1
|
Shawky A, Saber S, Abd El-Kader EM, El-Kashef HA. Verapamil inhibits TXNIP-dependent NLRP3 Inflammasome activation in an ulcerative colitis rat model: A new evolving role of the calcium channel blocker. Int Immunopharmacol 2025; 158:114751. [PMID: 40359884 DOI: 10.1016/j.intimp.2025.114751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Ulcerative colitis (UC) is a long-term inflammatory bowel disease (IBD) associated with significant morbidity. It is marked by inflammation and damage to the colon's mucosal lining. Studies have shown that NLRP3 inflammasome activation, apoptosis, and impaired autophagy are critical in its pathogenesis. Verapamil, a calcium channel blocker, has been found to inhibit NLRP3 inflammasome activation in various preclinical models. However, the potential influence of verapamil on the TXNIP in UC remains unexplored. This study investigates the effects of verapamil on an UC rat model induced chemically by acetic acid. Verapamil effectively inhibited the TXNIP-NLRP3-caspase-1 axis, reducing inflammasome activation and the release of IL-1β and IL-18. Additionally, verapamil suppressed NFκB, the priming step of NLRP3 activation. The drug enhanced autophagic activity, as indicated by increased expression of LC3-II and Beclin-1, along with reduced LC3-I and mTOR expression. Moreover, it demonstrated anti-apoptotic effects mediated by regulating Bax and cleaved caspase-3. These molecular changes contributed to mucosal healing and improved microscopic and macroscopic outcomes in the colitis model. Furthermore, verapamil improved the colon weight-to-length ratio and disease activity scores and mitigated oxidative stress. As verapamil has been safely used in clinics to treat hypertension, our findings suggest it may be a safe therapeutic option for ameliorating inflammation and apoptosis and activating autophagy in UC pathology. Since hypertension demonstrates a strong association with UC, the use of verapamil merits particular attention in hypertensive patients fighting against IBD.
Collapse
Affiliation(s)
- Ahmed Shawky
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
| | - Eman M Abd El-Kader
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
| | - Hassan A El-Kashef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
2
|
Walker EM, Pearson GL, Lawlor N, Stendahl AM, Lietzke A, Sidarala V, Zhu J, Stromer T, Reck EC, Li J, Levi-D’Ancona E, Pasmooij MB, Hubers DL, Renberg A, Mohamed K, Parekh VS, Zhang IX, Thompson B, Zhang D, Ware SA, Haataja L, Qi N, Parker SCJ, Arvan P, Yin L, Kaufman BA, Satin LS, Sussel L, Stitzel ML, Soleimanpour SA. Retrograde mitochondrial signaling governs the identity and maturity of metabolic tissues. Science 2025; 388:eadf2034. [PMID: 39913641 PMCID: PMC11985298 DOI: 10.1126/science.adf2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/13/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Mitochondrial damage is a hallmark of metabolic diseases, including diabetes, yet the consequences of compromised mitochondria in metabolic tissues are often unclear. In this work, we report that dysfunctional mitochondrial quality control engages a retrograde (mitonuclear) signaling program that impairs cellular identity and maturity in β cells, hepatocytes, and brown adipocytes. Targeted deficiency throughout the mitochondrial quality control pathway, including genome integrity, dynamics, or turnover, impaired the oxidative phosphorylation machinery, activating the mitochondrial integrated stress response, eliciting chromatin remodeling, and promoting cellular immaturity rather than apoptosis to yield metabolic dysfunction. Pharmacologic blockade of the integrated stress response in vivo restored β cell identity after the loss of mitochondrial quality control. Targeting mitochondrial retrograde signaling may therefore be promising in the treatment or prevention of metabolic disorders.
Collapse
Affiliation(s)
- Emily M. Walker
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gemma L. Pearson
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nathan Lawlor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Ava M. Stendahl
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Anne Lietzke
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sidarala
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jie Zhu
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tracy Stromer
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Emma C. Reck
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jin Li
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elena Levi-D’Ancona
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mabelle B. Pasmooij
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dre L. Hubers
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Aaron Renberg
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kawthar Mohamed
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vishal S. Parekh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Irina X. Zhang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Thompson
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah A. Ware
- Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Stephen C. J. Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Brett A. Kaufman
- Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Leslie S. Satin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael L. Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Scott A. Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Katz LS, Visser EJ, Plitzko KF, Pennings MAM, Cossar PJ, Tse IL, Kaiser M, Brunsveld L, Ottmann C, Scott DK. Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580675. [PMID: 38405965 PMCID: PMC10888794 DOI: 10.1101/2024.02.16.580675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Carbohydrate Response Element Binding Protein (ChREBP) is a glucose-responsive transcription factor (TF) with two major splice isoforms (α and β). In chronic hyperglycemia and glucolipotoxicity, ChREBPα-mediated ChREBPβ expression surges, leading to insulin-secreting β-cell dedifferentiation and death. 14-3-3 binding to ChREBPα results in cytoplasmic retention and suppression of transcriptional activity. Thus, small molecule-mediated stabilization of this protein-protein interaction (PPI) may be of therapeutic value. Here, we show that structure-based optimizations of a 'molecular glue' compound led to potent ChREBPα/14-3-3 PPI stabilizers with cellular activity. In primary human β-cells, the most active compound retained ChREBPα in the cytoplasm, and efficiently protected β-cells from glucolipotoxicity while maintaining β-cell identity. This study may thus not only provide the basis for the development of a unique class of compounds for the treatment of Type 2 Diabetes but also showcases an alternative 'molecular glue' approach for achieving small molecule control of notoriously difficult to target TFs.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Kathrin F Plitzko
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Marloes A M Pennings
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Isabelle L Tse
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Markus Kaiser
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| |
Collapse
|
4
|
Khalifa AK, Abdelrahim DS, Mekawy DM, Hamed RMR, Mohamed WR, Ramadan NM, Wael M, Ellackany R, Albadawi EA, Osman WA. New horizon of the combined BCG vaccine with probiotic and liraglutide in augmenting beta cell survival via suppression of TXNIP/NLRP3 pyroptosis signaling in Streptozocin-Induced diabetes mellitestype-1 in rats. Heliyon 2024; 10:e38932. [PMID: 39640632 PMCID: PMC11620097 DOI: 10.1016/j.heliyon.2024.e38932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 12/07/2024] Open
Abstract
Background An ideal anti-diabetic type-1 pharmacotherapy should combine abrogation of beta cell pyroptosis with enhancement of beta cell mass. Objectives The study investigated the potential synergism from combining the Bacillus Calmette-Guerin (BCG) vaccine with liraglutide (LIR) and probiotics in mitigating Streptozocin (STZ)-induced Type1diabetes mellitus in albino rats via suppression of TXNIP/NLRP3 signaling. Methods: Induction of diabetes was performed by two I.V. injections of 50 mg/kg of STZ in male Wistar rats. Forty-eight rats were randomly allocated into six groups: Normal control group; STZ -diabetic group; BCG group; BCG + LIR group; BCG + probiotic group; BCG + LIR + probiotic group. The rats were sacrificed after 8 weeks of treatment. Results The STZ-diabetic group exhibited significant elevation of fasting blood sugar and HbA1c with remarkably decreased serum insulin along with a considerable increase in pancreatic proinflammatory cytokines (TNF-α, NLRP3, IL-1β, and NFκB) and apoptotic markers (ASK-1, IAPP, TXNIP, and Caspase-3) with prominently compromised oxidative scavenging capacity in addition to structural alteration in the pancreatic histoarchitecture with decreased insulin immunostaining. Conversely, diabetic-treated groups, especially the BCG + LIR + probiotic group, were superior in amelioration of STZ-induced pyroptosis of pancreatic islets evidenced by a significant decline in inflammatory cytokines and apoptotic markers with a remarkable upgrade in redox balance, Furthermore, the mitigation in the altered histopathological picture of the pancreas with enhanced insulin immunostaining has been was mirrored on the significant improvement of glucose homeostasis parameters. Conclusions Noteworthy, BCG combination with liraglutide and probiotic might be a promising repurposed therapeutic modality in the management of type-1 diabetes mellites via targeting pancreatic TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Amira Karam Khalifa
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, El- Manial, Cairo 11562, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Nahda University, 62521, Beni Suef, Egypt
| | - Dina Sayed Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Dina Mohamed Mekawy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Wafaa Rabee Mohamed
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Egypt
- Department of Histology and Cell Biology, Faculty of Medicine, Modern University for Technology and Information, Egypt
| | - Nagwa Mahmoud Ramadan
- Department of Physiology, Faculty of Medicine, Cairo University, El Manial, Cairo 11562, Egypt
| | - Mostafa Wael
- Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Rawan Ellackany
- Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Emad Ali Albadawi
- Department of Basic Medical Science, College of Medicine, Taibah University, KSA, Saudi Arabia
| | - Walla'a A. Osman
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, El- Manial, Cairo 11562, Egypt
| |
Collapse
|
5
|
Jing G, Jo S, Shalev A. A novel class of oral, non-immunosuppressive, beta cell-targeting, TXNIP-inhibiting T1D drugs is emerging. Front Endocrinol (Lausanne) 2024; 15:1476444. [PMID: 39429740 PMCID: PMC11486709 DOI: 10.3389/fendo.2024.1476444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Diabetes treatment options have improved dramatically over the last 100 years, however, close to 2 million individuals in the U.S. alone live with type 1 diabetes (T1D) and are still dependent on multiple daily insulin injections and/or continuous insulin infusion with a pump to stay alive and no oral medications are available. After decades of focusing on immunosuppressive/immunomodulatory approaches for T1D, it has now become apparent that at least after disease onset, this by itself may not be sufficient, and in order to be effective, therapies need to also address beta cell health. This Perspective article discusses the emergence of such a beta cell-targeting, novel class of oral T1D drugs targeting thioredoxin-interacting protein (TXNIP) and some very recent advances in this field that start to address this unmet medical need. It thereby focuses on repurposing of the antihypertensive drug, verapamil found to non-specifically inhibit TXNIP and on TIX100, a new chemical entity specifically developed as an oral anti-diabetic drug to inhibit TXNIP. Both have shown striking anti-diabetic effects in preclinical studies. Verapamil has also proven to be beneficial in adults and children with recent onset T1D, while TIX100 has just been cleared by the U.S. Food and Drug Administration (FDA) to proceed to clinical trials. Taken together, we propose that such non-immunosuppressive, adjunctive therapies to insulin, alone or in combination with immune modulatory approaches, are critical in order to achieve effective and durable disease-modifying treatments for T1D.
Collapse
Affiliation(s)
| | | | - Anath Shalev
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Yilmaz E. Endoplasmic Reticulum Stress and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:373-390. [PMID: 39287859 DOI: 10.1007/978-3-031-63657-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent years, the world has seen an alarming increase in obesity and is closely associated with insulin resistance, which is a state of low-grade inflammation, the latter characterized by elevated levels of proinflammatory cytokines in blood and tissues. A shift in energy balance alters systemic metabolic regulation and the important role that chronic inflammation, endoplasmic reticulum (ER) dysfunction, and activation of the unfolded protein response (UPR) plays in this process.Why obesity is so closely associated with insulin resistance and inflammation is not understood well. This suggests that there are probably many causes for obesity-related insulin resistance and inflammation. One of the faulty mechanisms is protein homeostasis, protein quality control system included protein folding, chaperone activity, and ER-associated degradation leading to endoplasmic reticulum (ER) stress.The ER is a vast membranous network responsible for the trafficking of a wide range of proteins and plays a central role in integrating multiple metabolic signals critical in cellular homeostasis. Conditions that may trigger unfolded protein response activation include increased protein synthesis, the presence of mutant or misfolded proteins, inhibition of protein glycosylation, imbalance of ER calcium levels, glucose and energy deprivation, hypoxia, pathogens, or pathogen-associated components and toxins. Thus, characterizing the mechanisms contributing to obesity and identifying potential targets for its prevention and treatment will have a great impact on the control of associated conditions, particularly T2D.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Biotechnology Institute, Ankara University, Kecioren, Ankara, Turkey.
| |
Collapse
|
7
|
Coppin E, Zhang X, Ohayon L, Johny E, Dasari A, Zheng KH, Stiekema L, Cifuentes-Pagano E, Pagano PJ, Chaparala S, Stroes ES, Dutta P. Peripheral Ischemia Imprints Epigenetic Changes in Hematopoietic Stem Cells to Propagate Inflammation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2023; 43:889-906. [PMID: 36891902 PMCID: PMC10213134 DOI: 10.1161/atvbaha.123.318956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Peripheral ischemia caused by peripheral artery disease is associated with systemic inflammation, which may aggravate underlying comorbidities such as atherosclerosis and heart failure. However, the mechanisms of increased inflammation and inflammatory cell production in patients with peripheral artery disease remain poorly understood. METHODS We used peripheral blood collected from patients with peripheral artery disease and performed hind limb ischemia (HI) in Apoe-/- mice fed a Western diet and C57BL/6J mice with a standard laboratory diet. Bulk and single-cell RNA sequencing analysis, whole-mount microscopy, and flow cytometry were performed to analyze hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and relocation. RESULTS We observed augmented numbers of leukocytes in the blood of patients with peripheral artery disease and Apoe-/- mice with HI. RNA sequencing and whole-mount imaging of the bone marrow revealed HSPC migration into the vascular niche from the osteoblastic niche and their exaggerated proliferation and differentiation. Single-cell RNA sequencing demonstrated alterations in the genes responsible for inflammation, myeloid cell mobilization, and HSPC differentiation after HI. Heightened inflammation in Apoe-/- mice after HI aggravated atherosclerosis. Surprisingly, bone marrow HSPCs expressed higher amounts of the receptors for IL (interleukin)-1 and IL-3 after HI. Concomitantly, the promoters of Il1r1 and Il3rb had augmented H3K4me3 and H3K27ac marks after HI. Genetic and pharmacological inhibition of these receptors resulted in suppressed HSPC proliferation, reduced leukocyte production, and ameliorated atherosclerosis. CONCLUSIONS Our findings demonstrate increased inflammation, HSPC abundance in the vascular niches of the bone marrow, and elevated IL-3Rb and IL-1R1 (IL-1 receptor 1) expression in HSPC following HI. Furthermore, the IL-3Rb and IL-1R1 signaling plays a pivotal role in HSPC proliferation, leukocyte abundance, and atherosclerosis aggravation after HI.
Collapse
Affiliation(s)
- Emilie Coppin
- Regeneration in Hematopoiesis, Institute for Immunology, TU Dresden, Dresden, Germany
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Xinyi Zhang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lee Ohayon
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ebin Johny
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ankush Dasari
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kang H. Zheng
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lotte Stiekema
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Srilakshmi Chaparala
- Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erik S. Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, 15213
| |
Collapse
|
8
|
Ajmal N, Bogart MC, Khan P, Max-Harry IM, Nunemaker CS. Emerging Anti-Diabetic Drugs for Beta-Cell Protection in Type 1 Diabetes. Cells 2023; 12:1472. [PMID: 37296593 PMCID: PMC10253164 DOI: 10.3390/cells12111472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder that damages beta cells in the pancreatic islets of Langerhans and results in hyperglycemia due to the loss of insulin. Exogenous insulin therapy can save lives but does not halt disease progression. Thus, an effective therapy may require beta-cell restoration and suppression of the autoimmune response. However, currently, there are no treatment options available that can halt T1D. Within the National Clinical Trial (NCT) database, a vast majority of over 3000 trials to treat T1D are devoted to insulin therapy. This review focuses on non-insulin pharmacological therapies. Many investigational new drugs fall under the category of immunomodulators, such as the recently FDA-approved CD-3 monoclonal antibody teplizumab. Four intriguing candidate drugs fall outside the category of immunomodulators, which are the focus of this review. Specifically, we discuss several non-immunomodulators that may have more direct action on beta cells, such as verapamil (a voltage-dependent calcium channel blocker), gamma aminobutyric acid (GABA, a major neurotransmitter with effects on beta cells), tauroursodeoxycholic acid (TUDCA, an endoplasmic reticulum chaperone), and volagidemab (a glucagon receptor antagonist). These emerging anti-diabetic drugs are expected to provide promising results in both beta-cell restoration and in suppressing cytokine-derived inflammation.
Collapse
Affiliation(s)
- Nida Ajmal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.A.); (P.K.); (I.M.M.-H.)
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, OH 45701, USA
| | | | - Palwasha Khan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.A.); (P.K.); (I.M.M.-H.)
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, OH 45701, USA
| | - Ibiagbani M. Max-Harry
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.A.); (P.K.); (I.M.M.-H.)
- Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH 45701, USA
| | - Craig S. Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.A.); (P.K.); (I.M.M.-H.)
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
9
|
Li Y, Deng W, Wu J, He Q, Yang G, Luo X, Jia Y, Duan Y, Zhou L, Liu D. TXNIP Exacerbates the Senescence and Aging-Related Dysfunction of β Cells by Inducing Cell Cycle Arrest Through p38-p16/p21-CDK-Rb Pathway. Antioxid Redox Signal 2023; 38:480-495. [PMID: 36070438 DOI: 10.1089/ars.2021.0224] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aims: Thioredoxin-interacting protein (TXNIP) is a crucial molecular promoter of oxidative stress and has been identified to be associated with cellular senescence. It is an important mediator of β cell insulin secretion and has effects on β cell mass. However, its role in β cell senescence is unclear. The present study was designed to investigate the effects and mechanisms of TXNIP on the senescence and aging- and diet-related dysfunction of β cells. Methods: Human pancreatic paraffin tissues and serum samples from different ages were collected to detect TXNIP expression. TXNIP-/- and C57BL/6J mice were fed either a normal chow diet (NCD) or a high-fat diet (HFD) until 5, 11, 14, or 20 months. The recapitulation experiment was conducted with TXNIP protein injection. MIN6 cells were transfected with LV-TXNIP and LV-siTXNIP. The biochemical indexes, ageing-related markers, cell cycle proteins, and pathways were examined both in vivo and in vitro. Results: TXNIP expression showed an age-related increase in β cells and serum samples from humans. TXNIP significantly impaired glucose metabolism and insulin secretion in an age-dependent manner. TXNIP aggravated age-related and obesity-induced structural failure, oxidative stress, decreased proliferation, increased apoptosis in β cells, and induced the cell cycle arrest. TXNIP interacted with p38 mitogen-activated protein kinase (p38MAPK) and modulated the p16/p21-CDK-Rb axis to accelerate β cell senescence. Innovation and Conclusions: The present study demonstrated that TXNIP may exacerbate pancreatic β cell senescence and age-related dysfunction by inducing cell cycle arrest through the p38-p16/p21-CDK-Rb pathway, in natural and pathological states. Antioxid. Redox Signal. 38, 480-495.
Collapse
Affiliation(s)
- Yang Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wenzhen Deng
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Endocrinology, Qianjiang Central Hospital of Chongqing, Chongqing, China
| | - Jinlin Wu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Qirui He
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xie Luo
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yanjun Jia
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaqian Duan
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Liping Zhou
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Dagdeviren S, Lee RT, Wu N. Physiological and Pathophysiological Roles of Thioredoxin Interacting Protein: A Perspective on Redox Inflammation and Metabolism. Antioxid Redox Signal 2023; 38:442-460. [PMID: 35754346 PMCID: PMC9968628 DOI: 10.1089/ars.2022.0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/12/2022] [Indexed: 11/12/2022]
Abstract
Significance: Thioredoxin interacting protein (TXNIP) is a member of the arrestin fold superfamily with important cellular functions, including cellular transport, mitochondrial energy generation, and protein cycling. It is the only arrestin-domain protein known to covalently bind to thioredoxin and plays roles in glucose metabolism, inflammation, apoptosis, and cancer. Recent Advances: The crystal structure of the TXNIP-thioredoxin complex provided details about this fascinating interaction. Recent studies showed that TXNIP is induced by endoplasmic reticulum (ER) stress, activates NLR family pyrin domain containing 3 (NLRP3) inflammasomes, and can regulate glucose transport into cells. The tumor suppressor role of TXNIP in various cancer types and the role of TXNIP in fructose absorption are now described. Critical Issues: The influence of TXNIP on redox state is more complex than its interaction with thioredoxin. Future Directions: It is incompletely understood which functions of TXNIP are thioredoxin-dependent. It is also unclear whether TXNIP binding can inhibit glucose transporters without endocytosis. TXNIP-regulated control of ER stress should also be investigated further. Antioxid. Redox Signal. 38, 442-460.
Collapse
Affiliation(s)
- Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Ning Wu
- Van Andel Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
11
|
Stancill JS, Corbett JA. Hydrogen peroxide detoxification through the peroxiredoxin/thioredoxin antioxidant system: A look at the pancreatic β-cell oxidant defense. VITAMINS AND HORMONES 2022; 121:45-66. [PMID: 36707143 PMCID: PMC10058777 DOI: 10.1016/bs.vh.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS), such as hydrogen peroxide, are formed when molecular oxygen obtains additional electrons, increasing its reactivity. While low concentrations of hydrogen peroxide are necessary for regulation of normal cellular signaling events, high concentrations can be toxic. To maintain this balance between beneficial and deleterious concentrations of hydrogen peroxide, cells utilize antioxidants. Our recent work supports a primary role for peroxiredoxin, thioredoxin, and thioredoxin reductase as the oxidant defense pathway used by insulin-producing pancreatic β-cells. These three players work in an antioxidant cycle based on disulfide exchange, with oxidized targets ultimately being reduced using electrons provided by NADPH. Peroxiredoxins also participate in hydrogen peroxide-based signaling through disulfide exchange with redox-regulated target proteins. This chapter will describe the catalytic mechanisms of thioredoxin, thioredoxin reductase, and peroxiredoxin and provide an in-depth look at the roles these enzymes play in antioxidant defense pathways of insulin-secreting β-cells. Finally, we will evaluate the physiological relevance of peroxiredoxin-mediated hydrogen peroxide signaling as a regulator of β-cell function.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
12
|
Wang SW, Lan T, Zheng F, Huang H, Chen HF, Wu Q, Zhang F. Celastrol inhibits TXNIP expression to protect pancreatic β cells in diabetic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154316. [PMID: 35820305 DOI: 10.1016/j.phymed.2022.154316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Celastrol (CEL) has a great potential in the treatment of a wide variety of metabolic diseases. However, whether CEL protects pancreatic β cells and its underlying mechanism are not yet clear. PURPOSE This study investigates to determine the effects of CEL on the pathogenesis of pancreatic β cells damage. METHODS C57BLKS/Leprdb (db/db) mice and rat insulinoma INS-1 cell line or mouse J774A.1 cell line were used as in vivo and in vitro models for investigating the protective effect of CEL on pancreatic β cells under high glucose environment and the related mechanism. The phenotypic changes were evaluated by immunofluorescence, immunohistochemical staining, flow cytometry and the measurement of biochemical indexes. The molecular mechanism was explored by biological techniques such as western blotting, qPCR, ChIP-qPCR, co-immunoprecipitation and lentivirus infection. RESULTS Our results showed that CEL at the high dose (CEL-H, 0.2 mg/kg) protects db/db mice against increased body weight and blood glucose. CEL-H inhibits pancreatic β cell apoptosis in db/db mice and high glucose-induced INS-1 cells. CEL-H also reduced IL-1β production in islet macrophages. The further study found that CEL suppressed TXNIP expression and NLRP3 inflammasome activation in pancreatic β cells and islet macrophages. Importantly, the inhibitory effect of CEL on pancreatic β cell apoptosis and IL-1β production was also dependent on TXNIP. Mechanically, CEL inhibits Txnip transcription by promoting the degradation of ChREBP. CONCLUSION Celastrol inhibits TXNIP expression to protect pancreatic β cells in vivo and in vitro. Our research pointed out another mechanism by which celastrol functions under the condition leptin signaling is ineffective.
Collapse
Affiliation(s)
- Si-Wei Wang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Tian Lan
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Fang Zheng
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Hui Huang
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Hang-Fei Chen
- Zhejiang Chinese Medical University, Hangzhou 310059, China
| | - Qi Wu
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Feng Zhang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Zhejiang Chinese Medical University, Hangzhou 310059, China.
| |
Collapse
|
13
|
Abstract
Significance: Thioredoxin-interacting protein (Txnip) is an α-arrestin protein that acts as a cancer suppressor. Txnip is simultaneously a critical regulator of energy metabolism. Other alpha-arrestin proteins also play key roles in cell biology and cancer. Recent Advances: Txnip expression is regulated by multilayered mechanisms, including transcriptional regulation, microRNA, messenger RNA (mRNA) stabilization, and protein degradation. The Txnip-based connection between cancer and metabolism has been widely recognized. Meanwhile, new aspects are proposed for the mechanism of action of Txnip, including the regulation of RNA expression and autophagy. Arrestin domain containing 3 (ARRDC3), another α-arrestin protein, regulates endocytosis and signaling, whereas ARRDC1 and ARRDC4 regulate extracellular vesicle formation. Critical Issues: The mechanism of action of Txnip is yet to be elucidated. The regulation of intracellular protein trafficking by arrestin family proteins has opened an emerging field of biology and medical research, which needs to be examined further. Future Directions: A fundamental understanding of the mechanism of action of Txnip and other arrestin family members needs to be explored in the future to combat diseases such as cancer and diabetes. Antioxid. Redox Signal. 36, 1001-1022.
Collapse
Affiliation(s)
- Hiroshi Masutani
- Department of Clinical Laboratory Sciences, Tenri Health Care University, Tenri, Japan.,Department of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Xu G, Chen J, Jo S, Grayson TB, Ramanadham S, Koizumi A, Germain-Lee EL, Lee SJ, Shalev A. Deletion of Gdf15 Reduces ER Stress-induced Beta-cell Apoptosis and Diabetes. Endocrinology 2022; 163:6548945. [PMID: 35290443 PMCID: PMC9272264 DOI: 10.1210/endocr/bqac030] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 01/12/2023]
Abstract
Endoplasmic reticulum (ER) stress contributes to pancreatic beta-cell apoptosis in diabetes, but the factors involved are still not fully elucidated. Growth differentiation factor 15 (GDF15) is a stress response gene and has been reported to be increased and play an important role in various diseases. However, the role of GDF15 in beta cells in the context of ER stress and diabetes is still unclear. In this study, we have discovered that GDF15 promotes ER stress-induced beta-cell apoptosis and that downregulation of GDF15 has beneficial effects on beta-cell survival in diabetes. Specifically, we found that GDF15 is induced by ER stress in beta cells and human islets, and that the transcription factor C/EBPβ is involved in this process. Interestingly, ER stress-induced apoptosis was significantly reduced in INS-1 cells with Gdf15 knockdown and in isolated Gdf15 knockout mouse islets. In vivo, we found that Gdf15 deletion attenuates streptozotocin-induced diabetes by preserving beta cells and insulin levels. Moreover, deletion of Gdf15 significantly delayed diabetes development in spontaneous ER stress-prone Akita mice. Thus, our findings suggest that GDF15 contributes to ER stress-induced beta-cell apoptosis and that inhibition of GDF15 may represent a novel strategy to promote beta-cell survival and treat diabetes.
Collapse
Affiliation(s)
- Guanlan Xu
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: Guanlan Xu, PhD, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Shelby Bldg 1272, Birmingham, AL 35294-2182, USA. E-mail:
| | - Junqin Chen
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - SeongHo Jo
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Truman B Grayson
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sasanka Ramanadham
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Akio Koizumi
- Institute of Public Health and Social Welfare Public Interest Incorporation Associations, Kyoto Hokenkai, Ukyo-ku Kyoto 615-8577, Japan
| | - Emily L Germain-Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Connecticut Children’s Center for Rare Bone Disorders, Farmington, CT 06032, USA
| | - Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Anath Shalev
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Miyahara H, Hasegawa K, Yashiro M, Ohara T, Fujisawa M, Yoshimura T, Matsukawa A, Tsukahara H. Thioredoxin interacting protein protects mice from fasting induced liver steatosis by activating ER stress and its downstream signaling pathways. Sci Rep 2022; 12:4819. [PMID: 35314758 PMCID: PMC8938456 DOI: 10.1038/s41598-022-08791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Under normal conditions, fasting results in decreased protein disulfide isomerase (PDI) activity and accumulation of unfolded proteins, leading to the subsequent activation of the unfolded protein response (UPR)/autophagy signaling pathway to eliminate damaged mitochondria. Fasting also induces upregulation of thioredoxin-interacting protein (TXNIP) expression and mice deficient of this protein (TXNIP-KO mice) was shown to develop severe hypoglycemia, hyperlipidemia and liver steatosis (LS). In the present study, we aimed to determine the role of TXNIP in fasting-induced LS by using male TXNIP-KO mice that developed LS without severe hypoglycemia. In TXNIP-KO mice, fasting induced severe microvesicular LS. Examinations by transmission electron microscopy revealed mitochondria with smaller size and deformities and the presence of few autophagosomes. The expression of β-oxidation-associated genes remained at the same level and the level of LC3-II was low. PDI activity level stayed at the original level and the levels of p-IRE1 and X-box binding protein 1 spliced form (sXBP1) were lower. Interestingly, treatment of TXNIP-KO mice with bacitracin, a PDI inhibitor, restored the level of LC3-II after fasting. These results suggest that TXNIP regulates PDI activity and subsequent activation of the UPR/autophagy pathway and plays a protective role in fasting-induced LS.
Collapse
Affiliation(s)
- Hiroyuki Miyahara
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan. .,Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
16
|
Xu G, Grimes TD, Grayson TB, Chen J, Thielen LA, Tse HM, Li P, Kanke M, Lin TT, Schepmoes AA, Swensen AC, Petyuk VA, Ovalle F, Sethupathy P, Qian WJ, Shalev A. Exploratory study reveals far reaching systemic and cellular effects of verapamil treatment in subjects with type 1 diabetes. Nat Commun 2022; 13:1159. [PMID: 35241690 PMCID: PMC8894430 DOI: 10.1038/s41467-022-28826-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, no oral medications are available for type 1 diabetes (T1D). While our recent randomized placebo-controlled T1D trial revealed that oral verapamil had short-term beneficial effects, their duration and underlying mechanisms remained elusive. Now, our global T1D serum proteomics analysis identified chromogranin A (CHGA), a T1D-autoantigen, as the top protein altered by verapamil and as a potential therapeutic marker and revealed that verapamil normalizes serum CHGA levels and reverses T1D-induced elevations in circulating proinflammatory T-follicular-helper cell markers. RNA-sequencing further confirmed that verapamil regulates the thioredoxin system and promotes an anti-oxidative, anti-apoptotic and immunomodulatory gene expression profile in human islets. Moreover, continuous use of oral verapamil delayed T1D progression, promoted endogenous beta-cell function and lowered insulin requirements and serum CHGA levels for at least 2 years and these benefits were lost upon discontinuation. Thus, the current studies provide crucial mechanistic and clinical insight into the beneficial effects of verapamil in T1D.
Collapse
Affiliation(s)
- Guanlan Xu
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Tiffany D Grimes
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Truman B Grayson
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Junqin Chen
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lance A Thielen
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hubert M Tse
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Peng Li
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,School of Nursing, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Fernando Ovalle
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Anath Shalev
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
17
|
Mukherjee N, Lin L, Contreras CJ, Templin AT. β-Cell Death in Diabetes: Past Discoveries, Present Understanding, and Potential Future Advances. Metabolites 2021; 11:796. [PMID: 34822454 PMCID: PMC8620854 DOI: 10.3390/metabo11110796] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
β-cell death is regarded as a major event driving loss of insulin secretion and hyperglycemia in both type 1 and type 2 diabetes mellitus. In this review, we explore past, present, and potential future advances in our understanding of the mechanisms that promote β-cell death in diabetes, with a focus on the primary literature. We first review discoveries of insulin insufficiency, β-cell loss, and β-cell death in human diabetes. We discuss findings in humans and mouse models of diabetes related to autoimmune-associated β-cell loss and the roles of autoreactive T cells, B cells, and the β cell itself in this process. We review discoveries of the molecular mechanisms that underlie β-cell death-inducing stimuli, including proinflammatory cytokines, islet amyloid formation, ER stress, oxidative stress, glucotoxicity, and lipotoxicity. Finally, we explore recent perspectives on β-cell death in diabetes, including: (1) the role of the β cell in its own demise, (2) methods and terminology for identifying diverse mechanisms of β-cell death, and (3) whether non-canonical forms of β-cell death, such as regulated necrosis, contribute to islet inflammation and β-cell loss in diabetes. We believe new perspectives on the mechanisms of β-cell death in diabetes will provide a better understanding of this pathological process and may lead to new therapeutic strategies to protect β cells in the setting of diabetes.
Collapse
Affiliation(s)
- Noyonika Mukherjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Li Lin
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Christopher J. Contreras
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew T. Templin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Ricci D, Gidalevitz T, Argon Y. The special unfolded protein response in plasma cells. Immunol Rev 2021; 303:35-51. [PMID: 34368957 DOI: 10.1111/imr.13012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
The high rate of antibody production places considerable metabolic and folding stress on plasma cells (PC). Not surprisingly, they rely on the unfolded protein response (UPR), a universal signaling, and transcriptional network that monitors the health of the secretory pathway and mounts cellular responses to stress. Typically, the UPR utilizes three distinct stress sensors in the ER membrane, each regulating a subset of targets to re-establish homeostasis. PC use a specialized UPR scheme-they preemptively trigger the UPR via developmental signals and suppress two of the sensors, PERK and ATF6, relying on IRE1 alone. The specialized PC UPR program is tuned to the specific needs at every stage of development-from early biogenesis of secretory apparatus, to massive immunoglobulin expression later. Furthermore, the UPR in PC integrates with other pathways essential in a highly secretory cell-mTOR pathway that ensures efficient synthesis, autophagosomes that recycle components of the synthetic machinery, and apoptotic signaling that controls cell fate in the face of excessive folding stress. This specialized PC program is not shared with other secretory cells, for reasons yet to be defined. In this review, we give a perspective into how and why PC need such a unique UPR program.
Collapse
Affiliation(s)
- Daniela Ricci
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Tali Gidalevitz
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Yair Argon
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Wang SW, Sheng H, Bai YF, Weng YY, Fan XY, Zheng F, Fu JQ, Zhang F. Inhibition of histone acetyltransferase by naringenin and hesperetin suppresses Txnip expression and protects pancreatic β cells in diabetic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153454. [PMID: 33663922 DOI: 10.1016/j.phymed.2020.153454] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND The damage of pancreatic β cells is a major pathogenesis of the development and progression of type 2 diabetes and there is still no effective therapy to protect pancreatic β cells clinically. In our previous study, we found that Quzhou Fructus Aurantii (QFA), which is rich in flavanones, had the protective effect of pancreatic β cells in diabetic mice. However, the underlying mechanism is still unclear. PURPOSE In the current study, we administered naringenin and hesperetin, two major active components of QFA, to protect pancreatic β cells and to investigate the underlying molecular mechanism focusing on the epigenetic modifications. METHODS We used diabetic db/db mouse and INS-1 pancreatic β cell line as in vivo and in vitro models to investigate the protective effect of naringenin and hesperetin on pancreatic β cells under high glucose environment and the related mechanism. The phenotypic changes were evaluatedby immunostaining and the measurement of biochemical indexes. The molecular mechanism was explored by biological techniques such as western blotting, qPCR, ChIP-seq and ChIP-qPCR, flow cytometry and lentivirus infection. RESULTS We found that naringenin and hesperetin had an inhibitory effect on histone acetylation. We showed that naringenin and hesperetin protected pancreatic β cells in vivo and in vitro, and this effect was independent of their direct antioxidant capacity. The further study found that the inhibition of thioredoxin-interacting protein (Txnip) expression regulated by histone acetylation was critical for the protective role of naringenin and hesperetin. Mechanistically, the histone acetylation inhibition by naringenin and hesperetin was achieved through regulating AMPK-mediated p300 inactivation. CONCLUSION These findings highlight flavanones and the phytomedicine rich in flavanones as important dietary supplements in protecting pancreatic β cells in advanced diabetes. In addition, targeting histone acetylation by phytomedicine is a potential strategy to delay the development and progression of diabetes.
Collapse
Affiliation(s)
- Si-Wei Wang
- Core Facility, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Hao Sheng
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong-Feng Bai
- Department of Clinical Laboratory, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Yuan-Yuan Weng
- Department of Clinical Laboratory, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Xue-Yu Fan
- Department of Clinical Laboratory, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Fang Zheng
- Core Facility, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Jing-Qi Fu
- School of Public Health, China Medical University, Shenyang 110122, China.
| | - Feng Zhang
- Core Facility, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China; Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Clinical Laboratory, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China.
| |
Collapse
|
20
|
Cao X, He W, Pang Y, Cao Y, Qin A. Redox-dependent and independent effects of thioredoxin interacting protein. Biol Chem 2021; 401:1215-1231. [PMID: 32845855 DOI: 10.1515/hsz-2020-0181] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Thioredoxin interacting protein (TXNIP) is an important physiological inhibitor of the thioredoxin (TXN) redox system in cells. Regulation of TXNIP expression and/or activity not only plays an important role in redox regulation but also exerts redox-independent physiological effects that exhibit direct pathophysiological consequences including elevated inflammatory response, aberrant glucose metabolism, cellular senescence and apoptosis, cellular immunity, and tumorigenesis. This review provides a brief overview of the current knowledge concerning the redox-dependent and independent roles of TXNIP and its relevance to various disease states. The implications for the therapeutic targeting of TXNIP will also be discussed.
Collapse
Affiliation(s)
- Xiankun Cao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - Wenxin He
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - Yichuan Pang
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011,People's Republic of China
| | - Yu Cao
- Department of Orthopaedics and Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - An Qin
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| |
Collapse
|
21
|
Stimulation of AMPK Prevents Diabetes-Induced Photoreceptor Cell Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5587340. [PMID: 34093959 PMCID: PMC8140850 DOI: 10.1155/2021/5587340] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
Diabetic retinopathy (DR) is a kind of severe retinal neurodegeneration. The advanced glycation end products (AGEs) affect autophagy, and mitochondrial function is involved in DR. Adenosine-activated protein kinase (AMPK) is an important metabolic sensor that can regulate energy homeostasis in cells. However, the effect of AMPK in DR is still not fully understood. In this study, we investigated the effect of AMPK on diabetes-induced photoreceptor cell degeneration. In vivo, a diabetic mouse model was established by streptozotocin (STZ) injection. Haematoxylin-eosin (HE) staining was used to observe retinal morphology and measure the thicknesses of different layers in the retina. Electroretinogram (ERG) was used to evaluate retinal function. In vitro, 661w cells were treated with AGEs with/without an AMPK agonist (metformin) or AMPK inhibitor (compound C). Flow cytometry and CCK-8 assays were used to analyse apoptosis. Mitochondrial membrane potential was analysed by JC-1. Western blotting and qRT-PCR were used to examine the expression of related proteins and genes, respectively. The wave amplitude and the thickness of the outer nuclear layer were decreased in diabetic mice. The expression of rhodopsin and opsin was also decreased in diabetic mice. In vitro, the percentage of apoptotic cells was increased, the expression of the apoptosis-related protein Bax was increased, and Bcl-2 was decreased after AGE treatment in 661w cells. The expression of the autophagy-related protein LC3 was decreased, and p62 was increased. The mitochondrial-related gene expression and membrane potential were decreased, and mitochondrial morphology was abnormal, as observed by TEM. However, AMPK stimulation ameliorated this effect. These results indicate that AMPK stimulation can delay diabetes-induced photoreceptor degeneration by regulating autophagy and mitochondrial function.
Collapse
|
22
|
Šrámek J, Němcová-Fürstová V, Kovář J. Molecular Mechanisms of Apoptosis Induction and Its Regulation by Fatty Acids in Pancreatic β-Cells. Int J Mol Sci 2021; 22:4285. [PMID: 33924206 PMCID: PMC8074590 DOI: 10.3390/ijms22084285] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell failure and death contribute significantly to the pathogenesis of type 2 diabetes. One of the main factors responsible for β-cell dysfunction and subsequent cell death is chronic exposure to increased concentrations of FAs (fatty acids). The effect of FAs seems to depend particularly on the degree of their saturation. Saturated FAs induce apoptosis in pancreatic β-cells, whereas unsaturated FAs are well tolerated and are even capable of inhibiting the pro-apoptotic effect of saturated FAs. Molecular mechanisms of apoptosis induction by saturated FAs in β-cells are not completely elucidated. Saturated FAs induce ER stress, which in turn leads to activation of all ER stress pathways. When ER stress is severe or prolonged, apoptosis is induced. The main mediator seems to be the CHOP transcription factor. Via regulation of expression/activity of pro- and anti-apoptotic Bcl-2 family members, and potentially also through the increase in ROS production, CHOP switches on the mitochondrial pathway of apoptosis induction. ER stress signalling also possibly leads to autophagy signalling, which may activate caspase-8. Saturated FAs activate or inhibit various signalling pathways, i.e., p38 MAPK signalling, ERK signalling, ceramide signalling, Akt signalling and PKCδ signalling. This may lead to the activation of the mitochondrial pathway of apoptosis, as well. Particularly, the inhibition of the pro-survival Akt signalling seems to play an important role. This inhibition may be mediated by multiple pathways (e.g., ER stress signalling, PKCδ and ceramide) and could also consequence in autophagy signalling. Experimental evidence indicates the involvement of certain miRNAs in mechanisms of FA-induced β-cell apoptosis, as well. In the rather rare situations when unsaturated FAs are also shown to be pro-apoptotic, the mechanisms mediating this effect in β-cells seem to be the same as for saturated FAs. To conclude, FA-induced apoptosis rather appears to be preceded by complex cross talks of multiple signalling pathways. Some of these pathways may be regulated by decreased membrane fluidity due to saturated FA incorporation. Few data are available concerning molecular mechanisms mediating the protective effect of unsaturated FAs on the effect of saturated FAs. It seems that the main possible mechanism represents a rather inhibitory intervention into saturated FA-induced pro-apoptotic signalling than activation of some pro-survival signalling pathway(s) or metabolic interference in β-cells. This inhibitory intervention may be due to an increase of membrane fluidity.
Collapse
Affiliation(s)
- Jan Šrámek
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | - Vlasta Němcová-Fürstová
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | | |
Collapse
|
23
|
Eguchi N, Vaziri ND, Dafoe DC, Ichii H. The Role of Oxidative Stress in Pancreatic β Cell Dysfunction in Diabetes. Int J Mol Sci 2021; 22:ijms22041509. [PMID: 33546200 PMCID: PMC7913369 DOI: 10.3390/ijms22041509] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a chronic metabolic disorder characterized by inappropriately elevated glucose levels as a result of impaired pancreatic β cell function and insulin resistance. Extensive studies have been conducted to elucidate the mechanism involved in the development of β cell failure and death under diabetic conditions such as hyperglycemia, hyperlipidemia, and inflammation. Of the plethora of proposed mechanisms, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and oxidative stress have been shown to play a central role in promoting β cell dysfunction. It has become more evident in recent years that these 3 factors are closely interrelated and importantly aggravate each other. Oxidative stress in particular is of great interest to β cell health and survival as it has been shown that β cells exhibit lower antioxidative capacity. Therefore, this review will focus on discussing factors that contribute to the development of oxidative stress in pancreatic β cells and explore the downstream effects of oxidative stress on β cell function and health. Furthermore, antioxidative capacity of β cells to counteract these effects will be discussed along with new approaches focused on preserving β cells under oxidative conditions.
Collapse
Affiliation(s)
- Natsuki Eguchi
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (D.C.D.)
| | | | - Donald C. Dafoe
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (D.C.D.)
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (D.C.D.)
- Correspondence: ; Tel.: +1-714-456-8590
| |
Collapse
|
24
|
Stancill JS, Corbett JA. The Role of Thioredoxin/Peroxiredoxin in the β-Cell Defense Against Oxidative Damage. Front Endocrinol (Lausanne) 2021; 12:718235. [PMID: 34557160 PMCID: PMC8453158 DOI: 10.3389/fendo.2021.718235] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/19/2021] [Indexed: 02/02/2023] Open
Abstract
Oxidative stress is hypothesized to play a role in pancreatic β-cell damage, potentially contributing to β-cell dysfunction and death in both type 1 and type 2 diabetes. Oxidative stress arises when naturally occurring reactive oxygen species (ROS) are produced at levels that overwhelm the antioxidant capacity of the cell. ROS, including superoxide and hydrogen peroxide, are primarily produced by electron leak during mitochondrial oxidative metabolism. Additionally, peroxynitrite, an oxidant generated by the reaction of superoxide and nitric oxide, may also cause β-cell damage during autoimmune destruction of these cells. β-cells are thought to be susceptible to oxidative damage based on reports that they express low levels of antioxidant enzymes compared to other tissues. Furthermore, markers of oxidative damage are observed in islets from diabetic rodent models and human patients. However, recent studies have demonstrated high expression of various isoforms of peroxiredoxins, thioredoxin, and thioredoxin reductase in β-cells and have provided experimental evidence supporting a role for these enzymes in promoting β-cell function and survival in response to a variety of oxidative stressors. This mini-review will focus on the mechanism by which thioredoxins and peroxiredoxins detoxify ROS and on the protective roles of these enzymes in β-cells. Additionally, we speculate about the role of this antioxidant system in promoting insulin secretion.
Collapse
|
25
|
Brawerman G, Thompson PJ. Beta Cell Therapies for Preventing Type 1 Diabetes: From Bench to Bedside. Biomolecules 2020; 10:E1681. [PMID: 33339173 PMCID: PMC7765619 DOI: 10.3390/biom10121681] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disease characterized by insulin deficiency, generally resulting from progressive autoimmune-mediated destruction of pancreatic beta cells. While the phenomenon of beta cell autoimmunity continues to be an active area of investigation, recent evidence suggests that beta cell stress responses are also important contributors to disease onset. Here we review the pathways driving different kinds of beta cell dysfunction and their respective therapeutic targets in the prevention of T1D. We discuss opportunities and important open questions around the effectiveness of beta cell therapies and challenges for clinical utility. We further evaluate ways in which beta cell drug therapy could be combined with immunotherapy for preventing T1D in light of our growing appreciation of disease heterogeneity and patient endotypes. Ultimately, the emergence of pharmacologic beta cell therapies for T1D have armed us with new tools and closing the knowledge gaps in T1D etiology will be essential for maximizing the potential of these approaches.
Collapse
Affiliation(s)
- Gabriel Brawerman
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Peter J. Thompson
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
26
|
Thioredoxin-Interacting Protein (TXNIP) with Focus on Brain and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249357. [PMID: 33302545 PMCID: PMC7764580 DOI: 10.3390/ijms21249357] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new therapeutic approaches to diseases relies on the identification of key molecular targets involved in amplifying disease processes. One such molecule is thioredoxin-interacting protein (TXNIP), also designated thioredoxin-binding protein-2 (TBP-2), a member of the α-arrestin family of proteins and a central regulator of glucose and lipid metabolism, involved in diabetes-associated vascular endothelial dysfunction and inflammation. TXNIP sequesters reduced thioredoxin (TRX), inhibiting its function, resulting in increased oxidative stress. Many different cellular stress factors regulate TXNIP expression, including high glucose, endoplasmic reticulum stress, free radicals, hypoxia, nitric oxide, insulin, and adenosine-containing molecules. TXNIP is also directly involved in inflammatory activation through its interaction with the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome complex. Neurodegenerative diseases such as Alzheimer’s disease have significant pathologies associated with increased oxidative stress, inflammation, and vascular dysfunctions. In addition, as dysfunctions in glucose and cellular metabolism have been associated with such brain diseases, a role for TXNIP in neurodegeneration has actively been investigated. In this review, we will focus on the current state of the understanding of possible normal and pathological functions of TXNIP in the central nervous system from studies of in vitro neural cells and the brains of humans and experimental animals with reference to other studies. As TXNIP can be expressed by neurons, microglia, astrocytes, and endothelial cells, a complex pattern of regulation and function in the brain is suggested. We will examine data suggesting TXNIP as a therapeutic target for neurodegenerative diseases where further research is needed.
Collapse
|
27
|
Kehm R, Jähnert M, Deubel S, Flore T, König J, Jung T, Stadion M, Jonas W, Schürmann A, Grune T, Höhn A. Redox homeostasis and cell cycle activation mediate beta-cell mass expansion in aged, diabetes-prone mice under metabolic stress conditions: Role of thioredoxin-interacting protein (TXNIP). Redox Biol 2020; 37:101748. [PMID: 33128997 PMCID: PMC7589534 DOI: 10.1016/j.redox.2020.101748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Overnutrition contributes to insulin resistance, obesity and metabolic stress, initiating a loss of functional beta-cells and diabetes development. Whether these damaging effects are amplified in advanced age is barely investigated. Therefore, New Zealand Obese (NZO) mice, a well-established model for the investigation of human obesity-associated type 2 diabetes, were fed a metabolically challenging diet with a high-fat, carbohydrate restricted period followed by a carbohydrate intervention in young as well as advanced age. Interestingly, while young NZO mice developed massive hyperglycemia in response to carbohydrate feeding, leading to beta-cell dysfunction and cell death, aged counterparts compensated the increased insulin demand by persistent beta-cell function and beta-cell mass expansion. Beta-cell loss in young NZO islets was linked to increased expression of thioredoxin-interacting protein (TXNIP), presumably initiating an apoptosis-signaling cascade via caspase-3 activation. In contrast, islets of aged NZOs exhibited a sustained redox balance without changes in TXNIP expression, associated with higher proliferative potential by cell cycle activation. These findings support the relevance of a maintained proliferative potential and redox homeostasis for preserving islet functionality under metabolic stress, with the peculiarity that this adaptive response emerged with advanced age in diabetes-prone NZO mice. Differential expression of redox and cell cycle genes in young and aged islets. Increased TXNIP expression is associated with the induction of beta-cell apoptosis. Islets of aged mice maintained redox homeostasis and proliferative potential. Aging under diet-induced metabolic stress does not amplify beta-cell failure.
Collapse
Affiliation(s)
- Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| | - Stefanie Deubel
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tanina Flore
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14458, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
28
|
Gao C, Wang R, Li B, Guo Y, Yin T, Xia Y, Zhang F, Lian K, Liu Y, Wang H, Zhang L, Gao E, Yan W, Tao L. TXNIP/Redd1 signalling and excessive autophagy: a novel mechanism of myocardial ischaemia/reperfusion injury in mice. Cardiovasc Res 2020; 116:645-657. [PMID: 31241142 DOI: 10.1093/cvr/cvz152] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/14/2019] [Accepted: 06/22/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS Either insufficient or excessive autophagy causes cellular death and contributes to myocardial ischaemia/reperfusion (I/R) injury. However, mechanisms controlling the 'right-level' of autophagy in the heart remains unidentified. Thioredoxin-interacting protein (TXNIP) is a pro-oxidative molecule knowing to contribute to I/R injury. However, whether and how TXNIP may further inhibit suppressed autophagy or promote excessive cardiac autophagy in I/R heart has not been previously investigated. METHODS AND RESULTS Wild type or gene-manipulated adult male mice were subjected to myocardial I/R. TXNIP was increased in myocardium during I/R. Cardiac-specific TXNIP overexpression increased cardiomyocytes apoptosis and cardiac dysfunction, whereas cardiac-specific TXNIP knock-out significantly mitigated I/R-induced apoptosis and improved cardiac function. Importantly, TXNIP overexpression significantly promoted cardiac autophagy and TXNIP knock-out significantly inhibited cardiac autophagy. In vitro studies demonstrated that TXNIP increased autophagosome formation but inhibited autophagosome clearance during myocardial reperfusion. Atg5 siRNA significantly decreased hypoxia/reoxygenation induced apoptosis in cardiomyocytes with TXNIP overexpression. Mechanistically, TXNIP suppressed autophagosome clearance via increasing reactive oxygen species (ROS) level. However, TXNIP-increased autophagosome formation was not mediated by ROS as a ROS scavenger failed to block increased autophagosome formation in TXNIP overexpression heart. Finally, TXNIP directly interacted and stabilized Redd1 (an autophagy regulator), resulting in mTOR inhibition and autophagy activation. Redd1 knock-down significantly reduced autophagy formation and ameliorated I/R injury in TXNIP overexpression hearts. CONCLUSIONS Our results demonstrated that increased TXNIP-Redd1 expression is a novel signalling pathway that contributes to I/R injury by exaggerating excessive autophagy during reperfusion. These observations advance our understanding of the mechanisms of myocardial I/R injury.
Collapse
Affiliation(s)
- Chao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Rutao Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Yongzhen Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Tao Yin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Kun Lian
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Yi Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Han Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| |
Collapse
|
29
|
Yoshihara E. TXNIP/TBP-2: A Master Regulator for Glucose Homeostasis. Antioxidants (Basel) 2020; 9:E765. [PMID: 32824669 PMCID: PMC7464905 DOI: 10.3390/antiox9080765] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Identification of thioredoxin binding protein-2 (TBP-2), which is currently known as thioredoxin interacting protein (TXNIP), as an important binding partner for thioredoxin (TRX) revealed that an evolutionarily conserved reduction-oxidation (redox) signal complex plays an important role for pathophysiology. Due to the reducing activity of TRX, the TRX/TXNIP signal complex has been shown to be an important regulator for redox-related signal transduction in many types of cells in various species. In addition to its role in redox-dependent regulation, TXNIP has cellular functions that are performed in a redox-independent manner, which largely rely on their scaffolding function as an ancestral α-Arrestin family. Both the redox-dependent and -independent TXNIP functions serve as regulatory pathways in glucose metabolism. This review highlights the key advances in understanding TXNIP function as a master regulator for whole-body glucose homeostasis. The potential for therapeutic advantages of targeting TXNIP in diabetes and the future direction of the study are also discussed.
Collapse
Affiliation(s)
- Eiji Yoshihara
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Liu M, Liu C, Shen S, Liu J, Yin F. Geniposide inhibits glucolipotoxicity and cooperates with Txnip knockdown to potentiate cell adaption to endoplasmic reticulum stress in pancreatic beta cells. Cell Biol Int 2020; 44:1535-1543. [PMID: 32215982 DOI: 10.1002/cbin.11350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022]
Abstract
Thioredoxin-interacting protein (Txnip), a negative regulator of thioredoxin, has become an attractive therapeutic target to alleviate metabolic diseases. Our previous data demonstrated that geniposide improved glucose-stimulated insulin secretion by accelerating Txnip degradation and prevented the early-stage apoptosis of pancreatic β cells induced by palmitate, but the underlying mechanisms are still unclear. The objective of this study is to identify the role of Txnip in geniposide preventing the apoptosis of pancreatic β cells induced by high glucose and palmitate (HG/PA). The results revealed that geniposide attenuated HG/PA-induced cell apoptosis and the expression of Bax and caspase-3, while increasing mitochondrial membrane potential and the anti-apoptotic protein levels of heme-oxygenase-1 (HO-1) and Bcl-2 in INS-1 rat pancreatic β cells. Knockdown of the Txnip gene raised the levels of anti-apoptotic proteins HO-1 and Bcl-2 and geniposide potentiated the effect of Txnip when the INS-1 cells were challenged by HG/PA. Furthermore, geniposide enhanced the adoptive unfolded protein response by increasing the phosphorylation of PERK/eIF2α and IRE1α in HG/PA-treated INS-1 cells. The results together suggest that geniposide might be useful to antagonize glucolipotoxicity and Txnip might be a pleiotropic cellular factor in pancreatic β cells.
Collapse
Affiliation(s)
- Min Liu
- Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China
| | - Chunyan Liu
- Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China
| | - Shenli Shen
- Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China
| | - Jianhui Liu
- Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China
| | - Fei Yin
- Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
31
|
Hu S, Kuwabara R, de Haan BJ, Smink AM, de Vos P. Acetate and Butyrate Improve β-cell Metabolism and Mitochondrial Respiration under Oxidative Stress. Int J Mol Sci 2020; 21:ijms21041542. [PMID: 32102422 PMCID: PMC7073211 DOI: 10.3390/ijms21041542] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/04/2023] Open
Abstract
Islet dysfunction mediated by oxidative and mitochondrial stress contributes to the development of type 1 and 2 diabetes. Acetate and butyrate, produced by gut microbiota via fermentation, have been shown to protect against oxidative and mitochondrial stress in many cell types, but their effect on pancreatic β-cell metabolism has not been studied. Here, human islets and the mouse insulinoma cell line MIN6 were pre-incubated with 1, 2, and 4 mM of acetate or butyrate with and without exposure to the apoptosis inducer and metabolic stressor streptozotocin (STZ). Both short-chain fatty acids (SCFAs) enhanced the viability of islets and β-cells, but the beneficial effects were more pronounced in the presence of STZ. Both SCFAs prevented STZ-induced cell apoptosis, viability reduction, mitochondrial dysfunction, and the overproduction of reactive oxygen species (ROS) and nitric oxide (NO) at a concentration of 1 mM but not at higher concentrations. These rescue effects of SCFAs were accompanied by preventing reduction of the mitochondrial fusion genes MFN, MFN2, and OPA1. In addition, elevation of the fission genes DRP1 and FIS1 during STZ exposure was prevented. Acetate showed more efficiency in enhancing metabolism and inhibiting ROS, while butyrate had less effect but was stronger in inhibiting the SCFA receptor GPR41 and NO generation. Our data suggest that SCFAs play an essential role in supporting β-cell metabolism and promoting survival under stressful conditions. It therewith provides a novel mechanism by which enhanced dietary fiber intake contributes to the reduction of Western diseases such as diabetes.
Collapse
Affiliation(s)
- Shuxian Hu
- Correspondence: ; Tel.: +31-(0)50-361-8043
| | | | | | | | | |
Collapse
|
32
|
Hao Y, Shen S, Yin F, Zhang Y, Liu J. Unfolded protein response is involved in geniposide‐regulating glucose‐stimulated insulin secretion in INS‐1 cells. Cell Biochem Funct 2019; 37:368-376. [DOI: 10.1002/cbf.3414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/06/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Yanan Hao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular PharmacologyChongqing University of Technology Chongqing China
| | - Shenli Shen
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular PharmacologyChongqing University of Technology Chongqing China
| | - Fei Yin
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular PharmacologyChongqing University of Technology Chongqing China
| | - Yonglan Zhang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular PharmacologyChongqing University of Technology Chongqing China
| | - Jianhui Liu
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular PharmacologyChongqing University of Technology Chongqing China
| |
Collapse
|
33
|
Kuhadiya ND, Prohaska B, Ghanim H, Dandona P. Addition of glucagon-like peptide-1 receptor agonist therapy to insulin in C-peptide-positive patients with type 1 diabetes. Diabetes Obes Metab 2019; 21:1054-1057. [PMID: 30536789 DOI: 10.1111/dom.13609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/10/2023]
Abstract
We aimed to test the hypothesis that addition of glucagon-like peptide-1 receptor agonists (GLP-1RAs) to insulin in C-peptide-positive patients with type 1 diabetes (T1D) will result in a reduction in glycated haemoglobin (HbA1c) with reduced insulin requirements and a rise in C-peptide concentrations. We conducted a retrospective analysis of 11 normal-weight patients with T1D consecutively treated with a GLP-1RA in addition to insulin. Paired t tests were used to compare the changes in HbA1c, insulin doses, body weight, body mass index, and C-peptide concentrations prior to and 12 ± 1 weeks after GLP-1RA therapy. At the end of 12 ± 1 weeks of GLP-1RA therapy, HbA1c fell from 10.74 ± 0.96% (95 ± 10.5 mmol/mol) to 7.4 ± 0.58% (58 ± 6.3mmol/mol) (P < 0.01), body weight fell from 71 ± 2.0 to 69 ± 2 kg (P = 0.06), and total insulin dose was reduced by 64% from 33 ± 6 to 11 ± 5 units (P < 0.01). Five out of 10 patients did not require any insulin. C-peptide concentrations increased significantly from 0.43 ± 0.09 ng/ml (0.14 ± 0.02 nmol/L) to 1.42 ± 0.42ng/ml (0.47 ± 0.13 nmol/L) (P = 0.01). Addition of GLP-1RA therapy to insulin in normal-weight patients with T1D led to a reduction in HbA1c with reduced insulin requirements, a 3.5-fold increase in C-peptide concentrations and freedom from insulin therapy in 50% of patients who tolerated the GLP-1RA therapy over a period of 12 ± 1 weeks.
Collapse
Affiliation(s)
- Nitesh D Kuhadiya
- Division of Endocrinology, Diabetes and Metabolism, Renown Health, Reno, Nevada
| | - Ben Prohaska
- Division of Endocrinology, Diabetes and Metabolism, Renown Health, Reno, Nevada
| | - Husam Ghanim
- Division of Endocrinology Diabetes and Metabolism, State University of New York at Buffalo, Buffalo, New York
| | - Paresh Dandona
- Division of Endocrinology Diabetes and Metabolism, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
34
|
Yabal M, Calleja DJ, Simpson DS, Lawlor KE. Stressing out the mitochondria: Mechanistic insights into NLRP3 inflammasome activation. J Leukoc Biol 2018; 105:377-399. [PMID: 30589456 DOI: 10.1002/jlb.mr0318-124r] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammasomes are multimeric protein complexes that induce the cleavage and release of bioactive IL-1β and cause a lytic form of cell death, termed pyroptosis. Due to its diverse triggers, ranging from infectious pathogens and host danger molecules to environmental irritants, the NOD-like receptor protein 3 (NLRP3) inflammasome remains the most widely studied inflammasome to date. Despite intense scrutiny, a universal mechanism for its activation remains elusive, although, recent research has focused on mitochondrial dysfunction or potassium (K+ ) efflux as key events. In this review, we give a general overview of NLRP3 inflammasome activation and explore the recently emerging noncanonical and alternative pathways to NLRP3 activation. We highlight the role of the NLRP3 inflammasome in the pathogenesis of metabolic disease that is associated with mitochondrial and oxidative stress. Finally, we interrogate the mechanisms proposed to trigger NLRP3 inflammasome assembly and activation. A greater understanding of how NLRP3 inflammasome activation is triggered may reveal new therapeutic targets for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Monica Yabal
- III. Medical Department for Hematology and Oncology, Kinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dale J Calleja
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kate E Lawlor
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
35
|
Omar DF, Kamal MM, El-Hefnawy MH, El-Mesallamy HO. Serum Vitamin D and Its Upregulated Protein, Thioredoxin Interacting Protein, Are Associated With Beta-Cell Dysfunction in Adult Patients With Type 1 and Type 2 Diabetes. Can J Diabetes 2018; 42:588-594. [PMID: 29980378 DOI: 10.1016/j.jcjd.2018.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/26/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Diabetes mellitus is characterized by either complete deficiency of insulin secretion, as in type 1 diabetes, or decompensation of the pancreatic beta cells in type 2 diabetes. Both vitamin D (vitD) and thioredoxin interacting protein (TXNIP) have been shown to be involved in beta-cell dysfunction. Therefore, this study was designed to examine vitD and TXNIP serum levels in patients with diabetes and to correlate these levels with beta-cell function markers in both types of diabetes. METHODS The routine biochemical parameters and the serum levels of vitD and TXNIP were measured in 20 patients with type 1 diabetes and 20 patients with type 2 diabetes. The levels were then compared to those of 15 healthy control volunteers. Insulin, C-peptide and proinsulin (PI), vitD and TXNIP were measured by ELISA. Beta-cell dysfunction was assessed by homeostatic model assessment (HOMA-beta), proinsulin-to-C-peptide (PI/C) and proinsulin-to-insulin (PI/I) ratios. Correlations among various parameters were studied. RESULTS Patients with type 1 diabetes had significantly lower HOMA-beta, vitD and TXNIP levels; however, they had higher PI/C levels than the control group. Meanwhile, patients with type 2 diabetes had significantly higher C-peptide, proinsulin, PI/C, HOMA-insulin resistance (HOMA-IR) and lower HOMA-beta and vitD levels, with no significant difference in TXNIP levels as compared to the control group. In addition, vitD was significantly correlated positively with HOMA-beta and TXNIP and negatively with PI, PI/C, PI/I and HOMA-IR. TXNIP correlated positively with HOMA-beta and negatively with PI/C. CONCLUSIONS Our data showed that vitD and TXNIP were associated with different beta-cell dysfunction markers, indicating their potential abilities to predict the beta-cell status in people with diabetes.
Collapse
Affiliation(s)
- Doaa F Omar
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Mohamed M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
36
|
Kumar A, Katz LS, Schulz AM, Kim M, Honig LB, Li L, Davenport B, Homann D, Garcia-Ocaña A, Herman MA, Haynes CM, Chipuk JE, Scott DK. Activation of Nrf2 Is Required for Normal and ChREBPα-Augmented Glucose-Stimulated β-Cell Proliferation. Diabetes 2018; 67:1561-1575. [PMID: 29764859 PMCID: PMC6054434 DOI: 10.2337/db17-0943] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/05/2018] [Indexed: 12/28/2022]
Abstract
Patients with both major forms of diabetes would benefit from therapies that increase β-cell mass. Glucose, a natural mitogen, drives adaptive expansion of β-cell mass by promoting β-cell proliferation. We previously demonstrated that a carbohydrate response element-binding protein (ChREBPα) is required for glucose-stimulated β-cell proliferation and that overexpression of ChREBPα amplifies the proliferative effect of glucose. Here we found that ChREBPα reprogrammed anabolic metabolism to promote proliferation. ChREBPα increased mitochondrial biogenesis, oxygen consumption rates, and ATP production. Proliferation augmentation by ChREBPα required the presence of ChREBPβ. ChREBPα increased the expression and activity of Nrf2, initiating antioxidant and mitochondrial biogenic programs. The induction of Nrf2 was required for ChREBPα-mediated mitochondrial biogenesis and for glucose-stimulated and ChREBPα-augmented β-cell proliferation. Overexpression of Nrf2 was sufficient to drive human β-cell proliferation in vitro; this confirms the importance of this pathway. Our results reveal a novel pathway necessary for β-cell proliferation that may be exploited for therapeutic β-cell regeneration.
Collapse
Affiliation(s)
- Anil Kumar
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liora S Katz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anna M Schulz
- Departments of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Misung Kim
- Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lee B Honig
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lucy Li
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Bennett Davenport
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dirk Homann
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mark A Herman
- Division of Endocrinology and Metabolism and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC
| | - Cole M Haynes
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jerry E Chipuk
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Departments of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Donald K Scott
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
37
|
Palmitate and insulin counteract glucose-induced thioredoxin interacting protein (TXNIP) expression in insulin secreting cells via distinct mechanisms. PLoS One 2018; 13:e0198016. [PMID: 29813102 PMCID: PMC5973613 DOI: 10.1371/journal.pone.0198016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/12/2018] [Indexed: 01/20/2023] Open
Abstract
Glucose and palmitate synergistically stimulate insulin secretion, but chronically elevated they induce apoptotic β-cell death. The glucotoxic effect has been attributed, at least partly, to the upregulation of the oxidative stress marker thioredoxin interacting protein (TXNIP). Palmitate downregulates TXNIP expression, the functional significance of which is still under debate. This study examines the mechanism and consequence of palmitate-mediated TXNIP regulation in insulin secreting cells. Palmitate (600 μM) reduced TXNIP mRNA levels in isolated human and mouse islets independently of FFAR1/GPR40. Similar effects of palmitate were observed in INS-1E cells and mimicked by other long chain fatty acids. The lowering of TXNIP mRNA was significant already 1 h after addition of palmitate, persisted for 24 h and was directly translated to changes in TXNIP protein. The pharmacological inhibition of palmitate-induced phosphorylation of AMPK, ERK1/2, JNK and PKCα/β by BML-275, PD98059, SP600125 and Gö6976, respectively, did not abolish palmitate-mediated TXNIP downregulation. The effect of palmitate was superimposed by a time-dependent (8 h and 24 h) decline of TXNIP mRNA and protein. This decline correlated with accumulation of secreted insulin into the medium. Accordingly, exogenously added insulin reduced TXNIP mRNA and protein levels, an effect counteracted by the insulin/IGF-1 receptor antagonist linsitinib. The inhibition of PI3K and Akt/PKB increased TXNIP mRNA levels. The histone deacetylase (HDAC1/2/3) inhibitor MS-275 completely abrogated the time-dependent, insulin-mediated reduction of TXNIP, leaving the effect of palmitate unaltered. Acute stimulation of insulin secretion and chronic accentuation of cell death by palmitate occurred independently of TXNIP regulation. On the contrary, palmitate antagonized glucose-augmented ROS production. In conclusion, glucose-induced TXNIP expression is efficiently antagonized by two independent mechanisms, namely via an autocrine activation of insulin/IGF-1 receptors involving HDAC and by palmitate attenuating oxidative stress of β-cells.
Collapse
|
38
|
Thielen L, Shalev A. Diabetes pathogenic mechanisms and potential new therapies based upon a novel target called TXNIP. Curr Opin Endocrinol Diabetes Obes 2018; 25:75-80. [PMID: 29356688 PMCID: PMC5831522 DOI: 10.1097/med.0000000000000391] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Thioredoxin-interacting protein has emerged as a major factor regulating pancreatic β-cell dysfunction and death, key processes in the pathogenesis of type 1 and type 2 diabetes. Accumulating evidence based on basic, preclinical, and retrospective epidemiological research suggests that TXNIP represents a promising therapeutic target for diabetes. The present review is aimed at providing an update regarding these developments. RECENT FINDINGS TXNIP has been shown to be induced by glucose and increased in diabetes and to promote β-cell apoptosis, whereas TXNIP deletion protected against diabetes. More recently, TXNIP inhibition has also been found to promote insulin production and glucagon-like peptide 1 signaling via regulation of a microRNA. β-Cell TXNIP expression itself was found to be regulated by hypoglycemic agents, carbohydrate-response-element-binding protein, and cytosolic calcium or the calcium channel blocker, verapamil. Retrospective studies now further suggest that verapamil use might be associated with a lower incidence of type 2 diabetes in humans. SUMMARY TXNIP has emerged as a key factor in the regulation of functional β-cell mass and TXNIP inhibition has shown beneficial effects in a variety of studies. Thus, the inhibition of TXNIP may provide a novel approach to the treatment of diabetes.
Collapse
Affiliation(s)
- Lance Thielen
- Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center and Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
39
|
Thioredoxin-Interacting Protein (TXNIP) in Cerebrovascular and Neurodegenerative Diseases: Regulation and Implication. Mol Neurobiol 2018; 55:7900-7920. [PMID: 29488135 DOI: 10.1007/s12035-018-0917-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Neurological diseases, including acute attacks (e.g., ischemic stroke) and chronic neurodegenerative diseases (e.g., Alzheimer's disease), have always been one of the leading cause of morbidity and mortality worldwide. These debilitating diseases represent an enormous disease burden, not only in terms of health suffering but also in economic costs. Although the clinical presentations differ for these diseases, a growing body of evidence suggests that oxidative stress and inflammatory responses in brain tissue significantly contribute to their pathology. However, therapies attempting to prevent oxidative damage or inhibiting inflammation have shown little success. Identification and targeting endogenous "upstream" mediators that normalize such processes will lead to improve therapeutic strategy of these diseases. Thioredoxin-interacting protein (TXNIP) is an endogenous inhibitor of the thioredoxin (TRX) system, a major cellular thiol-reducing and antioxidant system. TXNIP regulating redox/glucose-induced stress and inflammation, now is known to get upregulated in stroke and other brain diseases, and represents a promising therapeutic target. In particular, there is growing evidence that glucose strongly induces TXNIP in multiple cell types, suggesting possible physiological roles of TXNIP in glucose metabolism. Recently, a significant body of literature has supported an essential role of TXNIP in the activation of the NOD-like receptor protein (NLRP3)-inflammasome, a well-established multi-molecular protein complex and a pivotal mediator of sterile inflammation. Accordingly, TXNIP has been postulated to reside centrally in detecting cellular damage and mediating inflammatory responses to tissue injury. The majority of recent studies have shown that pharmacological inhibition or genetic deletion of TXNIP is neuroprotective and able to reduce detrimental aspects of pathology following cerebrovascular and neurodegenerative diseases. Conspicuously, the mainstream of the emerging evidences is highlighting TXNIP link to damaging signals in endothelial cells. Thereby, here, we keep the trend to present the accumulative data on CNS diseases dealing with vascular integrity. This review aims to summarize evidence supporting the significant contribution of regulatory mechanisms of TXNIP with the development of brain diseases, explore pharmacological strategies of targeting TXNIP, and outline obstacles to be considered for efficient clinical translation.
Collapse
|
40
|
Jo S, Chen J, Xu G, Grayson TB, Thielen LA, Shalev A. miR-204 Controls Glucagon-Like Peptide 1 Receptor Expression and Agonist Function. Diabetes 2018; 67:256-264. [PMID: 29101219 PMCID: PMC5780066 DOI: 10.2337/db17-0506] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Glucagon-like peptide 1 receptor (GLP1R) agonists are widely used to treat diabetes. However, their function is dependent on adequate GLP1R expression, which is downregulated in diabetes. GLP1R is highly expressed on pancreatic β-cells, and activation by endogenous incretin or GLP1R agonists increases cAMP generation, which stimulates glucose-induced β-cell insulin secretion and helps maintain glucose homeostasis. We now have discovered that the highly β-cell-enriched microRNA, miR-204, directly targets the 3' UTR of GLP1R and thereby downregulates its expression in the β-cell-derived rat INS-1 cell line and primary mouse and human islets. Furthermore, in vivo deletion of miR-204 promoted islet GLP1R expression and enhanced responsiveness to GLP1R agonists, resulting in improved glucose tolerance, cAMP production, and insulin secretion as well as protection against diabetes. Since we recently identified thioredoxin-interacting protein (TXNIP) as an upstream regulator of miR-204, we also assessed whether in vivo deletion of TXNIP could mimic that of miR-204. Indeed, it also enhanced islet GLP1R expression and GLP1R agonist-induced insulin secretion and glucose tolerance. Thus, the present studies show for the first time that GLP1R is under the control of a microRNA, miR-204, and uncover a previously unappreciated link between TXNIP and incretin action.
Collapse
Affiliation(s)
- SeongHo Jo
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL
| | - Junqin Chen
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL
| | - Guanlan Xu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL
| | - Truman B Grayson
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL
| | - Lance A Thielen
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL
| | - Anath Shalev
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
41
|
Kumar A, Mittal R. Mapping Txnip: Key connexions in progression of diabetic nephropathy. Pharmacol Rep 2017; 70:614-622. [PMID: 29684849 DOI: 10.1016/j.pharep.2017.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/13/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Studies demonstrates the major involvement of inflammatory and apoptotic pathway in the pathophysiology of diabetic nephropathy. The cross talk between inflammatory and apoptotic pathway suggests Txnip as a molecular connexion in progression of disease state. Txnip modulates inflammatory pathway (via ROS production and NLRP3 inflammasome activity) and apoptotic pathway (via mTOR pathway). The key contribution of Txnip in both the pathways, reflects, its crucial role in diabetic nephropathy. In the present review, we have first provided an overview of diabetic nephropathy and Txnip system, followed by the mechanistic insight of Txnip in the progression of diabetic nephropathy. This new mechanistic approach suggests to explore Txnip modulators as a promising therapeutic drug target in diabetic nephropathy.
Collapse
Affiliation(s)
- Anil Kumar
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India.
| | - Ruchika Mittal
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
42
|
Endoplasmic Reticulum Stress and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:261-276. [DOI: 10.1007/978-3-319-48382-5_11] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Metabolism and chromatin dynamics in health and disease. Mol Aspects Med 2017; 54:1-15. [DOI: 10.1016/j.mam.2016.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 01/04/2023]
|
44
|
Bompada P, Atac D, Luan C, Andersson R, Omella JD, Laakso EO, Wright J, Groop L, De Marinis Y. Histone acetylation of glucose-induced thioredoxin-interacting protein gene expression in pancreatic islets. Int J Biochem Cell Biol 2016; 81:82-91. [DOI: 10.1016/j.biocel.2016.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023]
|
45
|
Du C, Wu M, Liu H, Ren Y, Du Y, Wu H, Wei J, Liu C, Yao F, Wang H, Zhu Y, Duan H, Shi Y. Thioredoxin-interacting protein regulates lipid metabolism via Akt/mTOR pathway in diabetic kidney disease. Int J Biochem Cell Biol 2016; 79:1-13. [PMID: 27497988 DOI: 10.1016/j.biocel.2016.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/30/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Abnormal lipid metabolism contributes to the renal lipid accumulation, which is associated with diabetic kidney disease, but its precise mechanism remains unclear. The growing evidence demonstrates that thioredoxin-interacting protein is involved in regulating cellular glucose and lipid metabolism. Here, we investigated the effects of thioredoxin-interacting protein on lipid accumulation in diabetic kidney disease. In contrast to the diabetic wild-type mice, the physical and biochemical parameters were improved in the diabetic thioredoxin-interacting protein knockout mice. The increased renal lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, and phosphorylated Akt and mTOR associated with diabetes in wild-type mice was attenuated in diabetic thioredoxin-interacting protein knockout mice. Furthermore, thioredoxin-interacting protein knockout significantly increased the expression of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 in diabetic kidneys. In vitro experiments, using HK-2 cells, revealed that knockdown of thioredoxin-interacting protein inhibited high glucose-mediated lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, as well as activation of Akt and mTOR. Moreover, knockdown of thioredoxin-interacting protein reversed high glucose-induced reduction of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 expression in HK-2 cells. Importantly, blockade of Akt/mTOR signaling pathway with LY294002, a specific PI3K inhibitor, replicated these effects of thioredoxin-interacting protein silencing. Taken together, these data suggest that thioredoxin-interacting protein deficiency alleviates diabetic renal lipid accumulation through regulation of Akt/mTOR pathway, thioredoxin-interacting protein may be a potential therapeutic target for diabetic kidney disease.
Collapse
Affiliation(s)
- Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| | - Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yunzhuo Ren
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| | - Yunxia Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Jinying Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Chuxin Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Fang Yao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Yan Zhu
- Laboratorical Center for Electron Microscopy, Hebei Medical University, Shijiazhuang, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| |
Collapse
|
46
|
Hong K, Xu G, Grayson TB, Shalev A. Cytokines Regulate β-Cell Thioredoxin-interacting Protein (TXNIP) via Distinct Mechanisms and Pathways. J Biol Chem 2016; 291:8428-39. [PMID: 26858253 DOI: 10.1074/jbc.m115.698365] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 11/06/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is a key regulator of diabetic β-cell apoptosis and dysfunction, and TXNIP inhibition prevents diabetes in mouse models of type 1 and type 2 diabetes. Although we have previously shown that TXNIP is strongly induced by glucose, any regulation by the proinflammatory cytokines tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and interferon γ (IFNγ) has remained largely unexplored. Moreover, even though this three-cytokine mixture is widely used to mimic type 1 diabetes in vitro, the mechanisms involved are not fully understood. Interestingly, we have now found that this cytokine mixture increases β-cell TXNIP expression; however, although TNFα had no effect, IL-1β surprisingly down-regulated TXNIP transcription, whereas IFNγ increased TXNIP levels in INS-1 β-cells and primary islets. Human TXNIP promoter analyses and chromatin immunoprecipitation studies revealed that the IL-1β effect was mediated by inhibition of carbohydrate response element binding protein activity. In contrast, IFNγ increased pro-apoptotic TXNIP post-transcriptionally via induction of endoplasmic reticulum stress, activation of inositol-requiring enzyme 1α (IRE1α), and suppression of miR-17, a microRNA that targets and down-regulates TXNIP. In fact, miR-17 knockdown was able to mimic the IFNγ effects on TXNIP, whereas miR-17 overexpression blunted the cytokine effect. Thus, our results demonstrate for the first time that the proinflammatory cytokines TNFα, IL-1β, and IFNγ each have distinct and in part opposing effects on β-cell TXNIP expression. These findings thereby provide new mechanistic insight into the regulation of TXNIP and β-cell biology and reveal novel links between proinflammatory cytokines, carbohydrate response element binding protein-mediated transcription, and microRNA signaling.
Collapse
Affiliation(s)
- Kyunghee Hong
- From the Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Guanlan Xu
- From the Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Truman B Grayson
- From the Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Anath Shalev
- From the Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
47
|
Hasnain SZ, Prins JB, McGuckin MA. Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes. J Mol Endocrinol 2016; 56:R33-54. [PMID: 26576641 DOI: 10.1530/jme-15-0232] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/12/2022]
Abstract
The inability of pancreatic β-cells to make sufficient insulin to control blood sugar is a central feature of the aetiology of most forms of diabetes. In this review we focus on the deleterious effects of oxidative stress and endoplasmic reticulum (ER) stress on β-cell insulin biosynthesis and secretion and on inflammatory signalling and apoptosis with a particular emphasis on type 2 diabetes (T2D). We argue that oxidative stress and ER stress are closely entwined phenomena fundamentally involved in β-cell dysfunction by direct effects on insulin biosynthesis and due to consequences of the ER stress-induced unfolded protein response. We summarise evidence that, although these phenomenon can be driven by intrinsic β-cell defects in rare forms of diabetes, in T2D β-cell stress is driven by a range of local environmental factors including increased drivers of insulin biosynthesis, glucolipotoxicity and inflammatory cytokines. We describe our recent findings that a range of inflammatory cytokines contribute to β-cell stress in diabetes and our discovery that interleukin 22 protects β-cells from oxidative stress regardless of the environmental triggers and can correct much of diabetes pathophysiology in animal models. Finally we summarise evidence that β-cell dysfunction is reversible in T2D and discuss therapeutic opportunities for relieving oxidative and ER stress and restoring glycaemic control.
Collapse
Affiliation(s)
- Sumaira Z Hasnain
- ImmunityInfection and Inflammation Program, Mater Research Institute, Translational Research Institute, University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaMetabolic Diseases ProgramMater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Johannes B Prins
- ImmunityInfection and Inflammation Program, Mater Research Institute, Translational Research Institute, University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaMetabolic Diseases ProgramMater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Michael A McGuckin
- ImmunityInfection and Inflammation Program, Mater Research Institute, Translational Research Institute, University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaMetabolic Diseases ProgramMater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| |
Collapse
|
48
|
Dong D, Fu N, Yang P. MiR-17 Downregulation by High Glucose Stabilizes Thioredoxin-Interacting Protein and Removes Thioredoxin Inhibition on ASK1 Leading to Apoptosis. Toxicol Sci 2015; 150:84-96. [PMID: 26660634 DOI: 10.1093/toxsci/kfv313] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pregestational diabetes significantly increases the risk of neural tube defects (NTDs). Maternal diabetes activates an Apoptosis Signal-regulating Kinase 1 (ASK1)-initiated pathway, which triggers neural stem cell apoptosis of the developing neuroepithelium leading to NTD formation. How high glucose of diabetes activates ASK1 is still unclear. In this study, we investigated the mechanism underlying high glucose-induced ASK1 activation. High glucose suppressed miR-17 expression, which led to an increase in its target gene Txnip (Thioredoxin-interacting protein). High glucose-increased Txnip enhanced its binding to the ASK1 inhibitor, thioredoxin (Trx), and thereby sequestered Trx from the Trx-ASK1 complex. High glucose-induced ASK1 activation and consequent apoptosis were abrogated by either the miR-17 mimic or Txnip siRNA knockdown. In contrast, the miR-17 inhibitor or Txnip ectopic overexpression mimicked the stimulative effect of high glucose on ASK1 and apoptosis. Thus, our study demonstrated that miR-17 repression mediates the pro-apoptotic effect of high glucose, and revealed a new mechanism underlying ASK1 activation, in which decreased miR-17 removes Trx inhibition on ASK1 through Txnip.
Collapse
Affiliation(s)
- Daoyin Dong
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Noah Fu
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Peixin Yang
- *Department of Obstetrics, Gynecology and Reproductive Sciences; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
49
|
Wang J, Song MY, Lee JY, Kwon KS, Park BH. The NLRP3 inflammasome is dispensable for ER stress-induced pancreatic β-cell damage in Akita mice. Biochem Biophys Res Commun 2015; 466:300-5. [PMID: 26361146 DOI: 10.1016/j.bbrc.2015.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022]
Abstract
Uncontrolled endoplasmic reticulum (ER) stress activates members of the NOD-like receptor family, which are involved in the pyrin domain containing 3 (NLRP3) inflammasome pathway. This pathway has been proposed to contribute to β-cell dysfunction and death. However, the connection between ER stress and NLRP3 inflammasome activation remains controversial. Here we generated Akita/KO (Ins2(+/C96Y); NLRP3(-/-)) mice by crossing Akita (Ins2(+/C96Y); NLRP3(+/+)) mice with NLRP3 KO (Ins2(+/+); NLRP3(-/-)) mice. We then compared the metabolic phenotypes of the different strains. Knockout of the NLRP3 inflammasome did not affect the onset or the severity of diabetes in Akita/KO mice at any point of the study. Histological observations of pancreatic islets supported these findings. Tunicamycin-exposed islets from NLRP3 KO mice exhibited similar levels of ER stress and apoptosis induction as islets from WT (Ins2(+/+); NLRP3(+/+)) mice. Furthermore, NLRP3 deletion did not prevent tunicamycin-mediated reduction of glucose-stimulated insulin secretion. In conclusion, deletion of the NLRP3 inflammasome did not protect against ER stress-induced diabetes development or β-cell damage, indicating that β cell death in Akita mice is not mediated via activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Mi-Young Song
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Keun Sang Kwon
- Department of Preventive Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
50
|
Karunakaran U, Moon JS, Lee HW, Won KC. CD36 initiated signaling mediates ceramide-induced TXNIP expression in pancreatic beta-cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2414-22. [PMID: 26297980 DOI: 10.1016/j.bbadis.2015.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 01/25/2023]
Abstract
Diverse mechanisms are involved in the pathogenesis of β-cell failure in type 2 diabetes. Of them, the accumulation of ceramide, a bioactive lipid metabolite, is suggested to play a major role in inflammatory and stress responses that induce diabetes. However, the downstream inflammatory target of ceramide has not been defined. Using rat islets and the INS-1 β-cell line, we hypothesized that activation of the redox sensitive protein TXNIP is involved in ceramide-induced β-cell dysfunction. Incubation of INS-1 cells and primary islets with C2-ceramide (N-acetyl-sphingosine) downregulated insulin and PDX-1 expression and increased β-cell apoptosis. Ceramide treatment induced a time dependent increase in TXNIP gene expression accompanied by activation of nuclear factor (NF)-κB and reduced mitochondrial thioredoxin (TRX) activity. Pretreatment with sulfo-N-succinimidyl oleate (SSO), an irreversible inhibitor of the scavenger receptor CD36, blocked ceramide-induced up-regulation of TXNIP expression and activity of NF-κB. Blockade of NF-κB nuclear translocation by the peptide SN50 prevented ceramide-mediated TXNIP induction. Furthermore, SSO also attenuated ceramide-induced early loss of insulin signaling and apoptosis. Collectively, our results unveil a novel role of CD36 in early molecular events leading to NF-κB activation and TXNIP expression. These data suggest that CD36 dependent NF-κB-TXNIP signaling contributes to the ceramide-induced pathogenesis of pancreatic β-cell dysfunction and failure.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Institute of Medical Science, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
| | - Hyoung Woo Lee
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
| | - Kyu Chang Won
- Institute of Medical Science, Yeungnam University College of Medicine, Daegu, South Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea.
| |
Collapse
|