1
|
Rodriguez-Calvo T, Laiho JE, Oikarinen M, Akhbari P, Flaxman C, Worthington T, Apaolaza P, Kaddis JS, Kusmartseva I, Tauriainen S, Campbell-Thompson M, Atkinson MA, von Herrath M, Hyöty H, Morgan NG, Pugliese A, Richardson SJ. Enterovirus VP1 protein and HLA class I hyperexpression in pancreatic islet cells of organ donors with type 1 diabetes. Diabetologia 2025; 68:1197-1210. [PMID: 40090995 PMCID: PMC12069150 DOI: 10.1007/s00125-025-06384-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/19/2024] [Indexed: 03/19/2025]
Abstract
AIMS/HYPOTHESIS Earlier studies of pancreases from donors with type 1 diabetes demonstrated enteroviral capsid protein VP1 in beta cells. In the context of a multidisciplinary approach undertaken by the nPOD-Virus group, we assessed VP1 positivity in pancreas and other tissues (spleen, duodenum and pancreatic lymph nodes) from 188 organ donors, including donors with type 1 diabetes and donors expressing autoantibody risk markers. We also investigated whether VP1 positivity is linked to the hyperexpression of HLA class I (HLA-I) molecules in islet cells. METHODS Organ donor tissues were collected by the Network for Pancreatic Organ Donors with Diabetes (nPOD) from donors without diabetes (ND, n=76), donors expressing a single or multiple diabetes-associated autoantibodies (AAb+, n=20; AAb++, n=9) and donors with type 1 diabetes with residual insulin-containing islets (T1D-ICIs, n=41) or only insulin-deficient islets (T1D-IDIs, n=42). VP1 was assessed using immunohistochemistry (IHC) and HLA-I using IHC and immunofluorescence, in two independent laboratories. We determined assay concordance across laboratories and overall occurrence of positive assays, on a case-by-case basis and between donor groups. RESULTS Islet cell VP1 positivity was detected in most T1D-ICI donors (77.5%) vs only 38.2% of ND donors (p<0.001). VP1 positivity was associated with HLA-I hyperexpression. Of those donors assessed for HLA-I and VP1, 73.7% had both VP1 immunopositivity and HLA-I hyperexpression (p<0.001 vs ND). Moreover, VP1+ cells were detected at higher frequency in donors with HLA-I hyperexpression (p<0.001 vs normal HLA-I). Among VP1+ donors, the proportion with HLA-I hyperexpression was significantly higher in the AAb++ and T1D-ICI groups (94.9%, p<0.001 vs ND); this was not restricted to individuals with recent-onset diabetes. Critically, for all donor groups combined, HLA-I hyperexpression occurred more frequently in VP1+ compared with VP1- donors (45.8% vs 16%, p<0.001). CONCLUSIONS/INTERPRETATION We report the most extensive analysis to date of VP1 and HLA-I in pancreases from donors with preclinical and diagnosed type 1 diabetes. We find an association of VP1 with residual beta cells after diagnosis and demonstrate VP1 positivity during the autoantibody-positive preclinical stage. For the first time, we show that VP1 positivity and HLA-I hyperexpression in islet cells are both present during the preclinical stage. While the study of tissues does not allow us to demonstrate causality, our data support the hypothesis that enterovirus infections may occur throughout the natural history of type 1 diabetes and may be one of multiple mechanisms driving islet cell HLA-I hyperexpression.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.
| | - Jutta E Laiho
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maarit Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pouria Akhbari
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Christine Flaxman
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Thomas Worthington
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Paola Apaolaza
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Matthias von Herrath
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Endocrine, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Noel G Morgan
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Alberto Pugliese
- Department of Diabetes Immunology, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
2
|
Luo W, Zhao M, Gu M, Huang J, Wu S, Zhao B. The role of Tim-3+T cell subsets in the peripheral blood of patients with COVID-19 and diabetes. iScience 2025; 28:112339. [PMID: 40330891 PMCID: PMC12053769 DOI: 10.1016/j.isci.2025.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/03/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Corona Virus Disease 2019 (COVID-19) and diabetes interact to influence disease severity, yet their combined immunological characteristics remain unclear. Here, we analyzed Tim-3+ T cells in patients with COVID-19, Type 1 Diabetes (T1D), or both conditions. COVID-19 reduced peripheral T cell subsets but increased Tim-3+ cells, while T1D and COVID-19 with T1D showed the opposite pattern. Patients with Type 2 Diabetes (T2D) exhibited no significant alterations. In human samples and mouse models, Tim-3+ T cells demonstrated impaired activation and cytokine production. RNA-seq analysis in mice and RT-PCR analysis in human samples together identified the dysregulation of the JAK-STAT pathway in Tim-3+ T cells. These findings highlight Tim-3-mediated JAK-STAT dysregulation in T-cells as a potential mechanism linking COVID-19 and T1D, offering insights for therapeutic targeting.
Collapse
Affiliation(s)
- Wenjun Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, China
- CSU-Sinocare Research Center for Nutrition and Metabolic Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, China
- CSU-Sinocare Research Center for Nutrition and Metabolic Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Mengyao Gu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, China
- CSU-Sinocare Research Center for Nutrition and Metabolic Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Shiyao Wu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Dermatology and Immunology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, China
- CSU-Sinocare Research Center for Nutrition and Metabolic Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Syed F, Ballew O, Lee CC, Rana J, Krishnan P, Castela A, Weaver SA, Chalasani NS, Thomaidou SF, Demine S, Chang G, Coomans de Brachène A, Alvelos MI, Vazquez EM, Marselli L, Orr K, Felton JL, Liu J, Kaddis JS, Marchetti P, Zaldumbide A, Scheuner D, Eizirik DL, Evans-Molina C. Pharmacological inhibition of tyrosine protein-kinase 2 reduces islet inflammation and delays type 1 diabetes onset in mice. EBioMedicine 2025:105734. [PMID: 40335415 DOI: 10.1016/j.ebiom.2025.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/20/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Tyrosine protein-kinase 2 (TYK2) mediates inflammatory signalling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. TYK2 missense mutations protect against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in other autoimmune conditions. METHODS We evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D, including human β cells, cadaveric islets, iPSC-derived islets, and mouse models. FINDINGS In vitro studies showed that TYK2is prevented IFNα-induced β cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of β cells with TYK2i prevented IFNα-induced antigenic peptide presentation and alloreactive and autoreactive T cell degranulation. In vivo administration of BMS-986202 in two mouse models of T1D (RIP-LCMV-GP and NOD mice) reduced systemic and tissue-localised inflammation, prevented β cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes, and spleen highlighted a role for TYK2 inhibition in modulating signalling pathways associated with inflammation, translational control, stress signalling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues. INTERPRETATION These findings indicate that TYK2i has beneficial effects on both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2is in human T1D. FUNDING This work was supported by the National Institutes of Health (NIH), Veteran Affairs (VA), Breakthrough T1D, and gifts from the Sigma Beta Sorority, the Ball Brothers Foundation, and the George and Frances Ball Foundation.
Collapse
Affiliation(s)
- Farooq Syed
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Diabetes-Immunology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Olivia Ballew
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Chih-Chun Lee
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jyoti Rana
- Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Preethi Krishnan
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Staci A Weaver
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Sofia F Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
| | - Stephane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University Indianapolis, Indianapolis, IN, USA
| | | | - Maria Ines Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Eugenia Martin Vazquez
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Kara Orr
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jamie L Felton
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
| | | | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.
| | - Carmella Evans-Molina
- Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Rendell M. Pharmacotherapy of type 1 diabetes - part 2 Today. Expert Opin Pharmacother 2025; 26:719-730. [PMID: 40082213 DOI: 10.1080/14656566.2025.2479598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION In the 100 years since isolation and administration of animal insulin to sustain life in Type 1 diabetes, there has been increasing progress in the administration of exogenous insulin to lower glucose levels. AREAS COVERED We reviewed using standard search engines and PubMed present-day techniques of management of type 1 diabetes. EXPERT OPINION Long-acting insulin formulations have been developed to maintain basal glucose levels in the normal range, while rapid acting insulins have been synthesized to address the sharp rise in glucose levels after a meal. Insulin pumps administer insulin continuously subcutaneously guided by continuous glucose monitoring systems. These almost closed loop systems achieve near normal glucose levels other than at meal times where the rapid glucose rise and then fall pose a significant challenge due to the extended duration of subcutaneous insulin depots. Implanted insulin pumps with intraperitoneal delivery may eventually permit improved post meal glucose control. Type 1 diabetes has now been redefined as an autoimmune disease which may be diagnosed purely from the presence of anti-beta cell antibodies with no abnormality of glucose levels. The future will see an intensification of efforts to combat the immune process which destroys beta cells.
Collapse
Affiliation(s)
- Marc Rendell
- The Association of Diabetes Investigators, Omaha, NE, USA
- The Rose Salter Medica Research Foundation, Newport Coast, CA, USA
| |
Collapse
|
5
|
Park Y, Ko KS, Rhee BD. New Perspectives in Studying Type 1 Diabetes Susceptibility Biomarkers. Int J Mol Sci 2025; 26:3249. [PMID: 40244115 PMCID: PMC11989529 DOI: 10.3390/ijms26073249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Type 1 diabetes (T1D) is generally viewed as an etiologic subtype of diabetes caused by the autoimmune destruction of the insulin-secreting β-cells. It has been known that autoreactive T cells unfortunately destroy healthy β-cells. However, there has been a notion of etiologic heterogeneity around the world implicating a varying incidence of a non-autoimmune subgroup of T1D related to insulin deficiency associated with decreased β cell mass, in which the β-cell is the key contributor to the disease. Beta cell dysfunction, reduced mass, and apoptosis may lead to insufficient insulin secretion and ultimately to the development of T1D. Interestingly, Korean as well as other ethnic genetic results have also suggested that genes related with insulin deficiency, let alone those of immune regulation, were associated with the risk of T1D in the young. Genes related with insulin secretion may influence the phenotype of diabetes differentially and different genes may be working on different steps of T1D development. Although we admit the consensus that islet autoimmunity is an essential component in the pathogenesis of T1D, however, dysfunction might occur not only in the immune system but also in the β-cells, the defect of which may induce further dysfunction of the immune system. These arguments stem from the fact that the β-cell might be the trigger of an autoimmune response. This emergent view has many parallels with the fact that by their nature and function, β-cells are prone to biosynthetic stress with limited measures for self-defense. Beta cell stress may induce an immune attack that has considerable negative effects on the production of a vital hormone, insulin. If then, both β-cell stress and islet autoimmunity can be harnessed as targets for intervention strategies. This also may explain why immunotherapy at best delays the progression of T1D and suggests the use of alternative therapies to expand β-cells, in combination with immune intervention strategies, to reverse the disease. Future research should extend to further investigate β-cell biology, in addition to studies of immunologic areas, to find appropriate biomarkers of T1D susceptibility. This will help to decipher β-cell characteristics and the factors regulating their function to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul 01757, Republic of Korea; (K.S.K.); (B.D.R.)
| | | | | |
Collapse
|
6
|
Liu J, He MQ, Guan GP, Wan XX, Jin P. ISG15 increases the apoptosis of β cells in type 1 diabetes. Cell Signal 2025; 127:111592. [PMID: 39765279 DOI: 10.1016/j.cellsig.2025.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/15/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia caused by the destruction of insulin-producing β cells. Viral infection is an important environmental factor which is associated with the islet autoimmunity in genetically susceptible individuals. Loss of β-cells and triggering of insulitis following viral infection could result from several non-exclusive mechanisms. Despite a significant increase in ISG15 levels following viral infection, the specific role of ISG15 in the impairment of insulin-producing β-cells is unclear. To address this issue at the clinical level, we conducted this experimental work, and found elevated levels of ISG15 in the peripheral blood of T1D patients, suggesting a potential link between ISG15 and T1D. In the T1D animal model, we discovered that both ISG15 levels and cellular apoptosis were increased in pancreatic islet tissue. To investigate at the cellular level, we cultured MIN6 cells in the presence of supernatants derived from iBMDM cells transfected with poly(I:C) (PIC), a viral mimic. This exposure led to an upregulation of ISG15 expression in MIN6 cells, which was accompanied by the suppression of their functional capabilities and viability. Intriguingly, the direct transfection of MIN6 cells with PIC increased the expression of ISG15. We further found that elevated levels of ISG15 had a direct inhibitory effect on insulin secretion and it also contributed to β-cell apoptosis in a TNF-α-dependent manner. In conclusion, our study revealed a potential underlying mechanism through which ISG15 increases the apoptosis of β-cells, providing valuable insights that could facilitate the development of T1D treatment strategies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China
| | - Mei-Qi He
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China
| | - Gao-Peng Guan
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China
| | - Xin-Xing Wan
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China
| | - Ping Jin
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China.
| |
Collapse
|
7
|
Arowosegbe A, Guo Z, Vanderleeden E, Derr AG, Wang JP. Janus kinase inhibition prevents autoimmune diabetes in LEW.1WR1 rats. J Autoimmun 2025; 151:103358. [PMID: 39823736 DOI: 10.1016/j.jaut.2025.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/11/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
Numerous studies highlight the essential role of type I interferon (IFN) responses in type 1 diabetes. The absence of type I IFN signaling is associated with a partial reduction of autoimmune diabetes incidence in LEW.1WR1 rats. We sought to delineate type I IFN-independent mechanisms that drive diabetes using type I IFN α/β receptor (IFNAR) knockout rats. Rats were treated with polyinosinic:polycytidylic acid plus Kilham rat virus to induce diabetes. Single-cell RNA-sequencing of islets and cytokine measurements in blood and spleen from prediabetic Ifnar1-/- rats were employed to identify factors driving insulitis in the global absence of IFNAR signaling. Islet immune cells were enriched for Ccl4, Ccl5, and Ifng. In addition, interleukin-1 (IL-1) was increased in spleen, and IFN-γ was increased in serum from prediabetic Ifnar1-/- rats. Based on these findings, rats were treated with a C-C chemokine receptor type 5 inhibitor, an IL-1 receptor antagonist, or a nucleotide-binding oligomerization domain-like receptor family pyrin-domain containing 3 inhibitor, none of which prevented diabetes. The Janus kinase inhibitor ruxolitinib, which blocks both type I and II interferon-driven signaling, completely prevented diabetes, but only when given for a sustained period starting from the time of induction. The tyrosine kinase 2 inhibitor deucravacitinib also prevented diabetes to a significant degree. We conclude that type I and II IFNs act in concert as the main drivers of autoimmune diabetes and that inhibition of downstream signaling events for both is required for disease prevention.
Collapse
Affiliation(s)
- Adediwura Arowosegbe
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA
| | - Zhiru Guo
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA
| | - Emma Vanderleeden
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA
| | - Alan G Derr
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA
| | - Jennifer P Wang
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA.
| |
Collapse
|
8
|
Yang B, Chu L, Feng F, Lu S, Xue C. Association of tyrosine kinase 2 polymorphisms with susceptibility to microscopic polyangiitis in a Guangxi population. PeerJ 2024; 12:e18735. [PMID: 39726748 PMCID: PMC11670758 DOI: 10.7717/peerj.18735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Heredity and epigenetics affect the pathogenesis of microscopic polyangiitis (MPA). Tyrosine kinase 2 (TYK2) polymorphisms (rs2304256C > A, rs280519A > G, and rs12720270G > A) may be potential protective factors against anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Current research suggests that TYK2 is associated with various autoimmune diseases; however, no study has examined the relationship between TYK2 polymorphisms and AAV. This study assessed the effect of TYK2 polymorphisms on susceptibility to MPA. Methods Overall, 562 Chinese participants (265 patients with MPA and 297 healthy volunteers) were recruited. Polymerase chain reactions combined with high-throughput sequencing were used to analyze polymorphic loci, while logistic regression analysis was used to assess the relationship between polymorphism of the TYK2 gene and MPA susceptibility. Results In males, individuals with the CA genotype (rs2304256) in the overdominant model showed a significantly reduced risk of MPA (odds ratio (OR) = 0.52; 95% confidence interval (CI) [0.29-0.93]; p = 0.025). Regarding rs280519, male carriers of the AG genotype had a significantly lower risk of developing MPA in both the codominant (OR = 0.51; 95% CI [0.28-0.93]; p = 0.039) and overdominant (OR = 0.48; 95% CI [0.27-0.86]; p = 0.013) models. The GA genotype of rs12720270 was associated with low susceptibility to MPA in males (OR = 0.52; 95% CI [0.29-0.93]; p = 0.027). Conclusions This study indicates that mutations in the TYK2 gene (rs2304256, rs280519, and rs12720270) may be associated with a reduced risk of MPA in the male Chinese population in Guangxi. The A allele of single nucleotide polymorphism (SNP) rs2304256 may be a protective factor against MPA, while the G alleles of SNPs rs280519 and rs12720270 are protective factors against MPA.
Collapse
Affiliation(s)
- Binglan Yang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liepeng Chu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Feng
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shurong Lu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Spagnolo P, Tweddell D, Cela E, Daley M, Clarson C, Rupar CA, Stranges S, Bravo M, Cepinskas G, Fraser DD. Metabolomic signature of pediatric diabetic ketoacidosis: key metabolites, pathways, and panels linked to clinical variables. Mol Med 2024; 30:250. [PMID: 39707182 DOI: 10.1186/s10020-024-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes (T1D), arising from relative insulin deficiency and leading to hyperglycemia, ketonemia, and metabolic acidosis. Early detection and treatment are essential to prevent severe outcomes. This pediatric case-control study utilized plasma metabolomics to explore metabolic alterations associated with DKA and to identify predictive metabolite patterns. METHODS We examined 34 T1D participants, including 17 patients admitted with severe DKA and 17 age- and sex-matched individuals in insulin-controlled states. A total of 215 plasma metabolites were analyzed using proton nuclear magnetic resonance and direct-injection liquid chromatography/mass spectrometry. Multivariate statistical methods, machine learning techniques, and bioinformatics were employed for data analysis. RESULTS After adjusting for multiple comparisons, 65 metabolites were found to differ significantly between the groups (28 increased and 37 decreased). Metabolomics profiling demonstrated 100% accuracy in differentiating severe DKA from insulin-controlled states. Random forest analysis indicated that classification accuracy was primarily influenced by changes in ketone bodies, acylcarnitines, and phosphatidylcholines. Additionally, groups of metabolites (ranging in number from 8 to 18) correlated with key clinical and biochemical variables, including pH, bicarbonate, glucose, HbA1c, and Glasgow Coma Scale scores. CONCLUSIONS These findings underscore significant metabolic disturbances in severe DKA and their associations with critical clinical indicators. Future investigations should explore if metabolic alterations in severe DKA can identify patients at increased risk of complications and/or guide future therapeutic interventions.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128, Rome, Italy
| | - David Tweddell
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | - Enis Cela
- Physiology & Pharmacology, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Computer Science, Western University, London, ON, N6A 3K7, Canada
- Epidemiology and Biostatistics, Western University, London, ON, N6G 2M1, Canada
| | - Cheril Clarson
- Pediatrics, Western University, London, ON, N6A 3K7, Canada
| | - C Anthony Rupar
- Pediatrics, Western University, London, ON, N6A 3K7, Canada
- Biochemistry, Western University, London, ON, N6A 3K7, Canada
| | - Saverio Stranges
- Epidemiology and Biostatistics, Western University, London, ON, N6G 2M1, Canada
- Family Medicine, Western University, London, ON, N6G 2M1, Canada
- Clinical Medicine and Surgery, University of Naples Federico II, Naples, 80131, Italy
- Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Michael Bravo
- Emergency Department, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Gediminas Cepinskas
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
- Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada
- London Health Sciences Centre Research Institute, London, ON, N6C 2R5, Canada
| | - Douglas D Fraser
- Physiology & Pharmacology, Western University, London, ON, N6A 3K7, Canada.
- Pediatrics, Western University, London, ON, N6A 3K7, Canada.
- London Health Sciences Centre Research Institute, London, ON, N6C 2R5, Canada.
- Clinical Neurological Sciences, Western University, London, ON, N6A 3K7, Canada.
- Child Health Research Institute, London, ON, N6C 4V3, Canada.
- A5-132, Victoria Research Laboratories, London Health Sciences Centre, Victoria Campus, 800 Commissioners Road E, London, ON, N6A 5W9, Canada.
| |
Collapse
|
10
|
Robertson CC, Elgamal RM, Henry-Kanarek BA, Arvan P, Chen S, Dhawan S, Eizirik DL, Kaddis JS, Vahedi G, Parker SCJ, Gaulton KJ, Soleimanpour SA. Untangling the genetics of beta cell dysfunction and death in type 1 diabetes. Mol Metab 2024; 86:101973. [PMID: 38914291 PMCID: PMC11283044 DOI: 10.1016/j.molmet.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex multi-system disease which arises from both environmental and genetic factors, resulting in the destruction of insulin-producing pancreatic beta cells. Over the past two decades, human genetic studies have provided new insight into the etiology of T1D, including an appreciation for the role of beta cells in their own demise. SCOPE OF REVIEW Here, we outline models supported by human genetic data for the role of beta cell dysfunction and death in T1D. We highlight the importance of strong evidence linking T1D genetic associations to bona fide candidate genes for mechanistic and therapeutic consideration. To guide rigorous interpretation of genetic associations, we describe molecular profiling approaches, genomic resources, and disease models that may be used to construct variant-to-gene links and to investigate candidate genes and their role in T1D. MAJOR CONCLUSIONS We profile advances in understanding the genetic causes of beta cell dysfunction and death at individual T1D risk loci. We discuss how genetic risk prediction models can be used to address disease heterogeneity. Further, we present areas where investment will be critical for the future use of genetics to address open questions in the development of new treatment and prevention strategies for T1D.
Collapse
Affiliation(s)
- Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ruth M Elgamal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Belle A Henry-Kanarek
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Peter Arvan
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA; Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Scott A Soleimanpour
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Jeremiah SS, Moin ASM, Butler AE. Virus-induced diabetes mellitus: revisiting infection etiology in light of SARS-CoV-2. Metabolism 2024; 156:155917. [PMID: 38642828 DOI: 10.1016/j.metabol.2024.155917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Diabetes mellitus (DM) is comprised of two predominant subtypes: type 1 diabetes mellitus (T1DM), accounting for approximately 5 % of cases worldwide and resulting from autoimmune destruction of insulin-producing β-cells, and type 2 (T2DM), accounting for approximately 95 % of cases globally and characterized by the inability of pancreatic β-cells to meet the demand for insulin due to a relative β-cell deficit in the setting of peripheral insulin resistance. Both types of DM involve derangement of glucose metabolism and are metabolic diseases generally considered to be initiated by a combination of genetic and environmental factors. Viruses have been reported to play a role as infectious etiological factors in the initiation of both types of DM in predisposed individuals. Among the reported viral infections causing DM in humans, the most studied include coxsackie B virus, cytomegalovirus and hepatitis C virus. The recent COVID-19 pandemic has highlighted the diabetogenic potential of SARS-CoV-2, rekindling interest in the field of virus-induced diabetes (VID). This review discusses the reported mechanisms of viral-induced DM, addressing emerging concepts in VID, as well as highlighting areas where knowledge is lacking, and further investigation is warranted.
Collapse
Affiliation(s)
| | - Abu Saleh Md Moin
- Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Kingdom of Bahrain.
| | - Alexandra E Butler
- Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Kingdom of Bahrain.
| |
Collapse
|
12
|
Pakha DN, Yudhani RD, Irham LM. Investigation of missense mutation-related type 1 diabetes mellitus through integrating genomic databases and bioinformatic approach. Genomics Inform 2024; 22:8. [PMID: 38926794 PMCID: PMC11201337 DOI: 10.1186/s44342-024-00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/03/2024] [Indexed: 06/28/2024] Open
Abstract
Though genes are already known to be responsible for type 1 diabetes mellitus (T1DM), the knowledge of missense mutation of that disease gene has still to be under covered. A genomic database and a bioinformatics-based approach are integrated in the present study in order to address this issue. Initially, nine variants associated with T1DM were retrieved from the GWAS catalogue. Different genomic algorithms such as PolyPhen2.0, SNPs and GTEx analyser programs were used to study the structural and functional effects of these mutations. Subsequently, SNPnexus was also employed to understand the effect of these mutations on the function of the expressed protein. Nine missense variants of T1DM were identified using the GWAS catalogue database. Among these nine SNPs, three were predicted to be related to the progression of T1DM disease by affecting the protein level. TYK2 gene variants with SNP rs34536443 were thought to have a probably damaging effect. Meanwhile, both COL4A3 and IFIH1 genes with SNPs rs55703767 and rs35667974, respectively, might alter protein function through a possibly damaging prediction. Among the variants of the three genes, the TYK2 gene with SNP rs34536443 had the strongest contribution in affecting the development of T1DM, with a score of 0.999. We sincerely hope that the results could be of immense importance in understanding the genetic basis of T1DM.
Collapse
Affiliation(s)
- Dyonisa Nasirochmi Pakha
- Department of Pharmacology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
| | - Ratih Dewi Yudhani
- Department of Pharmacology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, 57126, Indonesia.
| | | |
Collapse
|
13
|
Herold KC, Delong T, Perdigoto AL, Biru N, Brusko TM, Walker LSK. The immunology of type 1 diabetes. Nat Rev Immunol 2024; 24:435-451. [PMID: 38308004 PMCID: PMC7616056 DOI: 10.1038/s41577-023-00985-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/04/2024]
Abstract
Following the seminal discovery of insulin a century ago, treatment of individuals with type 1 diabetes (T1D) has been largely restricted to efforts to monitor and treat metabolic glucose dysregulation. The recent regulatory approval of the first immunotherapy that targets T cells as a means to delay the autoimmune destruction of pancreatic β-cells highlights the critical role of the immune system in disease pathogenesis and tends to pave the way for other immune-targeted interventions for T1D. Improving the efficacy of such interventions across the natural history of the disease will probably require a more detailed understanding of the immunobiology of T1D, as well as technologies to monitor residual β-cell mass and function. Here we provide an overview of the immune mechanisms that underpin the pathogenesis of T1D, with a particular emphasis on T cells.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Thomas Delong
- Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Ana Luisa Perdigoto
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Internal Medicine, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Noah Biru
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, University College London, London, UK.
- Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
14
|
Chen M, Fang Y, Ge Y, Qiu S, Dworkin L, Gong R. The redox-sensitive GSK3β is a key regulator of glomerular podocyte injury in type 2 diabetic kidney disease. Redox Biol 2024; 72:103127. [PMID: 38527400 PMCID: PMC10979123 DOI: 10.1016/j.redox.2024.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Emerging evidence suggests that GSK3β, a redox-sensitive transducer downstream of insulin signaling, acts as a convergent point for myriad pathways implicated in kidney injury, repair, and regeneration. However, its role in diabetic kidney disease remains controversial. In cultured glomerular podocytes, exposure to a milieu of type 2 diabetes elicited prominent signs of podocyte injury and degeneration, marked by loss of homeostatic marker proteins like synaptopodin, actin cytoskeleton disruption, oxidative stress, apoptosis, and stress-induced premature senescence, as shown by increased staining for senescence-associated β-galactosidase activity, amplified formation of γH2AX foci, and elevated expression of mediators of senescence signaling, like p21 and p16INK4A. These degenerative changes coincided with GSK3β hyperactivity, as evidenced by GSK3β overexpression and reduced inhibitory phosphorylation of GSK3β, and were averted by tideglusib, a highly-selective small molecule inhibitor of GSK3β. In agreement, post-hoc analysis of a publicly-available glomerular transcriptomics dataset from patients with type 2 diabetic nephropathy revealed that the curated diabetic nephropathy-related gene set was enriched in high GSK3β expression group. Mechanistically, GSK3β-modulated nuclear factor Nrf2 signaling is involved in diabetic podocytopathy, because GSK3β knockdown reinforced Nrf2 antioxidant response and suppressed oxidative stress, resulting in an improvement in podocyte injury and senescence. Conversely, ectopic expression of the constitutively active mutant of GSK3β impaired Nrf2 antioxidant response and augmented oxidative stress, culminating in an exacerbated diabetic podocyte injury and senescence. Moreover, IRS-1 was found to be a cognate substrate of GSK3β for phosphorylation at IRS-1S332, which negatively regulates IRS-1 activity. GSK3β hyperactivity promoted IRS-1 phosphorylation, denoting a desensitized insulin signaling. Consistently, in vivo in db/db mice with diabetic nephropathy, GSK3β was hyperactive in glomerular podocytes, associated with IRS-1 hyperphosphorylation, impaired Nrf2 response and premature senescence. Our finding suggests that GSK3β is likely a novel therapeutic target for treating type 2 diabetic glomerular injury.
Collapse
Affiliation(s)
- Mengxuan Chen
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Yudong Fang
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Yan Ge
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Shuhao Qiu
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Lance Dworkin
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA; Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, OH, USA.
| |
Collapse
|
15
|
Syed F, Ballew O, Lee CC, Rana J, Krishnan P, Castela A, Weaver SA, Chalasani NS, Thomaidou SF, Demine S, Chang G, Coomans de Brachène A, Alvelos MI, Marselli L, Orr K, Felton JL, Liu J, Marchetti P, Zaldumbide A, Scheuner D, Eizirik DL, Evans-Molina C. Pharmacological inhibition of tyrosine protein-kinase 2 reduces islet inflammation and delays type 1 diabetes onset in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585925. [PMID: 38766166 PMCID: PMC11100605 DOI: 10.1101/2024.03.20.585925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Tyrosine protein-kinase 2 (TYK2), a member of the Janus kinase family, mediates inflammatory signaling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. Missense mutations in TYK2 are associated with protection against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in the management of other autoimmune conditions. Here, we evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D. First, human β cells, cadaveric donor islets, and iPSC-derived islets were treated in vitro with IFNα in combination with a small molecule TYK2i (BMS-986165 or a related molecule BMS-986202). TYK2 inhibition prevented IFNα-induced β cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of β cells with a TYK2i prevented IFNα-induced activation of T cells targeting an epitope of insulin. In vivo administration of BMS-986202 in two mouse models of T1D (RIP-LCMV-GP mice and NOD mice) reduced systemic and tissue-localized inflammation, prevented β cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes (PLN), and spleen during early disease pathogenesis highlighted a role for TYK2 inhibition in modulating signaling pathways associated with inflammation, translational control, stress signaling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues, resulting in an immune phenotype with a diminished capacity for β cell destruction. Overall, these findings indicate that TYK2i has beneficial effects in both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2 inhibitors in human T1D.
Collapse
Affiliation(s)
- Farooq Syed
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Olivia Ballew
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Chih-Chun Lee
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jyoti Rana
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Preethi Krishnan
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Staci A. Weaver
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Sofia F. Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | - Stephane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - Maria Ines Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Kara Orr
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jamie L. Felton
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | | | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Carmella Evans-Molina
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
16
|
Wang Y, Li K, Mo S, Yao P, Zeng J, Lu S, Qin S. Identification of common genes and pathways between type 2 diabetes and COVID-19. Front Genet 2024; 15:1249501. [PMID: 38699234 PMCID: PMC11063347 DOI: 10.3389/fgene.2024.1249501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Numerous studies have reported a high incidence and risk of severe illness due to coronavirus disease 2019 (COVID-19) in patients with type 2 diabetes (T2DM). COVID-19 patients may experience elevated or decreased blood sugar levels and may even develop diabetes. However, the molecular mechanisms linking these two diseases remain unclear. This study aimed to identify the common genes and pathways between T2DM and COVID-19. METHODS Two public datasets from the Gene Expression Omnibus (GEO) database (GSE95849 and GSE164805) were analyzed to identify differentially expressed genes (DEGs) in blood between people with and without T2DM and COVID-19. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the common DEGs. A protein-protein interaction (PPI) network was constructed to identify common genes, and their diagnostic performance was evaluated by receiver operating characteristic (ROC) curve analysis. Validation was performed on the GSE213313 and GSE15932 datasets. A gene co-expression network was constructed using the GeneMANIA database to explore interactions among core DEGs and their co-expressed genes. Finally, a microRNA (miRNA)-transcription factor (TF)-messenger RNA (mRNA) regulatory network was constructed based on the common feature genes. RESULTS In the GSE95849 and GSE164805 datasets, 81 upregulated genes and 140 downregulated genes were identified. GO and KEGG enrichment analyses revealed that these DEGs were closely related to the negative regulation of phosphate metabolic processes, the positive regulation of mitotic nuclear division, T-cell co-stimulation, and lymphocyte co-stimulation. Four upregulated common genes (DHX15, USP14, COPS3, TYK2) and one downregulated common feature gene (RIOK2) were identified and showed good diagnostic accuracy for T2DM and COVID-19. The AUC values of DHX15, USP14, COPS3, TYK2, and RIOK2 in T2DM diagnosis were 0.931, 0.917, 0.986, 0.903, and 0.917, respectively. In COVID-19 diagnosis, the AUC values were 0.960, 0.860, 1.0, 0.9, and 0.90, respectively. Validation in the GSE213313 and GSE15932 datasets confirmed these results. The miRNA-TF-mRNA regulatory network showed that TYH2 was targeted by PITX1, PITX2, CRX, NFYA, SREBF1, RELB, NR1L2, and CEBP, whereas miR-124-3p regulates THK2, RIOK2, and USP14. CONCLUSION We identified five common feature genes (DHX15, USP14, COPS3, TYK2, and RIOK2) and their co-regulatory pathways between T2DM and COVID-19, which may provide new insights for further molecular mechanism studies.
Collapse
Affiliation(s)
- Ya Wang
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Endocrinology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Kai Li
- Orthopedics Department, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Shuangyang Mo
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Peishan Yao
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiaxing Zeng
- Department of Traumatic Surgery, Microsurgery, and Hand Surgery, Guangxi Zhuang Autonomous Region People’s Hospital, Nanning, Guangxi, China
| | - Shunyu Lu
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shanyu Qin
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Mu X, Liu SJ, Zheng LY, Ouyang C, Abdalla AME, Wang XX, Chen K, Yang FF, Meng N. The long coiled-coil protein NECC2 regulates oxLDL-induced endothelial oxidative damage and exacerbates atherosclerosis development in apolipoprotein E -/- mice. Free Radic Biol Med 2024; 216:106-117. [PMID: 38461872 DOI: 10.1016/j.freeradbiomed.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
Oxidized low density lipoprotein (oxLDL)-induced endothelial oxidative damage promotes the development of atherosclerosis. Caveolae play an essential role in maintaining the survival and function of vascular endothelial cell (VEC). It is reported that the long coiled-coil protein NECC2 is localized in caveolae and is associated with neural cell differentiation and adipocyte formation, but its role in VECs needs to be clarified. Our results showed NECC2 expression increased in the endothelium of plaque-loaded aortas and oxLDL-treated HUVECs. Down-regulation of NECC2 by NECC2 siRNA or compound YF-307 significantly inhibited oxLDL-induced VEC apoptosis and the adhesion factors expression. Remarkably, inhibition of NECC2 expression in the endothelium of apoE-/- mice by adeno-associated virus (AAV)-carrying NECC2 shRNA or compound YF-307 alleviated endothelium injury and restricted atherosclerosis development. The immunoprecipitation results confirmed that NECC2 interacted with Tyk2 and caveolin-1(Cav-1) in VECs, and NECC2 further promoted the phosphorylation of Cav-1 at Tyr14 b y activating Tyk2 phosphorylation. On the other hand, inhibiting NECC2 levels suppressed oxLDL-induced phosphorylation of Cav-1, uptake of oxLDL by VECs, accumulation of intracellular reactive oxygen species and activation of NF-κB. Our findings suggest that NECC2 may contribute to oxLDL-induced VEC injury and atherosclerosis via modulating Cav-1 phosphorylation through Tyk2. This work provides a new concept and drug target for treating atherosclerosis.
Collapse
Affiliation(s)
- Xin Mu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China; The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shangdong, 252000, China
| | - Shu-Jun Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Lei-Yin Zheng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ahmed M E Abdalla
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xin-Xin Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Kai Chen
- New Drug Evaluation Center, Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China; Shandong Innovation Center of Engineered Bacteriophage Therapeutics, Jinan, China.
| | - Fei-Fei Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
18
|
Mine K, Nagafuchi S, Akazawa S, Abiru N, Mori H, Kurisaki H, Shimoda K, Yoshikai Y, Takahashi H, Anzai K. TYK2 signaling promotes the development of autoreactive CD8 + cytotoxic T lymphocytes and type 1 diabetes. Nat Commun 2024; 15:1337. [PMID: 38351043 PMCID: PMC10864272 DOI: 10.1038/s41467-024-45573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Tyrosine kinase 2 (TYK2), a member of the JAK family, has attracted attention as a potential therapeutic target for autoimmune diseases. However, the role of TYK2 in CD8+ T cells and autoimmune type 1 diabetes (T1D) is poorly understood. In this study, we generate Tyk2 gene knockout non-obese diabetes (NOD) mice and demonstrate that the loss of Tyk2 inhibits the development of autoreactive CD8+ T-BET+ cytotoxic T lymphocytes (CTLs) by impairing IL-12 signaling in CD8+ T cells and the CD8+ resident dendritic cell-driven cross-priming of CTLs in the pancreatic lymph node (PLN). Tyk2-deficient CTLs display reduced cytotoxicity. Increased inflammatory responses in β-cells with aging are dampened by Tyk2 deficiency. Furthermore, treatment with BMS-986165, a selective TYK2 inhibitor, inhibits the expansion of T-BET+ CTLs, inflammation in β-cells and the onset of autoimmune T1D in NOD mice. Thus, our study reveals the diverse roles of TYK2 in driving the pathogenesis of T1D.
Collapse
Affiliation(s)
- Keiichiro Mine
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Seiho Nagafuchi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Satoru Akazawa
- Department of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Midori Clinic, Nagasaki, Japan
| | - Hitoe Mori
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Hironori Kurisaki
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
- Liver Center, Saga University Hospital, Saga University, Saga, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
19
|
Minniakhmetov I, Yalaev B, Khusainova R, Bondarenko E, Melnichenko G, Dedov I, Mokrysheva N. Genetic and Epigenetic Aspects of Type 1 Diabetes Mellitus: Modern View on the Problem. Biomedicines 2024; 12:399. [PMID: 38398001 PMCID: PMC10886892 DOI: 10.3390/biomedicines12020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Omics technologies accumulated an enormous amount of data that advanced knowledge about the molecular pathogenesis of type 1 diabetes mellitus and identified a number of fundamental problems focused on the transition to personalized diabetology in the future. Among them, the most significant are the following: (1) clinical and genetic heterogeneity of type 1 diabetes mellitus; (2) the prognostic significance of DNA markers beyond the HLA genes; (3) assessment of the contribution of a large number of DNA markers to the polygenic risk of disease progress; (4) the existence of ethnic population differences in the distribution of frequencies of risk alleles and genotypes; (5) the infancy of epigenetic research into type 1 diabetes mellitus. Disclosure of these issues is one of the priorities of fundamental diabetology and practical healthcare. The purpose of this review is the systemization of the results of modern molecular genetic, transcriptomic, and epigenetic investigations of type 1 diabetes mellitus in general, as well as its individual forms. The paper summarizes data on the role of risk HLA haplotypes and a number of other candidate genes and loci, identified through genome-wide association studies, in the development of this disease and in alterations in T cell signaling. In addition, this review assesses the contribution of differential DNA methylation and the role of microRNAs in the formation of the molecular pathogenesis of type 1 diabetes mellitus, as well as discusses the most currently central trends in the context of early diagnosis of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Ildar Minniakhmetov
- Endocrinology Research Centre, Dmitry Ulyanov Street, 11, 117292 Moscow, Russia; (R.K.); (E.B.); (G.M.); (I.D.); (N.M.)
| | - Bulat Yalaev
- Endocrinology Research Centre, Dmitry Ulyanov Street, 11, 117292 Moscow, Russia; (R.K.); (E.B.); (G.M.); (I.D.); (N.M.)
| | | | | | | | | | | |
Collapse
|
20
|
Du SS, Fang YQ, Zhang W, Rao GW. Targeting TYK2 for Fighting Diseases: Recent Advance of TYK2 Inhibitors. Curr Med Chem 2024; 31:2900-2920. [PMID: 38904160 DOI: 10.2174/0929867330666230324163414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/03/2023] [Accepted: 02/03/2023] [Indexed: 06/22/2024]
Abstract
TYK2 (tyrosine-protein kinase 2) is a non-receptor protein kinase belonging to the JAK family and is closely associated with various diseases, such as psoriasis, inflammatory bowel disease, systemic lupus erythematosus. TYK2 activates the downstream proteins STAT1-5 by participating in the signal transduction of immune factors such as IL-12, IL-23, and IL-10, resulting in immune expression. The activity of the inhibitor TYK2 can effectively block the transduction of excessive immune signals and treat diseases. TYK2 inhibitors are divided into two types of inhibitors according to the different binding sites. One is a TYK2 inhibitor that binds to JH2 and inhibits its activity through an allosteric mechanism. The representative inhibitor is BMS-986165, developed by Bristol-Myers Squibb. The other class binds to the JH1 adenosine triphosphate (ATP) site and prevents the catalytic activity of the kinase by blocking ATP and downstream phosphorylation. This paper mainly introduces the protein structure, signaling pathway, synthesis, structure-activity relationship and clinical research of TYK2 inhibitors.
Collapse
Affiliation(s)
- Si-Shi Du
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Qing Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
21
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
22
|
Caldara R, Tomajer V, Monti P, Sordi V, Citro A, Chimienti R, Gremizzi C, Catarinella D, Tentori S, Paloschi V, Melzi R, Mercalli A, Nano R, Magistretti P, Partelli S, Piemonti L. Allo Beta Cell transplantation: specific features, unanswered questions, and immunological challenge. Front Immunol 2023; 14:1323439. [PMID: 38077372 PMCID: PMC10701551 DOI: 10.3389/fimmu.2023.1323439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Type 1 diabetes (T1D) presents a persistent medical challenge, demanding innovative strategies for sustained glycemic control and enhanced patient well-being. Beta cells are specialized cells in the pancreas that produce insulin, a hormone that regulates blood sugar levels. When beta cells are damaged or destroyed, insulin production decreases, which leads to T1D. Allo Beta Cell Transplantation has emerged as a promising therapeutic avenue, with the goal of reinstating glucose regulation and insulin production in T1D patients. However, the path to success in this approach is fraught with complex immunological hurdles that demand rigorous exploration and resolution for enduring therapeutic efficacy. This exploration focuses on the distinct immunological characteristics inherent to Allo Beta Cell Transplantation. An understanding of these unique challenges is pivotal for the development of effective therapeutic interventions. The critical role of glucose regulation and insulin in immune activation is emphasized, with an emphasis on the intricate interplay between beta cells and immune cells. The transplantation site, particularly the liver, is examined in depth, highlighting its relevance in the context of complex immunological issues. Scrutiny extends to recipient and donor matching, including the utilization of multiple islet donors, while also considering the potential risk of autoimmune recurrence. Moreover, unanswered questions and persistent gaps in knowledge within the field are identified. These include the absence of robust evidence supporting immunosuppression treatments, the need for reliable methods to assess rejection and treatment protocols, the lack of validated biomarkers for monitoring beta cell loss, and the imperative need for improved beta cell imaging techniques. In addition, attention is drawn to emerging directions and transformative strategies in the field. This encompasses alternative immunosuppressive regimens and calcineurin-free immunoprotocols, as well as a reevaluation of induction therapy and recipient preconditioning methods. Innovative approaches targeting autoimmune recurrence, such as CAR Tregs and TCR Tregs, are explored, along with the potential of stem stealth cells, tissue engineering, and encapsulation to overcome the risk of graft rejection. In summary, this review provides a comprehensive overview of the inherent immunological obstacles associated with Allo Beta Cell Transplantation. It offers valuable insights into emerging strategies and directions that hold great promise for advancing the field and ultimately improving outcomes for individuals living with diabetes.
Collapse
Affiliation(s)
- Rossana Caldara
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valentina Tomajer
- Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Monti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raniero Chimienti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Gremizzi
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Davide Catarinella
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Tentori
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vera Paloschi
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raffella Melzi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Mercalli
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rita Nano
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Magistretti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Partelli
- Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
23
|
Russell MA, Richardson SJ, Morgan NG. The role of the interferon/JAK-STAT axis in driving islet HLA-I hyperexpression in type 1 diabetes. Front Endocrinol (Lausanne) 2023; 14:1270325. [PMID: 37867531 PMCID: PMC10588626 DOI: 10.3389/fendo.2023.1270325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
The hyperexpression of human leukocyte antigen class I (HLA-I) molecules on pancreatic beta-cells is widely accepted as a hallmark feature of type 1 diabetes pathogenesis. This response is important clinically since it may increase the visibility of beta-cells to autoreactive CD8+ T-cells, thereby accelerating disease progression. In this review, key factors which drive HLA-I hyperexpression will be explored, and their clinical significance examined. It is established that the presence of residual beta-cells is essential for HLA-I hyperexpression by islet cells at all stages of the disease. We suggest that the most likely drivers of this process are interferons released from beta-cells (type I or III interferon; possibly in response to viral infection) or those elaborated from influent, autoreactive immune cells (type II interferon). In both cases, Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathways will be activated to induce the downstream expression of interferon stimulated genes. A variety of models have highlighted that HLA-I expression is enhanced in beta-cells in response to interferons, and that STAT1, STAT2 and interferon regulatory factor 9 (IRF9) play key roles in mediating these effects (depending on the species of interferon involved). Importantly, STAT1 expression is elevated in the beta-cells of donors with recent-onset type I diabetes, and this correlates with HLA-I hyperexpression on an islet-by-islet basis. These responses can be replicated in vitro, and we consider that chronically elevated STAT1 may have a role in maintaining HLA-I hyperexpression. However, other data have highlighted that STAT2-IRF9 may also be critical to this process. Thus, a better understanding of how these factors regulate HLA-I under chronically stimulated conditions needs to be gathered. Finally, JAK inhibitors can target interferon signaling pathways to diminish HLA-I expression in mouse models. It seems probable that these agents may also be effective in patients; diminishing HLA-I hyperexpression on islets, reducing the visibility of beta-cells to the immune system and ultimately slowing disease progression. The first clinical trials of selective JAK inhibitors are underway, and the outcomes should have important implications for type 1 diabetes clinical management.
Collapse
Affiliation(s)
- Mark A. Russell
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, United Kingdom
| | | | | |
Collapse
|
24
|
Dos Santos RS, Guzman-Llorens D, Perez-Serna AA, Nadal A, Marroqui L. Deucravacitinib, a tyrosine kinase 2 pseudokinase inhibitor, protects human EndoC-βH1 β-cells against proinflammatory insults. Front Immunol 2023; 14:1263926. [PMID: 37854597 PMCID: PMC10579912 DOI: 10.3389/fimmu.2023.1263926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Type 1 diabetes is characterized by pancreatic islet inflammation and autoimmune-driven pancreatic β-cell destruction. Interferon-α (IFNα) is a key player in early human type 1 diabetes pathogenesis. IFNα activates the tyrosine kinase 2 (TYK2)-signal transducer and activator of transcription (STAT) pathway, leading to inflammation, HLA class I overexpression, endoplasmic reticulum (ER) stress, and β-cell apoptosis (in synergy with IL-1β). As TYK2 inhibition has raised as a potential therapeutic target for the prevention or treatment of type 1 diabetes, we investigated whether the selective TYK2 inhibitor deucravacitinib could protect β-cells from the effects of IFNα and other proinflammatory cytokines (i.e., IFNγ and IL-1β). Methods All experiments were performed in the human EndoC-βH1 β-cell line. HLA class I expression, inflammation, and ER stress were evaluated by real-time PCR, immunoblotting, and/or immunofluorescence. Apoptosis was assessed by the DNA-binding dyes Hoechst 33342 and propidium iodide or caspase 3/7 activity. The promoter activity was assessed by luciferase assay. Results Deucravacitinib prevented IFNα effects, such as STAT1 and STAT2 activation and MHC class I hyperexpression, in a dose-dependent manner without affecting β-cell survival and function. A comparison between deucravacitinib and two Janus kinase inhibitors, ruxolitinib and baricitinib, showed that deucravacitinib blocked IFNα- but not IFNγ-induced signaling pathway. Deucravacitinib protected β-cells from the effects of two different combinations of cytokines: IFNα + IL-1β and IFNγ + IL-1β. Moreover, this TYK2 inhibitor could partially reduce apoptosis and inflammation in cells pre-treated with IFNα + IL-1β or IFNγ + IL-1β. Discussion Our findings suggest that, by protecting β-cells against the deleterious effects of proinflammatory cytokines without affecting β-cell function and survival, deucravacitinib could be repurposed for the prevention or treatment of early type 1 diabetes.
Collapse
Affiliation(s)
- Reinaldo S. Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Guzman-Llorens
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Atenea A. Perez-Serna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
González‐Moro I, Garcia‐Etxebarria K, Mendoza LM, Fernández‐Jiménez N, Mentxaka J, Olazagoitia‐Garmendia A, Arroyo MN, Sawatani T, Moreno‐Castro C, Vinci C, Op de Beek A, Cnop M, Igoillo‐Esteve M, Santin I. LncRNA ARGI Contributes to Virus-Induced Pancreatic β Cell Inflammation Through Transcriptional Activation of IFN-Stimulated Genes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300063. [PMID: 37382191 PMCID: PMC10477904 DOI: 10.1002/advs.202300063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disease that develops in genetically susceptible individuals. Most T1D-associated single nucleotide polymorphisms (SNPs) are located in non-coding regions of the human genome. Interestingly, SNPs in long non-coding RNAs (lncRNAs) may result in the disruption of their secondary structure, affecting their function, and in turn, the expression of potentially pathogenic pathways. In the present work, the function of a virus-induced T1D-associated lncRNA named ARGI (Antiviral Response Gene Inducer) is characterized. Upon a viral insult, ARGI is upregulated in the nuclei of pancreatic β cells and binds to CTCF to interact with the promoter and enhancer regions of IFNβ and interferon-stimulated genes, promoting their transcriptional activation in an allele-specific manner. The presence of the T1D risk allele in ARGI induces a change in its secondary structure. Interestingly, the T1D risk genotype induces hyperactivation of type I IFN response in pancreatic β cells, an expression signature that is present in the pancreas of T1D patients. These data shed light on the molecular mechanisms by which T1D-related SNPs in lncRNAs influence pathogenesis at the pancreatic β cell level and opens the door for the development of therapeutic strategies based on lncRNA modulation to delay or avoid pancreatic β cell inflammation in T1D.
Collapse
Affiliation(s)
- Itziar González‐Moro
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
| | - Koldo Garcia‐Etxebarria
- Biodonostia Health Research InstituteGastrointestinal Genetics GroupSan Sebastián20014Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Barcelona08036Spain
| | - Luis Manuel Mendoza
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
| | - Nora Fernández‐Jiménez
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
- Department of GeneticsPhysical Anthropology and Animal PhysiologyUniversity of the Basque CountryLeioa48940Spain
| | - Jon Mentxaka
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
| | - Ane Olazagoitia‐Garmendia
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
| | - María Nicol Arroyo
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
| | | | - Chiara Vinci
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
| | - Anne Op de Beek
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
| | - Miriam Cnop
- ULB Center for Diabetes ResearchUniversité Libre de BruxellesBrussels1070Belgium
- Division of EndocrinologyErasmus HospitalUniversité Libre de BruxellesBrussels1070Belgium
| | | | - Izortze Santin
- Department of Biochemistry and Molecular BiologyUniversity of the Basque CountryLeioa48940Spain
- Biocruces Bizkaia Health Research InstituteBarakaldo48903Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadrid28029Spain
| |
Collapse
|
26
|
Quattrin T, Mastrandrea LD, Walker LSK. Type 1 diabetes. Lancet 2023; 401:2149-2162. [PMID: 37030316 DOI: 10.1016/s0140-6736(23)00223-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/03/2022] [Accepted: 01/26/2023] [Indexed: 04/10/2023]
Abstract
Type 1 diabetes is a chronic disease caused by autoimmune destruction of pancreatic β cells. Individuals with type 1 diabetes are reliant on insulin for survival. Despite enhanced knowledge related to the pathophysiology of the disease, including interactions between genetic, immune, and environmental contributions, and major strides in treatment and management, disease burden remains high. Studies aimed at blocking the immune attack on β cells in people at risk or individuals with very early onset type 1 diabetes show promise in preserving endogenous insulin production. This Seminar will review the field of type 1 diabetes, highlighting recent progress within the past 5 years, challenges to clinical care, and future directions in research, including strategies to prevent, manage, and cure the disease.
Collapse
Affiliation(s)
- Teresa Quattrin
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Diabetes Center, John R Oishei Children's Hospital, Buffalo, NY, USA.
| | - Lucy D Mastrandrea
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Diabetes Center, John R Oishei Children's Hospital, Buffalo, NY, USA
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
27
|
Limanaqi F, Vicentini C, Saulle I, Clerici M, Biasin M. The role of endoplasmic reticulum aminopeptidases in type 1 diabetes mellitus. Life Sci 2023; 323:121701. [PMID: 37059356 DOI: 10.1016/j.lfs.2023.121701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type-I diabetes mellitus (T1DM) is generally considered as a chronic, T-cell mediated autoimmune disease. This notwithstanding, both the endogenous characteristics of β-cells, and their response to environmental factors and exogenous inflammatory stimuli are key events in disease progression and exacerbation. As such, T1DM is now recognized as a multifactorial condition, with its onset being influenced by both genetic predisposition and environmental factors, among which, viral infections represent major triggers. In this frame, endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) hold center stage. ERAPs represent the main hydrolytic enzymes specialized in trimming of N-terminal antigen peptides to be bound by MHC class I molecules and presented to CD8+ T cells. Thus, abnormalities in ERAPs expression alter the peptide-MHC-I repertoire both quantitatively and qualitatively, fostering both autoimmune and infectious diseases. Although only a few studies succeeded in determining direct associations between ERAPs variants and T1DM susceptibility/outbreak, alterations of ERAPs do impinge on a plethora of biological events which might indeed contribute to the disease development/exacerbation. Beyond abnormal self-antigen peptide trimming, these include preproinsulin processing, nitric oxide (NO) production, ER stress, cytokine responsiveness, and immune cell recruitment/activity. The present review brings together direct and indirect evidence focused on the immunobiological role of ERAPs in T1DM onset and progression, covering both genetic and environmental aspects.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy.
| |
Collapse
|
28
|
Perez-Serna AA, Dos Santos RS, Ripoll C, Nadal A, Eizirik DL, Marroqui L. BCL-XL Overexpression Protects Pancreatic β-Cells against Cytokine- and Palmitate-Induced Apoptosis. Int J Mol Sci 2023; 24:5657. [PMID: 36982731 PMCID: PMC10056015 DOI: 10.3390/ijms24065657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes is a chronic disease that affects glucose metabolism, either by autoimmune-driven β-cell loss or by the progressive loss of β-cell function, due to continued metabolic stresses. Although both α- and β-cells are exposed to the same stressors, such as proinflammatory cytokines and saturated free fatty acids (e.g., palmitate), only α-cells survive. We previously reported that the abundant expression of BCL-XL, an anti-apoptotic member of the BCL-2 family of proteins, is part of the α-cell defense mechanism against palmitate-induced cell death. Here, we investigated whether BCL-XL overexpression could protect β-cells against the apoptosis induced by proinflammatory and metabolic insults. For this purpose, BCL-XL was overexpressed in two β-cell lines-namely, rat insulinoma-derived INS-1E and human insulin-producing EndoC-βH1 cells-using adenoviral vectors. We observed that the BCL-XL overexpression in INS-1E cells was slightly reduced in intracellular Ca2+ responses and glucose-stimulated insulin secretion, whereas these effects were not observed in the human EndoC-βH1 cells. In INS-1E cells, BCL-XL overexpression partially decreased cytokine- and palmitate-induced β-cell apoptosis (around 40% protection). On the other hand, the overexpression of BCL-XL markedly protected EndoC-βH1 cells against the apoptosis triggered by these insults (>80% protection). Analysis of the expression of endoplasmic reticulum (ER) stress markers suggests that resistance to the cytokine and palmitate conferred by BCL-XL overexpression might be, at least in part, due to the alleviation of ER stress. Altogether, our data indicate that BCL-XL plays a dual role in β-cells, participating both in cellular processes related to β-cell physiology and in fostering survival against pro-apoptotic insults.
Collapse
Affiliation(s)
- Atenea A. Perez-Serna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Reinaldo S. Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Cristina Ripoll
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| |
Collapse
|
29
|
Mousa M, Albarguthi S, Albreiki M, Farooq Z, Sajid S, El Hajj Chehadeh S, ElBait GD, Tay G, Deeb AA, Alsafar H. Whole-Exome Sequencing in Family Trios Reveals De Novo Mutations Associated with Type 1 Diabetes Mellitus. BIOLOGY 2023; 12:biology12030413. [PMID: 36979105 PMCID: PMC10044903 DOI: 10.3390/biology12030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterized by insulin deficiency and loss of pancreatic islet β-cells. The objective of this study is to identify de novo mutations in 13 trios from singleton families that contribute to the genetic basis of T1DM through the application of whole-exome sequencing (WES). Of the 13 families sampled for this project, 12 had de novo variants, with Family 7 having the highest number (nine) of variants linked to T1DM/autoimmune pathways, whilst Family 4 did not have any variants past the filtering steps. There were 10 variants of 7 genes reportedly associated with T1DM (MST1; TDG; TYRO3; IFIHI; GLIS3; VEGFA; TYK2). There were 20 variants of 13 genes that were linked to endocrine, metabolic, or autoimmune diseases. Our findings demonstrate that trio-based WES is a powerful approach for identifying new candidate genes for the pathogenesis of T1D. Genotyping and functional annotation of the discovered de novo variants in a large cohort is recommended to ascertain their association with disease pathogenesis.
Collapse
Affiliation(s)
- Mira Mousa
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Sara Albarguthi
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Mohammed Albreiki
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Zenab Farooq
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Sameeha Sajid
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Sarah El Hajj Chehadeh
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Gihan Daw ElBait
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Guan Tay
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Asma Al Deeb
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Endocrinology, Mafraq Hospital, Abu Dhabi 127788, United Arab Emirates
| | - Habiba Alsafar
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
30
|
Dieter C, de Almeida Brondani L, Lemos NE, Schaeffer AF, Zanotto C, Ramos DT, Girardi E, Pellenz FM, Camargo JL, Moresco KS, da Silva LL, Aubin MR, de Oliveira MS, Rech TH, Canani LH, Gerchman F, Leitão CB, Crispim D. Polymorphisms in ACE1, TMPRSS2, IFIH1, IFNAR2, and TYK2 Genes Are Associated with Worse Clinical Outcomes in COVID-19. Genes (Basel) 2022; 14:genes14010029. [PMID: 36672770 PMCID: PMC9858252 DOI: 10.3390/genes14010029] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022] Open
Abstract
Although advanced age, male sex, and some comorbidities impact the clinical course of COVID-19, these factors only partially explain the inter-individual variability in disease severity. Some studies have shown that genetic polymorphisms contribute to COVID-19 severity; however, the results are inconclusive. Thus, we investigated the association between polymorphisms in ACE1, ACE2, DPP9, IFIH1, IFNAR2, IFNL4, TLR3, TMPRSS2, and TYK2 and the clinical course of COVID-19. A total of 694 patients with COVID-19 were categorized as: (1) ward inpatients (moderate symptoms) or patients admitted at the intensive care unit (ICU; severe symptoms); and (2) survivors or non-survivors. In females, the rs1990760/IFIH1 T/T genotype was associated with risk of ICU admission and death. Moreover, the rs1799752/ACE1 Ins and rs12329760/TMPRSS2 T alleles were associated with risk of ICU admission. In non-white patients, the rs2236757/IFNAR2 A/A genotype was associated with risk of ICU admission, while the rs1799752/ACE1 Ins/Ins genotype, rs2236757/IFNAR2 A/A genotype, and rs12329760/TMPRSS2 T allele were associated with risk of death. Moreover, some of the analyzed polymorphisms interact in the risk of worse COVID-19 outcomes. In conclusion, this study shows an association of rs1799752/ACE1, rs1990760/IFIH1, rs2236757/IFNAR2, rs12329760/TMPRSS2, and rs2304256/TYK2 polymorphisms with worse COVID-19 outcomes, especially among female and non-white patients.
Collapse
Affiliation(s)
- Cristine Dieter
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Leticia de Almeida Brondani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Natália Emerim Lemos
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Ariell Freires Schaeffer
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Caroline Zanotto
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Denise Taurino Ramos
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Eliandra Girardi
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Felipe Mateus Pellenz
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Joiza Lins Camargo
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Karla Suzana Moresco
- Campus Realeza, Universidade Federal da Fronteira Sul, Realeza 85770-000, PR, Brazil
| | - Lucas Lima da Silva
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Mariana Rauback Aubin
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Mayara Souza de Oliveira
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Tatiana Helena Rech
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Luís Henrique Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Fernando Gerchman
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Cristiane Bauermann Leitão
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Correspondence:
| |
Collapse
|
31
|
The type 1 diabetes gene TYK2 regulates β-cell development and its responses to interferon-α. Nat Commun 2022; 13:6363. [PMID: 36289205 PMCID: PMC9606380 DOI: 10.1038/s41467-022-34069-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that results in the destruction of insulin producing pancreatic β-cells. One of the genes associated with T1D is TYK2, which encodes a Janus kinase with critical roles in type-Ι interferon (IFN-Ι) mediated intracellular signalling. To study the role of TYK2 in β-cell development and response to IFNα, we generated TYK2 knockout human iPSCs and directed them into the pancreatic endocrine lineage. Here we show that loss of TYK2 compromises the emergence of endocrine precursors by regulating KRAS expression, while mature stem cell-islets (SC-islets) function is not affected. In the SC-islets, the loss or inhibition of TYK2 prevents IFNα-induced antigen processing and presentation, including MHC Class Ι and Class ΙΙ expression, enhancing their survival against CD8+ T-cell cytotoxicity. These results identify an unsuspected role for TYK2 in β-cell development and support TYK2 inhibition in adult β-cells as a potent therapeutic target to halt T1D progression.
Collapse
|
32
|
Increased mRNA Levels of ADAM17, IFITM3, and IFNE in Peripheral Blood Cells Are Present in Patients with Obesity and May Predict Severe COVID-19 Evolution. Biomedicines 2022; 10:biomedicines10082007. [PMID: 36009555 PMCID: PMC9406212 DOI: 10.3390/biomedicines10082007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Gene expression patterns in blood cells from SARS-CoV-2 infected individuals with different clinical phenotypes and body mass index (BMI) could help to identify possible early prognosis factors for COVID-19. We recruited patients with COVID-19 admitted in Hospital Universitari Son Espases (HUSE) between March 2020 and November 2021, and control subjects. Peripheral blood cells (PBCs) and plasma samples were obtained on hospital admission. Gene expression of candidate transcriptomic biomarkers in PBCs were compared based on the patients’ clinical status (mild, severe and critical) and BMI range (normal weight, overweight, and obesity). mRNA levels of ADAM17, IFITM3, IL6, CXCL10, CXCL11, IFNG and TYK2 were increased in PBCs of COVID-19 patients (n = 73) compared with controls (n = 47), independently of sex. Increased expression of IFNE was observed in the male patients only. PBC mRNA levels of ADAM17, IFITM3, CXCL11, and CCR2 were higher in those patients that experienced a more serious evolution during hospitalization. ADAM17, IFITM3, IL6 and IFNE were more highly expressed in PBCs of patients with obesity. Interestingly, the expression pattern of ADAM17, IFITM3 and IFNE in PBCs was related to both the severity of COVID-19 evolution and obesity status, especially in the male patients. In conclusion, gene expression in PBCs can be useful for the prognosis of COVID-19 evolution.
Collapse
|
33
|
den Hollander NHM, Roep BO. From Disease and Patient Heterogeneity to Precision Medicine in Type 1 Diabetes. Front Med (Lausanne) 2022; 9:932086. [PMID: 35903316 PMCID: PMC9314738 DOI: 10.3389/fmed.2022.932086] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) remains a devastating disease that requires much effort to control. Life-long daily insulin injections or an insulin pump are required to avoid severe complications. With many factors contributing to disease onset, T1D is a complex disease to cure. In this review, the risk factors, pathophysiology and defect pathways are discussed. Results from (pre)clinical studies are highlighted that explore restoration of insulin production and reduction of autoimmunity. It has become clear that treatment responsiveness depends on certain pathophysiological or genetic characteristics that differ between patients. For instance, age at disease manifestation associated with efficacy of immune intervention therapies, such as depleting islet-specific effector T cells or memory B cells and increasing immune regulation. The new challenge is to determine in whom to apply which intervention strategy. Within patients with high rates of insulitis in early T1D onset, therapy depleting T cells or targeting B lymphocytes may have a benefit, whereas slow progressing T1D in adults may be better served with more sophisticated, precise and specific disease modifying therapies. Genetic barcoding and immune profiling may help determining from which new T1D endotypes patients suffer. Furthermore, progressed T1D needs replenishment of insulin production besides autoimmunity reversal, as too many beta cells are already lost or defect. Recurrent islet autoimmunity and allograft rejection or necrosis seem to be the most challenging obstacles. Since beta cells are highly immunogenic under stress, treatment might be more effective with stress reducing agents such as glucagon-like peptide 1 (GLP-1) analogs. Moreover, genetic editing by CRISPR-Cas9 allows to create hypoimmunogenic beta cells with modified human leukocyte antigen (HLA) expression that secrete immune regulating molecules. Given the differences in T1D between patients, stratification of endotypes in clinical trials seems essential for precision medicines and clinical decision making.
Collapse
Affiliation(s)
- Nicoline H M den Hollander
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands.,Graduate School, Utrecht University, Utrecht, Netherlands
| | - Bart O Roep
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
34
|
Babiloni-Chust I, Dos Santos RS, Medina-Gali RM, Perez-Serna AA, Encinar JA, Martinez-Pinna J, Gustafsson JA, Marroqui L, Nadal A. G protein-coupled estrogen receptor activation by bisphenol-A disrupts the protection from apoptosis conferred by the estrogen receptors ERα and ERβ in pancreatic beta cells. ENVIRONMENT INTERNATIONAL 2022; 164:107250. [PMID: 35461094 DOI: 10.1016/j.envint.2022.107250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
17β-estradiol protects pancreatic β-cells from apoptosis via the estrogen receptors ERα, ERβ and GPER. Conversely, the endocrine disruptor bisphenol-A (BPA), which exerts multiple effects in this cell type via the same estrogen receptors, increased basal apoptosis. The molecular-initiated events that trigger these opposite actions have yet to be identified. We demonstrated that combined genetic downregulation and pharmacological blockade of each estrogen receptor increased apoptosis to a different extent. The increase in apoptosis induced by BPA was diminished by the pharmacological blockade or the genetic silencing of GPER, and it was partially reproduced by the GPER agonist G1. BPA and G1-induced apoptosis were abolished upon pharmacological inhibition, silencing of ERα and ERβ, or in dispersed islet cells from ERβ knockout (BERKO) mice. However, the ERα and ERβ agonists PPT and DPN, respectively, had no effect on beta cell viability. To exert their biological actions, ERα and ERβ form homodimers and heterodimers. Molecular dynamics simulations together with proximity ligand assays and coimmunoprecipitation experiments indicated that the interaction of BPA with ERα and ERβ as well as GPER activation by G1 decreased ERαβ heterodimers. We propose that ERαβ heterodimers play an antiapoptotic role in beta cells and that BPA- and G1-induced decreases in ERαβ heterodimers lead to beta cell apoptosis. Unveiling how different estrogenic chemicals affect the crosstalk among estrogen receptors should help to identify diabetogenic endocrine disruptors.
Collapse
Affiliation(s)
- Ignacio Babiloni-Chust
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Reinaldo S Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Atenea A Perez-Serna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - José-Antonio Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Juan Martinez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Jan-Ake Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
35
|
Thomas S, Ouhtit A, Al Khatib HA, Eid AH, Mathew S, Nasrallah GK, Emara MM, Al Maslamani MA, Yassine HM. Burden and Disease Pathogenesis of Influenza and Other Respiratory Viruses in Diabetic Patients. J Infect Public Health 2022; 15:412-424. [DOI: 10.1016/j.jiph.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
|
36
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by insulin deficiency and resultant hyperglycemia. Complex interactions of genetic and environmental factors trigger the onset of autoimmune mechanisms responsible for development of autoimmunity to β cell antigens and subsequent development of T1D. A potential role of virus infections has long been hypothesized, and growing evidence continues to implicate enteroviruses as the most probable triggering viruses. Recent studies have strengthened the association between enteroviruses and development of autoimmunity in T1D patients, potentially through persistent infections. Enterovirus infections may contribute to different stages of disease development. We review data from both human cohort studies and experimental research exploring the potential roles and molecular mechanisms by which enterovirus infections can impact disease outcome.
Collapse
Affiliation(s)
- Richard E. Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manasi Tamhankar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö 214 28, Sweden
| |
Collapse
|
37
|
Mukherjee N, Lin L, Contreras CJ, Templin AT. β-Cell Death in Diabetes: Past Discoveries, Present Understanding, and Potential Future Advances. Metabolites 2021; 11:796. [PMID: 34822454 PMCID: PMC8620854 DOI: 10.3390/metabo11110796] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
β-cell death is regarded as a major event driving loss of insulin secretion and hyperglycemia in both type 1 and type 2 diabetes mellitus. In this review, we explore past, present, and potential future advances in our understanding of the mechanisms that promote β-cell death in diabetes, with a focus on the primary literature. We first review discoveries of insulin insufficiency, β-cell loss, and β-cell death in human diabetes. We discuss findings in humans and mouse models of diabetes related to autoimmune-associated β-cell loss and the roles of autoreactive T cells, B cells, and the β cell itself in this process. We review discoveries of the molecular mechanisms that underlie β-cell death-inducing stimuli, including proinflammatory cytokines, islet amyloid formation, ER stress, oxidative stress, glucotoxicity, and lipotoxicity. Finally, we explore recent perspectives on β-cell death in diabetes, including: (1) the role of the β cell in its own demise, (2) methods and terminology for identifying diverse mechanisms of β-cell death, and (3) whether non-canonical forms of β-cell death, such as regulated necrosis, contribute to islet inflammation and β-cell loss in diabetes. We believe new perspectives on the mechanisms of β-cell death in diabetes will provide a better understanding of this pathological process and may lead to new therapeutic strategies to protect β cells in the setting of diabetes.
Collapse
Affiliation(s)
- Noyonika Mukherjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Li Lin
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Christopher J. Contreras
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew T. Templin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
38
|
Pellenz FM, Dieter C, Duarte GCK, Canani LH, de Souza BM, Crispim D. The rs2304256 Polymorphism in TYK2 Gene Is Associated with Protection for Type 1 Diabetes Mellitus. Diabetes Metab J 2021; 45:899-908. [PMID: 34225445 PMCID: PMC8640150 DOI: 10.4093/dmj.2020.0194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/04/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Tyrosine kinase 2 (TYK2) is a candidate gene for type 1 diabetes mellitus (T1DM) since it plays an important role in regulating apoptotic and pro-inflammatory pathways in pancreatic β-cells through modulation of the type I interferon signaling pathway. The rs2304256 single nucleotide polymorphism (SNP) in TYK2 gene has been associated with protection for different autoimmune diseases. However, to date, only two studies have evaluated the association between this SNP and T1DM, with discordant results. This study thus aimed to investigate the association between the TYK2 rs2304256 SNP and T1DM in a Southern Brazilian population. METHODS This case-control study comprised 478 patients with T1DM and 518 non-diabetic subjects. The rs2304256 (C/A) SNP was genotyped by real-time polymerase chain reaction technique using TaqMan minor groove binder (MGB) probes. RESULTS Genotype and allele frequencies of the rs2304256 SNP differed between T1DM patients and non-diabetic subjects (P<0.0001 and P=0.001, respectively). Furthermore, the A allele was associated with protection against T1DM under recessive (odds ratio [OR], 0.482; 95% confidence interval [CI], 0.288 to 0.806) and additive (OR, 0.470; 95% CI, 0.278 to 0.794) inheritance models, adjusting for human leukocyte antigen (HLA) DR/DQ genotypes, gender, and ethnicity. CONCLUSION The A/A genotype of TYK2 rs2304256 SNP is associated with protection against T1DM in a Southern Brazilian population.
Collapse
Affiliation(s)
- Felipe Mateus Pellenz
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Faculty of Medicine, Porto Alegre, Brazil
| | - Cristine Dieter
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Faculty of Medicine, Porto Alegre, Brazil
| | - Guilherme Coutinho Kullmann Duarte
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Faculty of Medicine, Porto Alegre, Brazil
| | - Luís Henrique Canani
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Faculty of Medicine, Porto Alegre, Brazil
| | - Bianca Marmontel de Souza
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Faculty of Medicine, Porto Alegre, Brazil
| | - Daisy Crispim
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul, Faculty of Medicine, Porto Alegre, Brazil
- Corresponding author: Daisy Crispim https://orcid.org/0000-0001-5095-9269 Endocrinology Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° Andar, Porto Alegre 90035-003, Brazil E-mail:
| |
Collapse
|
39
|
Toren E, Burnette KS, Banerjee RR, Hunter CS, Tse HM. Partners in Crime: Beta-Cells and Autoimmune Responses Complicit in Type 1 Diabetes Pathogenesis. Front Immunol 2021; 12:756548. [PMID: 34691077 PMCID: PMC8529969 DOI: 10.3389/fimmu.2021.756548] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by autoreactive T cell-mediated destruction of insulin-producing pancreatic beta-cells. Loss of beta-cells leads to insulin insufficiency and hyperglycemia, with patients eventually requiring lifelong insulin therapy to maintain normal glycemic control. Since T1D has been historically defined as a disease of immune system dysregulation, there has been little focus on the state and response of beta-cells and how they may also contribute to their own demise. Major hurdles to identifying a cure for T1D include a limited understanding of disease etiology and how functional and transcriptional beta-cell heterogeneity may be involved in disease progression. Recent studies indicate that the beta-cell response is not simply a passive aspect of T1D pathogenesis, but rather an interplay between the beta-cell and the immune system actively contributing to disease. Here, we comprehensively review the current literature describing beta-cell vulnerability, heterogeneity, and contributions to pathophysiology of T1D, how these responses are influenced by autoimmunity, and describe pathways that can potentially be exploited to delay T1D.
Collapse
Affiliation(s)
- Eliana Toren
- Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - KaLia S. Burnette
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ronadip R. Banerjee
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chad S. Hunter
- Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hubert M. Tse
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
40
|
Borcherding DC, He K, Amin NV, Hirbe AC. TYK2 in Cancer Metastases: Genomic and Proteomic Discovery. Cancers (Basel) 2021; 13:4171. [PMID: 34439323 PMCID: PMC8393599 DOI: 10.3390/cancers13164171] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Advances in genomic analysis and proteomic tools have rapidly expanded identification of biomarkers and molecular targets important to cancer development and metastasis. On an individual basis, personalized medicine approaches allow better characterization of tumors and patient prognosis, leading to more targeted treatments by detection of specific gene mutations, overexpression, or activity. Genomic and proteomic screens by our lab and others have revealed tyrosine kinase 2 (TYK2) as an oncogene promoting progression and metastases of many types of carcinomas, sarcomas, and hematologic cancers. TYK2 is a Janus kinase (JAK) that acts as an intermediary between cytokine receptors and STAT transcription factors. TYK2 signals to stimulate proliferation and metastasis while inhibiting apoptosis of cancer cells. This review focuses on the growing evidence from genomic and proteomic screens, as well as molecular studies that link TYK2 to cancer prevalence, prognosis, and metastasis. In addition, pharmacological inhibition of TYK2 is currently used clinically for autoimmune diseases, and now provides promising treatment modalities as effective therapeutic agents against multiple types of cancer.
Collapse
Affiliation(s)
- Dana C. Borcherding
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.C.B.); (K.H.); (N.V.A.)
| | - Kevin He
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.C.B.); (K.H.); (N.V.A.)
| | - Neha V. Amin
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.C.B.); (K.H.); (N.V.A.)
| | - Angela C. Hirbe
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.C.B.); (K.H.); (N.V.A.)
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
41
|
Bluestone JA, Buckner JH, Herold KC. Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science 2021; 373:510-516. [PMID: 34326232 DOI: 10.1126/science.abh1654] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which T cells attack and destroy the insulin-producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by compromising immune homeostasis. Although the discovery and use of insulin have transformed T1D treatment, insulin therapy does not change the underlying disease or fully prevent complications. Over the past two decades, research has identified multiple immune cell types and soluble factors that destroy insulin-producing β cells. These insights into disease pathogenesis have enabled the development of therapies to prevent and modify T1D. In this review, we highlight the key events that initiate and sustain pancreatic islet inflammation in T1D, the current state of the immunological therapies, and their advantages for the treatment of T1D.
Collapse
Affiliation(s)
- Jeffrey A Bluestone
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, WA, USA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Kevan C Herold
- Department of Immunobiology and Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Abstract
Diabetes mellitus is a disease of dysregulated blood glucose homeostasis. The current pandemic of diabetes is a significant driver of patient morbidity and mortality, as well as a major challenge to healthcare systems worldwide. The global increase in the incidence of diabetes has prompted researchers to focus on the different pathogenic processes responsible for type 1 and type 2 diabetes. Similarly, increased morbidity due to diabetic complications has accelerated research to uncover pathological changes causing these secondary complications. Albuminuria, or protein in the urine, is a well-recognised biomarker and risk factor for renal and cardiovascular disease. Albuminuria is a mediator of pathological abnormalities in diabetes-associated conditions such as nephropathy and atherosclerosis. Clinical screening and diagnosis of diabetic nephropathy is chiefly based on the presence of albuminuria. Given the ease in measuring albuminuria, the potential of using albuminuria as a biomarker of cardiovascular diseases is gaining widespread interest. To assess the benefits of albuminuria as a biomarker, it is important to understand the association between albuminuria and cardiovascular disease. This review examines our current understanding of the pathophysiological mechanisms involved in both forms of diabetes, with specific focus on the link between albuminuria and specific vascular complications of diabetes.
Collapse
Affiliation(s)
- Pappitha Raja
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Alexander P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Northern Ireland Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
43
|
Pellenz FM, Dieter C, Lemos NE, Bauer AC, Souza BMD, Crispim D. Association of TYK2 polymorphisms with autoimmune diseases: A comprehensive and updated systematic review with meta-analysis. Genet Mol Biol 2021; 44:e20200425. [PMID: 33949620 PMCID: PMC8097517 DOI: 10.1590/1678-4685-gmb-2020-0425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/05/2022] Open
Abstract
Autoimmune diseases are characterized by the loss of self-tolerance, leading to
immune-mediated tissue destruction and chronic inflammation. Tyrosine kinase 2
(TYK2) protein plays a key role in immunity and apoptosis pathways. Studies have
reported associations between single nucleotide polymorphisms (SNPs) in the
TYK2 gene and autoimmune diseases; however, results are
still inconclusive. Thus, we conducted a systematic review followed by
meta-analysis. A literature search was performed to find studies that
investigated associations between TYK2 SNPs and autoimmune
diseases (multiple sclerosis, systemic lupus erythematosus, Crohn’s disease,
ulcerative colitis, psoriasis, rheumatoid arthritis, type 1 diabetes, and
inflammatory bowel disease). Pooled odds ratios (OR) with 95 % CI were
calculated using random (REM) or fixed (FEM) effects models in the Stata 11.0
Software. Thirty-four articles were eligible for inclusion in the meta-analyses,
comprising 9 different SNPs: rs280496, rs280500, rs280523, rs280519, rs2304256,
rs12720270, rs12720356, rs34536443, and rs35018800. Meta-analysis results showed
the minor alleles of rs2304256, rs12720270, rs12720356, rs34536443, and
rs35018800 SNPs were associated with protection against autoimmune diseases.
Moreover, the A allele of the rs280519 SNP was associated with risk for systemic
lupus erythematosus. Our meta-analyses demonstrated that the rs2304256,
rs12720270, rs12720356, rs34536443, rs35018800, and rs280519 SNPs in the
TYK2 gene are associated with different autoimmune
diseases.
Collapse
Affiliation(s)
- Felipe Mateus Pellenz
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| | - Cristine Dieter
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| | - Natália Emerim Lemos
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| | - Andrea Carla Bauer
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Serviço de Nefrologia, Porto Alegre, RS, Brazil
| | - Bianca Marmontel de Souza
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| |
Collapse
|
44
|
Shapiro MR, Thirawatananond P, Peters L, Sharp RC, Ogundare S, Posgai AL, Perry DJ, Brusko TM. De-coding genetic risk variants in type 1 diabetes. Immunol Cell Biol 2021; 99:496-508. [PMID: 33483996 PMCID: PMC8119379 DOI: 10.1111/imcb.12438] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
The conceptual basis for a genetic predisposition underlying the risk for developing type 1 diabetes (T1D) predates modern human molecular genetics. Over half of the genetic risk has been attributed to the human leukocyte antigen (HLA) class II gene region and to the insulin (INS) gene locus - both thought to confer direction of autoreactivity and tissue specificity. Notwithstanding, questions still remain regarding the functional contributions of a vast array of minor polygenic risk variants scattered throughout the genome that likely influence disease heterogeneity and clinical outcomes. Herein, we summarize the available literature related to the T1D-associated coding variants defined at the time of this review, for the genes PTPN22, IFIH1, SH2B3, CD226, TYK2, FUT2, SIRPG, CTLA4, CTSH and UBASH3A. Data from genotype-selected human cohorts are summarized, and studies from the non-obese diabetic (NOD) mouse are presented to describe the functional impact of these variants in relation to innate and adaptive immunity as well as to β-cell fragility, with expression profiles in tissues and peripheral blood highlighted. The contribution of each variant to progression through T1D staging, including environmental interactions, are discussed with consideration of how their respective protein products may serve as attractive targets for precision medicine-based therapeutics to prevent or suspend the development of T1D.
Collapse
Affiliation(s)
- Melanie R Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Puchong Thirawatananond
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Leeana Peters
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Robert C Sharp
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Similoluwa Ogundare
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
45
|
Coomans de Brachène A, Castela A, Musuaya AE, Marselli L, Marchetti P, Eizirik DL. Endogenous mitochondrial double-stranded RNA is not an activator of the type I interferon response in human pancreatic beta cells. AUTOIMMUNITY HIGHLIGHTS 2021; 12:6. [PMID: 33773604 PMCID: PMC8005246 DOI: 10.1186/s13317-021-00148-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/02/2021] [Indexed: 11/30/2022]
Abstract
Background Type 1 diabetes (T1D) is an autoimmune disease characterized by the progressive destruction of pancreatic beta cells. Interferon-α (IFNα), an antiviral cytokine, is expressed in the pancreatic islets in early T1D, which may be secondary to viral infections. However, not all patients harboring a type I IFN signature present signals of viral infection, suggesting that this response might be initiated by other “danger signals”. Accumulation of mitochondrial double-stranded RNA (mtdsRNA; a danger signal), secondary to silencing of members of the mitochondrial degradosome, PNPT1 and SUV3, has been described to activate the innate immune response. Methods To evaluate whether mtdsRNA represents a “danger signal” for pancreatic beta cells in the context of T1D, we silenced PNPT1 and/or SUV3 in slowly proliferating human insulin-secreting EndoC-βH1 cells and in non-proliferating primary human beta cells and evaluated dsRNA accumulation by immunofluorescence and the type I IFN response by western blotting and RT-qPCR. Results Only the simultaneous silencing of PNPT1/SUV3 induced dsRNA accumulation in EndoC-βH1 cells but not in dispersed human islets, and there was no induction of a type I IFN response. By contrast, silencing of these two genes individually was enough to induce dsRNA accumulation in fibroblasts present in the human islet preparations. Conclusions These data suggest that accumulation of endogenous mtdsRNA following degradosome knockdown depends on the proliferative capacity of the cells and is not a mediator of the type I IFN response in human pancreatic beta cells.
Collapse
Affiliation(s)
- Alexandra Coomans de Brachène
- ULB Center for Diabetes Research, Medical Faculty, Campus Erasme, Université Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium.
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Campus Erasme, Université Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Anyïshai E Musuaya
- ULB Center for Diabetes Research, Medical Faculty, Campus Erasme, Université Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Campus Erasme, Université Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium.,Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
46
|
Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:1-80. [PMID: 33832648 DOI: 10.1016/bs.ircmb.2021.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic β-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic β-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in β-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in β-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and β-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.
Collapse
|
47
|
Battaglia M, Buckner JH, Levings MK, Richardson SJ, Wong FS, Tree TI. Identifying the 'Achilles heel' of type 1 diabetes. Clin Exp Immunol 2021; 204:167-178. [PMID: 33368173 DOI: 10.1111/cei.13570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
When Thetis dipped her son Achilles into the River Styx to make him immortal, she held him by the heel, which was not submerged, and thus created a weak spot that proved deadly for Achilles. Millennia later, Achilles heel is part of today's lexicon meaning an area of weakness or a vulnerable spot that causes failure. Also implied is that an Achilles heel is often missed, forgotten or under-appreciated until it is under attack, and then failure is fatal. Paris killed Achilles with an arrow 'guided by the Gods'. Understanding the pathogenesis of type 1 diabetes (T1D) in order to direct therapy for prevention and treatment is a major goal of research into T1D. At the International Congress of the Immunology of Diabetes Society, 2018, five leading experts were asked to present the case for a particular cell/element that could represent 'the Achilles heel of T1D'. These included neutrophils, B cells, CD8+ T cells, regulatory CD4+ T cells, and enteroviruses, all of which have been proposed to play an important role in the pathogenesis of type 1 diabetes. Did a single entity emerge as 'the' Achilles heel of T1D? The arguments are summarized here, to make this case.
Collapse
Affiliation(s)
- M Battaglia
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - J H Buckner
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - M K Levings
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - S J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - F S Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - T I Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences (SIMS), King's College London, London, UK.,NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
48
|
Cosentino C, Regazzi R. Crosstalk between Macrophages and Pancreatic β-Cells in Islet Development, Homeostasis and Disease. Int J Mol Sci 2021; 22:ijms22041765. [PMID: 33578952 PMCID: PMC7916718 DOI: 10.3390/ijms22041765] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/29/2022] Open
Abstract
Macrophages are highly heterogeneous and plastic immune cells with peculiar characteristics dependent on their origin and microenvironment. Following pathogen infection or damage, circulating monocytes can be recruited in different tissues where they differentiate into macrophages. Stimuli present in the surrounding milieu induce the polarisation of macrophages towards a pro-inflammatory or anti-inflammatory profile, mediating inflammatory or homeostatic responses, respectively. However, macrophages can also derive from embryonic hematopoietic precursors and reside in specific tissues, actively participating in the development and the homeostasis in physiological conditions. Pancreatic islet resident macrophages are present from the prenatal stages onwards and show specific surface markers and functions. They localise in close proximity to β-cells, being exquisite sensors of their secretory ability and viability. Over the years, the crucial role of macrophages in β-cell differentiation and homeostasis has been highlighted. In addition, macrophages are emerging as central players in the initiation of autoimmune insulitis in type 1 diabetes and in the low-grade chronic inflammation characteristic of obesity and type 2 diabetes pathogenesis. The present work reviews the current knowledge in the field, with a particular focus on the mechanisms of communication between β-cells and macrophages that have been described so far.
Collapse
Affiliation(s)
- Cristina Cosentino
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland;
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland;
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, CH-1005 Lausanne, Switzerland
- Correspondence: ; Tel.: +41-21-692-52-80; Fax: +41-21-692-52-55
| |
Collapse
|
49
|
Fløyel T, Meyerovich K, Prause MC, Kaur S, Frørup C, Mortensen HB, Nielsen LB, Pociot F, Cardozo AK, Størling J. SKAP2, a Candidate Gene for Type 1 Diabetes, Regulates β-Cell Apoptosis and Glycemic Control in Newly Diagnosed Patients. Diabetes 2021; 70:464-476. [PMID: 33203694 PMCID: PMC7881866 DOI: 10.2337/db20-0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/10/2020] [Indexed: 01/27/2023]
Abstract
The single nucleotide polymorphism rs7804356 located in the Src kinase-associated phosphoprotein 2 (SKAP2) gene is associated with type 1 diabetes (T1D), suggesting SKAP2 as a causal candidate gene. The objective of the study was to investigate if SKAP2 has a functional role in the β-cells in relation to T1D. In a cohort of children with newly diagnosed T1D, rs7804356 predicted glycemic control and residual β-cell function during the 1st year after diagnosis. In INS-1E cells and rat and human islets, proinflammatory cytokines reduced the content of SKAP2. Functional studies revealed that knockdown of SKAP2 aggravated cytokine-induced apoptosis in INS-1E cells and primary rat β-cells, suggesting an antiapoptotic function of SKAP2. In support of this, overexpression of SKAP2 afforded protection against cytokine-induced apoptosis, which correlated with reduced nuclear content of S536-phosphorylated nuclear factor-κB (NF-κB) subunit p65, lower nitric oxide production, and diminished CHOP expression indicative of decreased endoplasmic reticulum stress. Knockdown of CHOP partially counteracted the increase in cytokine-induced apoptosis caused by SKAP2 knockdown. In conclusion, our results suggest that SKAP2 controls β-cell sensitivity to cytokines possibly by affecting the NF-κB-inducible nitric oxide synthase-endoplasmic reticulum stress pathway.
Collapse
Affiliation(s)
- Tina Fløyel
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Kira Meyerovich
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Michala C Prause
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Caroline Frørup
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Henrik B Mortensen
- Department of Pediatrics E, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lotte B Nielsen
- Department of Pediatrics E, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alessandra K Cardozo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Joachim Størling
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Ramos-Rodríguez M, Pérez-González B, Pasquali L. The β-Cell Genomic Landscape in T1D: Implications for Disease Pathogenesis. Curr Diab Rep 2021; 21:1. [PMID: 33387073 PMCID: PMC7778620 DOI: 10.1007/s11892-020-01370-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) develops as a consequence of a combination of genetic predisposition and environmental factors. Combined, these events trigger an autoimmune disease that results in progressive loss of pancreatic β cells, leading to insulin deficiency. This article reviews the current knowledge on the genetics of T1D with a specific focus on genetic variation in pancreatic islet regulatory networks and its implication to T1D risk and disease development. RECENT FINDINGS Accumulating evidence suggest an active role of β cells in T1D pathogenesis. Based on such observation several studies aimed in mapping T1D risk variants acting at the β cell level. Such studies unravel T1D risk loci shared with type 2 diabetes (T2D) and T1D risk variants potentially interfering with β-cell responses to external stimuli. The characterization of regulatory genomics maps of disease-relevant states and cell types can be used to elucidate the mechanistic role of β cells in the pathogenesis of T1D.
Collapse
Affiliation(s)
- Mireia Ramos-Rodríguez
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Beatriz Pérez-González
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Lorenzo Pasquali
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|