1
|
Plaza-Florido A, Olvera-Rojas M, Alcantara JMA, Radom-Aizik S, Ortega FB. Targeted proteomics involved in cardiovascular health and heart rate variability in children with overweight/obesity. Am J Hum Biol 2024; 36:e24113. [PMID: 38864311 DOI: 10.1002/ajhb.24113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Children with overweight/obesity often exhibit alterations in their plasma protein profiles and reduced heart rate variability (HRV). Plasma proteomics is at the forefront of identifying biomarkers for various clinical conditions. We aimed to examine the association between plasma-targeted proteomics involved in cardiovascular health and resting vagal-related HRV parameters in children with overweight/obesity. METHODS Forty-four children with overweight/obesity (10.2 ± 1.1 years old; 52% boys) participated in the study. Olink's technology was used to quantify 92 proteins involved in cardiovascular health. HRV was measured using a heart rate monitor (Polar RS800CX). Four resting vagal-related HRV parameters were derived in time- and frequency-domain. RESULTS Eight proteins (KIM1, IgG Fc receptor II-b, IDUA, BOC, IL1RL2, TNFRSF11A, VSIG2, and TF) were associated with at least one out of the four vagal-related HRV parameters (β values ranging from -0.188 to 0.288; all p < .05), while KIM1, IDUA, and BOC associated with ≥ three vagal-related HRV parameters. Multiple hypothesis testing corrections did not reach statistical significance (false discovery rate [FDR >0.05]). CONCLUSION Plasma-targeted proteomics suggested novel biomarkers for resting vagal-related HRV parameters in children with overweight/obesity. Future studies using larger cohorts and longitudinal designs should confirm our findings and their potential clinical implications.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California at Irvine, Irvine, California, USA
| | - Marcos Olvera-Rojas
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Juan M A Alcantara
- Institute for Innovation & Sustainable Food Chain Development, Department of Health Sciences, Public University of Navarre, Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California at Irvine, Irvine, California, USA
| | - Francisco B Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
2
|
Ma X, Chu H, Sun Y, Cheng Y, Zhang D, Zhou Y, Liu X, Wang Z. The effect of hsCRP on TyG index-associated cardiovascular risk in patients with acute coronary syndrome undergoing PCI. Sci Rep 2024; 14:18083. [PMID: 39103439 PMCID: PMC11300796 DOI: 10.1038/s41598-024-69158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
The effect of systemic inflammation, represented by high-sensitivity C-reactive protein (hsCRP), on triglyceride glucose (TyG) index-associated cardiovascular risk in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) has not yet been determined. This study was a retrospective analysis of a single-center prospective registry and finally included 1701 patients (age, 60 ± 10 years; male, 76.7%). The primary endpoint was defined as major adverse cardiovascular events (MACE), including cardiovascular mortality, non-fatal stroke, and non-fatal myocardial infarction. In the multivariate COX regression model that included the GRACE risk score, higher TyG index was significantly associated with a greater incidence of MACE in patients with hsCRP levels less than 2 mg/L but not 2 mg/L or more (P for interaction = 0.039). Each unit increase in the TyG index was independently associated with a 52% increased risk of MACE only in patients with hsCRP levels less than 2 mg/L (P = 0.021). After adjustment for other confounding factors, including the GRACE risk score, compared with those in the group of TyG index < 8.62 and hsCRP < 2 mg/L, patients in the group of TyG index ≥ 8.62 and hsCRP ≥ 2 mg/L had a 3.9 times higher hazard ratio for developing MACE. The addition of both TyG index and hsCRP had an incremental effect on the predictive ability of the GRACE risk score-based prognostic model for MACE (C-statistic: increased from 0.631 to 0.661; cNRI: 0.146, P = 0.012; IDI: 0.009, P < 0.001). In conclusion, there was a significant interaction between the TyG index and hsCRP for the risk of MACE, and the TyG index was reliably and independently associated with MACE only when hsCRP levels were less than 2 mg/L. Furthermore, high TyG index and high hsCRP levels synergistically increased the risk of MACE, suggesting that the prognostic value of TyG index combined with hsCRP might be promising in patients with ACS undergoing PCI.
Collapse
Affiliation(s)
- Xiaoteng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Huijun Chu
- Department of Anesthesia, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yujing Cheng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Dai Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xiaoli Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Zhijian Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
3
|
Oshima K, Shoji H, Boku N, Hirano H, Okita N, Takashima A, Kato K, Kudo-Saito C. CRP and soluble CTLA4 are determinants of anti-PD1 resistance in gastrointestinal cancer. Am J Cancer Res 2024; 14:1174-1189. [PMID: 38590413 PMCID: PMC10998742 DOI: 10.62347/nqbl9998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/25/2023] [Indexed: 04/10/2024] Open
Abstract
Targeting immune inhibitory checkpoint (IC) pathways have attracted great attention as a promising strategy for treating gastrointestinal (GI) cancer. However, the therapeutic efficacy is low in most cases, and little progress has been made in establishing biomarkers that predict the possible responses, and combination regimens that enhance the therapeutic efficacy. As a predictive biomarker, soluble forms of IC molecules have been recently highlighted. However, little is known about which IC molecules is most critically associated with the treatment resistance, and also about the biological and immunological roles of the IC molecules in GI cancer. In this study, we analyzed sera obtained from advanced gastric cancer patients before and one month after treatment with anti-PD1 nivolumab for soluble IC molecules by ELISA. We found that decrease of soluble CTLA4 (sCTLA4) at posttreatment were significantly associated with a better prognosis, and combination with low level of CRP at posttreatment more clearly defined anti-PD1 responders with long-term survival. Indeed, in the in vitro setting, CRP stimulation upregulated CTLA4 expression in tumor cells followed by generation of sCTLA4 that suppressed CTL induction, and simultaneously conferred high self-renewal and invasive abilities on the tumor cells accompanied by increase of EMT-related gene expressions. In the in vivo setting, CRP injection elevated sCTLA4 level in sera of mouse tumor metastasis models, leading to failure of anti-PD1 therapy. However, treatment with anti-CTLA4 mAb or a PPARγ agonist that can reduce in vivo CRP successfully elicited anti-tumor efficacy in the anti-PD1 resistant models. These suggest that targeting CRP and sCTLA4 may be a promising strategy for improving clinical outcomes in the treatments, including anti-PD1 therapy, of GI cancer.
Collapse
Affiliation(s)
- Kotoe Oshima
- Department of Gastrointestinal Medical Oncology, National Cancer Center HospitalTokyo 104-0045, Japan
- Department of Immune Medicine, National Cancer Center Research InstituteTokyo 104-0045, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center HospitalTokyo 104-0045, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center HospitalTokyo 104-0045, Japan
- Department of Oncology and General Medicine, IMS Hospital, Institute of Medical Science, University of TokyoTokyo 108-8639, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center HospitalTokyo 104-0045, Japan
| | - Natsuko Okita
- Department of Gastrointestinal Medical Oncology, National Cancer Center HospitalTokyo 104-0045, Japan
| | - Atsuo Takashima
- Department of Gastrointestinal Medical Oncology, National Cancer Center HospitalTokyo 104-0045, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center HospitalTokyo 104-0045, Japan
| | - Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research InstituteTokyo 104-0045, Japan
| |
Collapse
|
4
|
MacGregor KA, Ho FK, Celis-Morales CA, Pell JP, Gallagher IJ, Moran CN. Association between menstrual cycle phase and metabolites in healthy, regularly menstruating women in UK Biobank, and effect modification by inflammatory markers and risk factors for metabolic disease. BMC Med 2023; 21:488. [PMID: 38066548 PMCID: PMC10709933 DOI: 10.1186/s12916-023-03195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Preliminary evidence demonstrates some parameters of metabolic control, including glycaemic control, lipid control and insulin resistance, vary across the menstrual cycle. However, the literature is inconsistent, and the underlying mechanisms remain uncertain. This study aimed to investigate the association between the menstrual cycle phase and metabolites and to explore potential mediators and moderators of these associations. METHODS We undertook a cross-sectional cohort study using UK Biobank. The outcome variables were glucose; triglyceride; triglyceride to glucose index (TyG index); total, HDL and LDL cholesterol; and total to HDL cholesterol ratio. Generalised additive models (GAM) were used to investigate non-linear associations between the menstrual cycle phase and outcome variables. Anthropometric, lifestyle, fitness and inflammatory markers were explored as potential mediators and moderators of the associations between the menstrual cycle phase and outcome variables. RESULTS Data from 8694 regularly menstruating women in UK Biobank were analysed. Non-linear associations were observed between the menstrual cycle phase and total (p < 0.001), HDL (p < 0.001), LDL (p = 0.012) and total to HDL cholesterol (p < 0.001), but not glucose (p = 0.072), triglyceride (p = 0.066) or TyG index (p = 0.100). Neither anthropometric, physical fitness, physical activity, nor inflammatory markers mediated the associations between the menstrual cycle phase and metabolites. Moderator analysis demonstrated a greater magnitude of variation for all metabolites across the menstrual cycle in the highest and lowest two quartiles of fat mass and physical activity, respectively. CONCLUSIONS Cholesterol profiles exhibit a non-linear relationship with the menstrual cycle phase. Physical activity, anthropometric and fitness variables moderate the associations between the menstrual cycle phase and metabolite concentration. These findings indicate the potential importance of physical activity and fat mass as modifiable risk factors of the intra-individual variation in metabolic control across the menstrual cycle in pre-menopausal women.
Collapse
Affiliation(s)
- Kirstin A MacGregor
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, UK
| | - Frederick K Ho
- School of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, UK
| | - Carlos A Celis-Morales
- School Cardiovascular and Metabolic Health, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, Glasgow, Scotland, UK
- Human Performance Lab, Education, Physical Activity and Health Research Unit, University Católica del Maule, Talca, Chile
| | - Jill P Pell
- Human Performance Lab, Education, Physical Activity and Health Research Unit, University Católica del Maule, Talca, Chile
| | - Iain J Gallagher
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, UK
- Centre for Biomedicine and Global Health, School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| | - Colin N Moran
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, UK.
| |
Collapse
|
5
|
Sacharidou A, Chambliss K, Peng J, Barrera J, Tanigaki K, Luby-Phelps K, Özdemir İ, Khan S, Sirsi SR, Kim SH, Katzenellenbogen BS, Katzenellenbogen JA, Kanchwala M, Sathe AA, Lemoff A, Xing C, Hoyt K, Mineo C, Shaul PW. Endothelial ERα promotes glucose tolerance by enhancing endothelial insulin transport to skeletal muscle. Nat Commun 2023; 14:4989. [PMID: 37591837 PMCID: PMC10435471 DOI: 10.1038/s41467-023-40562-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
The estrogen receptor (ER) designated ERα has actions in many cell and tissue types that impact glucose homeostasis. It is unknown if these include mechanisms in endothelial cells, which have the potential to influence relative obesity, and processes in adipose tissue and skeletal muscle that impact glucose control. Here we show that independent of impact on events in adipose tissue, endothelial ERα promotes glucose tolerance by enhancing endothelial insulin transport to skeletal muscle. Endothelial ERα-deficient male mice are glucose intolerant and insulin resistant, and in females the antidiabetogenic actions of estradiol (E2) are absent. The glucose dysregulation is due to impaired skeletal muscle glucose disposal that results from attenuated muscle insulin delivery. Endothelial ERα activation stimulates insulin transcytosis by skeletal muscle microvascular endothelial cells. Mechanistically this involves nuclear ERα-dependent upregulation of vesicular trafficking regulator sorting nexin 5 (SNX5) expression, and PI3 kinase activation that drives plasma membrane recruitment of SNX5. Thus, coupled nuclear and non-nuclear actions of ERα promote endothelial insulin transport to skeletal muscle to foster normal glucose homeostasis.
Collapse
Affiliation(s)
- Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ken Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Peng
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jose Barrera
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Keiji Tanigaki
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Katherine Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - İpek Özdemir
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Sohaib Khan
- University of Cincinnati Cancer Institute, Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Shashank R Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benita S Katzenellenbogen
- Departments of Physiology and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Adwait A Sathe
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Tan Q, Wang B, Ye Z, Mu G, Liu W, Nie X, Yu L, Zhou M, Chen W. Cross-sectional and longitudinal relationships between ozone exposure and glucose homeostasis: Exploring the role of systemic inflammation and oxidative stress in a general Chinese urban population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121711. [PMID: 37100372 DOI: 10.1016/j.envpol.2023.121711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/05/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023]
Abstract
The adverse health effects of ozone pollution have been a globally concerned public health issue. Herein we aim to investigate the association between ozone exposure and glucose homeostasis, and to explore the potential role of systemic inflammation and oxidative stress in this association. A total of 6578 observations from the Wuhan-Zhuhai cohort (baseline and two follow-ups) were included in this study. Fasting plasma glucose (FPG) and insulin (FPI), plasma C-reactive protein (CRP, biomarker for systemic inflammation), urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG, biomarker for oxidative DNA damage), and urinary 8-isoprostane (biomarker for lipid peroxidation) were repeatedly measured. After adjusting for potential confounders, ozone exposure was positively associated with FPG, FPI, and homeostasis model assessment of insulin resistance (HOMA-IR), and negatively associated with HOMA of beta cell function (HOMA-β) in cross-sectional analyses. Each 10 ppb increase in cumulative 7-days moving average ozone was associated with a 13.19%, 8.31%, and 12.77% increase in FPG, FPI, and HOMA-IR, respectively, whereas a 6.63% decrease in HOMA-β (all P < 0.05). BMI modified the associations of 7-days ozone exposure with FPI and HOMA-IR, and the effects were stronger in subgroup whose BMI ≥24 kg/m2. Consistently high exposure to annual average ozone was associated with increased FPG and FPI in longitudinal analyses. Furthermore, ozone exposure was positively related to CRP, 8-OHdG, and 8-isoprostane in dose-response manner. Increased CRP, 8-OHdG, and 8-isoprostane could dose-dependently aggravate glucose homeostasis indices elevations related to ozone exposure. Increased CRP and 8-isoprostane mediated 2.11-14.96% of ozone-associated glucose homeostasis indices increment. Our findings suggested that ozone exposure could cause glucose homeostasis damage and obese people were more susceptible. Systemic inflammation and oxidative stress might be potential pathways in glucose homeostasis damage induced by ozone exposure.
Collapse
Affiliation(s)
- Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Zhang Z, Na H, Gan Q, Tao Q, Alekseyev Y, Hu J, Yan Z, Yang JB, Tian H, Zhu S, Li Q, Rajab IM, Blusztajn JK, Wolozin B, Emili A, Zhang X, Stein T, Potempa LA, Qiu WQ. Monomeric C-reactive protein via endothelial CD31 for neurovascular inflammation in an ApoE genotype-dependent pattern: A risk factor for Alzheimer's disease? Aging Cell 2021; 20:e13501. [PMID: 34687487 PMCID: PMC8590103 DOI: 10.1111/acel.13501] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/25/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
In chronic peripheral inflammation, endothelia in brain capillary beds could play a role for the apolipoprotein E4 (ApoE4)-mediated risk for Alzheimer's disease (AD) risk. Using human brain tissues, here we demonstrate that the interactions of endothelial CD31 with monomeric C-reactive protein (mCRP) versus ApoE were linked with shortened neurovasculature for AD pathology and cognition. Using ApoE knock-in mice, we discovered that intraperitoneal injection of mCRP, via binding to CD31 on endothelial surface and increased CD31 phosphorylation (pCD31), leading to cerebrovascular damage and the extravasation of T lymphocytes into the ApoE4 brain. While mCRP was bound to endothelial CD31 in a dose- and time-dependent manner, knockdown of CD31 significantly decreased mCRP binding and altered the expressions of vascular-inflammatory factors including vWF, NF-κB and p-eNOS. RNAseq revealed endothelial pathways related to oxidative phosphorylation and AD pathogenesis were enhanced, but endothelial pathways involving in epigenetics and vasculogenesis were inhibited in ApoE4. This is the first report providing some evidence on the ApoE4-mCRP-CD31 pathway for the cross talk between peripheral inflammation and cerebrovasculature leading to AD risk.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Hana Na
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Qini Gan
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Qiushan Tao
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Yuriy Alekseyev
- Microarray and Sequencing Core FacilityBoston University School of MedicineBostonMassachusettsUSA
| | - Junming Hu
- Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Zili Yan
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Jack B. Yang
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Hua Tian
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Department of PharmacologyXiaman Medical CollegeXiamanChina
| | - Shenyu Zhu
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Qiang Li
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Nursing SchoolQiqihar Medical UniversityQiqiharChina
| | | | - Jan Krizysztof Blusztajn
- Department of Pathology and Laboratory MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Andrew Emili
- Department of BiochemistryBoston University School of MedicineBostonMassachusettsUSA
| | - Xiaoling Zhang
- Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Thor Stein
- Department of Pathology and Laboratory MedicineBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer’s Disease CenterBoston University School of MedicineBostonMassachusettsUSA
- VA Boston Healthcare SystemBostonMassachusettsUSA
- Department of Veterans Affairs Medical CenterBedfordMassachusettsUSA
| | | | - Wei Qiao Qiu
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer’s Disease CenterBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychiatryBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
8
|
Shokri-Mashhadi N, Moradi S, Heidari Z, Saadat S. Association of circulating C-reactive protein and high-sensitivity C-reactive protein with components of sarcopenia: A systematic review and meta-analysis of observational studies. Exp Gerontol 2021; 150:111330. [PMID: 33848566 DOI: 10.1016/j.exger.2021.111330] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Sarcopenia, a multi-faceted skeletal muscle disorder in the older population, has poor health outcomes. Some previous observational studies investigated the association between circulating inflammatory markers and sarcopenia components to evaluate chronic inflammation as a risk factor for sarcopenia in the elderly population. Nevertheless, the association between circulating C-reactive protein (CRP) and hs-CRP, as the recognized markers of systemic inflammation and components of sarcopenia, is unclear. This meta-analysis aimed to investigate the association of muscle strength, muscle mass, and muscle function with two serum inflammatory markers, circulating C-reactive protein (CRP) and high-sensitive CRP (hs-CRP). METHODS We assessed all observational studies across different electronic databases including PubMed, Scopus, and Google Scholar using keywords such as "muscle strength", "muscle mass", "muscle function", CRP and hs-CRP from inception until the 30th of July 2019. Only studies that investigated the association between components of sarcopenia and CRP or hs-CRP levels were included. Participants' country, age, sex, BMI, and screening tool for sarcopenia were retrieved. The correlations between muscle strength, muscle mass, and muscle function with CRP, and hs-CRP were expressed as the correlation coefficient (r) with 95% confidence intervals (CIs). Begg's test and Egger's test were conducted to evaluate risk of publication bias in this study. RESULTS Initially, we found fifty-nine studies for the qualitative synthesis. Ultimately, nineteen adult cross-sectional studies comprising 14,650 subjects were included in the meta-analysis. Of them, fourteen studies measured the correlation between CRP or hs-CRP and muscle strength. There were significant inverse correlation between CRP and hs-CRP concentrations with muscle strength (ES (z) = -0.22; 95% CI = -0.34 to -0.09; P < 0.001), (ES (z) = -0.22; 95% CI = -0.34 to -0.09; P < 0.001), respectively. No publication bias was found between muscle strength and CRP (P = 0.53) or hs-CRP (P = 0.62) respectively. CONCLUSION Among diagnostic components of sarcopenia, impairment of muscle strength was independently associated with both inflammatory biomarkers. However, future cohort studies are essential to clarify the causal correlation.
Collapse
Affiliation(s)
- Nafiseh Shokri-Mashhadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sajjad Moradi
- Halal Research Center of IRI, FDA, Tehran, Iran; Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Science, Isfahan, Iran
| | - Saeed Saadat
- Department of Computer Sciences, Faculty of Mathematics and Natural Sciences, Heinrich Heine Universität, Düsseldorf, Germany
| |
Collapse
|
9
|
Doxepin Exacerbates Renal Damage, Glucose Intolerance, Nonalcoholic Fatty Liver Disease, and Urinary Chromium Loss in Obese Mice. Pharmaceuticals (Basel) 2021; 14:ph14030267. [PMID: 33809508 PMCID: PMC8001117 DOI: 10.3390/ph14030267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Doxepin is commonly prescribed for depression and anxiety treatment. Doxepin-related disruptions to metabolism and renal/hepatic adverse effects remain unclear; thus, the underlying mechanism of action warrants further research. Here, we investigated how doxepin affects lipid change, glucose homeostasis, chromium (Cr) distribution, renal impairment, liver damage, and fatty liver scores in C57BL6/J mice subjected to a high-fat diet and 5 mg/kg/day doxepin treatment for eight weeks. We noted that the treated mice had higher body, kidney, liver, retroperitoneal, and epididymal white adipose tissue weights; serum and liver triglyceride, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, and creatinine levels; daily food efficiency; and liver lipid regulation marker expression. They also demonstrated exacerbated insulin resistance and glucose intolerance with lower Akt phosphorylation, GLUT4 expression, and renal damage as well as higher reactive oxygen species and interleukin 1 and lower catalase, superoxide dismutase, and glutathione peroxidase levels. The treated mice had a net-negative Cr balance due to increased urinary excretion, leading to Cr mobilization, delaying hyperglycemia recovery. Furthermore, they had considerably increased fatty liver scores, paralleling increases in adiponectin, FASN, PNPLA3, FABP4 mRNA, and SREBP1 mRNA levels. In conclusion, doxepin administration potentially worsens renal injury, nonalcoholic fatty liver disease, and diabetes.
Collapse
|
10
|
Muramatsu H, Kuramochi T, Katada H, Ueyama A, Ruike Y, Ohmine K, Shida-Kawazoe M, Miyano-Nishizawa R, Shimizu Y, Okuda M, Hori Y, Hayashi M, Haraya K, Ban N, Nonaka T, Honda M, Kitamura H, Hattori K, Kitazawa T, Igawa T, Kawabe Y, Nezu J. Novel myostatin-specific antibody enhances muscle strength in muscle disease models. Sci Rep 2021; 11:2160. [PMID: 33495503 PMCID: PMC7835227 DOI: 10.1038/s41598-021-81669-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/08/2021] [Indexed: 11/22/2022] Open
Abstract
Myostatin, a member of the transforming growth factor-β superfamily, is an attractive target for muscle disease therapy because of its role as a negative regulator of muscle growth and strength. Here, we describe a novel antibody therapeutic approach that maximizes the potential of myostatin-targeted therapy. We generated an antibody, GYM329, that specifically binds the latent form of myostatin and inhibits its activation. Additionally, via "sweeping antibody technology", GYM329 reduces or "sweeps" myostatin in the muscle and plasma. Compared with conventional anti-myostatin agents, GYM329 and its surrogate antibody exhibit superior muscle strength-improvement effects in three different mouse disease models. We also demonstrate that the superior efficacy of GYM329 is due to its myostatin specificity and sweeping capability. Furthermore, we show that a GYM329 surrogate increases muscle mass in normal cynomolgus monkeys without any obvious toxicity. Our findings indicate the potential of GYM329 to improve muscle strength in patients with muscular disorders.
Collapse
Affiliation(s)
- Hiroyasu Muramatsu
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Taichi Kuramochi
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #07-11 to 16, Synapse, Singapore, 138623, Singapore
| | - Hitoshi Katada
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Atsunori Ueyama
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Yoshinao Ruike
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Ken Ohmine
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | | | | | - Yuichiro Shimizu
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Momoko Okuda
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #07-11 to 16, Synapse, Singapore, 138623, Singapore
| | - Yuji Hori
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Madoka Hayashi
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Kenta Haraya
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Nobuhiro Ban
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Tatsuya Nonaka
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Masaki Honda
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Hidetomo Kitamura
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Kunihiro Hattori
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Takehisa Kitazawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Tomoyuki Igawa
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #07-11 to 16, Synapse, Singapore, 138623, Singapore
| | - Yoshiki Kawabe
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Junichi Nezu
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan.
| |
Collapse
|
11
|
Yoldemir SA, Arman Y, Akarsu M, Altun O, Ozcan M, Tukek T. Correlation of glycemic regulation and endotrophin in patients with type 2 Diabetes; pilot study. Diabetol Metab Syndr 2021; 13:9. [PMID: 33478575 PMCID: PMC7819246 DOI: 10.1186/s13098-021-00628-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Endotrophin is one of the extracellular matrix proteins secreted by adipose tissue. In this study, we aimed to investigate the effects of changes in blood glucose levels on serum endotrophin levels secreted by adipose tissue and thus on diabetes. METHODS In this prospective pilot study included 78 patients with type 2 diabete (T2D) with hemoglobin A1c level > 9 %. Lifestyle changes were recommended and appropriate medical treatment was initiated to all patients in order to reach the target HbA1c level. Data of anthropometric measurements, urinary albumin creatinine ratio (UACR), serum lipid parameters and endotrophin were collected in patients; all examinations were repeated after 3 months. Analysis was performed using Paired-Samles T test and Spearman tests. RESULTS Of patients, 23 were female (54.8 %) and 19 were male (45.2 %). Mean age was 55.2 years, with mean diabetes age of 8.14 ± 5.35 years. After 3 months follow-up, HbA1c, fasting glucose, C-reactive protein(CRP), UACR and endotrophin levels were observed to clearly reduce. The variation in serum endotrophin levels examined at the start of the study and in the 3rd month was identified to have a positive correlation with the variation in HbA1c and UACR levels (r = 0.342, p = 0.02; r = 0.484, p = 0.001). Multiple linear regression analysis showed percentage variation values (δ)-endotrophin levels were only independently correlated with (δ)-UACR (model r2 = 0.257, p value = 0.00). CONCLUSIONS Endotrophin levels decreased significantly with the decrease in HbA1c. Unexpectedly, this reduction in endotrophin levels is closely related to the decrease in UACR, regardless of blood glucose regulation. We think that studies targeting endotrophin will contribute to the diagnosis, treatment and follow-up of diabetic nephropathy in the future.
Collapse
Affiliation(s)
- Sengul Aydin Yoldemir
- Internal Medicine Department, Okmeydanı Training and Research Hospital, Istanbul, Turkey.
| | - Yucel Arman
- Internal Medicine Department, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Murat Akarsu
- Internal Medicine Department, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Ozgur Altun
- Internal Medicine Department, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Ozcan
- Internal Medicine Department, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Tufan Tukek
- Faculty of medicine, Internal Medicine Department, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Napoli R, Ruvolo A, Triggianese P, Prevete N, Schiattarella GG, Nigro C, Miele C, Magliulo F, Grassi S, Pecoraro A, Cittadini A, Esposito G, de Paulis A, Spadaro G. Immunoglobulins G modulate endothelial function and affect insulin sensitivity in humans. Nutr Metab Cardiovasc Dis 2020; 30:2085-2092. [PMID: 32807637 DOI: 10.1016/j.numecd.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Data from animals suggest that immunoglobulins G (IgG) play a mechanistic role in atherosclerosis and diabetes through endothelial dysfunction and insulin resistance. Patients with common variable immunodeficiency (CVID), who have low circulating levels of IgG and are treated with intravenous polyclonal IgG (IVIgG), may provide an ideal model to clarify whether circulating IgG modulate endothelial function and affect insulin sensitivity in humans. METHODS AND RESULTS We studied 24 patients with CVID and 17 matched healthy controls (HC). Endothelial function was evaluated as flow mediated dilation (FMD) of the brachial artery at baseline and 1, 7, 14, and 21 days after IVIgG infusion in the CVID patients. We measured also plasma glucose, insulin, and calculated the HOMA-IR index. We also investigated the role of human IgG on the production of Nitric Oxide (NO) in vitro in Human Coronary Artery Endothelial Cells (HCAEC). Compared to HC, FMD of CVID patients was significantly impaired at baseline (9.4 ± 0.9 and 7.6 ± 0.6% respectively, p < 0.05) but rose above normal levels 1 and 7 days after IVIgG infusion to return at baseline at 14 and 21 days. Serum insulin concentration and HOMA-IR index dropped by 50% in CVID patients after IVIgG (p < 0.002 vs. baseline). In vitro IgG stimulated NO production in HCAEC. CONCLUSIONS Reduced IgG levels are associated with endothelial dysfunction and IVIgG stimulates endothelial function directly while improving insulin sensitivity. The current findings may suggest an anti-atherogenic role of human IgG.
Collapse
Affiliation(s)
- Raffaele Napoli
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy.
| | - Antonio Ruvolo
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Paola Triggianese
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Nella Prevete
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Gabriele G Schiattarella
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Cecilia Nigro
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Claudia Miele
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Fabio Magliulo
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Simona Grassi
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| |
Collapse
|
13
|
Aydin Yoldemir Ş, Arman Y, Akarsu M, Altun Ö, Dikker O, Toprak ID, Özcan M, Kalyon S, Kutlu Y, Irmak S, Toprak Z, Tükek T. The relationship between insulin resistance, obesity, and endotrophin. Int J Diabetes Dev Ctries 2020. [DOI: 10.1007/s13410-019-00780-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
14
|
Peng J, Vongpatanasin W, Sacharidou A, Kifer D, Yuhanna IS, Banerjee S, Tanigaki K, Polasek O, Chu H, Sundgren NC, Rohatgi A, Chambliss KL, Lauc G, Mineo C, Shaul PW. Supplementation With the Sialic Acid Precursor N-Acetyl-D-Mannosamine Breaks the Link Between Obesity and Hypertension. Circulation 2019; 140:2005-2018. [PMID: 31597453 PMCID: PMC7027951 DOI: 10.1161/circulationaha.119.043490] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obesity-related hypertension is a common disorder, and attempts to combat the underlying obesity are often unsuccessful. We previously revealed that mice globally deficient in the inhibitory immunoglobulin G (IgG) receptor FcγRIIB are protected from obesity-induced hypertension. However, how FcγRIIB participates is unknown. Studies were designed to determine if alterations in IgG contribute to the pathogenesis of obesity-induced hypertension. METHODS Involvement of IgG was studied using IgG μ heavy chain-null mice deficient in mature B cells and by IgG transfer. Participation of FcγRIIB was interrogated in mice with global or endothelial cell-specific deletion of the receptor. Obesity was induced by high-fat diet (HFD), and blood pressure (BP) was measured by radiotelemetry or tail cuff. The relative sialylation of the Fc glycan on mouse IgG, which influences IgG activation of Fc receptors, was evaluated by Sambucus nigra lectin blotting. Effects of IgG on endothelial NO synthase were assessed in human aortic endothelial cells. IgG Fc glycan sialylation was interrogated in 3442 human participants by mass spectrometry, and the relationship between sialylation and BP was evaluated. Effects of normalizing IgG sialylation were determined in HFD-fed mice administered the sialic acid precursor N-acetyl-D-mannosamine (ManNAc). RESULTS Mice deficient in B cells were protected from obesity-induced hypertension. Compared with IgG from control chow-fed mice, IgG from HFD-fed mice was hyposialylated, and it raised BP when transferred to recipients lacking IgG; the hypertensive response was absent if recipients were FcγRIIB-deficient. Neuraminidase-treated IgG lacking the Fc glycan terminal sialic acid also raised BP. In cultured endothelial cells, via FcγRIIB, IgG from HFD-fed mice and neuraminidase-treated IgG inhibited vascular endothelial growth factor activation of endothelial NO synthase by altering endothelial NO synthase phosphorylation. In humans, obesity was associated with lower IgG sialylation, and systolic BP was inversely related to IgG sialylation. Mice deficient in FcγRIIB in endothelium were protected from obesity-induced hypertension. Furthermore, in HFD-fed mice, ManNAc normalized IgG sialylation and prevented obesity-induced hypertension. CONCLUSIONS Hyposialylated IgG and FcγRIIB in endothelium are critically involved in obesity-induced hypertension in mice, and supportive evidence was obtained in humans. Interventions targeting these mechanisms, such as ManNAc supplementation, may provide novel means to break the link between obesity and hypertension.
Collapse
Affiliation(s)
- Jun Peng
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA 75390
| | - Wanpen Vongpatanasin
- Division of Cardiology, Dept. of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX USA 75390
| | - Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA 75390
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ivan S. Yuhanna
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA 75390
| | - Subhashis Banerjee
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA 75390
| | - Keiji Tanigaki
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA 75390
| | - Ozren Polasek
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Haiyan Chu
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA 75390
| | - Nathan C. Sundgren
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA 75390
| | - Anand Rohatgi
- Division of Cardiology, Dept. of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX USA 75390
| | - Ken L. Chambliss
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA 75390
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA 75390
| | - Philip W. Shaul
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA 75390
| |
Collapse
|
15
|
Fan Z, Li N, Xu Z, Wu J, Fan X, Xu Y. An interaction between MKL1, BRG1, and C/EBPβ mediates palmitate induced CRP transcription in hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194412. [PMID: 31356989 DOI: 10.1016/j.bbagrm.2019.194412] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most predominant disorders in metabolic syndrome. Induction of pro-inflammatory mediators in hepatocytes exposed to free fatty acids represents a hallmark event during NASH pathogenesis. C-reactive protein (CRP) is a prototypical pro-inflammatory mediator. In the present study, we investigated the mechanism by which megakaryocytic leukemia 1 (MKL1) mediates palmitate (PA) induced CRP transcription in hepatocytes. We report that over-expression of MKL1, but not MKL2, activated the CRP promoter whereas depletion or inhibition of MKL1 repressed the CRP promoter. MKL1 potentiated the induction of the CRP promoter activity by PA treatment. Importantly, MKL1 knockdown by siRNA or pharmaceutical inhibition by CCG-1423 attenuated the induction of endogenous CRP expression in hepatocytes. Similarly, primary hepatocytes isolated from wild type (WT) mice produced more CRP than those isolated from MKL1 deficient (KO) mice when stimulated with PA. Mechanistically, the sequence-specific transcription factor CCAAT-enhancer-binding protein (C/EBPβ) interacted with MKL1 and recruited MKL1 to activate CRP transcription. Reciprocally, MKL1 modulated C/EBPβ activity by recruiting the chromatin remodeling protein BRG1 to the CRP promoter to alter histone modifications. In conclusion, our data delineate a novel epigenetic mechanism underlying augmented hepatic inflammation during NASH pathogenesis.
Collapse
Affiliation(s)
- Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jiahao Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiangshan Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
16
|
Bawadi H, Katkhouda R, Tayyem R, Kerkadi A, Bou Raad S, Subih H. Abdominal Fat Is Directly Associated With Inflammation In Persons With Type-2 Diabetes Regardless Of Glycemic Control - A Jordanian Study. Diabetes Metab Syndr Obes 2019; 12:2411-2417. [PMID: 31819567 PMCID: PMC6878926 DOI: 10.2147/dmso.s214426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/16/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND AIM Systemic inflammation is related to the progression of complications associated with diabetes. This study aimed to investigate the association between general and abdominal obesity and inflammation in patients with type-2 diabetes with or without glycemic control. METHODS A total of 198 men (n=73) and women (n=125) diagnosed with type 2 diabetes participated in this study. General obesity markers, body mass index (BMI), and abdominal fat were assessed. Circulating concentrations of glycated hemoglobin (HbA1C), C-reactive protein (CRP), and serum interleukin-6 (IL-6) were determined. Poor glycemic control and good glycemic control were defined as having fasting HbA1C concentrations ≥7% and <7%, respectively. Multivariate adjusted analysis of covariance was used to determine the relation between BMI and abdominal fat and markers of inflammation in patients with good and poor glycemic control. RESULTS Patients in <7% HbA1C category, those with high abdominal fat had ≈262% higher CRP and ≈30.6% higher IL-6 compared to those with low abdominal fat (p˂0.05). Patients in ≥7% HbA1C category, those with high abdominal fat had ≈41.4% higher CRP and ≈33.9% higher IL-6 compared to those with low abdominal fat (p˂0.05). Abdominal fat was directly related to CRP (p˂0.023) and IL-6 (p˂0.002) concentrations in both groups of type-2 diabetic patients with <7% and ≥7% HbA1C. In patients with ≥7% HbA1C, BMI was directly related to CRP (p˂0.02) and IL-6 (p˂0.047). Whereas in patients with <7% HbA1C, BMI was not associated with CRP or IL-6 concentrations. CONCLUSION High level of abdominal fat is associated with systemic inflammation in type-2 diabetes regardless of glycemic control. Abdominal fat is a better predictor (determinant) of inflammation than BMI in patients with type-2 diabetes with or without glycemic control.
Collapse
Affiliation(s)
- Hiba Bawadi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Correspondence: Hiba Bawadi Human Nutrition Department, College of Health Sciences, QU-Health, Qatar University, Building I06, University Street, PO Box 2713, Doha, QatarTel +97444034801 Email
| | - Rami Katkhouda
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Reema Tayyem
- Department of Clinical Nutrition and Dietetics, University of Jordan, Amman, Jordan
| | - Abdelhamid Kerkadi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Samira Bou Raad
- Department of Nutrition and Food Science, American University of Science and Technology, Beirut, Lebanon
| | - Hadil Subih
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
17
|
Kozijn AE, Tartjiono MT, Ravipati S, van der Ham F, Barrett DA, Mastbergen SC, Korthagen NM, Lafeber FPJG, Zuurmond AM, Bobeldijk I, Weinans H, Stoop R. Human C-reactive protein aggravates osteoarthritis development in mice on a high-fat diet. Osteoarthritis Cartilage 2019; 27:118-128. [PMID: 30248505 DOI: 10.1016/j.joca.2018.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/17/2018] [Accepted: 09/13/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE C-reactive protein (CRP) levels can be elevated in osteoarthritis (OA) patients. In addition to indicating systemic inflammation, it is suggested that CRP itself can play a role in OA development. Obesity and metabolic syndrome are important risk factors for OA and also induce elevated CRP levels. Here we evaluated in a human CRP (hCRP)-transgenic mouse model whether CRP itself contributes to the development of 'metabolic' OA. DESIGN Metabolic OA was induced by feeding 12-week-old hCRP-transgenic males (hCRP-tg, n = 30) and wild-type littermates (n = 15) a 45 kcal% high-fat diet (HFD) for 38 weeks. Cartilage degradation, osteophytes and synovitis were graded on Safranin O-stained histological knee joint sections. Inflammatory status was assessed by plasma lipid profiling, flow cytometric analyses of blood immune cell populations and immunohistochemical staining of synovial macrophage subsets. RESULTS Male hCRP-tg mice showed aggravated OA severity and increased osteophytosis compared with their wild-type littermates. Both classical and non-classical monocytes showed increased expression of CCR2 and CD86 in hCRP-tg males. HFD-induced effects were evident for nearly all lipids measured and indicated a similar low-grade systemic inflammation for both genotypes. Synovitis scores and synovial macrophage subsets were similar in the two groups. CONCLUSIONS Human CRP expression in a background of HFD-induced metabolic dysfunction resulted in the aggravation of OA through increased cartilage degeneration and osteophytosis. Increased recruitment of classical and non-classical monocytes might be a mechanism of action through which CRP is involved in aggravating this process. These findings suggest interventions selectively directed against CRP activity could ameliorate metabolic OA development.
Collapse
Affiliation(s)
- A E Kozijn
- Metabolic Health Research, TNO, Leiden, the Netherlands; Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - M T Tartjiono
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - S Ravipati
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - F van der Ham
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - D A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - S C Mastbergen
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - N M Korthagen
- Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - F P J G Lafeber
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - A M Zuurmond
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - I Bobeldijk
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H Weinans
- Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - R Stoop
- Metabolic Health Research, TNO, Leiden, the Netherlands.
| |
Collapse
|
18
|
Fc Gamma Receptor IIb Expressed in Hepatocytes Promotes Lipid Accumulation and Gluconeogenesis. Int J Mol Sci 2018; 19:ijms19102932. [PMID: 30261661 PMCID: PMC6213401 DOI: 10.3390/ijms19102932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 01/01/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by ectopic lipid accumulation in the liver, usually combined with hepatic insulin resistance. Fc-gamma receptor-IIb (FcγRIIb) and its ligand are reported to be associated with obesity and type 2 diabetes mellitus (T2DM). As knowledge about FcγRIIb in the literature is mostly generated from studies on skeletal muscle tissue, the expression and function of FcγRIIb in the liver and hepatocytes are largely unknown. In this study, we identified the expression of FcγRIIb in primary cultured mouse hepatocytes: FcγRIIb was upregulated in response to oleic acid (OA) in a dose dependent manner. FcγRIIb knockdown using shRNA suppressed the lipid and triglyceride accumulation, and mRNA expression of ACC1, FASn, CD36, MTTP, and ApoB in OA-treated HepG2 cells. FcγRIIb deficiency mice fed with high fat diet (HFD) had significantly lower liver weight and liver to body weight ratio, as well as less triglyceride accumulation in the livers. In glycometabolism, FcγRIIb hindered insulin-induced phosphorylation of AKT and FOXO1, and in turn upregulated G6Pase and PEPCK mRNA expression, suggesting that FcγRIIb promotes gluconeogenesis by suppressing the AKT/FOXO1/G6Pase/PEPCK pathway in hepatocytes. This study reveals a novel role for FcγRIIb in regulating lipid metabolism and glycometabolism, and provides a new therapeutic target to improve NAFLD.
Collapse
|
19
|
Intermittent Fasting, Insufficient Sleep, and Circadian Rhythm: Interaction and Effects on the Cardiometabolic System. CURRENT SLEEP MEDICINE REPORTS 2018. [DOI: 10.1007/s40675-018-0124-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Roghanian A, Stopforth RJ, Dahal LN, Cragg MS. New revelations from an old receptor: Immunoregulatory functions of the inhibitory Fc gamma receptor, FcγRIIB (CD32B). J Leukoc Biol 2018; 103:1077-1088. [PMID: 29406570 DOI: 10.1002/jlb.2mir0917-354r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/03/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
The Fc gamma receptor IIB (FcγRIIB/CD32B) was generated million years ago during evolution. It is the sole inhibitory receptor for IgG, and has long been associated with the regulation of humoral immunity and innate immune homeostasis. However, new and surprising functions of FcγRIIB are emerging. In particular, FcγRIIB has been shown to perform unexpected activatory roles in both immune-signaling and monoclonal antibody (mAb) immunotherapy. Furthermore, although ITIM signaling is an integral part of FcγRIIB regulatory activity, it is now clear that inhibition/activation of immune responses can occur independently of the ITIM. In light of these new findings, we present an overview of the established and noncanonical functions of FcγRIIB and discuss how this knowledge might be exploited therapeutically.
Collapse
Affiliation(s)
- Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard J Stopforth
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Lekh N Dahal
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
21
|
Tanigaki K, Sacharidou A, Peng J, Chambliss KL, Yuhanna IS, Ghosh D, Ahmed M, Szalai AJ, Vongpatanasin W, Mattrey RF, Chen Q, Azadi P, Lingvay I, Botto M, Holland WL, Kohler JJ, Sirsi SR, Hoyt K, Shaul PW, Mineo C. Hyposialylated IgG activates endothelial IgG receptor FcγRIIB to promote obesity-induced insulin resistance. J Clin Invest 2017; 128:309-322. [PMID: 29202472 DOI: 10.1172/jci89333] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/17/2017] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common complication of obesity. Here, we have shown that activation of the IgG receptor FcγRIIB in endothelium by hyposialylated IgG plays an important role in obesity-induced insulin resistance. Despite becoming obese on a high-fat diet (HFD), mice lacking FcγRIIB globally or selectively in endothelium were protected from insulin resistance as a result of the preservation of insulin delivery to skeletal muscle and resulting maintenance of muscle glucose disposal. IgG transfer in IgG-deficient mice implicated IgG as the pathogenetic ligand for endothelial FcγRIIB in obesity-induced insulin resistance. Moreover, IgG transferred from patients with T2DM but not from metabolically healthy subjects caused insulin resistance in IgG-deficient mice via FcγRIIB, indicating that similar processes may be operative in T2DM in humans. Mechanistically, the activation of FcγRIIB by IgG from obese mice impaired endothelial cell insulin transcytosis in culture and in vivo. These effects were attributed to hyposialylation of the Fc glycan, and IgG from T2DM patients was also hyposialylated. In HFD-fed mice, supplementation with the sialic acid precursor N-acetyl-D-mannosamine restored IgG sialylation and preserved insulin sensitivity without affecting weight gain. Thus, IgG sialylation and endothelial FcγRIIB may represent promising therapeutic targets to sever the link between obesity and T2DM.
Collapse
Affiliation(s)
- Keiji Tanigaki
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Peng
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ivan S Yuhanna
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Debabrata Ghosh
- Department of Bioengineering, University of Texas at Dallas, Richardson Texas, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mohamed Ahmed
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexander J Szalai
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wanpen Vongpatanasin
- Hypertension Section, Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert F Mattrey
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qiushi Chen
- The Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- The Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ildiko Lingvay
- Division of Endocrinology, Diabetes, and Metabolism and Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marina Botto
- Centre for Complement and Inflammation Research, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shashank R Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson Texas, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson Texas, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
22
|
Chan PC, Wang YC, Chen YL, Hsu WN, Tian YF, Hsieh PS. Importance of NADPH oxidase-mediated redox signaling in the detrimental effect of CRP on pancreatic insulin secretion. Free Radic Biol Med 2017; 112:200-211. [PMID: 28778482 DOI: 10.1016/j.freeradbiomed.2017.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/02/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
Elevations in C-reactive protein (CRP) levels are positively correlated with the progress of type 2 diabetes mellitus. However, the effect of CRP on pancreatic insulin secretion is unknown. Here, we showed that purified human CRP impaired insulin secretion in isolated mouse islets and NIT-1 insulin-secreting cells in dose- and time-dependent manners. CRP increased NADPH oxidase-mediated ROS (reactive oxygen species) production, which simultaneously promoted the production of nitrotyrosine (an indicator of RNS, reactive nitrogen species) and TNFα, to diminish cell viability, insulin secretion in islets and insulin-secreting cells. These CRP-mediated detrimental effects on cell viability and insulin secretion were significantly reversed by adding NAC (a potent antioxidant), apocynin (a selective NADPH oxidase inhibitor), L-NAME (a non-selective nitric oxide synthase (NOS) inhibitor), aminoguanidine (a selective iNOS inhibitor), PDTC (a selective NFκB inhibitor) or Enbrel (an anti-TNFα fusion protein). However, CRP-induced ROS production failed to change after adding L-NAME, aminoguanidine or PDTC. In isolated islets and NIT-1 cells, the elevated nitrotyrosine contents by CRP pretreatment were significantly suppressed by adding L-NAME but not PDTC. Conversely, CRP-induced increases in TNF-α production were significantly reversed by administration of PDTC but not L-NAME. In addition, wild-type mice treated with purified human CRP showed significant decreases in the insulin secretion index (HOMA-β cells) and the insulin stimulation index in isolated islets that were reversed by the addition of L-NAME, aminoguanidine or NAC. It is suggested that CRP-activated NADPH-oxidase redox signaling triggers iNOS-mediated RNS and NFκB-mediated proinflammatory cytokine production to cause β cell damage in state of inflammation.
Collapse
Affiliation(s)
- Pei-Chi Chan
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Chin Wang
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ling Chen
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Ning Hsu
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Feng Tian
- Division of General Surgery, Department of Surgery, Yung Kung campus, Chi-Mei Medical Center, Tainan, Taiwan
| | - Po-Shiuan Hsieh
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan; Institute of Preventive Medicine, National Defense Medical Center, Sanxia, Taiwan; Department of Medical Research, Tri-Service General Hospital, Taipei, Taiwan.
| |
Collapse
|
23
|
Bian A, Shi M, Flores B, Gillings N, Li P, Yan SX, Levine B, Xing C, Hu MC. Downregulation of autophagy is associated with severe ischemia-reperfusion-induced acute kidney injury in overexpressing C-reactive protein mice. PLoS One 2017; 12:e0181848. [PMID: 28886014 PMCID: PMC5590740 DOI: 10.1371/journal.pone.0181848] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/07/2017] [Indexed: 12/16/2022] Open
Abstract
C-reactive protein (CRP), was recently reported to be closely associated with poor renal function in patients with acute kidney injury (AKI), but whether CRP is pathogenic or a mere biomarker in AKI remains largely unclear. Impaired autophagy is known to exacerbate renal ischemia-reperfusion injury (IRI). We examined whether the pathogenic role of CRP in AKI is associated with reduction of autophagy. We mated transgenic rabbit CRP over-expressing mice (Tg-CRP) with two autophagy reporter mouse lines, Tg-GFP-LC3 mice (LC3) and Tg-RFP-GFP-LC3 mice (RG-LC3) respectively to generate Tg-CRP-GFP-LC3 mice (PLC3) and Tg-CRP-RFP-GFP-LC3 mice (PRG-LC3). AKI was induced by IRI. Compared with LC3 mice, PLC3 mice developed more severe kidney damage after IRI. Renal tubules were isolated from LC3 mice at baseline for primary culture. OKP cells were transiently transfected with GFP-LC3 plasmid. CRP addition exacerbated lactate dehydrogenase release from both cell types. Immunoblots showed lower LC-3 II/I ratios and higher levels of p62, markers of reduced autophagy flux, in the kidneys of PLC3 mice compared to LC3 mice after IRI, and in primary cultured renal tubules and OKP cells treated with CRP and H2O2 compared to H2O2 alone. Immunohistochemistry showed much fewer LC-3 punctae, and electron microscopy showed fewer autophagosomes in kidneys of PLC3 mice compared to LC3 mice after IRI. Similarly, CRP addition reduced GFP-LC3 punctae induced by H2O2 in primary cultured proximal tubules and in GFP-LC3 plasmid transfected OKP cells. Rapamycin, an autophagy inducer, rescued impaired autophagy and reduced renal injury in vivo. In summary, it was suggested that CRP be more than mere biomarker in AKI, and render the kidney more susceptible to ischemic/oxidative injury, which is associated with down-regulating autophagy flux.
Collapse
Affiliation(s)
- Ao Bian
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Brianna Flores
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Nancy Gillings
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Peng Li
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shirley Xiao Yan
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Beth Levine
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Departments of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail: (CX); (MCH)
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail: (CX); (MCH)
| |
Collapse
|
24
|
Nakai K, Tanaka H, Yamanaka K, Takahashi Y, Murakami F, Matsuike R, Sekino J, Tanabe N, Morita T, Yamazaki Y, Kawato T, Maeno M. Effects of C-reactive protein on the expression of matrix metalloproteinases and their inhibitors via Fcγ receptors on 3T3-L1 adipocytes. Int J Med Sci 2017; 14:484-493. [PMID: 28539825 PMCID: PMC5441041 DOI: 10.7150/ijms.18059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
The association between obesity and inflammation is well documented in epidemiological studies. Proteolysis of extracellular matrix (ECM) proteins is involved in adipose tissue enlargement, and matrix metalloproteinases (MMPs) collectively cleave all ECM proteins. Here, we examined the effects of C-reactive protein (CRP), an inflammatory biomarker, on the expression of MMPs and tissue inhibitors of metalloproteinases (TIMPs), which are natural inhibitors of MMPs, in adipocyte-differentiated 3T3-L1 cells. We analyzed the expression of Fcγ receptor (FcγR) IIb and FcγRIII, which are candidates for CRP receptors, and the effects of anti-CD16/CD32 antibodies, which can act as FcγRII and FcγRIII blockers on CRP-induced alteration of MMP and TIMP expression. Moreover, we examined the effects of CRP on the activation of mitogen-activated protein kinase (MAPK) signaling, which is involved in MMP and TIMP expression, in the presence or absence of anti-CD16/CD32 antibodies. Stimulation with CRP increased MMP-1, MMP-3, MMP-9, MMP-11, MMP-14, and TIMP-1 expression but did not affect MMP-2, TIMP-2, and TIMP-4 expression; TIMP-3 expression was not detected. Adipocyte-differentiated 3T3-L1cells expressed FcγRIIb and FcγRIII; this expression was upregulated on stimulation with CRP. Anti-CD16/CD32 antibodies inhibited CRP-induced expression of MMPs, except MMP-11, and TIMP-1. CRP induced the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and p38 MAPK but did not affect SAPK/JNK phosphorylation, and Anti-CD16/CD32 attenuated the CRP-induced phosphorylation of p38 MAPK, but not that of ERK1/2. These results suggest that CRP facilitates ECM turnover in adipose tissue by increasing the production of multiple MMPs and TIMP-1 in adipocytes. Moreover, FcγRIIb and FcγRIII are involved in the CRP-induced expression of MMPs and TIMP-1 and the CRP-induced phosphorylation of p38, whereas the FcγR-independent pathway may regulate the CRP-induced MMP-11 expression and the CRP-induced ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Kumiko Nakai
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Kazuhiro Yamanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Yumi Takahashi
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | | | - Rieko Matsuike
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Jumpei Sekino
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Natsuko Tanabe
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Toyoko Morita
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
- The Lion Foundation for Dental Health, Tokyo, Japan
| | | | - Takayuki Kawato
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masao Maeno
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
25
|
Chambliss KL, Barrera J, Umetani M, Umetani J, Kim SH, Madak-Erdogan Z, Huang L, Katzenellenbogen BS, Katzenellenbogen JA, Mineo C, Shaul PW. Nonnuclear Estrogen Receptor Activation Improves Hepatic Steatosis in Female Mice. Endocrinology 2016; 157:3731-3741. [PMID: 27552247 PMCID: PMC5045504 DOI: 10.1210/en.2015-1629] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estrogens have the potential to afford atheroprotection, to prevent excess adiposity and its metabolic complications including insulin resistance, and to lessen hepatic steatosis. Cellular responses to estrogens occur through gene regulation by nuclear estrogen receptors (ERs), and through signal initiation by plasma membrane-associated ER. Leveraging the potentially favorable cardiometabolic actions of estrogens has been challenging, because their reproductive tract and cancer-promoting effects adversely impact the risk to benefit ratio of the therapy. In previous works, we discovered that an estrogen dendrimer conjugate (EDC) comprised of ethinyl-estradiol (E2) molecules linked to a poly(amido)amine dendrimer selectively activates nonnuclear ER, and in mice, EDC does not invoke a uterotrophic response or support ER-positive breast cancer growth. In the present investigation, we employed EDC to determine how selective nonnuclear ER activation impacts atherosclerosis, adiposity, glucose homeostasis, and hepatic steatosis in female mice. In contrast to E2, EDC did not blunt atherosclerosis in hypercholesterolemic apoE-/- mice. Also in contrast to E2, EDC did not prevent the increase in adiposity caused by Western diet feeding in wild-type mice, and it did not affect Western diet-induced glucose intolerance. However, E2 and EDC had comparable favorable effect on diet-induced hepatic steatosis, and this was related to down-regulation of fatty acid and triglyceride synthesis genes in the liver. Predictably, only E2 caused a uterotrophic response. Thus, although nonnuclear ER activation does not prevent atherosclerosis or diet-induced obesity or glucose intolerance, it may provide a potential new strategy to combat hepatic steatosis without impacting the female reproductive tract or increasing cancer risk.
Collapse
Affiliation(s)
- Ken L Chambliss
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Jose Barrera
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Michihisa Umetani
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Junko Umetani
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Sung Hoon Kim
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Zeynep Madak-Erdogan
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Linzhang Huang
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Benita S Katzenellenbogen
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - John A Katzenellenbogen
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
26
|
Tanigaki K, Chambliss KL, Yuhanna IS, Sacharidou A, Ahmed M, Atochin DN, Huang PL, Shaul PW, Mineo C. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice. Diabetes 2016; 65:1996-2005. [PMID: 27207525 PMCID: PMC4915578 DOI: 10.2337/db15-1605] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/09/2016] [Indexed: 12/12/2022]
Abstract
Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis.
Collapse
Affiliation(s)
- Keiji Tanigaki
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ivan S Yuhanna
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mohamed Ahmed
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Dmitriy N Atochin
- Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Paul L Huang
- Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
27
|
Qiu S, Cai X, Yin H, Zügel M, Sun Z, Steinacker JM, Schumann U. Association between circulating irisin and insulin resistance in non-diabetic adults: A meta-analysis. Metabolism 2016; 65:825-34. [PMID: 27173461 DOI: 10.1016/j.metabol.2016.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/23/2016] [Accepted: 02/09/2016] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Exogenous administration of recombinant irisin improves glucose metabolism. However, the association of endogenous circulating (plasma/serum) irisin with insulin resistance remains poorly delineated. This study was aimed to examine this association by meta-analyzing the current evidence without study design restriction in non-diabetic adults. MATERIALS/METHODS Peer-reviewed studies written in English from 3 databases were searched to December 2015. Studies that reported the association between circulating irisin and insulin resistance (or its reverse, insulin sensitivity) in non-diabetic non-pregnant adults (mean ages ≥18years) were included. The pooled correlation coefficient (r) and 95% confidence intervals (CIs) were calculated using a random-effects model. Subgroup analyses and meta-regression were performed to explore potential sources of heterogeneity. RESULTS Of the 195 identified publications, 17 studies from 15 articles enrolling 1912 participants reported the association between circulating irisin and insulin resistance. The pooled effect size was 0.15 (95% CI: 0.07 to 0.22) with a substantial heterogeneity (I(2)=55.5%). This association seemed to be modified by glycemic status (fasting blood glucose ≥6.1mmol/L versus <6.1mmol/L) and racial-ethnic difference (Asians versus Europeans versus Americans), but not by sex difference, sampling time-point, blood sample type, ELISA kits used, baseline age, or body mass index. Circulating irisin was inversely associated with insulin sensitivity (6 studies; r=-0.17, 95% CI: -0.25 to -0.09). CONCLUSIONS Circulating irisin is directly and positively associated with insulin resistance in non-diabetic adults. However, this association is rather small and requires further clarification, in particular by well-designed large epidemiological studies with overall, race-, and sex-specific analyses.
Collapse
Affiliation(s)
- Shanhu Qiu
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Xue Cai
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Han Yin
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, P.R. China; Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, Ulm University, Ulm, Germany
| | - Martina Zügel
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, Ulm University, Ulm, Germany
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, P.R. China.
| | - Jürgen Michael Steinacker
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, Ulm University, Ulm, Germany
| | - Uwe Schumann
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, Ulm University, Ulm, Germany
| |
Collapse
|
28
|
Bawadi H, Katkhouda R, Al-Haifi A, Tayyem R, Elkhoury CF, Jamal Z. Energy balance and macronutrient distribution in relation to C-reactive protein and HbA1c levels among patients with type 2 diabetes. Food Nutr Res 2016; 60:29904. [PMID: 27238554 PMCID: PMC4884680 DOI: 10.3402/fnr.v60.29904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 01/04/2023] Open
Abstract
Background Recently growing evidence indicates that obesity and diabetes are states of inflammation associated with elevated circulation of inflammatory mediators. Excess adiposity and oxidative stress, induced by feeding, may also lead to a state of low-grade inflammation. Objective This study aimed at investigating energy balance and distribution in relation to low-grade inflammation among patients with type 2 diabetes. Design A cross-sectional study included 198 male and female patients with type 2 diabetes. Patients’ weight, height, waist circumference, total body fat and truncal fat percent, energy, and macronutrient intake were measured. Venous blood specimens were collected, and levels of HbA1c and serum levels of high-sensitivity C-reactive protein (hs-CRP) were determined. Results After adjusting for covariates (body mass index, total body fat, and truncal fat), energy balance was positively correlated with hs-CRP and HbA1c. A positive energy balance was also associated with increased waist circumference and truncal fat percent (p<0.05). Total energy intake, percent energy from fat (p=0.04), and percent energy from proteins (p=0.03), but not percent energy from carbohydrates (p=0.12), were also correlated with higher hs-CRP levels among poorly glycemic-controlled patients. Conclusion Positive energy balance is associated with elevations in hs-CRP. Increased energy intake and increased percentages of energy from fat and protein are associated with elevated hs-CRP among patients with poor glycemic control.
Collapse
Affiliation(s)
- Hiba Bawadi
- College of Health Sciences, Qatar University, Doha, Qatar.,Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan;
| | - Rami Katkhouda
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad Al-Haifi
- Food and Nutrition Science, College of Health Sciences, Showaikh, Kuwait
| | - Reema Tayyem
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | | | - Zeina Jamal
- College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
29
|
Klüppelholz B, Thorand B, Koenig W, de Las Heras Gala T, Meisinger C, Huth C, Giani G, Franks PW, Roden M, Rathmann W, Peters A, Herder C. Association of subclinical inflammation with deterioration of glycaemia before the diagnosis of type 2 diabetes: the KORA S4/F4 study. Diabetologia 2015; 58:2269-77. [PMID: 26155746 DOI: 10.1007/s00125-015-3679-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS The role of biomarkers of subclinical inflammation in the early deterioration of glycaemia before type 2 diabetes is largely unknown. We hypothesised that increased levels of circulating proinflammatory biomarkers and decreased circulating adiponectin would be associated with 7 year increases of HbA(1c) in non-diabetic individuals. METHODS This study was based on individuals who participated in the prospective Cooperative Health Research in the Region of Augsburg (KORA) S4 survey (1999-2001) and the 7 year follow-up KORA F4 (2006-2008) survey. Individuals with type 2 diabetes at baseline or with a diagnosis of diabetes in the period between both surveys were excluded, which left a sample of 850 men and women. Multivariable linear regression analyses were performed to assess associations among baseline values of leucocyte count and levels of acute-phase proteins (high-sensitivity C-reactive protein [hsCRP], serum amyloid A [SAA] and fibrinogen), IL-6 and adiponectin with changes in HbA1c between baseline and follow-up. RESULTS A high leucocyte count and high hsCRP, SAA and IL-6 levels were positively associated with changes in HbA(1c) after adjusting for age, sex, lifestyle factors and baseline HbA(1c). In contrast, the adiponectin level was inversely associated with changes in HbA(1c) (p value between <0.0001 and 0.020). The associations of leucocyte count and levels of hsCRP and SAA with HbA(1c) changes remained significant after additional adjustment for waist circumference and circulating lipids at baseline and for the 7 year change in waist circumference (p value between 0.004 and 0.045). CONCLUSIONS/INTERPRETATION An elevated leucocyte count and elevated hsCRP and SAA were associated with early deterioration of glycaemia before the diagnosis of type 2 diabetes. These associations were largely independent of baseline abdominal adiposity and increases in waist circumference.
Collapse
Affiliation(s)
- Birgit Klüppelholz
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Thorand
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Wolfgang Koenig
- Department of Internal Medicine II - Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Tonia de Las Heras Gala
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Christa Meisinger
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Cornelia Huth
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Guido Giani
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Statistics in Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Paul W Franks
- Genetic & Molecular Epidemiology Unit, Lund University Diabetes Center, Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Michael Roden
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Christian Herder
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.
- German Center for Diabetes Research, Düsseldorf, Germany.
| |
Collapse
|
30
|
Roncada G, Dendale P, Linsen L, Hendrikx M, Hansen D. Reduction in pulmonary function after CABG surgery is related to postoperative inflammation and hypercortisolemia. Int J Clin Exp Med 2015; 8:10938-10946. [PMID: 26379888 PMCID: PMC4565271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/11/2015] [Indexed: 06/05/2023]
Abstract
UNLABELLED Pulmonary function is significantly reduced in the acute phase after coronary artery bypass graft (CABG) surgery. Because pulmonary function partly depends on respiratory muscle strength, we studied whether reductions in pulmonary function are related to postoperative alterations in circulatory factors that affect muscle protein synthesis. METHODS Slow vital capacity (SVC) was assessed in 22 subjects before and 9 ± 3 days after CABG surgery. Blood testosterone, cortisol, insulin-like growth factor-1 (IGF-1), growth hormone, sex-hormone binding globulin (SHBG), glucose, insulin, c-peptide, c-reactive protein (CRP) content, and free androgen index, cortisol/testosterone ratio, HOMA-IR index were assessed before surgery and during the first three days after surgery. Intubation, surgery time and cumulative chest tube drainage were measured. Correlations between changes in SVC and blood parameters after surgery or subject characteristics were studied. This was a prospective observational study. RESULTS After CABG surgery SVC decreased by 37 ± 18% (P < 0.01). Free androgen index, blood SHBG, testosterone and IGF-1 content decreased, while HOMA-IR index, cortisol/testosterone ratio, blood growth hormone, insulin and CRP content increased (P < 0.0025) in the first three days after surgery. Decrease in SVC was independently (P < 0.05) related to higher preoperative SVC (SC β = 0.66), and greater increase in blood cortisol (SC β = 0.54) and CRP (SC β = 0.37) content after surgery. CONCLUSIONS Larger reductions in pulmonary function after CABG surgery are present in patients experiencing greater postoperative increases in blood CRP and cortisol levels. Decrements in pulmonary function after CABG surgery are, at least in part, thus related to alterations in circulatory factors that affect muscle protein synthesis.
Collapse
Affiliation(s)
- Gert Roncada
- Jessa Hospital, Heart Centre HasseltHasselt, Belgium
| | - Paul Dendale
- Jessa Hospital, Heart Centre HasseltHasselt, Belgium
- REVAL-Rehabilitation Research Centre, BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Loes Linsen
- REVAL-Rehabilitation Research Centre, BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt UniversityDiepenbeek, Belgium
- Laboratory of Experimental Hematology, Jessa HospitalHasselt, Belgium
- University Biobank LimburgHasselt, Belgium
| | - Marc Hendrikx
- Jessa Hospital, Heart Centre HasseltHasselt, Belgium
- Department of Cardiothoracic Surgery, Jessa HospitalHasselt, Belgium
| | - Dominique Hansen
- Jessa Hospital, Heart Centre HasseltHasselt, Belgium
- REVAL-Rehabilitation Research Centre, BIOMED-Biomedical Research Centre, Faculty of Medicine and Life Sciences, Hasselt UniversityDiepenbeek, Belgium
| |
Collapse
|
31
|
Tissue inflammation and nitric oxide-mediated alterations in cardiovascular function are major determinants of endotoxin-induced insulin resistance. Cardiovasc Diabetol 2015; 14:56. [PMID: 25986700 PMCID: PMC4484635 DOI: 10.1186/s12933-015-0223-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/05/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Endotoxin (i.e. LPS) administration induces a robust inflammatory response with accompanying cardiovascular dysfunction and insulin resistance. Overabundance of nitric oxide (NO) contributes to the vascular dysfunction. However, inflammation itself also induces insulin resistance in skeletal muscle. We sought to investigate whether the cardiovascular dysfunction induced by increased NO availability without inflammatory stress can promote insulin resistance. Additionally, we examined the role of inducible nitric oxide synthase (iNOS or NOS2), the source of the increase in NO availability, in modulating LPS-induced decrease in insulin-stimulated muscle glucose uptake (MGU). METHODS The impact of NO donor infusion on insulin-stimulated whole-body and muscle glucose uptake (hyperinsulinemic-euglycemic clamps), and the cardiovascular system was assessed in chronically catheterized, conscious mice wild-type (WT) mice. The impact of LPS on insulin action and the cardiovascular system were assessed in WT and global iNOS knockout (KO) mice. Tissue blood flow and cardiac function were assessed using microspheres and echocardiography, respectively. Insulin signaling activity, and gene expression of pro-inflammatory markers were also measured. RESULTS NO donor infusion decreased mean arterial blood pressure, whole-body glucose requirements, and MGU in the absence of changes in skeletal muscle blood flow. LPS lowered mean arterial blood pressure and glucose requirements in WT mice, but not in iNOS KO mice. Lastly, despite an intact inflammatory response, iNOS KO mice were protected from LPS-mediated deficits in cardiac output. LPS impaired MGU in vivo, regardless of the presence of iNOS. However, ex vivo, insulin action in muscle obtained from LPS treated iNOS KO animals was protected. CONCLUSION Nitric oxide excess and LPS impairs glycemic control by diminishing MGU. LPS impairs MGU by both the direct effect of inflammation on the myocyte, as well as by the indirect NO-driven cardiovascular dysfunction.
Collapse
|
32
|
Tanigaki K, Sundgren N, Khera A, Vongpatanasin W, Mineo C, Shaul PW. Fcγ receptors and ligands and cardiovascular disease. Circ Res 2015; 116:368-84. [PMID: 25593280 DOI: 10.1161/circresaha.116.302795] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fcγ receptors (FcγRs) classically modulate intracellular signaling on binding of the Fc region of IgG in immune response cells. How FcγR and their ligands affect cardiovascular health and disease has been interrogated recently in both preclinical and clinical studies. The stimulation of activating FcγR in endothelial cells, vascular smooth muscle cells, and monocytes/macrophages causes a variety of cellular responses that may contribute to vascular disease pathogenesis. Stimulation of the lone inhibitory FγcR, FcγRIIB, also has adverse consequences in endothelial cells, antagonizing NO production and reparative mechanisms. In preclinical disease models, activating FcγRs promote atherosclerosis, whereas FcγRIIB is protective, and activating FcγRs also enhance thrombotic and nonthrombotic vascular occlusion. The FcγR ligand C-reactive protein (CRP) has undergone intense study. Although in rodents CRP does not affect atherosclerosis, it causes hypertension and insulin resistance and worsens myocardial infarction. Massive data have accumulated indicating an association between increases in circulating CRP and coronary heart disease in humans. However, Mendelian randomization studies reveal that CRP is not likely a disease mediator. CRP genetics and hypertension warrant further investigation. To date, studies of genetic variants of activating FcγRs are insufficient to implicate the receptors in coronary heart disease pathogenesis in humans. However, a link between FcγRIIB and human hypertension may be emerging. Further knowledge of the vascular biology of FcγR and their ligands will potentially enhance our understanding of cardiovascular disorders, particularly in patients whose greater predisposition for disease is not explained by traditional risk factors, such as individuals with autoimmune disorders.
Collapse
Affiliation(s)
- Keiji Tanigaki
- From the Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., N.S., C.M., P.W.S.), and Division of Cardiology, Department of Internal Medicine (A.K., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Nathan Sundgren
- From the Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., N.S., C.M., P.W.S.), and Division of Cardiology, Department of Internal Medicine (A.K., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Amit Khera
- From the Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., N.S., C.M., P.W.S.), and Division of Cardiology, Department of Internal Medicine (A.K., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Wanpen Vongpatanasin
- From the Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., N.S., C.M., P.W.S.), and Division of Cardiology, Department of Internal Medicine (A.K., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Chieko Mineo
- From the Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., N.S., C.M., P.W.S.), and Division of Cardiology, Department of Internal Medicine (A.K., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Philip W Shaul
- From the Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., N.S., C.M., P.W.S.), and Division of Cardiology, Department of Internal Medicine (A.K., W.V.), University of Texas Southwestern Medical Center, Dallas.
| |
Collapse
|
33
|
Affiliation(s)
- Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
34
|
Sundgren NC, Vongpatanasin W, Boggan BMD, Tanigaki K, Yuhanna IS, Chambliss KL, Mineo C, Shaul PW. IgG receptor FcγRIIB plays a key role in obesity-induced hypertension. Hypertension 2014; 65:456-62. [PMID: 25368023 DOI: 10.1161/hypertensionaha.114.04670] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is a well-recognized association between obesity, inflammation, and hypertension. Why obesity causes hypertension is poorly understood. We previously demonstrated using a C-reactive protein (CRP) transgenic mouse that CRP induces hypertension that is related to NO deficiency. Our prior work in cultured endothelial cells identified the Fcγ receptor IIB (FcγRIIB) as the receptor for CRP whereby it antagonizes endothelial NO synthase. Recognizing known associations between CRP and obesity and hypertension in humans, in the present study we tested the hypothesis that FcγRIIB plays a role in obesity-induced hypertension in mice. Using radiotelemetry, we first demonstrated that the hypertension observed in transgenic mouse-CRP is mediated by the receptor, indicating that FcγRIIB is capable of modifying blood pressure. We then discovered in a model of diet-induced obesity yielding equal adiposity in all study groups that whereas FcγRIIB(+/+) mice developed obesity-induced hypertension, FcγRIIB(-/-) mice were fully protected. Levels of CRP, the related pentraxin serum amyloid P component which is the CRP-equivalent in mice, and total IgG were unaltered by diet-induced obesity; FcγRIIB expression in endothelium was also unchanged. However, whereas IgG isolated from chow-fed mice had no effect, IgG from high-fat diet-fed mice inhibited endothelial NO synthase in cultured endothelial cells, and this was an FcγRIIB-dependent process. Thus, we have identified a novel role for FcγRIIB in the pathogenesis of obesity-induced hypertension, independent of processes regulating adiposity, and it may entail an IgG-induced attenuation of endothelial NO synthase function. Approaches targeting FcγRIIB may potentially offer new means to treat hypertension in obese individuals.
Collapse
Affiliation(s)
- Nathan C Sundgren
- From the Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Houston, TX (N.C.S., B.-M.D.B.); and Department of Internal Medicine, Division of Cardiology, Hypertension Section (W.V.) and Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., I.S.Y., K.L.C., C.M., P.W.S.), University of Texas Southwestern Medical Center, Dallas.
| | - Wanpen Vongpatanasin
- From the Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Houston, TX (N.C.S., B.-M.D.B.); and Department of Internal Medicine, Division of Cardiology, Hypertension Section (W.V.) and Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., I.S.Y., K.L.C., C.M., P.W.S.), University of Texas Southwestern Medical Center, Dallas
| | - Brigid-Meghan D Boggan
- From the Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Houston, TX (N.C.S., B.-M.D.B.); and Department of Internal Medicine, Division of Cardiology, Hypertension Section (W.V.) and Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., I.S.Y., K.L.C., C.M., P.W.S.), University of Texas Southwestern Medical Center, Dallas
| | - Keiji Tanigaki
- From the Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Houston, TX (N.C.S., B.-M.D.B.); and Department of Internal Medicine, Division of Cardiology, Hypertension Section (W.V.) and Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., I.S.Y., K.L.C., C.M., P.W.S.), University of Texas Southwestern Medical Center, Dallas
| | - Ivan S Yuhanna
- From the Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Houston, TX (N.C.S., B.-M.D.B.); and Department of Internal Medicine, Division of Cardiology, Hypertension Section (W.V.) and Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., I.S.Y., K.L.C., C.M., P.W.S.), University of Texas Southwestern Medical Center, Dallas
| | - Ken L Chambliss
- From the Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Houston, TX (N.C.S., B.-M.D.B.); and Department of Internal Medicine, Division of Cardiology, Hypertension Section (W.V.) and Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., I.S.Y., K.L.C., C.M., P.W.S.), University of Texas Southwestern Medical Center, Dallas
| | - Chieko Mineo
- From the Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Houston, TX (N.C.S., B.-M.D.B.); and Department of Internal Medicine, Division of Cardiology, Hypertension Section (W.V.) and Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., I.S.Y., K.L.C., C.M., P.W.S.), University of Texas Southwestern Medical Center, Dallas
| | - Philip W Shaul
- From the Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Houston, TX (N.C.S., B.-M.D.B.); and Department of Internal Medicine, Division of Cardiology, Hypertension Section (W.V.) and Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., I.S.Y., K.L.C., C.M., P.W.S.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
35
|
Barrera J, Chambliss KL, Ahmed M, Tanigaki K, Thompson B, McDonald JG, Mineo C, Shaul PW. Bazedoxifene and conjugated estrogen prevent diet-induced obesity, hepatic steatosis, and type 2 diabetes in mice without impacting the reproductive tract. Am J Physiol Endocrinol Metab 2014; 307:E345-54. [PMID: 24939737 DOI: 10.1152/ajpendo.00653.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite the capacity of estrogens to favorably regulate body composition and glucose homeostasis, their use to combat obesity and type 2 diabetes is not feasible, because they promote sex steroid-responsive cancers. The novel selective estrogen receptor modulator (SERM) bazedoxifene acetate (BZA) uniquely antagonizes both breast cancer development and estrogen-related changes in the female reproductive tract. How BZA administered with conjugated estrogen (CE) or alone impacts metabolism is unknown. The effects of BZA or CE + BZA on body composition and glucose homeostasis were determined in ovariectomized female mice fed a Western diet for 10-12 wk. In contrast to vehicle, estradiol (E₂), CE, BZA, and CE + BZA equally prevented body weight gain by 50%. In parallel, all treatments caused equal attenuation of the increase in body fat mass invoked by the diet as well as the increases in subcutaneous and visceral white adipose tissue. Diet-induced hepatic steatosis was attenuated by E₂ or CE, and BZA alone or with CE provided even greater steatosis prevention; all interventions improved pyruvate tolerance tests. Glucose tolerance tests and HOMA-IR were improved by E₂, CE, and CE + BZA. Whereas E₂ or CE alone invoked a uterotrophic response, BZA alone or CE + BZA had negligible impact on the uterus. Thus, CE + BZA affords protection from diet-induced adiposity, hepatic steatosis, and insulin resistance with minimal impact on the female reproductive tract in mice. These combined agents may provide a valuable new means to favorably regulate body composition and glucose homeostasis and combat fatty liver.
Collapse
Affiliation(s)
- Jose Barrera
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Mohamed Ahmed
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Keiji Tanigaki
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Bonne Thompson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
36
|
Chen L, Su Y, Ni J, Luo W, Xuan DY, Zhang J. [Effects of non-surgical periodontal treatment on clinical response, serum inflammatory parameters, and metabolic control of type 2 diabetes patients with moderate to severe periodontitis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2014; 32:66-70. [PMID: 24665645 PMCID: PMC7041041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 11/01/2013] [Indexed: 11/14/2023]
Abstract
OBJECTIVE To evaluate the effects of periodontal treatment on the clinical response, systemic inflammatory parameters, and metabolic control of type 2 diabetes patients with moderate to severe periodontitis. METHODS A total of 56 patients with mean clinical attachment level (CAL)>3 mm were included in the subgroup analysis. A repeated-measures ANOVA (group factor: treatment group and control group; time factor: initial visit, 1.5, 3, and 6 months) was used to analyze the probing depth (PD), CAL, bleeding on probing (BOP), high-sensitivity C-reactive protein (hsCRP), glycated hemoglobin (HbA1c), and fasting plasma glucose. RESULTS Significantly lower PD (F=62.898, P-0.000), CAL (F=51.263, P-0.000), BOP (F=75.164, P=0.000), hsCRP (F=6.391, P=0.010), HbA1c(F=4.536, P=0.011), and fasting plasma glucose level (F= 3.073, P=0.031) were observed after therapeutic periodontal improvement. The inter-group differences for PD (t=-2.050, P=0.045), BOP (t=-4.538, P=0.000), and hsCRP (t=-2.261, P=0.028) were statistically significant after therapy. CONCLUSION Non-surgical periodontal treatment can effectively improve periodontal status, circulating inflammatory status, and metabolic control of diabetic patients with moderate to severe periodontitis.
Collapse
|
37
|
Chen L, Su Y, Ni J, Luo W, Xuan DY, Zhang J. [Effects of non-surgical periodontal treatment on clinical response, serum inflammatory parameters, and metabolic control of type 2 diabetes patients with moderate to severe periodontitis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2014; 32:66-70. [PMID: 24665645 PMCID: PMC7041041 DOI: 10.7518/hxkq.2014.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 11/01/2013] [Indexed: 06/03/2023]
Abstract
OBJECTIVE To evaluate the effects of periodontal treatment on the clinical response, systemic inflammatory parameters, and metabolic control of type 2 diabetes patients with moderate to severe periodontitis. METHODS A total of 56 patients with mean clinical attachment level (CAL)>3 mm were included in the subgroup analysis. A repeated-measures ANOVA (group factor: treatment group and control group; time factor: initial visit, 1.5, 3, and 6 months) was used to analyze the probing depth (PD), CAL, bleeding on probing (BOP), high-sensitivity C-reactive protein (hsCRP), glycated hemoglobin (HbA1c), and fasting plasma glucose. RESULTS Significantly lower PD (F=62.898, P-0.000), CAL (F=51.263, P-0.000), BOP (F=75.164, P=0.000), hsCRP (F=6.391, P=0.010), HbA1c(F=4.536, P=0.011), and fasting plasma glucose level (F= 3.073, P=0.031) were observed after therapeutic periodontal improvement. The inter-group differences for PD (t=-2.050, P=0.045), BOP (t=-4.538, P=0.000), and hsCRP (t=-2.261, P=0.028) were statistically significant after therapy. CONCLUSION Non-surgical periodontal treatment can effectively improve periodontal status, circulating inflammatory status, and metabolic control of diabetic patients with moderate to severe periodontitis.
Collapse
|
38
|
Abstract
The C-reactive protein (CRP) is a plasma protein of hepatic origin, belonging to pentraxin family and forms a major component of any inflammatory reaction. A key component of the innate immunity pathway, the concentration of CRP may rapidly increase to levels more than 1,000-folds above normal values as a consequence to tissue injury or infection. Although functioning as a classical mediator of innate immunity, it functions via interaction of components of both humoral and cellular effector systems of inflammation. Initially considered as an acute-phase marker in tissue injury, infection and inflammation, it now has a distinct status of a disease marker in cardiovascular diseases and is well known of its clinical and pathological significance. The present torrent of studies in a large number of diseases and associated conditions has highly elucidated the role of CRP as a therapeutic and research reagent. In this review, we focus our attention to role of CRP in health and disease. The future prospect of this review lies in the applicability of CRP as a molecule in understanding and monitoring of the biology of disease.
Collapse
Affiliation(s)
- Waliza Ansar
- Post Graduate Department, Asutosh College, Kolkata, India
| | | |
Collapse
|
39
|
Affiliation(s)
- Franck Mauvais-Jarvis
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|