1
|
Chen SY, Tsai RY, Tseng TJ, Chen CC. Elevated PTPN3 expression in type 2 diabetes mellitus: Insights from genetic and experimental analyses. Biomed Rep 2025; 22:53. [PMID: 39926046 PMCID: PMC11803341 DOI: 10.3892/br.2025.1931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/17/2024] [Indexed: 02/11/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with chronic hyperglycemia, leading to severe complications, including increased risk of cancer. Protein tyrosine phosphatase non-receptor type 3 (PTPN3) is implicated in both T2DM and cancer progression. The aim of the present study was to investigate the role of PTPN3 genetic polymorphisms and expression in patients with T2DM, as well as to examine changes in body weight, blood glucose levels, and hepatic PTPN3 expression in db/db obese mice in comparison with control mice at 4, 16 and 32 weeks. A total of 469 patients with T2DM and 1,699 healthy control subjects were analyzed for PTPN3 genetic polymorphisms using blood samples. Additionally, the body weight of genetically diabetic obese db/db mice and genotype control mice, and their fasting blood glucose and PTPN3 mRNA and protein expression levels were assessed in the respective liver tissues at different stages of T2DM progression (4, 16 and 32 weeks) using reverse transcription-quantitative PCR, western blot and immunohistochemistry staining analyses. The allele C frequency of rs75235286 (82.1 vs. 79.1%, P=0.044) and allele G frequency of rs17202063 (82.8% vs. 79.5%, P=0.027) in PTPN3 SNPs differed significantly between T2DM patients and healthy controls. Additionally, the body weight of db/db mice and blood glucose levels were significantly increased from the 4th to 32nd week compared with control mice. Furthermore, db/db mice exhibited significantly elevated hepatic mRNA and protein expression levels of PTPN3 compared with control mice, especially at the 32nd week. Taken together, these findings suggested that an increased level of PTPN3 expression may serve a role in the progression of diabetic complications in patients with T2DM, highlighting the importance of further investigation into PTPN3 as a potential therapeutic target to decrease cancer risk and enhance treatment outcomes in T2DM.
Collapse
Affiliation(s)
- Shih-Yin Chen
- School of Chinese Medicine, China Medical University, Taichung 404328, Taiwan, R.O.C
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404328, Taiwan, R.O.C
| | - Ru-Yin Tsai
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| | - To-Jung Tseng
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| | - Chin-Chang Chen
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| |
Collapse
|
2
|
Ezeh U, Chen YI, Pall M, Buyalos RP, Chan JL, Pisarska MD, Azziz R. Alterations in nonesterified free fatty acid trafficking rather than hyperandrogenism contribute to metabolic health in obese women with polycystic ovary syndrome. Fertil Steril 2024; 121:1040-1052. [PMID: 38307453 DOI: 10.1016/j.fertnstert.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVE To determine whether alterations in nonesterified fatty acid (NEFA) dynamics or degree of hyperandrogenism (HA) contribute to the difference in insulin sensitivity between women with metabolically healthy obese polycystic ovary syndrome (PCOS) (MHO-PCOS) and women with metabolically unhealthy obese PCOS (MUO-PCOS). DESIGN Prospective cross-sectional study. SETTING Tertiary-care academic center. PATIENTS One hundred twenty-five obese women with PCOS. INTERVENTION Consecutive obese (body mass index [BMI] ≥ 30 kg/m2) oligo-ovulatory women (n = 125) with PCOS underwent an oral glucose tolerance test and a subgroup of 16 participants underwent a modified frequently sampled intravenous glucose tolerance test to determine insulin-glucose and -NEFA dynamics. MAIN OUTCOME MEASURES Degree of insulin resistance (IR) in adipose tissue (AT) basally (Adipo-IR) and dynamically (the nadir in NEFA levels observed [NEFAnadir], the time it took for NEFA levels to reach nadir [TIMEnadir], and the percent suppression in plasma NEFA levels from baseline to nadir [%NEFAsupp]); peak lipolysis rate (SNEFA) and peak rate of NEFA disposal from plasma pool (KNEFA); whole-body insulin-glucose interaction (acute response of insulin to glucose [AIRg], insulin sensitivity index [Si], glucose effectiveness [Sg], and disposition index [Di]); and HA (hirsutism score, total and free testosterone levels, and dehydroepiandrosterone sulfate levels). RESULTS A total of 85 (68%) women were MUO-PCOS and 40 (32%) were MHO-PCOS using the homeostasis model of assessment of IR. Subjects with MUO-PCOS and MHO-PCOS did not differ in mean age, BMI, waist-to-hip ratio, HA, and lipoprotein levels. By a modified frequently sampled intravenous glucose tolerance test, eight women with MUO-PCOS had lesser Si, KNEFA, and the percent suppression in plasma NEFA levels from baseline to nadir (%NEFAsupp) and greater TIMEnadir, NEFAnadir, and baseline adipose tissue IR index (Adipo-IR) than eight subjects with MHO-PCOS, but similar fasting NEFA levels and SNEFA. Women with MUO-PCOS had a higher homeostasis model of assessment-β% and fasting insulin levels than women with MHO-PCOS. In bivalent analysis, Si correlated strongly and negatively with Adipo-IR and NEFAnadir, weakly and negatively with TIMEnadir, and positively with KNEFA and %NEFAsupp, in women with MUO-PCOS only. CONCLUSION Independent of age and BMI, women with MUO-PCOS have reduced NEFA uptake and altered insulin-mediated NEFA suppression, but no difference in HA, compared with women with MHO-PCOS. Altered insulin-mediated NEFA suppression, rather than HA or lipolysis rate, contributes to variations in insulin sensitivity among obese women with PCOS.
Collapse
Affiliation(s)
- Uche Ezeh
- California IVF Fertility Center, Sacramento, California; Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama; Department of Obstetrics and Gynecology, Alta Bates Summit Medical Center (Sutter), Berkeley, California
| | - Yd Ida Chen
- Department of Pediatrics and Medicine, Harbor- University of California (UCLA) Medical Center, Torrance, California; Department of Medicine, The David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Marita Pall
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Richard P Buyalos
- Fertility and Surgical Associates of California, Thousand Oaks, California
| | - Jessica L Chan
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, UCLA, Los Angeles, California
| | - Ricardo Azziz
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama; Department of Medicine, Heersink School of Medicine, UAB, Birmingham, Alabama; Department of Healthcare Organization and Policy, School of Public Health, UAB, Birmingham, Alabama; Department of Health Policy, Management and Behavior, School of Public Health, State University of New York at Albany, Albany, New York.
| |
Collapse
|
3
|
Zhao Q, Du X, Liu F, Zhang Y, Qin W, Zhang Q. ECHDC3 Variant Regulates the Right Hippocampal Microstructural Integrity and Verbal Memory in Type 2 Diabetes Mellitus. Neuroscience 2024; 538:30-39. [PMID: 38070593 DOI: 10.1016/j.neuroscience.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/25/2023]
Abstract
ECHDC3 is a risk gene for white matter (WM) hyperintensity and is associated with insulin resistance. This study aimed to investigate whether ECHDC3 variants selectively regulate brain WM microstructures and episodic memory in patients with type 2 diabetes mellitus (T2DM). We enrolled 106 patients with T2DM and 111 healthy controls. A voxel-wise general linear model was employed to explore the interaction effect between ECHDC3 rs11257311 polymorphism and T2DM diagnosis on fractional anisotropy (FA). A linear modulated mediation analysis was conducted to examine the potential of FA value to mediate the influence of T2DM on episodic memory in an ECHDC3-dependent manner. We observed a noteworthy interaction between genotype and diagnosis on FA in the right inferior temporal WM, right anterior limb of the internal capsule, right frontal WM, and the right hippocampus. Modulated mediation analysis revealed a significant ECHDC3 modulation on the T2DM → right hippocampal FA → short-term memory pathway, with only rs11257311 G risk homozygote demonstrating significant mediation effect. Together, our findings provide evidence of ECHDC3 modulating the effect of T2DM on right hippocampal microstructural impairment and short-term memory decline, which might be a neuro-mechanism for T2DM related episodic memory impairment.
Collapse
Affiliation(s)
- Qiyu Zhao
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Du
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yang Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Quan Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
4
|
Larsen JK, Kruse R, Sahebekhtiari N, Moreno-Justicia R, Gomez Jorba G, Petersen MH, de Almeida ME, Ørtenblad N, Deshmukh AS, Højlund K. High-throughput proteomics uncovers exercise training and type 2 diabetes-induced changes in human white adipose tissue. SCIENCE ADVANCES 2023; 9:eadi7548. [PMID: 38019916 PMCID: PMC10686561 DOI: 10.1126/sciadv.adi7548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
White adipose tissue (WAT) is important for metabolic homeostasis. We established the differential proteomic signatures of WAT in glucose-tolerant lean and obese individuals and patients with type 2 diabetes (T2D) and the response to 8 weeks of high-intensity interval training (HIIT). Using a high-throughput and reproducible mass spectrometry-based proteomics pipeline, we identified 3773 proteins and found that most regulated proteins displayed progression in markers of dysfunctional WAT from lean to obese to T2D individuals and were highly associated with clinical measures such as insulin sensitivity and HbA1c. We propose that these distinct markers could serve as potential clinical biomarkers. HIIT induced only minor changes in the WAT proteome. This included an increase in WAT ferritin levels independent of obesity and T2D, and WAT ferritin levels were strongly correlated with individual insulin sensitivity. Together, we report a proteomic signature of WAT related to obesity and T2D and highlight an unrecognized role of human WAT iron metabolism in exercise training adaptations.
Collapse
Affiliation(s)
- Jeppe Kjærgaard Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Navid Sahebekhtiari
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Roger Moreno-Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Gerard Gomez Jorba
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Maria H. Petersen
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
| | - Martin E. de Almeida
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
5
|
Rial SA, Shishani R, Cummings BP, Lim GE. Is 14-3-3 the Combination to Unlock New Pathways to Improve Metabolic Homeostasis and β-Cell Function? Diabetes 2023; 72:1045-1054. [PMID: 37471599 PMCID: PMC10382651 DOI: 10.2337/db23-0094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 07/22/2023]
Abstract
Since their discovery nearly five decades ago, molecular scaffolds belonging to the 14-3-3 protein family have been recognized as pleiotropic regulators of diverse cellular and physiological functions. With their ability to bind to proteins harboring specific serine and threonine phosphorylation motifs, 14-3-3 proteins can interact with and influence the function of docking proteins, enzymes, transcription factors, and transporters that have essential roles in metabolism and glucose homeostasis. Here, we will discuss the regulatory functions of 14-3-3 proteins that will be of great interest to the fields of metabolism, pancreatic β-cell biology, and diabetes. We first describe how 14-3-3 proteins play a central role in glucose and lipid homeostasis by modulating key pathways of glucose uptake, glycolysis, oxidative phosphorylation, and adipogenesis. This is followed by a discussion of the contributions of 14-3-3 proteins to calcium-dependent exocytosis and how this relates to insulin secretion from β-cells. As 14-3-3 proteins are major modulators of apoptosis and cell cycle progression, we will explore if 14-3-3 proteins represent a viable target for promoting β-cell regeneration and discuss the feasibility of targeting 14-3-3 proteins to treat metabolic diseases such as diabetes. ARTICLE HIGHLIGHTS 14-3-3 proteins are ubiquitously expressed scaffolds with multiple roles in glucose homeostasis and metabolism. 14-3-3ζ regulates adipogenesis via distinct mechanisms and is required for postnatal adiposity and adipocyte function. 14-3-3ζ controls glucose-stimulated insulin secretion from pancreatic β-cells by regulating mitochondrial function and ATP synthesis as well as facilitating cross talk between β-cells and α-cells.
Collapse
Affiliation(s)
- Sabri A. Rial
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
- Cardiometabolic Axis, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Rahaf Shishani
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California, Davis, Sacramento, CA
| | - Bethany P. Cummings
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California, Davis, Sacramento, CA
| | - Gareth E. Lim
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
- Cardiometabolic Axis, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
6
|
Ogawa T, Kouzu H, Osanami A, Tatekoshi Y, Sato T, Kuno A, Fujita Y, Ino S, Shimizu M, Toda Y, Ohwada W, Yano T, Tanno M, Miki T, Miura T. Downregulation of extramitochondrial BCKDH and its uncoupling from AMP deaminase in type 2 diabetic OLETF rat hearts. Physiol Rep 2023; 11:e15608. [PMID: 36802195 PMCID: PMC9938007 DOI: 10.14814/phy2.15608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/20/2023] Open
Abstract
Systemic branched-chain amino acid (BCAA) metabolism is dysregulated in cardiometabolic diseases. We previously demonstrated that upregulated AMP deaminase 3 (AMPD3) impairs cardiac energetics in a rat model of obese type 2 diabetes, Otsuka Long-Evans-Tokushima fatty (OLETF). Here, we hypothesized that the cardiac BCAA levels and the activity of branched-chain α-keto acid dehydrogenase (BCKDH), a rate-limiting enzyme in BCAA metabolism, are altered by type 2 diabetes (T2DM), and that upregulated AMPD3 expression is involved in the alteration. Performing proteomic analysis combined with immunoblotting, we discovered that BCKDH localizes not only to mitochondria but also to the endoplasmic reticulum (ER), where it interacts with AMPD3. Knocking down AMPD3 in neonatal rat cardiomyocytes (NRCMs) increased BCKDH activity, suggesting that AMPD3 negatively regulates BCKDH. Compared with control rats (Long-Evans Tokushima Otsuka [LETO] rats), OLETF rats exhibited 49% higher cardiac BCAA levels and 49% lower BCKDH activity. In the cardiac ER of the OLETF rats, BCKDH-E1α subunit expression was downregulated, while AMPD3 expression was upregulated, resulting in an 80% lower AMPD3-E1α interaction compared to LETO rats. Knocking down E1α expression in NRCMs upregulated AMPD3 expression and recapitulated the imbalanced AMPD3-BCKDH expressions observed in OLETF rat hearts. E1α knockdown in NRCMs inhibited glucose oxidation in response to insulin, palmitate oxidation, and lipid droplet biogenesis under oleate loading. Collectively, these data revealed previously unrecognized extramitochondrial localization of BCKDH in the heart and its reciprocal regulation with AMPD3 and imbalanced AMPD3-BCKDH interactions in OLETF. Downregulation of BCKDH in cardiomyocytes induced profound metabolic changes that are observed in OLETF hearts, providing insight into mechanisms contributing to the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Toshifumi Ogawa
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Arata Osanami
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yuki Tatekoshi
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
| | - Atsushi Kuno
- Department of PharmacologySapporo Medical University School of MedicineSapporoJapan
| | - Yugo Fujita
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Shoya Ino
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Masaki Shimizu
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yuki Toda
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| |
Collapse
|
7
|
Sabaratnam R, Skov V, Paulsen SK, Juhl S, Kruse R, Hansen T, Halkier C, Kristensen JM, Vind BF, Richelsen B, Knudsen S, Dahlgaard J, Beck-Nielsen H, Kruse TA, Højlund K. A Signature of Exaggerated Adipose Tissue Dysfunction in Type 2 Diabetes Is Linked to Low Plasma Adiponectin and Increased Transcriptional Activation of Proteasomal Degradation in Muscle. Cells 2022; 11:cells11132005. [PMID: 35805088 PMCID: PMC9265693 DOI: 10.3390/cells11132005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Insulin resistance in skeletal muscle in type 2 diabetes (T2D) is characterized by more pronounced metabolic and molecular defects than in obesity per se. There is increasing evidence that adipose tissue dysfunction contributes to obesity-induced insulin resistance in skeletal muscle. Here, we used an unbiased approach to examine if adipose tissue dysfunction is exaggerated in T2D and linked to diabetes-related mechanisms of insulin resistance in skeletal muscle. Transcriptional profiling and biological pathways analysis were performed in subcutaneous adipose tissue (SAT) and skeletal muscle biopsies from 17 patients with T2D and 19 glucose-tolerant, age and weight-matched obese controls. Findings were validated by qRT-PCR and western blotting of selected genes and proteins. Patients with T2D were more insulin resistant and had lower plasma adiponectin than obese controls. Transcriptional profiling showed downregulation of genes involved in mitochondrial oxidative phosphorylation and the tricarboxylic-acid cycle and increased expression of extracellular matrix (ECM) genes in SAT in T2D, whereas genes involved in proteasomal degradation were upregulated in the skeletal muscle in T2D. qRT-PCR confirmed most of these findings and showed lower expression of adiponectin in SAT and higher expression of myostatin in muscle in T2D. Interestingly, muscle expression of proteasomal genes correlated positively with SAT expression of ECM genes but inversely with the expression of ADIPOQ in SAT and plasma adiponectin. Protein content of proteasomal subunits and major ubiquitin ligases were unaltered in the skeletal muscle of patients with T2D. A transcriptional signature of exaggerated adipose tissue dysfunction in T2D, compared with obesity alone, is linked to low plasma adiponectin and increased transcriptional activation of proteasomal degradation in skeletal muscle.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; (T.H.); (C.H.)
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, DK-4000 Roskilde, Denmark;
| | - Søren K. Paulsen
- Department of Pathology, Viborg Regional Hospital, DK-8800 Viborg, Denmark;
| | - Stine Juhl
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; (T.H.); (C.H.)
| | - Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; (T.H.); (C.H.)
| | - Thea Hansen
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; (T.H.); (C.H.)
| | - Cecilie Halkier
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; (T.H.); (C.H.)
| | - Jonas M. Kristensen
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Birgitte F. Vind
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
| | - Bjørn Richelsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, DK-8200 Aarhus N, Denmark;
| | - Steen Knudsen
- Allarity Therapeutics Europe, DK-2970 Hørsholm, Denmark;
| | - Jesper Dahlgaard
- Program for Mind and Body in Mental Health, Research Centre for Health and Welfare Technology, VIA University College, DK-8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
| | - Henning Beck-Nielsen
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
| | - Torben A. Kruse
- Department of Clinical Genetics, Odense University Hospital, DK-5000 Odense C, Denmark;
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; (T.H.); (C.H.)
- Correspondence: ; Tel.: +45-2532-0648
| |
Collapse
|
8
|
Bouland GA, Beulens JWJ, Nap J, van der Slik AR, Zaldumbide A, 't Hart LM, Slieker RC. Diabetes risk loci-associated pathways are shared across metabolic tissues. BMC Genomics 2022; 23:368. [PMID: 35568807 PMCID: PMC9107144 DOI: 10.1186/s12864-022-08587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
Aims/hypothesis Numerous genome-wide association studies have been performed to understand the influence of genetic variation on type 2 diabetes etiology. Many identified risk variants are located in non-coding and intergenic regions, which complicates understanding of how genes and their downstream pathways are influenced. An integrative data approach will help to understand the mechanism and consequences of identified risk variants. Methods In the current study we use our previously developed method CONQUER to overlap 403 type 2 diabetes risk variants with regulatory, expression and protein data to identify tissue-shared disease-relevant mechanisms. Results One SNP rs474513 was found to be an expression-, protein- and metabolite QTL. Rs474513 influenced LPA mRNA and protein levels in the pancreas and plasma, respectively. On the pathway level, in investigated tissues most SNPs linked to metabolism. However, in eleven of the twelve tissues investigated nine SNPs were linked to differential expression of the ribosome pathway. Furthermore, seven SNPs were linked to altered expression of genes linked to the immune system. Among them, rs601945 was found to influence multiple HLA genes, including HLA-DQA2, in all twelve tissues investigated. Conclusion Our results show that in addition to the classical metabolism pathways, other pathways may be important to type 2 diabetes that show a potential overlap with type 1 diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08587-5.
Collapse
Affiliation(s)
- Gerard A Bouland
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333ZC, Leiden, the Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam UMC, Location VUMC, Amsterdam Public Health Institute, Amsterdam, the Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joey Nap
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333ZC, Leiden, the Netherlands
| | - Arno R van der Slik
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333ZC, Leiden, the Netherlands
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333ZC, Leiden, the Netherlands.,Department of Epidemiology and Data Science, Amsterdam UMC, Location VUMC, Amsterdam Public Health Institute, Amsterdam, the Netherlands.,Molecular Epidemiology Section, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333ZC, Leiden, the Netherlands. .,Department of Epidemiology and Data Science, Amsterdam UMC, Location VUMC, Amsterdam Public Health Institute, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Insulin resistance rewires the metabolic gene program and glucose utilization in human white adipocytes. Int J Obes (Lond) 2022; 46:535-543. [PMID: 34799672 DOI: 10.1038/s41366-021-01021-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND In obesity, adipose tissue dysfunction resulting from excessive fat accumulation leads to systemic insulin resistance (IR), the underlying alteration of Type 2 Diabetes. The specific pathways dysregulated in dysfunctional adipocytes and the extent to which it affects adipose metabolic functions remain incompletely characterized. METHODS We interrogated the transcriptional adaptation to increased adiposity in association with insulin resistance in visceral white adipose tissue from lean men, or men presenting overweight/obesity (BMI from 19 to 33) and discordant for insulin sensitivity. In human adipocytes in vitro, we investigated the direct contribution of IR in altering metabolic gene programming and glucose utilization using 13C-isotopic glucose tracing. RESULTS We found that gene expression associated with impaired glucose and lipid metabolism and inflammation represented the strongest association with systemic insulin resistance, independently of BMI. In addition, we showed that inducing IR in mature human white adipocytes was sufficient to reprogram the transcriptional profile of genes involved in important metabolic functions such as glycolysis, the pentose phosphate pathway and de novo lipogenesis. Finally, we found that IR induced a rewiring of glucose metabolism, with higher incorporation of glucose into citrate, but not into downstream metabolites within the TCA cycle. CONCLUSIONS Collectively, our data highlight the importance of obesity-derived insulin resistance in impacting the expression of key metabolic genes and impairing the metabolic processes of glucose utilization, and reveal a role for metabolic adaptation in adipose dysfunction in humans.
Collapse
|
10
|
Zhang Q. High-Dimensional Mediation Analysis with Applications to Causal Gene Identification. STATISTICS IN BIOSCIENCES 2021. [DOI: 10.1007/s12561-021-09328-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Maciej-Hulme ML. New Insights Into Human Hyaluronidase 4/Chondroitin Sulphate Hydrolase. Front Cell Dev Biol 2021; 9:767924. [PMID: 34746156 PMCID: PMC8564380 DOI: 10.3389/fcell.2021.767924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
In this review, the current experimental evidence, literature and hypotheses surrounding hyaluronidase 4 [HYAL4, also known as chondroitin sulphate hydrolase (CHSE)] and chondroitin sulphate (CS) are explored. Originally named for its sequence similarity to other members of the hyaluronidase family, HYAL4 is actually a relatively distinct member of the family, particularly for its unique degradation of CS-D (2-O-, 6-O-sulphated CS) motifs and specific expression. Human HYAL4 protein expression and structural features are discussed in relation to different isoforms, activities, potential localisations and protein-protein interaction partners. CS proteoglycan targets of HYAL4 activity include: serglycin, aggrecan, CD44 and sulfatase 2, with other potential proteoglycans yet to be identified. Importantly, changes in HYAL4 expression changes in human disease have been described for testicular, bladder and kidney cancers, with gene mutations reported for several others including: leukaemia, endometrial, ovarian, colorectal, head and neck, stomach, lung and breast cancers. The HYAL4 gene also plays a role in P53 negative human cancer cell proliferation and is linked to stem cell naivety. However, its role in cancer remains relatively unexplored. Finally, current tools and techniques for the detection of specific HYAL4 activity in biological samples are critically assessed. Understanding the role of HYAL4 in human diseases will fortify our understanding of developmental processes and disease manifestation, ultimately providing novel diagnostic opportunities and therapeutic targets for drug discovery.
Collapse
|
12
|
Buckels EJ, Bloomfield FH, Oliver MH, Spiroski AM, Harding JE, Jaquiery AL. Sexually dimorphic changes in the endocrine pancreas and skeletal muscle in young adulthood following intra-amniotic IGF-I treatment of growth-restricted fetal sheep. Am J Physiol Endocrinol Metab 2021; 321:E530-E542. [PMID: 34459219 DOI: 10.1152/ajpendo.00111.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fetal growth restriction (FGR) is associated with decreased insulin secretory capacity and decreased insulin sensitivity in muscle in adulthood. We investigated whether intra-amniotic IGF-I treatment in late gestation mitigated the adverse effects of FGR on the endocrine pancreas and skeletal muscle at 18 mo of age. Singleton-bearing ewes underwent uterine artery embolization between 103 and 107 days of gestational age, followed by 5 once-weekly intra-amniotic injections of 360-µg IGF-I (FGRI) or saline (FGRS) and were compared with an unmanipulated control group (CON). We measured offspring pancreatic endocrine cell mass and pancreatic and skeletal muscle mRNA expression at 18 mo of age (n = 7-9/sex/group). Total α-cell mass was increased ∼225% in FGRI males versus CON and FGRS males, whereas β-cell mass was not different between groups of either sex. Pancreatic mitochondria-related mRNA expression was increased in FGRS females versus CON (NRF1, MTATP6, UCP2), and FGRS males versus CON (TFAM, NRF1, UCP2) but was largely unchanged in FGRI males versus CON. In skeletal muscle, mitochondria-related mRNA expression was decreased in FGRS females versus CON (PPARGC1A, TFAM, NRF1, UCP2, MTATP6), FGRS males versus CON (NRF1 and UCP2), and FGRI females versus CON (TFAM and UCP2), with only MTATP6 expression decreased in FGRI males versus CON. Although the window during which IGF-I treatment was delivered was limited to the final 5 wk of gestation, IGF-I therapy of FGR altered the endocrine pancreas and skeletal muscle in a sex-specific manner in young adulthood.NEW & NOTEWORTHY Fetal growth restriction (FGR) is associated with compromised metabolic function throughout adulthood. Here, we explored the long-term effects of fetal IGF-I therapy on the adult pancreas and skeletal muscle. This is the first study demonstrating that IGF-I therapy of FGR has sex-specific long-term effects at both the tissue and molecular level on metabolically active tissues in adult sheep.
Collapse
Affiliation(s)
- Emma J Buckels
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Mark H Oliver
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Jane E Harding
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Anne L Jaquiery
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Kominakis A, Tarsani E, Hager-Theodorides AL, Mastranestasis I, Gkelia D, Hadjigeorgiou I. Genetic differentiation of mainland-island sheep of Greece: Implications for identifying candidate genes for long-term local adaptation. PLoS One 2021; 16:e0257461. [PMID: 34529728 PMCID: PMC8445479 DOI: 10.1371/journal.pone.0257461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
In Greece, a number of local sheep breeds are raised in a wide range of ecological niches across the country. These breeds can be used for the identification of genetic variants that contribute to local adaptation. To this end, 50k genotypes of 90 local sheep from mainland Greece (Epirus, n = 35 and Peloponnesus, n = 55) were used, as well as 147 genotypes of sheep from insular Greece (Skyros, n = 21), Lemnos, n = 36 and Lesvos, n = 90). Principal components and phylogenetic analysis along with admixture and spatial point patterns analyses suggested genetic differentiation of 'mainland-island' populations. Genome scans for signatures of selection and genome-wide association analysis (GWAS) pointed to one highly differentiating marker on OAR4 (FST = 0.39, FLK = 21.93, FDR p-value = 0.10) that also displayed genome wide significance (FDR p-value = 0.002) during GWAS. A total number of 6 positional candidate genes (LOC106990429, ZNF804B, TEX47, STEAP4, SRI and ADAM22) were identified within 500 kb flanking regions around the significant marker. In addition, two QTLs related to fat tail deposition are reported in genomic regions 800 kb downstream the significant marker. Based on gene ontology analysis and literature evidence, the identified candidate genes possess biological functions relevant to local adaptation that worth further investigation.
Collapse
Affiliation(s)
- Antonios Kominakis
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
| | - Eirini Tarsani
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
| | | | | | - Dimitra Gkelia
- Association of Pastoral Farmers of Epirus, Ioannina, Greece
| | | |
Collapse
|
14
|
von Loeffelholz C, Coldewey SM, Birkenfeld AL. A Narrative Review on the Role of AMPK on De Novo Lipogenesis in Non-Alcoholic Fatty Liver Disease: Evidence from Human Studies. Cells 2021; 10:cells10071822. [PMID: 34359991 PMCID: PMC8306246 DOI: 10.3390/cells10071822] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
5′AMP-activated protein kinase (AMPK) is known as metabolic sensor in mammalian cells that becomes activated by an increasing adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio. The heterotrimeric AMPK protein comprises three subunits, each of which has multiple phosphorylation sites, playing an important role in the regulation of essential molecular pathways. By phosphorylation of downstream proteins and modulation of gene transcription AMPK functions as a master switch of energy homeostasis in tissues with high metabolic turnover, such as the liver, skeletal muscle, and adipose tissue. Regulation of AMPK under conditions of chronic caloric oversupply emerged as substantial research target to get deeper insight into the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Evidence supporting the role of AMPK in NAFLD is mainly derived from preclinical cell culture and animal studies. Dysbalanced de novo lipogenesis has been identified as one of the key processes in NAFLD pathogenesis. Thus, the scope of this review is to provide an integrative overview of evidence, in particular from clinical studies and human samples, on the role of AMPK in the regulation of primarily de novo lipogenesis in human NAFLD.
Collapse
Affiliation(s)
- Christian von Loeffelholz
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-9323-177; Fax: +49-3641-9323-102
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Septomics Research Center, Jena University Hospital, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany;
- Department of Therapy of Diabetes, Institute of Diabetes Research and Metabolic Diseases in the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Division of Diabetes and Nutritional Sciences, Rayne Institute, King’s College London, London SE5 9RJ, UK
| |
Collapse
|
15
|
Beasley HK, Rodman TA, Collins GV, Hinton A, Exil V. TMEM135 is a Novel Regulator of Mitochondrial Dynamics and Physiology with Implications for Human Health Conditions. Cells 2021; 10:cells10071750. [PMID: 34359920 PMCID: PMC8303332 DOI: 10.3390/cells10071750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Transmembrane proteins (TMEMs) are integral proteins that span biological membranes. TMEMs function as cellular membrane gates by modifying their conformation to control the influx and efflux of signals and molecules. TMEMs also reside in and interact with the membranes of various intracellular organelles. Despite much knowledge about the biological importance of TMEMs, their role in metabolic regulation is poorly understood. This review highlights the role of a single TMEM, transmembrane protein 135 (TMEM135). TMEM135 is thought to regulate the balance between mitochondrial fusion and fission and plays a role in regulating lipid droplet formation/tethering, fatty acid metabolism, and peroxisomal function. This review highlights our current understanding of the various roles of TMEM135 in cellular processes, organelle function, calcium dynamics, and metabolism.
Collapse
Affiliation(s)
- Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Taylor A. Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Greg V. Collins
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
- Correspondence: (A.H.J.); (V.E.)
| | - Vernat Exil
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: (A.H.J.); (V.E.)
| |
Collapse
|
16
|
Kalafati M, Lenz M, Ertaylan G, Arts ICW, Evelo CT, van Greevenbroek MMJ, Blaak EE, Adriaens M, Kutmon M. Assessing the Contribution of Relative Macrophage Frequencies to Subcutaneous Adipose Tissue. Front Nutr 2021; 8:675935. [PMID: 34136521 PMCID: PMC8200404 DOI: 10.3389/fnut.2021.675935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Macrophages play an important role in regulating adipose tissue function, while their frequencies in adipose tissue vary between individuals. Adipose tissue infiltration by high frequencies of macrophages has been linked to changes in adipokine levels and low-grade inflammation, frequently associated with the progression of obesity. The objective of this project was to assess the contribution of relative macrophage frequencies to the overall subcutaneous adipose tissue gene expression using publicly available datasets. Methods: Seven publicly available microarray gene expression datasets from human subcutaneous adipose tissue biopsies (n = 519) were used together with TissueDecoder to determine the adipose tissue cell-type composition of each sample. We divided the subjects in four groups based on their relative macrophage frequencies. Differential gene expression analysis between the high and low relative macrophage frequencies groups was performed, adjusting for sex and study. Finally, biological processes were identified using pathway enrichment and network analysis. Results: We observed lower frequencies of adipocytes and higher frequencies of adipose stem cells in individuals characterized by high macrophage frequencies. We additionally studied whether, within subcutaneous adipose tissue, interindividual differences in the relative frequencies of macrophages were reflected in transcriptional differences in metabolic and inflammatory pathways. Adipose tissue of individuals with high macrophage frequencies had a higher expression of genes involved in complement activation, chemotaxis, focal adhesion, and oxidative stress. Similarly, we observed a lower expression of genes involved in lipid metabolism, fatty acid synthesis, and oxidation and mitochondrial respiration. Conclusion: We present an approach that combines publicly available subcutaneous adipose tissue gene expression datasets with a deconvolution algorithm to calculate subcutaneous adipose tissue cell-type composition. The results showed the expected increased inflammation gene expression profile accompanied by decreased gene expression in pathways related to lipid metabolism and mitochondrial respiration in subcutaneous adipose tissue in individuals characterized by high macrophage frequencies. This approach demonstrates the hidden strength of reusing publicly available data to gain cell-type-specific insights into adipose tissue function.
Collapse
Affiliation(s)
- Marianthi Kalafati
- Deparment of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Michael Lenz
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands.,Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany.,Preventive Cardiology and Preventive Medicine-Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gökhan Ertaylan
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands.,Unit Health, Flemish Institute for Technological Research, Antwerp, Belgium
| | - Ilja C W Arts
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands.,Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Chris T Evelo
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands.,Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Ellen E Blaak
- Deparment of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Michiel Adriaens
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands
| | - Martina Kutmon
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands.,Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
17
|
Molecular pathways behind acquired obesity: Adipose tissue and skeletal muscle multiomics in monozygotic twin pairs discordant for BMI. CELL REPORTS MEDICINE 2021; 2:100226. [PMID: 33948567 PMCID: PMC8080113 DOI: 10.1016/j.xcrm.2021.100226] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/31/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Tissue-specific mechanisms prompting obesity-related development complications in humans remain unclear. We apply multiomics analyses of subcutaneous adipose tissue and skeletal muscle to examine the effects of acquired obesity among 49 BMI-discordant monozygotic twin pairs. Overall, adipose tissue appears to be more affected by excess body weight than skeletal muscle. In heavier co-twins, we observe a transcriptional pattern of downregulated mitochondrial pathways in both tissues and upregulated inflammatory pathways in adipose tissue. In adipose tissue, heavier co-twins exhibit lower creatine levels; in skeletal muscle, glycolysis- and redox stress-related protein and metabolite levels remain higher. Furthermore, metabolomics analyses in both tissues reveal that several proinflammatory lipids are higher and six of the same lipid derivatives are lower in acquired obesity. Finally, in adipose tissue, but not in skeletal muscle, mitochondrial downregulation and upregulated inflammation are associated with a fatty liver, insulin resistance, and dyslipidemia, suggesting that adipose tissue dominates in acquired obesity. Multiomics analyses of adipose tissue and skeletal muscle in BMI-discordant twins Excess body weight downregulates mitochondrial pathways in both tissues Excess body weight upregulates proinflammatory pathways in both tissues Adipose tissue alterations are associated with metabolic health in acquired obesity
Collapse
|
18
|
Naot D, Bentley J, Macpherson C, Pitto RP, Bava U, Choi AJ, Matthews BG, Callon KE, Gao R, Horne A, Gamble GD, Reid IR, Cornish J. Molecular characterisation of osteoblasts from bone obtained from people of Polynesian and European ancestry undergoing joint replacement surgery. Sci Rep 2021; 11:2428. [PMID: 33510208 PMCID: PMC7844412 DOI: 10.1038/s41598-021-81731-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Population studies in Aotearoa New Zealand found higher bone mineral density and lower rate of hip fracture in people of Polynesian ancestry compared to Europeans. We hypothesised that differences in osteoblast proliferation and differentiation contribute to the differences in bone properties between the two groups. Osteoblasts were cultured from bone samples obtained from 30 people of Polynesian ancestry and 25 Europeans who had joint replacement surgeries for osteoarthritis. The fraction of cells in S-phase was determined by flow cytometry, and gene expression was analysed by microarray and real-time PCR. We found no differences in the fraction of osteoblasts in S-phase between the groups. Global gene expression analysis identified 79 differentially expressed genes (fold change > 2, FDR P < 0.1). Analysis of selected genes by real-time PCR found higher expression of COL1A1 and KRT34 in Polynesians, whereas BGLAP, DKK1, NOV, CDH13, EFHD1 and EFNB2 were higher in Europeans (P ≤ 0.01). Osteoblasts from European donors had higher levels of late differentiation markers and genes encoding proteins that inhibit the Wnt signalling pathway. This variability may contribute to the differences in bone properties between people of Polynesian and European ancestry that had been determined in previous studies.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Jarome Bentley
- Middlemore Hospital, Counties Manukau District Health Board, Auckland, 1062, New Zealand
| | | | - Rocco P Pitto
- Middlemore Hospital, Counties Manukau District Health Board, Auckland, 1062, New Zealand
- Department of Orthopaedic Surgery, South Auckland Clinical Campus, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Usha Bava
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ally J Choi
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Karen E Callon
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ryan Gao
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Anne Horne
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Gregory D Gamble
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ian R Reid
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
19
|
Cao T, Chen Q, Zhang B, Wu X, Zeng C, Zhang S, Cai H. Clozapine Induced Disturbances in Hepatic Glucose Metabolism: The Potential Role of PGRMC1 Signaling. Front Endocrinol (Lausanne) 2021; 12:727371. [PMID: 34970218 PMCID: PMC8712644 DOI: 10.3389/fendo.2021.727371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Newly emerging evidence has implicated that progesterone receptor component 1 (PGRMC1) plays a novel role not only in the lipid disturbance induced by atypical antipsychotic drugs (AAPD) but also in the deterioration of glucose homoeostasis induced by clozapine (CLZ) treatment. The present study aimed to investigate the role of PGRMC1 signaling on hepatic gluconeogenesis and glycogenesis in male rats following CLZ treatment (20 mg/kg daily for 4 weeks). Recombinant adeno-associated viruses (AAV) were constructed for the knockdown or overexpression of hepatic PGRMC1. Meanwhile, AG205, the specific inhibitor of PGRMC1 was also used for functional validation of PGRMC1. Hepatic protein expressions were measured by western blotting. Meanwhile, plasma glucose, insulin and glucagon, HbA1c and hepatic glycogen were also determined by assay kits. Additionally, concentrations of progesterone (PROG) in plasma, liver and adrenal gland were measured by a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Our study demonstrated that CLZ promoted the process of gluconeogenesis and repressed glycogenesis, respectively mediated by PI3K-Akt-FOXO1 and GSK3β signaling via inhibition of PGRMC1-EGFR/GLP1R in rat liver, along with an increase in fasting blood glucose, HbA1c levels and a decrease in insulin and hepatic glycogen levels. Furthermore, through PGRMC1-EGFR/GLP1R-PI3K-Akt pathway, knockdown or inhibition (by AG205) of PGRMC1 mimics, whereas its overexpression moderately alleviates CLZ-induced glucose disturbances. Potentially, the PGRMC1 target may be regarded as a novel therapeutic strategy for AAPD-induced hepatic glucose metabolism disorder.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - XiangXin Wu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: HuaLin Cai,
| |
Collapse
|
20
|
Ye S, Matthan NR, Lamon-Fava S, Aguilar GS, Turner JR, Walker ME, Chai Z, Lakshman S, Urban JF, Lichtenstein AH. Western and heart healthy dietary patterns differentially affect the expression of genes associated with lipid metabolism, interferon signaling and inflammation in the jejunum of Ossabaw pigs. J Nutr Biochem 2020; 90:108577. [PMID: 33388349 PMCID: PMC8982565 DOI: 10.1016/j.jnutbio.2020.108577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Diet quality and statin therapy are established modulators of coronary artery disease (CAD) progression, but their effect on the gastrointestinal tract and subsequent sequelae that could affect CAD progression are relatively unexplored. To address this gap, Ossabaw pigs (N = 32) were randomly assigned to receive isocaloric amounts of a Western-type diet (WD; high in saturated fat, refined carbohydrate, and cholesterol, and low in fiber) or a heart healthy-type diet (HHD; high in unsaturated fat, whole grains, fruits and vegetables, supplemented with fish oil, and low in cholesterol), with or without atorvastatin, for 6 months. At the end of the study, RNA sequencing with 100 base pair single end reads on NextSeq 500 platform was conducted in isolated pig jejunal mucosa. A two-factor edgeR analysis revealed that the dietary patterns resulted in three differentially expressed genes related to lipid metabolism (SCD, FADS1, and SQLE). The expression of these genes was associated with cardiometabolic risk factors and atherosclerotic lesion severity. Subsequent gene enrichment analysis indicated the WD, compared to the HHD, resulted in higher interferon signaling and inflammation, with some of these genes being significantly associated with serum TNF-α and/or hsCRP concentrations, but not atherosclerotic lesion severity. No significant effect of atorvastatin therapy on gene expression, nor its interaction with dietary patterns, was identified. In conclusion, Western and heart healthy-type dietary patterns differentially affect the expression of genes associated with lipid metabolism, interferon signaling, and inflammation in the jejunum of Ossabaw pigs.
Collapse
Affiliation(s)
- Shumao Ye
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Gloria Solano Aguilar
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Woman's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maura E Walker
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA
| | - Zhi Chai
- Intercollege Graduate Degree Program in Physiology, Department of Nutritional Science, Pennsylvania State University, University Park, PA, USA
| | - Sukla Lakshman
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Joseph F Urban
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
21
|
Torres JM, Abdalla M, Payne A, Fernandez-Tajes J, Thurner M, Nylander V, Gloyn AL, Mahajan A, McCarthy MI. A Multi-omic Integrative Scheme Characterizes Tissues of Action at Loci Associated with Type 2 Diabetes. Am J Hum Genet 2020; 107:1011-1028. [PMID: 33186544 PMCID: PMC7820628 DOI: 10.1016/j.ajhg.2020.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022] Open
Abstract
Resolving the molecular processes that mediate genetic risk remains a challenge because most disease-associated variants are non-coding and functional characterization of these signals requires knowledge of the specific tissues and cell-types in which they operate. To address this challenge, we developed a framework for integrating tissue-specific gene expression and epigenomic maps to obtain "tissue-of-action" (TOA) scores for each association signal by systematically partitioning posterior probabilities from Bayesian fine-mapping. We applied this scheme to credible set variants for 380 association signals from a recent GWAS meta-analysis of type 2 diabetes (T2D) in Europeans. The resulting tissue profiles underscored a predominant role for pancreatic islets and, to a lesser extent, adipose and liver, particularly among signals with greater fine-mapping resolution. We incorporated resulting TOA scores into a rule-based classifier and validated the tissue assignments through comparison with data from cis-eQTL enrichment, functional fine-mapping, RNA co-expression, and patterns of physiological association. In addition to implicating signals with a single TOA, we found evidence for signals with shared effects in multiple tissues as well as distinct tissue profiles between independent signals within heterogeneous loci. Lastly, we demonstrated that TOA scores can be directly coupled with eQTL colocalization to further resolve effector transcripts at T2D signals. This framework guides mechanistic inference by directing functional validation studies to the most relevant tissues and can gain power as fine-mapping resolution and cell-specific annotations become richer. This method is generalizable to all complex traits with relevant annotation data and is made available as an R package.
Collapse
Affiliation(s)
- Jason M. Torres
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Moustafa Abdalla
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Anthony Payne
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Juan Fernandez-Tajes
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Matthias Thurner
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Vibe Nylander
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Anna L. Gloyn
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK,Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Anubha Mahajan
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK,Corresponding author
| | - Mark I. McCarthy
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK,Corresponding author
| |
Collapse
|
22
|
Zhou Q, Fu Z, Gong Y, Seshachalam VP, Li J, Ma Y, Liang H, Guan W, Lin S, Ghosh S, Sun L, Zhou H. Metabolic Health Status Contributes to Transcriptome Alternation in Human Visceral Adipose Tissue During Obesity. Obesity (Silver Spring) 2020; 28:2153-2162. [PMID: 32985130 DOI: 10.1002/oby.22950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE BMI is a well-established factor affecting the transcriptome profile of adipose tissue, but there are few reports on the relationship between the metabolic health status of people with obesity and the transcriptional changes, particularly in visceral adipose tissue. METHODS Visceral adipose tissue was collected from three subgroups of patients, lean (n = 11), metabolically healthy obesity (MHO; n = 22), and metabolically unhealthy obesity (MUO; n = 26), and RNA sequencing was conducted to profile the transcriptome changes between these groups in a pairwise manner. RESULTS Comparing MUO with lean and comparing MHO with lean revealed similar patterns in gene expression and pathway changes: obesity, regardless of metabolic health, was associated with upregulated inflammatory pathways. However, the inflammatory signature in MUO was stronger than in MHO. Pairwise comparisons among MUO, MHO, and lean samples identified 34 common differentially expressed genes; 12 out of 34 genes were associated with inflammatory pathways and exhibited a gradually increased expression pattern in the order of lean, MHO, and MUO. CONCLUSIONS This study reveals not only that BMI plays an important role in determining the gene expression profile in visceral adipose tissue but also that a metabolically healthy condition is associated with a less inflammatory transcriptional change during obesity.
Collapse
Affiliation(s)
- Qiuzhong Zhou
- Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Zhenzhen Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingyun Gong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Jia Li
- Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yizhe Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Guan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shibo Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sujoy Ghosh
- Centre for Computational Biology and Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Lei Sun
- Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Hongwen Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Current metabolic perspective on malnutrition in obesity: towards more subgroup-based nutritional approaches? Proc Nutr Soc 2020; 79:331-337. [PMID: 32122428 PMCID: PMC7663313 DOI: 10.1017/s0029665120000117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lifestyle intervention may be effective in reducing type 2 diabetes mellitus incidence and cardiometabolic risk. A more personalised nutritional approach based on an individual or subgroup-based metabolic profile may optimise intervention outcome. Whole body insulin resistance (IR) reflects defective insulin action in tissues such as muscle, liver, adipose tissue, gut and brain, which may precede the development of cardiometabolic diseases. IR may develop in different organs but the severity may vary between organs. Individuals with more pronounced hepatic IR have a distinct plasma metabolome and lipidome profile as compared with individuals with more pronounced muscle IR. Additionally, genes related to extracellular modelling were upregulated in abdominal subcutaneous adipose tissue in individuals with more pronounced hepatic IR, whilst genes related to inflammation as well as systemic low-grade inflammation were upregulated in individuals with primarily muscle IR. There are indications that these distinct IR phenotypes may also respond differentially to dietary macronutrient composition. Besides metabolic phenotype, microbial phenotype may be of importance in personalising the response to diet. In particular fibres or fibre mixtures, leading to a high distal acetate and SCFA production may have more pronounced effects on metabolic health. Notably, individuals with prediabetes may have a reduced response to diet-induced microbiota modulation with respect to host insulin sensitivity and metabolic health outcomes. Overall, we need more research to relate metabolic subphenotypes to intervention outcomes to define more optimal diets for individuals with or predisposed to chronic metabolic diseases.
Collapse
|
24
|
Czumaj A, Śledziński T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients 2020; 12:E356. [PMID: 32013225 PMCID: PMC7071289 DOI: 10.3390/nu12020356] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered one of the most important components of cells that influence normal development and function of many organisms, both eukaryotes and prokaryotes. Unsaturated fatty acid desaturases play a crucial role in the synthesis of PUFAs, inserting additional unsaturated bonds into the acyl chain. The level of expression and activity of different types of desaturases determines profiles of PUFAs. It is well recognized that qualitative and quantitative changes in the PUFA profile, resulting from alterations in the expression and activity of fatty acid desaturases, are associated with many pathological conditions. Understanding of underlying mechanisms of fatty acid desaturase activity and their functional modification will facilitate the development of novel therapeutic strategies in diseases associated with qualitative and quantitative disorders of PUFA.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki, 80-211 Gdansk, Poland;
| | | |
Collapse
|
25
|
van der Kolk BW, Kalafati M, Adriaens M, van Greevenbroek MMJ, Vogelzangs N, Saris WHM, Astrup A, Valsesia A, Langin D, van der Kallen CJH, Eussen SJPM, Schalkwijk CG, Stehouwer CDA, Goossens GH, Arts ICW, Jocken JWE, Evelo CT, Blaak EE. Subcutaneous Adipose Tissue and Systemic Inflammation Are Associated With Peripheral but Not Hepatic Insulin Resistance in Humans. Diabetes 2019; 68:2247-2258. [PMID: 31492661 DOI: 10.2337/db19-0560] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/27/2019] [Indexed: 11/13/2022]
Abstract
Obesity-related insulin resistance (IR) may develop in multiple organs, representing various etiologies for cardiometabolic diseases. We identified abdominal subcutaneous adipose tissue (ScAT) transcriptome profiles in liver or muscle IR by means of RNA sequencing in overweight or obese participants of the Diet, Obesity, and Genes (DiOGenes) (NCT00390637, ClinicalTrials.gov) cohort (n = 368). Tissue-specific IR phenotypes were derived from a 5-point oral glucose tolerance test. Hepatic and muscle IR were characterized by distinct abdominal ScAT transcriptome profiles. Genes related to extracellular remodeling were upregulated in individuals with primarily hepatic IR, while genes related to inflammation were upregulated in individuals with primarily muscle IR. In line with this, in two independent cohorts, the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) (n = 325) and the Maastricht Study (n = 685), an increased systemic low-grade inflammation profile was specifically related to muscle IR but not to liver IR. We propose that increased ScAT inflammatory gene expression may translate into an increased systemic inflammatory profile, linking ScAT inflammation to the muscle IR phenotype. These distinct IR phenotypes may provide leads for more personalized prevention of cardiometabolic diseases.
Collapse
Affiliation(s)
- Birgitta W van der Kolk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Marianthi Kalafati
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
| | - Michiel Adriaens
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Nicole Vogelzangs
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Dominique Langin
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- Paul Sabatier University, Toulouse, France
- Laboratory of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Carla J H van der Kallen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Ilja C W Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Johan W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Chris T Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
26
|
Sharma NK, Chuang Key CC, Civelek M, Wabitsch M, Comeau ME, Langefeld CD, Parks JS, Das SK. Genetic Regulation of Enoyl-CoA Hydratase Domain-Containing 3 in Adipose Tissue Determines Insulin Sensitivity in African Americans and Europeans. Diabetes 2019; 68:1508-1522. [PMID: 31010960 PMCID: PMC6609988 DOI: 10.2337/db18-1229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Insulin resistance (IR) is a harbinger of type 2 diabetes (T2D) and partly determined by genetic factors. However, genetically regulated mechanisms of IR remain poorly understood. Using gene expression, genotype, and insulin sensitivity data from the African American Genetics of Metabolism and Expression (AAGMEx) cohort, we performed transcript-wide correlation and expression quantitative trait loci (eQTL) analyses to identify IR-correlated cis-regulated transcripts (cis-eGenes) in adipose tissue. These IR-correlated cis-eGenes were tested in the European ancestry individuals in the Metabolic Syndrome in Men (METSIM) cohort for trans-ethnic replication. Comparison of Matsuda index-correlated transcripts in AAGMEx with the METSIM study identified significant correlation of 3,849 transcripts, with concordant direction of effect for 97.5% of the transcripts. cis-eQTL for 587 Matsuda index-correlated genes were identified in both cohorts. Enoyl-CoA hydratase domain-containing 3 (ECHDC3) was the top-ranked Matsuda index-correlated cis-eGene. Expression levels of ECHDC3 were positively correlated with Matsuda index, and regulated by cis-eQTL, rs34844369 being the top cis-eSNP in AAGMEx. Silencing of ECHDC3 in adipocytes significantly reduced insulin-stimulated glucose uptake and Akt Ser473 phosphorylation. RNA sequencing analysis identified 691 differentially expressed genes in ECHDC3-knockdown adipocytes, which were enriched in γ-linolenate biosynthesis, and known IR genes. Thus, our studies elucidated genetic regulatory mechanisms of IR and identified genes and pathways in adipose tissue that are mechanistically involved in IR.
Collapse
Affiliation(s)
- Neeraj K Sharma
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Chia-Chi Chuang Key
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Mete Civelek
- Center for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Mary E Comeau
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC
| | - Carl D Langefeld
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC
| | - John S Parks
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Swapan K Das
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
27
|
Tan ALM, Langley SR, Tan CF, Chai JF, Khoo CM, Leow MKS, Khoo EYH, Moreno-Moral A, Pravenec M, Rotival M, Sadananthan SA, Velan SS, Venkataraman K, Chong YS, Lee YS, Sim X, Stunkel W, Liu MH, Tai ES, Petretto E. Ethnicity-Specific Skeletal Muscle Transcriptional Signatures and Their Relevance to Insulin Resistance in Singapore. J Clin Endocrinol Metab 2019; 104:465-486. [PMID: 30137523 DOI: 10.1210/jc.2018-00309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/14/2018] [Indexed: 11/19/2022]
Abstract
CONTEXT Insulin resistance (IR) and obesity differ among ethnic groups in Singapore, with the Malays more obese yet less IR than Asian-Indians. However, the molecular basis underlying these differences is not clear. OBJECTIVE As the skeletal muscle (SM) is metabolically relevant to IR, we investigated molecular pathways in SM that are associated with ethnic differences in IR, obesity, and related traits. DESIGN, SETTING, AND MAIN OUTCOME MEASURES We integrated transcriptomic, genomic, and phenotypic analyses in 156 healthy subjects representing three major ethnicities in the Singapore Adult Metabolism Study. PATIENTS This study contains Chinese (n = 63), Malay (n = 51), and Asian-Indian (n = 42) men, aged 21 to 40 years, without systemic diseases. RESULTS We found remarkable diversity in the SM transcriptome among the three ethnicities, with >8000 differentially expressed genes (40% of all genes expressed in SM). Comparison with blood transcriptome from a separate Singaporean cohort showed that >95% of SM expression differences among ethnicities were unique to SM. We identified a network of 46 genes that were specifically downregulated in Malays, suggesting dysregulation of components of cellular respiration in SM of Malay individuals. We also report 28 differentially expressed gene clusters, four of which were also enriched for genes that were found in genome-wide association studies of metabolic traits and disease and correlated with variation in IR, obesity, and related traits. CONCLUSION We identified extensive gene-expression changes in SM among the three Singaporean ethnicities and report specific genes and molecular pathways that might underpin and explain the differences in IR among these ethnic groups.
Collapse
Affiliation(s)
- Amelia Li Min Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore
| | - Sarah R Langley
- Duke-National University of Singapore Medical School, Singapore
- National Heart Centre Singapore, Singapore
| | - Chee Fan Tan
- Nanyang Institute of Technology in Health and Medicine, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore
- Division of Endocrinology, Department of Medicine, National University Health System, Singapore
| | - Melvin Khee-Shing Leow
- Duke-National University of Singapore Medical School, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Eric Yin Hao Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Endocrinology, Department of Medicine, National University Health System, Singapore
| | | | - Michal Pravenec
- Institute Of Physiology, Czech Academy Of Sciences, Prague, Czech Republic
| | - Maxime Rotival
- Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, France
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kavita Venkataraman
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Paediatrics Endocrinology, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Walter Stunkel
- Experimental Biotherapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Mei Hui Liu
- Department of Chemistry, Food Science & Technology Programme, National University of Singapore, Singapore
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore
- Division of Endocrinology, Department of Medicine, National University Health System, Singapore
| | - Enrico Petretto
- Duke-National University of Singapore Medical School, Singapore
| |
Collapse
|
28
|
Hsieh PN, Fan L, Sweet DR, Jain MK. The Krüppel-Like Factors and Control of Energy Homeostasis. Endocr Rev 2019; 40:137-152. [PMID: 30307551 PMCID: PMC6334632 DOI: 10.1210/er.2018-00151] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/05/2018] [Indexed: 12/16/2022]
Abstract
Nutrient handling by higher organisms is a complex process that is regulated at the transcriptional level. Studies over the past 15 years have highlighted the critical importance of a family of transcriptional regulators termed the Krüppel-like factors (KLFs) in metabolism. Within an organ, distinct KLFs direct networks of metabolic gene targets to achieve specialized functions. This regulation is often orchestrated in concert with recruitment of tissue-specific transcriptional regulators, particularly members of the nuclear receptor family. Upon nutrient entry into the intestine, gut, and liver, KLFs control a range of functions from bile synthesis to intestinal stem cell maintenance to effect nutrient acquisition. Subsequently, coordinated KLF activity across multiple organs distributes nutrients to sites of storage or liberates them for use in response to changes in nutrient status. Finally, in energy-consuming organs like cardiac and skeletal muscle, KLFs tune local metabolic programs to precisely match substrate uptake, flux, and use, particularly via mitochondrial function, with energetic demand; this is achieved in part via circulating mediators, including glucocorticoids and insulin. Here, we summarize current understanding of KLFs in regulation of nutrient absorption, interorgan circulation, and tissue-specific use.
Collapse
Affiliation(s)
- Paishiun N Hsieh
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - David R Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
29
|
Grzybek M, Palladini A, Alexaki VI, Surma MA, Simons K, Chavakis T, Klose C, Coskun Ü. Comprehensive and quantitative analysis of white and brown adipose tissue by shotgun lipidomics. Mol Metab 2019; 22:12-20. [PMID: 30777728 PMCID: PMC6437637 DOI: 10.1016/j.molmet.2019.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Shotgun lipidomics enables an extensive analysis of lipids from tissues and fluids. Each specimen requires appropriate extraction and processing procedures to ensure good coverage and reproducible quantification of the lipidome. Adipose tissue (AT) has become a research focus with regard to its involvement in obesity-related pathologies. However, the quantification of the AT lipidome is particularly challenging due to the predominance of triacylglycerides, which elicit high ion suppression of the remaining lipid classes. Methods We present a new and validated method for shotgun lipidomics of AT, which tailors the lipid extraction procedure to the target specimen and features high reproducibility with a linear dynamic range of at least 4 orders of magnitude for all lipid classes. Results Utilizing this method, we observed tissue-specific and diet-related differences in three AT types (brown, gonadal, inguinal subcutaneous) from lean and obese mice. Brown AT exhibited a distinct lipidomic profile with the greatest lipid class diversity and responded to high-fat diet by altering its lipid composition, which shifted towards that of white AT. Moreover, diet-induced obesity promoted an overall remodeling of the lipidome, where all three AT types featured a significant increase in longer and more unsaturated triacylglyceride and phospholipid species. Conclusions The here presented method facilitates reproducible systematic lipidomic profiling of AT and could be integrated with further –omics approaches used in (pre-) clinical research, in order to advance the understanding of the molecular metabolic dynamics involved in the pathogenesis of obesity-associated disorders. Validated shotgun lipidomics method of AT covering 300 lipids of 20 classes and linear dynamic range of 4 orders of magnitude. Increase of longer and more unsaturated triacylglycerides and phospholipids in brown and white AT under high-fat diet. Differences in the lipidomes of gonadal, subcutaneous and brown AT.
Collapse
Affiliation(s)
- Michal Grzybek
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Vasileia I Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | | | - Triantafyllos Chavakis
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Ünal Coskun
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| |
Collapse
|
30
|
Mugabo Y, Lim GE. Scaffold Proteins: From Coordinating Signaling Pathways to Metabolic Regulation. Endocrinology 2018; 159:3615-3630. [PMID: 30204866 PMCID: PMC6180900 DOI: 10.1210/en.2018-00705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023]
Abstract
Among their pleiotropic functions, scaffold proteins are required for the accurate coordination of signaling pathways. It has only been within the past 10 years that their roles in glucose homeostasis and metabolism have emerged. It is well appreciated that changes in the expression or function of signaling effectors, such as receptors or kinases, can influence the development of chronic diseases such as diabetes and obesity. However, little is known regarding whether scaffolds have similar roles in the pathogenesis of metabolic diseases. In general, scaffolds are often underappreciated in the context of metabolism or metabolic diseases. In the present review, we discuss various scaffold proteins and their involvement in signaling pathways related to metabolism and metabolic diseases. The aims of the present review were to highlight the importance of scaffold proteins and to raise awareness of their physiological contributions. A thorough understanding of how scaffolds influence metabolism could aid in the discovery of novel therapeutic approaches to treat chronic conditions, such as diabetes, obesity, and cardiovascular disease, for which the incidence of all continue to increase at alarming rates.
Collapse
Affiliation(s)
- Yves Mugabo
- Cardiometabolic Axis, Centre de Recherche de Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Montréal Diabetes Research Centre, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Gareth E Lim
- Cardiometabolic Axis, Centre de Recherche de Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Montréal Diabetes Research Centre, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Cavallari JF, Anhê FF, Foley KP, Denou E, Chan RW, Bowdish DME, Schertzer JD. Targeting macrophage scavenger receptor 1 promotes insulin resistance in obese male mice. Physiol Rep 2018; 6:e13930. [PMID: 30485705 PMCID: PMC6260912 DOI: 10.14814/phy2.13930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022] Open
Abstract
Immune components can bridge inflammatory triggers to metabolic dysfunction. Scavenger receptors sense lipoproteins, but it is not clear how different scavenger receptors alter carbohydrate metabolism during obesity. Macrophage scavenger receptor 1 (MSR1) and macrophage receptor with collagenous structure (MARCO) are scavenger receptors that have been implicated in lipoprotein metabolism and cardiovascular disease. We assessed glucose control, tissue-specific insulin sensitivity, and inflammation in Msr1- and Marco-deficient mice fed with obesogenic diets. Compared to wild-type (WT) mice, Msr1-/- mice had worse blood glucose control that was only revealed after diet-induced obesity, not in lean mice. Obese Msr1-/- mice had worse insulin-stimulated glucose uptake in the adipose tissue, which occurred in the absence of overt differences in adipose inflammation compared to obese WT mice. Msr1 deletion worsened dysglycemia independently from bacterial cell wall insulin sensitizers, such as muramyl dipeptide. MARCO was dispensable for glycemic control in obese mice. Oral administration of the polysaccharide fucoidan worsened glucose control in obese WT mice, but fucoidan had no effect on glycemia in obese Msr1-/- mice. Therefore, MSR1 is a scavenger receptor responsible for changes in glucose control in response to the environmental ligand fucoidan. Given the interest in dietary supplements and natural products reducing inflammation or insulin resistance in metabolic disease during obesity, our results highlight the importance of understanding which ligand-receptor relationships promote versus those that protect against metabolic disease factors. Our results show that ligand or gene targeting of MSR1 exacerbates insulin resistance in obese mice.
Collapse
Affiliation(s)
- Joseph F. Cavallari
- Department of Biochemistry and Biomedical SciencesFarncombe Family Digestive Health Research InstituteHamiltonOntarioCanada
| | - Fernando F. Anhê
- Department of Biochemistry and Biomedical SciencesFarncombe Family Digestive Health Research InstituteHamiltonOntarioCanada
| | - Kevin P. Foley
- Department of Biochemistry and Biomedical SciencesFarncombe Family Digestive Health Research InstituteHamiltonOntarioCanada
| | - Emmanuel Denou
- Department of Biochemistry and Biomedical SciencesFarncombe Family Digestive Health Research InstituteHamiltonOntarioCanada
| | - Rebecca W. Chan
- Department of Biochemistry and Biomedical SciencesFarncombe Family Digestive Health Research InstituteHamiltonOntarioCanada
| | - Dawn M. E. Bowdish
- Department of Pathology and Molecular Medicine and McMaster Immunology Research CentreMcMaster University and Michael G. DeGroote Institute for Infectious Disease ResearchHamiltonOntarioCanada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical SciencesFarncombe Family Digestive Health Research InstituteHamiltonOntarioCanada
| |
Collapse
|
32
|
Timmons JA, Atherton PJ, Larsson O, Sood S, Blokhin IO, Brogan RJ, Volmar CH, Josse AR, Slentz C, Wahlestedt C, Phillips SM, Phillips BE, Gallagher IJ, Kraus WE. A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease. Nucleic Acids Res 2018; 46:7772-7792. [PMID: 29986096 PMCID: PMC6125682 DOI: 10.1093/nar/gky570] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed >200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal the underlying genomic structure of MD. Using 1,012 human skeletal muscle samples, detailed physiology and a tissue-optimized approach for the quantification of coding (>18,000) and non-coding (>15,000) RNA (ncRNA), we identified 332 fasting IS-related genes (CORE-IS). Over 200 had a proven role in the biochemistry of insulin and/or metabolism or were located at GWAS MD loci. Over 50% of the CORE-IS genes responded to clinical treatment; 16 quantitatively tracking changes in IS across four independent studies (P = 0.0000053: negatively: AGL, G0S2, KPNA2, PGM2, RND3 and TSPAN9 and positively: ALDH6A1, DHTKD1, ECHDC3, MCCC1, OARD1, PCYT2, PRRX1, SGCG, SLC43A1 and SMIM8). A network of ncRNA positively related to IS and interacted with RNA coding for viral response proteins (P < 1 × 10-48), while reduced amino acid catabolic gene expression occurred without a change in expression of oxidative-phosphorylation genes. We illustrate that combining in-depth physiological phenotyping with robust RNA profiling methods, identifies molecular networks which are highly consistent with the genetics and biochemistry of human metabolic disease.
Collapse
Affiliation(s)
- James A Timmons
- Division of Genetics and Molecular Medicine, King's College London, London, UK
- Scion House, Stirling University Innovation Park, Stirling, UK
| | | | - Ola Larsson
- Department of Oncology-Pathology, Science For Life Laboratory, Stockholm, Sweden
| | - Sanjana Sood
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | | | - Robert J Brogan
- Scion House, Stirling University Innovation Park, Stirling, UK
| | | | | | - Cris Slentz
- Duke University School of Medicine, Durham, USA
| | - Claes Wahlestedt
- Department of Oncology-Pathology, Science For Life Laboratory, Stockholm, Sweden
| | | | | | - Iain J Gallagher
- Scion House, Stirling University Innovation Park, Stirling, UK
- School of Health Sciences and Sport, University of Stirling, Stirling, UK
| | | |
Collapse
|
33
|
Hampton KK, Anderson K, Frazier H, Thibault O, Craven RJ. Insulin Receptor Plasma Membrane Levels Increased by the Progesterone Receptor Membrane Component 1. Mol Pharmacol 2018; 94:665-673. [PMID: 29674524 PMCID: PMC5987996 DOI: 10.1124/mol.117.110510] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
The insulin receptor (IR) is a ligand-activated receptor tyrosine kinase that has a key role in metabolism, cellular survival, and proliferation. Progesterone receptor membrane component 1 (PGRMC1) promotes cellular signaling via receptor trafficking and is essential for some elements of tumor growth and metastasis. In the present study, we demonstrate that PGRMC1 coprecipitates with IR. Furthermore, we show that PGRMC1 increases plasma membrane IR levels in multiple cell lines and decreases insulin binding at the cell surface. The findings have therapeutic applications because a small-molecule PGRMC1 ligand, AG205, also decreases plasma membrane IR levels. However, PGRMC1 knockdown via short hairpin RNA expression and AG205 treatment potentiated insulin-mediated phosphorylation of the IR signaling mediator AKT. Finally, PGRMC1 also increased plasma membrane levels of two key glucose transporters, GLUT-4 and GLUT-1. Our data support a role for PGRMC1 maintaining plasma membrane pools of the receptor, modulating IR signaling and function.
Collapse
Affiliation(s)
- Kaia K Hampton
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Katie Anderson
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hilaree Frazier
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
34
|
Langefeld CD, Comeau ME, Sharma NK, Bowden DW, Freedman BI, Das SK. Transcriptional Regulatory Mechanisms in Adipose and Muscle Tissue Associated with Composite Glucometabolic Phenotypes. Obesity (Silver Spring) 2018; 26:559-569. [PMID: 29377571 PMCID: PMC5821540 DOI: 10.1002/oby.22113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/27/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Tissue-specific gene expression is associated with individual metabolic measures. However, these measures may not reflect the true but latent underlying biological phenotype. This study reports gene expression associations with multidimensional glucometabolic characterizations of obesity, glucose homeostasis, and lipid traits. METHODS Factor analysis was computed by using orthogonal rotation to construct composite phenotypes (CPs) from 23 traits in 256 African Americans without diabetes. Genome-wide transcript expression data from adipose and muscle were tested for association with CPs, and expression quantitative trait loci (eQTLs) were identified by associations between cis-acting single-nucleotide polymorphisms (SNPs) and gene expression. RESULTS The factor analysis identified six CPs. CPs 1 through 6 individually explained 34%, 12%, 9%, 8%, 6%, and 5% of the variation in 23 glucometabolic traits studied. There were 3,994 and 929 CP-associated transcripts identified in adipose and muscle tissue, respectively; CP2 had the largest number of associated transcripts. Pathway analysis identified multiple canonical pathways from the CP-associated transcripts. In adipose and muscle, significant cis-eQTLs were identified for 558 and 164 CP-associated transcripts (q-value < 0.01), respectively. CONCLUSIONS Adipose and muscle transcripts comprehensively define pathways involved in regulating glucometabolic disorders. Cis-eQTLs for CP-associated genes may act as primary causal determinants of glucometabolic phenotypes by regulating transcription of key genes.
Collapse
Affiliation(s)
- Carl D. Langefeld
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Mary E. Comeau
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Neeraj K. Sharma
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Barry I. Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Swapan K. Das
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
- Corresponding author and person to whom reprint requests should be addressed: Swapan K. Das, Ph.D., Section on Endocrinology and Metabolism, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, , Telephone: 336-713-6057; Fax: 336-713-7200
| |
Collapse
|
35
|
Altered DNA methylation in liver and adipose tissues derived from individuals with obesity and type 2 diabetes. BMC MEDICAL GENETICS 2018; 19:28. [PMID: 29466957 PMCID: PMC5822594 DOI: 10.1186/s12881-018-0542-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022]
Abstract
Background Obesity is a well-recognized risk factor for insulin resistance and type 2 diabetes (T2D), although the precise mechanisms underlying the relationship remain unknown. In this study we identified alterations of DNA methylation influencing T2D pathogenesis, in subcutaneous and visceral adipose tissues, liver, and blood from individuals with obesity. Methods The study included individuals with obesity, with and without T2D. From these patients, we obtained samples of liver tissue (n = 16), visceral and subcutaneous adipose tissues (n = 30), and peripheral blood (n = 38). We analyzed DNA methylation using Illumina Infinium Human Methylation arrays, and gene expression profiles using HumanHT-12 Expression BeadChip Arrays. Results Analysis of DNA methylation profiles revealed several loci with differential methylation between individuals with and without T2D, in all tissues. Aberrant DNA methylation was mainly found in the liver and visceral adipose tissue. Gene ontology analysis of genes with altered DNA methylation revealed enriched terms related to glucose metabolism, lipid metabolism, cell cycle regulation, and response to wounding. An inverse correlation between altered methylation and gene expression in the four tissues was found in a subset of genes, which were related to insulin resistance, adipogenesis, fat storage, and inflammation. Conclusions Our present findings provide additional evidence that aberrant DNA methylation may be a relevant mechanism involved in T2D pathogenesis among individuals with obesity. Electronic supplementary material The online version of this article (10.1186/s12881-018-0542-8) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Sharma NK, Varma V, Ma L, Hasstedt SJ, Das SK. Obesity Associated Modulation of miRNA and Co-Regulated Target Transcripts in Human Adipose Tissue of Non-Diabetic Subjects. Microrna 2018; 4:194-204. [PMID: 26527284 PMCID: PMC4740938 DOI: 10.2174/2211536604666151103121817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/15/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Micro RNAs (miRNAs) are a class of non-coding regulatory RNAs. We performed a transcriptome-wide analysis of subcutaneous adipose tissue and in vitro studies to identify miRNAs and co-regulated target transcripts associated with insulin sensitivity (SI) and obesity in human. METHODS We selected 20 insulin-resistant (IR, SI=2.0±0.7) and 20 insulin-sensitive (IS, SI=7.2±2.3) subjects from a cohort of 117 metabolically characterized non-diabetic Caucasians for comparison. RESULTS After global profiling, 3 miRNAs had marginally different expressions between IR and IS subjects. A total of 14 miRNAs were significantly correlated with %fat mass, body mass index (BMI), or SI. The qRT-PCR validated the correlation of miR-148a-3p with BMI (r=-0.70, P=2.73X10(-6)). MiRNA target filtering analysis identified DNA methyltransferase 1 (DNMT1) as one of the target genes of miR-148a-3p. DNMT1 expression in adipose tissue was positively correlated with BMI (r=0.47, p=8.42X10(-7)) and was inversely correlated with miR-148a-3p (r=-0.34). Differentiation of SGBS preadipocytes showed up-regulation of miR-148a-3p and down-regulation of DNMT1 in differentiated adipocytes. After transfecting miR-148a-3p mimics into HeLa-S3 cells, DNMT1 was down-regulated, while transfection of adipose stem cells with miR-148a-3p inhibitor up-regulated DNMT1. CONCLUSIONS Our results indicate that miR-148a-3pmediated regulation of DNMT1 expression may play a mechanistic role in obesity.
Collapse
Affiliation(s)
| | | | | | | | - Swapan K Das
- Section on Endocrinology and Metabolism, Department of Internal Medicine Wake Forest School of Medicine, Medical Center Boulevard, NRC Building#E159 Winston-Salem, North Carolina 27157, USA.
| |
Collapse
|
37
|
Laaksonen J, Taipale T, Seppälä I, Raitoharju E, Mononen N, Lyytikäinen LP, Waldenberger M, Illig T, Hutri-Kähönen N, Rönnemaa T, Juonala M, Viikari J, Kähönen M, Raitakari O, Lehtimäki T. Blood pathway analyses reveal differences between prediabetic subjects with or without dyslipidaemia. The Cardiovascular Risk in Young Finns Study. Diabetes Metab Res Rev 2017; 33. [PMID: 28609607 DOI: 10.1002/dmrr.2914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/21/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prediabetes often occurs together with dyslipidaemia, which is paradoxically treated with statins predisposing to type 2 diabetes mellitus. We examined peripheral blood pathway profiles in prediabetic subjects with (PRD ) and without dyslipidaemia (PR0 ) and compared these to nonprediabetic controls without dyslipidaemia (C0 ). METHODS The participants were from the Cardiovascular Risk in Young Finns Study, including 1240 subjects aged 34 to 49 years. Genome-wide expression data of peripheral blood and gene set enrichment analysis were used to investigate the differentially expressed genes and enriched pathways between different subtypes of prediabetes. RESULTS Pathways for cholesterol synthesis, interleukin-12-mediated signalling events, and downstream signalling in naïve CD8+ T-cells were upregulated in the PR0 group in comparison with controls (C0 ). The upregulation of these pathways was independent of waist circumference, blood pressure, smoking status, and insulin. Adjustment for CRP left the CD8+ T-cell signalling and interleukin-12-mediated signalling event pathway upregulated. The cholesterol synthesis pathway was also upregulated when all prediabetic subjects (PR0 and PRD ) were compared with the nonprediabetic control group. No pathways were upregulated or downregulated when the PRD group was compared with the C0 group. Five genes in the PR0 group and 1 in the PRD group were significantly differentially expressed in comparison with the C0 group. CONCLUSIONS Blood cell gene expression profiles differ significantly between prediabetic subjects with and without dyslipidaemia. Whether this classification may be used in detection of prediabetic individuals at a high risk of cardiovascular complications remains to be examined.
Collapse
Affiliation(s)
- Jaakko Laaksonen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tuukka Taipale
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- Institute for Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nina Hutri-Kähönen
- Department of Paediatrics, Tampere University Hospital and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, Turku, Finland
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
38
|
Scarl RT, Lawrence CM, Gordon HM, Nunemaker CS. STEAP4: its emerging role in metabolism and homeostasis of cellular iron and copper. J Endocrinol 2017; 234:R123-R134. [PMID: 28576871 PMCID: PMC6166870 DOI: 10.1530/joe-16-0594] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/02/2017] [Indexed: 12/28/2022]
Abstract
Preserving energy homeostasis in the presence of stressors such as proinflammatory cytokines and nutrient overload is crucial to maintaining normal cellular function. Six transmembrane epithelial antigen of the prostate 4 (STEAP4), a metalloreductase involved in iron and copper homeostasis, is thought to play a potentially important role in the cellular response to inflammatory stress. Genome-wide association studies have linked various mutations in STEAP4 with the development of metabolic disorders such as obesity, metabolic syndrome and type 2 diabetes. Several studies have shown that expression of Steap4 is modulated by inflammatory cytokines, hormones and other indicators of cellular stress and that STEAP4 may protect cells from damage, helping to maintain normal metabolic function. STEAP4 appears to be particularly relevant in metabolically oriented cells, such as adipocytes, hepatocytes and pancreatic islet cells. These cells struggle to maintain their function in iron or copper overloaded states, presumably due to increased oxidative stress, suggesting STEAP4's role in metal homeostasis is critical to the maintenance of cellular homeostasis in general, and in preventing the onset of metabolic disease. In this review, we explore genetic associations of STEAP4 with metabolic disorders, and we examine STEAP4 tissue expression, subcellular localization, regulation, structure and function as it relates to metabolic diseases. We then examine how STEAP4's role as a regulator of cellular iron and copper may relate to type 2 diabetes.
Collapse
Affiliation(s)
- Rachel T Scarl
- Diabetes InstituteHeritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Department of Biomedical SciencesHeritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - C Martin Lawrence
- Department of Chemistry and BiochemistryMontana State University, Bozeman, Montana, USA
| | - Hannah M Gordon
- Diabetes InstituteHeritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Department of Biomedical SciencesHeritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Craig S Nunemaker
- Diabetes InstituteHeritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Department of Biomedical SciencesHeritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
39
|
Gabriel TL, Mirzaian M, Hooibrink B, Ottenhoff R, van Roomen C, Aerts JMFG, van Eijk M. Induction of Sphk1 activity in obese adipose tissue macrophages promotes survival. PLoS One 2017; 12:e0182075. [PMID: 28753653 PMCID: PMC5533446 DOI: 10.1371/journal.pone.0182075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
During obesity, adipose tissue macrophages (ATM) are increased in concert with local inflammation and insulin resistance. Since the levels of sphingolipid (SLs) in adipose tissue (AT) are altered during obesity we investigated the potential impact of SLs on ATMs. For this, we first analyzed expression of SL metabolizing genes in ATMs isolated from obese mice. A marked induction of sphingosine kinase 1 (Sphk1) expression was observed in obese ATM when compared to lean ATM. This induction was observed in both MGL-ve (M1) and MGL1+ve (M2) macrophages from obese WAT. Next, RAW264.7 cells were exposed to excessive palmitate, resulting in a similar induction of Sphk1. This Sphk1 induction was also observed when cells were treated with chloroquine, a lysosomotropic amine impacting lysosome function. Simultaneous incubation of RAW cells with palmitate and the Sphk1 inhibitor SK1-I promoted cell death, suggesting a protective role of Sphk1 during lipotoxic conditions. Interestingly, a reduction of endoplasmic reticulum (ER) stress related genes was detected in obese ATM and was found to be associated with elevated Sphk1 expression. Altogether, our data suggest that lipid overload in ATM induces Sphk1, which promotes cell viability.
Collapse
Affiliation(s)
- Tanit L. Gabriel
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Mina Mirzaian
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Berend Hooibrink
- Department of Cell Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Cindy van Roomen
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Johannes M. F. G. Aerts
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marco van Eijk
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
40
|
Gong Y, Fu Z, Liegl R, Chen J, Hellström A, Smith LEH. ω-3 and ω-6 long-chain PUFAs and their enzymatic metabolites in neovascular eye diseases. Am J Clin Nutr 2017; 106:16-26. [PMID: 28515072 PMCID: PMC5486202 DOI: 10.3945/ajcn.117.153825] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023] Open
Abstract
Neovascular eye diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration, threaten the visual health of children and adults. Current treatment options, including anti-vascular endothelial growth factor therapy and laser retinal photocoagulation, have limitations and are associated with adverse effects; therefore, the identification of additional therapies is highly desirable. Both clinical and experimental studies show that dietary ω-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFAs) reduce retinal and choroidal angiogenesis. The ω-3 LC-PUFA metabolites from 2 groups of enzymes, cyclooxygenases and lipoxygenases, inhibit [and the ω-6 (n-6) LC-PUFA metabolites promote] inflammation and angiogenesis. However, both of the ω-3 and the ω-6 lipid products of cytochrome P450 oxidase 2C promote neovascularization in both the retina and choroid, which suggests that inhibition of this pathway might be beneficial. This review summarizes our current understanding of the roles of ω-3 and ω-6 LC-PUFAs and their enzymatic metabolites in neovascular eye diseases.
Collapse
Affiliation(s)
- Yan Gong
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA; and
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA; and
| | - Raffael Liegl
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA; and
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA; and
| | - Ann Hellström
- Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lois EH Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
41
|
Gordon HM, Majithia N, MacDonald PE, Fox JEM, Sharma PR, Byrne FL, Hoehn KL, Evans-Molina C, Langman L, Brayman KL, Nunemaker CS. STEAP4 expression in human islets is associated with differences in body mass index, sex, HbA1c, and inflammation. Endocrine 2017; 56:528-537. [PMID: 28405880 PMCID: PMC6166871 DOI: 10.1007/s12020-017-1297-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/27/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVE STEAP4 (six-transmembrane epithelial antigen of the prostate 4) is a metalloreductase that has been shown previously to protect cells from inflammatory damage. Genetic variants in STEAP4 have been associated with numerous metabolic disorders related to obesity, including putative defects in the acute insulin response to glucose in type 2 diabetes. PURPOSE We examined whether obesity and/or type 2 diabetes altered STEAP4 expression in human pancreatic islets. METHODS Human islets were isolated from deceased donors at two medical centers and processed for quantitative polymerase chain reaction. Organ donors were selected by status as non-diabetic or having type 2 diabetes. Site 1 (Edmonton): N = 13 type 2 diabetes donors (7M, 6F), N = 20 non-diabetic donors (7M, 13F). Site 2 (Virginia): N = 6 type 2 diabetes donors (6F), N = 6 non-diabetic donors (3M, 3F). RESULTS STEAP4 showed reduced islet expression with increasing body mass index among all donors (P < 0.10) and non-diabetic donors (P < 0.05) from Site 1; STEAP4 showed reduced islet expression among type 2 diabetes donors with increasing hemoglobin A1c. Islet STEAP4 expression was also marginally higher in female donors (P < 0.10). Among type 2 diabetes donors from Site 2, islet insulin expression was reduced, STEAP4 expression was increased, and white blood cell counts were increased compared to non-diabetic donors. Islets from non-diabetic donors that were exposed overnight to 5 ng/ml IL-1β displayed increased STEAP4 expression, consistent with STEAP4 upregulation by inflammatory signaling. CONCLUSIONS These findings suggest that increased STEAP4 mRNA expression is associated with inflammatory stimuli, whereas lower STEAP4 expression is associated with obesity in human islets. Given its putative protective role, downregulation of STEAP4 by chronic obesity suggests a mechanism for reduced islet protection against cellular damage.
Collapse
Affiliation(s)
- Hannah M Gordon
- Department of Biomedical Sciences, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Neil Majithia
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Jocelyn E Manning Fox
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Poonam R Sharma
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Linda Langman
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Kenneth L Brayman
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Craig S Nunemaker
- Department of Biomedical Sciences, Ohio University, Athens, OH, USA.
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
42
|
Kulyté A, Ehrlund A, Arner P, Dahlman I. Global transcriptome profiling identifies KLF15 and SLC25A10 as modifiers of adipocytes insulin sensitivity in obese women. PLoS One 2017; 12:e0178485. [PMID: 28570579 PMCID: PMC5453532 DOI: 10.1371/journal.pone.0178485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/12/2017] [Indexed: 12/15/2022] Open
Abstract
Although the mechanisms linking obesity to insulin resistance (IR) and type 2 diabetes (T2D) are not entirely understood, it is likely that alterations of adipose tissue function are involved. The aim of this study was to identify new genes controlling insulin sensitivity in adipocytes from obese women with either insulin resistant (OIR) or sensitive (OIS) adipocytes. Insulin sensitivity was first determined by measuring lipogenesis in isolated adipocytes from abdominal subcutaneous white adipose tissue (WAT) in a large observational study. Lipogenesis was measured under conditions where glucose transport was the rate limiting step and reflects in vivo insulin sensitivity. We then performed microarray-based transcriptome profiling on subcutaneous WAT specimen from a subgroup of 9 lean, 21 OIS and 18 obese OIR women. We could identify 432 genes that were differentially expressed between the OIR and OIS group (FDR ≤5%). These genes are enriched in pathways related to glucose and amino acid metabolism, cellular respiration, and insulin signaling, and include genes such as SLC2A4, AKT2, as well as genes coding for enzymes in the mitochondria respiratory chain. Two IR-associated genes, KLF15 encoding a transcription factor and SLC25A10 encoding a dicarboxylate carrier, were selected for functional evaluation in adipocytes differentiated in vitro. Knockdown of KLF15 and SLC25A10 using siRNA inhibited insulin-stimulated lipogenesis in adipocytes. Transcriptome profiling of siRNA-treated cells suggested that KLF15 might control insulin sensitivity by influencing expression of PPARG, PXMP2, AQP7, LPL and genes in the mitochondrial respiratory chain. Knockdown of SLC25A10 had only modest impact on the transcriptome, suggesting that it might directly influence insulin sensitivity in adipocytes independently of transcription due to its important role in fatty acid synthesis. In summary, this study identifies novel genes associated with insulin sensitivity in adipocytes in women independently of obesity. KFL15 and SLC25A10 are inhibitors of insulin-stimulated lipogenesis under conditions when glucose transport is the rate limiting step.
Collapse
Affiliation(s)
- Agné Kulyté
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
| | - Anna Ehrlund
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
| | - Peter Arner
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Dahlman
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
43
|
Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics 2017; 18:386. [PMID: 28521758 PMCID: PMC5437562 DOI: 10.1186/s12864-017-3754-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
Background Single nucleotide polymorphism (SNP) arrays for domestic cattle have catalyzed the identification of genetic markers associated with complex traits for inclusion in modern breeding and selection programs. Using actual and imputed Illumina 778K genotypes for 3887 U.S. beef cattle from 3 populations (Angus, Hereford, SimAngus), we performed genome-wide association analyses for feed efficiency and growth traits including average daily gain (ADG), dry matter intake (DMI), mid-test metabolic weight (MMWT), and residual feed intake (RFI), with marker-based heritability estimates produced for all traits and populations. Results Moderate and/or large-effect QTL were detected for all traits in all populations, as jointly defined by the estimated proportion of variance explained (PVE) by marker effects (PVE ≥ 1.0%) and a nominal P-value threshold (P ≤ 5e-05). Lead SNPs with PVE ≥ 2.0% were considered putative evidence of large-effect QTL (n = 52), whereas those with PVE ≥ 1.0% but < 2.0% were considered putative evidence for moderate-effect QTL (n = 35). Identical or proximal lead SNPs associated with ADG, DMI, MMWT, and RFI collectively supported the potential for either pleiotropic QTL, or independent but proximal causal mutations for multiple traits within and between the analyzed populations. Marker-based heritability estimates for all investigated traits ranged from 0.18 to 0.60 using 778K genotypes, or from 0.17 to 0.57 using 50K genotypes (reduced from Illumina 778K HD to Illumina Bovine SNP50). An investigation to determine if QTL detected by 778K analysis could also be detected using 50K genotypes produced variable results, suggesting that 50K analyses were generally insufficient for QTL detection in these populations, and that relevant breeding or selection programs should be based on higher density analyses (imputed or directly ascertained). Conclusions Fourteen moderate to large-effect QTL regions which ranged from being physically proximal (lead SNPs ≤ 3Mb) to fully overlapping for RFI, DMI, ADG, and MMWT were detected within and between populations, and included evidence for pleiotropy, proximal but independent causal mutations, and multi-breed QTL. Bovine positional candidate genes for these traits were functionally conserved across vertebrate species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3754-y) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Arner P, Sahlqvist AS, Sinha I, Xu H, Yao X, Waterworth D, Rajpal D, Loomis AK, Freudenberg JM, Johnson T, Thorell A, Näslund E, Ryden M, Dahlman I. The epigenetic signature of systemic insulin resistance in obese women. Diabetologia 2016; 59:2393-2405. [PMID: 27535281 PMCID: PMC5506095 DOI: 10.1007/s00125-016-4074-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Insulin resistance (IR) links obesity to type 2 diabetes. The aim of this study was to explore whether white adipose tissue (WAT) epigenetic dysregulation is associated with systemic IR by genome-wide CG dinucleotide (CpG) methylation and gene expression profiling in WAT from insulin-resistant and insulin-sensitive women. A secondary aim was to determine whether the DNA methylation signature in peripheral blood mononuclear cells (PBMCs) reflects WAT methylation and, if so, can be used as a marker for systemic IR. METHODS From 220 obese women, we selected a total of 80 individuals from either of the extreme ends of the distribution curve of HOMA-IR, an indirect measure of systemic insulin sensitivity. Genome-wide transcriptome and DNA CpG methylation profiling by array was performed on subcutaneous (SAT) and visceral (omental) adipose tissue (VAT). CpG methylation in PBMCs was assayed in the same cohort. RESULTS There were 647 differentially expressed genes (false discovery rate [FDR] 10%) in SAT, all of which displayed directionally consistent associations in VAT. This suggests that IR is associated with dysregulated expression of a common set of genes in SAT and VAT. The average degree of DNA methylation did not differ between the insulin-resistant and insulin-sensitive group in any of the analysed tissues/cells. There were 223 IR-associated genes in SAT containing a total of 336 nominally significant differentially methylated sites (DMS). The 223 IR-associated genes were over-represented in pathways related to integrin cell surface interactions and insulin signalling and included COL5A1, GAB1, IRS2, PFKFB3 and PTPRJ. In VAT there were a total of 51 differentially expressed genes (FDR 10%); 18 IR-associated genes contained a total of 29 DMS. CONCLUSIONS/INTERPRETATION In individuals discordant for insulin sensitivity, the average DNA CpG methylation in SAT and VAT is similar, although specific genes, particularly in SAT, display significantly altered expression and DMS in IR, possibly indicating that epigenetic regulation of these genes influences metabolism.
Collapse
Affiliation(s)
- Peter Arner
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, C2:94, Huddinge, S-141 86, Stockholm, Sweden
| | | | - Indranil Sinha
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Huan Xu
- GlaxoSmithKline R&D, Research Triangle Park, NC, USA
| | - Xiang Yao
- Computational and Systems Biology, Discovery Sciences, Janssen Pharmaceutical, Research & Development, LLC, San Diego, CA, USA
| | | | | | | | | | | | - Anders Thorell
- Department of Surgery, Ersta Hospital, Stockholm, Sweden
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Danderyd, Sweden
| | - Erik Näslund
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Danderyd, Sweden
| | - Mikael Ryden
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, C2:94, Huddinge, S-141 86, Stockholm, Sweden
| | - Ingrid Dahlman
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, C2:94, Huddinge, S-141 86, Stockholm, Sweden.
| |
Collapse
|
45
|
The Adipose Transcriptional Response to Insulin Is Determined by Obesity, Not Insulin Sensitivity. Cell Rep 2016; 16:2317-26. [DOI: 10.1016/j.celrep.2016.07.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/22/2016] [Accepted: 07/26/2016] [Indexed: 11/22/2022] Open
|
46
|
Osman RH, Liu L, Xia L, Zhao X, Wang Q, Sun X, Zhang Y, Yang B, Zheng Y, Gong D, Geng T. Fads1 and 2 are promoted to meet instant need for long-chain polyunsaturated fatty acids in goose fatty liver. Mol Cell Biochem 2016; 418:103-117. [PMID: 27344166 DOI: 10.1007/s11010-016-2737-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 06/15/2016] [Indexed: 01/07/2023]
Abstract
Global prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes a threat to human health. Goose is a unique model of NAFLD for discovering therapeutic targets as its liver can develop severe steatosis without overt injury. Fatty acid desaturase (Fads) is a potential therapeutic target as Fads expression and mutations are associated with liver fat. Here, we hypothesized that Fads was promoted to provide a protection for goose fatty liver. To test this, goose Fads1 and Fads2 were sequenced. Fads1/2/6 expression was determined in goose liver and primary hepatocytes by quantitative PCR. Liver fatty acid composition was also analyzed by gas chromatography. Data indicated that hepatic Fads1/2/6 expression was gradually increased with the time of overfeeding. In contrast, trans-C18:1n9 fatty acid (Fads inhibitor) was reduced. However, enhanced Fads capacity for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis was not sufficient to compensate for the depleted LC-PUFAs in goose fatty liver. Moreover, cell studies showed that Fads1/2/6 expression was regulated by fatty liver-associated factors. Together, these findings suggest Fads1/2 as protective components are promoted to meet instant need for LC-PUFAs in goose fatty liver, and we propose this is required for severe hepatic steatosis without liver injury.
Collapse
Affiliation(s)
- Rashid H Osman
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- Colleage of Veterinary Science, West Kordofan University, El Nuhud 20, Sudan
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Lili Xia
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xing Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qianqian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoxian Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yihui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Biao Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yun Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
47
|
Sharma NK, Sajuthi SP, Chou JW, Calles-Escandon J, Demons J, Rogers S, Ma L, Palmer ND, McWilliams DR, Beal J, Comeau ME, Cherry K, Hawkins GA, Menon L, Kouba E, Davis D, Burris M, Byerly SJ, Easter L, Bowden DW, Freedman BI, Langefeld CD, Das SK. Tissue-Specific and Genetic Regulation of Insulin Sensitivity-Associated Transcripts in African Americans. J Clin Endocrinol Metab 2016; 101:1455-68. [PMID: 26789776 PMCID: PMC4880154 DOI: 10.1210/jc.2015-3336] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Integrative multiomics analyses of adipose and muscle tissue transcripts, S, and genotypes revealed novel genetic regulatory mechanisms of insulin resistance in African Americans.
Collapse
Affiliation(s)
- Neeraj K Sharma
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Satria P Sajuthi
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Jeff W Chou
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Jorge Calles-Escandon
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Jamehl Demons
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Samantha Rogers
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Lijun Ma
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Nicholette D Palmer
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - David R McWilliams
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - John Beal
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Mary E Comeau
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Kristina Cherry
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Gregory A Hawkins
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Lata Menon
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Ethel Kouba
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Donna Davis
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Marcie Burris
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Sara J Byerly
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Linda Easter
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Donald W Bowden
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Barry I Freedman
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Carl D Langefeld
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Swapan K Das
- Department of Internal Medicine (N.K.S., J.C.-E., J.D., S.R., L.Ma., K.C., L.Me., E.K., D.D., B.I.F., S.K.D.), Center for Public Health Genomics (N.K.S., S.P.S., J.W.C., L.Ma., N.D.P., D.R.M., M.C., G.A.H., B.I.F., C.D.L., S.K.D.), Department of Biostatistical Sciences, Division of Public Health Sciences (S.P.S., J.W.C., D.R.M., J.B., M.C., C.D.L.), Department of Biochemistry (N.D.P., D.W.B.), Center for Diabetes Research and Center for Genomics and Personalized Medicine Research (N.D.P., G.A.H., D.W.B., B.I.F.), and Clinical Research Unit, Biomedical Research Services and Administration (M.B., S.J.B., L.E.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|
48
|
Comparative Proteomic Study of Fatty Acid-treated Myoblasts Reveals Role of Cox-2 in Palmitate-induced Insulin Resistance. Sci Rep 2016; 6:21454. [PMID: 26899878 PMCID: PMC4761885 DOI: 10.1038/srep21454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022] Open
Abstract
Accumulated studies demonstrate that saturated fatty acids (FAs) such as palmitic acid (PA) inhibit insulin signaling in skeletal muscle cells and monounsaturated fatty acids such as oleic acid (OA) reverse the effect of PA on insulin signaling. The detailed molecular mechanism of these opposite effects remains elusive. Here we provide a comparative proteomic study of skeletal myoblast cell line C2C12 that were untreated or treated with PA, and PA plus OA. A total of 3437 proteins were quantified using SILAC in this study and 29 proteins fall into the pattern that OA reverses PA effect. Expression of some these proteins were verified using qRT-PCR and Western blot. The most significant change was cyclooxygenase-2 (Cox-2). In addition to whole cell comparative proteomic study, we also compared lipid droplet (LD)-associated proteins and identified that Cox-2 was one of three major altered proteins under the FA treatment. This finding was then confirmed using immunofluorescence. Finally, Cox-2 selective inhibitor, celecoxib protected cells from PA-reduced insulin signaling Akt phosphorylation. Together, these results not only provide a dataset of protein expression change in FA treatment but also suggest that Cox-2 and lipid droplets (LDs) are potential players in PA- and OA-mediated cellular processes.
Collapse
|
49
|
Kirby TJ, Walton RG, Finlin B, Zhu B, Unal R, Rasouli N, Peterson CA, Kern PA. Integrative mRNA-microRNA analyses reveal novel interactions related to insulin sensitivity in human adipose tissue. Physiol Genomics 2016; 48:145-53. [PMID: 26672043 PMCID: PMC4729698 DOI: 10.1152/physiolgenomics.00071.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/11/2015] [Indexed: 01/17/2023] Open
Abstract
Adipose tissue has profound effects on whole-body insulin sensitivity. However, the underlying biological processes are quite complex and likely multifactorial. For instance, the adipose transcriptome is posttranscriptionally modulated by microRNAs, but the relationship between microRNAs and insulin sensitivity in humans remains to be determined. To this end, we utilized an integrative mRNA-microRNA microarray approach to identify putative molecular interactions that regulate the transcriptome in subcutaneous adipose tissue of insulin-sensitive (IS) and insulin-resistant (IR) individuals. Using the NanoString nCounter Human v1 microRNA Expression Assay, we show that 17 microRNAs are differentially expressed in IR vs. IS. Of these, 16 microRNAs (94%) are downregulated in IR vs. IS, including miR-26b, miR-30b, and miR-145. Using Agilent Human Whole Genome arrays, we identified genes that were predicted targets of miR-26b, miR-30b, and miR-145 and were upregulated in IR subjects. This analysis produced ADAM22, MYO5A, LOX, and GM2A as predicted gene targets of these microRNAs. We then validated that miR-145 and miR-30b regulate these mRNAs in differentiated human adipose stem cells. We suggest that use of bioinformatic integration of mRNA and microRNA arrays yields verifiable mRNA-microRNA pairs that are associated with insulin resistance and can be validated in vitro.
Collapse
Affiliation(s)
- Tyler J Kirby
- College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - R Grace Walton
- College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Brian Finlin
- Department of Medicine, Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center; University of Kentucky, Lexington, Kentucky; and
| | - Beibei Zhu
- Department of Medicine, Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center; University of Kentucky, Lexington, Kentucky; and
| | - Resat Unal
- Department of Medicine, Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center; University of Kentucky, Lexington, Kentucky; and
| | - Neda Rasouli
- Department of Internal Medicine, Division of Endocrinology, University of Colorado, Aurora, Colorado
| | | | - Philip A Kern
- Department of Medicine, Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center; University of Kentucky, Lexington, Kentucky; and
| |
Collapse
|
50
|
Lee JM, Lee H, Kang S, Park WJ. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients 2016; 8:nu8010023. [PMID: 26742061 PMCID: PMC4728637 DOI: 10.3390/nu8010023] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/07/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.
Collapse
Affiliation(s)
- Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea.
| | - Hyungjae Lee
- Department of Food Engineering, Dankook University, Cheonan, Chungnam 31116, Korea.
| | - SeokBeom Kang
- Citrus Research Station, National Institute of Horticultural & Herbal Science, RDA, Seogwipo 63607, Korea.
| | - Woo Jung Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Korea.
| |
Collapse
|