reticulum (ER) stress, oxidative stress, islet inflammation, and protein modification linked to multiple signaling pathways contribute to DM pathogenesis. Over the past few years, replenishing functional β-cell by β-cell neogenesis to restore the number and function of pancreatic β-cells has remarkably exhibited a promising therapeutic approach for DM therapy. In this review, we provide a comprehensive overview of the underlying mechanisms of β-cell failure in DM, highlight the effective approaches for β-cell neogenesis, as well as discuss the current clinical and preclinical agents research advances of β-cell neogenesis. Insights into the challenges of translating β-cell neogenesis into clinical application for DM treatment are also offered.
Collapse
Affiliation(s)
- Fanglin Niu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Neurology, Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Medical Research Center, the affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Man Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yujia Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
7
|
Urizar AI, Prause M, Ingerslev LR, Wortham M, Sui Y, Sander M, Williams K, Barrès R, Larsen MR, Christensen GL, Billestrup N. Beta cell dysfunction induced by bone morphogenetic protein (BMP)-2 is associated with histone modifications and decreased NeuroD1 chromatin binding. Cell Death Dis 2023; 14:399. [PMID: 37407581 DOI: 10.1038/s41419-023-05906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Insufficient insulin secretion is a hallmark of type 2 diabetes and has been attributed to beta cell identity loss characterized by decreased expression of several key beta cell genes. The pro-inflammatory factor BMP-2 is upregulated in islets of Langerhans from individuals with diabetes and acts as an inhibitor of beta cell function and proliferation. Exposure to BMP-2 induces expression of Id1-4, Hes-1, and Hey-1 which are transcriptional regulators associated with loss of differentiation. The aim of this study was to investigate the mechanism by which BMP-2 induces beta cell dysfunction and loss of cell maturity. Mouse islets exposed to BMP-2 for 10 days showed impaired glucose-stimulated insulin secretion and beta cell proliferation. BMP-2-induced beta cell dysfunction was associated with decreased expression of cell maturity and proliferation markers specific to the beta cell such as Ins1, Ucn3, and Ki67 and increased expression of Id1-4, Hes-1, and Hey-1. The top 30 most regulated proteins significantly correlated with corresponding mRNA expression. BMP-2-induced gene expression changes were associated with a predominant reduction in acetylation of H3K27 and a decrease in NeuroD1 chromatin binding activity. These results show that BMP-2 induces loss of beta cell maturity and suggest that remodeling of H3K27ac and decreased NeuroD1 DNA binding activity participate in the effect of BMP-2 on beta cell dysfunction.
Collapse
Affiliation(s)
| | - Michala Prause
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars Roed Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yinghui Sui
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kristine Williams
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice Côte d'Azur, Valbonne, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Nils Billestrup
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Sajadimajd S, Bahrami G, Mohammadi B, Madani SH. Notch signaling-induced cyclin d1 in diabetes ameliorating effects of the isolated polysaccharide from Rosa canina: In vitro and in vivo studies. Cell Biochem Funct 2022; 40:935-945. [PMID: 36285737 DOI: 10.1002/cbf.3755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 12/15/2022]
Abstract
Notch signaling has a role in the expansion of the pancreas and the pathogenesis of diabetes. Modulation of Notch signaling by natural products seems to pave the way for treating diabetes. This research aimed to scrutinize the involvement of the Notch cascade in the diabetes-ameliorating effects of an isolated polysaccharide from Rosa canina. The isolated polysaccharide was characterized using Fourier transform infrared, nuclear magnetic resonance, high-performance gel-permeation chromatography, and liquid chromatography with tandem mass spectrometry techniques. Rat pancreatic β cells and STZ-induced diabetic rats were treated with the isolated polysaccharide. MTT assay, cell cycle analysis, quantative realtime-polymerase chain reaction, immunohistochemistry, and immunoblotting were used to reveal the growth and the expression levels of Notch1, DLL4, Jagged-1, hes1, Ins-1, Pdx-1, and cyclin d1 in treated and untreated pancreatic cells and tissues. The ameliorating effect of the polysaccharide in STZ-treated cells was accomplished by upregulation of cyclin d1 and hes1 as well as cell cycle progression. Notch inhibition by LY-411575 was associated with the downregulation of cyclin d1 which upregulates with polysaccharide treatment. The significant expression of cyclin d1 (90%) and nuclear expression of hes1 in the pancreas of the polysaccharide group were accompanied by improvement of hyperglycemia and associated biochemical factors as well as regeneration of islet cells as compared to untreated diabetic rats. Based on these findings, upregulation of Notch signaling-induced cyclin d1 could be proposed as the underlying diabetes-reducing effects of the isolated polysaccharide derivative implying that cyclin d1 actuation through activation of the Notch-DLL4 circuit may play the causal role in the treatment of diabetes.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahareh Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hamid Madani
- Molecular Pathology Research Center, Imam Reza University Hospital, Kermanshah University of Medical, Kermanshah, Iran
| |
Collapse
|
9
|
Desentis-Desentis MF. Regenerative approaches to preserve pancreatic β-cell mass and function in diabetes pathogenesis. Endocrine 2022; 75:338-350. [PMID: 34825343 DOI: 10.1007/s12020-021-02941-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/07/2021] [Indexed: 01/21/2023]
Abstract
In both type 1 diabetes (T1D) and type 2 diabetes (T2D), there is a substantial β-cell mass loss. Residual β-cell mass is susceptible to cellular damage because of specific pancreatic β-cell characteristics. β cells have a low proliferation rate, being in human adults almost zero and a low antioxidant system that makes β cells susceptible to oxidative stress and increases their vulnerability to cell destruction. Different strategies have been addressed to preserve pancreatic β-cell residual mass and function in patients with diabetes. However, the effect of many compounds proposed in rodent models to trigger β-cell replication has different results in human β cells. In this review, scientific evidence of β-cell of two major regenerative approaches has been gathered. Regeneration proceedings for pancreatic β cells are promising and could improve β-cell proliferation capacity and contribute to the conservation of mature β-cell phenotypic characteristics. This evidence supports the notion that regenerative medicine could be a helpful strategy to yield amelioration of T1D and T2D pathogenesis.
Collapse
Affiliation(s)
- Maria Fernanda Desentis-Desentis
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Jalisco, Mexico.
| |
Collapse
|
10
|
Oakie A, Nostro MC. Harnessing Proliferation for the Expansion of Stem Cell-Derived Pancreatic Cells: Advantages and Limitations. Front Endocrinol (Lausanne) 2021; 12:636182. [PMID: 33716986 PMCID: PMC7947602 DOI: 10.3389/fendo.2021.636182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Restoring the number of glucose-responsive β-cells in patients living with diabetes is critical for achieving normoglycemia since functional β-cells are lost during the progression of both type 1 and 2 diabetes. Stem cell-derived β-cell replacement therapies offer an unprecedented opportunity to replace the lost β-cell mass, yet differentiation efficiencies and the final yield of insulin-expressing β-like cells are low when using established protocols. Driving cellular proliferation at targeted points during stem cell-derived pancreatic progenitor to β-like cell differentiation can serve as unique means to expand the final cell therapeutic product needed to restore insulin levels. Numerous studies have examined the effects of β-cell replication upon functionality, using primary islets in vitro and mouse models in vivo, yet studies that focus on proliferation in stem cell-derived pancreatic models are only just emerging in the field. This mini review will discuss the current literature on cell proliferation in pancreatic cells, with a focus on the proliferative state of stem cell-derived pancreatic progenitors and β-like cells during their differentiation and maturation. The benefits of inducing proliferation to increase the final number of β-like cells will be compared against limitations associated with driving replication, such as the blunted capacity of proliferating β-like cells to maintain optimal β-cell function. Potential strategies that may bypass the challenges induced by the up-regulation of cell cycle-associated factors during β-cell differentiation will be proposed.
Collapse
Affiliation(s)
- Amanda Oakie
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Li Y, Dai C, Yuan Y, You L, Yuan Q. The mechanisms of lncRNA Tug1 in islet dysfunction in a mouse model of intrauterine growth retardation. Cell Biochem Funct 2020; 38:1129-1138. [PMID: 32869325 DOI: 10.1002/cbf.3575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Taurine upregulated gene 1 (Tug1) is a novel lncRNA that participates in growth, and the abnormal expression of Tug1 related to mouse islet cell dysfunction. A recent study revealed that intrauterine growth retardation (IUGR) related to the pathogenesis of diabetes. Here, we aimed to explore the role and mechanism of Tug1 in IUGR-mediated islet dysfunction. We observed that newborn IUGR mice had lower body and pancreas weight and smaller islets than newborn control mice. After IUGR mice were given a normal diet, they showed catch-up growth and abnormal glucose tolerance; however, the pancreas/body weight ratio remained low. Blood glucose, serum insulin and related gene expression showed mild recovery after overexpression of Tug1 in IUGR mice. Furthermore, Tug1 was enriched in the nuclei of MIN6 cells. Using RIP and CHIP analyses we found that Tug1 could regulate Hes1 expression by binding to EZH2 to affect insulin synthesis in MIN6 cells. These findings indicate that lncRNA Tug1 could regulate the expression of Hes1 via EZH2-driven H3K27 methylation and affect insulin production. SIGNIFICANCE OF THE STUDY: This study suggests Tug1 as a novel biomarker, as it was shown to regulate β cell function and is worthy of further investigation due to its potential for diabetes treatment.
Collapse
Affiliation(s)
- Yihui Li
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengting Dai
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Yuan
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Nanjing, China
| | - Qingxin Yuan
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Zhang J, Liu F. The De-, Re-, and trans-differentiation of β-cells: Regulation and function. Semin Cell Dev Biol 2020; 103:68-75. [DOI: 10.1016/j.semcdb.2020.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
|
13
|
Efrat S. Beta-Cell Dedifferentiation in Type 2 Diabetes: Concise Review. Stem Cells 2019; 37:1267-1272. [PMID: 31298804 DOI: 10.1002/stem.3059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2D) is caused by an inherited predisposition to pancreatic islet β-cell failure, which is manifested under cellular stress induced by metabolic overload. The decrease in the functional β-cell mass associated with T2D has been attributed primarily to β-cell death; however, studies in recent years suggested that β-cell dedifferentiation may contribute to this decline. The mechanisms linking genetic factors and cellular stress to β-cell dedifferentiation remain largely unknown. This study evaluated the evidence for β-cell dedifferentiation in T2D, and T2D and examined experimental systems in which its mechanisms may be studied. Understanding these mechanisms may allow prevention of β-cell dedifferentiation or induction of cell redifferentiation for restoration of the functional β-cell mass. Stem Cells 2019;37:1267-1272.
Collapse
Affiliation(s)
- Shimon Efrat
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Bartolome A, Zhu C, Sussel L, Pajvani UB. Notch signaling dynamically regulates adult β cell proliferation and maturity. J Clin Invest 2018; 129:268-280. [PMID: 30375986 DOI: 10.1172/jci98098] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
Notch signaling regulates differentiation of the pancreatic endocrine lineage during embryogenesis, but the role of Notch in mature β cells is unclear. We found that islets derived from lean mice show modest β cell Notch activity, which increases in obesity and in response to high glucose. This response appeared maladaptive, as mice with β cell-specific-deficient Notch transcriptional activity showed improved glucose tolerance when subjected to high-fat diet feeding. Conversely, mice with β cell-specific Notch gain of function (β-NICD) had a progressive loss of β cell maturity, due to proteasomal degradation of MafA, leading to impaired glucose-stimulated insulin secretion and glucose intolerance with aging or obesity. Surprisingly, Notch-active β cells had increased proliferative capacity, leading to increased but dysfunctional β cell mass. These studies demonstrate a dynamic role for Notch in developed β cells for simultaneously regulating β cell function and proliferation.
Collapse
Affiliation(s)
- Alberto Bartolome
- Department of Medicine, Columbia University, New York, New York, USA
| | - Changyu Zhu
- Department of Medicine, Columbia University, New York, New York, USA
| | - Lori Sussel
- Department of Pediatrics, University of Colorado, Denver, Colorado, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
15
|
Wang W, Liu C, Jimenez-Gonzalez M, Song WJ, Hussain MA. The undoing and redoing of the diabetic β-cell. J Diabetes Complications 2017; 31:912-917. [PMID: 28242267 DOI: 10.1016/j.jdiacomp.2017.01.028] [cited] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/23/2016] [Accepted: 01/31/2017] [Indexed: 01/26/2025]
Abstract
A hallmark of type 2 diabetes (T2DM) is the reduction in functional β-cell mass, which is considered at least in part to result from an imbalance of β-cell renewal and apoptosis, with the latter being accelerated during metabolic stress. More recent studies, however, suggest that the loss of functional β-cell mass is not as much due to β-cell death but rather to de-differentiation of β-cells when these cells are exposed to metabolic stressors, opening the possibility to re-differentiate and restore functional β-cell mass by therapeutic intervention. In parallel, clinical observations suggest that temporary intensive insulin therapy in early diagnosed humans with T2DM, so as to "rest" endogenous β-cells, allows these patients to regain adequate insulin secretion and to maintain euglycemia for prolonged periods free of continued pharmacotherapy. Whether observations made in (mostly rodent) models of diabetes mellitus and in clinical trials are revealing identical mechanisms and therapeutic opportunities remains a tantalizing possibility. Our intention is for this review to serve as an overview of the field and commentary of this particularly exciting field of research.
Collapse
Affiliation(s)
- Wei Wang
- Metabolism Division, Departments of Pediatrics, Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, 600 N Wolfe Street, CMSC 10-113, Baltimore, MD 21287
| | - Chune Liu
- Metabolism Division, Departments of Pediatrics, Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, 600 N Wolfe Street, CMSC 10-113, Baltimore, MD 21287
| | - Maria Jimenez-Gonzalez
- Metabolism Division, Departments of Pediatrics, Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, 600 N Wolfe Street, CMSC 10-113, Baltimore, MD 21287
| | - Woo-Jin Song
- Metabolism Division, Departments of Pediatrics, Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, 600 N Wolfe Street, CMSC 10-113, Baltimore, MD 21287
| | - Mehboob A Hussain
- Metabolism Division, Departments of Pediatrics, Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, 600 N Wolfe Street, CMSC 10-113, Baltimore, MD 21287.
| |
Collapse
|
16
|
Wang W, Liu C, Jimenez-Gonzalez M, Song WJ, Hussain MA. The undoing and redoing of the diabetic β-cell. J Diabetes Complications 2017; 31:912-917. [PMID: 28242267 PMCID: PMC5450161 DOI: 10.1016/j.jdiacomp.2017.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/23/2016] [Accepted: 01/31/2017] [Indexed: 02/08/2023]
Abstract
A hallmark of type 2 diabetes (T2DM) is the reduction in functional β-cell mass, which is considered at least in part to result from an imbalance of β-cell renewal and apoptosis, with the latter being accelerated during metabolic stress. More recent studies, however, suggest that the loss of functional β-cell mass is not as much due to β-cell death but rather to de-differentiation of β-cells when these cells are exposed to metabolic stressors, opening the possibility to re-differentiate and restore functional β-cell mass by therapeutic intervention. In parallel, clinical observations suggest that temporary intensive insulin therapy in early diagnosed humans with T2DM, so as to "rest" endogenous β-cells, allows these patients to regain adequate insulin secretion and to maintain euglycemia for prolonged periods free of continued pharmacotherapy. Whether observations made in (mostly rodent) models of diabetes mellitus and in clinical trials are revealing identical mechanisms and therapeutic opportunities remains a tantalizing possibility. Our intention is for this review to serve as an overview of the field and commentary of this particularly exciting field of research.
Collapse
Affiliation(s)
- Wei Wang
- Metabolism Division, Departments of Pediatrics, Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, 600 N Wolfe Street, CMSC 10-113, Baltimore, MD 21287
| | - Chune Liu
- Metabolism Division, Departments of Pediatrics, Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, 600 N Wolfe Street, CMSC 10-113, Baltimore, MD 21287
| | - Maria Jimenez-Gonzalez
- Metabolism Division, Departments of Pediatrics, Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, 600 N Wolfe Street, CMSC 10-113, Baltimore, MD 21287
| | - Woo-Jin Song
- Metabolism Division, Departments of Pediatrics, Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, 600 N Wolfe Street, CMSC 10-113, Baltimore, MD 21287
| | - Mehboob A Hussain
- Metabolism Division, Departments of Pediatrics, Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, 600 N Wolfe Street, CMSC 10-113, Baltimore, MD 21287.
| |
Collapse
|
17
|
Martinez-Sanchez A, Rutter GA, Latreille M. MiRNAs in β-Cell Development, Identity, and Disease. Front Genet 2017; 7:226. [PMID: 28123396 PMCID: PMC5225124 DOI: 10.3389/fgene.2016.00226] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/21/2016] [Indexed: 12/22/2022] Open
Abstract
Pancreatic β-cells regulate glucose metabolism by secreting insulin, which in turn stimulates the utilization or storage of the sugar by peripheral tissues. Insulin insufficiency and a prolonged period of insulin resistance are usually the core components of type 2 diabetes (T2D). Although, decreased insulin levels in T2D have long been attributed to a decrease in β-cell function and/or mass, this model has recently been refined with the recognition that a loss of β-cell “identity” and dedifferentiation also contribute to the decline in insulin production. MicroRNAs (miRNAs) are key regulatory molecules that display tissue-specific expression patterns and maintain the differentiated state of somatic cells. During the past few years, great strides have been made in understanding how miRNA circuits impact β-cell identity. Here, we review current knowledge on the role of miRNAs in regulating the acquisition of the β-cell fate during development and in maintaining mature β-cell identity and function during stress situations such as obesity, pregnancy, aging, or diabetes. We also discuss how miRNA function could be harnessed to improve our ability to generate β-cells for replacement therapy for T2D.
Collapse
Affiliation(s)
- Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Mathieu Latreille
- Cellular Identity and Metabolism Group, MRC London Institute of Medical SciencesLondon, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
18
|
Efrat S. Mechanisms of adult human β-cell in vitro dedifferentiation and redifferentiation. Diabetes Obes Metab 2016; 18 Suppl 1:97-101. [PMID: 27615137 DOI: 10.1111/dom.12724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 12/13/2022]
Abstract
Recent studies in animal models and human pathological specimens suggest the involvement of β-cell dedifferentiation in β-cell dysfunction associated with type 2 diabetes. Dedifferentiated β-cells may be exploited for endogenous renewal of the β-cell mass. However, studying human β-cell dedifferentiation in diabetes presents major difficulties. We have analysed mechanisms involved in human β-cell dedifferentiation in vitro, under conditions that allow cell proliferation. Although there are important differences between the two cellular environments, β-cell dedifferentiation in the two conditions is likely to share a number of common pathways. Insights from the in vitro studies may lead to development of approaches for redifferentiation of endogenous dedifferentiated β-cells.
Collapse
Affiliation(s)
- S Efrat
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
19
|
Masjkur J, Poser SW, Nikolakopoulou P, Chrousos G, McKay RD, Bornstein SR, Jones PM, Androutsellis-Theotokis A. Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology. Diabetes 2016; 65:314-30. [PMID: 26798118 DOI: 10.2337/db15-1099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Loss of insulin-producing pancreatic islet β-cells is a hallmark of type 1 diabetes. Several experimental paradigms demonstrate that these cells can, in principle, be regenerated from multiple endogenous sources using signaling pathways that are also used during pancreas development. A thorough understanding of these pathways will provide improved opportunities for therapeutic intervention. It is now appreciated that signaling pathways should not be seen as "on" or "off" but that the degree of activity may result in wildly different cellular outcomes. In addition to the degree of operation of a signaling pathway, noncanonical branches also play important roles. Thus, a pathway, once considered as "off" or "low" may actually be highly operational but may be using noncanonical branches. Such branches are only now revealing themselves as new tools to assay them are being generated. A formidable source of noncanonical signal transduction concepts is neural stem cells because these cells appear to have acquired unusual signaling interpretations to allow them to maintain their unique dual properties (self-renewal and multipotency). We discuss how such findings from the neural field can provide a blueprint for the identification of new molecular mechanisms regulating pancreatic biology, with a focus on Notch, Hes/Hey, and hedgehog pathways.
Collapse
Affiliation(s)
- Jimmy Masjkur
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Steven W Poser
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - George Chrousos
- First Department of Pediatrics, University of Athens Medical School and Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Peter M Jones
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London, U.K
| | - Andreas Androutsellis-Theotokis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany Center for Regenerative Therapies Dresden, Dresden, Germany Department of Stem Cell Biology, Centre for Biomolecular Sciences, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, U.K.
| |
Collapse
|
20
|
Pauerstein PT, Park KM, Peiris HS, Wang J, Kim SK. Research Resource: Genetic Labeling of Human Islet Alpha Cells. Mol Endocrinol 2016; 30:248-53. [PMID: 26745668 DOI: 10.1210/me.2015-1220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The 2 most abundant human pancreatic islet cell types are insulin-producing β-cells and glucagon-producing α-cells. Defined cis-regulatory elements from rodent Insulin genes have permitted genetic labeling of human islet β-cells, enabling lineage tracing and generation of human β-cell lines, but analogous elements for genetically labeling human α-cells with high specificity do not yet exist. To identify genetic elements that specifically direct reporter expression to human α-cells, we investigated noncoding sequences adjacent to the human GLUCAGON and ARX genes, which are expressed in islet α-cells. Elements with high evolutionary conservation were cloned into lentiviral vectors to direct fluorescent reporter expression in primary human islets. Based on the specificity of reporter expression for α- and β-cells, we found that rat glucagon promoter was not specific for human α-cells but that addition of human GLUCAGON untranslated region sequences substantially enhanced specificity of labeling in both cultured and transplanted islets to a degree not previously reported, to our knowledge. Specific transgene expression from these cis-regulatory sequences in human α-cells should enable targeted genetic modification and lineage tracing.
Collapse
Affiliation(s)
- Philip T Pauerstein
- Department of Developmental Biology (P.T.P., K.M.P., H.S.P., J.W., S.K.K.) and Howard Hughes Medical Institute (S.K.K.), Stanford University School of Medicine, Stanford, California 94305
| | - Keon Min Park
- Department of Developmental Biology (P.T.P., K.M.P., H.S.P., J.W., S.K.K.) and Howard Hughes Medical Institute (S.K.K.), Stanford University School of Medicine, Stanford, California 94305
| | - Heshan S Peiris
- Department of Developmental Biology (P.T.P., K.M.P., H.S.P., J.W., S.K.K.) and Howard Hughes Medical Institute (S.K.K.), Stanford University School of Medicine, Stanford, California 94305
| | - Jing Wang
- Department of Developmental Biology (P.T.P., K.M.P., H.S.P., J.W., S.K.K.) and Howard Hughes Medical Institute (S.K.K.), Stanford University School of Medicine, Stanford, California 94305
| | - Seung K Kim
- Department of Developmental Biology (P.T.P., K.M.P., H.S.P., J.W., S.K.K.) and Howard Hughes Medical Institute (S.K.K.), Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
21
|
Li XY, Zhai WJ, Teng CB. Notch Signaling in Pancreatic Development. Int J Mol Sci 2015; 17:ijms17010048. [PMID: 26729103 PMCID: PMC4730293 DOI: 10.3390/ijms17010048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion that Notch signaling specifies the endocrine lineage. Here, we review the current knowledge of the Notch signaling pathway in pancreatic development and its crosstalk with the Wingless and INT-1 (Wnt) and fibroblast growth factor (FGF) pathways.
Collapse
Affiliation(s)
- Xu-Yan Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Wen-Jun Zhai
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
22
|
Dynamic Proteomic Analysis of Pancreatic Mesenchyme Reveals Novel Factors That Enhance Human Embryonic Stem Cell to Pancreatic Cell Differentiation. Stem Cells Int 2015; 2016:6183562. [PMID: 26681951 PMCID: PMC4670689 DOI: 10.1155/2016/6183562] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022] Open
Abstract
Current approaches in human embryonic stem cell (hESC) to pancreatic beta cell differentiation have largely been based on knowledge gained from developmental studies of the epithelial pancreas, while the potential roles of other supporting tissue compartments have not been fully explored. One such tissue is the pancreatic mesenchyme that supports epithelial organogenesis throughout embryogenesis. We hypothesized that detailed characterization of the pancreatic mesenchyme might result in the identification of novel factors not used in current differentiation protocols. Supplementing existing hESC differentiation conditions with such factors might create a more comprehensive simulation of normal development in cell culture. To validate our hypothesis, we took advantage of a novel transgenic mouse model to isolate the pancreatic mesenchyme at distinct embryonic and postnatal stages for subsequent proteomic analysis. Refined sample preparation and analysis conditions across four embryonic and prenatal time points resulted in the identification of 21,498 peptides with high-confidence mapping to 1,502 proteins. Expression analysis of pancreata confirmed the presence of three potentially important factors in cell differentiation: Galectin-1 (LGALS1), Neuroplastin (NPTN), and the Laminin α-2 subunit (LAMA2). Two of the three factors (LGALS1 and LAMA2) increased expression of pancreatic progenitor transcript levels in a published hESC to beta cell differentiation protocol. In addition, LAMA2 partially blocks cell culture induced beta cell dedifferentiation. Summarily, we provide evidence that proteomic analysis of supporting tissues such as the pancreatic mesenchyme allows for the identification of potentially important factors guiding hESC to pancreas differentiation.
Collapse
|
23
|
Toren-Haritan G, Efrat S. TGFβ Pathway Inhibition Redifferentiates Human Pancreatic Islet β Cells Expanded In Vitro. PLoS One 2015; 10:e0139168. [PMID: 26418361 PMCID: PMC4587799 DOI: 10.1371/journal.pone.0139168] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022] Open
Abstract
In-vitro expansion of insulin-producing cells from adult human pancreatic islets could provide an abundant cell source for diabetes therapy. However, proliferation of β-cell-derived (BCD) cells is associated with loss of phenotype and epithelial-mesenchymal transition (EMT). Nevertheless, BCD cells maintain open chromatin structure at β-cell genes, suggesting that they could be readily redifferentiated. The transforming growth factor β (TGFβ) pathway has been implicated in EMT in a range of cell types. Here we show that human islet cell expansion in vitro involves upregulation of the TGFβ pathway. Blocking TGFβ pathway activation using short hairpin RNA (shRNA) against TGFβ Receptor 1 (TGFBR1, ALK5) transcripts inhibits BCD cell proliferation and dedifferentiation. Treatment of expanded BCD cells with ALK5 shRNA results in their redifferentiation, as judged by expression of β-cell genes and decreased cell proliferation. These effects, which are reproducible in cells from multiple human donors, are mediated, at least in part, by AKT-FOXO1 signaling. ALK5 inhibition synergizes with a soluble factor cocktail to promote BCD cell redifferentiation. The combined treatment may offer a therapeutically applicable way for generating an abundant source of functional insulin-producing cells following ex-vivo expansion.
Collapse
Affiliation(s)
- Ginat Toren-Haritan
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimon Efrat
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
24
|
Sintov E, Nathan G, Knoller S, Pasmanik-Chor M, Russ HA, Efrat S. Inhibition of ZEB1 expression induces redifferentiation of adult human β cells expanded in vitro. Sci Rep 2015; 5:13024. [PMID: 26264186 PMCID: PMC4532995 DOI: 10.1038/srep13024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/15/2015] [Indexed: 01/20/2023] Open
Abstract
In-vitro expansion of functional adult human β-cells is an attractive approach for generating insulin-producing cells for transplantation. However, human islet cell expansion in culture results in loss of β-cell phenotype and epithelial-mesenchymal transition (EMT). This process activates expression of ZEB1 and ZEB2, two members of the zinc-finger homeobox family of E-cadherin repressors, which play key roles in EMT. Downregulation of ZEB1 using shRNA in expanded β-cell-derived (BCD) cells induced mesenchymal-epithelial transition (MET), β-cell gene expression, and proliferation attenuation. In addition, inhibition of ZEB1 expression potentiated redifferentiation induced by a combination of soluble factors, as judged by an improved response to glucose stimulation and a 3-fold increase in the fraction of C-peptide-positive cells to 60% of BCD cells. Furthermore, ZEB1 shRNA led to increased insulin secretion in cells transplanted in vivo. Our findings suggest that the effects of ZEB1 inhibition are mediated by attenuation of the miR-200c target genes SOX6 and SOX2. These findings, which were reproducible in cells derived from multiple human donors, emphasize the key role of ZEB1 in EMT in cultured BCD cells and support the value of ZEB1 inhibition for BCD cell redifferentiation and generation of functional human β-like cells for cell therapy of diabetes.
Collapse
Affiliation(s)
- Elad Sintov
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gili Nathan
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Knoller
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Holger A Russ
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimon Efrat
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Muir KR, Lima MJ, Docherty HM, McGowan NWA, Forbes S, Heremans Y, Forbes SJ, Heimberg H, Casey J, Docherty K. Krüppel-Like Factor 4 Overexpression Initiates a Mesenchymal-to-Epithelial Transition and Redifferentiation of Human Pancreatic Cells following Expansion in Long Term Adherent Culture. PLoS One 2015; 10:e0140352. [PMID: 26457418 PMCID: PMC4601732 DOI: 10.1371/journal.pone.0140352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/24/2015] [Indexed: 02/01/2023] Open
Abstract
A replenishable source of insulin-producing cells has the potential to cure type 1 diabetes. Attempts to culture and expand pancreatic β-cells in vitro have resulted in their transition from insulin-producing epithelial cells to mesenchymal stromal cells (MSCs) with high proliferative capacity but devoid of any hormone production. The aim of this study was to determine whether the transcription factor Krüppel-like factor 4 (KLF4), could induce a mesenchymal-to-epithelial transition (MET) of the cultured cells. Islet-enriched pancreatic cells, allowed to dedifferentiate and expand in adherent cell culture, were transduced with an adenovirus containing KLF4 (Ad-Klf4). Cells were subsequently analysed for changes in cell morphology by light microscopy, and for the presence of epithelial and pancreatic markers by immunocytochemistry and quantitative RT/PCR. Infection with Ad-Klf4 resulted in morphological changes, down-regulation of mesenchymal markers, and re-expression of both epithelial and pancreatic cell markers including insulin and transcription factors specific to β-cells. This effect was further enhanced by culturing cells in suspension. However, the effects of Ad-KLf4 were transient and this was shown to be due to increased apoptosis in Klf4-expressing cells. Klf4 has been recently identified as a pioneer factor with the ability to modulate the structure of chromatin and enhance reprogramming/transdifferentiation. Our results show that Klf4 may have a role in the redifferentiation of expanded pancreatic cells in culture, but before this can be achieved the off-target effects that result in increased apoptosis would need to be overcome.
Collapse
Affiliation(s)
- Kenneth R. Muir
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Maria João Lima
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Hilary M. Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Neil W. A. McGowan
- Department of Surgery, University of Edinburgh, Edinburgh Royal Infirmary, Edinburgh, United Kingdom
| | - Shareen Forbes
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Yves Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stuart J. Forbes
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - John Casey
- Department of Surgery, University of Edinburgh, Edinburgh Royal Infirmary, Edinburgh, United Kingdom
| | - Kevin Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Redifferentiation of adult human β cells expanded in vitro by inhibition of the WNT pathway. PLoS One 2014; 9:e112914. [PMID: 25393025 PMCID: PMC4231080 DOI: 10.1371/journal.pone.0112914] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022] Open
Abstract
In vitro expansion of adult human islet β cells is an attractive solution for the shortage of tissue for cell replacement therapy of type 1 diabetes. Using a lineage tracing approach we have demonstrated that β-cell-derived (BCD) cells rapidly dedifferentiate in culture and can proliferate for up to 16 population doublings. Dedifferentiation is associated with changes resembling epithelial-mesenchymal transition (EMT). The WNT pathway has been shown to induce EMT and plays key roles in regulating replication and differentiation in many cell types. Here we show that BCD cell dedifferentiation is associated with β-catenin translocation into the nucleus and activation of the WNT pathway. Inhibition of β-catenin expression in expanded BCD cells using short hairpin RNA resulted in growth arrest, mesenchymal-epithelial transition, and redifferentiation, as judged by activation of β-cell gene expression. Furthermore, inhibition of β-catenin expression synergized with redifferentiation induced by a combination of soluble factors, as judged by an increase in the number of C-peptide-positive cells. Simultaneous inhibition of the WNT and NOTCH pathways also resulted in a synergistic effect on redifferentiation. These findings, which were reproducible in cells derived from multiple human donors, suggest that inhibition of the WNT pathway may contribute to a therapeutically applicable way for generation of functional insulin-producing cells following ex-vivo expansion.
Collapse
|
27
|
Mo P, Zhou Q, Guan L, Wang Y, Wang W, Miao M, Tong Z, Li M, Majaz S, Liu Y, Su G, Xu J, Yu C. Amplified in breast cancer 1 promotes colorectal cancer progression through enhancing notch signaling. Oncogene 2014; 34:3935-3945. [PMID: 25263446 PMCID: PMC4377317 DOI: 10.1038/onc.2014.324] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/01/2014] [Accepted: 08/25/2014] [Indexed: 12/21/2022]
Abstract
Aberrant activation of Notch signaling has an essential role in colorectal cancer (CRC) progression. Amplified in breast cancer 1 (AIB1), also known as steroid receptor coactivator 3 or NCOA3, is a transcriptional coactivator that promotes cancer cell proliferation and invasiveness. However, AIB1 implication in CRC progression through enhancing Notch signaling is unknown. In this study, we found that several CRC cell lines expressed high levels of AIB1, and knockdown of AIB1 decreased cell proliferation, colony formation and tumorigenesis of these CRC cells. Specifically, knockdown of AIB1 inhibited cell cycle progression at G1 phase by decreasing the mRNA levels of cyclin A2, cyclin B1, cyclin E2 and hairy and enhancer of split (Hes) 1. Furthermore, AIB1 interacted with Notch intracellular domain and Mastermind-like 1 and was recruited to the Hes1 promoter to enhance Notch signaling. Downregulation of AIB1 also decreased CRC cell invasiveness in vitro and lung metastasis in vivo. Besides that, knockout of AIB1 in mice inhibited colon carcinogenesis induced by azoxymethane/dextran sodium sulfate treatment. The mRNA levels of cyclin B1 and Hes5 were downregulated, but p27, ATOH1 and MUC2 were upregulated in the colon tumors from AIB1-deficient mice compared with those from wild-type mice. Thus, our results signify the importance of AIB1 in CRC and demonstrate that AIB1 promotes CRC progression at least in part through enhancing Notch signaling, suggesting that AIB1 is a potential molecular target for CRC treatment.
Collapse
Affiliation(s)
- Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qiling Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lei Guan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yi Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mengmeng Miao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhangwei Tong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ming Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Sidra Majaz
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yonghong Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guoqiang Su
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
28
|
Toselli C, Hyslop CM, Hughes M, Natale DR, Santamaria P, Huang CTL. Contribution of a non-β-cell source to β-cell mass during pregnancy. PLoS One 2014; 9:e100398. [PMID: 24940737 PMCID: PMC4062500 DOI: 10.1371/journal.pone.0100398] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022] Open
Abstract
β-cell mass in the pancreas increases significantly during pregnancy as an adaptation to maternal insulin resistance. Lineage tracing studies in rodents have presented conflicting evidence on the role of cell duplication in the formation of new β-cells during gestation, while recent human data suggest that new islets are a major contributor to increased β-cell mass in pregnancy. Here, we aim to: 1) determine whether a non-β-cell source contributes to the appearance of new β-cells during pregnancy and 2) investigate whether recapitulation of the embryonic developmental pathway involving high expression of neurogenin 3 (Ngn3) plays a role in the up-regulation of β-cell mass during pregnancy. Using a mouse β-cell lineage-tracing model, which labels insulin-producing β-cells with red fluorescent protein (RFP), we found that the percentage of labeled β-cells dropped from 97% prior to pregnancy to 87% at mid-pregnancy. This suggests contribution of a non-β-cell source to the increase in total β-cell numbers during pregnancy. In addition, we observed a population of hormone-negative, Ngn3-positive cells in islets of both non-pregnant and pregnant mice, and this population dropped from 12% of all islets cells in the non-pregnant mice to 5% by day 8 of pregnancy. Concomitantly, a decrease in expression of Ngn3 and changes in its upstream regulatory network (Sox9 and Hes-1) as well as downstream targets (NeuroD, Nkx2.2, Rfx6 and IA1) were also observed during pregnancy. Our results show that duplication of pre-existing β-cells is not the sole source of new β-cells during pregnancy and that Ngn3 may be involved in this process.
Collapse
Affiliation(s)
- Chiara Toselli
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colin M. Hyslop
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Martha Hughes
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David R. Natale
- Department of Reproductive Medicine, University of California San Diego, San Diego, California, United States of America
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Institut D’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Carol T. L. Huang
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
29
|
Impact of high-fat feeding on basic helix-loop-helix transcription factors controlling enteroendocrine cell differentiation. Int J Obes (Lond) 2014; 38:1440-8. [PMID: 24480860 DOI: 10.1038/ijo.2014.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/03/2013] [Accepted: 01/17/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Gut hormones secreted by enteroendocrine cells (EECs) play a major role in energy regulation. Differentiation of EEC is controlled by the expression of basic helix-loop-helix (bHLH) transcription factors. High-fat (HF) feeding alters gut hormone levels; however, the impact of HF feeding on bHLH transcription factors in mediating EEC differentiation and subsequent gut hormone secretion and expression is not known. METHODS Outbred Sprague-Dawley rats were maintained on chow or HF diet for 12 weeks. Gene and protein expression of intestinal bHLH transcription factors, combined with immunofluorescence studies, were analyzed for both groups in the small intestine and colon. Gut permeability, intestinal lipid and carbohydrate transporters as well as circulating levels and intestinal protein expression of gut peptides were determined. RESULTS We showed that HF feeding resulted in hyperphagia and increased adiposity. HF-fed animals exhibited decreased expression of bHLH transcription factors controlling EEC differentiation (MATH1, NGN3, NEUROD1) and increased expression of bHLH factors modulating enterocyte expression. Furthermore, HF-fed animals had decreased number of total EECs and L-cells. This was accompanied by increased gut permeability and expression of lipid and carbohydrate transporters, and a decrease in circulating and intestinal gut hormone levels. CONCLUSIONS Taken together, our results demonstrate that HF feeding caused decreased secretory lineage (that is, EECs) differentiation through downregulation of bHLH transcription factors, resulting in reduced EEC number and gut hormone levels. Thus, impaired EEC differentiation pathways by HF feeding may promote hyperphagia and subsequent obesity.
Collapse
|
30
|
Puri S, Akiyama H, Hebrok M. VHL-mediated disruption of Sox9 activity compromises β-cell identity and results in diabetes mellitus. Genes Dev 2014; 27:2563-75. [PMID: 24298056 PMCID: PMC3861670 DOI: 10.1101/gad.227785.113] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
β-Cell dysfunction contributes to diabetes mellitus. Puri et al. show that deletion of the von Hippel-Lindau (Vhlh) gene is deleterious to canonical β-cell gene expression. Vhlh loss triggers erroneous expression of factors normally active in progenitor cells, including Sox9. β-Cell-specific expression of Sox9 results in diabetes mellitus. This study reveals that perturbed β-cell identity contributes to diabetes mellitus. Precise functioning of the pancreatic β cell is paramount to whole-body glucose homeostasis, and β-cell dysfunction contributes significantly to diabetes mellitus. Using transgenic mouse models, we demonstrate that deletion of the von Hippel-Lindau (Vhlh) gene (encoding an E3 ubiquitin ligase implicated in, among other functions, oxygen sensing in pancreatic β cells) is deleterious to canonical β-cell gene expression. This triggers erroneous expression of factors normally active in progenitor cells, including effectors of the Notch, Wnt, and Hedgehog signaling cascades. Significantly, an up-regulation of the transcription factor Sox9, normally excluded from functional β cells, occurs upon deletion of Vhlh. Sox9 plays important roles during pancreas development but does not have a described role in the adult β cell. β-Cell-specific ectopic expression of Sox9 results in diabetes mellitus from similar perturbations in β-cell identity. These findings reveal that assaults on the β cell that impact the differentiation state of the cell have clear implications toward our understanding of diabetes mellitus.
Collapse
Affiliation(s)
- Sapna Puri
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
31
|
Bar Y, Efrat S. The NOTCH Pathway in β-Cell Growth and Differentiation. THE PANCREATIC BETA CELL 2014; 95:391-405. [DOI: 10.1016/b978-0-12-800174-5.00015-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Plaisance V, Waeber G, Regazzi R, Abderrahmani A. Role of microRNAs in islet beta-cell compensation and failure during diabetes. J Diabetes Res 2014; 2014:618652. [PMID: 24734255 PMCID: PMC3964735 DOI: 10.1155/2014/618652] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/24/2014] [Indexed: 12/12/2022] Open
Abstract
Pancreatic beta-cell function and mass are markedly adaptive to compensate for the changes in insulin requirement observed during several situations such as pregnancy, obesity, glucocorticoids excess, or administration. This requires a beta-cell compensation which is achieved through a gain of beta-cell mass and function. Elucidating the physiological mechanisms that promote functional beta-cell mass expansion and that protect cells against death, is a key therapeutic target for diabetes. In this respect, several recent studies have emphasized the instrumental role of microRNAs in the control of beta-cell function. MicroRNAs are negative regulators of gene expression, and are pivotal for the control of beta-cell proliferation, function, and survival. On the one hand, changes in specific microRNA levels have been associated with beta-cell compensation and are triggered by hormones or bioactive peptides that promote beta-cell survival and function. Conversely, modifications in the expression of other specific microRNAs contribute to beta-cell dysfunction and death elicited by diabetogenic factors including, cytokines, chronic hyperlipidemia, hyperglycemia, and oxidized LDL. This review underlines the importance of targeting the microRNA network for future innovative therapies aiming at preventing the beta-cell decline in diabetes.
Collapse
Affiliation(s)
- Valérie Plaisance
- Lille 2 University, European Genomic Institute for Diabetes (EGID), FR 3508, UMR-8199 Lille, France
| | - Gérard Waeber
- Service of Internal Medicine, Hospital-University of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Amar Abderrahmani
- Lille 2 University, European Genomic Institute for Diabetes (EGID), FR 3508, UMR-8199 Lille, France
- *Amar Abderrahmani:
| |
Collapse
|
33
|
Chen G, Qiu Y, Sun L, Yu M, Wang W, Xiao W, Yang Y, Liu Y, Yang S, Teitelbaum DH, Ma Y, Lu D, Yang H. The jagged-2/notch-1/hes-1 pathway is involved in intestinal epithelium regeneration after intestinal ischemia-reperfusion injury. PLoS One 2013; 8:e76274. [PMID: 24098462 PMCID: PMC3789708 DOI: 10.1371/journal.pone.0076274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/26/2013] [Indexed: 12/27/2022] Open
Abstract
Background Notch signaling plays a critical role in the maintenance of intestinal crypt epithelial cell proliferation. The aim of this study was to investigate the role of Notch signaling in the proliferation and regeneration of intestinal epithelium after intestinal ischemia reperfusion (I/R) injury. Methods Male Sprague-Dawley rats were subjected to sham operation or I/R by occlusion of the superior mesenteric artery (SMA) for 20 min. Intestinal tissue samples were collected at 0, 1, 2, 4, and 6 h after reperfusion. Proliferation of the intestinal epithelium was evaluated by immunohistochemical staining of proliferating nuclear antigen (PCNA). The mRNA and protein expression levels of Notch signaling components were examined using Real-time PCR and Western blot analyses. Immunofluorescence was also performed to detect the expression and location of Jagged-2, cleaved Notch-1, and Hes-1 in the intestine. Finally, the γ-secretase inhibitor DAPT and the siRNA for Jagged-2 and Hes-1 were applied to investigate the functional role of Notch signaling in the proliferation of intestinal epithelial cells in an in vitro IEC-6 culture system. Results I/R injury caused increased intestinal crypt epithelial cell proliferation and increased mRNA and protein expression of Jagged-2, Notch-1, and Hes-1. The immunofluorescence results further confirmed increased protein expression of Jagged-2, cleaved Notch-1, and Hes-1 in the intestinal crypts. The inhibition of Notch signaling with DAPT and the suppression of Jagged-2 and Hes-1 expression using siRNA both significantly inhibited the proliferation of IEC-6 cells. Conclusion The Jagged-2/Notch-1/Hes-1 signaling pathway is involved in intestinal epithelium regeneration early after I/R injury by increasing crypt epithelial cell proliferation.
Collapse
Affiliation(s)
- Guoqing Chen
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Min Yu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yang Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yong Liu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Songwei Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Daniel H. Teitelbaum
- Department of Surgery, the University of Michigan Medical School, Ann Arbor, Michigan
| | - Yuanhang Ma
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Dingsong Lu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
34
|
Chen G, Sun L, Yu M, Meng D, Wang W, Yang Y, Yang H. The Jagged-1/Notch-1/Hes-1 pathway is involved in intestinal adaptation in a massive small bowel resection rat model. Dig Dis Sci 2013; 58:2478-86. [PMID: 23595520 DOI: 10.1007/s10620-013-2680-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/04/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Notch signaling is required for the maintenance of intestinal epithelial proliferation. Dysfunction of this signaling pathway is associated with the loss of proliferated crypt epithelial cells. AIM The aim of this study was to investigate the role of Notch signaling in small bowel resection (SBR)-associated crypt epithelial cell proliferation. METHODS Male Sprague-Dawley rats were subjected to sham operation (bowel transection and reanastomosis) or 70% mid-SBR. Intestinal tissue samples were collected at 0.5, 1, 6, 12, 24, 72, and 168 h after operation. The expression of Notch pathway mRNAs and proteins was analyzed using RT-PCR and Western blot. The expression of the Notch pathway proteins Jagged-1, NICD and Hes-1 was also determined through immunohistochemical staining using day 3 postoperative intestinal tissues. The degree of crypt epithelial cell proliferation was evaluated using the immunohistochemical staining of proliferating cell nuclear antigen (PCNA). Furthermore, IEC-6 cells were used to examine the function of the Jagged-1 signaling system. RESULTS SBR led to increased crypt epithelial cell proliferation and increased expression of Jagged-1 and Hes-1 mRNA and protein along with cleaved Notch-1. Immunohistochemical staining showed that Jagged-1, cleaved Notch-1 and Hes-1 colocalized in the same proliferated crypt epithelial cell population. Recombinant Jagged-1 significantly stimulated the proliferation of IEC-6 cells. Transient upregulation of Jagged-2 expression was found 1 h after SBR, and it was accompanied by cleaved Notch-1 and Hes-1 upregulation. CONCLUSION The Jagged-1/Notch-1/Hes-1 signaling pathway is involved in intestinal adaptation through increasing crypt epithelial cell proliferation.
Collapse
Affiliation(s)
- Guoqing Chen
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW This review evaluates recent progress in several approaches aimed at developing human surrogate β cells, and identifies gaps that need to be filled for bringing them closer to clinical application. RECENT FINDINGS Cells expanded in vitro from human cadaver donor β cells under conditions causing dedifferentiation have been shown to undergo redifferentiation following inhibition of the Notch pathway. Efforts for differentiation of insulin-producing cells from human pluripotent stem cells have focused on isolation and expansion of intermediate-stage cells. The role of mesenchyme in expansion of pancreas progenitors has been emphasized by mouse cell ablation, and co-culture of human embryonic stem cell-derived definitive endoderm with mesenchyme. Incomplete removal of Polycomb-mediated repression of endocrine genes in embryonic stem cell-derived insulin-producing cells generated in vitro has been suggested to be responsible for their immature phenotype. Induced pluripotent stem cells reprogrammed from β cells have been shown to exhibit an enhanced differentiation capacity toward insulin-producing cells, compared with other pluripotent stem cells. A new approach for reprogramming non-β into β-like cells involving transcription factor gene ablation has been demonstrated in mouse enteroendocrine cells in vivo. SUMMARY New insights into the stumbling blocks in expansion of human donor islet cells, differentiation of pluripotent stem cells, and reprogramming of non-β cell types are shaping improved strategies, which are likely to bring us closer to the goal of generating abundant human surrogate β cells.
Collapse
Affiliation(s)
- Shimon Efrat
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
36
|
Rohatgi N, Aly H, Marshall CA, McDonald WG, Kletzien RF, Colca JR, McDaniel ML. Novel insulin sensitizer modulates nutrient sensing pathways and maintains β-cell phenotype in human islets. PLoS One 2013; 8:e62012. [PMID: 23650507 PMCID: PMC3641131 DOI: 10.1371/journal.pone.0062012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/17/2013] [Indexed: 02/04/2023] Open
Abstract
Major bottlenecks in the expansion of human β-cell mass are limited proliferation, loss of β-cell phenotype, and increased apoptosis. In our previous studies, activation of Wnt and mTOR signaling significantly enhanced human β-cell proliferation. However, isolated human islets displayed insulin signaling pathway resistance, due in part to chronic activation of mTOR/S6K1 signaling that results in negative feedback of the insulin signaling pathway and a loss of Akt phosphorylation and insulin content. We evaluated the effects of a new generation insulin sensitizer, MSDC-0160, on restoring insulin/IGF-1 sensitivity and insulin content in human β-cells. This novel TZD has low affinity for binding and activation of PPARγ and has insulin-sensitizing effects in mouse models of diabetes and ability to lower glucose in Phase 2 clinical trials. MSDC-0160 treatment of human islets increased AMPK activity and reduced mTOR activity. This was associated with the restoration of IGF-1-induced phosphorylation of Akt, GSK-3, and increased protein expression of Pdx1. Furthermore, MSDC-0160 in combination with IGF-1 and 8 mM glucose increased β-cell specific gene expression of insulin, pdx1, nkx6.1, and nkx2.2, and maintained insulin content without altering glucose-stimulated insulin secretion. Human islets were unable to simultaneously promote DNA synthesis and maintain the β-cell phenotype. Lithium-induced GSK-3 inhibition that promotes DNA synthesis blocked the ability of MSDC-0160 to maintain the β-cell phenotype. Conversely, MSDC-0160 prevented an increase in DNA synthesis by blocking β-catenin nuclear translocation. Due to the counteracting pathways involved in these processes, we employed a sequential ex vivo strategy to first induce human islet DNA synthesis, followed by MSDC-0160 to promote the β-cell phenotype and insulin content. This new generation PPARγ sparing insulin sensitizer may provide an initial tool for relieving inherent human islet insulin signaling pathway resistance that is necessary to preserve the β-cell phenotype during β-cell expansion for the treatment of diabetes.
Collapse
Affiliation(s)
- Nidhi Rohatgi
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Haytham Aly
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Connie A. Marshall
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - William G. McDonald
- Metabolic Solutions Development Company, Kalamazoo, Michigan, United States of America
| | - Rolf F. Kletzien
- Metabolic Solutions Development Company, Kalamazoo, Michigan, United States of America
| | - Jerry R. Colca
- Metabolic Solutions Development Company, Kalamazoo, Michigan, United States of America
| | - Michael L. McDaniel
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
37
|
Suzuki T, Dai P, Hatakeyama T, Harada Y, Tanaka H, Yoshimura N, Takamatsu T. TGF-β Signaling Regulates Pancreatic β-Cell Proliferation through Control of Cell Cycle Regulator p27 Expression. Acta Histochem Cytochem 2013; 46:51-8. [PMID: 23720603 PMCID: PMC3661777 DOI: 10.1267/ahc.12035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023] Open
Abstract
Proliferation of pancreatic β-cells is an important mechanism underlying β-cell mass adaptation to metabolic demands. Increasing β-cell mass by regeneration may ameliorate or correct both type 1 and type 2 diabetes, which both result from inadequate production of insulin by β-cells of the pancreatic islet. Transforming growth factor β (TGF-β) signaling is essential for fetal development and growth of pancreatic islets. In this study, we exposed HIT-T15, a clonal pancreatic β-cell line, to TGF-β signaling. We found that inhibition of TGF-β signaling promotes proliferation of the cells significantly, while TGF-β signaling stimulation inhibits proliferation of the cells remarkably. We confirmed that this proliferative regulation by TGF-β signaling is due to the changed expression of the cell cycle regulator p27. Furthermore, we demonstrated that there is no observed effect on transcriptional activity of p27 by TGF-β signaling. Our data show that TGF-β signaling mediates the cell-cycle progression of pancreatic β-cells by regulating the nuclear localization of CDK inhibitor, p27. Inhibition of TGF-β signaling reduces the nuclear accumulation of p27, and as a result this inhibition promotes proliferation of β-cells.
Collapse
Affiliation(s)
- Tomoyuki Suzuki
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
- Department of Transplantation and Regenerative Surgery, Kyoto Prefectural University of Medicine
| | - Ping Dai
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| | - Tomoya Hatakeyama
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
- Division of Digestive Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| | - Norio Yoshimura
- Department of Transplantation and Regenerative Surgery, Kyoto Prefectural University of Medicine
| | - Tetsuro Takamatsu
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| |
Collapse
|
38
|
Hamamoto S, Kanda Y, Shimoda M, Tatsumi F, Kohara K, Tawaramoto K, Hashiramoto M, Kaku K. Vildagliptin preserves the mass and function of pancreatic β cells via the developmental regulation and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetes Obes Metab 2013; 15:153-63. [PMID: 22950702 PMCID: PMC3558804 DOI: 10.1111/dom.12005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/26/2012] [Accepted: 09/02/2012] [Indexed: 01/10/2023]
Abstract
AIM We investigated the molecular mechanisms by which vildagliptin preserved pancreatic β cell mass and function. METHODS Morphological, biochemical and gene expression profiles of the pancreatic islets were investigated in male KK-A(y) -TaJcl(KK-A(y) ) and C57BL/6JJcl (B6) mice aged 8 weeks which received either vildagliptin or a vehicle for 4 weeks. RESULTS Body weight, food intake, fasting blood glucose, plasma insulin and active glucagon-like peptide-1 were unchanged with vildagliptin treatment in both mice. In KK-A(y) mice treated with vildagliptin, increased plasma triglyceride (TG) level and islet TG content were decreased, insulin sensitivity significantly improved, and the glucose tolerance ameliorated with increases in plasma insulin levels. Furthermore, vildagliptin increased glucose-stimulated insulin secretion, islet insulin content and pancreatic β cell mass in both strains. By vildagliptin, the expression of genes involved in cell differentiation/proliferation was upregulated in both strains, those related to apoptosis, endoplasmic reticulum stress and lipid synthesis was decreased and those related to anti-apoptosis and anti-oxidative stress was upregulated, in KK-A(y) mice. The morphological results were consistent with the gene expression profiles. CONCLUSION Vildagliptin increases β cell mass by not only directly affecting cell kinetics but also by indirectly reducing cell apoptosis, oxidative stress and endoplasmic reticulum stress in diabetic mice.
Collapse
Affiliation(s)
- S Hamamoto
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Domínguez-Bendala J, Inverardi L, Ricordi C. Regeneration of pancreatic beta-cell mass for the treatment of diabetes. Expert Opin Biol Ther 2012; 12:731-41. [DOI: 10.1517/14712598.2012.679654] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Bar Y, Russ HA, Sintov E, Anker-Kitai L, Knoller S, Efrat S. Redifferentiation of expanded human pancreatic β-cell-derived cells by inhibition of the NOTCH pathway. J Biol Chem 2012; 287:17269-17280. [PMID: 22457355 DOI: 10.1074/jbc.m111.319152] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In vitro expansion of β-cells from adult human pancreatic islets would overcome donor β-cell shortage for cell replacement therapy for diabetes. Using a β-cell-specific labeling system we have shown that β-cell expansion is accompanied by dedifferentiation resembling epithelial-mesenchymal transition and loss of insulin expression. Epigenetic analyses indicate that key β-cell genes maintain open chromatin structure in expanded β-cell-derived (BCD) cells, although they are not transcribed. In the developing pancreas important cell-fate decisions are regulated by NOTCH receptors, which signal through the Hairy and Enhancer of Split 1 (HES1) transcription regulator. We have reported that BCD cell dedifferentiation and proliferation in vitro correlate with reactivation of the NOTCH pathway. Inhibition of HES1 expression using shRNA during culture initiation results in reduced β-cell replication and dedifferentiation, suggesting that HES1 inhibition may also affect BCD cell redifferentiation following expansion. Here, we used HES1 shRNA to down-regulate HES1 expression in expanded human BCD cells, showing that HES1 inhibition is sufficient to induce BCD cell redifferentiation, as manifested by a significant increase in insulin expression. Combined treatment with HES1 shRNA, cell aggregation in serum-free medium, and a mixture of soluble factors further stimulated the redifferentiation of BCD cells. In vivo analyses demonstrated the ability of the redifferentiated cells to replace β-cell function in hyperglycemic immunodeficient mice. These findings demonstrate the redifferentiation potential of ex vivo expanded BCD cells and the reproducible differentiating effect of HES1 inhibition in these cells.
Collapse
Affiliation(s)
- Yael Bar
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Holger A Russ
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Elad Sintov
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Leeat Anker-Kitai
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Sarah Knoller
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Shimon Efrat
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.
| |
Collapse
|
41
|
Negi S, Jetha A, Aikin R, Hasilo C, Sladek R, Paraskevas S. Analysis of beta-cell gene expression reveals inflammatory signaling and evidence of dedifferentiation following human islet isolation and culture. PLoS One 2012; 7:e30415. [PMID: 22299040 PMCID: PMC3267725 DOI: 10.1371/journal.pone.0030415] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/15/2011] [Indexed: 12/20/2022] Open
Abstract
The stresses encountered during islet isolation and culture may have deleterious effects on beta-cell physiology. However, the biological response of human islet cells to isolation remains poorly characterized. A better understanding of the network of signaling pathways induced by islet isolation and culturing may lead to strategies aimed at improving islet graft survival and function. Laser capture microdissection (LCM) was used to extract beta-cell RNA from 1) intact pancreatic islets, 2) freshly isolated islets, 3) islets cultured for 3 days, and changes in gene expression were examined by microarray analysis. We identified a strong inflammatory response induced by islet isolation that continues during in-vitro culture manifested by upregulation of several cytokines and cytokine-receptors. The most highly upregulated gene, interleukin-8 (IL-8), was induced by 3.6-fold following islet isolation and 56-fold after 3 days in culture. Immunofluorescence studies showed that the majority of IL-8 was produced by beta-cells themselves. We also observed that several pancreas-specific transcription factors were down-regulated in cultured islets. Concordantly, several pancreatic progenitor cell-specific transcription factors like SOX4, SOX9, and ID2 were upregulated in cultured islets, suggesting progressive transformation of mature beta-cell phenotype toward an immature endocrine cell phenotype. Our findings suggest islet isolation and culture induces an inflammatory response and loss of the mature endocrine cell phenotype. A better understanding of the signals required to maintain a mature beta-cell phenotype may help improve the efficacy of islet transplantation.
Collapse
Affiliation(s)
- Sarita Negi
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Arif Jetha
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Reid Aikin
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Craig Hasilo
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Rob Sladek
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Steven Paraskevas
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
42
|
Elevated Hedgehog/Gli signaling causes beta-cell dedifferentiation in mice. Proc Natl Acad Sci U S A 2011; 108:17010-5. [PMID: 21969560 DOI: 10.1073/pnas.1105404108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Hedgehog (Hh) signaling regulates cell differentiation during pancreas organogenesis, the consequences of pathway up-regulation in adult β-cells in vivo have not been investigated. Here, we elevate Hh signaling in β-cells by expressing an active version of the GLI2 transcription factor, a mediator of the Hh pathway, in β-cells that are also devoid of primary cilia, a critical regulator of Hh activity. We show that increased Hh signaling leads to impaired β-cell function and insulin secretion, resulting in glucose intolerance in transgenic mice. This phenotype was accompanied by reduced expression of both genes critical for β-cell function and transcription factors associated with their mature phenotype. Increased Hh signaling further correlated with increased expression of the precursor cell markers Hes1 and Sox9, both direct Hh targets that are normally excluded from β-cells. Over time, the majority of β-cells down-regulated GLI2 levels, thereby regaining the full differentiation state and restoring normoglycemia in transgenic mice. However, sustained high Hh levels in some insulin-producing cells further eroded the β-cell identity and eventually led to the development of undifferentiated pancreatic tumors. Summarily, our results indicate that deregulation of the Hh pathway impairs β-cell function by interfering with the mature β-cell differentiation state.
Collapse
|
43
|
Russ HA, Sintov E, Anker-Kitai L, Friedman O, Lenz A, Toren G, Farhy C, Pasmanik-Chor M, Oron-Karni V, Ravassard P, Efrat S. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro. PLoS One 2011; 6:e25566. [PMID: 21984932 PMCID: PMC3184150 DOI: 10.1371/journal.pone.0025566] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/06/2011] [Indexed: 12/31/2022] Open
Abstract
Background Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD) cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT). Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells. Methodology/Principal Finding Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2) using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation. Conclusions/Significance These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug screening.
Collapse
Affiliation(s)
- Holger A. Russ
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elad Sintov
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leeat Anker-Kitai
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orr Friedman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Lenz
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ginat Toren
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Farhy
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Varda Oron-Karni
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Philippe Ravassard
- Department of Biotechnology and Biotherapy, Hôpital Pitié Salpêtrière, Paris, France
| | - Shimon Efrat
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
44
|
Afrikanova I, Yebra M, Simpkinson M, Xu Y, Hayek A, Montgomery A. Inhibitors of Src and focal adhesion kinase promote endocrine specification: impact on the derivation of β-cells from human pluripotent stem cells. J Biol Chem 2011; 286:36042-36052. [PMID: 21852242 DOI: 10.1074/jbc.m111.290825] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stepwise approaches for the derivation of β-cells from human embryonic stem cells have been described. However, low levels of endocrine specification limit the final yield of insulin-producing β-cells. In this study, we show that the pyrrolo-pyrimidine Src family kinase (SFK) inhibitor PP2 effectively promotes the endocrine specification of human embryonic stem cell derivatives based on its capacity to induce the expression of proendocrine transcription factors (NGN3, NEUROD1, NKX2.2, and PAX4) and to significantly increase the final yield of insulin-positive cells. We further demonstrate that PP2 inhibits the activation of focal adhesion kinase (FAK), and selective inhibition of this kinase is also sufficient to induce early endocrine commitment based on increased expression of NGN3, NEUROD1, and NKX2.2. Additional studies using dominant negative constructs and isolated human fetal pancreata suggest that c-Src is at least partially responsible for inhibiting early endocrine specification. Mechanistically, we propose that inhibition of SFK/FAK signaling can promote endocrine specification by limiting activation of the TGFβR/Smad2/3 pathway. Moreover, we show that inhibition of SFK/FAK signaling suppresses cell growth, increases the expression of the β-cell-associated cyclin-dependent kinase inhibitor p57kip2, and simultaneously suppresses the expression of Id1 and Id2. This study has important implications for the derivation of β-cells for the cell-based therapy of diabetes and sheds new light on the signaling events that regulate early endocrine specification.
Collapse
Affiliation(s)
- Ivka Afrikanova
- Department of Pediatrics, University of California San Diego, San Diego, California 92121; Pediatric Diabetes Research Center, University of California San Diego, San Diego, California 92121
| | - Mayra Yebra
- Department of Pediatrics, University of California San Diego, San Diego, California 92121; Pediatric Diabetes Research Center, University of California San Diego, San Diego, California 92121
| | - Megan Simpkinson
- Department of Pediatrics, University of California San Diego, San Diego, California 92121; Pediatric Diabetes Research Center, University of California San Diego, San Diego, California 92121
| | - Yang Xu
- Division of Biological Science, University of California San Diego, San Diego, California 92121
| | - Alberto Hayek
- Department of Pediatrics, University of California San Diego, San Diego, California 92121; Pediatric Diabetes Research Center, University of California San Diego, San Diego, California 92121
| | - Anthony Montgomery
- Department of Pediatrics, University of California San Diego, San Diego, California 92121; Pediatric Diabetes Research Center, University of California San Diego, San Diego, California 92121.
| |
Collapse
|
45
|
Shimoda M, Kanda Y, Hamamoto S, Tawaramoto K, Hashiramoto M, Matsuki M, Kaku K. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia 2011; 54:1098-108. [PMID: 21340625 PMCID: PMC3071950 DOI: 10.1007/s00125-011-2069-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 12/22/2010] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS We investigated the molecular mechanism by which the human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells in diabetic db/db mice. METHODS Male db/db and m/m mice aged 10 weeks received liraglutide or vehicle for 2 days or 2 weeks. In addition to morphological and biochemical analysis of pancreatic islets, gene expression profiles in the islet core area were investigated by laser capture microdissection and real-time RT-PCR. RESULTS Liraglutide treatment for 2 weeks improved metabolic variables and insulin sensitivity in db/db mice. Liraglutide also increased glucose-stimulated insulin secretion (GSIS) and islet insulin content in both mouse strains and reduced triacylglycerol content in db/db mice. Expression of genes involved in cell differentiation and proliferation in both mouse strains was regulated by liraglutide, which, in db/db mice, downregulated genes involved in pro-apoptosis, endoplasmic reticulum (ER) stress and lipid synthesis, and upregulated genes related to anti-apoptosis and anti-oxidative stress. In the 2 day experiment, liraglutide slightly improved metabolic variables in db/db mice, but GSIS, insulin and triacylglycerol content were not affected. In db/db mice, liraglutide increased gene expression associated with cell differentiation, proliferation and anti-apoptosis, and suppressed gene expression involved in pro-apoptosis; it had no effect on genes related to oxidative stress or ER stress. Morphometric results for cell proliferation, cell apoptosis and oxidative stress in db/db mice islets were consistent with the results of the gene expression analysis. CONCLUSIONS/INTERPRETATION Liraglutide increases beta cell mass not only by directly regulating cell kinetics, but also by suppressing oxidative and ER stress, secondary to amelioration of glucolipotoxicity.
Collapse
Affiliation(s)
- M. Shimoda
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192 Japan
| | - Y. Kanda
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192 Japan
| | - S. Hamamoto
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192 Japan
| | - K. Tawaramoto
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192 Japan
| | - M. Hashiramoto
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192 Japan
| | - M. Matsuki
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192 Japan
| | - K. Kaku
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192 Japan
| |
Collapse
|
46
|
miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. EMBO J 2011; 30:835-45. [PMID: 21285947 DOI: 10.1038/emboj.2010.361] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 12/16/2010] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) were shown to be important for pancreas development, yet their roles in differentiated β-cells remain unclear. Here, we show that miRNA inactivation in β-cells of adult mice results in a striking diabetic phenotype. While islet architecture is intact and differentiation markers are maintained, Dicer1-deficient β-cells show a dramatic decrease in insulin content and insulin mRNA. As a consequence of the change in insulin content, the animals become diabetic. We provide evidence for involvement of a set of miRNAs in regulating insulin synthesis. The specific knockdown of miR-24, miR-26, miR-182 or miR-148 in cultured β-cells or in isolated primary islets downregulates insulin promoter activity and insulin mRNA levels. Further, miRNA-dependent regulation of insulin expression is associated with upregulation of transcriptional repressors, including Bhlhe22 and Sox6. Thus, miRNAs in the adult pancreas act in a new network that reinforces insulin expression by reducing the expression of insulin transcriptional repressors.
Collapse
|
47
|
Miyazaki S, Taniguchi H, Moritoh Y, Tashiro F, Yamamoto T, Yamato E, Ikegami H, Ozato K, Miyazaki JI. Nuclear hormone retinoid X receptor (RXR) negatively regulates the glucose-stimulated insulin secretion of pancreatic ß-cells. Diabetes 2010; 59:2854-61. [PMID: 20798333 PMCID: PMC2963544 DOI: 10.2337/db09-1897] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Retinoid X receptors (RXRs) are members of the nuclear hormone receptor superfamily and are thought to be key regulators in differentiation, cellular growth, and gene expression. Although several experiments using pancreatic β-cell lines have shown that the ligands of nuclear hormone receptors modulate insulin secretion, it is not clear whether RXRs have any role in insulin secretion. RESEARCH DESIGN AND METHODS To elucidate the function of RXRs in pancreatic β-cells, we generated a double-transgenic mouse in which a dominant-negative form of RXRβ was inducibly expressed in pancreatic β-cells using the Tet-On system. We also established a pancreatic β-cell line from an insulinoma caused by the β-cell-specific expression of simian virus 40 T antigen in the above transgenic mouse. RESULTS In the transgenic mouse, expression of the dominant-negative RXR enhanced the insulin secretion with high glucose stimulation. In the pancreatic β-cell line, the suppression of RXRs also enhanced glucose-stimulated insulin secretion at a high glucose concentration, while 9-cis-retinoic acid, an RXR agonist, repressed it. High-density oligonucleotide microarray analysis showed that expression of the dominant-negative RXR affected the expression levels of a number of genes, some of which have been implicated in the function and/or differentiation of β-cells. CONCLUSIONS These results suggest that endogenous RXR negatively regulates the glucose-stimulated insulin secretion. Given these findings, we propose that the modulation of endogenous RXR in β-cells may be a new therapeutic approach for improving impaired insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Satsuki Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidenori Taniguchi
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Moritoh
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumi Tashiro
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsunehiko Yamamoto
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiji Yamato
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Ikegami
- Department of Endocrinology, Metabolism and Diabetes, Kinki University School of Medicine, Osaka, Japan
| | - Keiko Ozato
- Section on Molecular Genetics of Immunity, Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Jun-ichi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Osaka, Japan
- Corresponding author: Jun-ichi Miyazaki,
| |
Collapse
|
48
|
Sumual S, Saad S, Tang O, Yong R, McGinn S, Chen XM, Pollock CA. Differential regulation of Snail by hypoxia and hyperglycemia in human proximal tubule cells. Int J Biochem Cell Biol 2010; 42:1689-97. [DOI: 10.1016/j.biocel.2010.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/09/2010] [Accepted: 06/30/2010] [Indexed: 12/17/2022]
|
49
|
Abstract
The pancreas has been the subject of intense research due to the debilitating diseases that result from its dysfunction. In this review, we summarize current understanding of the critical tissue interactions and intracellular regulatory events that take place during formation of the pancreas from a small cluster of cells in the foregut domain of the mouse embryo. Importantly, an understanding of principles that govern the development of this organ has equipped us with the means to manipulate both embryonic and differentiated adult cells in the context of regenerative medicine. The emerging area of lineage modulation within the adult pancreas is of particular interest, and this review summarizes recent findings that exemplify how lessons learned from development are being applied to reveal the potential of fully differentiated cells to change fate.
Collapse
Affiliation(s)
- Sapna Puri
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
50
|
Hanley SC, Austin E, Assouline-Thomas B, Kapeluto J, Blaichman J, Moosavi M, Petropavlovskaia M, Rosenberg L. {beta}-Cell mass dynamics and islet cell plasticity in human type 2 diabetes. Endocrinology 2010; 151:1462-72. [PMID: 20176718 DOI: 10.1210/en.2009-1277] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studies of long-standing type 2 diabetes (T2D) report a deficit in beta-cell mass due to increased apoptosis, whereas neogenesis and replication are unaffected. It is unclear whether these changes are a cause or a consequence of T2D. Moreover, whereas islet morphogenetic plasticity has been demonstrated in vitro, the in situ plasticity of islets, as well as the effect of T2D on endocrine differentiation, is unknown. We compared beta-cell volume, neogenesis, replication, and apoptosis in pancreata from lean and obese (body mass index > or = 27 kg/m(2)) diabetic (5 +/- 2 yr since diagnosis) and nondiabetic cadaveric donors. We also subjected isolated islets from diabetic (3 +/- 1 yr since diagnosis) and nondiabetic donors to an established in vitro model of islet plasticity. Differences in beta-cell volume between diabetic and nondiabetic donors were consistently less pronounced than those reported in long-standing T2D. A compensatory increase in beta-cell neogenesis appeared to mediate this effect. Studies of induced plasticity indicated that islets from diabetic donors were capable of epithelial dedifferentiation but did not demonstrate regenerative potential, as was seen in islets from nondiabetic donors. This deficiency was associated with the overexpression of Notch signaling molecules and a decreased neurogenin-3(+) cell frequency. One interpretation of these results would be that decreased beta-cell volume is a consequence, not a cause, of T2D, mediated by increased apoptosis and attenuated beta-cell (re)generation. However, other explanations are also possible. It remains to be seen whether the morphogenetic plasticity of human islets, deficient in vitro in islets from diabetic donors, is a component of normal beta-cell mass dynamics.
Collapse
Affiliation(s)
- Stephen C Hanley
- M.Eng., Montréal General Hospital C9-128, 1650 Cedar Avenue, Montréal, Québec, Canada H3G 1A4
| | | | | | | | | | | | | | | |
Collapse
|