1
|
Tsou TC, Yeh SC, Tsai FY, Chen PY. Palmitic acid and lipopolysaccharide induce macrophage TNFα secretion, suppressing browning regulators and mitochondrial respiration in adipocytes. Toxicol Appl Pharmacol 2025; 500:117389. [PMID: 40348028 DOI: 10.1016/j.taap.2025.117389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Obesity and its associated pro-inflammatory activity contribute significantly to metabolic dysfunction. In contrast, browning of white adipose tissue (WAT) generally improves metabolic health. Our prior research suggested that macrophage-derived pro-inflammatory cytokines suppress key regulators of browning-adrenergic receptor β3 (Adrb3) and peroxisome proliferator-activated receptor γ (Pparg)-as well as energy metabolism mediators-insulin receptor substrate 1 (Irs1) and hormone-sensitive lipase (Lipe)-in diet-induced obese mice. To explore this mechanism, we developed an in vitro model using RAW264.7 macrophages and 3T3-L1 adipocytes exposed to palmitic acid (PA) and/or lipopolysaccharide (LPS). PA (200 μM) and LPS (1.0 μg/ml) synergistically promoted M1 polarization of macrophages and secretion of pro-inflammatory cytokines, with tumor necrosis factor-α (TNFα), C-C motif chemokine ligand 2 (CCL2), CCL5, and interleukin-6 (IL-6) being predominant. Conditioned media from both control and PA-treated macrophages, when exposed to LPS ≥0.01 μg/ml, significantly downregulated Adrb3, Pparg, Irs1, and Lipe in adipocytes. At physiologically relevant LPS levels (≤0.001 μg/ml), PA-treated macrophage media exerted greater suppression of these genes than controls. Among the cytokines, TNFα emerged as the primary mediator, significantly reducing expression of the four key regulators. Furthermore, adipocytes treated with TNFα exhibited significant reductions in both uncoupling protein 1 (Ucp1) expression and mitochondrial respiration. These findings demonstrate that exposure to obesity-associated factors (PA and LPS) induces macrophage-derived TNFα, which suppresses browning and mitochondrial function in adipocytes. This mechanism may inform new therapeutic strategies targeting TNFα to alleviate obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Tsui-Chun Tsou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan.
| | - Szu-Ching Yeh
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Feng-Yuan Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Pei-Yu Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| |
Collapse
|
2
|
Filipp M, Ge ZD, DeBerge M, Lantz C, Glinton K, Gao P, Smolgovsky S, Dai J, Zhao YY, Yvan-Charvet L, Alcaide P, Weinberg SE, Schiattarella GG, Hill JA, Feinstein MJ, Shah SJ, Thorp EB. Myeloid Fatty Acid Metabolism Activates Neighboring Hematopoietic Stem Cells to Promote Heart Failure With Preserved Ejection Fraction. Circulation 2025; 151:1451-1466. [PMID: 40071347 DOI: 10.1161/circulationaha.124.070248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/14/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Despite the high morbidity and mortality of heart failure with preserved ejection fraction (HFpEF), treatment options remain limited. The HFpEF syndrome is associated with a high comorbidity burden, including high prevalence of obesity and hypertension. Although inflammation is implicated to play a key role in HFpEF pathophysiology, underlying causal mechanisms remain unclear. METHODS Comparing patient samples and animal models, we defined the innate immune response during HFpEF in situ and through flow cytometry and single-cell RNA sequencing. After identifying transcriptional and cell signatures, we implemented a high-fat diet and hypertensive model of HFpEF and tested roles for myeloid and hematopoietic stem cells during HFpEF. Contributions of macrophage metabolism were also evaluated, including through mass spectrometry and carbon labeling. Primary macrophages were studied ex vivo to gain insight into complementary cell-intrinsic mechanisms. RESULTS Here we report evidence that patients with cardiometabolic HFpEF exhibit elevated peripheral blood hematopoietic stem cells. This phenotype was conserved across species in a murine mode of high-fat diet and hypertension. Hematopoietic stem cell proliferation was coupled to striking remodeling of the peripheral hematopoietic stem cell niche and expression of the macrophage adhesion molecule Vcam1. This could be partially inhibited by sodium-glucose cotransporter-2 inhibitors and explained by elevated fatty acid metabolism in macrophage mitochondria, which in turn remodeled the Vcam1 promoter to enhance its expression. CONCLUSIONS These findings identify a significant new stem cell signature of cardiometabolic HFpEF and support a role for myeloid maladaptive fatty acid metabolism in the promotion of systemic inflammation and cardiac diastolic dysfunction.
Collapse
Affiliation(s)
- Mallory Filipp
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Medicine (Cardiology) (MF., M.J.F., S.J.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Zhi-Dong Ge
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Matthew DeBerge
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Connor Lantz
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kristofor Glinton
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Peng Gao
- Metabolomics Core Facility, Robert H. Lurie Cancer Center (P.G.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, MA (S.S., P.A.)
| | - Jingbo Dai
- Department of Pediatrics (J.D., Y.-Y.Z.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - You-Yang Zhao
- Department of Pediatrics (J.D., Y.-Y.Z.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA (S.S., P.A.)
| | - Samuel E Weinberg
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité-Universitätsmedizin Berlin, Germany (G.G.S.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (G.G.S.)
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. (G.G.S.)
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (G.G.S.)
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), UT Southwestern Medical Center, Dallas, TX (J.A.H.)
| | - Matthew J Feinstein
- Department of Medicine (Cardiology) (MF., M.J.F., S.J.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sanjiv J Shah
- Department of Medicine (Cardiology) (MF., M.J.F., S.J.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Edward B Thorp
- Department of Pathology (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.), Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
3
|
Chen J, Zhou F, Zhang L, Lou R, Zhang C, Wan J, Ma X, Lin L. Adipocyte-expressed SIRT3 manipulates carnitine pool to orchestrate metabolic reprogramming and polarization of macrophages. Cell Death Dis 2025; 16:381. [PMID: 40368890 PMCID: PMC12078679 DOI: 10.1038/s41419-025-07699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Obesity is accompanied with accumulation and pro-inflammatory polarization of macrophages in adipose tissue (AT), leading to systematical inflammation and insulin resistance. Impaired lipid metabolism and endocrine function in adipocytes is recognized as a culprit in the onset of adipose tissue inflammation. Lipid levels can be managed via inhibiting both synthesis and transport or via increasing fatty acid oxidation (FAO). The deacetylase Sirtuin 3 (SIRT3) participates in inflammatory responses via regulating mitochondrial function and FAO. Herein, an AT-specific SIRT3 overexpression mice model (AT-SIRT3OE) was generated using adeno-associated virus transduction. AT-specific SIRT3 overexpression did not alter body weight or adiposity in either regular chow diet or high-fat diet (HFD) fed mice. AT-SIRT3OE mice exhibited improved insulin sensitivity in HFD-fed mice, through alleviating infiltration of macrophage and pro-inflammatory macrophage polarization in the epididymal AT. The metabolomics analysis indicated that SIRT3 overexpressed adipocytes accumulated more L-carnitine (LC) and less long-chain acylarnitines in the medium. Furthermore, SIRT3 directly deacetylates and activates carnitine palmitoyltransferase 2 (CPT2), an obligate step in mitochondrial long-chain FAO, to enhance the LC turnover pool in adipocytes, which in turn promoted lipid metabolism and anti-inflammatory polarization in macrophages. Collectively, our study provided new evidence that adipocyte-expressed SIRT3 alleviates inflammatory crosstalk between adipocytes and macrophages through manipulating LC pool. Activating SIRT3 in adipocytes could be a potential strategy to alleviate obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Jiali Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Fei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Lei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Ruohan Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Cangman Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Jianbo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Xiaojun Ma
- The Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao.
| |
Collapse
|
4
|
Pena Calderin E, Zheng JJ, Boyd NL, Lynch W, Sansbury B, Spite M, Hill BG, Hellmann J. Exercise-Stimulated Resolvin Biosynthesis in the Adipose Tissue Is Abrogated by High-Fat Diet-Induced Adrenergic Deficiency. Arterioscler Thromb Vasc Biol 2025. [PMID: 40336478 DOI: 10.1161/atvbaha.124.322234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Diet-induced white adipose tissue inflammation is associated with insulin resistance and metabolic perturbations. Conversely, exercise protects against the development of diet-induced chronic inflammation and insulin resistance independent of weight loss; however, the mechanisms remain largely unknown. We have recently shown that through adrenergic stimulation of macrophages, exercise promotes resolution of acute peritoneal inflammation by enhancing the biosynthesis of specialized proresolving lipid mediators. In this study, we sought to determine whether exercise stimulates proresolving pathways in adipose tissue and whether this response is modified by diet. Specifically, we hypothesized that exercise stimulates proresolving pathways by adrenergic signaling, which is inhibited by high-fat diet, priming the development of chronic inflammation in the adipose tissue. METHODS To explore the dietary dependence of the proresolving effects of exercise, mice were fed either a control or high-fat diet for 2 weeks before, and throughout, a 4-week period of daily treadmill running. Glucose handling, body weight and composition, lipemia, and exercise performance were evaluated at the end of the feeding and exercise interventions. Likewise, changes in catecholamines and their biosynthetic enzymes were measured along with adipose tissue specialized proresolving lipid mediator levels and macrophage phenotype and abundance. RESULTS When compared with sedentary controls, macrophages isolated from mice exposed to 4 weeks of exercise display elevated expression of the specialized proresolving lipid mediator biosynthetic enzyme Alox15, while adipose tissue specialized proresolving lipid mediator levels and anti-inflammatory CD301+ M2 macrophages increased. These changes were dependent upon diet as 6 weeks of feeding with high-fat diet abrogated the proresolving effect of exercise when compared with control diet-fed animals. Interestingly, exercise-induced epinephrine production was inhibited by high-fat diet, which diminished the expression of the epinephrine biosynthetic enzyme PNMT (phenylethanolamine N-methyltransferase) in adrenal glands. CONCLUSIONS Taken together, these results suggest that a diet high in fat diminishes the proresolving effects of exercise in the adipose tissue via decreasing the biosynthesis of catecholamines.
Collapse
Affiliation(s)
- Ernesto Pena Calderin
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
- Department of Physiology, University of Louisville School of Medicine, KY. (E.P.C.)
| | - Jing-Juan Zheng
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
| | - Nolan L Boyd
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
| | - Will Lynch
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
| | - Brian Sansbury
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
| | - Matthew Spite
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (M.S.)
| | - Bradford G Hill
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
| | - Jason Hellmann
- Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, KY. (E.P.C., J.-J.Z., N.L.B., W.L., B.S., B.G.H., J.H.)
| |
Collapse
|
5
|
Wu D, Eeda V, Maria Z, Rawal K, Wang A, Herlea-Pana O, Babu Undi R, Lim HY, Wang W. Targeting IRE1α improves insulin sensitivity and thermogenesis and suppresses metabolically active adipose tissue macrophages in male obese mice. eLife 2025; 13:RP100581. [PMID: 40244655 PMCID: PMC12005715 DOI: 10.7554/elife.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Overnutrition engenders the expansion of adipose tissue and the accumulation of immune cells, in particular, macrophages, in the adipose tissue, leading to chronic low-grade inflammation and insulin resistance. In obesity, several proinflammatory subpopulations of adipose tissue macrophages (ATMs) identified hitherto include the conventional 'M1-like' CD11C-expressing ATM and the newly discovered metabolically activated CD9-expressing ATM; however, the relationship among ATM subpopulations is unclear. The ER stress sensor inositol-requiring enzyme 1α (IRE1α) is activated in the adipocytes and immune cells under obesity. It is unknown whether targeting IRE1α is capable of reversing insulin resistance and obesity and modulating the metabolically activated ATMs. We report that pharmacological inhibition of IRE1α RNase significantly ameliorates insulin resistance and glucose intolerance in male mice with diet-induced obesity. IRE1α inhibition also increases thermogenesis and energy expenditure, and hence protects against high fat diet-induced obesity. Our study shows that the 'M1-like' CD11c+ ATMs are largely overlapping with but yet non-identical to CD9+ ATMs in obese white adipose tissue. Notably, IRE1α inhibition diminishes the accumulation of obesity-induced metabolically activated ATMs and 'M1-like' ATMs, resulting in the curtailment of adipose inflammation and ensuing reactivation of thermogenesis, without augmentation of the alternatively activated M2 macrophage population. Our findings suggest the potential of targeting IRE1α for the therapeutic treatment of insulin resistance and obesity.
Collapse
Affiliation(s)
- Dan Wu
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at BirminghamBirminghamUnited States
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Venkateswararao Eeda
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Zahra Maria
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Komal Rawal
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | | | - Oana Herlea-Pana
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Ram Babu Undi
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Hui-Ying Lim
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at BirminghamBirminghamUnited States
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Weidong Wang
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at BirminghamBirminghamUnited States
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| |
Collapse
|
6
|
Tilg H, Ianiro G, Gasbarrini A, Adolph TE. Adipokines: masterminds of metabolic inflammation. Nat Rev Immunol 2025; 25:250-265. [PMID: 39511425 DOI: 10.1038/s41577-024-01103-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Adipose tissue is an immunologically active organ that controls host physiology, partly through the release of mediators termed adipokines. In obesity, adipocytes and infiltrating leukocytes produce adipokines, which include the hormones adiponectin and leptin and cytokines such as tumour necrosis factor and IL-1β. These adipokines orchestrate immune responses that are collectively referred to as metabolic inflammation. Consequently, metabolic inflammation characterizes metabolic disorders and promotes distinct disease aspects, such as insulin resistance, metabolic dysfunction-associated liver disease and cardiovascular complications. In this unifying concept, adipokines participate in the immunological cross-talk that occurs between metabolically active organs in metabolic diseases, highlighting the fundamental role of adipokines in obesity and their potential for therapeutic intervention. Here, we summarize how adipokines shape metabolic inflammation in mice and humans, focusing on their contribution to metabolic disorders in the setting of obesity and discussing their value as therapeutic targets.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
Gu Y, Zhou Z, Zhao X, Ye X, Qin K, Liu J, Zhang X, Ji Y. Inflammatory burden index (IBI) and body roundness index (BRI) in gallstone risk prediction: insights from NHANES 2017-2020. Lipids Health Dis 2025; 24:63. [PMID: 39985035 PMCID: PMC11844043 DOI: 10.1186/s12944-025-02472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND The Inflammatory Load Index (IBI) and Body Roundness Index (BRI) were employed to evaluate the systemic inflammatory status and body fat. This study aims to elucidate the association between IBI and the prevalence of gallstones, as well as to analyze the mediating role of BRI in this association. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) (2017-2020) were utilized in our cross-sectional study. A total of 2598 participants aged ≥ 20 years were enrolled. The Boruta algorithm, a supervised classification feature selection method, is leveraged to identify the confounding variables most strongly associated with the prevalence of gallstones. Weighted multivariate logistic regression, restricted cubic splines (RCS), and subgroup analyses were employed to investigate the association between IBI and gallstones, assess the presence of a linear association, and evaluate the effect of IBI on gallstone risk across different populations. Finally, the mediating effect of BRI was examined. RESULTS In the fully adjusted model, when IBI was in the highest tertile, each unit increase in IBI (corresponding to an increase of 1 in the natural logarithm of IBI) was linked to a 110.8% higher prevalence of gallstones (OR = 2.108, 95% CI: 1.109-4.005; P = 0.028). The odds ratio for gallstones increased with higher IBI levels across unadjusted, partially adjusted, and fully adjusted models (P for trend < 0.05). This positive association was confirmed to be linear by the RCS curve (P for nonlinear = 0.887). Subgroup analysis indicated that the risk of gallstones was significantly elevated in individuals aged ≥ 60, females, and those with a Poverty-to-Income Ratio (PIR) ≥ 2 (P < 0.05). Mediation analysis revealed that IBI had a significant indirect effect on gallstone prevalence through BRI, with an effect size of 0.0129 (95% CI: 0.0121-0.0136; P < 0.001), and the mediation contributed to 33.24% of the total effect. CONCLUSIONS This study demonstrates a significant linear positive relation of IBI to gallstone prevalence. Furthermore, BRI mediates the effect of IBI on gallstone risk. These findings provide a more precise inflammatory marker for gallstone prevention and treatment. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Yuting Gu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhanyi Zhou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuan Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaolu Ye
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Keyi Qin
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiahui Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yunxi Ji
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Jang JH, Sung JH, Huh JY. Diverse Functions of Macrophages in Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease: Bridging Inflammation and Metabolism. Immune Netw 2025; 25:e12. [PMID: 40078789 PMCID: PMC11896663 DOI: 10.4110/in.2025.25.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Macrophages play crucial roles in immune response and tissue homeostasis, with their functions becoming increasingly complex in obesity-mediated metabolic disorders. This review explores the extensive range of macrophage activities within adipose and liver tissues, emphasizing their contribution to the pathogenesis and progression of obesity and its related metabolic dysfunction-associated steatotic liver disease (MASLD). In the context of obesity, macrophages respond adaptively to lipid overloads and inflammatory cues in adipose tissue, profoundly influencing insulin resistance and metabolic homeostasis. Concurrently, their role in the liver extends to moderating inflammation and orchestrating fibrotic responses, integral to the development of MASLD. Highlighting the spectrum of macrophage phenotypes across these metabolic landscapes, we summarize their diverse roles in linking inflammatory processes with metabolic functions. This review advocates for a deeper understanding of macrophage subsets in metabolic tissues, proposing targeted research to harness their therapeutic potential in mitigating MASLD and other metabolic disorders.
Collapse
Affiliation(s)
- Jun Hee Jang
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| | - Jin Hyun Sung
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| | - Jin Young Huh
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| |
Collapse
|
9
|
Wu D, Eeda V, Maria Z, Rawal K, Wang A, Herlea-Pana O, Undi RB, Lim HY, Wang W. Targeting IRE1α improves insulin sensitivity and thermogenesis and suppresses metabolically active adipose tissue macrophages in male obese mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.17.603931. [PMID: 39071288 PMCID: PMC11275733 DOI: 10.1101/2024.07.17.603931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Overnutrition engenders the expansion of adipose tissue and the accumulation of immune cells, in particular, macrophages, in the adipose tissue, leading to chronic low-grade inflammation and insulin resistance. In obesity, several proinflammatory subpopulations of adipose tissue macrophages (ATMs) identified hitherto include the conventional "M1-like" CD11C-expressing ATM and the newly discovered metabolically activated CD9-expressing ATM; however, the relationship among ATM subpopulations is unclear. The ER stress sensor inositol-requiring enzyme 1α (IRE1α) is activated in the adipocytes and immune cells under obesity. It is unknown whether targeting IRE1α is capable of reversing insulin resistance and obesity and modulating the metabolically activated ATMs. We report that pharmacological inhibition of IRE1α RNase significantly ameliorates insulin resistance and glucose intolerance in male mice with diet-induced obesity. IRE1α inhibition also increases thermogenesis and energy expenditure, and hence protects against high fat diet-induced obesity. Our study shows that the "M1-like" CD11c+ ATMs are largely overlapping with but yet non-identical to CD9+ ATMs in obese white adipose tissue. Notably, IRE1α inhibition diminishes the accumulation of obesity-induced metabolically activated ATMs and "M1-like" ATMs, resulting in the curtailment of adipose inflammation and ensuing reactivation of thermogenesis, without augmentation of the alternatively activated M2 macrophage population. Our findings suggest the potential of targeting IRE1α for the therapeutic treatment of insulin resistance and obesity.
Collapse
Affiliation(s)
- Dan Wu
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, Alabama, 35233, United States
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Venkateswararao Eeda
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Zahra Maria
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Komal Rawal
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Audrey Wang
- Indian Springs School, 190 Woodward Dr, Pelham, Alabama 35124
| | - Oana Herlea-Pana
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Ram Babu Undi
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Hui-Ying Lim
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, Alabama, 35233, United States
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Weidong Wang
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, Alabama, 35233, United States
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
10
|
Thorp EB, Filipp M. Contributions of Inflammation to Cardiometabolic Heart Failure with Preserved Ejection Fraction. ANNUAL REVIEW OF PATHOLOGY 2025; 20:143-167. [PMID: 39357068 DOI: 10.1146/annurev-pathmechdis-111523-023405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The most common form of heart failure is heart failure with preserved ejection fraction (HFpEF). While heterogeneous in origin, the most common form of HFpEF is the cardiometabolic manifestation. Obesity and aging promote systemic inflammation that appears integral to cardiometabolic HFpEF pathophysiology. Accumulation of immune cells within the heart, fueled by an altered metabolome, contribute to cardiac inflammation and fibrosis. In spite of this, broad anti-inflammatory therapy has not shown significant benefit in patient outcomes. Thus, understanding of the nuances to metabolic and age-related inflammation during HFpEF is paramount for more targeted interventions. Here, we review clinical evidence of inflammation in the context of HFpEF and summarize our mechanistic understanding of immunometabolic inflammation, highlighting pathways of therapeutic potential along the way.
Collapse
Affiliation(s)
- Edward B Thorp
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; ,
| | - Mallory Filipp
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; ,
| |
Collapse
|
11
|
Wang M, Min M, Duan H, Mai J, Liu X. The role of macrophage and adipocyte mitochondrial dysfunction in the pathogenesis of obesity. Front Immunol 2024; 15:1481312. [PMID: 39582861 PMCID: PMC11581950 DOI: 10.3389/fimmu.2024.1481312] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Obesity has emerged as a prominent global public health concern, leading to the development of numerous metabolic disorders such as cardiovascular diseases, type-2 diabetes mellitus (T2DM), sleep apnea and several system diseases. It is widely recognized that obesity is characterized by a state of inflammation, with immune cells-particularly macrophages-playing a significant role in its pathogenesis through the production of inflammatory cytokines and activation of corresponding pathways. In addition to their immune functions, macrophages have also been implicated in lipogenesis. Additionally, the mitochondrial disorders existed in macrophages commonly, leading to decreased heat production. Meantime, adipocytes have mitochondrial dysfunction and damage which affect thermogenesis and insulin resistance. Therefore, enhancing our comprehension of the role of macrophages and mitochondrial dysfunction in both macrophages and adipose tissue will facilitate the identification of potential therapeutic targets for addressing this condition.
Collapse
Affiliation(s)
- Min Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Min Min
- Outpatient Department, The Air Force Hospital of Western Theater, PLA, Chengdu, Sichuan, China
| | - Haojie Duan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Guo H, Wang Y, Miao Y, Lin Q. Red cell distribution width/albumin ratio as a marker for metabolic syndrome: findings from a cross-sectional study. BMC Endocr Disord 2024; 24:227. [PMID: 39455980 PMCID: PMC11515435 DOI: 10.1186/s12902-024-01762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) imposes a significant health burden on patients globally. Chronic low-grade inflammation is pivotal in the onset and progression of this condition. However, the role of the novel inflammatory marker, red cell distribution width to albumin ratio (RAR), in the development of MetS remains unclear. METHODS This population-based cross-sectional study utilized data from the 2011-2020 National Health and Nutrition Examination Survey (NHANES). Participants included individuals over 18 years old with complete data on serum albumin concentration, red cell distribution, and MetS and its components. MetS was defined using the criteria established by the National Cholesterol Education Program Adult Treatment Panel III. The calculation formula for RAR is: RAR = Red cell distribution width (%)/serum albumin (g/dL). Study participants were stratified into four quartiles based on RAR levels. Logistic regression analysis and subgroup analysis were employed to explore the independent interaction between RAR and MetS, as well as investigate the relationship between RAR levels and the specific components of MetS. Finally, the receiver operating characteristic (ROC) curve was used to assess the predictive efficacy of RAR for MetS. RESULTS A total of 4899 participants were included in this study, comprising 2450 males and 2449 females; 1715 individuals (35.01%) were diagnosed with MetS. As the quartile of RAR increased, the proportion of individuals with MetS also increased. Spearman correlation analysis indicated a positive correlation between RAR and the insulin resistance index HOMA-IR. Logistic regression analysis, adjusting for multiple confounding factors, showed that each standard deviation increase in RAR was associated with a significant 1.665-fold increase (95% CI, 1.404-1.975; P < 0.001) in the odds of MetS prevalence. In logistic regression analysis stratified by quartiles of RAR, the risks of MetS in Q1-Q4 were 1.372 (95% CI, 1.105-1.704; P = 0.004), 1.783 (95% CI, 1.434-2.216; P < 0.001), and 2.173 (95% CI, 1.729-2.732; P < 0.001), respectively. Subgroup analyses and interaction tests demonstrated that gender, age, race, education, smoking status, and physical activity modified the positive association between RAR and MetS (p for interaction < 0.05). Additionally, analysis of the area under the receiver operating characteristic (ROC) curve showed that the optimal cutoff value for predicting MetS using RAR was 3.1348 (sensitivity: 59.9%; specificity: 60.6%; and AUC: 0.628). CONCLUSIONS Increasing RAR levels are associated with a higher risk of MetS. Therefore, greater attention should be given to patients with high RAR levels for improved prevention and treatment of MetS.
Collapse
Affiliation(s)
- Hao Guo
- Department of Gastroenterology, Luzhou People's Hospital, Luzhou, China
| | - Yu Wang
- Department of Cardiology, Luzhou People's Hospital, Luzhou, China
| | - Ying Miao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiang Lin
- Department of Cardiology, Luzhou People's Hospital, Luzhou, China.
| |
Collapse
|
13
|
Dronkers J, van Veldhuisen DJ, van der Meer P, Meems LMG. Heart Failure and Obesity: Unraveling Molecular Mechanisms of Excess Adipose Tissue. J Am Coll Cardiol 2024; 84:1666-1677. [PMID: 39415402 DOI: 10.1016/j.jacc.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 10/18/2024]
Abstract
Obesity is an ongoing pandemic and is associated with the development of heart failure (HF), and especially HF with preserved ejection fraction. The definition of obesity is currently based on anthropometric measurements but neglects the location and molecular properties of excess fat. Important depots associated with HF development are subcutaneous adipose tissue and visceral adipose tissue, both located in the abdominal region, and epicardial adipose tissue (EAT) surrounding the myocardium. However, mechanisms linking these different adipose tissue depots to HF development are incompletely understood. EAT in particular is of great interest because of its close proximity to the heart. In this review, we therefore focus on the characteristics of different adipose tissue depots and their response to obesity. In addition, we evaluate how different mechanisms associated with EAT expansion potentially contribute to HF and in particular HF with preserved ejection fraction development.
Collapse
Affiliation(s)
- Just Dronkers
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Dirk J van Veldhuisen
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Laura M G Meems
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands.
| |
Collapse
|
14
|
Rahimi Kahmini A, Valera IC, Crawford RQ, Samarah L, Reis G, Elsheikh S, Kanashiro-Takeuchi RM, Mohammadipoor N, Olateju BS, Matthews AR, Parvatiyar MS. Aging reveals a sex-dependent susceptibility of sarcospan-deficient mice to cardiometabolic disease. Am J Physiol Heart Circ Physiol 2024; 327:H1067-H1085. [PMID: 39120469 PMCID: PMC11482229 DOI: 10.1152/ajpheart.00702.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Numerous genes including sarcospan (SSPN) have been designated as obesity-susceptibility genes by human genome-wide association studies. Variants in the SSPN locus have been linked with sex-dependent obesity-associated traits; however, this association has not been investigated in vivo. To delineate the role SSPN plays in regulating metabolism with potential to impact cardiac function, we subjected young and aged global SSPN-deficient (SSPN-/-) male and female mice to obesogenic conditions (60% fat diet). We hypothesized that loss of SSPN combined with metabolic stress would increase susceptibility of mice to cardiometabolic disease. Baseline and end-point assessments of several anthropometric parameters were performed including weight, glucose tolerance, and fat distribution of mice fed control (CD) and high-fat (HFD) diet. Doppler echocardiography was used to monitor cardiac function. White adipose and cardiac tissues were assessed for inflammation by histological, gene expression, and cytokine analysis. Overall, SSPN deficiency protected both sexes and ages from diet-induced obesity, with a greater effect in females. SSPN-/- HFD mice gained less weight than wild-type (WT) cohorts, while SSPN-/- CD groups increased weight. Furthermore, aged SSPN-/- mice developed glucose intolerance regardless of diet. Echocardiography showed preserved systolic function for all groups; however, aged SSPN-/- males exhibited significant increases in left ventricular mass (CD) and signs of diastolic dysfunction (HFD). Cytokine analysis revealed significantly increased IL-1α and IL-17Α in white adipose tissue from young SSPN-/- male mice, which may be protective from diet-induced obesity. Overall, these studies suggest that several sex-dependent mechanisms influence the role SSPN plays in metabolic responses that become evident with age.NEW & NOTEWORTHY Young and aged sarcospan (SSPN)-deficient mice were examined to assess the role of SSPN in obesity and cardiometabolic disease. Both sexes displayed a "leaner" phenotype in response to high-fat diet (HFD). Notably, several sex differences were identified in aged SSPN-deficient mice: 1) females developed glucose intolerance (control and HFD) and 2) males exhibited increased left ventricular mass (control) and diastolic dysfunction (HFD). Therefore, we conclude that SSPN exerts a sex-dependent influence on obesity-associated diseases.
Collapse
Affiliation(s)
- Aida Rahimi Kahmini
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Isela C Valera
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rhiannon Q Crawford
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Luaye Samarah
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Gisienne Reis
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Salma Elsheikh
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rosemeire M Kanashiro-Takeuchi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Nazanin Mohammadipoor
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Bolade S Olateju
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Aaron R Matthews
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Michelle S Parvatiyar
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
15
|
Luo JH, Wang FX, Zhao JW, Yang CL, Rong SJ, Lu WY, Chen QJ, Zhou Q, Xiao J, Wang YN, Luo X, Li Y, Song DN, Chen C, Zhang CL, Chen SH, Yang P, Xiong F, Yu QL, Zhang S, Liu SW, Sun F, Wang CY. PDIA3 defines a novel subset of adipose macrophages to exacerbate the development of obesity and metabolic disorders. Cell Metab 2024; 36:2262-2280.e5. [PMID: 39293433 DOI: 10.1016/j.cmet.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
Adipose tissue macrophages (ATMs) play important roles in maintaining adipose tissue homeostasis and orchestrating metabolic inflammation. Given the extensive functional heterogeneity and phenotypic plasticity of ATMs, identification of the authentically pathogenic ATM subpopulation under obese setting is thus necessitated. Herein, we performed single-nucleus RNA sequencing (snRNA-seq) and unraveled a unique maladaptive ATM subpopulation defined as ATF4hiPDIA3hiACSL4hiCCL2hi inflammatory and metabolically activated macrophages (iMAMs), in which PDIA3 is required for the maintenance of their migratory and pro-inflammatory properties. Mechanistically, ATF4 serves as a metabolic stress sensor to transcribe PDIA3, which then imposes a redox control on RhoA activity and strengthens the pro-inflammatory and migratory properties of iMAMs through RhoA-YAP signaling. Administration of Pdia3 small interfering RNA (siRNA)-loaded liposomes effectively repressed adipose inflammation and high-fat diet (HFD)-induced obesity. Together, our data support that strategies aimed at targeting iMAMs by suppressing PDIA3 expression or activity could be a viable approach against obesity and metabolic disorders in clinical settings.
Collapse
Affiliation(s)
- Jia-Hui Luo
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fa-Xi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia-Wei Zhao
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Liang Yang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Jie Rong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan-Ying Lu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Jie Chen
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xi Luo
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan-Ni Song
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Chen
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Liang Zhang
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su-Hua Chen
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Lin Yu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Wei Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, The Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China
| | - Fei Sun
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Cong-Yi Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, The Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China; The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Tongji Hospital Research Building, Wuhan, China.
| |
Collapse
|
16
|
Ke S, Hu Q, Zhu G, Li L, Sun X, Cheng H, Li L, Yao Y, Li H. Remodeling of white adipose tissue microenvironment against obesity by phytochemicals. Phytother Res 2024; 38:4904-4922. [PMID: 36786412 DOI: 10.1002/ptr.7758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Obesity is a kind of chronic disease due to a long-term imbalance between energy intake and expenditure. In recent years, the number of obese people around the world has soared, and obesity problem should not be underestimated. Obesity is characterized by changes in the adipose microenvironment, mainly manifested as hypertrophy, chronic inflammatory status, hypoxia, and fibrosis, thus contributing to the pathological changes of other tissues. A plethora of phytochemicals have been found to improve adipose microenvironment, thus prevent and resist obesity, providing a new research direction for the treatment of obesity and related diseases. This paper discusses remodeling of the adipose tissue microenvironment as a therapeutic avenue and reviews the progress of phytochemicals in fighting obesity by improving the adipose microenvironment.
Collapse
Affiliation(s)
- Shuwei Ke
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Qingyuan Hu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Guanyao Zhu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xuechao Sun
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Hongbin Cheng
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Lingqiao Li
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Yuanfa Yao
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
17
|
Liu Y, Jiang H, Luo L, Gao Z. Relationship between four visceral obesity indices and prediabetes and diabetes: a cross-sectional study in Dalian, China. BMC Endocr Disord 2024; 24:191. [PMID: 39294627 PMCID: PMC11409536 DOI: 10.1186/s12902-024-01718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND In recent times, a number of new indices for measuring visceral obesity have been developed. This research sought to investigate the relationship between four visceral obesity indices and prediabetes and diabetes. METHODS Conducted in 2011 as a cross-sectional analysis in Dalian, China, this study utilized logistic regression models to explore the relationships between four visceral obesity indices and prediabetes and diabetes. It also assessed the dose-response relationships using restricted cubic splines (RCS), performed subgroup analyses, and conducted interaction tests. The predictive values of four visceral obesity indices were evaluated using receiver operating characteristic (ROC) curves. RESULTS The study enrolled 10,090 participants, with prediabetes and diabetes prevalence at 80.53%. Multifactorial logistic regression revealed positive relationships between the four visceral obesity indices and prediabetes and diabetes. The results of the RCS analysis revealed a linear relationship between the body roundness index (BRI), cardiometabolic index (CMI) and prediabetes and diabetes. Conversely, a non-linear relationship was observed between Chinese visceral adiposity index (CVAI), lipid accumulation product (LAP) and prediabetes and diabetes. Subgroup analyses demonstrated stronger relationships of CMI, CVAI, and LAP with prediabetes and diabetes among females. ROC curves suggested that LAP could be an effective predictor of these conditions. CONCLUSION This research confirmed that four visceral obesity indices are linked with a higher risk of prediabetes and diabetes in middle-aged and elderly individuals in Dalian. Importantly, LAP could be an effective predictor of prediabetes and diabetes. Effective weight management significantly reduces the risk of both prediabetes and diabetes.
Collapse
Affiliation(s)
- Yuntong Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, China
- Dalian municipal Central Hospital, China Medical University, Shenyang, China
| | - Haodong Jiang
- Department of Cardiovascular, the Second Hospital of Jilin University, Changchun, China
| | - Lan Luo
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, China.
| | - Zhengnan Gao
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, China.
- Dalian municipal Central Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Davidović B, Krunić J, Mladenović I, Stojanović N, Hannig M, Vitkov L. Effects of apical periodontitis treatment on hyperglycaemia in diabetes: A prospective cohort study. Int Endod J 2024; 57:1099-1109. [PMID: 38581182 DOI: 10.1111/iej.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/19/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
AIM This prospective cohort study was undertaken to evaluate the success rate of root canal treatment (RCT) in type 2 diabetes mellitus (T2DM) patients with targeted level and unachieved targeted level of glycaemic control as well as the impact of RCT on the glucose blood level in T2DM patients. METHODOLOGY Patients needing RCT were divided into three groups: these without T2DM, that is, the control group (CG), those with targeted level of glycated haemoglobin HbA1c < 7% (TL A1c) and the third ones with unachieved targeted level (UTL A1c), that is, with HbA1c ≥ 7%. Before RCT, HbA1c and the periapical index (PAI) score were assessed, as well as 1 year later. RESULTS Our results showed less favourable treatment results of RCT such as a reduction of radiographic lesions in T2DM patients, particularly in subjects with UTL A1c. The intergroup analysis of PAI score at the 12-month follow-up revealed a significant difference in TL A1C (p = .022) and CG (p = .001) with respect to UTL A1c. Total number of healed teeth (PAI≤2) at the 12-month after RCT in UTL A1c was significantly lower in comparison to CG (p = .008). Contrariwise, RCT may improve the glycaemic control in diabetic patients with UTL A1c after 12 months of posttreatment. Regression analysis showed that UTL A1c patients were more likely to have AP persistence after endodontic treatment (OR = 4.788; CI: 1.157-19.816; p = .031). CONCLUSIONS T2DM retards the AP healing and conversely AP contributes to increasing the inflammatory burden in T2DM. RCT reduces the cumulative inflammatory burden in T2DM and thus may contribute to improvement of glycaemic control particularly in patients with UTL A1c.
Collapse
Affiliation(s)
- Brankica Davidović
- Department of Dental Pathology, Faculty of Medicine Foca, University of East Sarajevo, Foca, Bosnia and Herzegovina
| | - Jelena Krunić
- Department of Dental Pathology, Faculty of Medicine Foca, University of East Sarajevo, Foca, Bosnia and Herzegovina
| | - Irena Mladenović
- Department of Prosthodontics, Faculty of Medicine Foca, University of East Sarajevo, Foca, Bosnia and Herzegovina
| | - Nikola Stojanović
- Department of Dental Pathology, Faculty of Medicine Foca, University of East Sarajevo, Foca, Bosnia and Herzegovina
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Ljubomir Vitkov
- Department of Dental Pathology, Faculty of Medicine Foca, University of East Sarajevo, Foca, Bosnia and Herzegovina
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria
| |
Collapse
|
19
|
Mashayekhi M, Sheng Q, Bailin SS, Massier L, Zhong J, Shi M, Wanjalla CN, Wang TJ, Ikizler TA, Niswender KD, Gabriel CL, Palacios J, Turgeon-Jones R, Reynolds CF, Luther JM, Brown NJ, Das S, Dahlman I, Mosley JD, Koethe JR, Rydén M, Bachmann KN, Shah RV. The subcutaneous adipose transcriptome identifies a molecular signature of insulin resistance shared with visceral adipose. Obesity (Silver Spring) 2024; 32:1526-1540. [PMID: 38967296 PMCID: PMC11269023 DOI: 10.1002/oby.24064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE The objective of this study was to identify the transcriptional landscape of insulin resistance (IR) in subcutaneous adipose tissue (SAT) in humans across the spectrum of obesity. METHODS We used SAT RNA sequencing in 220 individuals with metabolic phenotyping. RESULTS We identified a 35-gene signature with high predictive accuracy for homeostatic model of IR that was expressed across a variety of non-immune cell populations. We observed primarily "protective" IR associations for adipocyte transcripts and "deleterious" associations for macrophage transcripts, as well as a high concordance between SAT and visceral adipose tissue (VAT). Multiple SAT genes exhibited dynamic expression 5 years after weight loss surgery and with insulin stimulation. Using available expression quantitative trait loci in SAT and/or VAT, we demonstrated similar genetic effect sizes of SAT and VAT on type 2 diabetes and BMI. CONCLUSIONS SAT is conventionally viewed as a metabolic buffer for lipid deposition during positive energy balance, whereas VAT is viewed as a dominant contributor to and prime mediator of IR and cardiometabolic disease risk. Our results implicate a dynamic transcriptional architecture of IR that resides in both immune and non-immune populations in SAT and is shared with VAT, nuancing the current VAT-centric concept of IR in humans.
Collapse
Affiliation(s)
- Mona Mashayekhi
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
| | - Quanhu Sheng
- Vanderbilt University Medical Center, Department of Biostatistics, Nashville, Tennessee, USA
| | - Samuel S. Bailin
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, USA
| | - Lucas Massier
- Karolinska Institutet, Department of Medicine, Huddinge (H7), Stockholm, Sweden
| | - Jiawei Zhong
- Karolinska Institutet, Department of Medicine, Huddinge (H7), Stockholm, Sweden
| | - Mingjian Shi
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Celestine N. Wanjalla
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, USA
| | - Thomas J. Wang
- UT Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas, USA
| | - T. Alp Ikizler
- Vanderbilt University Medical Center, Department of Medicine, Division of Nephrology and Hypertension, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Kevin D. Niswender
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Curtis L. Gabriel
- Vanderbilt University Medical Center, Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Nashville, Tennessee, USA
| | - Julia Palacios
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
| | - Rachel Turgeon-Jones
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
| | - Cassandra F. Reynolds
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Department of Medicine, Cardiology Division, Nashville, Tennessee, USA
| | - James M. Luther
- Vanderbilt University Medical Center, Department of Medicine, Division of Nephrology and Hypertension, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Saumya Das
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Ingrid Dahlman
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan D. Mosley
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John R. Koethe
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Mikael Rydén
- Karolinska Institutet, Department of Medicine, Huddinge (H7), Stockholm, Sweden
| | - Katherine N. Bachmann
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, Tennessee, USA
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Ravi V. Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Department of Medicine, Cardiology Division, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Liu X, Tang Y, Luo Y, Gao Y, He L. Role and mechanism of specialized pro-resolving mediators in obesity-associated insulin resistance. Lipids Health Dis 2024; 23:234. [PMID: 39080624 PMCID: PMC11290132 DOI: 10.1186/s12944-024-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024] Open
Abstract
With the changing times, obesity has become a characteristic epidemic in the context of the current era. Insulin resistance (IR) is most commonly caused by obesity, and IR is a common basis of the pathogenesis of many diseases such as cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes, which seriously threaten human life, as well as health. A major pathogenetic mechanism of obesity-associated IR has been found to be chronic low-grade inflammation in adipose tissue. Specialized pro-resolving mediators (SPMs) are novel lipid mediators that both function as "stop signals" for inflammatory reaction and promote inflammation to subside. In this article, we summarize the pathogenesis of obesity-associated IR and its treatments and outline the classification and biosynthesis of SPMs and their mechanisms and roles in the treatment of obesity-associated IR in order to explore the potential of SPMs for treating metabolic diseases linked with obesity-associated IR.
Collapse
Affiliation(s)
- Xinru Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Tang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Luo
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- College of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lisha He
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
21
|
Ribeiro DA, da Silva GN, Malacarne IT, Pisani LP, Salvadori DMF. Oxidative Stress Responses in Obese Individuals Undergoing Bariatric Surgery: Impact on Carcinogenesis. PATHOPHYSIOLOGY 2024; 31:352-366. [PMID: 39051223 PMCID: PMC11270384 DOI: 10.3390/pathophysiology31030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Obesity is a big public health problem that claims several thousand lives every year. Bariatric surgery has arisen as a suitable procedure for treating obesity, particularly morbid obesity. Oxidative stress, genotoxicity, apoptosis, and inflammatory responses are recognized as the most important occurrences in carcinogenesis, as they actively contribute to the multistep process. This study aimed to briefly review the connection between oxidative stress, genotoxicity, apoptosis, and inflammation in obese patients undergoing bariatric surgery, focusing on its impact on carcinogenesis. Regarding oxidative stress, bariatric surgery may inhibit the synthesis of reactive oxygen species. Moreover, a significant reduction in the inflammatory status after weight loss surgery was not observed. Bariatric surgery prevents apoptosis in several tissues, but the maintenance of low body weight for long periods is mandatory for mitigating DNA damage. In conclusion, the association between bariatric surgery and cancer risk is still premature. However, further studies are yet needed to elucidate the real association between bariatric surgery and a reduced risk of cancer.
Collapse
Affiliation(s)
- Daniel Araki Ribeiro
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Glenda Nicioli da Silva
- Department of Clinical Analysis, Federal University of Ouro Preto—UFOP, Ouro Preto 35402-163, MG, Brazil;
| | - Ingra Tais Malacarne
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Daisy Maria Favero Salvadori
- Department of Pathology, Botucatu Medical School, Sao Paulo State University—UNESP, Botucatu 18618-687, SP, Brazil
| |
Collapse
|
22
|
Shantaram D, Hoyd R, Blaszczak AM, Antwi L, Jalilvand A, Wright VP, Liu J, Smith AJ, Bradley D, Lafuse W, Liu Y, Williams NF, Snyder O, Wheeler C, Needleman B, Brethauer S, Noria S, Renton D, Perry KA, Nagareddy P, Wozniak D, Mahajan S, Rana PSJB, Pietrzak M, Schlesinger LS, Spakowicz DJ, Hsueh WA. Obesity-associated microbiomes instigate visceral adipose tissue inflammation by recruitment of distinct neutrophils. Nat Commun 2024; 15:5434. [PMID: 38937454 PMCID: PMC11211470 DOI: 10.1038/s41467-024-48935-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
Neutrophils are increasingly implicated in chronic inflammation and metabolic disorders. Here, we show that visceral adipose tissue (VAT) from individuals with obesity contains more neutrophils than in those without obesity and is associated with a distinct bacterial community. Exploring the mechanism, we gavaged microbiome-depleted mice with stool from patients with and without obesity during high-fat or normal diet administration. Only mice receiving high-fat diet and stool from subjects with obesity show enrichment of VAT neutrophils, suggesting donor microbiome and recipient diet determine VAT neutrophilia. A rise in pro-inflammatory CD4+ Th1 cells and a drop in immunoregulatory T cells in VAT only follows if there is a transient spike in neutrophils. Human VAT neutrophils exhibit a distinct gene expression pattern that is found in different human tissues, including tumors. VAT neutrophils and bacteria may be a novel therapeutic target for treating inflammatory-driven complications of obesity, including insulin resistance and colon cancer.
Collapse
Affiliation(s)
- Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Rebecca Hoyd
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Alecia M Blaszczak
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Linda Antwi
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Anahita Jalilvand
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Valerie P Wright
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Joey Liu
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Alan J Smith
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - William Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - YunZhou Liu
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Nyelia F Williams
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Owen Snyder
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Caroline Wheeler
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Bradley Needleman
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Stacy Brethauer
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Sabrena Noria
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - David Renton
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Kyle A Perry
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Prabha Nagareddy
- Department of Internal Medicine, Cardiovascular Section University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73117, USA
| | - Daniel Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Sahil Mahajan
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Pranav S J B Rana
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Larry S Schlesinger
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Daniel J Spakowicz
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA.
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
23
|
Zhang Z, Peng Z, Wang R, Guo X, Gao J. Metabolomic analysis reveals macrophage metabolic reprogramming and polarization under different nutritional cues. Clin Chim Acta 2024; 560:119735. [PMID: 38772523 DOI: 10.1016/j.cca.2024.119735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND AND AIMS Obesity-induced chronic inflammation and metabolic abnormalities are highly relevant to the functional dysregulation of macrophages, especially under obese conditions. Hyperglycemia and hyperlipidemia, central to obesity, directly alter macrophage activity. However, the impacts of different nutritional cues on the intricate metabolic networks in macrophages remain unclear. MATERIALS AND METHODS In this study, we employed metabolomic approaches to examine the metabolic responses of macrophages to high glucose, high fat and their coexistence, aiming to delineate the molecular mechanisms of nutritional factors on macrophage activation and obesity-related diseases from a metabolic perspective. RESULTS Our findings revealed that different nutritional conditions could reprogram key metabolism in macrophages. Additionally, we identified a metabolite derived from macrophages, Long-Chain Phosphatidylcholine (LPC), which exerts beneficial effects on obese mice. It ameliorates the obesity phenotype and improves glucose metabolism profiles. This discovery suggests that LPC has a significant therapeutic potential in the context of obesity-induced metabolic dysfunctions. Our study unveils the metabolic phenotype of macrophages in high-fat and high-sugar environments and uncovers a macrophage-derived metabolite that significantly ameliorates the obesity phenotype. CONCLUSION This finding reveals a potential dialogue mechanism between macrophages and adipocytes, shedding light on the complex interplay of immune and metabolic systems in obesity. This discovery not only enhances our understanding of obesity's underlying mechanisms but also opens up new avenues for therapeutic interventions targeting macrophage-adipocyte interactions.
Collapse
Affiliation(s)
- Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Peng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xirong Guo
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianfang Gao
- Endocrinology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
25
|
Lu D, He A, Tan M, Mrad M, El Daibani A, Hu D, Liu X, Kleiboeker B, Che T, Hsu FF, Bambouskova M, Semenkovich CF, Lodhi IJ. Liver ACOX1 regulates levels of circulating lipids that promote metabolic health through adipose remodeling. Nat Commun 2024; 15:4214. [PMID: 38760332 PMCID: PMC11101658 DOI: 10.1038/s41467-024-48471-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
The liver gene expression of the peroxisomal β-oxidation enzyme acyl-coenzyme A oxidase 1 (ACOX1), which catabolizes very long chain fatty acids (VLCFA), increases in the context of obesity, but how this pathway impacts systemic energy metabolism remains unknown. Here, we show that hepatic ACOX1-mediated β-oxidation regulates inter-organ communication involved in metabolic homeostasis. Liver-specific knockout of Acox1 (Acox1-LKO) protects mice from diet-induced obesity, adipose tissue inflammation, and systemic insulin resistance. Serum from Acox1-LKO mice promotes browning in cultured white adipocytes. Global serum lipidomics show increased circulating levels of several species of ω-3 VLCFAs (C24-C28) with previously uncharacterized physiological role that promote browning, mitochondrial biogenesis and Glut4 translocation through activation of the lipid sensor GPR120 in adipocytes. This work identifies hepatic peroxisomal β-oxidation as an important regulator of metabolic homeostasis and suggests that manipulation of ACOX1 or its substrates may treat obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Dongliang Lu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anyuan He
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Min Tan
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Marguerite Mrad
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amal El Daibani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Donghua Hu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xuejing Liu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brian Kleiboeker
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tao Che
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Monika Bambouskova
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Cell Biology and Physiology; Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
26
|
Li Q, Byun J, Choi J, Park J, Lee J, Oh YK. Nanomodulator-Mediated Restructuring of Adipose Tissue Immune Microenvironments for Antiobesity Treatment. ACS NANO 2024; 18:9311-9330. [PMID: 38498418 DOI: 10.1021/acsnano.3c06001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In obesity, the interactions between proinflammatory macrophages and adipocytes in white adipose tissues are known to play a crucial role in disease progression by providing inflammatory microenvironments. Here, we report that the functional nanoparticle-mediated modulation of crosstalk between adipocytes and macrophages can remodel adipocyte immune microenvironments. As a functional nanomodulator, we designed antivascular cell adhesion molecule (VCAM)-1 antibody-conjugated and amlexanox-loaded polydopamine nanoparticles (VAPN). Amlexanox was used as a model drug to increase energy expenditure. Compared to nanoparticles lacking antibody modification or amlexanox, VAPN showed significantly greater binding to VCAM-1-expressing adipocytes and lowered the interaction of adipocytes with macrophages. In high fat diet-fed mice, repeated subcutaneous administration of VAPN increased the populations of beige adipocytes and ameliorated inflammation in white adipose tissues. Moreover, the localized application of VAPN in vivo exerted a systemic metabolic effect and reduced metabolic disorders, including insulin tolerance and liver steatosis. These findings suggested that VAPN had potential to modulate the immune microenvironments of adipose tissues for the immunologic treatment of obesity. Although we used amlexanox as a model drug and anti-VCAM-1 antibody in VAPN, the concept of immune nanomodulators can be widely applied to the immunological treatment of obesity.
Collapse
Affiliation(s)
- Qiaoyun Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
27
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
28
|
Gruneisen E, Kremer R, Duque G. Fat as a Friend or Foe of the Bone. Curr Osteoporos Rep 2024; 22:245-256. [PMID: 38416274 DOI: 10.1007/s11914-024-00864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW The objective of this review is to summarize the literature on the prevalence and diagnosis of obesity and its metabolic profile, including bone metabolism, focusing on the main inflammatory and turnover bone mediators that better characterize metabolically healthy obesity phenotype, and to summarize the therapeutic interventions for obesity with their effects on bone health. RECENT FINDINGS Osteoporosis and fracture risk not only increase with age and menopause but also with metabolic diseases, such as diabetes mellitus. Thus, patients with high BMI may have a higher bone fragility and fracture risk. However, some obese individuals with healthy metabolic profiles seem to be less at risk of bone fracture. Obesity has become an alarming disease with growing prevalence and multiple metabolic comorbidities, resulting in a significant burden on healthcare and increased mortality. The imbalance between increased food ingestion and decreased energy expenditure leads to pathological adipose tissue distribution and function, with increased secretion of proinflammatory markers and harmful consequences for body tissues, including bone tissue. However, some obese individuals seem to have a healthy metabolic profile and may not develop cardiometabolic disease during their lives. This healthy metabolic profile also benefits bone turnover and is associated with lower fracture risk.
Collapse
Affiliation(s)
- Elodie Gruneisen
- Division of Endocrinology & Metabolism, Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Richard Kremer
- Division of Endocrinology & Metabolism, Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
29
|
Carey A, Nguyen K, Kandikonda P, Kruglov V, Bradley C, Dahlquist KJV, Cholensky S, Swanson W, Badovinac VP, Griffith TS, Camell CD. Age-associated accumulation of B cells promotes macrophage inflammation and inhibits lipolysis in adipose tissue during sepsis. Cell Rep 2024; 43:113967. [PMID: 38492219 PMCID: PMC11014686 DOI: 10.1016/j.celrep.2024.113967] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Non-canonical lipolysis induced by inflammatory cytokines or Toll-like receptor ligands is required for the regulation of inflammation during endotoxemia and sepsis. Canonical lipolysis induced by catecholamines declines during aging due to factors including an expansion of lymphocytes, pro-inflammatory macrophage polarization, and an increase in chronic low-grade inflammation; however, the extent to which the non-canonical pathway of lipolysis is active and impacted by immune cells during aging remains unclear. Therefore, we aimed to define the extent to which immune cells from old mice influence non-canonical lipolysis during sepsis. We identified age-associated impairments of non-canonical lipolysis and an accumulation of dysfunctional B1 B cells in the visceral white adipose tissue (vWAT) of old mice. Lifelong deficiency of B cells results in restored non-canonical lipolysis and reductions in pro-inflammatory macrophage populations. Our study suggests that targeting the B cell-macrophage signaling axis may resolve metabolic dysfunction in aged vWAT and attenuate septic severity in older individuals.
Collapse
Affiliation(s)
- Anna Carey
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katie Nguyen
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pranathi Kandikonda
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Victor Kruglov
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Claire Bradley
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Korbyn J V Dahlquist
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephanie Cholensky
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Whitney Swanson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Thomas S Griffith
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA; Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - Christina D Camell
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Kado T, Nishimura A, Tobe K. History and future perspectives of adipose tissue macrophage biology. Front Pharmacol 2024; 15:1373182. [PMID: 38562458 PMCID: PMC10982364 DOI: 10.3389/fphar.2024.1373182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophages contribute to adipose tissue homeostasis; however, they are also thought to be responsible for insulin resistance in obesity. Macrophages, which were oversimplified in past methodologies, have become rather difficult to understand comprehensively as recent developments in research methodology have revealed their diversity. This review highlights recent studies on adipose tissue macrophages, identifies controversial issues that need to be resolved and proposes a scenario for further development of adipose tissue macrophage biology.
Collapse
Affiliation(s)
| | | | - Kazuyuki Tobe
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| |
Collapse
|
31
|
Ackermann J, Arndt L, Fröba J, Lindhorst A, Glaß M, Kirstein M, Hobusch C, Wunderlich FT, Braune J, Gericke M. IL-6 signaling drives self-renewal and alternative activation of adipose tissue macrophages. Front Immunol 2024; 15:1201439. [PMID: 38482013 PMCID: PMC10933059 DOI: 10.3389/fimmu.2024.1201439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Obesity is associated with chronic low-grade inflammation of adipose tissue (AT) and an increase of AT macrophages (ATMs) that is linked to the onset of type 2 diabetes. We have recently shown that neutralization of interleukin (IL)-6 in obese AT organ cultures inhibits proliferation of ATMs, which occurs preferentially in alternatively activated macrophage phenotype. Methods In this study, we investigated AT biology and the metabolic phenotype of mice with myeloid cell-specific IL-6Rα deficiency (Il6ra Δmyel) after normal chow and 20 weeks of high-fat diet focusing on AT inflammation, ATM polarization and proliferation. Using organotypical AT culture and bone marrow derived macrophages (BMDMs) of IL-4Rα knockout mice (Il4ra -/-) we studied IL-6 signaling. Results Obese Il6ra Δmyel mice exhibited no differences in insulin sensitivity or histological markers of AT inflammation. Notably, we found a reduction of ATMs expressing the mannose receptor 1 (CD206), as well as a decrease of the proliferation marker Ki67 in ATMs of Il6ra Δmyel mice. Importantly, organotypical AT culture and BMDM data of Il4ra -/- mice revealed that IL-6 mediates a shift towards the M2 phenotype independent from the IL-6/IL-4Rα axis. Discussion Our results demonstrate IL-4Rα-independent anti-inflammatory effects of IL-6 on macrophages and the ability of IL-6 to maintain proliferation rates in obese AT.
Collapse
Affiliation(s)
- Jan Ackermann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Lilli Arndt
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Janine Fröba
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Halle (Saale), Germany
| | - Michaela Kirstein
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - F Thomas Wunderlich
- Max-Planck-Institute for Metabolism Research, Research Group for Obesity and Cancer, Cologne, Germany
| | - Julia Braune
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
32
|
Satoh M, Iwabuchi K. Contribution of NKT cells and CD1d-expressing cells in obesity-associated adipose tissue inflammation. Front Immunol 2024; 15:1365843. [PMID: 38426085 PMCID: PMC10902011 DOI: 10.3389/fimmu.2024.1365843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Natural killer T (NKT) cell are members of the innate-like T lymphocytes and recognizes lipid antigens presented by CD1d-expressing cells. Obesity-associated inflammation in adipose tissue (AT) leads to metabolic dysfunction, including insulin resistance. When cellular communication is properly regulated among AT-residing immune cells and adipocytes during inflammation, a favorable balance of Th1 and Th2 immune responses is achieved. NKT cells play crucial roles in AT inflammation, influencing the development of diet-induced obesity and insulin resistance. NKT cells interact with CD1d-expressing cells in AT, such as adipocytes, macrophages, and dendritic cells, shaping pro-inflammatory or anti-inflammatory microenvironments with distinct characteristics depending on the antigen-presenting cells. Additionally, CD1d may be involved in the inflammatory process independently of NKT cells. In this mini-review, we provide a brief overview of the current understanding of the interaction between immune cells, focusing on NKT cells and CD1d signaling, which control AT inflammation both in the presence and absence of NKT cells. We aim to enhance our understanding of the mechanisms of obesity-associated diseases.
Collapse
Affiliation(s)
- Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | | |
Collapse
|
33
|
Abstract
Obesity is epidemic and of great concern because of its comorbid and costly inflammatory-driven complications. Extensive investigations in mice have elucidated highly coordinated, well-balanced interactions between adipocytes and immune cells in adipose tissue that maintain normal systemic metabolism in the lean state, while in obesity, proinflammatory changes occur in nearly all adipose tissue immune cells. Many of these changes are instigated by adipocytes. However, less is known about obesity-induced adipose-tissue immune cell alterations in humans. Upon high-fat diet feeding, the adipocyte changes its well-known function as a metabolic cell to assume the role of an immune cell, orchestrating proinflammatory changes that escalate inflammation and progress during obesity. This transformation is particularly prominent in humans. In this review, we (a) highlight a leading and early role for adipocytes in promulgating inflammation, (b) discuss immune cell changes and the time course of these changes (comparing humans and mice when possible), and (c) note how reversing proinflammatory changes in most types of immune cells, including adipocytes, rescues adipose tissue from inflammation and obese mice from insulin resistance.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Pennsylvania State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA;
| | - Tuo Deng
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
34
|
Jiang Y, Gong F. Immune cells in adipose tissue microenvironment under physiological and obese conditions. Endocrine 2024; 83:10-25. [PMID: 37768512 DOI: 10.1007/s12020-023-03521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE This review will focus on the immune cells in adipose tissue microenvironment and their regulatory roles in metabolic homeostasis of adipose tissue and even the whole body under physiological and obese conditions. METHODS This review used PubMed searches of current literature to examine adipose tissue immune cells and cytokines, as well as the complex interactions between them. RESULTS Aside from serving as a passive energy depot, adipose tissue has shown specific immunological function. Adipose tissue microenvironment is enriched with a large number of immune cells and cytokines, whose physiological regulation plays a crucial role for metabolic homeostasis. However, obesity causes pro-inflammatory alterations in these adipose tissue immune cells, which have detrimental effects on metabolism and increase the susceptibility of individuals to the obesity related diseases. CONCLUSIONS Adipose tissue microenvironment is enriched with various immune cells and cytokines, which regulate metabolic homeostasis of adipose tissue and even the whole body, whether under physiological or obese conditions. Targeting key immune cells and cytokines in adipose tissue microenvironment for obesity treatment becomes an attractive research point.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
35
|
Agabiti-Rosei C, Saxton SN, De Ciuceis C, Lorenza Muiesan M, Rizzoni D, Agabiti Rosei E, Heagerty AM. Influence of Perivascular Adipose Tissue on Microcirculation: A Link Between Hypertension and Obesity. Hypertension 2024; 81:24-33. [PMID: 37937425 DOI: 10.1161/hypertensionaha.123.19437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Alterations in microcirculation play a crucial role in the pathogenesis of cardiovascular and metabolic disorders such as obesity and hypertension. The small resistance arteries of these patients show a typical remodeling, as indicated by an increase of media or total wall thickness to lumen diameter ratio that impairs organ flow reserve. The majority of blood vessels are surrounded by a fat depot which is termed perivascular adipose tissue (PVAT). In recent years, data from several studies have indicated that PVAT is an endocrine organ that can produce a variety of adipokines and cytokines, which may participate in the regulation of vascular tone, and the secretory profile varies with adipocyte phenotype and disease status. The PVAT of lean humans largely secretes the vasodilator adiponectin, which will act in a paracrine fashion to reduce peripheral resistance and improve nutrient uptake into tissues, thereby protecting against the development of hypertension and diabetes. In obesity, PVAT becomes enlarged and inflamed, and the bioavailability of adiponectin is reduced. The inevitable consequence is a rise in peripheral resistance with higher blood pressure. The interrelationship between obesity and hypertension could be explained, at least in part, by a cross-talk between microcirculation and PVAT. In this article, we propose an integrated pathophysiological approach of this relationship, in order to better clarify its role in obesity and hypertension, as the basis for effective and specific prevention and treatment.
Collapse
Affiliation(s)
- Claudia Agabiti-Rosei
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Sophie N Saxton
- Division of Cardiovascular Sciences, The University of Manchester, Core Technology Facility, United Kingdom (S.N.S., A.M.H.)
| | - Carolina De Ciuceis
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Maria Lorenza Muiesan
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Damiano Rizzoni
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
| | - Enrico Agabiti Rosei
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, The University of Manchester, Core Technology Facility, United Kingdom (S.N.S., A.M.H.)
| |
Collapse
|
36
|
Engin AB, Engin ED, Engin A. Macrophage Activation Syndrome in Coinciding Pandemics of Obesity and COVID-19: Worse than Bad. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:919-954. [PMID: 39287877 DOI: 10.1007/978-3-031-63657-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic changes have long-lasting impacts, which influence the epigenome and are maintained during cell division. Thus, human genome changes have required a very long timescale to become a major contributor to the current obesity pandemic. Whereas bidirectional effects of coronavirus disease 2019 (COVID-19) and obesity pandemics have given the opportunity to explore, how the viral microribonucleic acids (miRNAs) use the human's transcriptional machinery that regulate gene expression at a posttranscriptional level. Obesity and its related comorbidity, type 2 diabetes (T2D), and new-onset diabetes due to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are additional risk factors, which increase the severity of COVID-19 and its related mortality. The higher mortality rate of these patients is dependent on severe cytokine storm, which is the sum of the additional cytokine production by concomitant comorbidities and own cytokine synthesis of COVID-19. Patients with obesity facilitate the SARS-CoV-2 entry to host cell via increasing the host's cell receptor expression and modifying the host cell proteases. After entering the host cells, the SARS-CoV-2 genome directly functions as a messenger ribonucleic acid (mRNA) and encodes a set of nonstructural proteins via processing by the own proteases, main protease (Mpro), and papain-like protease (PLpro) to initiate viral genome replication and transcription. Following viral invasion, SARS-CoV-2 infection reduces insulin secretion via either inducing β-cell apoptosis or reducing intensity of angiotensin-converting enzyme 2 (ACE2) receptors and leads to new-onset diabetes. Since both T2D and severity of COVID-19 are associated with the increased serum levels of pro-inflammatory cytokines, high glucose levels in T2D aggravate SARS-CoV-2 infection. Elevated neopterin (NPT) value due to persistent interferon gamma (IFN-γ)-mediated monocyte-macrophage activation is an indicator of hyperactivated pro-inflammatory phenotype M1 macrophages. Thus, NPT could be a reliable biomarker for the simultaneously occurring COVID-19-, obesity- and T2D-induced cytokine storm. While host miRNAs attack viral RNAs, viral miRNAs target host transcripts. Eventually, the expression rate and type of miRNAs also are different in COVID-19 patients with different viral loads. It is concluded that specific miRNA signatures in macrophage activation phase may provide an opportunity to become aware of the severity of COVID-19 in patients with obesity and obesity-related T2D.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey
| | - Evren Doruk Engin
- Biotechnology Institute, Ankara University, Gumusdere Campus, Gumusdere, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
37
|
Engin AB. Message Transmission Between Adipocyte and Macrophage in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:273-295. [PMID: 39287855 DOI: 10.1007/978-3-031-63657-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction have primary importance in obesity. Large quantity of macrophages is accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway promotes more macrophage accumulation into the obese adipose tissue. However, obesity-induced changes in adipose tissue macrophage density are mainly dependent on increases in the triple-positive cluster of differentiation (CD)11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. As epigenetic regulators, microRNAs (miRNAs) are one of the most important mediators of obesity. miRNAs are expressed by adipocytes as well as macrophages and regulate inflammation with the expression of target genes. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-α) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1β) by macrophages; both adipocyte and macrophage induction by toll-like receptor-4 (TLR4) through nuclear factor-kappaB (NF-κB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in mutual message transmission between adipocyte and macrophage and in the development of adipose tissue inflammation. Thus, the metabolic status of adipocytes and their released exosomes are important determinants of macrophage inflammatory output. However, old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. As a single miRNA can be able to regulate a variety of target genes and signaling pathways, reciprocal transfer of miRNAs between adipocytes and macrophages via miRNA-loaded exosomes reorganizes the different stages of obesity. Changes in the expression of circulating miRNAs because of obesity progression or anti-obesity treatment indicate that miRNAs could be used as potential biomarkers. Therefore, it is believed that targeting macrophage-associated miRNAs with anti-obesity miRNA-loaded nano-carriers may be successful in the attenuation of both obesity and adipose tissue inflammation in clinical practice. Moreover, miRNA-containing exosomes and transferable mitochondria between the adipocyte and macrophage are investigated as new therapeutic targets for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
38
|
Pathak MP, Patowary P, Chattopadhyay P, Barbhuiyan PA, Islam J, Gogoi J, Wankhar W. Obesity-associated Airway Hyperresponsiveness: Mechanisms Underlying Inflammatory Markers and Possible Pharmacological Interventions. Endocr Metab Immune Disord Drug Targets 2024; 24:1053-1068. [PMID: 37957906 DOI: 10.2174/0118715303256440231028072049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/15/2023]
Abstract
Obesity is rapidly becoming a global health problem affecting about 13% of the world's population affecting women and children the most. Recent studies have stated that obese asthmatic subjects suffer from an increased risk of asthma, encounter severe symptoms, respond poorly to anti-asthmatic drugs, and ultimately their quality-of-life decreases. Although, the association between airway hyperresponsiveness (AHR) and obesity is a growing concern among the public due to lifestyle and environmental etiologies, however, the precise mechanism underlying this association is yet to establish. Apart from aiming at the conventional antiasthmatic targets, treatment should be directed towards ameliorating obesity pathogenesis too. Understanding the pathogenesis underlying the association between obesity and AHR is limited, however, a plethora of obesity pathologies have been reported viz., increased pro-inflammatory and decreased anti-inflammatory adipokines, depletion of ROS controller Nrf2/HO-1 axis, NLRP3 associated macrophage polarization, hypertrophy of WAT, and down-regulation of UCP1 in BAT following down-regulated AMPKα and melanocortin pathway that may be correlated with AHR. Increased waist circumference (WC) or central obesity was thought to be related to severe AHR, however, some recent reports suggest body mass index (BMI), not WC tends to exaggerate airway closure in AHR due to some unknown mechanisms. This review aims to co-relate the above-mentioned mechanisms that may explain the copious relation underlying obesity and AHR with the help of published reports. A proper understanding of these mechanisms discussed in this review will ensure an appropriate treatment plan for patients through advanced pharmacological interventions.
Collapse
Affiliation(s)
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | | | | | - Johirul Islam
- Department of Pharmaceutical Sciences, School of Health Sciences, Assam Kaziranga University, Jorhat, India
| | - Jyotchna Gogoi
- Department of Biochemistry, Faculty of Science, Assam Down Town University, Guwahati, India
| | - Wankupar Wankhar
- Department of Dialysis, Faculty of Paramedical Science, Assam Down Town University, Guwahati, India
| |
Collapse
|
39
|
Kesharwani D, Brown AC. Navigating the Adipocyte Precursor Niche: Cell-Cell Interactions, Regulatory Mechanisms and Implications for Adipose Tissue Homeostasis. JOURNAL OF CELLULAR SIGNALING 2024; 5:65-86. [PMID: 38826152 PMCID: PMC11141760 DOI: 10.33696/signaling.5.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Support for stem cell self-renewal and differentiation hinges upon the intricate microenvironment termed the stem cell 'niche'. Within the adipose tissue stem cell niche, diverse cell types, such as endothelial cells, immune cells, mural cells, and adipocytes, intricately regulate the function of adipocyte precursors. These interactions, whether direct or indirect, play a pivotal role in governing the balance between self-renewal and differentiation of adipocyte precursors into adipocytes. The mechanisms orchestrating the maintenance and coordination of this niche are still in the early stages of comprehension, despite their crucial role in regulating adipose tissue homeostasis. The complexity of understanding adipocyte precursor renewal and differentiation is amplified due to the challenges posed by the absence of suitable surface receptors for identification, limitations in creating optimal ex vivo culture conditions for expansion and constraints in conducting in vivo studies. This review delves into the current landscape of knowledge surrounding adipocyte precursors within the adipose stem cell niche. We will review the identification of adipocyte precursors, the cell-cell interactions they engage in, the factors influencing their renewal and commitment toward adipocytes and the transformations they undergo during instances of obesity.
Collapse
Affiliation(s)
- Devesh Kesharwani
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Aaron C. Brown
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
- School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine 04469, USA
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
40
|
Wu Y, Wu C, Shi T, Cai Q, Wang T, Xiong Y, Zhang Y, Jiang W, Lu M, Chen Z, Chen J, Wang J, He R. FAP expression in adipose tissue macrophages promotes obesity and metabolic inflammation. Proc Natl Acad Sci U S A 2023; 120:e2303075120. [PMID: 38100414 PMCID: PMC10743525 DOI: 10.1073/pnas.2303075120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Adipose tissue macrophages (ATM) are key players in the development of obesity and associated metabolic inflammation which contributes to systemic metabolic dysfunction. We here found that fibroblast activation protein α (FAP), a well-known marker of cancer-associated fibroblast, is selectively expressed in murine and human ATM among adipose tissue-infiltrating leukocytes. Macrophage FAP deficiency protects mice against diet-induced obesity and proinflammatory macrophage infiltration in obese adipose tissues, thereby alleviating hepatic steatosis and insulin resistance. Mechanistically, FAP specifically mediates monocyte chemokine protein CCL8 expression by ATM, which is further upregulated upon high-fat-diet (HFD) feeding, contributing to the recruitment of monocyte-derived proinflammatory macrophages with no effect on their classical inflammatory activation. CCL8 overexpression restores HFD-induced metabolic phenotypes in the absence of FAP. Moreover, macrophage FAP deficiency enhances energy expenditure and oxygen consumption preceding differential body weight after HFD feeding. Such enhanced energy expenditure is associated with increased levels of norepinephrine (NE) and lipolysis in white adipose tissues, likely due to decreased expression of monoamine oxidase, a NE degradation enzyme, by Fap-/- ATM. Collectively, our study identifies FAP as a previously unrecognized regulator of ATM function contributing to diet-induced obesity and metabolic inflammation and suggests FAP as a potential immunotherapeutic target against metabolic disorders.
Collapse
Affiliation(s)
- Yunyun Wu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Chao Wu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Tiancong Shi
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Qian Cai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Tianyao Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Yingluo Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Yubin Zhang
- Ministry of Education Key Laboratory of Public Health, School of Public Health, Fudan University, Shanghai200032, China
| | - Wei Jiang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang550004, China
| | - Mingfang Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Zhengrong Chen
- Department of Respiratory Diseases, Children’s Hospital of Soochow University, Suzhou215008, China
| | - Jing Chen
- Department of Nephrology, Huashan hospital, Fudan University, Shanghai200040, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai200025, China
| | - Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai200032, China
| |
Collapse
|
41
|
Wang L, Wang R, Yu X, Shi Y, Li S, Yuan Y. Effects of Calorie Restriction and Fasting on Macrophage: Potential Impact on Disease Outcomes? Mol Nutr Food Res 2023; 67:e2300380. [PMID: 37771201 DOI: 10.1002/mnfr.202300380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Energy restriction, including calorie restriction and fasting, has garnered significant attention for its potential therapeutic effects on a range of chronic diseases (such as diabetes, obesity, and cancer) and aging. Since macrophages are critical players in many diseases, their response to energy restriction may impact disease outcomes. However, the diverse metabolic patterns and functions of macrophages can lead to variability in the effects of energy restriction on macrophages across different tissues and disease states. This review outlines the effects of energy restriction on macrophages in several diseases, offering valuable guidance for future studies and insights into the clinical applications of calorie restriction and fasting.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Xiaoyan Yu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Yuhuan Shi
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| |
Collapse
|
42
|
Kwon J, Aoki Y, Takahashi H, Nakata R, Kawarasaki S, Ni Z, Yu R, Inoue H, Inoue K, Kawada T, Goto T. Inflammation-induced nitric oxide suppresses PPARα expression and function via downregulation of Sp1 transcriptional activity in adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194987. [PMID: 37739218 DOI: 10.1016/j.bbagrm.2023.194987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The activation of peroxisome proliferator-activated receptor alpha (PPARα), a ligand-dependent transcription factor that regulates lipid oxidation-related genes, has been employed to treat hyperlipidemia. Emerging evidence indicates that Ppara gene expression decreases in adipose tissue under obese conditions; however, the underlying molecular mechanisms remain elusive. Here, we demonstrate that nitric oxide (NO) suppresses Ppara expression by regulating its promoter activity via suppression of specificity protein 1 (Sp1) transcriptional activity in adipocytes. NO derived from lipopolysaccharide (LPS) -activated macrophages or a NO donor (NOR5) treatment, suppressed Ppara mRNA expression in 10T1/2 adipocytes. In addition, Ppara transcript levels were reduced in the white adipose tissue (WAT) in both acute and chronic inflammation mouse models; however, such suppressive effects were attenuated via a nitric oxide synthase 2 (NOS2) inhibitor. Endoplasmic reticulum (ER) stress inhibitors attenuated the NO-induced repressive effects on Ppara gene expression in 10T1/2 adipocytes. Promoter mutagenesis and chromatin immunoprecipitation assays revealed that NO decreased the Sp1 occupancy in the proximal promoter regions of the Ppara gene, which might partially result from the reduced Sp1 expression levels by NO. This study delineated the molecular mechanism that modulates Ppara gene transcription upon NO stimulation in white adipocytes, suggesting a possible mechanism for the transcriptional downregulation of Ppara in WAT under obese conditions.
Collapse
Affiliation(s)
- Jungin Kwon
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Yumeko Aoki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Zheng Ni
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hiroyasu Inoue
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
43
|
Sabaratnam R, Hansen DR, Svenningsen P. White adipose tissue mitochondrial bioenergetics in metabolic diseases. Rev Endocr Metab Disord 2023; 24:1121-1133. [PMID: 37558853 DOI: 10.1007/s11154-023-09827-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/11/2023]
Abstract
White adipose tissue (WAT) is an important endocrine organ that regulates systemic energy metabolism. In metabolically unhealthy obesity, adipocytes become dysfunctional through hypertrophic mechanisms associated with a reduced endocrine function, reduced mitochondrial function, but increased inflammation, fibrosis, and extracellular remodelling. A pathologic WAT remodelling promotes systemic lipotoxicity characterized by fat accumulation in tissues such as muscle and liver, leading to systemic insulin resistance and type 2 diabetes. Several lines of evidence from human and animal studies suggest a link between unhealthy obesity and adipocyte mitochondrial dysfunction, and interventions that improve mitochondrial function may reduce the risk of obesity-associated diseases. This review discusses the importance of mitochondrial function and metabolism in human adipocyte biology and intercellular communication mechanisms within WAT. Moreover, a selected interventional approach for better adipocyte mitochondrial metabolism in humans is reviewed. A greater understanding of mitochondrial bioenergetics in WAT might provide novel therapeutic opportunities to prevent or restore dysfunctional adipose tissue in obesity-associated diseases.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Department of Clinical Research, University of Southern Denmark, Odense C, DK-5000, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, DK-5000, Denmark.
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark.
| | - Didde Riisager Hansen
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, DK-5000, Denmark
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark
| | - Per Svenningsen
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark.
| |
Collapse
|
44
|
Schleh MW, Caslin HL, Garcia JN, Mashayekhi M, Srivastava G, Bradley AB, Hasty AH. Metaflammation in obesity and its therapeutic targeting. Sci Transl Med 2023; 15:eadf9382. [PMID: 37992150 PMCID: PMC10847980 DOI: 10.1126/scitranslmed.adf9382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/29/2023] [Indexed: 11/24/2023]
Abstract
Obesity-associated inflammation is a systemic process that affects all metabolic organs. Prominent among these is adipose tissue, where cells of the innate and adaptive immune system are markedly changed in obesity, implicating these cells in a range of processes linking immune memory to metabolic regulation. Furthermore, weight loss and weight cycling have unexpected effects on adipose tissue immune populations. Here, we review the current literature on the roles of various immune cells in lean and obese adipose tissue. Within this context, we discuss pharmacological and nonpharmacological approaches to obesity treatment and their impact on systemic inflammation.
Collapse
Affiliation(s)
- Michael W. Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Heather L. Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jamie N. Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gitanjali Srivastava
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Weight Loss Center, Vanderbilt University Medical Center, Nashville, TN 37204 USA
| | - Anna B. Bradley
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Weight Loss Center, Vanderbilt University Medical Center, Nashville, TN 37204 USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
45
|
Lê S, Laurencin-Dalicieux S, Minty M, Assoulant-Anduze J, Vinel A, Yanat N, Loubieres P, Azalbert V, Diemer S, Burcelin R, Canceill T, Thomas C, Blasco-Baque V. Obesity Is Associated with the Severity of Periodontal Inflammation Due to a Specific Signature of Subgingival Microbiota. Int J Mol Sci 2023; 24:15123. [PMID: 37894804 PMCID: PMC10606428 DOI: 10.3390/ijms242015123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to analyze the link between periodontal microbiota and obesity in humans. We conducted a cohort study including 45 subjects with periodontitis divided into two groups: normo-weighted subjects with a body mass index (BMI) between 20 and 25 kg/m2 (n = 34) and obese subjects with a BMI > 30 kg/m2 (n = 11). Our results showed that obesity was associated with significantly more severe gingival inflammation according to Periodontal Inflamed Surface Area (PISA index). Periodontal microbiota taxonomic analysis showed that the obese (OB) subjects with periodontitis were characterized by a specific signature of subgingival microbiota with an increase in Gram-positive bacteria in periodontal pockets, associated with a decrease in microbiota diversity compared to that of normo-weighted subjects with periodontitis. Finally, periodontal treatment response was less effective in OB subjects with persisting periodontal inflammation, reflecting a still unstable periodontal condition and a risk of recurrence. To our knowledge, this study is the first exploring both salivary and subgingival microbiota of OB subjects. Considering that OB subjects are at higher periodontal risk, this could lead to more personalized preventive or therapeutic strategies for obese patients regarding periodontitis through the specific management of oral microbiota of obese patients.
Collapse
Affiliation(s)
- Sylvie Lê
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Sara Laurencin-Dalicieux
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- INSERM U1295, CERPOP, Epidémiologie et Analyse en Santé Publique, Risques, Maladies Chroniques et Handicaps, 37 Allées Jules Guesdes, 31000 Toulouse, France
| | - Matthieu Minty
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Justine Assoulant-Anduze
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Alexia Vinel
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR 1297 Inserm, Team ESTER, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| | - Noor Yanat
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Pascale Loubieres
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Vincent Azalbert
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Swann Diemer
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Remy Burcelin
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Thibault Canceill
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Charlotte Thomas
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Vincent Blasco-Baque
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| |
Collapse
|
46
|
Stansbury CM, Dotson GA, Pugh H, Rehemtulla A, Rajapakse I, Muir LA. A lipid-associated macrophage lineage rewires the spatial landscape of adipose tissue in early obesity. JCI Insight 2023; 8:e171701. [PMID: 37651193 PMCID: PMC10619435 DOI: 10.1172/jci.insight.171701] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Adipose tissue macrophage (ATM) infiltration is associated with adipose tissue dysfunction and insulin resistance in mice and humans. Recent single-cell data highlight increased ATM heterogeneity in obesity but do not provide a spatial context for ATM phenotype dynamics. We integrated single-cell RNA-Seq, spatial transcriptomics, and imaging of murine adipose tissue in a time course study of diet-induced obesity. Overall, proinflammatory immune cells were predominant in early obesity, whereas nonresident antiinflammatory ATMs predominated in chronic obesity. A subset of these antiinflammatory ATMs were transcriptomically intermediate between monocytes and mature lipid-associated macrophages (LAMs) and were consistent with a LAM precursor (pre-LAM). Pre-LAMs were spatially associated with early obesity crown-like structures (CLSs), which indicate adipose tissue dysfunction. Spatial data showed colocalization of ligand-receptor transcripts related to lipid signaling among monocytes, pre-LAMs, and LAMs, including Apoe, Lrp1, Lpl, and App. Pre-LAM expression of these ligands in early obesity suggested signaling to LAMs in the CLS microenvironment. Our results refine understanding of ATM diversity and provide insight into the dynamics of the LAM lineage during development of metabolic disease.
Collapse
Affiliation(s)
- Cooper M. Stansbury
- Department of Computational Medicine and Bioinformatics
- The Michigan Institute for Computational Discovery and Engineering
| | | | - Harrison Pugh
- Department of Computational Medicine and Bioinformatics
| | | | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
47
|
Martínez–Sánchez C, Bassegoda O, Deng H, Almodóvar X, Ibarzabal A, de Hollanda A, Martínez García de la Torre R, Blaya D, Ariño S, Jiménez-Esquivel N, Aguilar-Bravo B, Vallverdú J, Montironi C, Osorio-Conles O, Fundora Y, Sánchez Moreno FJ, Gómez-Valadés AG, Aguilar-Corominas L, Soria A, Pose E, Juanola A, Cervera M, Perez M, Hernández-Gea V, Affò S, Swanson KS, Ferrer-Fàbrega J, Balibrea JM, Sancho-Bru P, Vidal J, Ginès P, Smith AM, Graupera I, Coll M. Therapeutic targeting of adipose tissue macrophages ameliorates liver fibrosis in non-alcoholic fatty liver disease. JHEP Rep 2023; 5:100830. [PMID: 37701336 PMCID: PMC10494470 DOI: 10.1016/j.jhepr.2023.100830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 09/14/2023] Open
Abstract
Background & Aims : The accumulation of adipose tissue macrophages (ATMs) in obesity has been associated with hepatic injury. However, the contribution of ATMs to hepatic fibrosis in non-alcoholic fatty liver disease (NAFLD) remains to be elucidated. Herein, we investigate the relationship between ATMs and liver fibrosis in patients with patients with NAFLD and evaluate the impact of modulation of ATMs over hepatic fibrosis in an experimental non-alcoholic steatohepatitis (NASH) model. Methods Adipose tissue and liver biopsies from 42 patients with NAFLD with different fibrosis stages were collected. ATMs were characterised by immunohistochemistry and flow cytometry and the correlation between ATMs and liver fibrosis stages was assessed. Selective modulation of the ATM phenotype was achieved by i.p. administration of dextran coupled with dexamethasone in diet-induced obesity and NASH murine models. Chronic administration effects were evaluated by histology and gene expression analysis in adipose tissue and liver samples. In vitro crosstalk between human ATMs and hepatic stellate cells (HSCs) and liver spheroids was performed. Results Patients with NAFLD presented an increased accumulation of pro-inflammatory ATMs that correlated with hepatic fibrosis. Long-term modulation of ATMs significantly reduced pro-inflammatory phenotype and ameliorated adipose tissue inflammation. Moreover, ATMs modulation was associated with an improvement in steatosis and hepatic inflammation and significantly reduced fibrosis progression in an experimental NASH model. In vitro, the reduction of the pro-inflammatory phenotype of human ATMs with dextran-dexamethasone treatment reduced the secretion of inflammatory chemokines and directly attenuated the pro-fibrogenic response in HSCs and liver spheroids. Conclusions Pro-inflammatory ATMs increase in parallel with fibrosis degree in patients with NAFLD and their modulation in an experimental NASH model improves liver fibrosis, uncovering the potential of ATMs as a therapeutic target to mitigate liver fibrosis in NAFLD. Impact and implications We report that human adipose tissue pro-inflammatory macrophages correlate with hepatic fibrosis in non-alcoholic fatty liver disease (NAFLD). Furthermore, the modulation of adipose tissue macrophages (ATMs) by dextran-nanocarrier conjugated with dexamethasone shifts the pro-inflammatory phenotype of ATMs to an anti-inflammatory phenotype in an experimental murine model of non-alcoholic steatohepatitis. This shift ameliorates adipose tissue inflammation, hepatic inflammation, and fibrosis. Our results highlight the relevance of adipose tissue in NAFLD pathophysiology and unveil ATMs as a potential target for NAFLD.
Collapse
Affiliation(s)
- Celia Martínez–Sánchez
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Octavi Bassegoda
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Hongping Deng
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Xènia Almodóvar
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Ainitze Ibarzabal
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ana de Hollanda
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Delia Blaya
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Silvia Ariño
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Natalia Jiménez-Esquivel
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Beatriz Aguilar-Bravo
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Julia Vallverdú
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Carla Montironi
- Molecular Biology Core & Pathology Department, Hospital Clínic of Barcelona, Spain
| | - Oscar Osorio-Conles
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Yiliam Fundora
- Department of General and Digestive Surgery, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Alicia G. Gómez-Valadés
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Laia Aguilar-Corominas
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Anna Soria
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Elisa Pose
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Adrià Juanola
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Marta Cervera
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Martina Perez
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Virginia Hernández-Gea
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Silvia Affò
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
| | - Kelly S. Swanson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joana Ferrer-Fàbrega
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Barcelona Clínic Liver Cancer Group (BCLC), IDIBAPS, Barcelona, Spain
- Hepatic Oncology Unit, Hospital Clínic, Barcelona, Spain
- Hepatobiliopancreatic Surgery and Liver and Pancreatic Transplantation Unit, Department of Surgery, Institute Clínic of Digestive and Metabolic Diseases (ICMDiM), Hospital Clínic, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Jose Maria Balibrea
- Endocrine, Metabolic & Bariatric Surgery Unit, Germans Trias i Pujol Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Pau Sancho-Bru
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Josep Vidal
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pere Ginès
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Department of General and Digestive Surgery, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Andrew M. Smith
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Isabel Graupera
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacións Biomèdiques August Pi i Sunyer (FCRB-IDIABPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Mar Coll
- Department of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
Burwitz BJ, Yusova S, Robino JJ, Takahashi D, Luo A, Slayden OD, Bishop CV, Hennebold JD, Roberts CT, Varlamov O. Western-style diet in the presence of elevated circulating testosterone induces adipocyte hypertrophy without proinflammatory responses in rhesus macaques. Am J Reprod Immunol 2023; 90:e13773. [PMID: 37766405 PMCID: PMC10544858 DOI: 10.1111/aji.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
PROBLEM Anovulatory infertility is commonly associated with hyperandrogenemia (elevated testosterone, T), insulin resistance, obesity, and white adipose tissue (WAT) dysfunction associated with adipocyte hypertrophy. However, whether hyperandrogenemia and adipocyte hypertrophy per se induce a proinflammatory response is unknown. METHOD OF STUDY Young adult female rhesus macaques were exposed to an obesogenic Western-style diet (WSD) in the presence of elevated circulating testosterone (T+WSD) or a low-fat control diet with no exogenous T. Immune cells residing in visceral omental white adipose tissue (OM-WAT), corpus luteum and the contralateral ovary, endometrium, lymph nodes, bone marrow, and peripheral blood mononuclear cells were characterized by flow cytometry during the luteal phase of the reproductive cycle. RESULTS Following one year of treatment, T+WSD animals became more insulin-resistant and exhibited increased body fat and adipocyte hypertrophy compared to controls. T+WSD treatment did not induce macrophage polarization toward a proinflammatory phenotype in the tissues examined. Additionally, T+WSD treatment did not affect TNFα production by bone marrow macrophages in response to toll-like receptor agonists. While the major lymphoid subsets were not significantly affected by T+WSD treatment, we observed a significant reduction in the frequency of effector memory CD8+ T-cells (Tem) in OM-WAT, but not in other tissues. Notably, OM-WAT Tem frequencies were negatively correlated with insulin resistance as assessed by the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). CONCLUSION This study shows that short-term T+WSD treatment induces weight gain, insulin resistance, and adipocyte hypertrophy, but does not have a significant effect on systemic and tissue-resident proinflammatory markers, suggesting that adipocyte hypertrophy and mild hyperandrogenemia alone are not sufficient to induce a proinflammatory response.
Collapse
Affiliation(s)
- Benjamin J. Burwitz
- Divisions of Pathobiology and Immunology
- Divisions of Metabolic Health and Disease
| | | | | | | | - Addie Luo
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | - Ov D. Slayden
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | - Cecily V. Bishop
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jon D. Hennebold
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | - Charles T. Roberts
- Divisions of Metabolic Health and Disease
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | | |
Collapse
|
49
|
Deng J, Golub LM, Lee HM, Bhatt HD, Johnson F, Xu TM, Gu Y. A novel modified-curcumin 2.24 resolves inflammation by promoting M2 macrophage polarization. Sci Rep 2023; 13:15513. [PMID: 37726411 PMCID: PMC10509274 DOI: 10.1038/s41598-023-42848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
To assess resolving-like activity by a novel chemically-modified curcumin (CMC2.24) in a "two-hit" model of diabetes-associated periodontitis. Macrophages from rats were cultured in the presence/absence of either Lipopolysaccharide (LPS, 1st hit); or advanced-glycation-end products (AGE, 2nd hit); or both combined. CMC2.24 was added as treatment. The conditioned media were analyzed for MMP-9, cytokines (IL-1β, IL-6, TNF-α), resolvins (RvD1, RvE1, lipoxin A4), and soluble receptor for AGE (sRAGE). The phenotypes of M1/M2 macrophage were analyzed by flow cytometry. Both LPS/AGE-alone, and two-combined, dramatically increased the secretion of MMP-9 by macrophages. CMC2.24 "normalized" the elevated levels of MMP-9 under all conditions. Moreover, CMC2.24 significantly reduced the secretion of IL-1β and IL-6 with a fewer effects on TNF-α. Importantly, CMC2.24 increased RvD1 and sRAGE secretion by macrophages exposed to LPS/AGE; and both treatment groups exhibited increased M2 relative to M1 populations. Furthermore, scatter-diagram showed the macrophages gradually shifted from M1 towards M2 with CMC2.24-treated, whereas LPS/AGE-alone groups remained unchanged. CMC2.24 "normalized" cytokines and MMP-9, but also enhanced RvD1 and sRAGE in macrophages. Crucially, CMC2.24 appears to be a potent inhibitor of the pro-inflammatory M1 phenotype; and a promotor of the pro-resolving M2 phenotype, thus acting like a crucial "switch" to reduce inflammation.
Collapse
Affiliation(s)
- Jie Deng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China.
| | - Lorne M Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Heta-Dinesh Bhatt
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Francis Johnson
- Department of Chemistry and Pharmacological Sciences, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tian-Min Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Ying Gu
- Department of General Dentistry, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
50
|
Mukherjee S, Skrede S, Haugstøyl M, López M, Fernø J. Peripheral and central macrophages in obesity. Front Endocrinol (Lausanne) 2023; 14:1232171. [PMID: 37720534 PMCID: PMC10501731 DOI: 10.3389/fendo.2023.1232171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 09/19/2023] Open
Abstract
Obesity is associated with chronic, low-grade inflammation. Excessive nutrient intake causes adipose tissue expansion, which may in turn cause cellular stress that triggers infiltration of pro-inflammatory immune cells from the circulation as well as activation of cells that are residing in the adipose tissue. In particular, the adipose tissue macrophages (ATMs) are important in the pathogenesis of obesity. A pro-inflammatory activation is also found in other organs which are important for energy metabolism, such as the liver, muscle and the pancreas, which may stimulate the development of obesity-related co-morbidities, including insulin resistance, type 2 diabetes (T2D), cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Interestingly, it is now clear that obesity-induced pro-inflammatory signaling also occurs in the central nervous system (CNS), and that pro-inflammatory activation of immune cells in the brain may be involved in appetite dysregulation and metabolic disturbances in obesity. More recently, it has become evident that microglia, the resident macrophages of the CNS that drive neuroinflammation, may also be activated in obesity and can be relevant for regulation of hypothalamic feeding circuits. In this review, we focus on the action of peripheral and central macrophages and their potential roles in metabolic disease, and how macrophages interact with other immune cells to promote inflammation during obesity.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Martha Haugstøyl
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|