1
|
Kosheleva L, Koshelev D, Lagunas-Rangel FA, Levit S, Rabinovitch A, Schiöth HB. Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments. Pharmacol Rev 2025; 77:100044. [PMID: 40014914 PMCID: PMC11964952 DOI: 10.1016/j.pharmr.2025.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
After a century of extensive scientific investigations, there is still no curative or disease-modifying treatment available that can provide long-lasting remission for patients diagnosed with type 1 diabetes (T1D). Although T1D has historically been regarded as a classic autoimmune disorder targeting and destroying pancreatic islet β-cells, significant research has recently demonstrated that β-cells themselves also play a substantial role in the disease's progression, which could explain some of the unfavorable clinical outcomes. We offer a thorough review of scientific and clinical insights pertaining to molecular mechanisms behind pathogenesis and the different therapeutic interventions in T1D covering over 20 possible pharmaceutical intervention treatments. The interventions are categorized as immune therapies, treatments targeting islet endocrine dysfunctions, medications with dual modes of action in immune and islet endocrine cells, and combination treatments with a broader spectrum of activity. We suggest that these collective findings can provide a valuable platform to discover new combinatorial synergies in search of the curative disease-modifying intervention for T1D. SIGNIFICANCE STATEMENT: This research delves into the underlying causes of T1D and identifies critical mechanisms governing β-cell function in both healthy and diseased states. Thus, we identify specific pathways that could be manipulated by existing or new pharmacological interventions. These interventions fall into several categories: (1) immunomodifying therapies individually targeting immune cell processes, (2) interventions targeting β-cells, (3) compounds that act simultaneously on both immune cell and β-cell pathways, and (4) combinations of compounds simultaneously targeting immune and β-cell pathways.
Collapse
Affiliation(s)
- Liudmila Kosheleva
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniil Koshelev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Shmuel Levit
- Diabetes and Metabolism Institute, Assuta Medical Centers, Tel Aviv, Israel
| | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
2
|
Chuang ST, Alcazar O, Watts B, Abdulreda MH, Buchwald P. Small-molecule inhibitors of the CD40-CD40L costimulatory interaction are effective in pancreatic islet transplantation and prevention of type 1 diabetes models. Front Immunol 2024; 15:1484425. [PMID: 39606229 PMCID: PMC11599200 DOI: 10.3389/fimmu.2024.1484425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
As part of our work to develop small-molecule inhibitors (SMIs) of the CD40-CD40L(CD154) costimulatory protein-protein interaction, here, we describe the ability of two of our most promising SMIs, DRI-C21041 and DRI-C21095, to prolong the survival and function of islet allografts in two murine models of islet transplantation (under the kidney capsule and in the anterior chamber of the eye) and to prevent autoimmune type 1 diabetes (T1D) onset in NOD mice. In both transplant models, a significant portion of islet allografts (50%-80%) remained intact and functional long after terminating treatment, suggesting the possibility of inducing operational immune tolerance via inhibition of the CD40-CD40L axis. SMI-treated mice maintained the structural integrity and function of their islet allografts with concomitant reduction in immune cell infiltration as evidenced by direct longitudinal imaging in situ. Furthermore, in female NODs, three-month SMI treatment reduced the incidence of diabetes from 80% to 60% (DRI-C21041) and 25% (DRI-C21095). These results (i) demonstrate the susceptibility of this TNF superfamily protein-protein interaction to small-molecule inhibition, (ii) confirm the in vivo therapeutic potential of these SMIs of a critical immune checkpoint, and (iii) reaffirm the therapeutic promise of CD40-CD40L blockade in islet transplantation and T1D prevention. Thus, CD40L-targeting SMIs could ultimately lead to alternative immunomodulatory therapeutics for transplant recipients and prevention of autoimmune diseases that are safer, less immunogenic, more controllable (shorter half-lives), and more patient-friendly (i.e., suitable for oral administration, which makes them easier to administer) than corresponding antibody-based interventions.
Collapse
Affiliation(s)
- Sung-Ting Chuang
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Brandon Watts
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Midhat H. Abdulreda
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
3
|
Kim YK, Munir KM, Davis SN. Type 1 diabetes: key drug targets and how they could influence future therapeutics. Expert Opin Ther Targets 2023; 27:31-40. [PMID: 36744390 DOI: 10.1080/14728222.2023.2177150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Despite significant strides made in the management of T1DM, standard management is still insulin analog therapy. Some non-insulin therapies traditionally reserved for the treatment of T2DM have been explored in caring for patients with T1DM, and pancreas transplant is an option for few. However, T1DM remains a challenging disease to manage, encouraging development of novel pharmacologic agents. AREAS COVERED We retrieved PubMed, Cochrane Library, Scopus, Google Scholar, and ClinicalTrials.gov records to identify studies and articles focused on new pharmacologic advances to treat T1DM. EXPERT OPINION Recent research has focused on new targets of pharmacologic treatment of T1DM. Beta-cell preservation through immunomodulation or inhibiting inflammation hopes to delay or halt the progression of the disease. Beta cell regeneration through islet cell transplant or modification in transcription pathways aim to reverse the disease effects. Multiple other new targets such as glucagon antagonism and glucokinase activation are also in development as a potential adjunctive therapy. These new therapeutic targets offer the hope of reducing the daily burden of diabetes management with eventual insulin discontinuation for many individuals with T1DM.
Collapse
Affiliation(s)
- Yoon Kook Kim
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, 800 Linden Ave, 8th Floor, 21201, Baltimore, MD, USA
| | - Kashif M Munir
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, 800 Linden Ave, 8th Floor, 21201, Baltimore, MD, USA
| | - Stephen N Davis
- Department of Medicine, University of Maryland School of Medicine, 22 South Greene Street, 21201, Baltimore, MD, USA
| |
Collapse
|
4
|
Martin A, Mick GJ, Choat HM, Lunsford AA, Tse HM, McGwin GG, McCormick KL. A randomized trial of oral gamma aminobutyric acid (GABA) or the combination of GABA with glutamic acid decarboxylase (GAD) on pancreatic islet endocrine function in children with newly diagnosed type 1 diabetes. Nat Commun 2022; 13:7928. [PMID: 36566274 PMCID: PMC9790014 DOI: 10.1038/s41467-022-35544-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2022] [Indexed: 12/25/2022] Open
Abstract
Gamma aminobutyric acid(GABA) is synthesized by glutamate decarboxylase(GAD) in β-cells. Regarding Type 1 diabetes(T1D), animal/islet-cell studies found that GABA promotes insulin secretion, inhibits α-cell glucagon and dampens immune inflammation, while GAD immunization may also preserve β-cells. We evaluated the safety and efficacy of oral GABA alone, or combination GABA with GAD, on the preservation of residual insulin secretion in recent-onset T1D. Herein we report a single-center, double-blind, one-year, randomized trial in 97 children conducted March 2015 to June 2019(NCT02002130). Using a 2:1 treatment:placebo ratio, interventions included oral GABA twice-daily(n = 41), or oral GABA plus two-doses GAD-alum(n = 25), versus placebo(n = 31). The primary outcome, preservation of fasting/meal-stimulated c-peptide, was not attained. Of the secondary outcomes, the combination GABA/GAD reduced fasting and meal-stimulated serum glucagon, while the safety/tolerability of GABA was confirmed. There were no clinically significant differences in glycemic control or diabetes antibody titers. Given the low GABA dose for this pediatric trial, future investigations using higher-dose or long-acting GABA formulations, either alone or with GAD-alum, could be considered, although GABA alone or in combination with GAD-alum did nor preserve beta-cell function in this trial.
Collapse
Affiliation(s)
- Alexandra Martin
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gail J Mick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Heather M Choat
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alison A Lunsford
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gerald G McGwin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth L McCormick
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Wu Z, Xu X, Cai J, Chen J, Huang L, Wu W, Pugliese A, Li S, Ricordi C, Tan J. Prevention of chronic diabetic complications in type 1 diabetes by co-transplantation of umbilical cord mesenchymal stromal cells and autologous bone marrow: a pilot randomized controlled open-label clinical study with 8-year follow-up. Cytotherapy 2022; 24:421-427. [PMID: 35086778 DOI: 10.1016/j.jcyt.2021.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/21/2021] [Accepted: 09/18/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND AIMS To explore the long-term safety and benefit of umbilical cord mesenchymal stromal cell (MSCs) plus autologous bone marrow mononuclear cell (aBM-MNC) stem cell transplantation (SCT) without immunotherapy in established type 1 diabetes (T1D). METHODS In the primary completion of this trial (ClinicalTrials.gov identifier: NCT01374854), the authors randomized patients (n = 21 per group) to either SCT or standard care (control) and previously reported effects on insulin secretion. The authors report about the incidence of chronic diabetes complications (primary endpoint) after 8 years of follow-up. The authors also report on secondary endpoints, safety, islet function and metabolic control. RESULTS Data were obtained from 14 of 21 patients in the SCT group and 15 of 21 patients in the control group who completed follow-up. At 8 years, the incidence of peripheral neuropathy was 7.1% (one of 14) in the SCT group versus 46.7% (seven of 15) in the control group (P = 0.017). The incidence of diabetic nephropathy was 7.1% (one of 14) in the SCT group versus 40.0% (six of 15) in the control group (P = 0.039). The incidence of retinopathy was 7.1% (one of 14) in the SCT group versus 33.3% (five of 15) in the control group (P = 0.081). Two patients (two of 14, 14.3%) in the SCT group and 11 patients (11 of 15, 73.3%) in the control group developed at least one complication (P = 0.001). One and six patients in the SCT group and control group, respectively, had at least two complications (P = 0.039). No malignancies were reported in the treated group. CONCLUSIONS Co-transplantation of umbilical cord MSCs and aBM-MNCs in patients with established T1D was associated with reduced incidence of chronic diabetes complications.
Collapse
Affiliation(s)
- Zhixian Wu
- Organ Transplant Institute, Fuzhou General Hospital (Fuzong Clinical College), Fujian Medical University, Fuzhou, People's Republic of China; Organ Transplant Institute, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, Fuzhou, People's Republic of China
| | - Xiumin Xu
- Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, Florida, USA; Diabetes Research Institute Federation, Hollywood, Florida, USA; The Cure Alliance, Miami, Florida, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jinquan Cai
- Organ Transplant Institute, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, Fuzhou, People's Republic of China
| | - Jin Chen
- Organ Transplant Institute, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, Fuzhou, People's Republic of China
| | - Lianghu Huang
- Organ Transplant Institute, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, Fuzhou, People's Republic of China
| | - Weizhen Wu
- Organ Transplant Institute, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, Fuzhou, People's Republic of China
| | - Alberto Pugliese
- Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, Florida, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shasha Li
- Organ Transplant Institute, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, Fuzhou, People's Republic of China
| | - Camillo Ricordi
- Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, Florida, USA; Diabetes Research Institute Federation, Hollywood, Florida, USA; The Cure Alliance, Miami, Florida, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | - Jianming Tan
- Organ Transplant Institute, Fuzhou General Hospital (Fuzong Clinical College), Fujian Medical University, Fuzhou, People's Republic of China; Organ Transplant Institute, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, Fuzhou, People's Republic of China; The Cure Alliance, Miami, Florida, USA.
| |
Collapse
|
6
|
Ceballos GA, Hernandez LF, Paredes D, Betancourt LR, Abdulreda MH. A machine learning approach to predict pancreatic islet grafts rejection versus tolerance. PLoS One 2020; 15:e0241925. [PMID: 33152016 PMCID: PMC7644021 DOI: 10.1371/journal.pone.0241925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
The application of artificial intelligence (AI) and machine learning (ML) in biomedical research promises to unlock new information from the vast amounts of data being generated through the delivery of healthcare and the expanding high-throughput research applications. Such information can aid medical diagnoses and reveal various unique patterns of biochemical and immune features that can serve as early disease biomarkers. In this report, we demonstrate the feasibility of using an AI/ML approach in a relatively small dataset to discriminate among three categories of samples obtained from mice that either rejected or tolerated their pancreatic islet allografts following transplant in the anterior chamber of the eye, and from naïve controls. We created a locked software based on a support vector machine (SVM) technique for pattern recognition in electropherograms (EPGs) generated by micellar electrokinetic chromatography and laser induced fluorescence detection (MEKC-LIFD). Predictions were made based only on the aligned EPGs obtained in microliter-size aqueous humor samples representative of the immediate local microenvironment of the islet allografts. The analysis identified discriminative peaks in the EPGs of the three sample categories. Our classifier software was tested with targeted and untargeted peaks. Working with the patterns of untargeted peaks (i.e., based on the whole pattern of EPGs), it was able to achieve a 21 out of 22 positive classification score with a corresponding 95.45% prediction accuracy among the three sample categories, and 100% accuracy between the rejecting and tolerant recipients. These findings demonstrate the feasibility of AI/ML approaches to classify small numbers of samples and they warrant further studies to identify the analytes/biochemicals corresponding to discriminative features as potential biomarkers of islet allograft immune rejection and tolerance.
Collapse
Affiliation(s)
- Gerardo A. Ceballos
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States of America
- * E-mail: (GAC); (MHA)
| | - Luis F. Hernandez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Daniel Paredes
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States of America
| | - Luis R. Betancourt
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States of America
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Midhat H. Abdulreda
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- * E-mail: (GAC); (MHA)
| |
Collapse
|
7
|
Song L, Yuan J, Liu Y, Zhang D, Zhang C, Lin Q, Li M, Su K, Li Y, Gao G, Ma R, Dong J. Ghrelin system is involved in improvements in glucose metabolism mediated by hyperbaric oxygen treatment in a streptozotocin‑induced type 1 diabetes mouse model. Mol Med Rep 2020; 22:3767-3776. [PMID: 32901885 PMCID: PMC7533472 DOI: 10.3892/mmr.2020.11481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder for which the only effective therapy is insulin replacement. Hyperbaric oxygen (HBO) therapy has demonstrated potential in improving hyperglycemia and as a treatment option for T1DM. Ghrelin and HBO have been previously reported to exert proliferative, anti-apoptotic and anti-inflammatory effects in pancreatic cells. The present study investigated the mechanism underlying HBO- and ghrelin system-mediated regulation of glucose metabolism. Male C57BL/6 mice were intraperitoneally injected with streptozotocin (STZ; 150 mg/kg) to induce T1DM before the diabetic mice were randomly assigned into the T1DM and T1DM + HBO groups. Mice in the T1DM + HBO group received HBO (1 h; 100% oxygen; 2 atmospheres absolute) daily for 2 weeks. Significantly lower blood glucose levels and food intake were observed in mice in the T1DM + HBO group. Following HBO treatment, islet β-cell area were increased whereas those of α-cell were decreased in the pancreas. In addition, greater hepatic glycogen storage in liver was observed, which coincided with higher pancreatic glucose transporter 2 (GLUT2) expression levels and reduced hepatic GLUT2 membrane trafficking. There were also substantially higher total plasma ghrelin concentrations and gastric ghrelin-O-acyl transferase (GOAT) expression levels in mice in the T1DM + HBO group. HBO treatment also abolished reductions in pancreatic GOAT expression levels in T1DM mice. Additionally, hepatic growth hormone secretagogue receptor-1a levels were found to be lower in mice in the T1DM + HBO group compared with those in the T1DM group. These results suggest that HBO administration improved glucose metabolism in a STZ-induced T1DM mouse model. The underlying mechanism involves improved insulin-release, glucose-sensing and regulation of hepatic glycogen storage, an observation that was also likely dependent on the ghrelin signalling system.
Collapse
Affiliation(s)
- Limin Song
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Junhua Yuan
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yuan Liu
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Di Zhang
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Caishun Zhang
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Qian Lin
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Manwen Li
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Kaizhen Su
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yanrun Li
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Guangkai Gao
- Department of Hyperbaric Medicine, Hospital of Chinese People's Liberation Army, Qingdao, Shandong 266072, P.R. China
| | - Ruixia Ma
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266005, P.R. China
| | - Jing Dong
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
8
|
Pozzilli P, Bosi E, Cirkel D, Harris J, Leech N, Tinahones FJ, Vantyghem MC, Vlasakakis G, Ziegler AG, Janmohamed S. Randomized 52-week Phase 2 Trial of Albiglutide Versus Placebo in Adult Patients With Newly Diagnosed Type 1 Diabetes. J Clin Endocrinol Metab 2020; 105:5812593. [PMID: 32219329 DOI: 10.1210/clinem/dgaa149] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT GLP-1 receptor agonists are an established therapy in patients with type 2 diabetes; however, their role in type 1 diabetes remains to be determined. OBJECTIVE Determine efficacy and safety of once-weekly albiglutide 30 mg (up-titration to 50 mg at week 6) versus placebo together with insulin in patients with new-onset type 1 diabetes and residual insulin production. DESIGN 52-week, randomized, phase 2 study (NCT02284009). METHODS A prespecified Bayesian approach, incorporating placebo data from a prior study, allowed for 3:1 (albiglutide:placebo) randomization. The primary endpoint was 52-week change from baseline in mixed meal tolerance test (MMTT) stimulated 2-h plasma C-peptide area under the curve (AUC). Secondary endpoints included metabolic measures and pharmacokinetics of albiglutide. RESULTS 12/17 (70.6%, placebo) and 40/50 (80.0%, albiglutide) patients completed the study. Within our study, mean (standard deviation) change from baseline to week 52 in MMTT-stimulated 2-h plasma C-peptide AUC was -0.16 nmol/L (0.366) with placebo and -0.13 nmol/L (0.244) with albiglutide. For the primary Bayesian analysis (including prior study data) the posterior treatment difference (95% credible interval) was estimated at 0.12 nmol/L (0-0.24); the probability of a difference ≥0.2 nmol/L between treatments was low (0.097). A transient significant difference in maximum C-peptide was seen at week 28. Otherwise, no significant secondary endpoint differences were noted. On-therapy adverse events were reported in 82.0% (albiglutide) and 76.5% (placebo) of patients. CONCLUSION In newly diagnosed patients with type 1 diabetes, albiglutide 30 to 50 mg weekly for 1 year had no appreciable effect on preserving residual β-cell function versus placebo.
Collapse
Affiliation(s)
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS San Raffaele and San Raffaele Vita Salute University, Milan, Italy
| | | | | | - Nicola Leech
- The Newcastle upon Tyne Hospitals Foundation Trust, Newcastle upon Tyne, UK
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University. Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Málaga, Spain
| | - Marie-Christine Vantyghem
- University of Lille, CHU Lille, Endocrinology, Diabetology and Metabolism Department, Inserm U1190-European Genomic Institute for Diabetes, Lille, France
| | | | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Germany, and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany
| | | |
Collapse
|
9
|
Alcazar O, Hernandez LF, Nakayasu ES, Piehowski PD, Ansong C, Abdulreda MH, Buchwald P. Longitudinal proteomics analysis in the immediate microenvironment of islet allografts during progression of rejection. J Proteomics 2020; 223:103826. [PMID: 32442648 DOI: 10.1016/j.jprot.2020.103826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
The applicability and benefits of pancreatic islet transplantation are limited due to various issues including the need to avoid immune-mediated rejection. Here, we used our experimental platform of allogeneic islet transplant in the anterior chamber of the eye (ACE-platform) to longitudinally monitor the progress of rejection in mice and obtain aqueous humor samples representative of the microenvironment of the graft for accurately-timed proteomic analyses. LC-MS/MS-based proteomics performed on such mass-limited samples (~5 μL) identified a total of 1296 proteins. Various analyses revealed distinct protein patterns associated with the mounting of the inflammatory and immune responses and their evolution with the progression of the rejection. Pathway analyses indicated predominant changes in cytotoxic functions, cell movement, and innate and adaptive immune responses. Network prediction analyses revealed transition from humoral to cellular immune response and exacerbation of pro-inflammatory signaling. One of the proteins identified by this localized proteomics as a candidate biomarker of islet rejection, Cystatin 3, was further validated by ELISA in the aqueous humor. This study provides (1) experimental evidence demonstrating the feasibility of longitudinal localized proteomics using small aqueous humor samples and (2) proof-of-concept for the discovery of biomarkers of impending immune attack from the immediate local microenvironment of ACE-transplanted islets. SIGNIFICANCE: The combination of the ACE-platform and longitudinal localized proteomics offers a powerful approach to biomarker discovery during the various stages of immune reactions mounted against transplanted tissues including pancreatic islets. It also supports proteomics-assisted drug discovery and development efforts aimed at preventing rejection through efficacy assessment of new agents by noninvasive and longitudinal graft monitoring.
Collapse
Affiliation(s)
- Oscar Alcazar
- University of Miami Miller School of Medicine, Diabetes Research Institute, Miami, FL, USA
| | - Luis F Hernandez
- University of Miami Miller School of Medicine, Diabetes Research Institute, Miami, FL, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Midhat H Abdulreda
- University of Miami Miller School of Medicine, Diabetes Research Institute, Miami, FL, USA; University of Miami Miller School of Medicine, Department of Surgery, Miami, FL, USA; University of Miami Miller School of Medicine, Department of Microbiology and Immunology, Miami, FL, USA; University of Miami Miller School of Medicine, Department of Ophthalmology, Miami, FL, USA.
| | - Peter Buchwald
- University of Miami Miller School of Medicine, Diabetes Research Institute, Miami, FL, USA; University of Miami Miller School of Medicine, Department of Molecular and Cellular Pharmacology, Miami, FL, USA.
| |
Collapse
|
10
|
Panzer JK, Hiller H, Cohrs CM, Almaça J, Enos SJ, Beery M, Cechin S, Drotar DM, Weitz JR, Santini J, Huber MK, Muhammad Fahd Qadir M, Pastori RL, Domínguez-Bendala J, Phelps EA, Atkinson MA, Pugliese A, Caicedo A, Kusmartseva I, Speier S. Pancreas tissue slices from organ donors enable in situ analysis of type 1 diabetes pathogenesis. JCI Insight 2020; 5:134525. [PMID: 32324170 DOI: 10.1172/jci.insight.134525] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
In type 1 diabetes (T1D), autoimmune destruction of pancreatic β cells leads to insulin deficiency and loss of glycemic control. However, knowledge about human pancreas pathophysiology in T1D remains incomplete. To address this limitation, we established a pancreas tissue slice platform of donor organs with and without diabetes, facilitating the first live cell studies of human pancreas in T1D pathogenesis to our knowledge. We show that pancreas tissue slices from organ donors allow thorough assessment of processes critical for disease development, including insulin secretion, β cell physiology, endocrine cell morphology, and immune infiltration within the same donor organ. Using this approach, we compared detailed pathophysiological profiles for 4 pancreata from donors with T1D with 19 nondiabetic control donors. We demonstrate that β cell loss, β cell dysfunction, alterations of β cell physiology, and islet infiltration contributed differently to individual cases of T1D, allowing insight into pathophysiology and heterogeneity of T1D pathogenesis. Thus, our study demonstrates that organ donor pancreas tissue slices represent a promising and potentially novel approach in the search for successful prevention and reversal strategies of T1D.
Collapse
Affiliation(s)
- Julia K Panzer
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Helmut Hiller
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Christian M Cohrs
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Joana Almaça
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, and
| | - Stephen J Enos
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Maria Beery
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Sirlene Cechin
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Denise M Drotar
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| | - John R Weitz
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, and
| | - Jorge Santini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Mollie K Huber
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Mirza Muhammad Fahd Qadir
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Cell Biology and Anatomy and
| | - Ricardo L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Cell Biology and Anatomy and
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Alberto Pugliese
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, and.,Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alejandro Caicedo
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, and
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Stephan Speier
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| |
Collapse
|
11
|
Glastras SJ, Cohen N, Dover T, Kilov G, MacIsaac RJ, McGill M, Fulcher GR. The Clinical Role of Insulin Degludec/Insulin Aspart in Type 2 Diabetes: An Empirical Perspective from Experience in Australia. J Clin Med 2020; 9:jcm9041091. [PMID: 32290465 PMCID: PMC7230791 DOI: 10.3390/jcm9041091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022] Open
Abstract
Treatment intensification in people with type 2 diabetes following failure of basal insulin commonly involves the addition of a rapid-acting insulin analogue (basal plus one or more prandial doses; multiple daily injections) or by a switch to premixed insulin. Insulin degludec/insulin aspart (IDegAsp), comprising rapid-acting insulin aspart and ultra-long-acting insulin degludec in solution, enables both fasting and post-prandial glucose control, with some advantages over other treatment intensification options. These include straightforward dose titration, flexibility in dose timing, low injection burden, simplicity of switching and a lower risk of hypoglycaemia. In Australia, where insulin degludec on its own is not available, IDegAsp enables patients to still benefit from its ultra-long-acting properties. This review aims to provide guidance on where and how to use IDegAsp. Specifically, guidance is included on the initiation of IDegAsp in insulin-naïve patients, treatment intensification from basal insulin, switching from premixed or basal-bolus insulin to IDegAsp, up-titration from once- to twice-daily IDegAsp and the use of IDegAsp in special populations or situations.
Collapse
Affiliation(s)
- Sarah J. Glastras
- Department of Diabetes, Endocrinology and Metabolism, The Royal North Shore Hospital, University of Sydney, Reserve Road, St Leonards NSW 2065, Australia;
- Correspondence: ; Tel.: +61-2-9463-1680
| | - Neale Cohen
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne VIC 3004, Australia;
| | - Thomas Dover
- Ipswich Hospital, University of Queensland, Chelmsford Avenue, Ipswich QLD 4305, Australia;
- Mater Hospital Brisbane, Raymond Terrace, South Brisbane QLD 4101, Australia
| | - Gary Kilov
- Launceston Diabetes Clinic, 247 Wellington Street, Launceston TAS 7250, Australia;
- Department of General Practice and Primary Health Care, University of Melbourne, 230 Gratton Street, Parkville VIC 3010, Australia
| | - Richard J. MacIsaac
- Department of Endocrinology & Diabetes, St Vincent’s Hospital Melbourne, University of Melbourne, 41 Victoria Parade, Fitzroy VIC 3065, Australia;
| | - Margaret McGill
- Diabetes Centre, Royal Prince Alfred Hospital, Sydney NSW 2050, Australia;
| | - Greg R. Fulcher
- Department of Diabetes, Endocrinology and Metabolism, The Royal North Shore Hospital, University of Sydney, Reserve Road, St Leonards NSW 2065, Australia;
| |
Collapse
|
12
|
Robert AA, Al Dawish MA. The Worrying Trend of Diabetes Mellitus in Saudi Arabia: An Urgent Call to Action. Curr Diabetes Rev 2020; 16:204-210. [PMID: 31146665 DOI: 10.2174/1573399815666190531093735] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022]
Abstract
From last few years, the pervasiveness of diabetes mellitus (DM), in Saudi Arabia, is growing at a frightening rate. Overall, one-fourth of the adult population is affected by DM, which is further predicted to rise to more than double by the year 2030. The most alarming is possibly the escalation propensity of diabetes, in recent years, where a nearly ten-fold increase has been witnessed over the past thirty years in Saudi Arabia. However, the number of research arbitrations on the prevalence and incidence of DM is woefully inadequate, as compared to developed countries. Apart from this, most of the existing research data carried out in Saudi Arabia is cross-sectional, with small sample sizes, which most often involve only certain parts of the country. Consequently, the present scenario demands more multidimensional and multisectoral research to strengthen the evidence base and to accumulate greater knowledge as a basis for measures and programmes to confront diabetes and its complications. Thus, the present report makes an attempt to depict the current trend of diabetes as well as intends to put forward essential measures for controlling diabetes in Saudi Arabia.
Collapse
Affiliation(s)
- Asirvatham A Robert
- Department of Endocrinology and Diabetes, Diabetes Treatment Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mohamed A Al Dawish
- Department of Endocrinology and Diabetes, Diabetes Treatment Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Alcazar O, Hernandez LF, Tschiggfrie A, Muehlbauer MJ, Bain JR, Buchwald P, Abdulreda MH. Feasibility of Localized Metabolomics in the Study of Pancreatic Islets and Diabetes. Metabolites 2019; 9:E207. [PMID: 31569489 PMCID: PMC6835460 DOI: 10.3390/metabo9100207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Disruption of insulin production by native or transplanted pancreatic islets caused by auto/allo-immunity leads to hyperglycemia, a serious health condition and important therapeutic challenge due to the lifelong need for exogeneous insulin administration. Early metabolic biomarkers can prompt timely interventions to preserve islet function, but reliable biomarkers are currently lacking. We explored the feasibility of "localized metabolomics" where initial biomarker discovery is made in aqueous humor samples for further validation in the circulation. (2) Methods: We conducted non-targeted metabolomic studies in parallel aqueous humor and plasma samples from diabetic and nondiabetic mice. Metabolite levels and associated pathways were compared in both compartments as well as to an earlier longitudinal dataset in hyperglycemia-progressor versus non-progressor non-obese diabetic (NOD) mice. (3) Results: We confirmed that aqueous humor samples can be used to assess metabolite levels. About half of the identified metabolites had well-correlated levels in the aqueous humor and plasma. Several plasma metabolites were significantly different between diabetic and nondiabetic animals and between males and females, and many of them were correlated with the aqueous humor. (4) Conclusions: This study provides proof-of-concept evidence that aqueous humor samples enriched with islet-related metabolites and representative of the immediate islet microenvironment following intraocular islet transplant can be used to assess metabolic changes that could otherwise be overlooked in the general circulation. The findings support localized metabolomics, with and without intraocular islet transplant, to identify biomarkers associated with diabetes and islet allograft rejection.
Collapse
Affiliation(s)
- Oscar Alcazar
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Luis F Hernandez
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Ashley Tschiggfrie
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
| | - James R Bain
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
| | - Peter Buchwald
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Midhat H Abdulreda
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
14
|
Razavi M, Zheng F, Telichko A, Wang J, Ren G, Dahl J, Thakor AS. Improving the Function and Engraftment of Transplanted Pancreatic Islets Using Pulsed Focused Ultrasound Therapy. Sci Rep 2019; 9:13416. [PMID: 31527773 PMCID: PMC6746980 DOI: 10.1038/s41598-019-49933-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/03/2019] [Indexed: 11/24/2022] Open
Abstract
This study demonstrates that pulsed focused ultrasound (pFUS) therapy can non-invasively enhance the function and engraftment of pancreatic islets following transplantation. In vitro, we show that islets treated with pFUS at low (peak negative pressure (PNP): 106kPa, spatial peak temporal peak intensity (Isptp): 0.71 W/cm2), medium (PNP: 150kPa, Isptp: 1.43 W/cm2) or high (PNP: 212kPa, Isptp: 2.86 W/cm2) acoustic intensities were stimulated resulting in an increase in their function (i.e. insulin secretion at low-intensity: 1.15 ± 0.17, medium-intensity: 2.02 ± 0.25, and high-intensity: 2.54 ± 0.38 fold increase when compared to control untreated islets; P < 0.05). Furthermore, we have shown that this improvement in islet function is a result of pFUS increasing the intracellular concentration of calcium (Ca2+) within islets which was also linked to pFUS increasing the resting membrane potential (Vm) of islets. Following syngeneic renal sub-capsule islet transplantation in C57/B6 mice, pFUS (PNP: 2.9 MPa, Isptp: 895 W/cm2) improved the function of transplanted islets with diabetic animals rapidly re-establishing glycemic control. In addition, pFUS was able to enhance the engraftment by facilitating islet revascularization and reducing inflammation. Given a significant number of islets are lost immediately following transplantation, pFUS has the potential to be used in humans as a novel non-invasive therapy to facilitate islet function and engraftment, thereby improving the outcome of diabetic patients undergoing islet transplantation.
Collapse
Affiliation(s)
- Mehdi Razavi
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Fengyang Zheng
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA.,Department of Ultrasound, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Arsenii Telichko
- Jeremy Dahl Ultrasound Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Jing Wang
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Gang Ren
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Jeremy Dahl
- Jeremy Dahl Ultrasound Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA.
| |
Collapse
|
15
|
Effect of gamma aminobutyric acid (GABA) or GABA with glutamic acid decarboxylase (GAD) on the progression of type 1 diabetes mellitus in children: Trial design and methodology. Contemp Clin Trials 2019; 82:93-100. [DOI: 10.1016/j.cct.2019.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022]
|
16
|
Thalange N, Gundgaard J, Parekh W, Tutkunkardas D. Cost analysis of insulin degludec in comparison with insulin detemir in treatment of children and adolescents with type 1 diabetes in the UK. BMJ Open Diabetes Res Care 2019; 7:e000664. [PMID: 31543973 PMCID: PMC6731813 DOI: 10.1136/bmjdrc-2019-000664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/03/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE With healthcare systems under increasing financial pressure from costs associated with diabetes care, it is important to assess which treatments provide clinical benefits and represent best value. This study evaluated the annual costs of insulin degludec (degludec) versus insulin detemir (IDet) in children and adolescents with type 1 diabetes (T1D) in the UK. RESEARCH DESIGN AND METHODS Using data from a randomized, treat-to-target, non-inferiority trial-BEGIN YOUNG 1-annual costs with degludec versus IDet in children and adolescents aged 1-17 years with T1D were estimated, as costs of these insulins and hyperglycemia with ketosis events. Analyses by age group (1-5, 6-11 and 12-17 years) and scenario (no ketosis benefit, no dose benefit, hyperglycemia with ketones >0.6 and >3.0 mmol/L and the additional costs of twice-daily IDet in 64% of patients) were also performed. RESULTS The mean annual cost per patient was estimated as £235.16 for degludec vs £382.91 for IDet, resulting in an annual saving of £147.75 per patient. These substantial cost savings were driven by relative reductions in the frequency of hyperglycemia with ketosis and basal insulin dose with degludec versus IDet. Annual savings in favor of degludec were observed across each age group (£122.63, £140.59 and £172.50 for 1-5, 6-11 and 12-17 years age groups, respectively). Five scenario analyses further demonstrated the robustness of the results, which included no ketosis or dose benefits in favor of degludec. CONCLUSIONS Degludec provides appreciable annual cost savings compared with IDet in children and adolescents with T1D in a UK setting. While a cost-effectiveness analysis could incorporate the health impact of treatment complications better than the present cost analysis, the strong generalizability of the data from this study suggests that degludec can help healthcare providers to maximize health outcomes despite increasingly stringent budgets.
Collapse
Affiliation(s)
- Nandu Thalange
- Al Jalila Children’s Hospital, Dubai, United Arab Emirates
| | | | | | | |
Collapse
|
17
|
Bojadzic D, Chen J, Alcazar O, Buchwald P. Design, Synthesis, and Evaluation of Novel Immunomodulatory Small Molecules Targeting the CD40⁻CD154 Costimulatory Protein-Protein Interaction. Molecules 2018; 23:E1153. [PMID: 29751636 PMCID: PMC5978685 DOI: 10.3390/molecules23051153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
We report the design, synthesis, and testing of novel small-molecule compounds targeting the CD40⁻CD154 (CD40L) costimulatory interaction for immunomodulatory purposes. This protein-protein interaction (PPI) is a TNF-superfamily (TNFSF) costimulatory interaction that is an important therapeutic target since it plays crucial roles in the activation of T cell responses, and there is resurgent interest in its modulation with several biologics in development. However, this interaction, just as all other PPIs, is difficult to target by small molecules. Following up on our previous work, we have now identified novel compounds such as DRI-C21091 or DRI-C21095 that show activity (IC50) in the high nanomolar to low micromolar range in the binding inhibition assay and more than thirty-fold selectivity versus other TNFSF PPIs including OX40⁻OX40L, BAFFR-BAFF, and TNF-R1-TNFα. Protein thermal shift (differential scanning fluorimetry) assays indicate CD154 and not CD40 as the binding partner. Activity has also been confirmed in cell assays and in a mouse model (alloantigen-induced T cell expansion in a draining lymph node). Our results expand the chemical space of identified small-molecule CD40⁻CD154 costimulatory inhibitors and provide lead structures that have the potential to be developed as orally bioavailable immunomodulatory therapeutics that are safer and less immunogenic than corresponding biologics.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Jinshui Chen
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
- Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
18
|
Type 1 Diabetes Mellitus in Saudi Arabia: A Soaring Epidemic. Int J Pediatr 2018; 2018:9408370. [PMID: 29853923 PMCID: PMC5964576 DOI: 10.1155/2018/9408370] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/04/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is quite prevalent in the world, with a proportion of 1 in every 300 persons and steadily rising frequency of incidence of about 3% every year. More alarmingly, the incidence of T1DM among infants is also increasing, with children as young as 6 months succumbing to it, instead of that at a rather established vulnerable age of around seven and near puberty, when the hormones antagonize the action of insulin. These reports pose a unique challenge of developing efficient T1DM management system for the young children. The Kingdom of Saudi Arabia (KSA) is the largest country in the Middle East that occupies approximately four-fifths of the Arabian Peninsula supporting a population of more than 33.3 million people, of whom 26% are under the age of 14 years. As per the Diabetes Atlas (8th edition), 35,000 children and adolescents in Saudi Arabia suffer from T1DM, which makes Saudi Arabia rank the 8th in terms of numbers of TIDM patients and 4th country in the world in terms of the incidence rate (33.5 per 100,000 individuals) of TIDM. However, in comparison with that in the developed countries, the number of research interventions on the prevalence, incidence, and the sociodemographic aspects of T1DM is woefully inadequate. In this review we discuss different aspects of T1DM in Saudi Arabia drawing on the published literature currently available.
Collapse
|
19
|
Chen J, Song Y, Bojadzic D, Tamayo-Garcia A, Landin AM, Blomberg BB, Buchwald P. Small-Molecule Inhibitors of the CD40-CD40L Costimulatory Protein-Protein Interaction. J Med Chem 2017; 60:8906-8922. [PMID: 29024591 PMCID: PMC5823691 DOI: 10.1021/acs.jmedchem.7b01154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Costimulatory interactions are required for T cell activation and development of an effective immune response; hence, they are valuable therapeutic targets for immunomodulation. However, they, as all other protein-protein interactions, are difficult to target by small molecules. Here, we report the identification of novel small-molecule inhibitors of the CD40-CD40L interaction designed starting from the chemical space of organic dyes. For the most promising compounds such as DRI-C21045, activity (IC50) in the low micromolar range has been confirmed in cell assays including inhibition of CD40L-induced activation in NF-κB sensor cells, THP-1 myeloid cells, and primary human B cells as well as in murine allogeneic skin transplant and alloantigen-induced T cell expansion in draining lymph node experiments. Specificity versus other TNF-superfamily interactions (TNF-R1-TNF-α) and lack of cytotoxicity have also been confirmed at these concentrations. These novel compounds provide proof-of-principle evidence for the possibility of small-molecule inhibition of costimulatory protein-protein interactions, establish the structural requirements needed for efficient CD40-CD40L inhibition, and serve to guide the search for such immune therapeutics.
Collapse
Affiliation(s)
- Jinshui Chen
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Yun Song
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
- Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Alejandro Tamayo-Garcia
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Ana Marie Landin
- Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Bonnie B. Blomberg
- Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
- Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| |
Collapse
|
20
|
Borg DJ, Wang R, Murray L, Tong H, Steptoe RJ, McGuckin MA, Hasnain SZ. The effect of interleukin-22 treatment on autoimmune diabetes in the NOD mouse. Diabetologia 2017; 60:2256-2261. [PMID: 28779211 PMCID: PMC6448904 DOI: 10.1007/s00125-017-4392-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine whether therapy with the cytokine IL-22 could be used to prevent the development of, or treat, autoimmune diabetes in the NOD mouse. METHODS Six-week-old NOD mice were administered bi-weekly either recombinant mouse IL-22 (200 ng/g) or PBS (vehicle control) intraperitoneally until overt diabetes was diagnosed as two consecutive measurements of non-fasting blood glucose ≥ 11 mmol/l. At this time, NOD mice in the control arm were treated with LinBit insulin pellets and randomised to bi-weekly therapeutic injections of either PBS or IL-22 (200 ng/g) and followed until overt diabetes was diagnosed, as defined above. RESULTS IL-22 therapy did not delay the onset of diabetes in comparison with the vehicle-treated mice. We did not observe an improvement in islet area, glycaemic control, beta cell residual function, endoplasmic reticulum stress, insulitis or macrophage and neutrophil infiltration as determined by non-fasting blood glucose, C-peptide and histological scoring. Therapeutic administration of IL-22 did not reduce circulating lipopolysaccharide, a marker of impaired gut mucosal integrity. CONCLUSIONS/INTERPRETATION Our study suggests that, at this dosing regimen introduced either prior to overt diabetes or at diagnosis of diabetes, recombinant mouse IL-22 therapy cannot prevent autoimmune diabetes, or prolong the honeymoon period in the NOD mouse.
Collapse
Affiliation(s)
- Danielle J Borg
- Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Level 4/37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Ran Wang
- Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Level 4/37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Lydia Murray
- Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Level 4/37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Hui Tong
- Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Level 4/37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Raymond J Steptoe
- Tolerance and Autoimmunity Group, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael A McGuckin
- Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Level 4/37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Sumaira Z Hasnain
- Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Level 4/37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The current standard therapy for type 1 diabetes (T1D) is insulin replacement. Autoimmune diseases are typically treated with broad immunosuppression, but this has multiple disadvantages. Induction of antigen-specific tolerance is preferable. The application of nanomedicine to the problem of T1D can take different forms, but one promising way is the development of tolerogenic nanoparticles, the aim of which is to mitigate the islet-destroying autoimmunity. We review the topic and highlight recent strategies to produce tolerogenic nanoparticles for the purpose of treating T1D. RECENT FINDINGS Several groups are making progress in applying tolerogenic nanoparticles to rodent models of T1D, while others are using nanotechnology to aid other potential T1D treatments such as islet transplant and islet encapsulation. The strategies behind how nanoparticles achieve tolerance are varied. It is likely the future will see even greater diversity in tolerance induction strategies as well as a greater focus on how to translate this technology from preclinical use in mice to treatment of T1D in humans.
Collapse
Affiliation(s)
- Tobias Neef
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
22
|
Mittermayer F, Caveney E, De Oliveira C, Fleming GA, Gourgiotis L, Puri M, Tai LJ, Turner JR. Addressing Unmet Medical Needs in Type 1 Diabetes: A Review of Drugs Under Development. Curr Diabetes Rev 2017; 13:300-314. [PMID: 27071617 PMCID: PMC5748875 DOI: 10.2174/1573399812666160413115655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/21/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The incidence of type 1 diabetes (T1D) is increasing worldwide and there is a very large need for effective therapies. Essentially no therapies other than insulin are currently approved for the treatment of T1D. Drugs already in use for type 2 diabetes and many new drugs are under clinical development for T1D, including compounds with both established and new mechanisms of action. Content of the Review: Most of the new compounds in clinical development are currently in Phase 1 and 2. Drug classes discussed in this review include new insulins, SGLT inhibitors, GLP-1 agonists, immunomodulatory drugs including autoantigens and anti-cytokines, agents that regenerate β-cells and others. Regulatory Considerations: In addition, considerations are provided with regard to the regulatory environment for the clinical development of drugs for T1D, with a focus on the United States Food and Drug Administration and the European Medicines Agency. Future opportunities, such as combination treatments of immunomodulatory and beta-cell regenerating therapies, are also discussed.
Collapse
Affiliation(s)
| | - Erica Caveney
- Diabetes Center of Excellence, Quintiles,
Durham, NC, USA
| | | | | | | | - Mala Puri
- Cardiovascular and Metabolic Diseases, Quintiles, Durham, NC, USA
| | | | - J. Rick Turner
- Diabetes Center of Excellence, Quintiles,
Durham, NC, USA
| |
Collapse
|
23
|
Kyi M, Wentworth JM, Nankervis AJ, Fourlanos S, Colman PG. Recent advances in type 1 diabetes. Med J Aust 2016; 203:290-3. [PMID: 26424063 DOI: 10.5694/mja14.01691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/22/2015] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes (T1D) is caused by an autoimmune attack on pancreatic beta cells that leads to insulin deficiency. The incidence of T1D in Australia has doubled over the past 20 years. T1D treatment focuses on physiological insulin replacement, aiming for near-normal blood glucose levels. Hypoglycaemia is a significant cause of morbidity and mortality in T1D. Optimal T1D management is complex, and is enhanced by empowering individuals in all aspects of managing diabetes. New technologies, including insulin pumps, continuous glucose monitors and sensor-augmented pumps, can assist people achieve better glycaemic control and reduce the risk of severe hypoglycaemia. Women with T1D can achieve significantly better outcomes during pregnancy and for their infants by planning for their pregnancy and by intensive glycaemic control. Several trials are underway that seek to identify the determinants of autoimmunity and to develop therapies that prevent T1D in at-risk individuals. Pancreatic and islet cell transplants are proven therapies, but are only offered to individuals with diabetes and renal failure (pancreas) or severe hypoglycaemia unawareness (islet cell transplants). Although T1D is still associated with considerable premature mortality, recent findings show that a significant improvement in life expectancy has occurred.
Collapse
Affiliation(s)
- Mervyn Kyi
- Royal Melbourne Hospital, Melbourne, VIC
| | | | | | | | | |
Collapse
|
24
|
Cai J, Wu Z, Xu X, Liao L, Chen J, Huang L, Wu W, Luo F, Wu C, Pugliese A, Pileggi A, Ricordi C, Tan J. Umbilical Cord Mesenchymal Stromal Cell With Autologous Bone Marrow Cell Transplantation in Established Type 1 Diabetes: A Pilot Randomized Controlled Open-Label Clinical Study to Assess Safety and Impact on Insulin Secretion. Diabetes Care 2016; 39:149-57. [PMID: 26628416 DOI: 10.2337/dc15-0171] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/22/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the safety and effects on insulin secretion of umbilical cord (UC) mesenchymal stromal cells (MSCs) plus autologous bone marrow mononuclear cell (aBM-MNC) stem cell transplantation (SCT) without immunotherapy in established type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS Between January 2009 and December 2010, 42 patients with T1D were randomized (n = 21/group) to either SCT (1.1 × 10(6)/kg UC-MSC, 106.8 × 10(6)/kg aBM-MNC through supraselective pancreatic artery cannulation) or standard care (control). Patients were followed for 1 year at 3-month intervals. The primary end point was C-peptide area under the curve (AUC(C-Pep)) during an oral glucose tolerance test at 1 year. Additional end points were safety and tolerability of the procedure, metabolic control, and quality of life. RESULTS The treatment was well tolerated. At 1 year, metabolic measures improved in treated patients: AUCC-Pep increased 105.7% (6.6 ± 6.1 to 13.6 ± 8.1 pmol/mL/180 min, P = 0.00012) in 20 of 21 responders, whereas it decreased 7.7% in control subjects (8.4 ± 6.8 to 7.7 ± 4.5 pmol/mL/180 min, P = 0.013 vs. SCT); insulin area under the curve increased 49.3% (1,477.8 ± 1,012.8 to 2,205.5 ± 1,194.0 mmol/mL/180 min, P = 0.01), whereas it decreased 5.7% in control subjects (1,517.7 ± 630.2 to 1,431.7 ± 441.6 mmol/mL/180 min, P = 0.027 vs. SCT). HbA1c decreased 12.6% (8.6 ± 0.81% [70.0 ± 7.1 mmol/mol] to 7.5 ± 1.0% [58.0 ± 8.6 mmol/mol], P < 0.01) in the treated group, whereas it increased 1.2% in the control group (8.7 ± 0.9% [72.0 ± 7.5 mmol/mol] to 8.8 ± 0.9% [73 ± 7.5 mmol/mol], P < 0.01 vs. SCT). Fasting glycemia decreased 24.4% (200.0 ± 51.1 to 151.2 ± 22.1 mg/dL, P < 0.002) and 4.3% in control subjects (192.4 ± 35.3 to 184.2 ± 34.3 mg/dL, P < 0.042). Daily insulin requirements decreased 29.2% in only the treated group (0.9 ± 0.2 to 0.6 ± 0.2 IU/day/kg, P = 0.001), with no change found in control subjects (0.9 ± 0.2 to 0.9 ± 0.2 IU/day/kg, P < 0.01 vs. SCT). CONCLUSIONS Transplantation of UC-MSC and aBM-MNC was safe and associated with moderate improvement of metabolic measures in patients with established T1D.
Collapse
Affiliation(s)
- Jinquan Cai
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Zhixian Wu
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Xiumin Xu
- Diabetes Research Institute, Cell Transplant Center, University of Miami, Miami, FL Diabetes Research Institute Federation, Hollywood, FL The Cure Alliance, Miami, FL Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Lianming Liao
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Jin Chen
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Lianghu Huang
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Weizhen Wu
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Fang Luo
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Chenguang Wu
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Alberto Pugliese
- Diabetes Research Institute, Cell Transplant Center, University of Miami, Miami, FL Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Antonello Pileggi
- Diabetes Research Institute, Cell Transplant Center, University of Miami, Miami, FL Diabetes Research Institute Federation, Hollywood, FL The Cure Alliance, Miami, FL Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Camillo Ricordi
- Diabetes Research Institute, Cell Transplant Center, University of Miami, Miami, FL Diabetes Research Institute Federation, Hollywood, FL The Cure Alliance, Miami, FL Department of Surgery, University of Miami Miller School of Medicine, Miami, FL Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Jianming Tan
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China Diabetes Research Institute Federation, Hollywood, FL The Cure Alliance, Miami, FL
| |
Collapse
|
25
|
Van Dalem A, Demeester S, Balti EV, Decochez K, Weets I, Vandemeulebroucke E, Van de Velde U, Walgraeve A, Seret N, De Block C, Ruige J, Gillard P, Keymeulen B, Pipeleers DG, Gorus FK. Relationship between glycaemic variability and hyperglycaemic clamp-derived functional variables in (impending) type 1 diabetes. Diabetologia 2015; 58:2753-64. [PMID: 26409458 DOI: 10.1007/s00125-015-3761-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/24/2015] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS We examined whether measures of glycaemic variability (GV), assessed by continuous glucose monitoring (CGM) and self-monitoring of blood glucose (SMBG), can complement or replace measures of beta cell function and insulin action in detecting the progression of preclinical disease to type 1 diabetes. METHODS Twenty-two autoantibody-positive (autoAb(+)) first-degree relatives (FDRs) of patients with type 1 diabetes who were themselves at high 5-year risk (50%) for type 1 diabetes underwent CGM, a hyperglycaemic clamp test and OGTT, and were followed for up to 31 months. Clamp variables were used to estimate beta cell function (first-phase [AUC5-10 min] and second-phase [AUC120-150 min] C-peptide release) combined with insulin resistance (glucose disposal rate; M 120-150 min). Age-matched healthy volunteers (n = 20) and individuals with recent-onset type 1 diabetes (n = 9) served as control groups. RESULTS In autoAb(+) FDRs, M 120-150 min below the 10th percentile (P10) of controls achieved 86% diagnostic efficiency in discriminating between normoglycaemic FDRs and individuals with (impending) dysglycaemia. M 120-150 min outperformed AUC5-10 min and AUC120-150 min C-peptide below P10 of controls, which were only 59-68% effective. Among GV variables, CGM above the reference range was better at detecting (impending) dysglycaemia than elevated SMBG (77-82% vs 73% efficiency). Combined CGM measures were equally efficient as M 120-150 min (86%). Daytime GV variables were inversely correlated with clamp variables, and more strongly with M 120-150 min than with AUC5-10 min or AUC120-150 min C-peptide. CONCLUSIONS/INTERPRETATION CGM-derived GV and the glucose disposal rate, reflecting both insulin secretion and action, outperformed SMBG and first- or second-phase AUC C-peptide in identifying FDRs with (impending) dysglycaemia or diabetes. Our results indicate the feasibility of developing minimally invasive CGM-based criteria for close metabolic monitoring and as outcome measures in trials.
Collapse
Affiliation(s)
- Annelien Van Dalem
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 100, 1090, Brussels, Belgium
| | - Simke Demeester
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 100, 1090, Brussels, Belgium
| | - Eric V Balti
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 100, 1090, Brussels, Belgium
| | - Katelijn Decochez
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 100, 1090, Brussels, Belgium
| | - Ilse Weets
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 100, 1090, Brussels, Belgium.
- Department of Clinical Chemistry and Radio-immunology, University Hospital Brussels, Brussels, Belgium.
| | - Evy Vandemeulebroucke
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 100, 1090, Brussels, Belgium
| | - Ursule Van de Velde
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 100, 1090, Brussels, Belgium
- Department of Diabetology, University Hospital Brussels, Brussels, Belgium
| | - An Walgraeve
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 100, 1090, Brussels, Belgium
| | | | - Christophe De Block
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Antwerp, Antwerp, Belgium
| | - Johannes Ruige
- Department of Endocrinology, University Hospital Ghent, Ghent, Belgium
| | - Pieter Gillard
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 100, 1090, Brussels, Belgium
- Department of Endocrinology, University Hospital Leuven, Leuven, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 100, 1090, Brussels, Belgium
- Department of Diabetology, University Hospital Brussels, Brussels, Belgium
| | - Daniel G Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 100, 1090, Brussels, Belgium
| | - Frans K Gorus
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 100, 1090, Brussels, Belgium
- Department of Clinical Chemistry and Radio-immunology, University Hospital Brussels, Brussels, Belgium
| | | |
Collapse
|
26
|
Mastrandrea LD. An Overview of Organ-Specific Autoimmune Diseases Including Immunotherapy. Immunol Invest 2015; 44:803-16. [DOI: 10.3109/08820139.2015.1099409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
TAK1 inhibition prevents the development of autoimmune diabetes in NOD mice. Sci Rep 2015; 5:14593. [PMID: 26459028 PMCID: PMC4602205 DOI: 10.1038/srep14593] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 09/02/2015] [Indexed: 01/29/2023] Open
Abstract
Transforming growth factor-β activated kinase-1 (TAK1, Map3k7), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, is essential in innate and adaptive immune responses. We postulated that blockade of TAK1 would affect autoimmune diabetes in non-obese diabetic (NOD) mice. Administration of 5Z-7-oxozeaenol (OZ), a TAK1 inhibitor, decreased the incidence and delayed the onset of autoimmune diabetes in both spontaneous and accelerated (cyclophosphamide-induced) experimental NOD mice. OZ also reduced insulitis, preserved islet function, increased the expression of α1- antitrypsin (AAT), and severely inhibited NF-κB and JNK/AP-1 signaling pathways in immune organs and pancreatic tissues. Importantly, TAK1 inhibition by OZ elicited a Th1 to Th2 cytokine shift, and increased TGF-β1 production in cultured T lymphocytes supernatants. Systemic TAK1 inhibition induced immature DCs with lower expressions of MHC-II and CD86, attenuated DC-mediated T cell proliferation in allogeneic MLR, and production of cytokine IL-12p70 in DCs suspensions. The results indicate that TAK1 inhibition with OZ was associated with a lower frequency of autoimmune diabetes in NOD mice. The net effect of TAK1 inhibition in NOD mice therefore appears to be protective rather than disease-enhancing. Strategies targeting TAK1 specifically in NOD mice might prove useful for the treatment of autoimmune diabetes in general.
Collapse
|
28
|
Chatterjee S, Davies MJ. Current management of diabetes mellitus and future directions in care. Postgrad Med J 2015; 91:612-21. [PMID: 26453594 DOI: 10.1136/postgradmedj-2014-133200] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/12/2015] [Indexed: 12/23/2022]
Abstract
The last 90 years have seen considerable advances in the management of type 1 and type 2 diabetes. Prof MacLean of Guy's Hospital wrote in the Postgraduate Medical Journal in 1926 about the numerous challenges that faced patients and their healthcare professionals in delivering safe and effective diabetes care at that time. The discovery of insulin in 1922 heralded a new age in enabling long-term glycaemic control, which reduced morbidity and mortality. Thirty years later, the first oral agents for diabetes, the biguanides and sulfonylureas, appeared and freed type 2 patients from having to inject insulin following diagnosis. Improvements in insulin formulations over the decades, including rapid-acting and long-acting insulin analogues that more closely mimic physiological insulin secretion, have increased the flexibility and efficacy of type 1 diabetes management. The last two decades have seen major advances in technology, which has manifested in more accurate glucose monitoring systems and insulin delivery devices ('insulin pump'). Increased understanding of the pathophysiological deficits underlying type 2 diabetes has led to the development of targeted therapeutic approaches such as on the small intestine (glucagon-like peptide-1 receptor analogues and dipeptidyl-peptidase IV inhibitors) and kidneys (sodium-glucose cotransporter-2 inhibitors). A patient-centred approach delivered by a multidisciplinary team is now advocated. Glycaemic targets are set according to individual circumstances, taking into account factors such as weight, hypoglycaemia risk and patient preference. Stepwise treatment guidelines devised by international diabetes organisations standardise and rationalise management. Structured education programmes and psychological support are now well-established as essential for improving patient motivation and self-empowerment. Large multicentre randomised trials have confirmed the effectiveness of intensive glycaemic control on microvascular outcomes, but macrovascular outcomes and cardiovascular safety remain controversial with several glucose-lowering agents. Future directions in diabetes care include strategies such as the 'bionic pancreas', stem cell therapy and targeting the intestinal microbiome. All of these treatments are still being refined, and it may be several decades before they are clinically useful. Prevention and cure of diabetes is the Holy Grail but remain elusive due to lack of detailed understanding of the metabolic, genetic and immunological causes that underpin diabetes. Much progress has been made since the time of Prof MacLean 90 years ago, but there are still great strides to be taken before the life of the patient with diabetes improves even more significantly.
Collapse
Affiliation(s)
- Sudesna Chatterjee
- Leicester Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
| | - Melanie J Davies
- Leicester Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
| |
Collapse
|
29
|
Tamez HE, Tamez AL, Garza LA, Hernandez MI, Polanco AC. Dapagliflozin as an adjunct therapy to insulin in the treatment of patients with type 1 diabetes mellitus. J Diabetes Metab Disord 2015; 14:78. [PMID: 26457255 PMCID: PMC4600276 DOI: 10.1186/s40200-015-0210-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/03/2015] [Indexed: 01/10/2023]
Abstract
We have evaluated the efficacy of dapagliflozin in patients with type 1 diabetes mellitus (DM1) without adequate control. We expected that adding dapagliflozin to this population on top of their base treatment would lower their HbA1c levels. We conducted a pragmatic, open, 24-week study of treatment with 10 mg of oral dapagliflozin in patients with DM1 and chronic hyperglycemia. We evaluated glycemic control, lipid profile, weight, and insulin dose. Safety was assessed by adverse event reporting. Fasting glucose levels decreased from 176.42 ± 45.33 mg/dL to 139.67 ± 44.42 mg/dL (p = 0.05); although no significant valued was reached, postprandial glucose showed a decreased tendency from 230.25 ± 52.06 mg/dL to 193.83 ± 45.43 mg/dL (p = 0.08). The hemoglobin A1C (HbA1C) level decreased from 9.18 ± 1.02 (77 ± 11.1 mmol/mol) to 8.05 ± 1.09 % (64 ± 11.9 mmol/mol) (p = 0.0156); total cholesterol decreased from 299 ± 12 to 199 ± 7 mg/dL (p = 0.02); triglycerides decreased from 184 ± 15 to 160 ± 11 mg/dL (p = 0.0002), HDL-C decreased from 40 ± 17 to 42 ± 9 mg/dL (p = 0.54); and LDL-C decreased from 187 ± 19 to 170 ± 21 mg/dL (p = 0.049). No adverse events were reported. The beneficial effects of SGLT2 inhibitors on metabolic control and their safety after a 24-week open study demonstrate their potential indication as an adjunctive treatment with insulin in patients with DM1; however, long-term clinical trials should be considered.
Collapse
Affiliation(s)
- Hector E Tamez
- Subdirección de Investigación, Facultad de Medicina y Hospital Universitario Dr. José Eleuterio González, Calle Aguirre Pequeño, S/N, Monetrrey, N.L. 64460 México
| | - Alejandra L Tamez
- Subdirección de Investigación, Facultad de Medicina y Hospital Universitario Dr. José Eleuterio González, Calle Aguirre Pequeño, S/N, Monetrrey, N.L. 64460 México
| | - Lucas A Garza
- Subdirección de Investigación, Facultad de Medicina y Hospital Universitario Dr. José Eleuterio González, Calle Aguirre Pequeño, S/N, Monetrrey, N.L. 64460 México
| | - Mayra I Hernandez
- Subdirección de Investigación, Facultad de Medicina y Hospital Universitario Dr. José Eleuterio González, Calle Aguirre Pequeño, S/N, Monetrrey, N.L. 64460 México
| | - Ana C Polanco
- Subdirección de Investigación, Facultad de Medicina y Hospital Universitario Dr. José Eleuterio González, Calle Aguirre Pequeño, S/N, Monetrrey, N.L. 64460 México
| |
Collapse
|
30
|
Cechin SR, Lopez-Ocejo O, Karpinsky-Semper D, Buchwald P. Biphasic decline of β-cell function with age in euglycemic nonobese diabetic mice parallels diabetes onset. IUBMB Life 2015; 67:634-44. [PMID: 26099053 DOI: 10.1002/iub.1391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/27/2015] [Indexed: 01/10/2023]
Abstract
A gradual decline in insulin response is known to precede the onset of type 1 diabetes (T1D). To track age-related changes in the β-cell function of nonobese diabetic (NOD) mice, the most commonly used animal model for T1D, and to establish differences between those who do and do not become hyperglycemic, we performed a long-term longitudinal oral glucose tolerance test (OGTT) study (10-42 weeks) in combination with immunofluorescence imaging of islet morphology and cell proliferation. We observed a clear biphasic decline in insulin secretion (AUC0-30 min ) even in euglycemic animals. A first phase (10-28 weeks) consisted of a relatively rapid decline and paralleled diabetes development in the same cohort of animals. This was followed by a second phase (29-42 weeks) during which insulin secretion declined much slower while no additional animals became diabetic. Blood glucose profiles showed a corresponding, but less pronounced change: the area under the concentration curve (AUC0-150 min ) increased with age, and fit with a bilinear model indicated a rate-change in the trendline around 28 weeks. In control NOD scids, no such changes were observed. Islet morphology also changed with age as islets become surrounded by mononuclear infiltrates, and, in all mice, islets with immune cell infiltration around them showed increased β-cell proliferation. In conclusion, insulin secretion declines in a biphasic manner in all NOD mice. This trend, as well as increased β-cell proliferation, is present even in the NODs that never become diabetic, whereas, it is absent in control NOD scid mice.
Collapse
Affiliation(s)
- Sirlene R Cechin
- Diabetes Research Institute, Miller School of Medicine, University of Miami, FL, USA
| | - Omar Lopez-Ocejo
- Diabetes Research Institute, Miller School of Medicine, University of Miami, FL, USA
| | | | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, FL, USA.,Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL, USA
| |
Collapse
|
31
|
Atkinson MA, von Herrath M, Powers AC, Clare-Salzler M. Current concepts on the pathogenesis of type 1 diabetes--considerations for attempts to prevent and reverse the disease. Diabetes Care 2015; 38:979-88. [PMID: 25998290 PMCID: PMC4439528 DOI: 10.2337/dc15-0144] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, University of Florida, Gainesville, FL Department of Pediatrics, University of Florida, Gainesville, FL
| | - Matthias von Herrath
- La Jolla Institute for Allergy and Immunology, San Diego, CA Novo Nordisk R&D Center, Seattle, WA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, TN Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN VA Tennessee Valley Healthcare System, Nashville, TN
| | | |
Collapse
|
32
|
Skyler JS. Prevention and reversal of type 1 diabetes--past challenges and future opportunities. Diabetes Care 2015; 38:997-1007. [PMID: 25998292 DOI: 10.2337/dc15-0349] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Over the past three decades there have been a number of clinical trials directed at interdicting the type 1 diabetes (T1D) disease process in an attempt to prevent the development of the disease in those at increased risk or to stabilize-potentially even reverse-the disease in people with T1D, usually of recent onset. Unfortunately, to date there has been no prevention trial that has resulted in delay or prevention of T1D. And, trials in people with T1D have had mixed results with some showing promise with at least transient improvement in β-cell function compared with randomized control groups, while others have failed to slow the decline in β-cell function when compared with placebo. This Perspective will assess the past and present challenges in this effort and provide an outline for potential future opportunities.
Collapse
Affiliation(s)
- Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
33
|
Affiliation(s)
- Jay S Skyler
- Division of Endocrinology, Diabetes, and Metabolism, and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
34
|
Demeester S, Keymeulen B, Kaufman L, Van Dalem A, Balti EV, Van de Velde U, Goubert P, Verhaeghen K, Davidson HW, Wenzlau JM, Weets I, Pipeleers DG, Gorus FK. Preexisting insulin autoantibodies predict efficacy of otelixizumab in preserving residual β-cell function in recent-onset type 1 diabetes. Diabetes Care 2015; 38:644-51. [PMID: 25583753 PMCID: PMC4370324 DOI: 10.2337/dc14-1575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Immune intervention trials in recent-onset type 1 diabetes would benefit from biomarkers associated with good therapeutic response. In the previously reported randomized placebo-controlled anti-CD3 study (otelixizumab; GlaxoSmithKline), we tested the hypothesis that specific diabetes autoantibodies might serve this purpose. RESEARCH DESIGN AND METHODS In the included patients (n = 40 otelixizumab, n = 40 placebo), β-cell function was assessed as area under the curve (AUC) C-peptide release during a hyperglycemic glucose clamp at baseline (median duration of insulin treatment: 6 days) and every 6 months until 18 months after randomization. (Auto)antibodies against insulin (I[A]A), GAD (GADA), IA-2 (IA-2A), and ZnT8 (ZnT8A) were determined on stored sera by liquid-phase radiobinding assay. RESULTS At baseline, only better preserved AUC C-peptide release and higher levels of IAA were associated with better preservation of β-cell function and lower insulin needs under anti-CD3 treatment. In multivariate analysis, IAA (P = 0.022) or the interaction of IAA and C-peptide (P = 0.013) independently predicted outcome together with treatment. During follow-up, good responders to anti-CD3 treatment (i.e., IAA(+) participants with relatively preserved β-cell function [≥ 25% of healthy control subjects]) experienced a less pronounced insulin-induced rise in I(A)A and lower insulin needs. GADA, IA-2A, and ZnT8A levels were not influenced by anti-CD3 treatment, and their changes showed no relation to functional outcome. CONCLUSIONS There is important specificity of IAA among other diabetes autoantibodies to predict good therapeutic response of recent-onset type 1 diabetic patients to anti-CD3 treatment. If confirmed, future immune intervention trials in type 1 diabetes should consider both relatively preserved functional β-cell mass and presence of IAA as inclusion criteria.
Collapse
Affiliation(s)
- Simke Demeester
- Diabetes Research Center and University Hospital Brussels (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center and University Hospital Brussels (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Leonard Kaufman
- Diabetes Research Center and University Hospital Brussels (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Annelien Van Dalem
- Diabetes Research Center and University Hospital Brussels (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Eric V Balti
- Diabetes Research Center and University Hospital Brussels (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ursule Van de Velde
- Diabetes Research Center and University Hospital Brussels (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Patrick Goubert
- Diabetes Research Center and University Hospital Brussels (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Katrijn Verhaeghen
- Diabetes Research Center and University Hospital Brussels (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Howard W Davidson
- Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver, Aurora, CO
| | - Janet M Wenzlau
- Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver, Aurora, CO
| | - Ilse Weets
- Diabetes Research Center and University Hospital Brussels (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel G Pipeleers
- Diabetes Research Center and University Hospital Brussels (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Frans K Gorus
- Diabetes Research Center and University Hospital Brussels (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
35
|
Balti EV, Vandemeulebroucke E, Weets I, Van De Velde U, Van Dalem A, Demeester S, Verhaeghen K, Gillard P, De Block C, Ruige J, Keymeulen B, Pipeleers DG, Decochez K, Gorus FK. Hyperglycemic clamp and oral glucose tolerance test for 3-year prediction of clinical onset in persistently autoantibody-positive offspring and siblings of type 1 diabetic patients. J Clin Endocrinol Metab 2015; 100:551-60. [PMID: 25405499 DOI: 10.1210/jc.2014-2035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT AND OBJECTIVE In preparation of future prevention trials, we aimed to identify predictors of 3-year diabetes onset among oral glucose tolerance test (OGTT)- and hyperglycemic clamp-derived metabolic markers in persistently islet autoantibody positive (autoAb(+)) offspring and siblings of patients with type 1 diabetes (T1D). DESIGN The design is a registry-based study. SETTING Functional tests were performed in a hospital setting. PARTICIPANTS Persistently autoAb(+) first-degree relatives of patients with T1D (n = 81; age 5-39 years). MAIN OUTCOME MEASURES We assessed 3-year predictive ability of OGTT- and clamp-derived markers using receiver operating characteristics (ROC) and Cox regression analysis. Area under the curve of clamp-derived first-phase C-peptide release (AUC(5-10 min); min 5-10) was determined in all relatives and second-phase release (AUC(120-150 min); min 120-150) in those aged 12-39 years (n = 62). RESULTS Overall, the predictive ability of AUC(5-10 min) was better than that of peak C-peptide, the best predictor among OGTT-derived parameters (ROC-AUC [95%CI]: 0.89 [0.80-0.98] vs 0.81 [0.70-0.93]). Fasting blood glucose (FBG) and AUC(5-10 min) provided the best combination of markers for prediction of diabetes within 3 years; (ROC-AUC [95%CI]: 0.92 [0.84-1.00]). In multivariate Cox regression analysis, AUC(5-10 min)) (P = .001) was the strongest independent predictor and interacted significantly with all tested OGTT-derived parameters. AUC(5-10 min) below percentile 10 of controls was associated with 50-70% progression to T1D regardless of age. Similar results were obtained for AUC(120-150 min). CONCLUSIONS Clamp-derived first-phase C-peptide release can be used as an efficient and simple screening strategy in persistently autoAb(+) offspring and siblings of T1D patients to predict impending diabetes.
Collapse
Affiliation(s)
- Eric V Balti
- Diabetes Research Center (E.V.B., E.V., I.W., A.V., S.D., P.G., B.K., D.G.P., K.D., F.K.G.), Brussels Free University-VUB, Brussels, Belgium; Department of Clinical Chemistry and Radio-Immunology (E.V.B., I.W., A.V., S.D., K.V., F.K.G.), University Hospital Brussels-UZ Brussel, Brussels, Belgium; Diabetes Clinic (E.V., U.V., B.K., K.D.), University Hospital Brussels-UZ Brussel, Brussels, Belgium; Department of Clinical and Experimental Medicine (P.G.), University of Leuven-KUL and University Hospital Leuven, Leuven, Belgium; Department of Endocrinology (C.D.), Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium; and Department of Endocrinology (J.R.), University of Ghent, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Codella R, Lanzoni G, Zoso A, Caumo A, Montesano A, Terruzzi IM, Ricordi C, Luzi L, Inverardi L. Moderate Intensity Training Impact on the Inflammatory Status and Glycemic Profiles in NOD Mice. J Diabetes Res 2015; 2015:737586. [PMID: 26347378 PMCID: PMC4541000 DOI: 10.1155/2015/737586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/14/2015] [Indexed: 01/13/2023] Open
Abstract
The nonobese diabetic (NOD) mouse represents a well-established experimental model analogous to human type 1 diabetes mellitus (T1D) as it is characterized by progressive autoimmune destruction of pancreatic β-cells. Experiments were designed to investigate the impact of moderate-intensity training on T1D immunomodulation and inflammation. Under a chronic exercise regime, NOD mice were trained on a treadmill for 12 weeks (12 m/min for 30 min, 5 d/wk) while age-matched, control animals were left untrained. Prior to and upon completion of the training period, fed plasma glucose and immunological soluble factors were monitored. Both groups showed deteriorated glycemic profiles throughout the study although trained mice tended to be more compensated than controls after 10 weeks of training. An exercise-induced weight loss was detected in the trained mice with respect to the controls from week 6. After 12 weeks, IL-6 and MIP-1β were decreased in the trained animals compared to their baseline values and versus controls, although not significantly. Morphometric analysis of pancreata revealed the presence of larger infiltrates along with decreased α-cells areas in the control mice compared to trained mice. Exercise may exert positive immunomodulation of systemic functions with respect to both T1D and inflammation, but only in a stringent therapeutic window.
Collapse
Affiliation(s)
- Roberto Codella
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alessia Zoso
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Caumo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Anna Montesano
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ileana M. Terruzzi
- Division of Metabolic and Cardiovascular Science, Metabolism, Nutrigenomics and Cellular
Differentiation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Luca Inverardi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- *Luca Inverardi:
| |
Collapse
|
37
|
Griffin KJ, Thompson PA, Gottschalk M, Kyllo JH, Rabinovitch A. Combination therapy with sitagliptin and lansoprazole in patients with recent-onset type 1 diabetes (REPAIR-T1D): 12-month results of a multicentre, randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol 2014; 2:710-8. [PMID: 24997559 PMCID: PMC4283272 DOI: 10.1016/s2213-8587(14)70115-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Type 1 diabetes results from autoimmune destruction of pancreatic β cells. Findings from preclinical studies suggest that dipeptidyl peptidase-4 inhibitors and proton-pump inhibitors might enhance β-cell survival and regeneration. We postulated that sitagliptin and lansoprazole would preserve β-cell function in patients with recent-onset type 1 diabetes. METHODS We did a double-blind, placebo-controlled, phase 2 trial (REPAIR-T1D). Participants aged 11-36 years, diagnosed with type 1 diabetes within the past 6 months were recruited from Sanford Health Systems (Sioux Falls, SD, USA; Fargo, ND, USA), Children's Hospitals and Clinics of Minnesota (St Paul, MN, USA), and Rady Children's Hospital (San Diego, CA, USA). Participants were randomly assigned (2:1) to receive oral sitagliptin (100 mg for participants ≥18 years, 50 mg for those <18 years) and lansoprazole (60 mg for participants ≥18 years, 30 mg for those <18 years) or matched placebo for 12 months. Randomisation was done by a blocked randomisation process (blocks of three and six), with separate streams for younger (<18 years) and older (≥18 years) participants, and males and females. All participants and personnel remained masked until after the completion of the final 12 month visit, at which time data were unmasked to the analysis team. The primary endpoint was C-peptide response to a mixed meal challenge at 12 months measured as 2 h area under curve. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01155284. FINDINGS Between Sept 21, 2010, and May 29, 2012, 46 participants were randomly assigned to the treatment group and 22 to the placebo group; of whom 40 participants in the treatment group and 18 in the placebo group completed the 12-month treatment. At 12 months, the mean change in C-peptide area under curve was -229 pmol/L (95% CI -316 to -142) for the treatment group and -253 pmol/L (-383 to -123) for the placebo group; this difference was not significant (p=0·77). No adverse or serious adverse events were probably or definitely related to the study treatment. INTERPRETATION Although the expected change in the primary endpoint was not achieved, not all participants had increases in glucagon-like peptide-1 and gastrin concentrations that were expected with treatment. Although participants did not have adverse events related to study drugs, the study is not powered to address safety definitively. Further trials including these drugs might be warranted, but should be designed to ensure appropriate selection of participants and increases in these intermediary hormones. FUNDING Sanford Research and JDRF.
Collapse
Affiliation(s)
- Kurt J Griffin
- The Sanford Project, Sanford Research, and Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Paul A Thompson
- The Sanford Project, Sanford Research, and Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Michael Gottschalk
- University of California San Diego and Rady Children's Hospital Pediatric Endocrinology, San Diego, CA, USA
| | | | - Alex Rabinovitch
- The Sanford Project, Sanford Research, and Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
38
|
Fotino C, Molano RD, Ricordi C, Pileggi A. Transdisciplinary approach to restore pancreatic islet function. Immunol Res 2014; 57:210-21. [PMID: 24233663 DOI: 10.1007/s12026-013-8437-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The focus of our research is on islet immunobiology. We are exploring novel strategies that could be of assistance in the treatment and prevention of type 1 diabetes, as well as in the restoration of metabolic control via transplantation of insulin producing cells (i.e., islet cells). The multiple facets of diabetes and β-cell replacement encompass different complementary disciplines, such as immunology, cell biology, pharmacology, and bioengineering, among others. Through their interaction and integration, a transdisciplinary dimension is needed in order to address and overcome all aspects of the complex puzzle toward a successful clinical translation of a biological cure for diabetes.
Collapse
|
39
|
Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AMJ. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes 2014; 7:211-23. [PMID: 25018643 PMCID: PMC4075233 DOI: 10.2147/dmso.s50789] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Islet transplantation is a well-established therapeutic treatment for a subset of patients with complicated type I diabetes mellitus. Prior to the Edmonton Protocol, only 9% of the 267 islet transplant recipients since 1999 were insulin independent for >1 year. In 2000, the Edmonton group reported the achievement of insulin independence in seven consecutive patients, which in a collaborative team effort propagated expansion of clinical islet transplantation centers worldwide in an effort to ameliorate the consequences of this disease. To date, clinical islet transplantation has established improved success with insulin independence rates up to 5 years post-transplant with minimal complications. In spite of marked clinical success, donor availability and selection, engraftment, and side effects of immunosuppression remain as existing obstacles to be addressed to further improve this therapy. Clinical trials to improve engraftment, the availability of insulin-producing cell sources, as well as alternative transplant sites are currently under investigation to expand treatment. With ongoing experimental and clinical studies, islet transplantation continues to be an exciting and attractive therapy to treat type I diabetes mellitus with the prospect of shifting from a treatment for some to a cure for all.
Collapse
Affiliation(s)
- Anthony Bruni
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Boris Gala-Lopez
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Andrew R Pepper
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Nasser S Abualhassan
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - AM James Shapiro
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
40
|
Eberwine RA, Cort L, Habib M, Mordes JP, Blankenhorn EP. Autoantigen-induced focusing of Vβ13+ T cells precedes onset of autoimmune diabetes in the LEW.1WR1 rat. Diabetes 2014; 63:596-604. [PMID: 24150607 PMCID: PMC3900547 DOI: 10.2337/db13-0462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The earliest events leading to autoimmune type 1 diabetes (T1D) are not known in any species. A T-cell receptor (TCR)-variable region, TCR-Vβ13, is required for susceptibility to autoimmune diabetes in rats, and selective depletion of Vβ13(+) T cells with an allele-specific monoclonal antibody prevents disease in multiple rat strains. To investigate the role of Vβ13 early in diabetes, we examined islet T-cell transcripts in susceptible (LEW.1WR1) and resistant (LEW.1W and Wistar Furth) strains induced with polyinosinic:polycytidylic acid. Vβ13(+) T cells displayed antigenic focusing in LEW.1WR1 islets 5 days postinduction and were characterized by a substantial decrease in complementarity determining region 3 diversity. This occurred prior to significant islet T-cell accumulation (day 7) or frank diabetes (days 10-14). Vβ13(+) transcripts increased in LEW.1WR1 islets during diabetes progression, but not in resistant rats. We also analyzed transcript clonality of rat TCR-Vα5, an ortholog of the dominant TCR-Vα chain found on insulin B:9-23-reactive T cells in nonobese diabetic rat islets. We observed clonal expansion of Vα5(+) transcripts in prediabetic LEW.1WR1 islets, suggesting that rat Vα5 is also an important component of islet autoantigen recognition. These data provide additional evidence that genome-encoded TCR sequences are important determinants of genetic susceptibility to T1D.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Antibodies, Monoclonal
- Autoantigens
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Gene Expression Regulation/immunology
- Genetic Predisposition to Disease
- Islets of Langerhans/cytology
- Poly I-C
- Rats
- Rats, Inbred Strains
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/physiology
- Up-Regulation
Collapse
Affiliation(s)
- Ryan A. Eberwine
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
| | - Laura Cort
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
| | - Michael Habib
- Division of Endocrinology & Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - John P. Mordes
- Division of Endocrinology & Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Elizabeth P. Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
- Corresponding author: Elizabeth P. Blankenhorn,
| |
Collapse
|
41
|
Chhabra P, Brayman KL. Overcoming barriers in clinical islet transplantation: current limitations and future prospects. Curr Probl Surg 2014; 51:49-86. [PMID: 24411187 DOI: 10.1067/j.cpsurg.2013.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Gorus FK, Keymeulen B, Veld PAI, Pipeleers DG. Predictors of progression to Type 1 diabetes: preparing for immune interventions in the preclinical disease phase. Expert Rev Clin Immunol 2014; 9:1173-83. [DOI: 10.1586/1744666x.2013.856757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Marcovecchio ML, Chiarelli F. An update on the pharmacotherapy options for pediatric diabetes. Expert Opin Biol Ther 2014; 14:355-64. [PMID: 24387753 DOI: 10.1517/14712598.2014.874413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Diabetes mellitus is a frequent endocrine disease during childhood and adolescence. Achieving a good glycemic control is of paramount importance to avoid short- and long-term complications and to allow a normal growth and quality of life. AREAS COVERED This review offers an update on current available treatment strategies for type 1 and type 2 diabetes approved for use in children and adolescents. EXPERT OPINION Although many progresses have been made in the field of diabetes management in children and adolescents, there are still several problems to deal with. With regard to type 1 diabetes, insulin remains the main and essential therapeutic strategy. However, the main issue is to develop a system that allows more physiological insulin coverage and reduces the risk of hypoglycemia and weight gain. Adjunct therapies would be invaluable for patients struggling to achieve an acceptable glycemic control. Treatment of type 2 diabetes is based on lifestyle interventions and metformin is the first-line drug for children older than 10 years. As for type 1 diabetes, there is a strong need for developing new drugs to be used alone or in combination.
Collapse
Affiliation(s)
- M Loredana Marcovecchio
- University of Chieti, Department of Paediatrics , Via dei Vestini 5, 66100 Chieti , Italy +0039 0871 358015 ; +0039 0871 574538 ;
| | | |
Collapse
|
44
|
Delmonte V, Codella R, Piemonti L, La Torre A, Benedini S, Maffi P, Ricordi C, Luzi L. Effects of exercise in a islet-transplanted half-marathon runner: outcome on diabetes management, training and metabolic profile. SPORT SCIENCES FOR HEALTH 2013. [DOI: 10.1007/s11332-013-0164-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Skyler JS. ATG in type 1 diabetes: an unanswered question. Lancet Diabetes Endocrinol 2013; 1:265-6. [PMID: 24622406 DOI: 10.1016/s2213-8587(13)70087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami 33136, Florida, USA.
| |
Collapse
|
46
|
Myhr CB, Hulme MA, Wasserfall CH, Hong PJ, Lakshmi PS, Schatz DA, Haller MJ, Brusko TM, Atkinson MA. The autoimmune disease-associated SNP rs917997 of IL18RAP controls IFNγ production by PBMC. J Autoimmun 2013; 44:8-12. [PMID: 23891168 DOI: 10.1016/j.jaut.2013.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 05/01/2013] [Accepted: 06/03/2013] [Indexed: 01/05/2023]
Abstract
Type 1 Diabetes (T1D) is an autoimmune disorder characterized by aberrant T cell responses. Innate immune activation defects may facilitate a T helper 1 (Th1) phenotype. The cytokine IL-18 synergizes with IL-12 to induce IFNγ production and Th1 differentiation. The IL-18R subunit (IL18RAP) SNP rs917997 has been linked to decreased IL18RAP gene expression. Prior reports link rs917997 allele A with protection from T1D, and conversely with susceptibility to Celiac disease. However, few studies have investigated the IL-18 pathway in T1D. In this study, we analyzed responsiveness to IL-18 in T1D, and the effect of rs917997 genotype on IL18RAP gene expression post-activation. Upon IL-12 and IL-18 treatment, peripheral blood mononuclear cells from subjects carrying susceptibility alleles at rs917997 produced higher levels of IFNγ than those with protective genotypes. Additionally, the SNP modified IL18RAP surface protein expression by NK cells and gene expression in activated T cells. Taken together, these data suggest that the disease-associated rs917997 allele G permits hyperresponsiveness to IL-18, providing a novel target for therapeutic intervention in T1D.
Collapse
Affiliation(s)
- Courtney B Myhr
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Martínez-Pérez B, de la Torre-Díez I, López-Coronado M. Mobile health applications for the most prevalent conditions by the World Health Organization: review and analysis. J Med Internet Res 2013; 15:e120. [PMID: 23770578 PMCID: PMC3713954 DOI: 10.2196/jmir.2600] [Citation(s) in RCA: 286] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND New possibilities for mHealth have arisen by means of the latest advances in mobile communications and technologies. With more than 1 billion smartphones and 100 million tablets around the world, these devices can be a valuable tool in health care management. Every aid for health care is welcome and necessary as shown by the more than 50 million estimated deaths caused by illnesses or health conditions in 2008. Some of these conditions have additional importance depending on their prevalence. OBJECTIVE To study the existing applications for mobile devices exclusively dedicated to the eight most prevalent health conditions by the latest update (2004) of the Global Burden of Disease (GBD) of the World Health Organization (WHO): iron-deficiency anemia, hearing loss, migraine, low vision, asthma, diabetes mellitus, osteoarthritis (OA), and unipolar depressive disorders. METHODS Two reviews have been carried out. The first one is a review of mobile applications in published articles retrieved from the following systems: IEEE Xplore, Scopus, ScienceDirect, Web of Knowledge, and PubMed. The second review is carried out by searching the most important commercial app stores: Google play, iTunes, BlackBerry World, Windows Phone Apps+Games, and Nokia's Ovi store. Finally, two applications for each condition, one for each review, were selected for an in-depth analysis. RESULTS Search queries up to April 2013 located 247 papers and more than 3673 apps related to the most prevalent conditions. The conditions in descending order by the number of applications found in literature are diabetes, asthma, depression, hearing loss, low vision, OA, anemia, and migraine. However when ordered by the number of commercial apps found, the list is diabetes, depression, migraine, asthma, low vision, hearing loss, OA, and anemia. Excluding OA from the former list, the four most prevalent conditions have fewer apps and research than the final four. Several results are extracted from the in-depth analysis: most of the apps are designed for monitoring, assisting, or informing about the condition. Typically an Internet connection is not required, and most of the apps are aimed for the general public and for nonclinical use. The preferred type of data visualization is text followed by charts and pictures. Assistive and monitoring apps are shown to be frequently used, whereas informative and educational apps are only occasionally used. CONCLUSIONS Distribution of work on mobile applications is not equal for the eight most prevalent conditions. Whereas some conditions such as diabetes and depression have an overwhelming number of apps and research, there is a lack of apps related to other conditions, such as anemia, hearing loss, or low vision, which must be filled.
Collapse
Affiliation(s)
- Borja Martínez-Pérez
- University of Valladolid, Department of Signal Theory and Communications, and Telematics Engineering., University of Valladolid, Valladolid, Spain.
| | | | | |
Collapse
|
48
|
Skyler JS, Pugliese A. Immunotherapy trials for type 1 diabetes: the contribution of George Eisenbarth. Diabetes Technol Ther 2013; 15 Suppl 2:S2-13-S2-20. [PMID: 23786294 PMCID: PMC3676656 DOI: 10.1089/dia.2013.0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of pancreatic β-cells, and as such it should respond to immunotherapy. George Eisenbarth gave many significant contributions to this field. He has been involved at some level in most immunotherapy trials during the past three decades. He was among the pioneers who attempted immunotherapy approaches in patients with recent-onset T1D. In the early 1980s he began studying relatives of those with the disease, leading to the concept that T1D was a chronic autoimmune disease, in which islet autoimmune responses would silently destroy β-cells and cause progressive impairment of insulin secretion, years to months before a diagnosis was made. Consequently, he was one of the first to attempt immune intervention in people at high risk of T1D. Throughout his career he developed autoantibody assays and predictive models (which included metabolic testing and later genetics) to identify individuals at risk of T1D. He provided seminal intellectual contributions and critical tools for prevention trials. His focus on insulin as a critical autoantigen led to multiple prevention trials, including the Diabetes Prevention Trial-Type 1 (DPT-1), which studied both parenteral and oral insulin. In the DPT-1 Oral Insulin Trial, a cohort with higher levels of insulin autoantibodies was identified that appeared to have delayed disease progression. Type 1 Diabetes TrialNet is conducting a new trial to verify or refute this observation. Moreover, George identified and tested in the mouse small molecules that block or modulate presentation of a key insulin peptide and in turn prevent the activation of insulin-specific T-lymphocytes. Thus, we believe his greatest contribution is yet to come, as in the near future we should see this most recent work translate into clinical trials.
Collapse
Affiliation(s)
- Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | | |
Collapse
|
49
|
Ten Years' Evaluation of Diet, Anthropometry, and Physical Exercise Adherence After Islet Allotransplantation. Transplant Proc 2013; 45:2025-8. [DOI: 10.1016/j.transproceed.2013.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/15/2013] [Indexed: 12/29/2022]
|
50
|
Giannoukakis N, Trucco M. Dendritic cell therapy for Type 1 diabetes suppression. Immunotherapy 2013; 4:1063-74. [PMID: 23148758 DOI: 10.2217/imt.12.76] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
While dendritic cell-based therapy is a clinical reality for human malignancies, until now, some conceptual concerns have served to delay its consideration to treat human autoimmune diseases, even in light of almost two decades' worth of overwhelmingly supportive preclinical animal studies. This article provides an overview of the development of dendritic cell-based therapy for Type 1 diabetes mellitus, given that this is the best-studied autoimmune disorder and that there is a good understanding of the underlying immunology. This article also highlights data from the authors' pioneering Phase I clinical trial with tolerogenic dendritic cells, which hopes to motivate the clinical translation of other dendritic cell-based approaches, to one or more carefully selected Type 1 diabetic patient populations.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Rangos Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | |
Collapse
|