1
|
Pala K, Sun KX, Krogvold L, Dahl-Jørgensen K, Reddy S. Distribution of glutathione peroxidase-1 immunoreactive cells in pancreatic islets from type 1 diabetic donors and non-diabetic donors with and without islet cell autoantibodies is variable and independent of disease. Cell Tissue Res 2025; 400:255-271. [PMID: 40059238 DOI: 10.1007/s00441-025-03955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
During type 1 diabetes (T1D), oxidative stress in beta cells may cause early beta cell dysfunction and initiate autoimmunity. Mouse islets express lower levels of reactive oxygen species (ROS) clearing enzymes, such as glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase than several other tissues. It remains unclear if human beta cells show a similar deficiency during T1D or exhibit a higher degree of intrinsic resistance to oxidative stress. We compared islet cell distributions and determined graded intensities of glutathione peroxidase1 (GPX1), a key enzymatic mediator involved in detoxifying hydrogen peroxide, by applying combined immunohistochemistry for GPX1, insulin and glucagon, in pancreatic sections from new-onset T1D (group 1), non-diabetic autoantibody-negative (group 2), non-diabetic autoantibody-positive (group 3) and long-term diabetic (group 4) donors. Islets from all study groups demonstrated either uniform but graded staining intensities for GPX1 in almost all islet cells or strong staining in selective islet cells with weaker intensities in the remaining cells. GPX1 was present in selective glucagon cells and insulin cells, including in cells negative for both hormones, with stronger intensities in a higher percentage of glucagon than insulin cells. It was absent in a higher percentage of beta cells than glucagon cells independent of disease or autoantibody positivity. We conclude that a proportion of human beta cells and glucagon cells express GPX1 but show heterogeneity in its distribution and intensities, independent of disease or autoantibody status. Our studies highlight important differences in the expression of GPX1 in islet cell-types between mice and humans.
Collapse
Affiliation(s)
- Kaaj Pala
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand
| | - Kevin Xueying Sun
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Faculty of Dentistry, University of Oslo, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Shiva Reddy
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand.
| |
Collapse
|
2
|
Hansen MS, Pokharel P, Piganelli J, Sussel L. The Chicken or the Egg Dilemma: Understanding the Interplay between the Immune System and the β Cell in Type 1 Diabetes. Cold Spring Harb Perspect Med 2025; 15:a041591. [PMID: 38951031 PMCID: PMC11960692 DOI: 10.1101/cshperspect.a041591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In this review, we explore the complex interplay between the immune system and pancreatic β cells in the context of type 1 diabetes (T1D). While T1D is predominantly considered a T-cell-mediated autoimmune disease, the inability of human leukocyte antigen (HLA)-risk alleles alone to explain disease development suggests a role for β cells in initiating and/or propagating disease. This review delves into the vulnerability of β cells, emphasizing their susceptibility to endoplasmic reticulum (ER) stress and protein modifications, which may give rise to neoantigens. Additionally, we discuss the role of viral infections as contributors to T1D onset, and of genetic factors with dual impacts on the immune system and β cells. A greater understanding of the interplay between environmental triggers, autoimmunity, and the β cell will not only lead to insight as to why the islet β cells are specifically targeted by the immune system in T1D but may also reveal potential novel therapeutic interventions.
Collapse
Affiliation(s)
- Maria Skjøtt Hansen
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Pravil Pokharel
- Division of Endocrinology Diabetes and Metabolism, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Jon Piganelli
- Division of Endocrinology Diabetes and Metabolism, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
3
|
Alhamar G, Vinci C, Franzese V, Tramontana F, Le Goux N, Ludvigsson J, Nissim A, Strollo R. The role of oxidative post-translational modifications in type 1 diabetes pathogenesis. Front Immunol 2025; 16:1537405. [PMID: 40028329 PMCID: PMC11868110 DOI: 10.3389/fimmu.2025.1537405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
The pathogenesis of type 1 diabetes (T1D) involves a complex interplay of genetic predisposition, immune processes, and environmental factors, leading to the selective destruction of pancreatic beta-cells by the immune system. Emerging evidence suggests that intrinsic beta-cell factors, including oxidative stress and post-translational modifications (PTM) of beta-cell antigens, may also contribute to their immunogenicity, shedding new light on the multifaceted pathogenesis of T1D. Over the past 30 years, neoepitopes generated by PTMs have been hypothesized to play a role in T1D pathogenesis, but their involvement has only been systematically investigated in recent years. In this review, we explored the interplay between oxidative PTMs, neoepitopes, and T1D, highlighting oxidative stress as a pivotal factor in immune system dysfunction, beta-cell vulnerability, and disease onset.
Collapse
Affiliation(s)
- Ghadeer Alhamar
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Chiara Vinci
- Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Valentina Franzese
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Rome, Italy
- Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, Italy
- Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Flavia Tramontana
- Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Nelig Le Goux
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Johnny Ludvigsson
- Crown Princess Victoria Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ahuva Nissim
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rocky Strollo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Rome, Italy
- Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
4
|
Carré A, Samassa F, Zhou Z, Perez-Hernandez J, Lekka C, Manganaro A, Oshima M, Liao H, Parker R, Nicastri A, Brandao B, Colli ML, Eizirik DL, Aluri J, Patel D, Göransson M, Burgos Morales O, Anderson A, Landry L, Kobaisi F, Scharfmann R, Marselli L, Marchetti P, You S, Nakayama M, Hadrup SR, Kent SC, Richardson SJ, Ternette N, Mallone R. Interferon-α promotes HLA-B-restricted presentation of conventional and alternative antigens in human pancreatic β-cells. Nat Commun 2025; 16:765. [PMID: 39824805 PMCID: PMC11748642 DOI: 10.1038/s41467-025-55908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but the effect of IFN-α on the antigen repertoire of HLA Class I (HLA-I) in pancreatic β-cells is unknown. Here we characterize the HLA-I antigen presentation in resting and IFN-α-exposed β-cells and find that IFN-α increases HLA-I expression and expands peptide repertoire to those derived from alternative mRNA splicing, protein cis-splicing and post-translational modifications. While the resting β-cell immunopeptidome is dominated by HLA-A-restricted peptides, IFN-α largely favors HLA-B and only marginally upregulates HLA-A, translating into increased HLA-B-restricted peptide presentation and activation of HLA-B-restricted CD8+ T cells. Lastly, islets of patients with T1D show preferential HLA-B hyper-expression when compared with non-diabetic donors, and islet-infiltrating CD8+ T cells reactive to HLA-B-restricted granule peptides are found in T1D donors. Thus, the inflammatory milieu of insulitis may skew the autoimmune response toward alternative epitopes presented by HLA-B, hence recruiting T cells with a distinct repertoire that may be relevant to T1D pathogenesis.
Collapse
Affiliation(s)
- Alexia Carré
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Zhicheng Zhou
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Javier Perez-Hernandez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Department of Nutrition and Health, Valencian International University (VIU), Valencia, Spain
| | - Christiana Lekka
- Islet Biology Group, Exeter Centre of Excellence in Diabetes Research, University of Exeter Medical School, Exeter, UK
| | - Anthony Manganaro
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Masaya Oshima
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Hanqing Liao
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert Parker
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Annalisa Nicastri
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Barbara Brandao
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Maikel L Colli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Jahnavi Aluri
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Deep Patel
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Marcus Göransson
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | | | - Amanda Anderson
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laurie Landry
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Farah Kobaisi
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sylvaine You
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sarah J Richardson
- Islet Biology Group, Exeter Centre of Excellence in Diabetes Research, University of Exeter Medical School, Exeter, UK
| | - Nicola Ternette
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
- Indiana Biosciences Research Institute, Indianapolis, IN, USA.
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France.
| |
Collapse
|
5
|
Cheng M, Wei W, Chang Y. The Role and Research Progress of ACPA in the Diagnosis and Pathological Mechanism of Rheumatoid Arthritis. Hum Immunol 2025; 86:111219. [PMID: 39700967 DOI: 10.1016/j.humimm.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
An autoimmune condition known as rheumatoid arthritis (RA) is characterized by persistent polyarticular inflammation. Within two years of the disease's onset, irreparable bone and joint deterioration can occur as a result of the inflammatory course of the illness, leading to joint deformity and loss of function. In most patients diagnosed with RA, a range of autoantibodies, particularly anti-citrullinated protein antibodies (ACPA), can be detected months to years before the onset of clinically recognizable disease. Additionally, an increasing number of studies suggest that ACPA is involved in the pathogenesis of RA and may play a direct pathogenic role in the disease. This paper focuses on the role of ACPA in the pathomechanism of RA and discusses its unique clinical applications for the early identification and prediction of RA, as well as the influencing factors. Moreover, this article outlines the association of ACPA-positive (ACPA+) RA with other autoimmune diseases.
Collapse
Affiliation(s)
- Meng Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China; Laboratory Animal Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Mustelin T, Andrade F. Autoimmunity: the neoantigen hypothesis. Front Immunol 2024; 15:1432985. [PMID: 38994353 PMCID: PMC11236689 DOI: 10.3389/fimmu.2024.1432985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Zdinak PM, Trivedi N, Grebinoski S, Torrey J, Martinez EZ, Martinez S, Hicks L, Ranjan R, Makani VKK, Roland MM, Kublo L, Arshad S, Anderson MS, Vignali DAA, Joglekar AV. De novo identification of CD4 + T cell epitopes. Nat Methods 2024; 21:846-856. [PMID: 38658646 PMCID: PMC11093748 DOI: 10.1038/s41592-024-02255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
CD4+ T cells recognize peptide antigens presented on class II major histocompatibility complex (MHC-II) molecules to carry out their function. The remarkable diversity of T cell receptor sequences and lack of antigen discovery approaches for MHC-II make profiling the specificities of CD4+ T cells challenging. We have expanded our platform of signaling and antigen-presenting bifunctional receptors to encode MHC-II molecules presenting covalently linked peptides (SABR-IIs) for CD4+ T cell antigen discovery. SABR-IIs can present epitopes to CD4+ T cells and induce signaling upon their recognition, allowing a readable output. Furthermore, the SABR-II design is modular in signaling and deployment to T cells and B cells. Here, we demonstrate that SABR-IIs libraries presenting endogenous and non-contiguous epitopes can be used for antigen discovery in the context of type 1 diabetes. SABR-II libraries provide a rapid, flexible, scalable and versatile approach for de novo identification of CD4+ T cell ligands from single-cell RNA sequencing data using experimental and computational approaches.
Collapse
Affiliation(s)
- Paul M Zdinak
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nishtha Trivedi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephanie Grebinoski
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica Torrey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eduardo Zarate Martinez
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbiology and Immunology Diversity Scholars Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Salome Martinez
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louise Hicks
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rashi Ranjan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Venkata Krishna Kanth Makani
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary Melissa Roland
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lyubov Kublo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sanya Arshad
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Callebaut A, Guyer P, Derua R, Buitinga M, Manganaro A, Yi X, Sodré FMC, Vig S, Suleiman M, Marchetti P, Eizirik DL, Kent SC, Mathieu C, James EA, Overbergh L. CD4+ T Cells From Individuals With Type 1 Diabetes Respond to a Novel Class of Deamidated Peptides Formed in Pancreatic Islets. Diabetes 2024; 73:728-742. [PMID: 38387030 PMCID: PMC11043062 DOI: 10.2337/db23-0588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The β-cell plays a crucial role in the pathogenesis of type 1 diabetes, in part through the posttranslational modification of self-proteins by biochemical processes such as deamidation. These neoantigens are potential triggers for breaking immune tolerance. We report the detection by LC-MS/MS of 16 novel Gln and 27 novel Asn deamidations in 14 disease-related proteins within inflammatory cytokine-stressed human islets of Langerhans. T-cell clones responsive against one Gln- and three Asn-deamidated peptides could be isolated from peripheral blood of individuals with type 1 diabetes. Ex vivo HLA class II tetramer staining detected higher T-cell frequencies in individuals with the disease compared with control individuals. Furthermore, there was a positive correlation between the frequencies of T cells specific for deamidated peptides, insulin antibody levels at diagnosis, and duration of disease. These results highlight that stressed human islets are prone to enzymatic and biochemical deamidation and suggest that both Gln- and Asn-deamidated peptides can promote the activation and expansion of autoreactive CD4+ T cells. These findings add to the growing evidence that posttranslational modifications undermine tolerance and may open the road for the development of new diagnostic and therapeutic applications for individuals living with type 1 diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Aïsha Callebaut
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - Mijke Buitinga
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Anthony Manganaro
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Saurabh Vig
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Sally C. Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Eddie A. James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Lut Overbergh
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Kang Q, Ren J, Cong J, Yu W. Diabetes mellitus and idiopathic pulmonary fibrosis: a Mendelian randomization study. BMC Pulm Med 2024; 24:142. [PMID: 38504175 PMCID: PMC10953180 DOI: 10.1186/s12890-024-02961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The question as to whether or not diabetes mellitus increases the risk of idiopathic pulmonary fibrosis (IPF) remains controversial. This study aimed to investigate the causal association between type 1 diabetes (T1D), type 2 diabetes (T2D), and IPF using Mendelian randomization (MR) analysis. METHODS We used two-sample univariate and multivariate MR (MVMR) analyses to investigate the causal relationship between T1D or T2D and IPF. We obtained genome-wide association study (GWAS) data for T1D and T2D from the European Bioinformatics Institute, comprising 29,652 T1D samples and 101,101 T1D single nucleotide polymorphisms (SNPs) and 655,666 T2D samples and 5,030,727 T2D SNPs. We also used IPF GWAS data from the FinnGen Biobank comprising 198,014 IPF samples and 16,380,413 IPF SNPs. All cases and controls in these datasets were derived exclusively from European populations. In the univariate MR analysis, we employed inverse variance-weighted (IVW), weighted median (WM), and MR-Egger regression methods. For the MVMR analysis, we used the multivariate IVW method primarily, and supplemented it with multivariate MR-Egger and multivariate MR- least absolute shrinkage and selection operator methods. Heterogeneity tests were conducted using the MR-IVW and MR-Egger regression methods, whereas pleiotropic effects were assessed using the MR-Egger intercept. The results of MR and sensitivity analyses were visualized using forest, scatter, leave-one-out, and funnel plots. RESULTS Univariate MR revealed a significant causal relationship between T1D and IPF (OR = 1.118, 95% CI = 1.021-1.225, P = 0.016); however, no significant causal relationship was found between T2D and IPF (OR = 0.911, 95% CI = 0.796-1.043, P = 0.178). MVMR analysis further confirmed a causal association between T1D and IPF (OR = 1.133, 95% CI = 1.011-1.270, P = 0.032), but no causal relationship between T2D and IPF (OR = 1.009, 95% CI = 0.790-1.288, P = 0.950). Sensitivity analysis results validated the stability and reliability of our findings. CONCLUSION Univariate and multivariate analyses demonstrated a causal relationship between T1D and IPF, whereas no evidence was found to support a causal relationship between T2D and IPF. Therefore, in clinical practice, patients with T1D should undergo lung imaging for early detection of IPF.
Collapse
Affiliation(s)
- Quou Kang
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Jing Ren
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Jinpeng Cong
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wencheng Yu
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
11
|
Atkinson MA, Mirmira RG. The pathogenic "symphony" in type 1 diabetes: A disorder of the immune system, β cells, and exocrine pancreas. Cell Metab 2023; 35:1500-1518. [PMID: 37478842 PMCID: PMC10529265 DOI: 10.1016/j.cmet.2023.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Type 1 diabetes (T1D) is widely considered to result from the autoimmune destruction of insulin-producing β cells. This concept has been a central tenet for decades of attempts seeking to decipher the disorder's pathogenesis and prevent/reverse the disease. Recently, this and many other disease-related notions have come under increasing question, particularly given knowledge gained from analyses of human T1D pancreas. Perhaps most crucial are findings suggesting that a collective of cellular constituents-immune, endocrine, and exocrine in origin-mechanistically coalesce to facilitate T1D. This review considers these emerging concepts, from basic science to clinical research, and identifies several key remaining knowledge voids.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Raghavendra G Mirmira
- Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Moustakas AK, Nguyen H, James EA, Papadopoulos GK. Autoimmune susceptible HLA class II motifs facilitate the presentation of modified neoepitopes to potentially autoreactive T cells. Cell Immunol 2023; 390:104729. [PMID: 37301094 DOI: 10.1016/j.cellimm.2023.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), and celiac disease (CD), are strongly associated with susceptible HLA class II haplotypes. The peptide-binding pockets of these molecules are polymorphic, thus each HLA class II protein presents a distinct set of peptides to CD4+ T cells. Peptide diversity is increased through post-translational modifications, generating non-templated sequences that enhance HLA binding and/or T cell recognition. The high-risk HLA-DR alleles that confer susceptibility to RA are notable for their ability to accommodate citrulline, promoting responses to citrullinated self-antigens. Likewise, HLA-DQ alleles associated with T1D and CD favor the binding of deamidated peptides. In this review, we discuss structural features that promote modified self-epitope presentation, provide evidence supporting the relevance of T cell recognition of such antigens in disease processes, and make a case that interrupting the pathways that generate such epitopes and reprogramming neoepitope-specific T cells are key strategies for effective therapeutic intervention.
Collapse
Affiliation(s)
- Antonis K Moustakas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, GR26100 Argostoli, Cephalonia, Greece
| | - Hai Nguyen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Bioprocessing and Bioproducts, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, GR47100 Arta, Greece
| |
Collapse
|
13
|
Bissenova S, Ellis D, Callebaut A, Eelen G, Derua R, Buitinga M, Mathieu C, Gysemans C, Overbergh L. NET Proteome in Established Type 1 Diabetes Is Enriched in Metabolic Proteins. Cells 2023; 12:cells12091319. [PMID: 37174719 PMCID: PMC10177393 DOI: 10.3390/cells12091319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND AND AIMS Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by a T-cell-mediated destruction of the pancreatic insulin-producing beta cells. A growing body of evidence suggests that abnormalities in neutrophils and neutrophil extracellular trap (NET) formation (NETosis) are associated with T1D pathophysiology. However, little information is available on whether these changes are primary neutrophil defects or related to the environmental signals encountered during active disease. METHODS In the present work, the NET proteome (NETome) of phorbol 12-myristate 13-acetate (PMA)- and ionomycin-stimulated neutrophils from people with established T1D compared to healthy controls (HC) was studied by proteomic analysis. RESULTS Levels of NETosis, in addition to plasma levels of pro-inflammatory cytokines and NET markers, were comparable between T1D and HC subjects. However, the T1D NETome was distinct from that of HC in response to both stimuli. Quantitative analysis revealed that the T1D NETome was enriched in proteins belonging to metabolic pathways (i.e., phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and UTP-glucose-1-phosphate uridylyltransferase). Complementary metabolic profiling revealed that the rate of extracellular acidification, an approximate measure for glycolysis, and mitochondrial respiration were similar between T1D and HC neutrophils in response to both stimuli. CONCLUSION The NETome of people with established T1D was enriched in metabolic proteins without an apparent alteration in the bio-energetic profile or dysregulated NETosis. This may reflect an adaptation mechanism employed by activated T1D neutrophils to avoid impaired glycolysis and consequently excessive or suboptimal NETosis, pivotal in innate immune defence and the resolution of inflammation.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Aïsha Callebaut
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department Cellular & Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- SyBioMa, Proteomics Core Facility, KU Leuven, 3000 Leuven, Belgium
| | - Mijke Buitinga
- Department of Nutrition and Movement Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Lut Overbergh
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Lichti CF, Wan X. Using mass spectrometry to identify neoantigens in autoimmune diseases: The type 1 diabetes example. Semin Immunol 2023; 66:101730. [PMID: 36827760 PMCID: PMC10324092 DOI: 10.1016/j.smim.2023.101730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
In autoimmune diseases, recognition of self-antigens presented by major histocompatibility complex (MHC) molecules elicits unexpected attack of tissue by autoantibodies and/or autoreactive T cells. Post-translational modification (PTM) may alter the MHC-binding motif or TCR contact residues in a peptide antigen, transforming the tolerance to self to autoreactivity. Mass spectrometry-based immunopeptidomics provides a valuable mechanism for identifying MHC ligands that contain PTMs and can thus provide valuable insights into pathogenesis and therapeutics of autoimmune diseases. A plethora of PTMs have been implicated in this process, and this review highlights their formation and identification.
Collapse
Affiliation(s)
- Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Eggleton P, De Alba J, Weinreich M, Calias P, Foulkes R, Corrigall VM. The therapeutic mavericks: Potent immunomodulating chaperones capable of treating human diseases. J Cell Mol Med 2023; 27:322-339. [PMID: 36651415 PMCID: PMC9889696 DOI: 10.1111/jcmm.17669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Two major chaperones, calreticulin (CRT) and binding immunoglobulin protein (GRP78/BiP) dependent on their location, have immunoregulatory or anti-inflammatory functions respectively. CRT induces pro-inflammatory cytokines, dendritic cell (DC) maturation and activates cytotoxic T cells against tumours. By contrast, GRP78/BiP induces anti-inflammatory cytokines, inhibits DC maturation and heightens T-regulatory cell responses. These latter functions rebalance immune homeostasis in inflammatory diseases, such as rheumatoid arthritis. Both chaperones are therapeutically relevant agents acting primarily on monocytes/DCs. Endogenous exposure of CRT on cancer cell surfaces acts as an 'eat-me' signal and facilitates improved elimination of stressed and dying tumour cells by DCs. Therefore, therapeutics that promote endogenous CRT translocation to the cell surface can improve the removal of cancer cells. However, infused recombinant CRT dampens this cancer cell eradication by binding directly to the DCs. Low levels of endogenous BiP appear as a surface biomarker of endoplasmic reticulum (ER) stress in some types of tumour cells, a reflection of cells undergoing proliferation, in which resulting hypoxia and nutrient deprivation perturb ER homeostasis triggering the unfolded protein response, leading to increased expression of GRP78/BiP and altered cellular location. Conversely, infusion of an analogue of GRP78/BiP (IRL201805) can lead to long-term immune resetting and restoration of immune homeostasis. The therapeutic potential of both chaperones relies on them being relocated from their intracellular ER environment. Ongoing clinical trials are employing therapeutic interventions to either enhance endogenous cell surface CRT or infuse IRL201805, thereby triggering several disease-relevant immune responses leading to a beneficial clinical outcome.
Collapse
Affiliation(s)
- Paul Eggleton
- Revolo BiotherapeuticsNew OrleansLouisianaUSA,University of Exeter Medical SchoolExeterUK
| | | | | | | | | | - Valerie M. Corrigall
- Revolo BiotherapeuticsNew OrleansLouisianaUSA,Centre for Inflammation Biology and Cancer Immunology, King's College London, New Hunts HouseGuy' HospitalLondonUK
| |
Collapse
|
16
|
Nguyen H, Arribas-Layton D, Chow IT, Speake C, Kwok WW, Hessner MJ, Greenbaum CJ, James EA. Characterizing T cell responses to enzymatically modified beta cell neo-epitopes. Front Immunol 2023; 13:1015855. [PMID: 36703975 PMCID: PMC9871889 DOI: 10.3389/fimmu.2022.1015855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Previous studies verify the formation of enzymatically post-translationally modified (PTM) self-peptides and their preferred recognition by T cells in subjects with type 1 diabetes (T1D). However, questions remain about the relative prevalence of T cells that recognize PTM self-peptides derived from different antigens, their functional phenotypes, and whether their presence correlates with a specific disease endotype. Methods To address this question, we identified a cohort of subjects with T1D who had diverse levels of residual beta cell function. Using previously developed HLA class II tetramer reagents, we enumerated T cells that recognize PTM GAD epitopes in the context of DRB1*04:01 or PTM IA2 epitopes in the context of DQB1*03:02 (DQ8). Results Consistent with prior studies, we observed higher overall frequencies and a greater proportion of memory T cells in subjects with T1D than in HLA matched controls. There were significantly higher numbers of GAD specific T cells than IA2 specific T cells in subjects with T1D. T cells specific for both groups of epitopes could be expanded from the peripheral blood of subjects with established T1D and at-risk subjects. Expanded neo-epitope specific T cells primarily produced interferon gamma in both groups, but a greater proportion of T cells were interferon gamma positive in subjects with T1D, including some poly-functional cells that also produced IL-4. Based on direct surface phenotyping, neo-epitope specific T cells exhibited diverse combinations of chemokine receptors. However, the largest proportion had markers associated with a Th1-like phenotype. Notably, DQ8 restricted responses to PTM IA2 were over-represented in subjects with lower residual beta cell function. Neo-epitope specific T cells were present in at-risk subjects, and those with multiple autoantibodies have higher interferon gamma to IL-4 ratios than those with single autoantibodies, suggesting a shift in polarization during progression. Discussion These results reinforce the relevance of PTM neo-epitopes in human disease and suggest that distinct responses to neo-antigens promote a more rapid decline in beta cell function.
Collapse
Affiliation(s)
- Hai Nguyen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - David Arribas-Layton
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - I-Ting Chow
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Cate Speake
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - William W. Kwok
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Martin J. Hessner
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Carla J. Greenbaum
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Eddie A. James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States,*Correspondence: Eddie A. James,
| |
Collapse
|
17
|
Guyer P, Arribas-Layton D, Manganaro A, Speake C, Lord S, Eizirik DL, Kent SC, Mallone R, James EA. Recognition of mRNA Splice Variant and Secretory Granule Epitopes by CD4+ T Cells in Type 1 Diabetes. Diabetes 2023; 72:85-96. [PMID: 36201618 PMCID: PMC9797322 DOI: 10.2337/db22-0191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/02/2022] [Indexed: 01/19/2023]
Abstract
A recent discovery effort resulted in identification of novel splice variant and secretory granule antigens within the HLA class I peptidome of human islets and documentation of their recognition by CD8+ T cells from peripheral blood and human islets. In the current study, we applied a systematic discovery process to identify novel CD4+ T cell epitopes derived from these candidate antigens. We predicted 145 potential epitopes spanning unique splice junctions and within conventional secretory granule antigens and measured their in vitro binding to DRB1*04:01. We generated HLA class II tetramers for the 35 peptides with detectable binding and used these to assess immunogenicity and isolate T cell clones. Tetramers corresponding to peptides with verified immunogenicity were then used to label T cells specific for these putative epitopes in peripheral blood. T cells that recognize distinct epitopes derived from a cyclin I splice variant, neuroendocrine convertase 2, and urocortin-3 were detected at frequencies that were similar to those of an immunodominant proinsulin epitope. Cells specific for these novel epitopes predominantly exhibited a Th1-like surface phenotype. Among the three epitopes, responses to the cyclin I peptide exhibited a distinct memory profile. Responses to neuroendocrine convertase 2 were detected among pancreatic infiltrating T cells. These results further establish the contribution of unconventional antigens to the loss of tolerance in autoimmune diabetes.
Collapse
Affiliation(s)
- Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| | - David Arribas-Layton
- Center for Translational Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| | - Anthony Manganaro
- Division of Diabetes, Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Cate Speake
- Diabetes Clinical Research Program and Center for Interventional Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| | - Sandra Lord
- Diabetes Clinical Research Program and Center for Interventional Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Sally C. Kent
- Division of Diabetes, Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Roberto Mallone
- INSERM, CNRS, Institut Cochin, Université de Paris, Paris, France
- Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Hôpitaux Universitaires Paris Centre, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Eddie A. James
- Center for Translational Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| |
Collapse
|
18
|
Post-Translational Modifications in Tumor-Associated Antigens as a Platform for Novel Immuno-Oncology Therapies. Cancers (Basel) 2022; 15:cancers15010138. [PMID: 36612133 PMCID: PMC9817968 DOI: 10.3390/cancers15010138] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Post-translational modifications (PTMs) are generated by adding small chemical groups to amino acid residues after the translation of proteins. Many PTMs have been reported to correlate with tumor progression, growth, and survival by modifying the normal functions of the protein in tumor cells. PTMs can also elicit humoral and cellular immune responses, making them attractive targets for cancer immunotherapy. This review will discuss how the acetylation, citrullination, and phosphorylation of proteins expressed by tumor cells render the corresponding tumor-associated antigen more antigenic and affect the immune response in multiple cancers. In addition, the role of glycosylated protein mucins in anti-cancer immunotherapy will be considered. Mucin peptides in combination with stimulating adjuvants have, in fact, been utilized to produce anti-tumor antibodies and vaccines. Finally, we will also outline the results of the clinical trial exploiting glycosylated-MUC1 as a vaccine in different cancers. Overall, PTMs in TAAs could be considered in future therapies to result in lasting anti-tumor responses.
Collapse
|
19
|
Brentville VA, Symonds P, Chua J, Skinner A, Daniels I, Cook KW, Koncarevic S, Martinez-Pinna R, Shah S, Choudhury RH, Vaghela P, Weston D, Al-Omari A, Davis J, Durrant LG. Citrullinated glucose-regulated protein 78 is a candidate target for melanoma immunotherapy. Front Immunol 2022; 13:1066185. [PMID: 36544781 PMCID: PMC9760948 DOI: 10.3389/fimmu.2022.1066185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Post translational modification of proteins plays a significant role in immune recognition. In particular the modification of arginine to citrulline which is mediated by PAD enzymes is increased during cellular stress (autophagy) which permits the presentation of modified epitopes upon MHC class II molecules for recognition by CD4 T cells. Citrullination also occurs in tumour cells as a result of continuous environmental stresses and increased autophagy. We have shown in animal models the efficient stimulation of citrullinated epitope specific CD4 T cells resulting in dramatic elimination/regression of tumours. The ER chaperone glucose-regulated protein 78 (GRP78) is known to also be required for stress-induced autophagy and is directly linked to autophagosome formation. GRP78 is known to be highly expressed by many tumour types. In this study we investigate the potential of targeting citrullinated GRP78 for cancer therapy. Methods A citrullinated GRP78 specific antibody was used to assess citrullinated GRP78 expression in murine and human tumour cells by flow cytometry. Five peptides were selected and used to vaccinate HLA transgenic mice and immune responses were characterised by ex vivo cytokine ELISpot assay. T cell repertoire in humans was assessed through proliferation assays and cytokine ELISpot assay. Citrullinated peptide was identified in murine B16 melanoma by mass spectrometry and the peptide vaccine was assessed for tumour therapy in a mouse melanoma model. Results We show the identification CD4 T cell responses to one citrullinated GRP78 epitope that are restricted through HLA DP*0401 and HLA-DR*0101 alleles. This peptide is detected by mass spectrometry in B16 melanoma grown in vivo and citrulline specific CD4 responses to two peptides spanning this epitope mediate efficient therapy of established B16 melanoma tumours in HHDII/DP4 (p<0.0001) transgenic mouse model. Finally, we demonstrate the existence of a repertoire of responses to the citrullinated GRP78 peptide in healthy individuals (p=0.0023) with 13/17 (76%) individuals showing a response to this peptide. Conclusion We propose that citrullinated GRP78 is a candidate tumour antigen and vaccination against citrullinated GRP78 may provide a promising tumour therapy approach.
Collapse
Affiliation(s)
- Victoria Anne Brentville
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,*Correspondence: Victoria Anne Brentville,
| | - Peter Symonds
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - JiaXin Chua
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Anne Skinner
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ian Daniels
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Katherine Wendy Cook
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Sasa Koncarevic
- Proteome Sciences R & D GmbH & Co.KG, Frankfurt-am-Main, Germany
| | | | - Sabaria Shah
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ruhul Hasan Choudhury
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Poonam Vaghela
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Daisy Weston
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Abdullah Al-Omari
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - James Davis
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Lindy G. Durrant
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| |
Collapse
|
20
|
Yedigaryan L, Martínez-Sarrà E, Giacomazzi G, Giarratana N, van der Veer BK, Rotini A, Querceto S, Grosemans H, Cortés-Calabuig Á, Salucci S, Battistelli M, Falcieri E, Gijsbers R, Quattrocelli M, Peng Koh K, De Waele L, Buyse GM, Derua R, Sampaolesi M. Extracellular vesicle-derived miRNAs improve stem cell-based therapeutic approaches in muscle wasting conditions. Front Immunol 2022; 13:977617. [PMID: 36451814 PMCID: PMC9702803 DOI: 10.3389/fimmu.2022.977617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
Skeletal muscle holds an intrinsic capability of growth and regeneration both in physiological conditions and in case of injury. Chronic muscle illnesses, generally caused by genetic and acquired factors, lead to deconditioning of the skeletal muscle structure and function, and are associated with a significant loss in muscle mass. At the same time, progressive muscle wasting is a hallmark of aging. Given the paracrine properties of myogenic stem cells, extracellular vesicle-derived signals have been studied for their potential implication in both the pathogenesis of degenerative neuromuscular diseases and as a possible therapeutic target. In this study, we screened the content of extracellular vesicles from animal models of muscle hypertrophy and muscle wasting associated with chronic disease and aging. Analysis of the transcriptome, protein cargo, and microRNAs (miRNAs) allowed us to identify a hypertrophic miRNA signature amenable for targeting muscle wasting, consisting of miR-1 and miR-208a. We tested this signature among others in vitro on mesoangioblasts (MABs), vessel-associated adult stem cells, and we observed an increase in the efficiency of myogenic differentiation. Furthermore, injections of miRNA-treated MABs in aged mice resulted in an improvement in skeletal muscle features, such as muscle weight, strength, cross-sectional area, and fibrosis compared to controls. Overall, we provide evidence that the extracellular vesicle-derived miRNA signature we identified enhances the myogenic potential of myogenic stem cells.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ester Martínez-Sarrà
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Giorgia Giacomazzi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Nefele Giarratana
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Bernard K. van der Veer
- Department of Development and Regeneration, Laboratory for Stem Cell and Developmental Epigenetics, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Alessio Rotini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Silvia Querceto
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Hanne Grosemans
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Álvaro Cortés-Calabuig
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, Urbino University Carlo Bo, Urbino, Italy
| | - Elisabetta Falcieri
- Department of Biomolecular Sciences, Urbino University Carlo Bo, Urbino, Italy
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Mattia Quattrocelli
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium,Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, Heart Institute, University of Cincinnati College of Medicine and Molecular Cardiovascular Biology Division, Cincinnati, OH, United States
| | - Kian Peng Koh
- Department of Development and Regeneration, Laboratory for Stem Cell and Developmental Epigenetics, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Liesbeth De Waele
- Department of Development and Regeneration, Pediatric Neurology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Gunnar M. Buyse
- Department of Development and Regeneration, Pediatric Neurology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, SyBioMa, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium,Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy,*Correspondence: Maurilio Sampaolesi,
| |
Collapse
|
21
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
22
|
Hu A, Zou H, Chen B, Zhong J. Posttranslational modifications in diabetes: Mechanisms and functions. Rev Endocr Metab Disord 2022; 23:1011-1033. [PMID: 35697961 DOI: 10.1007/s11154-022-09740-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
As one of the most widespread chronic diseases, diabetes and its accompanying complications affect approximately one tenth of individuals worldwide and represent a growing cause of morbidity and mortality. Accumulating evidence has proven that the process of diabetes is complex and interactive, involving various cellular responses and signaling cascades by posttranslational modifications (PTMs). Therefore, understanding the mechanisms and functions of PTMs in regulatory networks has fundamental importance for understanding the prediction, onset, diagnosis, progression, and treatment of diabetes. In this review, we offer a holistic summary and illustration of the crosstalk between PTMs and diabetes, including both types 1 and 2. Meanwhile, we discuss the potential use of PTMs in diabetes treatment and provide a prospective direction for deeply understanding the metabolic diseases.
Collapse
Affiliation(s)
- Ang Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Haohong Zou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Bin Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
23
|
Yang ML, Connolly SE, Gee RJ, Lam TT, Kanyo J, Peng J, Guyer P, Syed F, Tse HM, Clarke SG, Clarke CF, James EA, Speake C, Evans-Molina C, Arvan P, Herold KC, Wen L, Mamula MJ. Carbonyl Posttranslational Modification Associated With Early-Onset Type 1 Diabetes Autoimmunity. Diabetes 2022; 71:1979-1993. [PMID: 35730902 PMCID: PMC9450849 DOI: 10.2337/db21-0989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022]
Abstract
Inflammation and oxidative stress in pancreatic islets amplify the appearance of various posttranslational modifications to self-proteins. In this study, we identified a select group of carbonylated islet proteins arising before the onset of hyperglycemia in NOD mice. Of interest, we identified carbonyl modification of the prolyl-4-hydroxylase β subunit (P4Hb) that is responsible for proinsulin folding and trafficking as an autoantigen in both human and murine type 1 diabetes. We found that carbonylated P4Hb is amplified in stressed islets coincident with decreased glucose-stimulated insulin secretion and altered proinsulin-to-insulin ratios. Autoantibodies against P4Hb were detected in prediabetic NOD mice and in early human type 1 diabetes prior to the onset of anti-insulin autoimmunity. Moreover, we identify autoreactive CD4+ T-cell responses toward carbonyl-P4Hb epitopes in the circulation of patients with type 1 diabetes. Our studies provide mechanistic insight into the pathways of proinsulin metabolism and in creating autoantigenic forms of insulin in type 1 diabetes.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Sean E. Connolly
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Renelle J. Gee
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| | - TuKiet T. Lam
- Mass Spectrometry & Proteomics Resource, W.M. Keck Foundation Biotechnology Resource Laboratory, New Haven
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Jean Kanyo
- Mass Spectrometry & Proteomics Resource, W.M. Keck Foundation Biotechnology Resource Laboratory, New Haven
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Farooq Syed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Hubert M. Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Eddie A. James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Peter Arvan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Kevan C. Herold
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT
- Department of Immunobiology, Yale University, New Haven, CT
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| |
Collapse
|
24
|
Citrullination: A modification important in the pathogenesis of autoimmune diseases. Clin Immunol 2022; 245:109134. [DOI: 10.1016/j.clim.2022.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
|
25
|
Tchitchek N, Nguekap Tchoumba O, Pires G, Dandou S, Campagne J, Churlaud G, Fourcade G, Hoffmann TW, Strozzi F, Gaal C, Bonny C, Le Chatelier E, Erlich SD, Sokol H, Klatzmann D. Low-dose interleukin-2 shapes a tolerogenic gut microbiota that improves autoimmunity and gut inflammation. JCI Insight 2022; 7:159406. [PMID: 35917175 PMCID: PMC9536277 DOI: 10.1172/jci.insight.159406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Gut microbiota dysbiosis is associated with inflammatory bowel diseases and with cardiometabolic, neurological, and autoimmune diseases. Gut microbiota composition has a direct effect on the immune system, and vice versa, and it has a particular effect on Treg homeostasis. Low-dose IL-2 (IL-2LD) stimulates Tregs and is a promising treatment for autoimmune and inflammatory diseases. We aimed to evaluate the impact of IL-2LD on gut microbiota and correlatively on the immune system. We used 16S ribosomal RNA profiling and metagenomics to characterize gut microbiota of mice and humans treated or not with IL-2LD. We performed fecal microbiota transplantation (FMT) from IL-2LD–treated to naive recipient mice and evaluated its effects in models of gut inflammation and diabetes. IL-2LD markedly affected gut microbiota composition in mice and humans. Transfer of an IL-2–tuned microbiota by FMT protected C57BL/6J mice from dextran sulfate sodium–induced colitis and prevented diabetes in NOD mice. Metagenomic analyses highlighted a role for several species affected by IL-2LD and for microbial pathways involved in the biosynthesis of amino acids, short-chain fatty acids, and L-arginine. Our results demonstrate that IL-2LD induced changes in gut microbiota that are involved in the immunoregulatory effects of IL-2LD and suggest a crosstalk between Tregs and gut microbiota. These results provide potentially novel insight for understanding the mode of action of Treg-directed therapies.
Collapse
Affiliation(s)
- Nicolas Tchitchek
- Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | | | - Gabriel Pires
- Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | - Sarah Dandou
- Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | - Julien Campagne
- Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | - Guillaume Churlaud
- Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | - Gwladys Fourcade
- Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | - Thomas W Hoffmann
- Micalis Institute, Institut National de la Recherche Agronomique, University Paris-Saclay, Paris, France
| | | | | | | | | | | | - Harry Sokol
- Department of Gastroenterology and Inflammation, Saint-Antoine Hospital, Paris, France
| | - David Klatzmann
- Immunology-Immunopathology-Immunotherapy (I3), Sorbonne Université, Paris, France
| |
Collapse
|
26
|
Jadeja SD, Tobin DJ. Autoantigen Discovery in the Hair Loss Disorder, Alopecia Areata: Implication of Post-Translational Modifications. Front Immunol 2022; 13:890027. [PMID: 35720384 PMCID: PMC9205194 DOI: 10.3389/fimmu.2022.890027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Alopecia areata (AA) is a chronic, multifactorial, polygenic, and heterogeneous disorder affecting growing hair follicles in susceptible individuals, which results in a non-scarring and reversible hair loss with a highly unpredictable course. Despite very considerable research effort, the nature of the precipitating factor(s) responsible for initiating AA in any given hair follicle remains unclear, due largely to significant gaps in our knowledge of the precise sequence of the etiopathogenic events in this dermatosis. However, disease-related changes in the immune-competence of the lower growing hair follicle, together with an active immune response (humoral and cellular) to hair follicle-associated antigens, are key associated phenomena. Confirmation of the hair follicle antigen(s) implicated in AA disease onset has remained stubbornly elusive. While it may be considered somewhat philosophical by some, it is also unclear whether immune-mediated hair loss in AA results from a) an ectopic (i.e., in an abnormal location) immune response to native (unmodified) self-antigens expressed by the healthy hair follicle, b) a normal immune response against modified self-antigens (or neoantigens), or c) a normal immune response against self-antigens (modified/non-modified) that were not previously visible to the immune system (because they were conformationally-hidden or sequestered) but become exposed and presentable in an MHC-I/-II molecule-restricted manner. While some candidate hair follicle antigen target(s) in AA are beginning to emerge, with a potential role for trichohyalin, it is not yet clear whether this represents the initial and immunodominant antigenic focus in AA or is simply one of an expanding repertoire of exposed hair follicle tissue damage-associated antigens that are secondary to the disease. Confirmation of autoantigen identity is essential for our understanding of AA etiopathogenesis, and consequently for developing a more informed therapeutic strategy. Major strides have been made in autoantigen discovery in other autoimmune conditions. In particular, some of these conditions may provide insights into how post-translational modifications (e.g., citrullination, deamidation, etc.) of hair follicle-restricted proteins may increase their antigenicity and so help drive the anti-hair follicle immune attack in AA.
Collapse
Affiliation(s)
- Shahnawaz D. Jadeja
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Desmond J. Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Gonzalez-Gronow M, Pizzo SV. Physiological Roles of the Autoantibodies to the 78-Kilodalton Glucose-Regulated Protein (GRP78) in Cancer and Autoimmune Diseases. Biomedicines 2022; 10:biomedicines10061222. [PMID: 35740249 PMCID: PMC9219851 DOI: 10.3390/biomedicines10061222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/02/2023] Open
Abstract
The 78 kDa glucose-regulated protein (GRP78), a member of the 70 kDa heat-shock family of molecular chaperones (HSP70), is essential for the regulation of the unfolded protein response (UPR) resulting from cellular endoplasmic reticulum (ER) stress. During ER stress, GRP78 evades retention mechanisms and is translocated to the cell surface (csGRP78) where it functions as an autoantigen. Autoantibodies to GRP78 appear in prostate, ovarian, gastric, malignant melanoma, and colorectal cancers. They are also found in autoimmune pathologies such as rheumatoid arthritis (RA), neuromyelitis optica (NMO), anti-myelin oligodendrocyte glycoprotein antibody-associated disorder (AMOGAD), Lambert-Eaton myasthenic syndrome (LEMS), multiple sclerosis (MS), neuropsychiatric systemic lupus erythematosus (NPSLE) and type 1 diabetes (T1D). In NMO, MS, and NPSLE these autoantibodies disrupt and move across the blood-brain barrier (BBB), facilitating their entry and that of other pathogenic antibodies to the brain. Although csGRP78 is common in both cancer and autoimmune diseases, there are major differences in the specificity of its autoantibodies. Here, we discuss how ER mechanisms modulate csGRP78 antigenicity and the production of autoantibodies, permitting this chaperone to function as a dual compartmentalized receptor with independent signaling pathways that promote either pro-proliferative or apoptotic signaling, depending on whether the autoantibodies bind csGRP78 N- or C-terminal regions.
Collapse
|
28
|
Sarnik J, Makowska J. Citrullination good or bad guy? Immunobiology 2022; 227:152233. [DOI: 10.1016/j.imbio.2022.152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/11/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
|
29
|
Jing Y, Kong Y, McGinty J, Blahnik-Fagan G, Lee T, Orozco-Figueroa S, Bettini ML, James EA, Bettini M. T-Cell Receptor/HLA Humanized Mice Reveal Reduced Tolerance and Increased Immunogenicity of Posttranslationally Modified GAD65 Epitope. Diabetes 2022; 71:1012-1022. [PMID: 35179565 PMCID: PMC9044133 DOI: 10.2337/db21-0993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Accumulating evidence supports a critical role for posttranslationally modified (PTM) islet neoantigens in type 1 diabetes. However, our understanding regarding thymic development and peripheral activation of PTM autoantigen-reactive T cells is still limited. Using HLA-DR4 humanized mice, we observed that deamidation of GAD65115-127 generates a more immunogenic epitope that recruits T cells with promiscuous recognition of both the deamidated and native epitopes and reduced frequency of regulatory T cells. Using humanized HLA/T-cell receptor (TCR) mice, we observed that TCRs reactive to the native or deamidated GAD65115-127 led to efficient development of CD4+ effector T cells; however, regulatory T-cell development was reduced in mice expressing the PTM-reactive TCR, which was partially restored with exogenous PTM peptide. Upon priming, both the native-specific and the deamidated-specific T cells accumulated in pancreatic islets, suggesting that both specificities can recognize endogenous GAD65 and contribute to anti-β-cell responses. Collectively, our observations in polyclonal and single TCR systems suggest that while effector T-cell responses can exhibit cross-reactivity between native and deamidated GAD65 epitopes, regulatory T-cell development is reduced in response to the deamidated epitope, pointing to regulatory T-cell development as a key mechanism for loss of tolerance to PTM antigenic targets.
Collapse
Affiliation(s)
- Yi Jing
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Yuelin Kong
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - John McGinty
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | | | - Thomas Lee
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Stephanie Orozco-Figueroa
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Matthew L. Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Maria Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
- Corresponding author: Maria Bettini,
| |
Collapse
|
30
|
Krovi SH, Kuchroo VK. Activation pathways that drive CD4 + T cells to break tolerance in autoimmune diseases . Immunol Rev 2022; 307:161-190. [PMID: 35142369 PMCID: PMC9255211 DOI: 10.1111/imr.13071] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases are characterized by dysfunctional immune systems that misrecognize self as non-self and cause tissue destruction. Several cell types have been implicated in triggering and sustaining disease. Due to a strong association of major histocompatibility complex II (MHC-II) proteins with various autoimmune diseases, CD4+ T lymphocytes have been thoroughly investigated for their roles in dictating disease course. CD4+ T cell activation is a coordinated process that requires three distinct signals: Signal 1, which is mediated by antigen recognition on MHC-II molecules; Signal 2, which boosts signal 1 in a costimulatory manner; and Signal 3, which helps to differentiate the activated cells into functionally relevant subsets. These signals are disrupted during autoimmunity and prompt CD4+ T cells to break tolerance. Herein, we review our current understanding of how each of the three signals plays a role in three different autoimmune diseases and highlight the genetic polymorphisms that predispose individuals to autoimmunity. We also discuss the drawbacks of existing therapies and how they can be addressed to achieve lasting tolerance in patients.
Collapse
Affiliation(s)
- Sai Harsha Krovi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
31
|
Yang ML, Horstman S, Gee R, Guyer P, Lam TT, Kanyo J, Perdigoto AL, Speake C, Greenbaum CJ, Callebaut A, Overbergh L, Kibbey RG, Herold KC, James EA, Mamula MJ. Citrullination of glucokinase is linked to autoimmune diabetes. Nat Commun 2022; 13:1870. [PMID: 35388005 PMCID: PMC8986778 DOI: 10.1038/s41467-022-29512-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation, including reactive oxygen species and inflammatory cytokines in tissues amplify various post-translational modifications of self-proteins. A number of post-translational modifications have been identified as autoimmune biomarkers in the initiation and progression of Type 1 diabetes. Here we show the citrullination of pancreatic glucokinase as a result of inflammation, triggering autoimmunity and affecting glucokinase biological functions. Glucokinase is expressed in hepatocytes to regulate glycogen synthesis, and in pancreatic beta cells as a glucose sensor to initiate glycolysis and insulin signaling. We identify autoantibodies and autoreactive CD4+ T cells to glucokinase epitopes in the circulation of Type 1 diabetes patients and NOD mice. Finally, citrullination alters glucokinase biologic activity and suppresses glucose-stimulated insulin secretion. Our study define glucokinase as a Type 1 diabetes biomarker, providing new insights of how inflammation drives post-translational modifications to create both neoautoantigens and affect beta cell metabolism.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Sheryl Horstman
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Renelle Gee
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Ana L Perdigoto
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Aïsha Callebaut
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Richard G Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Kevan C Herold
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Mark J Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
32
|
Elvira B, Vandenbempt V, Bauzá-Martinez J, Crutzen R, Negueruela J, Ibrahim H, Winder ML, Brahma MK, Vekeriotaite B, Martens PJ, Singh SP, Rossello F, Lybaert P, Otonkoski T, Gysemans C, Wu W, Gurzov EN. PTPN2 Regulates the Interferon Signaling and Endoplasmic Reticulum Stress Response in Pancreatic β-Cells in Autoimmune Diabetes. Diabetes 2022; 71:653-668. [PMID: 35044456 DOI: 10.2337/db21-0443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of β-cells in the pancreas. Protein tyrosine phosphatases (PTPs) are candidate genes for T1D and play a key role in autoimmune disease development and β-cell dysfunction. Here, we assessed the global protein and individual PTP profiles in the pancreas from nonobese mice with early-onset diabetes (NOD) mice treated with an anti-CD3 monoclonal antibody and interleukin-1 receptor antagonist. The treatment reversed hyperglycemia, and we observed enhanced expression of PTPN2, a PTP family member and T1D candidate gene, and endoplasmic reticulum (ER) chaperones in the pancreatic islets. To address the functional role of PTPN2 in β-cells, we generated PTPN2-deficient human stem cell-derived β-like and EndoC-βH1 cells. Mechanistically, we demonstrated that PTPN2 inactivation in β-cells exacerbates type I and type II interferon signaling networks and the potential progression toward autoimmunity. Moreover, we established the capacity of PTPN2 to positively modulate the Ca2+-dependent unfolded protein response and ER stress outcome in β-cells. Adenovirus-induced overexpression of PTPN2 partially protected from ER stress-induced β-cell death. Our results postulate PTPN2 as a key protective factor in β-cells during inflammation and ER stress in autoimmune diabetes.
Collapse
Affiliation(s)
- Bernat Elvira
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Valerie Vandenbempt
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Julia Bauzá-Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Raphaël Crutzen
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Javier Negueruela
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matthew L Winder
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Manoja K Brahma
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Beata Vekeriotaite
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter-Jan Martens
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, KU Leuven, Leuven, Belgium
| | | | - Fernando Rossello
- University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Lybaert
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, KU Leuven, Leuven, Belgium
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
33
|
Shen Y, You Q, Wu Y, Wu J. Inhibition of PAD4-mediated NET formation by cl-amidine prevents diabetes development in nonobese diabetic mice. Eur J Pharmacol 2022; 916:174623. [PMID: 34767782 DOI: 10.1016/j.ejphar.2021.174623] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Many evidences indicated that neutrophil extracellular traps (NETs) play pathogenic roles in type 1 diabetes (T1D). Peptidylarginine deiminases 4 (PAD4) has been proved to be indispensable for generation of NETs. In the current study, we investigated whether oral administration of cl-amidine, an effective inhibitor of PAD4, protects non-obese diabetic (NOD) mice from T1D development. Female NOD mice were orally administrated with cl-amidine (5 μg/g body weight) from the age of 8 weeks up to 16 weeks. It showed that cl-amidine inhibit NET formation in vitro and in vivo. The onset of T1D was delayed nearly 8 weeks and the incidence of disease was significantly decreased in cl-amidine treated mice compared with the control group. Moreover, cl-amidine decreased the serum levels of anti-citrullinated peptide antibody (ACPA) and anti-neutrophil cytoplasmic antibodies (ANCA) in NOD mice. Also, it decreased generation of T1D autoantibodies such as glutamic acid decarboxylase antibody (GADA), tyrosine phosphatase-related islet antigen-2 antibody (IA2A) and zinc transporter 8 antibody (ZnT8A), which were strongly correlated with the reduced serum PAD4 and MPO-DNA levels. Furthermore, cl-amidine administration inhibited pancreatic inflammation and increased frequency of regulatory T cells in pancreatic lymph nodes (PLNs). In addition, cl-amidine improved gut barrier dysfunction and decreased the serum level of lipopolysaccharide (LPS), which was positively correlated with the NETs markers (PAD4 and MPO-DNA) and T1D autoantibody IA2A. In conclusion, our data showed that orally delivery of cl-amidine effectively prevent T1D development and suggested inhibition of PAD4-dependent NET formation as a potential way of clinical treatment in T1D.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Autoantibodies/blood
- Autoimmune Diseases/prevention & control
- Blood Glucose/drug effects
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Extracellular Traps/drug effects
- Female
- Inflammation/prevention & control
- Intestines/drug effects
- Mice, Inbred NOD
- Ornithine/administration & dosage
- Ornithine/analogs & derivatives
- Ornithine/pharmacology
- Protective Agents/administration & dosage
- Protective Agents/pharmacology
- Protein-Arginine Deiminase Type 4/antagonists & inhibitors
- Protein-Arginine Deiminase Type 4/blood
- Protein-Arginine Deiminase Type 4/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Tight Junctions/drug effects
- Mice
Collapse
Affiliation(s)
- Yiming Shen
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi You
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiling Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
34
|
Catriona C, Paolo P. SARS-CoV-2 induced post-translational protein modifications: A trigger for developing autoimmune diabetes? Diabetes Metab Res Rev 2022; 38:e3508. [PMID: 34990520 PMCID: PMC9015335 DOI: 10.1002/dmrr.3508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Emerging evidence indicates a bi-directional relationship between SARS-CoV-2 and diabetes. The possibility exists that SARS-CoV-2 could induce diabetes, but it is not yet clear whether this might be a fulminant-type diabetes, autoimmune diabetes, or a new-onset transient hyperglycaemia. This viewpoint discusses mechanisms by which SARS-CoV-2 might trigger type 1 diabetes mellitus (T1DM). Specifically, we looked at the role of post-translational protein modifications (PTMs) and the generation of neoepitopes as a potential mechanism in the induction of islet autoimmunity, and the pathways via which coronavirus infections might exacerbate the formation of PTMs and, in so doing, provoke the onset of T1DM.
Collapse
Affiliation(s)
| | - Pozzilli Paolo
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico UniversityRomeItaly
- Blizard InstituteBarts and The London School of Medicine and DentistryUniversity of LondonLondonUK
| |
Collapse
|
35
|
Callebaut A, Bruggeman Y, Zamit C, Sodré FMC, Irla M, Mathieu C, Buitinga M, Overbergh L. Aberrant expression of transglutaminase 2 in pancreas and thymus of NOD mice underscores the importance of deamidation in neoantigen generation. Front Endocrinol (Lausanne) 2022; 13:908248. [PMID: 35966081 PMCID: PMC9367685 DOI: 10.3389/fendo.2022.908248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Post-translational modifications can lead to a break in immune tolerance in autoimmune diseases such as type 1 diabetes (T1D). Deamidation, the conversion of glutamine to glutamic acid by transglutaminase (TGM) enzymes, is a post-translational modification of interest, with deamidated peptides being reported as autoantigens in T1D. However, little is known about how Tgm2, the most ubiquitously expressed Tgm isoform, is regulated and how tolerance against deamidated peptides is lost. Here, we report on the aberrant expression and regulation of Tgm2 in the pancreas and thymus of NOD mice. We demonstrate that Tgm2 expression is induced by the inflammatory cytokines IL1β and IFNγ in a synergistic manner and that murine pancreatic islets of NOD mice have higher Tgm2 levels, while Tgm2 levels in medullary thymic epithelial cells are reduced. We thus provide the first direct evidence to our knowledge that central tolerance establishment against deamidated peptides might be impaired due to lower Tgm2 expression in NOD medullary thymic epithelial cells, which together with the aberrantly high levels of deamidated peptides in NOD β-cells underscores the role of deamidation in amplifying T-cell reactivity.
Collapse
Affiliation(s)
- Aїsha Callebaut
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Ylke Bruggeman
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Cloé Zamit
- CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
| | - Fernanda Marques Câmara Sodré
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Microbiology, University of Sao Paulo, Sao Paulo, Brazil
| | - Magali Irla
- CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Mijke Buitinga
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lut Overbergh
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- *Correspondence: Lut Overbergh,
| |
Collapse
|
36
|
Sharma RK, Boddul SV, Yoosuf N, Turcinov S, Dubnovitsky A, Kozhukh G, Wermeling F, Kwok WW, Klareskog L, Malmström V. Biased TCR gene usage in citrullinated Tenascin C specific T-cells in rheumatoid arthritis. Sci Rep 2021; 11:24512. [PMID: 34972837 PMCID: PMC8720095 DOI: 10.1038/s41598-021-04291-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
We aimed to search for common features in the autoreactive T cell receptor (TCR) repertoire in patients with rheumatoid arthritis (RA), focusing on the newly identified candidate antigen citrullinated Tenascin C (cit-TNC). Mononuclear cells from peripheral blood or synovial fluid of eight RA-patients positive for the RA-associated HLA-DRB1*04:01 allele were in-vitro cultured with recently identified citrullinated peptides from Tenascin C. Antigen-specific T cells were isolated using peptide-HLA tetramer staining and subsequently single-cell sequenced for paired alpha/beta TCR analyses by bioinformatic tools. TCRs were re-expressed for further studies of antigen-specificity and T cell responses. Autoreactive T cell lines could be grown out from both peripheral blood and synovial fluid. We demonstrate the feasibility of retrieving true autoreactive TCR sequences by validating antigen-specificity in T cell lines with re-expressed TCRs. One of the Tenascin C peptides, cit-TNC22, gave the most robust T cell responses including biased TCR gene usage patterns. The shared TCR-beta chain signature among the cit-TNC22-specific TCRs was evident in blood and synovial fluid of different patients. The identification of common elements in the autoreactive TCR repertoire gives promise to the possibility of both immune monitoring of the autoimmune components in RA and of future antigen- or TCR-targeted specific intervention in subsets of patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Amino Acid Sequence
- Arthritis, Rheumatoid/etiology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Autoimmunity
- Biomarkers
- Child
- Conserved Sequence
- Disease Susceptibility/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Expression Regulation
- Humans
- Male
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Cell Antigen Receptor Specificity/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/physiology
- Tenascin/immunology
- Young Adult
Collapse
Affiliation(s)
- Ravi K Sharma
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Sanjay V Boddul
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Niyaz Yoosuf
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Sara Turcinov
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Anatoly Dubnovitsky
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Genadiy Kozhukh
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - William W Kwok
- The Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
37
|
Azoury ME, Samassa F, Buitinga M, Nigi L, Brusco N, Callebaut A, Giraud M, Irla M, Lalanne AI, Carré A, Afonso G, Zhou Z, Brandao B, Colli ML, Sebastiani G, Dotta F, Nakayama M, Eizirik DL, You S, Pinto S, Mamula MJ, Verdier Y, Vinh J, Buus S, Mathieu C, Overbergh L, Mallone R. CD8 + T Cells Variably Recognize Native Versus Citrullinated GRP78 Epitopes in Type 1 Diabetes. Diabetes 2021; 70:2879-2891. [PMID: 34561224 PMCID: PMC8660990 DOI: 10.2337/db21-0259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022]
Abstract
In type 1 diabetes, autoimmune β-cell destruction may be favored by neoantigens harboring posttranslational modifications (PTMs) such as citrullination. We studied the recognition of native and citrullinated glucose-regulated protein (GRP)78 peptides by CD8+ T cells. Citrullination modulated T-cell recognition and, to a lesser extent, HLA-A2 binding. GRP78-reactive CD8+ T cells circulated at similar frequencies in healthy donors and donors with type 1 diabetes and preferentially recognized either native or citrullinated versions, without cross-reactivity. Rather, the preference for native GRP78 epitopes was associated with CD8+ T cells cross-reactive with bacterial mimotopes. In the pancreas, a dominant GRP78 peptide was instead preferentially recognized when citrullinated. To further clarify these recognition patterns, we considered the possibility of citrullination in the thymus. Citrullinating peptidylarginine deiminase (Padi) enzymes were expressed in murine and human medullary epithelial cells (mTECs), with citrullinated proteins detected in murine mTECs. However, Padi2 and Padi4 expression was diminished in mature mTECs from NOD mice versus C57BL/6 mice. We conclude that, on one hand, the CD8+ T cell preference for native GRP78 peptides may be shaped by cross-reactivity with bacterial mimotopes. On the other hand, PTMs may not invariably favor loss of tolerance because thymic citrullination, although impaired in NOD mice, may drive deletion of citrulline-reactive T cells.
Collapse
Affiliation(s)
| | | | - Mijke Buitinga
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Laura Nigi
- Toscana Life Sciences, Diabetes Unit and Fondazione Umberto di Mario ONLUS, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Noemi Brusco
- Toscana Life Sciences, Diabetes Unit and Fondazione Umberto di Mario ONLUS, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Aïsha Callebaut
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Matthieu Giraud
- Centre de Recherche en Transplantation et Immunologie, INSERM UMR1064, Université de Nantes, Nantes, France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM, CNRS, Aix-Marseille University, Marseille, France
| | - Ana Ines Lalanne
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Alexia Carré
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Georgia Afonso
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Zhicheng Zhou
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Barbara Brandao
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Maikel L Colli
- Medical Faculty, Center for Diabetes Research and Welbio, Université Libre de Bruxelles, Brussels, Belgium
| | - Guido Sebastiani
- Toscana Life Sciences, Diabetes Unit and Fondazione Umberto di Mario ONLUS, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Francesco Dotta
- Toscana Life Sciences, Diabetes Unit and Fondazione Umberto di Mario ONLUS, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Decio L Eizirik
- Medical Faculty, Center for Diabetes Research and Welbio, Université Libre de Bruxelles, Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, IN
| | - Sylvaine You
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Sheena Pinto
- Division of Developmental Immunology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Yann Verdier
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Joelle Vinh
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Soren Buus
- Department of International Health, Immunology and Microbiology, Panum Institute, Copenhagen, Denmark
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
38
|
Clark AL, Yan Z, Chen SX, Shi V, Kulkarni DH, Diwan A, Remedi MS. High-fat diet prevents the development of autoimmune diabetes in NOD mice. Diabetes Obes Metab 2021; 23:2455-2465. [PMID: 34212475 PMCID: PMC8490276 DOI: 10.1111/dom.14486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022]
Abstract
AIMS Type 1 diabetes (T1D) has a strong genetic predisposition and requires an environmental trigger to initiate the beta-cell autoimmune destruction. The rate of childhood obesity has risen in parallel to the proportion of T1D, suggesting high-fat diet (HFD)/obesity as potential environmental triggers for autoimmune diabetes. To explore this, non-obese diabetic (NOD) mice were subjected to HFD and monitored for the development of diabetes, insulitis and beta-cell stress. MATERIALS AND METHODS Four-week-old female NOD mice were placed on HFD (HFD-NOD) or standard chow-diet. Blood glucose was monitored weekly up to 40 weeks of age, and glucose- and insulin-tolerance tests performed at 4, 10 and 15 weeks. Pancreata and islets were analysed for insulin secretion, beta-cell mass, inflammation, insulitis and endoplasmic reticulum stress markers. Immune cell levels were measured in islets and spleens. Stool microbiome was analysed at age 4, 8 and 25 weeks. RESULTS At early ages, HFD-NOD mice showed a significant increase in body weight, glucose intolerance and insulin resistance; but paradoxically, they were protected from developing diabetes. This was accompanied by increased insulin secretion and beta-cell mass, decreased insulitis, increased splenic T-regulatory cells and altered stool microbiome. CONCLUSIONS This study shows that HFD protects NOD mice from autoimmune diabetes and preserves beta-cell mass and function through alterations in gut microbiome, increased T-regulatory cells and decreased insulitis. Further studies into the exact mechanism of HFD-mediated prevention of diabetes in NOD mice could potentially lead to interventions to prevent or delay T1D development in humans.
Collapse
Affiliation(s)
- Amy L. Clark
- Department of PediatricsWashington University in St LouisSt LouisMissouriUSA
| | - Zihan Yan
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
| | - Sophia X. Chen
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
| | - Victoria Shi
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
| | - Devesha H. Kulkarni
- Department of Internal MedicineWashington University in St LouisSt LouisMissouriUSA
| | - Abhinav Diwan
- Department of Internal Medicine‐Cardiovascular DivisionWashington University in St LouisSt LouisMissouriUSA
- John Cochran VA Medical Center‐Cardiovascular DivisionSt LouisMissouriUSA
| | - Maria S. Remedi
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
- Department of Cell Biology and PhysiologyWashington University in St LouisSt LouisMissouriUSA
| |
Collapse
|
39
|
Brito MDF, Torre C, Silva-Lima B. Scientific Advances in Diabetes: The Impact of the Innovative Medicines Initiative. Front Med (Lausanne) 2021; 8:688438. [PMID: 34295913 PMCID: PMC8290522 DOI: 10.3389/fmed.2021.688438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes Mellitus is one of the World Health Organization's priority diseases under research by the first and second programmes of Innovative Medicines Initiative, with the acronyms IMI1 and IMI2, respectively. Up to October of 2019, 13 projects were funded by IMI for Diabetes & Metabolic disorders, namely SUMMIT, IMIDIA, DIRECT, StemBANCC, EMIF, EBiSC, INNODIA, RHAPSODY, BEAT-DKD, LITMUS, Hypo-RESOLVE, IM2PACT, and CARDIATEAM. In general, a total of €447 249 438 was spent by IMI in the area of Diabetes. In order to prompt a better integration of achievements between the different projects, we perform a literature review and used three data sources, namely the official project's websites, the contact with the project's coordinators and co-coordinator, and the CORDIS database. From the 662 citations identified, 185 were included. The data collected were integrated into the objectives proposed for the four IMI2 program research axes: (1) target and biomarker identification, (2) innovative clinical trials paradigms, (3) innovative medicines, and (4) patient-tailored adherence programmes. The IMI funded projects identified new biomarkers, medical and research tools, determinants of inter-individual variability, relevant pathways, clinical trial designs, clinical endpoints, therapeutic targets and concepts, pharmacologic agents, large-scale production strategies, and patient-centered predictive models for diabetes and its complications. Taking into account the scientific data produced, we provided a joint vision with strategies for integrating personalized medicine into healthcare practice. The major limitations of this article were the large gap of data in the libraries on the official project websites and even the Cordis database was not complete and up to date.
Collapse
Affiliation(s)
| | - Carla Torre
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| | - Beatriz Silva-Lima
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| |
Collapse
|
40
|
Amdare N, Purcell AW, DiLorenzo TP. Noncontiguous T cell epitopes in autoimmune diabetes: From mice to men and back again. J Biol Chem 2021; 297:100827. [PMID: 34044020 PMCID: PMC8233151 DOI: 10.1016/j.jbc.2021.100827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that affects the insulin-producing beta cells of the pancreatic islets. The nonobese diabetic mouse is a widely studied spontaneous model of the disease that has contributed greatly to our understanding of T1D pathogenesis. This is especially true in the case of antigen discovery. Upon review of existing knowledge concerning the antigens and peptide epitopes that are recognized by T cells in this model, good concordance is observed between mouse and human antigens. A fascinating recent illustration of the contribution of the nonobese diabetic mouse in the area of epitope identification is the discovery of noncontiguous CD4+ T cell epitopes. This novel epitope class is characterized by the linkage of an insulin-derived peptide to, most commonly, a fragment of a natural cleavage product of another beta cell secretory granule constituent. These so-called hybrid insulin peptides are also recognized by T cells in patients with T1D, although the precise mechanism for their generation has yet to be defined and is the subject of active investigation. Although evidence from the tumor immunology arena documented the existence of noncontiguous CD8+ T cell epitopes, generated by proteasome-mediated peptide splicing involving transpeptidation, such CD8+ T cell epitopes were thought to be a rare immunological curiosity. However, recent advances in bioinformatics and mass spectrometry have challenged this view. These developments, coupled with the discovery of hybrid insulin peptides, have spurred a search for noncontiguous CD8+ T cell epitopes in T1D, an exciting frontier area still in its infancy.
Collapse
Affiliation(s)
- Nitin Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA; The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
41
|
Arif S, Pujol-Autonell I, Kamra Y, Williams E, Yusuf N, Domingo-Vila C, Shahrabi Y, Pollock E, Khatri L, Peakman M, Tree T, Lorenc A. Mapping T Cell Responses to Native and Neo-Islet Antigen Epitopes in at Risk and Type 1 Diabetes Subjects. Front Immunol 2021; 12:675746. [PMID: 34262563 PMCID: PMC8274489 DOI: 10.3389/fimmu.2021.675746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022] Open
Abstract
Aims Recent studies highlight the potentially important role of neoepitopes in breaking immune tolerance in type 1 diabetes. T cell reactivity to these neoepitopes has been reported, but how this response compares quantitatively and phenotypically with previous reports on native epitopes is not known. Thus, an understanding of the relationship between native and neoepitopes and their role as tolerance breakers or disease drivers in type 1 diabetes is required. We set out to compare T cell reactivity and phenotype against a panel of neo- and native islet autoantigenic epitopes to examine how this relates to stages of type 1 diabetes development. Methods Fifty-four subjects comprising patients with T1D, and autoantibody-positive unaffected family members were tested against a panel of neo- and native epitopes by ELISPOT (IFN-γ, IL-10, and IL-17). A further subset of two patients was analyzed by Single Cell Immune Profiling (RNAseq and TCR α/β) after stimulation with pools of native and neoepitope peptides. Results T cell responses to native and neoepitopes were present in patients with type 1 diabetes and at-risk subjects, and overall, there were no significant differences in the frequency, magnitude, or phenotype between the two sets of peptide stimuli. Single cell RNAseq on responder T cells revealed a similar profile in T1D patients stimulated with either neo- or native epitopes. A pro-inflammatory gene expression profile (TNF-α, IFN-γ) was dominant in both native and neoepitope stimulated T cells. TCRs with identical clonotypes were found in T cell responding to both native and neoepitopes. Conclusion/Interpretation These data suggest that in peripheral blood, T cell responses to both native and neoepitopes are similar in terms of frequency and phenotype in patients with type 1 diabetes and high-risk unaffected family members. Furthermore, using a combination of transcriptomic and clonotypic analyses, albeit using a limited panel of peptides, we show that neoepitopes are comparable to native epitopes currently in use for immune-monitoring studies.
Collapse
Affiliation(s)
- Sefina Arif
- Department of Immunobiology, King’s College London, Guy’s Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang ML, Sodré FMC, Mamula MJ, Overbergh L. Citrullination and PAD Enzyme Biology in Type 1 Diabetes - Regulators of Inflammation, Autoimmunity, and Pathology. Front Immunol 2021; 12:678953. [PMID: 34140951 PMCID: PMC8204103 DOI: 10.3389/fimmu.2021.678953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
The generation of post-translational modifications (PTMs) in human proteins is a physiological process leading to structural and immunologic variety in proteins, with potentially altered biological functions. PTMs often arise through normal responses to cellular stress, including general oxidative changes in the tissue microenvironment and intracellular stress to the endoplasmic reticulum or immune-mediated inflammatory stresses. Many studies have now illustrated the presence of 'neoepitopes' consisting of PTM self-proteins that induce robust autoimmune responses. These pathways of inflammatory neoepitope generation are commonly observed in many autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes (T1D), among others. This review will focus on one specific PTM to self-proteins known as citrullination. Citrullination is mediated by calcium-dependent peptidylarginine deiminase (PAD) enzymes, which catalyze deimination, the conversion of arginine into the non-classical amino acid citrulline. PADs and citrullinated peptides have been associated with different autoimmune diseases, notably with a prominent role in the diagnosis and pathology of rheumatoid arthritis. More recently, an important role for PADs and citrullinated self-proteins has emerged in T1D. In this review we will provide a comprehensive overview on the pathogenic role for PADs and citrullination in inflammation and autoimmunity, with specific focus on evidence for their role in T1D. The general role of PADs in epigenetic and transcriptional processes, as well as their crucial role in histone citrullination, neutrophil biology and neutrophil extracellular trap (NET) formation will be discussed. The latter is important in view of increasing evidence for a role of neutrophils and NETosis in the pathogenesis of T1D. Further, we will discuss the underlying processes leading to citrullination, the genetic susceptibility factors for increased recognition of citrullinated epitopes by T1D HLA-susceptibility types and provide an overview of reported autoreactive responses against citrullinated epitopes, both of T cells and autoantibodies in T1D patients. Finally, we will discuss recent observations obtained in NOD mice, pointing to prevention of diabetes development through PAD inhibition, and the potential role of PAD inhibitors as novel therapeutic strategy in autoimmunity and in T1D in particular.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Fernanda M C Sodré
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| | - Mark J Mamula
- Section of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Lut Overbergh
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Chaerkady R, Zhou Y, Delmar JA, Weng SHS, Wang J, Awasthi S, Sims D, Bowen MA, Yu W, Cazares LH, Sims GP, Hess S. Characterization of Citrullination Sites in Neutrophils and Mast Cells Activated by Ionomycin via Integration of Mass Spectrometry and Machine Learning. J Proteome Res 2021; 20:3150-3164. [PMID: 34008986 DOI: 10.1021/acs.jproteome.1c00028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Citrullination is an important post-translational modification implicated in many diseases including rheumatoid arthritis (RA), Alzheimer's disease, and cancer. Neutrophil and mast cells have different expression profiles for protein-arginine deiminases (PADs), and ionomycin-induced activation makes them an ideal cellular model to study proteins susceptible to citrullination. We performed high-resolution mass spectrometry and stringent data filtration to identify citrullination sites in neutrophil and mast cells treated with and without ionomycin. We identified a total of 833 validated citrullination sites on 395 proteins. Several of these citrullinated proteins are important components of pathways involved in innate immune responses. Using this benchmark primary sequence data set, we developed machine learning models to predict citrullination in neutrophil and mast cell proteins. We show that our models predict citrullination likelihood with 0.735 and 0.766 AUCs (area under the receiver operating characteristic curves), respectively, on independent validation sets. In summary, this study provides the largest number of validated citrullination sites in neutrophil and mast cell proteins. The use of our novel motif analysis approach to predict citrullination sites will facilitate the discovery of novel protein substrates of protein-arginine deiminases (PADs), which may be key to understanding immunopathologies of various diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael A Bowen
- Antibody Discovery and Protein Engineering (ADPE), R&D AstraZeneca, Gaithersburg, Maryland 20878, United States
| | | | | | | | | |
Collapse
|
44
|
Bruggeman Y, Sodré FMC, Buitinga M, Mathieu C, Overbergh L, Kracht MJL. Targeting citrullination in autoimmunity: insights learned from preclinical mouse models. Expert Opin Ther Targets 2021; 25:269-281. [PMID: 33896351 DOI: 10.1080/14728222.2021.1918104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Aberrant citrullination and excessive peptidylarginine deiminase (PAD) activity are detected in numerous challenging autoimmune diseases such as rheumatoid arthritis, inflammatory bowel diseases, systemic lupus erythematosus, multiple sclerosis, and type 1 diabetes. Because excessive PAD activity is a common denominator in these diseases, PADs are interesting potential therapeutic targets for future therapies. AREAS COVERED This review summarizes the advances made in the design of PAD inhibitors, their utilization and therapeutic potential in preclinical mouse models of autoimmunity. Relevant literature encompasses studies from 1994 to 2021 that are available on PubMed.gov. EXPERT OPINION Pan-PAD inhibition is a promising therapeutic strategy for autoimmune diseases. Drugs achieving pan-PAD inhibition were capable of ameliorating, reversing, and preventing clinical symptoms in preclinical mouse models. However, the implications for PADs in key biological processes potentially present a high risk for clinical complications and could hamper the translation of PAD inhibitors to the clinic. We envisage that PAD isozyme-specific inhibitors will improve the understanding the role of PAD isozymes in disease pathology, reduce the risk of side-effects and enhance prospects for future clinical translation.
Collapse
Affiliation(s)
- Ylke Bruggeman
- Department of Chronic Diseases and Metabolism, Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Fernanda M C Sodré
- Department of Chronic Diseases and Metabolism, Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Mijke Buitinga
- Department of Chronic Diseases and Metabolism, Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium.,Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Chantal Mathieu
- Department of Chronic Diseases and Metabolism, Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Department of Chronic Diseases and Metabolism, Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Maria J L Kracht
- Department of Chronic Diseases and Metabolism, Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Rodriguez-Calvo T, Johnson JD, Overbergh L, Dunne JL. Neoepitopes in Type 1 Diabetes: Etiological Insights, Biomarkers and Therapeutic Targets. Front Immunol 2021; 12:667989. [PMID: 33953728 PMCID: PMC8089389 DOI: 10.3389/fimmu.2021.667989] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying type 1 diabetes (T1D) pathogenesis remain largely unknown. While autoantibodies to pancreatic beta-cell antigens are often the first biological response and thereby a useful biomarker for identifying individuals in early stages of T1D, their role in T1D pathogenesis is not well understood. Recognition of these antigenic targets by autoreactive T-cells plays a pathological role in T1D development. Recently, several beta-cell neoantigens have been described, indicating that both neoantigens and known T1D antigens escape central or peripheral tolerance. Several questions regarding the mechanisms by which tolerance is broken in T1D remain unanswered. Further delineating the timing and nature of antigenic responses could allow their use as biomarkers to improve staging, as targets for therapeutic intervention, and lead to a better understanding of the mechanisms leading to loss of tolerance. Multiple factors that contribute to cellular stress may result in the generation of beta-cell derived neoepitopes and contribute to autoimmunity. Understanding the cellular mechanisms that induce beta-cells to produce neoantigens has direct implications on development of therapies to intercept T1D disease progression. In this perspective, we will discuss evidence for the role of neoantigens in the pathogenesis of T1D, including antigenic responses and cellular mechanisms. We will additionally discuss the pathways leading to neoepitope formation and the cross talk between the immune system and the beta-cells in this regard. Ultimately, delineating the timing of neoepitope generation in T1D pathogenesis will determine their role as biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Munich, Germany
| | - James D. Johnson
- Diabetes Research Group, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Lut Overbergh
- Laboratory Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Jessica L. Dunne
- Janssen Research and Development, LLC, Raritan, NJ, United States
| |
Collapse
|
46
|
Landry LG, Anderson AM, Russ HA, Yu L, Kent SC, Atkinson MA, Mathews CE, Michels AW, Nakayama M. Proinsulin-Reactive CD4 T Cells in the Islets of Type 1 Diabetes Organ Donors. Front Endocrinol (Lausanne) 2021; 12:622647. [PMID: 33841327 PMCID: PMC8027116 DOI: 10.3389/fendo.2021.622647] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Proinsulin is an abundant protein that is selectively expressed by pancreatic beta cells and has been a focus for development of antigen-specific immunotherapies for type 1 diabetes (T1D). In this study, we sought to comprehensively evaluate reactivity to preproinsulin by CD4 T cells originally isolated from pancreatic islets of organ donors having T1D. We analyzed 187 T cell receptor (TCR) clonotypes expressed by CD4 T cells obtained from six T1D donors and determined their response to 99 truncated preproinsulin peptide pools, in the presence of autologous B cells. We identified 14 TCR clonotypes from four out of the six donors that responded to preproinsulin peptides. Epitopes were found across all of proinsulin (insulin B-chain, C-peptide, and A-chain) including four hot spot regions containing peptides commonly targeted by TCR clonotypes derived from multiple T1D donors. Of importance, these hot spots overlap with peptide regions to which CD4 T cell responses have previously been detected in the peripheral blood of T1D patients. The 14 TCR clonotypes recognized proinsulin peptides presented by various HLA class II molecules, but there was a trend for dominant restriction with HLA-DQ, especially T1D risk alleles DQ8, DQ2, and DQ8-trans. The characteristics of the tri-molecular complex including proinsulin peptide, HLA-DQ molecule, and TCR derived from CD4 T cells in islets, provides an essential basis for developing antigen-specific biomarkers as well as immunotherapies.
Collapse
Affiliation(s)
- Laurie G. Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Amanda M. Anderson
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Holger A. Russ
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Sally C. Kent
- Diabetes Center of Excellence, Department of Medicine, Division of Diabetes, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aaron W. Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
47
|
Non-Genetically Encoded Epitopes Are Relevant Targets in Autoimmune Diabetes. Biomedicines 2021; 9:biomedicines9020202. [PMID: 33671312 PMCID: PMC7922826 DOI: 10.3390/biomedicines9020202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Islet antigen reactive T cells play a key role in promoting beta cell destruction in type 1 diabetes (T1D). Self-reactive T cells are typically deleted through negative selection in the thymus or deviated to a regulatory phenotype. Nevertheless, those processes are imperfect such that even healthy individuals have a reservoir of potentially autoreactive T cells. What remains less clear is how tolerance is lost to insulin and other beta cell specific antigens. Islet autoantibodies, the best predictor of disease risk, are known to recognize classical antigens such as proinsulin, GAD65, IA-2, and ZnT8. These antibodies are thought to be supported by the expansion of autoreactive CD4+ T cells that recognize these same antigenic targets. However, recent studies have identified new classes of non-genetically encoded epitopes that may reflect crucial gaps in central and peripheral tolerance. Notably, some of these specificities, including epitopes from enzymatically post-translationally modified antigens and hybrid insulin peptides, are present at relatively high frequencies in the peripheral blood of patients with T1D. We conclude that CD4+ T cells that recognize non-genetically encoded epitopes are likely to make an important contribution to the progression of islet autoimmunity in T1D. We further propose that these classes of neo-epitopes should be considered as possible targets for strategies to induce antigen specific tolerance.
Collapse
|
48
|
Sodré FMC, Bissenova S, Bruggeman Y, Tilvawala R, Cook DP, Berthault C, Mondal S, Callebaut A, You S, Scharfmann R, Mallone R, Thompson PR, Mathieu C, Buitinga M, Overbergh L. Peptidylarginine Deiminase Inhibition Prevents Diabetes Development in NOD Mice. Diabetes 2021; 70:516-528. [PMID: 33203696 PMCID: PMC7881854 DOI: 10.2337/db20-0421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Protein citrullination plays a role in several autoimmune diseases. Its involvement in murine and human type 1 diabetes has recently been recognized through the discovery of antibodies and T-cell reactivity against citrullinated peptides. In the current study, we demonstrate that systemic inhibition of peptidylarginine deiminases (PADs), the enzymes mediating citrullination, through BB-Cl-amidine treatment, prevents diabetes development in NOD mice. This prevention was associated with reduced levels of citrullination in the pancreas, decreased circulating autoantibody titers against citrullinated glucose-regulated protein 78, and reduced spontaneous neutrophil extracellular trap formation of bone marrow-derived neutrophils. Moreover, BB-Cl-amidine treatment induced a shift from Th1 to Th2 cytokines in the serum and an increase in the frequency of regulatory T cells in the blood and spleen. In the pancreas, BB-Cl-amidine treatment preserved insulin production and was associated with a less destructive immune infiltrate characterized by reduced frequencies of effector memory CD4+ T cells and a modest reduction in the frequency of interferon-γ-producing CD4+ and CD8+ T cells. Our results point to a role of citrullination in the pathogenesis of autoimmune diabetes, with PAD inhibition leading to disease prevention through modulation of immune pathways. These findings provide insight in the potential of PAD inhibition for treating autoimmune diseases like type 1 diabetes.
Collapse
Affiliation(s)
- Fernanda M C Sodré
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Samal Bissenova
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Ylke Bruggeman
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Ronak Tilvawala
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS
| | - Dana P Cook
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Claire Berthault
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Santanu Mondal
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Aïsha Callebaut
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Sylvaine You
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires de Paris Centre-Université de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, Paris, France
| | - Paul R Thompson
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Chantal Mathieu
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Mijke Buitinga
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Callebaut A, Derua R, Vig S, Delong T, Mathieu C, Overbergh L. Identification of Deamidated Peptides in Cytokine-Exposed MIN6 Cells through LC-MS/MS Using a Shortened Digestion Time and Inspection of MS2 Spectra. J Proteome Res 2020; 20:1405-1414. [PMID: 33372785 DOI: 10.1021/acs.jproteome.0c00801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzymatic deamidation, the conversion of glutamine (Gln) into glutamic acid (Glu) residues, mediated by tissue transglutaminase enzymes, can provoke autoimmunity by generating altered self-epitopes, a process well-known in celiac disease and more recently also described in type 1 diabetes (T1D). To identify deamidated proteins, liquid chromatography-tandem mass spectrometry is the method of choice. However, as nonenzymatic deamidations on asparagine (Asn) and to a minor extent on Gln are frequently induced in vitro during proteomics sample preparation, the accurate detection of in vivo deamidation can be hampered. Here we report on the optimization of a method to reduce in vitro generated deamidation by 70% using improved trypsin digestion conditions (90 min/pH 8). We also point to the critical importance of manual inspection of MS2 spectra, considering that only 55% of the high quality peptides with Gln deamidation were assigned correctly using an automated search algorithm. As proof of principal, using these criteria, we showed a significant increase in levels of both Asn and Gln deamidation in cytokine-exposed murine MIN6 β-cells, paralleled by an increase in tissue transglutaminase activity. These findings add evidence to the hypothesis that deamidation is occurring in stressed β-cell proteins and can be involved in the autoimmune process in T1D.
Collapse
Affiliation(s)
- Aïsha Callebaut
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, 3000 Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, 3000 Leuven, Belgium.,SyBioMa, KU Leuven, 3000 Leuven, Belgium
| | - Saurabh Vig
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, 3000 Leuven, Belgium
| | - Thomas Delong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, Colorado 80045, United States
| | - Chantal Mathieu
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, 3000 Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
50
|
Minati R, Perreault C, Thibault P. A Roadmap Toward the Definition of Actionable Tumor-Specific Antigens. Front Immunol 2020; 11:583287. [PMID: 33424836 PMCID: PMC7793940 DOI: 10.3389/fimmu.2020.583287] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
The search for tumor-specific antigens (TSAs) has considerably accelerated during the past decade due to the improvement of proteogenomic detection methods. This provides new opportunities for the development of novel antitumoral immunotherapies to mount an efficient T cell response against one or multiple types of tumors. While the identification of mutated antigens originating from coding exons has provided relatively few TSA candidates, the possibility of enlarging the repertoire of targetable TSAs by looking at antigens arising from non-canonical open reading frames opens up interesting avenues for cancer immunotherapy. In this review, we outline the potential sources of TSAs and the mechanisms responsible for their expression strictly in cancer cells. In line with the heterogeneity of cancer, we propose that discrete families of TSAs may be enriched in specific cancer types.
Collapse
Affiliation(s)
- Robin Minati
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|