1
|
Sleiman L, Dinescu S. Role of Non-Coding RNAs in White and Brown Adipose Tissue Differentiation and Development. Noncoding RNA 2025; 11:30. [PMID: 40407588 PMCID: PMC12101253 DOI: 10.3390/ncrna11030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/26/2025] Open
Abstract
Adipocyte differentiation is a complex process in which pluripotent mesenchymal stem cells (MSCs) differentiate and develop into mature fat cells, also known as adipocytes. This process is controlled by various transcription factors, hormones, and signaling molecules that regulate the development of these cells. Recently, an increasing number of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), have been established to be involved in the regulation of many biological processes, including adipocyte differentiation, development, metabolism, and energy homeostasis of white and brown adipose tissue. Several in vitro and in vivo studies reported the significant role of ncRNAs in either promoting or inhibiting adipocyte differentiation into white or brown fat cells by targeting specific transcription factors and regulating the expression of key adipogenic genes. Identifying the function of ncRNAs and their subsequent targets contributes to our understanding of how these molecules can be used as potential biomarkers and tools for therapies against obesity, diabetes, and other diseases related to obesity. This could also contribute to advancements in tissue-engineering based treatments. In this review, we intended to present an up-to-date comprehensive literature overview of the role of ncRNAs, including miRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), focusing particularly on miRNAs, in regulating the differentiation and development of cells into white and brown adipose tissue. In addition, we further discuss the potential use of these molecules as biomarkers for the development of novel therapeutic strategies for future personalized treatment options for patients.
Collapse
Affiliation(s)
- Lea Sleiman
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
- Research Institute of the University of Bucharest (ICUB), 050663 Bucharest, Romania
| |
Collapse
|
2
|
Bolin AP, de Fatima Silva F, Salgueiro RB, Dos Santos BA, Komino ACM, Andreotti S, de Sousa É, de Castro É, Real CC, de Paula Faria D, Souza GP, Camara H, Sorgi CA, Tseng YH, Lima FB, Rodrigues AC. Glucocorticoid modulates oxidative and thermogenic function of rat brown adipose tissue and human brown adipocytes. J Cell Physiol 2024; 239:1-12. [PMID: 39091018 DOI: 10.1002/jcp.31397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Chronic and excessive glucocorticoid (GC) exposure can cause Cushing's syndrome, resulting in fat accumulation in selected body areas. Particularly in the brown adipose tissue (BAT), GC acts negatively, resulting in whitening of the tissue. We hypothesized that dysregulation of microRNAs by GC could be an additional mechanism to explain its negative actions in BAT. Male Wistar rats were divided into two groups: (1) Control sham and (2) GC group that was administered dexamethasone 6.25 mg/200 μL via osmotic pump implantation over 28 days. After this period, the animals were euthanized and BAT tissue was properly stored. Human fat cells treated with dexamethasone were used to translate the experimental results found in animals to human biology. GC-treated rat BAT presented with large lipid droplets, severely impaired thermogenic activation, and reduced glucose uptake measured by 18F-FDG PET/CT. GC exposure induced a reduction in the mitochondrial OXPHOS system and oxygen consumption. MicroRNA profiling of BAT revealed five top-regulated microRNAs and among them miR-21-5p was the most significantly upregulated in GC-treated rats compared to the control group. Although upregulation of miR-21-5p in the tissue, differentiated primary brown adipocytes from GC-treated rats had decreased miR-21-5p levels compared to the control group. To translate these results to the clinic, human brown adipocytes were treated with dexamethasone and miR-21-5p inhibitor. In human brown cells, inhibition of miR-21-5p increased brown adipocyte differentiation and prevented GC-induced glucose uptake, resulting in a lower glycolysis rate. In conclusion, high-dose GC therapy significantly impacts brown adipose tissue function, with a notable association between glucose uptake and miR-21-5p.
Collapse
Affiliation(s)
- Anaysa Paola Bolin
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Flaviane de Fatima Silva
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Barrera Salgueiro
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Araújo Dos Santos
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Sandra Andreotti
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Érica de Sousa
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Érique de Castro
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline Cristiano Real
- Department of Nuclear Medicine and PET, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Daniele de Paula Faria
- Department of Radiology and Oncology, Laboratory of Nuclear Medicine (LIM43), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Gerson Profeta Souza
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center Harvard Medical School, Boston, Massachusetts, USA
| | - Henrique Camara
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Arterio Sorgi
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto - FMRP/USP, Ribeirão Preto, Brazil
- Department of Chemistry, Faculdade de Filosofia, Ciencias e Letras de Ribeirão Preto - FFCLRP/USP, Ribeirão Preto, Brazil
| | - Yu-Hua Tseng
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center Harvard Medical School, Boston, Massachusetts, USA
| | - Fábio Bessa Lima
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alice Cristina Rodrigues
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Rezq S, Huffman AM, Basnet J, Alsemeh AE, do Carmo JM, Yanes Cardozo LL, Romero DG. MicroRNA-21 modulates brown adipose tissue adipogenesis and thermogenesis in a mouse model of polycystic ovary syndrome. Biol Sex Differ 2024; 15:53. [PMID: 38987854 PMCID: PMC11238487 DOI: 10.1186/s13293-024-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with increased obesity, hyperandrogenism, and altered brown adipose tissue (BAT) thermogenesis. MicroRNAs play critical functions in brown adipocyte differentiation and maintenance. We aim to study the role of microRNA-21 (miR-21) in altered energy homeostasis and BAT thermogenesis in a PCOS mouse model of peripubertal androgen exposure. METHODS Three-week-old miR-21 knockout (miR21KO) or wild-type (WT) female mice were treated with dihydrotestosterone (DHT) or vehicle for 90 days. Body composition was determined by EchoMRI. Energy expenditure (EE), oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured by indirect calorimetry. Androgen receptor (AR), and markers of adipogenesis, de novo lipogenesis, angiogenesis, extracellular matrix remodeling, and thermogenesis were quantified by RT-qPCR and/or Western-blot. RESULTS MiR-21 ablation attenuated DHT-mediated increase in body weight while having no effect on fat or BAT mass. MiR-21 ablation attenuated DHT-mediated BAT AR upregulation. MiR-21 ablation did not alter EE; however, miR21KO DHT-treated mice have reduced VO2, VCO2, and RER. MiR-21 ablation reversed DHT-mediated decrease in food intake and increase in sleep time. MiR-21 ablation decreased some adipogenesis (Adipoq, Pparγ, and Cebpβ) and extracellular matrix remodeling (Mmp-9 and Timp-1) markers expression in DHT-treated mice. MiR-21 ablation abolished DHT-mediated increases in thermogenesis markers Cpt1a and Cpt1b, while decreasing CIDE-A expression. CONCLUSIONS Our findings suggest that BAT miR-21 may play a role in regulating DHT-mediated thermogenic dysfunction in PCOS. Modulation of BAT miR-21 levels could be a novel therapeutic approach for the treatment of PCOS-associated metabolic derangements.
Collapse
Affiliation(s)
- Samar Rezq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| | - Alexandra M Huffman
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Jelina Basnet
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Amira E Alsemeh
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Licy L Yanes Cardozo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Damian G Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
4
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
5
|
Chand S, Tripathi AS, Dewani AP, Sheikh NWA. Molecular targets for management of diabetes: Remodelling of white adipose to brown adipose tissue. Life Sci 2024; 345:122607. [PMID: 38583857 DOI: 10.1016/j.lfs.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.
Collapse
Affiliation(s)
- Shushmita Chand
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, ERA College of Pharmacy, ERA University, Lucknow, Uttar Pradesh, India.
| | - Anil P Dewani
- Department of Pharmacology, P. Wadhwani College of Pharmacy, Yavatmal, Maharashtra, India
| | | |
Collapse
|
6
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
7
|
Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. Connecting the dots in the associations between diet, obesity, cancer, and microRNAs. Semin Cancer Biol 2023; 93:52-69. [PMID: 37156343 DOI: 10.1016/j.semcancer.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The prevalence of obesity has reached pandemic levels worldwide, leading to a lower quality of life and higher health costs. Obesity is a major risk factor for noncommunicable diseases, including cancer, although obesity is one of the major preventable causes of cancer. Lifestyle factors, such as dietary quality and patterns, are also closely related to the onset and development of obesity and cancer. However, the mechanisms underlying the complex association between diet, obesity, and cancer remain unclear. In the past few decades, microRNAs (miRNAs), a class of small non-coding RNAs, have been demonstrated to play critical roles in biological processes such as cell differentiation, proliferation, and metabolism, highlighting their importance in disease development and suppression and as therapeutic targets. miRNA expression levels can be modulated by diet and are involved in cancer and obesity-related diseases. Circulating miRNAs can also mediate cell-to-cell communications. These multiple aspects of miRNAs present challenges in understanding and integrating their mechanism of action. Here, we introduce a general consideration of the associations between diet, obesity, and cancer and review the current knowledge of the molecular functions of miRNA in each context. A comprehensive understanding of the interplay between diet, obesity, and cancer could be valuable for the development of effective preventive and therapeutic strategies in future.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Tokyo NODAI Research Institure, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan; Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Nishiyama
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Daisuke Kuriki
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Naoki Kawada
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
8
|
Wang C, Wang X, Hu W. Molecular and cellular regulation of thermogenic fat. Front Endocrinol (Lausanne) 2023; 14:1215772. [PMID: 37465124 PMCID: PMC10351381 DOI: 10.3389/fendo.2023.1215772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Thermogenic fat, consisting of brown and beige adipocytes, dissipates energy in the form of heat, in contrast to the characteristics of white adipocytes that store energy. Increasing energy expenditure by activating brown adipocytes or inducing beige adipocytes is a potential therapeutic strategy for treating obesity and type 2 diabetes. Thus, a better understanding of the underlying mechanisms of thermogenesis provides novel therapeutic interventions for metabolic diseases. In this review, we summarize the recent advances in the molecular regulation of thermogenesis, focusing on transcription factors, epigenetic regulators, metabolites, and non-coding RNAs. We further discuss the intercellular and inter-organ crosstalk that regulate thermogenesis, considering the heterogeneity and complex tissue microenvironment of thermogenic fat.
Collapse
Affiliation(s)
- Cuihua Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Xianju Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wenxiang Hu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Wyse BA, Salehi R, Russell SJ, Sangaralingam M, Jahangiri S, Tsang BK, Librach CL. Obesity and PCOS radically alters the snRNA composition of follicular fluid extracellular vesicles. Front Endocrinol (Lausanne) 2023; 14:1205385. [PMID: 37404312 PMCID: PMC10315679 DOI: 10.3389/fendo.2023.1205385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction The ovarian follicle consists of the oocyte, somatic cells, and follicular fluid (FF). Proper signalling between these compartments is required for optimal folliculogenesis. The association between polycystic ovarian syndrome (PCOS) and extracellular vesicular small non-coding RNAs (snRNAs) signatures in follicular fluid (FF) and how this relates to adiposity is unknown. The purpose of this study was to determine whether FF extracellular vesicle (FFEV)-derived snRNAs are differentially expressed (DE) between PCOS and non-PCOS subjects; and if these differences are vesicle-specific and/or adiposity-dependent. Methods FF and granulosa cells (GC) were collected from 35 patients matched by demographic and stimulation parameters. FFEVs were isolated and snRNA libraries were constructed, sequenced, and analyzed. Results miRNAs were the most abundant biotype present, with specific enrichment in exosomes (EX), whereas in GCs long non-coding RNAs were the most abundant biotype. In obese PCOS vs. lean PCOS, pathway analysis revealed target genes involved in cell survival and apoptosis, leukocyte differentiation and migration, JAK/STAT, and MAPK signalling. In obese PCOS FFEVs were selectively enriched (FFEVs vs. GCs) for miRNAs targeting p53 signalling, cell survival and apoptosis, FOXO, Hippo, TNF, and MAPK signalling. Discussion We provide comprehensive profiling of snRNAs in FFEVs and GCs of PCOS and non-PCOS patients, highlighting the effect of adiposity on these findings. We hypothesize that the selective packaging and release of miRNAs specifically targeting anti-apoptotic genes into the FF may be an attempt by the follicle to reduce the apoptotic pressure of the GCs and stave off premature apoptosis of the follicle observed in PCOS.
Collapse
Affiliation(s)
- Brandon A. Wyse
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
| | - Reza Salehi
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Sahar Jahangiri
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- CReATe Biobank, Toronto, ON, Canada
| | - Benjamin K. Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L. Librach
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- CReATe Biobank, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, DAN Women & Babies Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
10
|
Munkhzul C, Lee JM, Kim B, Nguyen TTM, Ginting RP, Jeong D, Kim YK, Lee MW, Lee M. H19X-encoded microRNAs induced by IL-4 in adipocyte precursors regulate proliferation to facilitate differentiation. Biol Direct 2023; 18:32. [PMID: 37322541 PMCID: PMC10273709 DOI: 10.1186/s13062-023-00388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Adipose tissue, an organ critical for systemic energy homeostasis, is influenced by type 2 immunity in its development and function. The type 2 cytokine interleukin (IL)-4 induces the proliferation of bipotential adipocyte precursors (APs) in white fat tissue and primes these cells for differentiation into beige adipocytes, which are specialized for thermogenesis. However, the underlying mechanisms have not yet been comprehensively examined. Here, we identified six microRNA (miRNA) genes upregulated upon IL-4 stimulation in APs, miR-322, miR-503, miR-351, miR-542, miR-450a, and miR-450b; these are encoded in the H19X locus of the genome. Their expression is positively regulated by the transcription factor Klf4, whose expression also increases upon IL-4 stimulation. These miRNAs shared a large set of target genes, of which 381 genes were downregulated in mRNA expression upon IL-4 stimulation and enriched in Wnt signaling pathways. Two genes with downregulated expression, Ccnd1 and Fzd6, were repressed by H19X-encoded miRNAs. Additionally, the Wnt signaling activator LiCl downregulated the expression of this group of miRNAs in APs, indicating that Wnt signaling-related genes and these miRNAs form a double-negative feedback regulatory loop. This miRNA/Wnt feedback regulation modulated the elevated proliferation of APs induced by IL-4 stimulation and contributed to priming them for beige adipocyte differentiation. Moreover, the aberrant expression of these miRNAs attenuates the differentiation of APs into beige adipocytes. Collectively, our results suggest that H19X-encoded miRNAs facilitate the transition of APs from proliferation to differentiation in the IL-4-mediated regulation.
Collapse
Affiliation(s)
- Choijamts Munkhzul
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Ji-Min Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Boseon Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Thi Thanh My Nguyen
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Rehna Paula Ginting
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Dahee Jeong
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128, Korea
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea.
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea.
| |
Collapse
|
11
|
Xue S, Liu K, Zhao L, Zhou L, Gao X, Liu L, Liu N, He J. The role of miR-369-3p in proliferation and differentiation of preadipocytes in Aohan fine-wool sheep. Arch Anim Breed 2023. [DOI: 10.5194/aab-66-93-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Abstract. MicroRNAs (miRNAs) are a large class of non-coding RNAs
that play important roles in the proliferation and differentiation of
adipocytes. Our previous sequencing analysis revealed higher expression of
miR-369-3p in the longissimus muscle of 2-month-old Aohan fine-wool sheep
(AFWS) compared to 12-month-old sheep (P<0.05), suggesting that
miR-369-3p may regulate fat deposition in AFWS. To test this, miR-369-3p
mimics, inhibitors, and negative controls (NCs) were constructed and
transfected into AFWS preadipocytes. After transfection with miR-369-3p
mimics, we found a decrease (P<0.05) in the expression of genes and
proteins related to cell proliferation and differentiation, detected by
RT-qPCR (quantitative reverse transcription PCR) and western blot analyses. Moreover, EdU (5-ethynyl-2′-deoxyuridine) detection and Oil Red O
staining showed a decrease (P<0.05) in cell proliferation and lipid
accumulation, respectively. The opposite trends (P<0.05) were
obtained after transfection with miR-369-3p inhibitors. In conclusion, the
results showed that miR-369-3p can inhibit the proliferation and
differentiation of AFWS preadipocytes, providing a theoretical basis to
further explore the molecular mechanism of fat deposition in sheep and other
domestic animals.
Collapse
|
12
|
Lin C, He X, Chen X, Liu L, Guan H, Xiao H, Li Y. miR-1275 Inhibits Human Omental Adipose-Derived Stem Cells Differentiation Toward the Beige Phenotype via PRDM16. Stem Cells Dev 2022; 31:799-809. [PMID: 36128801 DOI: 10.1089/scd.2022.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Beige adipocytes have recently attracted attention for their potential as new therapeutic targets in the management of obesity and related metabolic disorders. MicroRNAs (miRNAs) have been reported as transcriptional regulators or biomarkers of brown and beige adipogenesis. Nevertheless, the effects of miRNAs involved in beige differentiation of human visceral adipocytes remain to be investigated. In this study, microarray screening showed that miR-1275 was significantly decreased during the differentiation of beige adipocytes induced by human omental adipose-derived stem cells (hASCs). Overexpression of miR-1275 suppressed the "brown-like" differentiation of hASCs by inhibiting the key transcriptional factor PR domain containing 16 (PRDM16) without affecting the proliferation. Adipogenesis and mitochondrial biogenesis of beige adipocytes derived from hASCs were impaired by miR-1275 overexpression. The regulatory effect of miR-1275 was determined by direct binding to the 3'-untranslated region of PRDM16, which was demonstrated by a dual-luciferase assay. Taken together, this study identified miR-1275 as a negative regulator of beige cell development in hASCs by inhibiting PRDM16. Thus, miR-1275 might be a potential target in the management of visceral obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Chenhong Lin
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoying He
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xueying Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liehua Liu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Role of Adipose Tissue microRNAs in the Onset of Metabolic Diseases and Implications in the Context of the DOHaD. Cells 2022; 11:cells11233711. [PMID: 36496971 PMCID: PMC9739499 DOI: 10.3390/cells11233711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The worldwide epidemic of obesity is associated with numerous comorbid conditions, including metabolic diseases such as insulin resistance and diabetes, in particular. The situation is likely to worsen, as the increase in obesity rates among children will probably lead to an earlier onset and more severe course for metabolic diseases. The origin of this earlier development of obesity may lie in both behavior (changes in nutrition, physical activity, etc.) and in children's history, as it appears to be at least partly programmed by the fetal/neonatal environment. The concept of the developmental origin of health and diseases (DOHaD), involving both organogenesis and epigenetic mechanisms, encompasses such programming. Epigenetic mechanisms include the action of microRNAs, which seem to play an important role in adipocyte functions. Interestingly, microRNAs seem to play a particular role in propagating local insulin resistance to other key organs, thereby inducing global insulin resistance and type 2 diabetes. This propagation involves the active secretion of exosomes containing microRNAs by adipocytes and adipose tissue-resident macrophages, as well as long-distance communication targeting the muscles and liver, for example. Circulating microRNAs may also be useful as biomarkers for the identification of populations at risk of subsequently developing obesity and metabolic diseases.
Collapse
|
14
|
Ma L, Gilani A, Yi Q, Tang L. MicroRNAs as Mediators of Adipose Thermogenesis and Potential Therapeutic Targets for Obesity. BIOLOGY 2022; 11:1657. [PMID: 36421371 PMCID: PMC9687157 DOI: 10.3390/biology11111657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 07/30/2023]
Abstract
Obesity is a growing health problem worldwide, associated with an increased risk of multiple chronic diseases. The thermogenic activity of brown adipose tissue (BAT) correlates with leanness in adults. Understanding the mechanisms behind BAT activation and the process of white fat "browning" has important implications for developing new treatments to combat obesity. MicroRNAs (miRNAs) are small transcriptional regulators that control gene expression in various tissues, including adipose tissue. Recent studies show that miRNAs are involved in adipogenesis and adipose tissue thermogenesis. In this review, we discuss recent advances in the role of miRNAs in adipocyte thermogenesis and obesity. The potential for miRNA-based therapies for obesity and recommendations for future research are highlighted, which may help provide new targets for treating obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ankit Gilani
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646099, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
15
|
Liu K, Liu X, Deng Y, Li Z, Tang A. CircRNA-mediated regulation of brown adipose tissue adipogenesis. Front Nutr 2022; 9:926024. [PMID: 35967789 PMCID: PMC9372764 DOI: 10.3389/fnut.2022.926024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
Adipose tissue represents a candidate target for the treatment of metabolic illnesses, such as obesity. Brown adipose tissue (BAT), an important heat source within the body, promotes metabolic health through fat consumption. Therefore, the induction of white fat browning may improve lipid metabolism. Currently, the specific roles of circRNA in BAT and white adipose tissue (WAT) remain elusive. Herein, we conducted circRNA expression profiling of mouse BAT and WAT using RNA-seq. We identified a total of 12,183 circRNAs, including 165 upregulated and 79 downregulated circRNAs between BAT and WAT. Differentially expressed (DE) circRNAs were associated with the mitochondrion, mitochondrial part, mitochondrial inner membrane, mitochondrial envelope, therefore, these circRNAs may affect the thermogenesis and lipid metabolism of BAT. Moreover, DE circRNAs were enriched in browning- and thermogenesis-related pathways, including AMPK and HIF-1 signaling. In addition, a novel circRNA, circOgdh, was found to be highly expressed in BAT, formed by back-splicing of the third and fourth exons of the Ogdh gene, and exhibited higher stability than linear Ogdh. circOgdh was mainly distributed in the cytoplasm and could sponge miR-34a-5p, upregulating the expression of Atgl, a key lipolysis gene, which enhanced brown adipocyte lipolysis and suppressed lipid droplet accumulation. Our findings offer in-depth knowledge of the modulatory functions of circRNAs in BAT adipogenesis.
Collapse
Affiliation(s)
- Kaiqing Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xin Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Yaqin Deng
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Aifa Tang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| |
Collapse
|
16
|
Angiotensin II Promotes White Adipose Tissue Browning and Lipolysis in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6022601. [PMID: 35799891 PMCID: PMC9253869 DOI: 10.1155/2022/6022601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Emerging evidence has revealed that all components of the renin-angiotensin system (RAS) are present in adipose tissue. Angiotensin II (Ang II), the major bioactive component of the RAS, has been recognized as an adipokine involved in regulating energy homeostasis. However, the precise role of Ang II in white adipose tissue (WAT) remodeling remains to be elucidated. In this present study, C57BL/C male mice were continuously infused with different doses of Ang II (1.44 mg/kg/d or 2.5 mg/kg/d) or saline for 2 weeks and treated with or without the Ang II type 1 receptor blocker valsartan. H&E staining and immunohistochemistry were conducted to investigate the white-to-brown fat conversion. The level of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) was measured. RNA sequencing was employed to explore the differentially expressed genes and their enriched pathways between control and Ang II groups. Our results showed that Ang II substantially resulted in loss of body weight and fat mass. Most importantly, Ang II treatment induced WAT browning in mice, which was partially attenuated by valsartan treatment. Furthermore, Ang II perturbed the serum lipid profiles. Ang II treatment elevated serum levels of TC, TG, LDL-C, and HDL-C in mice. Mechanistically, thermogenesis, cell respiration, and lipid metabolism-associated mRNAs showed significantly increased expression profiling in Ang II-treated WATs compared with control WATs. Moreover, we found that Ang II treatment enhanced AMPK phosphorylation in adipocytes. Therefore, Ang II promotes WAT browning and lipolysis via activating the AMPK signaling pathway.
Collapse
|
17
|
Liu X, Cheng F, Bai X, Zhao T, Zhao L, Wang L, Li M, Wu X, Chen X, Tang P, Wang M, Jiang L, Yan C, Pei F, Gao X, Ma N, Yang B, Zhang Y. MiR-203 is an anti-obese miRNA by targeting ASBT. iScience 2022; 25:104708. [PMID: 35856025 PMCID: PMC9287609 DOI: 10.1016/j.isci.2022.104708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 12/01/2022] Open
Abstract
Obesity is characterized by excessive fat deposition within the body. Bile acids (BA) are important regulators for controlling the absorption of lipid. Here we show that miR-203 exerts weight-loss and lipid-lowering effects by increasing total BA excretion in obese rodents. miR-203 overexpression transgenic mice are resistant to high-fat diet (HFD)-induced obesity and dyslipidemia. Moreover, the knockdown of miR-203 deteriorates metabolic disorders. ASBT plays important role in regulating BA homeostasis and is a direct target of miR-203. In human intestinal epithelial cells, overexpression of miR-203 decreases the cellular uptake of BA by inhibiting ASBT. Furthermore, TCF7L2 is downregulated in obese mice and acts as a transcription factor of miR-203. The ASBT mRNA level was positively correlated with the body mass index (BMI) of population, while the miR-203 level was negatively associated with BMI. Taken together, these data suggest miR-203 could be a new therapeutic BA regulator for obesity and dyslipidemia. miR-203 is downregulated in obese rodents and overweight/obese population ASBT is a direct target of miR-203 in obesity TCF7L2 acts as an upstream activator of miR-203 in obesity miR-203 ameliorates obesity and dyslipidemia by increasing TBAs and lipids excretion
Collapse
|
18
|
miR-375 is cold exposure sensitive and drives thermogenesis in visceral adipose tissue derived stem cells. Sci Rep 2022; 12:9557. [PMID: 35688898 PMCID: PMC9187663 DOI: 10.1038/s41598-022-13610-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
Activation of brown adipose tissue may increase energy expenditure by non-shivering thermogenesis. Cold exposure is one of the options to activate brown adipocytes. To link changes in energy metabolism with microRNA expression (miRNAs), we analyzed 158 miRNAs in serum of 169 healthy individuals before and after cold exposure. Validating the results of a miRNA array, a significant down-regulation of miR-375 after cold exposure (P < 0.0001) was detected. These changes went along with a significant negative correlation between miR-375 and visceral adipose tissue (VAT) mass (P < 0.0001), implicating a specific function of miR-375 in this depot. Significantly higher expression levels of miR-375 were found in VAT in comparison to subcutaneous fat (SAT). Using in silico prediction, we identified putative miR-375 target genes involved in the thermogenesis pathway. Cold-stimulation of subcutaneous and visceral pre-adipocytes (PACs) led to significantly higher expression levels of FABP4, FGF21, PPARGC1A and PRDM16 in VC-PACs. Analyzing miR-375 knock down and cold stimulated VC-PACs revealed a significant up-regulation of thermogenesis associated genes PPARGC1A, ELOVL3 and PRDM16. In summary, our findings identified miR-375 as a potential adipogenic and thermogenesis-associated miRNA exclusively acting in visceral adipose tissue.
Collapse
|
19
|
Huang CJ, Choo KB, Chen CF. The MicroRNA-Signaling-Peroxisome Proliferator-Activated Receptor Gamma Connection in the Modulation of Adipogenesis: Bioinformatics Projection on Chicken. Poult Sci 2022; 101:101950. [PMID: 35689996 PMCID: PMC9192975 DOI: 10.1016/j.psj.2022.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 10/29/2022] Open
|
20
|
Rodríguez‐Barrueco R, Latorre J, Devis‐Jáuregui L, Lluch A, Bonifaci N, Llobet FJ, Olivan M, Coll‐Iglesias L, Gassner K, Davis ML, Moreno‐Navarrete JM, Castells‐Nobau A, Plata‐Peña L, Dalmau‐Pastor M, Höring M, Liebisch G, Olkkonen VM, Arnoriaga‐Rodríguez M, Ricart W, Fernández‐Real JM, Silva JM, Ortega FJ, Llobet‐Navas D. A microRNA Cluster Controls Fat Cell Differentiation and Adipose Tissue Expansion By Regulating SNCG. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104759. [PMID: 34898027 PMCID: PMC8811811 DOI: 10.1002/advs.202104759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 05/08/2023]
Abstract
The H19X-encoded miR-424(322)/503 cluster regulates multiple cellular functions. Here, it is reported for the first time that it is also a critical linchpin of fat mass expansion. Deletion of this miRNA cluster in mice results in obesity, while increasing the pool of early adipocyte progenitors and hypertrophied adipocytes. Complementary loss and gain of function experiments and RNA sequencing demonstrate that miR-424(322)/503 regulates a conserved genetic program involved in the differentiation and commitment of white adipocytes. Mechanistically, it is demonstrated that miR-424(322)/503 targets γ-Synuclein (SNCG), a factor that mediates this program rearrangement by controlling metabolic functions in fat cells, allowing adipocyte differentiation and adipose tissue enlargement. Accordingly, diminished miR-424(322) in mice and obese humans co-segregate with increased SNCG in fat and peripheral blood as mutually exclusive features of obesity, being normalized upon weight loss. The data unveil a previously unknown regulatory mechanism of fat mass expansion tightly controlled by the miR-424(322)/503 through SNCG.
Collapse
Affiliation(s)
- Ruth Rodríguez‐Barrueco
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Anatomy UnitDepartment of Pathology and Experimental TherapySchool of MedicineUniversity of Barcelona (UB)L'Hospitalet de Llobregat08907Spain
| | - Jessica Latorre
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Laura Devis‐Jáuregui
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
| | - Aina Lluch
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
| | - Nuria Bonifaci
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos III, (ISCIII)Madrid28029Spain
| | - Francisco J. Llobet
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
| | - Mireia Olivan
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Anatomy UnitDepartment of Pathology and Experimental TherapySchool of MedicineUniversity of Barcelona (UB)L'Hospitalet de Llobregat08907Spain
| | - Laura Coll‐Iglesias
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
| | - Katja Gassner
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos III, (ISCIII)Madrid28029Spain
| | - Meredith L. Davis
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Department of PathologyDuke University School of MedicineDurhamNC27710USA
| | - José M. Moreno‐Navarrete
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Anna Castells‐Nobau
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
| | - Laura Plata‐Peña
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
| | - Miki Dalmau‐Pastor
- Anatomy UnitDepartment of Pathology and Experimental TherapySchool of MedicineUniversity of Barcelona (UB)L'Hospitalet de Llobregat08907Spain
- MIFAS by GRECMIP (Minimally Invasive Foot and Ankle Society)Merignac33700France
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory MedicineRegensburg University HospitalRegensburg93053Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory MedicineRegensburg University HospitalRegensburg93053Germany
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research (Biomedicum 2U)and Department of AnatomyFaculty of MedicineUniversity of HelsinkiHelsinki00290Finland
| | - Maria Arnoriaga‐Rodríguez
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Wifredo Ricart
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - José M. Fernández‐Real
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - José M. Silva
- Department of PathologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Francisco J. Ortega
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - David Llobet‐Navas
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos III, (ISCIII)Madrid28029Spain
| |
Collapse
|
21
|
Abstract
An extensive literature base combined with advances in sequencing technologies demonstrate microRNA levels correlate with various metabolic diseases. Mechanistic studies also establish microRNAs regulate central metabolic pathways and thus play vital roles in maintaining organismal energy balance and metabolic homeostasis. This review highlights research progress on the roles and regulation of microRNAs in the peripheral tissues that confer insulin sensitivity. We discuss sequencing technologies used to comprehensively define the target spectrum of microRNAs in metabolic disease that complement studies reporting physiologic roles for microRNAs in the regulation of glucose and lipid metabolism in animal models. We also discuss the emerging roles of exosomal microRNAs as endocrine signals to regulate lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Sean M. Hartig, PhD, Baylor College of Medicine, One Baylor Plaza, BCM185, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Chalmers JA, Dalvi PS, Loganathan N, McIlwraith EK, Wellhauser L, Nazarians-Armavil A, Eversley JA, Mohan H, Stahel P, Dash S, Wheeler MB, Belsham DD. Hypothalamic miR-1983 Targets Insulin Receptor β and the Insulin-mediated miR-1983 Increase Is Blocked by Metformin. Endocrinology 2022; 163:6433013. [PMID: 34919671 PMCID: PMC8682955 DOI: 10.1210/endocr/bqab241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 01/13/2023]
Abstract
MicroRNAs (miRNAs) expressed in the hypothalamus are capable of regulating energy balance and peripheral metabolism by inhibiting translation of target messenger RNAs (mRNAs). Hypothalamic insulin resistance is known to precede that in the periphery, thus a critical unanswered question is whether central insulin resistance creates a specific hypothalamic miRNA signature that can be identified and targeted. Here we show that miR-1983, a unique miRNA, is upregulated in vitro in 2 insulin-resistant immortalized hypothalamic neuronal neuropeptide Y-expressing models, and in vivo in hyperinsulinemic mice, with a concomitant decrease of insulin receptor β subunit protein, a target of miR-1983. Importantly, we demonstrate that miR-1983 is detectable in human blood serum and that its levels significantly correlate with blood insulin and the homeostatic model assessment of insulin resistance. Levels of miR-1983 are normalized with metformin exposure in mouse hypothalamic neuronal cell culture. Our findings provide evidence for miR-1983 as a unique biomarker of cellular insulin resistance, and a potential therapeutic target for prevention of human metabolic disease.
Collapse
Affiliation(s)
- Jennifer A Chalmers
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Prasad S Dalvi
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Current Affiliation: Prasad S. Dalvi is now at Morosky College of Health Professions and Sciences, Gannon University, Erie, Pennsylvania 16541, USA
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Leigh Wellhauser
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Judith A Eversley
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Haneesha Mohan
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Priska Stahel
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Satya Dash
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Toronto General Hospital, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Toronto General Hospital, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Correspondence: Denise D. Belsham, PhD, Department of Physiology, University of Toronto, Medical Sciences Bldg 3247A, 1 Kings College Cir, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
23
|
Dattilo A, Ceccarini G, Scabia G, Magno S, Quintino L, Pelosini C, Salvetti G, Cusano R, Massidda M, Montanelli L, Gilio D, Gatti G, Giacomina A, Costa M, Santini F, Maffei M. Circulating Levels of MiRNAs From 320 Family in Subjects With Lipodystrophy: Disclosing Novel Signatures of the Disease. Front Endocrinol (Lausanne) 2022; 13:866679. [PMID: 35733784 PMCID: PMC9207177 DOI: 10.3389/fendo.2022.866679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Lipodystrophy (LD) indicates a group of rare disorders, with generalized or partial loss of white adipose tissue (WAT) often associated with metabolic derangements. Heterogeneity/wide spectrum of the disease and lack of biomarkers make diagnosis often difficult. MicroRNAs are important to maintain a correct WAT function and WAT is a source of circulating miRNAs (cmiRs). miRNAs from 320 family were previously detected in the WAT and variably associated to the metabolic syndrome. Our aim was then to investigate if LD can result in altered abundance of cmiRs-320. We collected samples from a cohort of LD subjects of various subtypes and from age matched controls. Use of quantitative PCR determined that cmiRs- 320a-3p, 320b, 320c, 320e are upregulated, while 320d is downregulated in LD. CmiRs-320 power as classifiers was more powerful in the most extreme and defined forms of LD, including the generalized and the Dunnigan subtypes. cmiR-320a-3p showed significant inverse relationships with plasma leptin (P < 0.0001), typically low in LD. The hepatic enzymes gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and the marker of inflammation C-reactive protein (CRP) were inversely related to cmiR 320d (P < 0.05, for CRP and GGT; P < 0.01, for AST and ALT). Gene ontology analysis revealed cell-cell adhesion as a process regulated by 320 miRNAs targets, thus disclosing a novel route to investigate origin of WAT loss/dysfunction. In conclusion, cmiRs-320 constitute novel biomarkers of LD, abundance of miR320a-3p is inversely associated to indicators related to WAT function, while downregulation of cmiR-320d predicts an altered hepatic profile and higher inflammation.
Collapse
Affiliation(s)
- Alessia Dattilo
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Gaia Scabia
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Silvia Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Lara Quintino
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Caterina Pelosini
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Guido Salvetti
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Roberto Cusano
- Center for Advanced Studies, Research and Development in Sardinia, Pula (CA), Italy
| | - Matteo Massidda
- Center for Advanced Studies, Research and Development in Sardinia, Pula (CA), Italy
| | - Lucia Montanelli
- Department of Clinical and Experimental Medicine, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Donatella Gilio
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Gianluca Gatti
- Plastic and Reconstructive Surgery Unit, Hospital of Pisa, Pisa, Italy
| | | | - Mario Costa
- National Research Council, Institute of Neuroscience, Pisa, Italy
- Centro Pisano Flash Radiotherapy, Center for Instrument Sharing of the University of Pisa (CPFR@CISUP), Pisa University Hospital, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Margherita Maffei
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
- *Correspondence: Margherita Maffei,
| |
Collapse
|
24
|
Song XH, He N, Xing YT, Jin XQ, Li YW, Liu SS, Gao ZY, Guo C, Wang JJ, Huang YY, Hu H, Wang LL. A Novel Age-Related Circular RNA Circ-ATXN2 Inhibits Proliferation, Promotes Cell Death and Adipogenesis in Rat Adipose Tissue-Derived Stromal Cells. Front Genet 2021; 12:761926. [PMID: 34858478 PMCID: PMC8630790 DOI: 10.3389/fgene.2021.761926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue-derived stromal cells are promising candidates investigating the stem cell-related treatment. However, their proportion and utility in the human body decline with time, rendering stem cells incompetent to complete repair processes in vivo. The involvement of circRNAs in the aging process is poorly understood. Rat subcutaneous adipose tissue from 10-week-old and 27-month-old rats were used for hematoxylin and eosin (H and E) staining, TUNEL staining, and circRNA sequencing. Rat adipose tissue-derived stromal cells were cultured and overexpressed with circ-ATXN2. Proliferation was examined using xCELLigence real-time cell analysis, EdU staining, and cell cycle assay. Apoptosis was induced by CoCl2 and examined using flow cytometry. RT-PCR assay and Oil Red O staining were used to measure adipogenesis at 48 h and 14 days, respectively. H and E staining showed that the diameter of adipocytes increased; however, the number of cells decreased in old rats. TUNEL staining showed that the proportion of apoptotic cells was increased in old rats. A total of 4,860 and 4,952 circRNAs was detected in young and old rats, respectively. Among them, 67 circRNAs exhibited divergent expression between the two groups (fold change ≥2, p ≤ 0.05), of which 33 were upregulated (49.3%) and 34 were downregulated (50.7%). The proliferation of circ-ATXN2-overexpressing cells decreased significantly in vitro, which was further validated by xCELLigence real-time cell analysis, EdU staining, and cell cycle assay. Overexpression of circ-ATXN2 significantly increased the total apoptotic rate from 5.78 ± 0.46% to 11.97 ± 1.61%, early apoptotic rate from 1.76 ± 0.22% to 5.50 ± 0.66%, and late apoptosis rate from 4.02 ± 0.25% to 6.47 ± 1.06% in adipose tissue-derived stromal cells. Furthermore, in circ-ATXN2-overexpressing cells, RT-PCR assay revealed that the expression levels of adipose differentiation-related genes PPARγ and CEBP/α were increased and the Oil Red O staining assay showed more lipid droplets. Our study revealed the expression profile of circRNAs in the adipose tissue of old rats. We found a novel age-related circular RNA—circ-ATXN2—that inhibits proliferation and promotes cell death and adipogenesis in rat adipose tissue-derived stromal cells.
Collapse
Affiliation(s)
- Xing-Hui Song
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning He
- Department of Basic Medicine Sciences and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Ting Xing
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Qin Jin
- China Medical Research Center, Zhejiang Chinese Medical University Academy of Chinese Medical Sciences, Hangzhou, China
| | - Yan-Wei Li
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang-Shuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Zi-Ying Gao
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Chun Guo
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Jia Wang
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Ying Huang
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Hu Hu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
microRNAs in Human Adipose Tissue Physiology and Dysfunction. Cells 2021; 10:cells10123342. [PMID: 34943849 PMCID: PMC8699244 DOI: 10.3390/cells10123342] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a large amount of evidence on the role of microRNA (miRNA) in regulating adipose tissue physiology. Indeed, miRNAs control critical steps in adipocyte differentiation, proliferation and browning, as well as lipolysis, lipogenesis and adipokine secretion. Overnutrition leads to a significant change in the adipocyte miRNOME, resulting in adipose tissue dysfunction. Moreover, via secreted mediators, dysfunctional adipocytes may impair the function of other organs and tissues. However, given their potential to control cell and whole-body energy expenditure, miRNAs also represent critical therapeutic targets for treating obesity and related metabolic complications. This review attempts to integrate present concepts on the role miRNAs play in adipose tissue physiology and obesity-related dysfunction and data from pre-clinical and clinical studies on the diagnostic or therapeutic potential of miRNA in obesity and its related complications.
Collapse
|
26
|
Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues. Cells 2021; 10:cells10113030. [PMID: 34831253 PMCID: PMC8616549 DOI: 10.3390/cells10113030] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
Obesity-associated metabolic abnormalities comprise a cluster of conditions including dyslipidemia, insulin resistance, diabetes and cardiovascular diseases that has affected more than 650 million people all over the globe. Obesity results from the accumulation of white adipose tissues mainly due to the chronic imbalance of energy intake and energy expenditure. A variety of approaches to treat or prevent obesity, including lifestyle interventions, surgical weight loss procedures and pharmacological approaches to reduce energy intake and increase energy expenditure have failed to substantially decrease the prevalence of obesity. Brown adipose tissue (BAT), the primary source of thermogenesis in infants and small mammals may represent a promising therapeutic target to treat obesity by promoting energy expenditure through non-shivering thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1). Since the confirmation of functional BAT in adult humans by several groups, approximately a decade ago, and its association with a favorable metabolic phenotype, intense interest on the significance of BAT in adult human physiology and metabolic health has emerged within the scientific community to explore its therapeutic potential for the treatment of obesity and metabolic diseases. A substantially decreased BAT activity in individuals with obesity indicates a role for BAT in the setting of human obesity. On the other hand, BAT mass and its prevalence correlate with lower body mass index (BMI), decreased age and lower glucose levels, leading to a lower incidence of cardio-metabolic diseases. The increased cold exposure in adult humans with undetectable BAT was associated with decreased body fat mass and increased insulin sensitivity. A deeper understanding of the role of BAT in human metabolic health and its interrelationship with body fat distribution and deciphering proper strategies to increase energy expenditure, by either increasing functional BAT mass or inducing white adipose browning, holds the promise for possible therapeutic avenues for the treatment of obesity and associated metabolic disorders.
Collapse
|
27
|
Gao W, Liu JL, Lu X, Yang Q. Epigenetic regulation of energy metabolism in obesity. J Mol Cell Biol 2021; 13:480-499. [PMID: 34289049 PMCID: PMC8530523 DOI: 10.1093/jmcb/mjab043] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity has reached epidemic proportions globally. Although modern adoption of a sedentary lifestyle coupled with energy-dense nutrition is considered to be the main cause of obesity epidemic, genetic preposition contributes significantly to the imbalanced energy metabolism in obesity. However, the variants of genetic loci identified from large-scale genetic studies do not appear to fully explain the rapid increase in obesity epidemic in the last four to five decades. Recent advancements of next-generation sequencing technologies and studies of tissue-specific effects of epigenetic factors in metabolic organs have significantly advanced our understanding of epigenetic regulation of energy metabolism in obesity. The epigenome, including DNA methylation, histone modifications, and RNA-mediated processes, is characterized as mitotically or meiotically heritable changes in gene function without alteration of DNA sequence. Importantly, epigenetic modifications are reversible. Therefore, comprehensively understanding the landscape of epigenetic regulation of energy metabolism could unravel novel molecular targets for obesity treatment. In this review, we summarize the current knowledge on the roles of DNA methylation, histone modifications such as methylation and acetylation, and RNA-mediated processes in regulating energy metabolism. We also discuss the effects of lifestyle modifications and therapeutic agents on epigenetic regulation of energy metabolism in obesity.
Collapse
Affiliation(s)
- Wei Gao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Li Liu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 211166, China
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
28
|
Ruiz GP, Camara H, Fazolini NPB, Mori MA. Extracellular miRNAs in redox signaling: Health, disease and potential therapies. Free Radic Biol Med 2021; 173:170-187. [PMID: 33965563 DOI: 10.1016/j.freeradbiomed.2021.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Extracellular microRNAs (miRNAs) have emerged as important mediators of cell-to-cell communication and intertissue crosstalk. MiRNAs are produced by virtually all types of eukaryotic cells and can be selectively packaged and released to the extracellular medium, where they may reach distal cells to regulate gene expression cell non-autonomously. By doing so, miRNAs participate in integrative physiology. Oxidative stress affects miRNA expression, while miRNAs control redox signaling. Disruption in miRNA expression, processing or release to the extracellular compartment are associated with aging and a number of chronic diseases, such as obesity, type 2 diabetes, neurodegenerative diseases and cancer, all of them being conditions related to oxidative stress. Here we discuss the interplay between redox balance and miRNA function and secretion as a determinant of health and disease states, reviewing the findings that support this notion and highlighting novel and yet understudied venues of research in the field.
Collapse
Affiliation(s)
- Gabriel Palermo Ruiz
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Henrique Camara
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Narayana P B Fazolini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
29
|
Pervin S, Reddy ST, Singh R. Novel Roles of Follistatin/Myostatin in Transforming Growth Factor-β Signaling and Adipose Browning: Potential for Therapeutic Intervention in Obesity Related Metabolic Disorders. Front Endocrinol (Lausanne) 2021; 12:653179. [PMID: 33897620 PMCID: PMC8062757 DOI: 10.3389/fendo.2021.653179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a global health problem and a major risk factor for several metabolic conditions including dyslipidemia, diabetes, insulin resistance and cardiovascular diseases. Obesity develops from chronic imbalance between energy intake and energy expenditure. Stimulation of cellular energy burning process has the potential to dissipate excess calories in the form of heat via the activation of uncoupling protein-1 (UCP1) in white and brown adipose tissues. Recent studies have shown that activation of transforming growth factor-β (TGF-β) signaling pathway significantly contributes to the development of obesity, and blockade or inhibition is reported to protect from obesity by promoting white adipose browning and increasing mitochondrial biogenesis. Identification of novel compounds that activate beige/brown adipose characteristics to burn surplus calories and reduce excess storage of fat are actively sought in the fight against obesity. In this review, we present recent developments in our understanding of key modulators of TGF-β signaling pathways including follistatin (FST) and myostatin (MST) in regulating adipose browning and brown adipose mass and activity. While MST is a key ligand for TGF-β family, FST can bind and regulate biological activity of several TGF-β superfamily members including activins, bone morphogenic proteins (BMP) and inhibins. Here, we review the literature supporting the critical roles for FST, MST and other proteins in modulating TGF-β signaling to influence beige and brown adipose characteristics. We further review the potential therapeutic utility of FST for the treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Shehla Pervin
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Srinivasa T. Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Rajan Singh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Endocrinology, Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Boston, MA, United States
- *Correspondence: Rajan Singh,
| |
Collapse
|
30
|
Rocha AL, de Lima TI, de Souza GP, Corrêa RO, Ferrucci DL, Rodrigues B, Lopes-Ramos C, Nilsson D, Knittel TL, Castro PR, Fernandes MF, Dos Santos Martins F, Parmigiani RB, Silveira LR, Carvalho HF, Auwerx J, Vinolo MAR, Boucher J, Mori MA. Enoxacin induces oxidative metabolism and mitigates obesity by regulating adipose tissue miRNA expression. SCIENCE ADVANCES 2020; 6:eabc6250. [PMID: 33268375 PMCID: PMC7710362 DOI: 10.1126/sciadv.abc6250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/14/2020] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have been implicated in oxidative metabolism and brown/beige adipocyte identity. Here, we tested whether widespread changes in miRNA expression promoted by treatment with the small-molecule enoxacin cause browning and prevent obesity. Enoxacin mitigated diet-induced obesity in mice, and this was associated with increased energy expenditure. Consistently, subcutaneous white and brown adipose tissues and skeletal muscle of enoxacin-treated mice had higher levels of markers associated with thermogenesis and oxidative metabolism. These effects were cell autonomous since they were recapitulated in vitro in murine and human cell models. In preadipocytes, enoxacin led to a reduction of miR-34a-5p expression and up-regulation of its target genes (e.g., Fgfr1, Klb, and Sirt1), thus increasing FGF21 signaling and promoting beige adipogenesis. Our data demonstrate that enoxacin counteracts obesity by promoting thermogenic signaling and inducing oxidative metabolism in adipose tissue and skeletal muscle in a mechanism that involves, at least in part, miRNA-mediated regulation.
Collapse
Affiliation(s)
- Andréa Livia Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Biophysics, São Paulo School of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Program in Biotechnology, Federal University of São Paulo, São Paulo, Brazil
| | - Tanes Imamura de Lima
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gerson Profeta de Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Renan Oliveira Corrêa
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Danilo Lopes Ferrucci
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology in Photonics Applied to Cell Biology (INFABiC), University of Campinas, Campinas, Brazil
| | - Bruno Rodrigues
- Department of Adapted Physical Activity, School of Physical Education, University of Campinas, Campinas, Brazil
| | - Camila Lopes-Ramos
- Center of Molecular Oncology, Sírio-Libanês Hospital, São Paulo, Brazil
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, USA
| | - Daniel Nilsson
- Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden
| | - Thiago Leite Knittel
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Pollyana Ribeiro Castro
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Mariane Font Fernandes
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Flaviano Dos Santos Martins
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Leonardo Reis Silveira
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology in Photonics Applied to Cell Biology (INFABiC), University of Campinas, Campinas, Brazil
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Aurélio R Vinolo
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), Campinas, Brazil
| | - Jeremie Boucher
- Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Biophysics, São Paulo School of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Program in Biotechnology, Federal University of São Paulo, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), Campinas, Brazil
| |
Collapse
|
31
|
Gharanei S, Shabir K, Brown JE, Weickert MO, Barber TM, Kyrou I, Randeva HS. Regulatory microRNAs in Brown, Brite and White Adipose Tissue. Cells 2020; 9:cells9112489. [PMID: 33207733 PMCID: PMC7696849 DOI: 10.3390/cells9112489] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a class of short noncoding RNAs which regulate gene expression by targeting messenger RNA, inducing translational repression and messenger RNA degradation. This regulation of gene expression by miRNAs in adipose tissue (AT) can impact on the regulation of metabolism and energy homeostasis, particularly considering the different types of adipocytes which exist in mammals, i.e., white adipocytes (white AT; WAT), brown adipocytes (brown AT; BAT), and inducible brown adipocytes in WAT (beige or brite or brown-in-white adipocytes). Indeed, an increasing number of miRNAs has been identified to regulate key signaling pathways of adipogenesis in BAT, brite AT, and WAT by acting on transcription factors that promote or inhibit adipocyte differentiation. For example, MiR-328, MiR-378, MiR-30b/c, MiR-455, MiR-32, and MiR-193b-365 activate brown adipogenesis, whereas MiR-34a, MiR-133, MiR-155, and MiR-27b are brown adipogenesis inhibitors. Given that WAT mainly stores energy as lipids, whilst BAT mainly dissipates energy as heat, clarifying the effects of miRNAs in different types of AT has recently attracted significant research interest, aiming to also develop novel miRNA-based therapies against obesity, diabetes, and other obesity-related diseases. Therefore, this review presents an up-to-date comprehensive overview of the role of key regulatory miRNAs in BAT, brite AT, and WAT.
Collapse
Affiliation(s)
- Seley Gharanei
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kiran Shabir
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
| | - James E. Brown
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
- Correspondence:
| |
Collapse
|
32
|
Heyn GS, Corrêa LH, Magalhães KG. The Impact of Adipose Tissue-Derived miRNAs in Metabolic Syndrome, Obesity, and Cancer. Front Endocrinol (Lausanne) 2020; 11:563816. [PMID: 33123088 PMCID: PMC7573351 DOI: 10.3389/fendo.2020.563816] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is a multifactorial and complex condition that is characterized by abnormal and excessive white adipose tissue accumulation, which can lead to the development of metabolic diseases, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, cardiovascular diseases, and several types of cancer. Obesity is characterized by excessive adipose tissue accumulation and associated with alterations in immunity, displaying a chronic low-grade inflammation profile. Adipose tissue is a dynamic and complex endocrine organ composed not only by adipocytes, but several immunological cells, which can secrete hormones, cytokines and many other factors capable of regulating metabolic homeostasis and several critical biological pathways. Remarkably, adipose tissue is a major source of circulating microRNAs (miRNAs), recently described as a novel form of adipokines. Several adipose tissue-derived miRNAs are deeply associated with adipocytes differentiation and have been identified with an essential role in obesity-associated inflammation, insulin resistance, and tumor microenvironment. During obesity, adipose tissue can completely change the profile of the secreted miRNAs, influencing circulating miRNAs and impacting the development of different pathological conditions, such as obesity, metabolic syndrome, and cancer. In this review, we discuss how miRNAs can act as epigenetic regulators affecting adipogenesis, adipocyte differentiation, lipid metabolism, browning of the white adipose tissue, glucose homeostasis, and insulin resistance, impacting deeply obesity and metabolic diseases. Moreover, we characterize how miRNAs can often act as oncogenic and tumor suppressor molecules, significantly modulating cancer establishment and progression. Furthermore, we highlight in this manuscript how adipose tissue-derived miRNAs can function as important new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
33
|
Benzi A, Sturla L, Heine M, Fischer AW, Spinelli S, Magnone M, Sociali G, Parodi A, Fenoglio D, Emionite L, Koch-Nolte F, Mittrücker HW, Guse AH, De Flora A, Zocchi E, Heeren J, Bruzzone S. CD38 downregulation modulates NAD + and NADP(H) levels in thermogenic adipose tissues. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158819. [PMID: 33010451 DOI: 10.1016/j.bbalip.2020.158819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/05/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Different strategies to boost NAD+ levels are considered promising means to promote healthy aging and ameliorate dysfunctional metabolism. CD38 is a NAD+-dependent enzyme involved in the regulation of different cell functions. In the context of systemic energy metabolism, it has been demonstrated that brown adipocytes, the parenchymal cells of brown adipose tissue (BAT) as well as beige adipocytes that emerge in white adipose tissue (WAT) depots in response to catabolic conditions, are important to maintain metabolic homeostasis. In this study we aim to understand the functional relevance of CD38 for NAD+ and energy metabolism in BAT and WAT, also using a CD38-/- mouse model. During cold exposure, an increase in NAD+ levels occurred in BAT of wild type mice, together with a marked downregulation of CD38, as detected at the mRNA and protein level. CD38 downregulation was observed also in WAT of cold-exposed mice, where it was accompanied by a strong increase in NADP(H) levels. Accordingly, NAD kinase and glucose-6-phosphate dehydrogenase activities were enhanced in WAT (but not in BAT). Increased NAD+ levels were observed in BAT/WAT from CD38-/- compared with wild type mice, in line with CD38 being a major NAD+-consumer in AT. CD38-/- mice kept at 6 °C had higher levels of Ucp1 and Pgc-1α in BAT and WAT, and increased levels of phosphorylated hormone-sensitive lipase in BAT, compared with wild type mice. These results demonstrate that CD38, by modulating cellular NAD(P)+ levels, is involved in the regulation of thermogenic responses in cold-activated BAT and WAT.
Collapse
Affiliation(s)
- Andrea Benzi
- DIMES-Section of Biochemistry, University of Genova, Italy
| | - Laura Sturla
- DIMES-Section of Biochemistry, University of Genova, Italy.
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonia Spinelli
- DIMES-Section of Biochemistry, University of Genova, Italy
| | - Mirko Magnone
- DIMES-Section of Biochemistry, University of Genova, Italy
| | | | | | - Daniela Fenoglio
- IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine, University of Genova, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genova, Italy
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Elena Zocchi
- DIMES-Section of Biochemistry, University of Genova, Italy
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
34
|
Altered Regulation of adipomiR Editing with Aging. Int J Mol Sci 2020; 21:ijms21186899. [PMID: 32962255 PMCID: PMC7555933 DOI: 10.3390/ijms21186899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose dysfunction with aging increases risk to insulin resistance and other chronic metabolic diseases. We previously showed functional changes in microRNAs involved in pre-adipocyte differentiation with aging resulting in adipose dysfunction. However, the mechanisms leading to this dysfunction in microRNAs in adipose tissue (adipomiRs) during aging are not well understood. We determined the longitudinal changes in expression of adipomiRs and studied their regulatory mechanisms, such as miRNA biogenesis and editing, in an aging rodent model, with Fischer344 × Brown-Norway hybrid rats at ages ranging from 3 to 30 months (male/females, n > 8). Expression of adipomiRs and their edited forms were determined by small-RNA sequencing. RT-qPCR was used to measure the mRNA expression of biogenesis and editing enzymes. Sanger sequencing was used to validate editing with aging. Differential expression of adipomiRs involved in adipocyte differentiation and insulin signaling was altered with aging. Sex- and age-specific changes in edited adipomiRs were observed. An increase in miRNA biogenesis and editing enzymes (ADARs and their splice variants) were observed with increasing age, more so in female than male rats. The adipose dysfunction observed with age is attributed to differences in editing of adipomiRs, suggesting a novel regulatory pathway in aging.
Collapse
|
35
|
Dynamic changes in DICER levels in adipose tissue control metabolic adaptations to exercise. Proc Natl Acad Sci U S A 2020; 117:23932-23941. [PMID: 32900951 DOI: 10.1073/pnas.2011243117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DICER is a key enzyme in microRNA (miRNA) biogenesis. Here we show that aerobic exercise training up-regulates DICER in adipose tissue of mice and humans. This can be mimicked by infusion of serum from exercised mice into sedentary mice and depends on AMPK-mediated signaling in both muscle and adipocytes. Adipocyte DICER is required for whole-body metabolic adaptations to aerobic exercise training, in part, by allowing controlled substrate utilization in adipose tissue, which, in turn, supports skeletal muscle function. Exercise training increases overall miRNA expression in adipose tissue, and up-regulation of miR-203-3p limits glycolysis in adipose under conditions of metabolic stress. We propose that exercise training-induced DICER-miR-203-3p up-regulation in adipocytes is a key adaptive response that coordinates signals from working muscle to promote whole-body metabolic adaptations.
Collapse
|
36
|
Liu J, Liu F. The Yin and Yang function of microRNAs in insulin signalling and cancer. RNA Biol 2020; 18:24-32. [PMID: 32746694 DOI: 10.1080/15476286.2020.1804236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Data accumulated over the past several decades uncover a vital role of microRNAs (miRNAs) in various biological processes. It is well established that, by binding to target mRNAs, miRNAs act as post-transcription suppressors to inhibit mRNA translation and/or to promote mRNA degradation. Very recently, miRNAs have been found to act as positive regulators to promote gene transcription. In this review, we briefly summarize the regulation and functional roles of miRNAs in metabolic diseases and cancer development. We also review recent advances on the mechanisms by which miRNAs regulate gene expression, focusing on their unconventional roles as enhancers to promote gene expression. Given the high potential of miRNAs as biomarkers for risk assessment and as high-value targets for therapy, a better understanding of the Yin-Yang functional feature of miRNAs and their mechanisms of action could have significant clinical implications for the treatment of various diseases such as obesity, type 2 diabetes, and cancer.
Collapse
Affiliation(s)
- Juanhong Liu
- National Clinical Research Center for Metabolic Diseases, and Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University , Changsha, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, and Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University , Changsha, China.,Departments of Pharmacology, University of Texas Health at San Antonio , San Antonio, TX, USA
| |
Collapse
|
37
|
Ye C, Duan J, Zhang X, Yao L, Song Y, Wang G, Li Q, Wang B, Ai D, Wang C, Zhu Y. Cold-induced Yes-associated-protein expression through miR-429 mediates the browning of white adipose tissue. SCIENCE CHINA-LIFE SCIENCES 2020; 64:404-418. [PMID: 32804340 DOI: 10.1007/s11427-020-1779-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Targeting the white-to-brown fat conversion is important for developing potential strategies to counteract metabolic diseases; yet the mechanisms are not fully understood. Yes-associated-protein (YAP), a transcription co-activator, was demonstrated to regulate adipose tissue functions; however, its effects on browning of subcutaneous white adipose tissue (sWAT) are unclear. We demonstrated that YAP was highly expressed in cold-induced beige fat. Mechanistically, YAP was found as a target gene of miR-429, which downregulated YAP expression in vivo and in vitro. In addition, miR-429 level was decreased in cold-induced beige fat. Additionally, pharmacological inhibition of the interaction between YAP and transcriptional enhanced associate domains by verteporfin dampened the browning of sWAT. Although adipose tissue-specific YAP overexpression increased energy expenditure with increased basal uncoupling protein 1 expression, it had no additional effects on the browning of sWAT in young mice. However, we found age-related impairment of sWAT browning along with decreased YAP expression. Under these circumstances, YAP overexpression significantly improved the impaired WAT browning in middle-aged mice. In conclusion, YAP as a regulator of sWAT browning, was upregulated by lowering miR-429 level in cold-induced beige fat. Targeting the miR-429-YAP pathway could be exploited for therapeutic strategies for age-related impairment of sWAT browning.
Collapse
Affiliation(s)
- Chenji Ye
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Jinjie Duan
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Xuejiao Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Liu Yao
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Yayue Song
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Guangyan Wang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Qi Li
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Biqing Wang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Chunjiong Wang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China. .,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
38
|
Dong M, Ye Y, Chen Z, Xiao T, Liu W, Hu F. MicroRNA 182 is a Novel Negative Regulator of Adipogenesis by Targeting CCAAT/Enhancer-Binding Protein α. Obesity (Silver Spring) 2020; 28:1467-1476. [PMID: 32573115 PMCID: PMC7496338 DOI: 10.1002/oby.22863] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Recent studies have shown that microRNAs (miRNAs/miRs) play key roles in adipogenesis. This study aimed to investigate the role and underlying mechanism of miR-182 in adipogenesis. METHODS This study used the 3T3-L1 cell line and human visceral adipose tissue (VAT)-derived adipocytes to determine the role of miR-182 in adipogenesis. Adipose tissues from mice with high-fat diet-induced obesity, ob/ob mice, or human individuals with obesity were used to determine the association of miR-182 levels with obesity. A luciferase reporter assay was used to determine the target of miR-182. RESULTS The expression level of miR-182 was greatly downregulated during white adipogenesis and markedly lower in the VAT of mice and humans with obesity. Ectopic expression of miR-182 in 3T3-L1 cells and human adipocytes suppressed the formation of lipid droplets and the expression of adipogenic genes. The luciferase reporter assay showed that miR-182 targeted the 3'-untranslated sequence of CCAAT/enhancer-binding protein α (C/EBPα) directly. In addition, glucocorticoids negatively regulated miR-182 expression, which, in turn, suppressed the glucocorticoid-induced expression of C/EBPα. CONCLUSIONS Taken together, our studies identified miR-182 as a novel negative regulator of adipogenesis and a potential therapeutic target for obesity.
Collapse
Affiliation(s)
- Meijuan Dong
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya HospitalCentral South UniversityChangshaChina
- Metabolic Syndrome Research CenterThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuqing Ye
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya HospitalCentral South UniversityChangshaChina
- Metabolic Syndrome Research CenterThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhinan Chen
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya HospitalCentral South UniversityChangshaChina
- Metabolic Syndrome Research CenterThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Ting Xiao
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya HospitalCentral South UniversityChangshaChina
- Metabolic Syndrome Research CenterThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Liu
- Minimally Invasive Surgery CenterThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Fang Hu
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya HospitalCentral South UniversityChangshaChina
- Metabolic Syndrome Research CenterThe Second Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Diabetes ImmunologyMinistry of EducationThe Second Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
39
|
Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest 2020; 129:3990-4000. [PMID: 31573548 DOI: 10.1172/jci129187] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy). Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional signaling network that is central to metabolic homeostasis.
Collapse
Affiliation(s)
- C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
40
|
You L, Wang Y, Gao Y, Wang X, Cui X, Zhang Y, Pang L, Ji C, Guo X, Chi X. The role of microRNA-23b-5p in regulating brown adipogenesis and thermogenic program. Endocr Connect 2020; 9:457-470. [PMID: 32348962 PMCID: PMC7274556 DOI: 10.1530/ec-20-0124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Enhanced brown adipose tissue (BAT) mass and activity have been demonstrated to promote the expenditure of excess stored energy and reduce prevalence of obesity. Cold is known as a potent stimulator of BAT and activates BAT primarily through the β3-adrenergic-cAMP signaling. Here, we performed RNA-sequencing to identify differential miRNAs in mouse BAT upon cold exposure and a total of 20 miRNAs were validated. With the treatment of CL-316,243 (CL) and forskolin (Fsk) in mouse and human differentiated brown adipocyte cells in vitro, miR-23b-5p, miR-133a-3p, miR-135-5p, miR-491-5p, and miR-150-3p expression decreased and miR-455-5p expression increased. Among these deferentially expressed miRNAs, miR-23b-5p expression was differentially regulated in activated and aging mouse BAT and negatively correlated with Ucp1 expression. Overexpression of miR-23b-5p in the precursor cells from BAT revealed no significant effects on lipid accumulation, but diminished mitochondrial function and decreased expression of BAT specific markers. Though luciferase reporter assays did not confirm the positive association of miR-23b-5p with the 3'UTRs of the predicted target Ern1, miR-23b-5p overexpression may affect brown adipocyte thermogenic capacity mainly through regulating genes expression involving in lipolysis and fatty acid β-oxidation pathways. Our results suggest that miRNAs are involved in cold-mediated BAT thermogenic activation and further acknowledged miR-23b-5p as a negative regulator in controlling thermogenic programs, further providing potential molecular therapeutic targets to increase surplus energy and treat obesity.
Collapse
Affiliation(s)
- Lianghui You
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyun Wang
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xianwei Cui
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yanyan Zhang
- Beijing Chaoyang Distirct Maternal and Child Health Care Hospital, Beijing, China
| | - Lingxia Pang
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chenbo Ji
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence should be addressed to X Chi or X Guo: or
| | - Xia Chi
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
- Correspondence should be addressed to X Chi or X Guo: or
| |
Collapse
|
41
|
Siang DTC, Lim YC, Kyaw AMM, Win KN, Chia SY, Degirmenci U, Hu X, Tan BC, Walet ACE, Sun L, Xu D. The RNA-binding protein HuR is a negative regulator in adipogenesis. Nat Commun 2020; 11:213. [PMID: 31924774 PMCID: PMC6954112 DOI: 10.1038/s41467-019-14001-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Human antigen R (HuR) is an essential regulator of RNA metabolism, but its function in metabolism remains unclear. This study identifies HuR as a major repressor during adipogenesis. Knockdown and overexpression of HuR in primary adipocyte culture enhances and inhibits adipogenesis in vitro, respectively. Fat-specific knockout of HuR significantly enhances adipogenic gene program in adipose tissues, accompanied by a systemic glucose intolerance and insulin resistance. HuR knockout also results in depot-specific phenotypes: it can repress myogenesis program in brown fat, enhance inflammation program in epidydimal white fat and induce browning program in inguinal white fat. Mechanistically, HuR may inhibit adipogenesis by recognizing and modulating the stability of hundreds of adipocyte transcripts including Insig1, a negative regulator during adipogenesis. Taken together, our work establishes HuR as an important posttranscriptional regulator of adipogenesis and provides insights into how RNA processing contributes to adipocyte development.
Collapse
Affiliation(s)
- Diana Teh Chee Siang
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yen Ching Lim
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Aung Maung Maung Kyaw
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Khaing Nwe Win
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Sook Yoong Chia
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ufuk Degirmenci
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Xiang Hu
- Departments of Endocrine and Metabolic Diseases, The first Affiliated Hospital of Wenzhou Medical University, Wenzhou, , Zhejiang, 325035, China
| | - Bryan C Tan
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Arcinas Camille Esther Walet
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. .,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Dan Xu
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
42
|
Iacomino G, Lauria F, Venezia A, Iannaccone N, Russo P, Siani A. microRNAs in Obesity and Metabolic Diseases. OBESITY AND DIABETES 2020:71-95. [DOI: 10.1007/978-3-030-53370-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
43
|
Guo X, Zhang Z, Zeng T, Lim YC, Wang Y, Xie X, Yang S, Huang C, Xu M, Tao L, Zeng H, Sun L, Li X. cAMP-MicroRNA-203-IFNγ network regulates subcutaneous white fat browning and glucose tolerance. Mol Metab 2019; 28:36-47. [PMID: 31327757 PMCID: PMC6822238 DOI: 10.1016/j.molmet.2019.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/17/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Brown and beige adipocytes in humans and rodents are specialized to burn lipids for heat generation as a natural defense against cold and obesity, which is advantageous to metabolic homeostasis. MicroRNAs as another regulatory layer to regulate metabolic homeostasis attracted a lot of attentions. Our previous work revealed microRNA (miR)-203 as a brown adipocyte-enriched microRNA involved in brown adipocytes development. However, the potential role of miR-203 in adipose tissue metabolic homeostasis has not been determined in vivo. In this study, we investigate the potential role of miR-203 in subcutaneous white adipose tissue (sub-WAT) browning and metabolic homeostasis. METHODS We investigated the relationship between miR-203 and energy homeostasis in adipose tissue from cold exposed, high fat diet (HFD) fed, ob/ob and db/db mice. The functions of miR-203 on sub-WAT browning were validated through miR-203 knockdown or overexpression. The miR-203 targeted signal pathway was screened by RNAseq analysis. Luciferase report assay, western blot, and qPCR were performed to establish the miR-203 related upstream and downstream signal pathway in vivo and in vitro. The functions of miR-203 on obesity and metabolic homeostasis were validated through GTT/ITT and western blot on high fat diet-induced obesity in C57 mice. ELISA was used to determine the concentration of IFN-γ. Flow cytometry analysis was performed to determine the infiltration of macrophages in adipose tissue. RESULTS MiR-203 expression positively correlates with energy expenditure, and overexpression of miR-203 could enhance sub-WAT browning in normal diet (ND) condition. Mechanistically, the expression of miR-203 is activated by cAMP-dependent C/EBPβ up-regulation. Subsequently, miR-203 inhibits IFN-γ signal pathway activation by directly targeting Lyn, which is an activator of Jak1-Stat1. Moreover, the forced expression of miR-203 could improve insulin sensitivity and resist high fat diet-induced obesity by inhibiting IFN-γ. CONCLUSIONS MicroRNA-203 (miR-203) promotes white adipose tissue browning in cold exposed mice and improves glucose tolerance in HFD fed mice by repressing IFN-γ. Since miR-203 is activated by cAMP-dependent C/EBPβ up-regulation and directly represses IFN-γ signal pathway, we declare that miR-203 acts as a messenger between cAMP signal pathway and IFN-γ signal pathway.
Collapse
Affiliation(s)
- Xiaolong Guo
- Biology Science Institutes, Chongqing Medical University, PR China
| | - Zhichun Zhang
- Biology Science Institutes, Chongqing Medical University, PR China; Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Ting Zeng
- Biology Science Institutes, Chongqing Medical University, PR China
| | - Yen Ching Lim
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Yumeng Wang
- Biology Science Institutes, Chongqing Medical University, PR China
| | - Xinxin Xie
- Biology Science Institutes, Chongqing Medical University, PR China
| | - Song Yang
- Biology Science Institutes, Chongqing Medical University, PR China
| | - Chenglong Huang
- Biology Science Institutes, Chongqing Medical University, PR China
| | - Min Xu
- Biology Science Institutes, Chongqing Medical University, PR China
| | - Linfen Tao
- Biology Science Institutes, Chongqing Medical University, PR China
| | - Hongxiang Zeng
- Biology Science Institutes, Chongqing Medical University, PR China
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore.
| | - Xi Li
- Biology Science Institutes, Chongqing Medical University, PR China.
| |
Collapse
|
44
|
Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab 2019; 30:656-673. [PMID: 31447320 PMCID: PMC6774861 DOI: 10.1016/j.cmet.2019.07.011] [Citation(s) in RCA: 609] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/25/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
miRNAs can be found in serum and other body fluids and serve as biomarkers for disease. More importantly, secreted miRNAs, especially those in extracellular vesicles (EVs) such as exosomes, may mediate paracrine and endocrine communication between different tissues and thus modulate gene expression and the function of distal cells. When impaired, these processes can lead to tissue dysfunction, aging, and disease. Adipose tissue is an especially important contributor to the pool of circulating exosomal miRNAs. As a result, alterations in adipose tissue mass or function, which occur in many metabolic conditions, can lead to changes in circulating miRNAs, which then function systemically. Here we review the findings that led to these conclusions and discuss how this sets the stage for new lines of investigation in which extracellular miRNAs are recognized as important mediators of intercellular communication and potential candidates for therapy of disease.
Collapse
Affiliation(s)
- Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Raissa G Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Ruben Garcia-Martin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Bruna B Brandão
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Okamatsu-Ogura Y, Matsushita M, Bariuan JV, Nagaya K, Tsubota A, Saito M. Association of circulating exosomal miR-122 levels with BAT activity in healthy humans. Sci Rep 2019; 9:13243. [PMID: 31519959 PMCID: PMC6744505 DOI: 10.1038/s41598-019-49754-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/30/2019] [Indexed: 12/31/2022] Open
Abstract
Brown adipose tissue (BAT) plays an important role in body fat accumulation and the regulation of energy expenditure. Since the role of miRNAs in the pathogenesis of obesity and related metabolic diseases is contentious, we analyzed exosomal miRNAs in serum of healthy subjects with special references to BAT activity and body fat level. Forty male volunteers aged 20–30 years were recruited. Their BAT activity was assessed by fluorodeoxyglucose positron emission tomography and computed tomography after 2 h of cold exposure and expressed as a maximal standardized uptake value (SUVmax). Exosomal miRNA levels was analyzed using microarray and real-time PCR analyses. The miR-122-5p level in the high BAT activity group (SUV ≧ 3) was 53% lower than in the low BAT activity group (SUVmax <3). Pearson’s correlation analysis revealed that the serum miR-122-5p level correlated negatively with BAT activity and the serum HDL-cholesterol, and it correlated positively with age, BMI, body fat mass, and total cholesterol and triglyceride serum levels. Multivariate regression analysis revealed that BAT activity was associated with the serum miR-122-5p level independently of the other parameters. These results reveal the serum exosomal miR-122-5p level is negatively associated with BAT activity independently of obesity.
Collapse
Affiliation(s)
- Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Mami Matsushita
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, 065-0013, Japan
| | - Jussiaea Valente Bariuan
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kazuki Nagaya
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Ayumi Tsubota
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Masayuki Saito
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
46
|
Arcinas C, Tan W, Fang W, Desai TP, Teh DCS, Degirmenci U, Xu D, Foo R, Sun L. Adipose circular RNAs exhibit dynamic regulation in obesity and functional role in adipogenesis. Nat Metab 2019; 1:688-703. [PMID: 32694641 DOI: 10.1038/s42255-019-0078-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
Abstract
Non-coding RNAs are emerging as novel regulators in adipocyte differentiation and function. Circular RNAs (circRNAs) are a new class of non-coding transcripts generated across all eukaryotic tissues, but their function in adipose biology remains unknown. Here we perform deep sequencing of visceral and subcutaneous fat to discover thousands of adipose circRNAs, many of which are species conserved, tissue specific and dynamically regulated during adipogenesis and obesity. We identify circTshz2-1 and circArhgap5-2 as indispensable regulators of adipogenesis in vitro. To characterize the function of circRNAs in vivo, we deliver adenoviral shRNA targeting circArhgap5-2 into mouse inguinal tissue and show that the expression of this circRNA is essential in maintaining the global adipocyte transcriptional programme involved in lipid biosynthesis and metabolism. We also demonstrate that the pro-adipogenic function of circArhgap5-2 is conserved in human adipocytes. Our results provide important evidence that circRNAs serve as important regulators in adipocyte differentiation and metabolism.
Collapse
Affiliation(s)
- Camille Arcinas
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Wilson Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
| | - Wenning Fang
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Tresha P Desai
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Diana Chee Siang Teh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Ufuk Degirmenci
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Dan Xu
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
| | - Roger Foo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore.
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
47
|
Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. J Clin Med 2019; 8:jcm8060854. [PMID: 31208019 PMCID: PMC6617388 DOI: 10.3390/jcm8060854] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
: Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM). It is closely related to metabolic disturbances in the adipose tissue that primarily functions as a fat reservoir. For this reason, adipose tissue is considered as the primary site for initiation and aggravation of obesity and T2DM. As a key endocrine organ, the adipose tissue communicates with other organs, such as the brain, liver, muscle, and pancreas, for the maintenance of energy homeostasis. Two different types of adipose tissues-the white adipose tissue (WAT) and brown adipose tissue (BAT)-secrete bioactive peptides and proteins, known as "adipokines" and "batokines," respectively. Some of them have beneficial anti-inflammatory effects, while others have harmful inflammatory effects. Recently, "exosomal microRNAs (miRNAs)" were identified as novel adipokines, as adipose tissue-derived exosomal miRNAs can affect other organs. In the present review, we discuss the role of adipose-derived secretory factors-adipokines, batokines, and exosomal miRNA-in obesity and T2DM. It will provide new insights into the pathophysiological mechanisms involved in disturbances of adipose-derived factors and will support the development of adipose-derived factors as potential therapeutic targets for obesity and T2DM.
Collapse
|
48
|
Genetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin Resistance. Cell Rep 2019; 22:2133-2145. [PMID: 29466739 PMCID: PMC5860817 DOI: 10.1016/j.celrep.2018.01.074] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/22/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
While therapeutic modulation of miRNAs provides a promising approach for numerous diseases, the promiscuous nature of miRNAs raises concern over detrimental off-target effects. miR-33 has emerged as a likely target for treatment of cardiovascular diseases. However, the deleterious effects of long-term anti-miR-33 therapies and predisposition of miR-33−/− mice to obesity and metabolic dysfunction exemplify the possible pitfalls of miRNA-based therapies. Our work provides an in-depth characterization of miR-33−/− mice and explores the mechanisms by which loss of miR-33 promotes insulin resistance in key metabolic tissues. Contrary to previous reports, our data do not support a direct role for SREBP-1-mediated lipid synthesis in promoting these effects. Alternatively, in adipose tissue of miR-33−/− mice, we observe increased pre-adipocyte proliferation, enhanced lipid uptake, and impaired lipolysis. Moreover, we demonstrate that the driving force behind these abnormalities is increased food intake, which can be prevented by pair feeding with wild-type animals.
Collapse
|
49
|
Guo WT, Wang Y. Dgcr8 knockout approaches to understand microRNA functions in vitro and in vivo. Cell Mol Life Sci 2019; 76:1697-1711. [PMID: 30694346 PMCID: PMC11105204 DOI: 10.1007/s00018-019-03020-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 01/07/2023]
Abstract
Biologic function of the majority of microRNAs (miRNAs) is still unknown. Uncovering the function of miRNAs is hurdled by redundancy among different miRNAs. The deletion of Dgcr8 leads to the deficiency in producing all canonical miRNAs, therefore, overcoming the redundancy issue. Dgcr8 knockout strategy has been instrumental in understanding the function of miRNAs in a variety of cells in vitro and in vivo. In this review, we will first give a brief introduction about miRNAs, miRNA biogenesis pathway and the role of Dgcr8 in miRNA biogenesis. We will then summarize studies performed with Dgcr8 knockout cell models with a focus on embryonic stem cells. After that, we will summarize results from various in vivo Dgcr8 knockout models. Given significant phenotypic differences in various tissues between Dgcr8 and Dicer knockout, we will also briefly review current progresses on understanding miRNA-independent functions of miRNA biogenesis factors. Finally, we will discuss the potential use of a new strategy to stably express miRNAs in Dgcr8 knockout cells. In future, Dgcr8 knockout approaches coupled with innovations in miRNA rescue strategy may provide further insights into miRNA functions in vitro and in vivo.
Collapse
Affiliation(s)
- Wen-Ting Guo
- Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
50
|
Goody D, Pfeifer A. MicroRNAs in brown and beige fat. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:29-36. [DOI: 10.1016/j.bbalip.2018.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/05/2018] [Accepted: 05/04/2018] [Indexed: 12/27/2022]
|