1
|
Tunçyürekli M, Tülüce Y, Erciyas FL. Evaluation of the toxicity potential of exercise and atorvastatin/metformin combination therapy on STZ-diabetic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5989-6007. [PMID: 39625487 DOI: 10.1007/s00210-024-03663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/20/2024] [Indexed: 04/11/2025]
Abstract
Exercise is recommended for individuals with diabetes, and metformin and atorvastatin are commonly prescribed to diabetic patients. However, these two drugs have potential effects that may lead to toxicity in the skeletal muscle system. Therefore, the effects and potential interactions of combining these two drugs on skeletal muscle performance and structure were investigated in vivo in an experimental diabetes model. Male Wistar rats were divided into six groups: a sedentary control group (N) and five treatment groups-exercise (C), diabetes (D), diabetes with metformin (MET), diabetes with atorvastatin (ATO), and diabetes with metformin and atorvastatin (MET + ATO). In the diabetes model experimentally created with streptozotocin (STZ; 45 mg/kg, i.p.) and metformin (300 mg/kg/day), atorvastatin (10 mg/kg/day) was administered to drug groups by gavage during the 4-week study period. The rats were allowed to run (at moderate level) for 30 min, 5 days a week, on the treadmill. At the end of the study, blood samples and gastrocnemius muscle tissues of the rats were obtained under ketamine anesthesia (100 mg/kg; i.p). The effects of combining exercise and medication on skeletal muscle were assessed by examining the levels of significant biomarkers including PGC-1α, UCP-3, and MyHCs, as well as analyzing oxidative stress/antioxidant capacity parameters in muscle tissue samples. Additionally, relevant biochemical indicators were determined in serum samples. The quantity and morphology of mitochondria in muscle tissue were assessed using transmission electron microscopy. It was observed in the study that some toxic effects associated with the use of drugs alone were reduced by combination therapy. It is thought that this study will contribute to the literature in the evaluation of the effects of drugs and their combined use in Type 1 diabetes under exercise conditions.
Collapse
MESH Headings
- Animals
- Atorvastatin/toxicity
- Atorvastatin/administration & dosage
- Male
- Rats, Wistar
- Metformin/toxicity
- Metformin/administration & dosage
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/blood
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Muscle, Skeletal/pathology
- Physical Conditioning, Animal
- Hypoglycemic Agents/toxicity
- Hypoglycemic Agents/administration & dosage
- Drug Therapy, Combination
- Rats
- Streptozocin
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Oxidative Stress/drug effects
Collapse
Affiliation(s)
- Merve Tunçyürekli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Van Yüzüncü Yıl University, Van, Türkiye
| | - Yasin Tülüce
- Department of Medical Biology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Türkiye.
| | | |
Collapse
|
2
|
Noor RAM, Shah NSM, Zin AAM, Sulaiman WAW. Novel cytochrome c-oxidase deficiency and mitochondrial myopathy in non-syndromic cleft lip with or without palate. Tissue Cell 2025; 95:102887. [PMID: 40187006 DOI: 10.1016/j.tice.2025.102887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/22/2025] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
The role of mitochondria in regulating cells during the embryonic phase is crucial, yet their function in causing deformation to orbicularis oris muscle of cleft lip remains controversial. The study was performed to explore morphological abnormalities of orbicularis oris muscle and mitochondria in patients with cleft lip with or without palate. Seventeen cleft lip tissue samples were obtained from consented patients who underwent cleft lip repair. All tissue samples were processed according to the respective analyses: modified Gomori trichrome, cytochrome c-oxidase (COX), adenosine triphosphatase (ATP-ase), and transmission electron microscopy (TEM). Fiber types and the sizes of fibers and mitochondria were determined using ImageJ processing program. The pathological hallmark of mitochondrial myopathy, which was the presence of ragged red fibers, and the presence of novel COX-negative fibers were observed in cleft lip tissues. Muscle fiber type ratio for type II fibers was found to be predominant in orbicularis oris muscle of cleft lip tissues with 78.43 %, while type I fibers was 21.57 %. The diameters of the fibers were 6.37 µm for type I, and 6.87 µm for type II. By means of electron microscopy, minimal accumulation of mitochondria and excessive lipid droplets were noted within the myofibrils of cleft lip orbicularis oris muscle. This report on series of pathologic features of the orbicularis oris muscle and mitochondria provides insights into the possibility of impaired mitochondrial function in non-syndromic cleft lip.
Collapse
Affiliation(s)
- Rabiatul Adawiyah Mohamad Noor
- Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Nurul Syazana Mohamad Shah
- Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Anani Aila Mat Zin
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Wan Azman Wan Sulaiman
- Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
3
|
Wang T, Sun X, Zhang Y, Wang Q, Cheng W, Gao Y, Shi X, Jin J. Baicalin Promotes Skeletal Muscle Fiber Remodeling by Activating the p38MAPK/PGC-1α Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6878-6889. [PMID: 40103396 DOI: 10.1021/acs.jafc.5c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Skeletal muscle is the major tissue for metabolic activity in the body and performs a variety of physiological functions. Among these, muscle fiber types are decisive in muscle function and meat quality. Numerous studies have shown that natural products can affect the development of skeletal muscle, regulate the formation of muscle fibers, and impact muscle function under physiological or pathological conditions. Baicalin, a natural flavonoid compound mainly derived from the dried roots of Scutellaria baicalensis, has been reported to affect glucose metabolism and insulin resistance in skeletal muscle. However, the role of baicalin in the conversion of skeletal muscle fiber types and its underlying mechanisms remain unclear. This study aimed to explore the effects of baicalin on skeletal muscle fiber conversion in vitro and in vivo. The in vitro experiment used C2C12 cells as a model, with a baicalin treatment concentration of 125 μM; the in vivo experiment used C57BL/6J mice and weaned piglets as the models. The results showed that baicalin could participate in the remodeling of skeletal muscle fibers, promoting the conversion from glycolytic fibers to oxidative fibers in mice and pigs. This was evidenced by increased protein and mRNA expression levels of genes related to oxidative fibers, upregulated SDH enzyme activity, and mitochondrial complex expression in vivo and in vitro, while the protein and mRNA expression levels of genes related to glycolytic fibers were decreased, and LDH enzyme activity was downregulated. Mechanistic studies revealed that baicalin, as a small molecule, could target and bind to the p38 MAPK protein, increase its expression and phosphorylation levels, and activate the p38 MAPK/PGC-1α signaling pathway. Collectively, these data showed that baicalin induced a shift in skeletal muscle fiber composition from glycolytic to oxidative myofibers by activating the p38 MAPK/PGC-1α signaling pathway, thereby affecting the meat quality.
Collapse
Affiliation(s)
- Teng Wang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohui Sun
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yidi Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyan Wang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenhui Cheng
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuhui Gao
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Lee JH, Jung IR, Tu-Sekine B, Jin S, Anokye-Danso F, Ahima RS, Kim SF. Loss of Skeletal Muscle Inositol Polyphosphate Multikinase Disrupts Glucose Regulation and Limits Exercise Capacity. Int J Mol Sci 2025; 26:2395. [PMID: 40141045 PMCID: PMC11942489 DOI: 10.3390/ijms26062395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Inositol phosphates are critical signaling messengers involved in a wide range of biological pathways, and inositol polyphosphate multikinase (IPMK) functions as a rate-limiting enzyme for inositol polyphosphate metabolism. IPMK has been implicated in cellular metabolism, but its function at the systemic level is still poorly understood. Since skeletal muscle is a major contributor to energy homeostasis, we have developed a mouse model in which skeletal muscle IPMK is specifically deleted and examined how a loss of IPMK affects whole-body metabolism. Here, we report that skeletal-muscle-specific IPMK knockout mice exhibited a ~12% increase in body weight compared to WT controls (p < 0.05). These mice also showed a significantly impaired glucose tolerance, as indicated by their ~50% higher blood glucose levels during GTT. Additionally, exercise capacity was reduced by ~45% in IPMK-MKO mice, demonstrating a decline in endurance. Moreover, these metabolic alterations were accompanied by a 2.5-fold increase in skeletal muscle triglyceride accumulation, suggesting impaired lipid metabolism. Further analysis revealed that IPMK-deficient myocytes exhibited 30% lower β-oxidation rates. Thus, our results suggest that IPMK mediates whole-body metabolism by regulating muscle metabolism and may be potentially targeted for the treatment of metabolic syndromes.
Collapse
Affiliation(s)
| | | | | | | | | | - Rexford S. Ahima
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, MD 21218, USA; (J.-H.L.); (I.-R.J.); (B.T.-S.); (F.A.-D.)
| | - Sangwon F. Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, MD 21218, USA; (J.-H.L.); (I.-R.J.); (B.T.-S.); (F.A.-D.)
| |
Collapse
|
5
|
Osmancevic A, Allison M, Miljkovic I, Vella CA, Ouyang P, Trimpou P, Daka B. Exploring the Relationships between Sex Hormones and Abdominal Muscle Area and Radiodensity in Postmenopausal Women: Insights from the Multi-Ethnic Study of Atherosclerosis. Maturitas 2025; 194:108197. [PMID: 39827737 DOI: 10.1016/j.maturitas.2025.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The relationships between sex hormone levels and muscle composition in postmenopausal women remain underexplored. To address this gap, we conducted a cross-sectional observational study utilizing data from the Multi-Ethnic Study of Atherosclerosis. Our analysis included 682 postmenopausal women aged 45-84 years with complete data, with a mean age of 63.3 years. Using abdominal computed tomography, we assessed abdominal muscle area (cm2) and muscle radiodensity (Hounsfield units) in relation to serum levels of testosterone (total and free), estradiol, and sex hormone binding globulin (SHBG), measured in nmol/L. Multivariable linear regression models, adjusting for potential confounders, were employed to investigate these associations. In our fully adjusted models, higher levels of estradiol and free testosterone were found to be positively associated with total area of abdominal muscle (β = 1.41, 95 % CI 0.4, 2.4, p = 0.007 and β = 18.5, 95 % CI 4.0, 33.1, p = 0.004, respectively), but not with muscle radiodensity (p > 0.05). Conversely, elevated levels of SHBG were associated with a smaller total of area abdominal muscle and radiodensity (β = -2.1, 95 % CI -3.2, -0.9, p = 0.001 and β = -0.32, 95 % CI -0.6, -0.0, p = 0.07, respectively). Our study highlights significant associations between sex hormone levels and skeletal muscle area in postmenopausal women. Furthermore, the novel findings regarding SHBG and muscle composition suggest a potential previously unrecognized role of SHBG in the accumulation of skeletal muscle adipose tissue. However, further validation in other cohorts is necessary to elucidate the potential role of SHBG in body composition. Clinical Trial: NCT00005487.
Collapse
Affiliation(s)
- Amar Osmancevic
- General Practice/Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Matthew Allison
- Division of Preventive Medicine, School of Medicine, UC San Diego, San Diego, CA, United States of America
| | - Iva Miljkovic
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Chantal A Vella
- Department of Movement Sciences, University of Idaho, Moscow, ID, United States of America
| | - Pamela Ouyang
- Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Penelope Trimpou
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bledar Daka
- General Practice/Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Salagre D, Bajit H, Fernández-Vázquez G, Dwairy M, Garzón I, Haro-López R, Agil A. Melatonin induces fiber switching by improvement of mitochondrial oxidative capacity and function via NRF2/RCAN/MEF2 in the vastus lateralis muscle from both sex Zücker diabetic fatty rats. Free Radic Biol Med 2025; 227:322-335. [PMID: 39645208 DOI: 10.1016/j.freeradbiomed.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The positive role of melatonin in obesity control and skeletal muscle (SKM) preservation is well known. We recently showed that melatonin improves vastus lateralis muscle (VL) fiber oxidative phenotype. However, fiber type characterization, mitochondrial function, and molecular mechanisms that underlie VL fiber switching by melatonin are still undefined. Our study aims to investigate whether melatonin induces fiber switching by NRF2/RCAN/MEF2 pathway activation and mitochondrial oxidative metabolism modulation in the VL of both sex Zücker diabetic fatty (ZDF) rats. 5-Weeks-old male and female ZDF rats (N = 16) and their age-matched lean littermates (ZL) were subdivided into two subgroups: control (C) and orally treated with melatonin (M) (10 mg/kg/day) for 12 weeks. Interestingly, melatonin increased oxidative fibers amounts (Types I and IIa) counteracting the decreased levels found in the VL of obese-diabetic rats, and upregulated NRF2, calcineurin and MEF2 expression. Melatonin also restored the mitochondrial oxidative capacity increasing the respiratory control ratio (RCR) in both sex and phenotype rats through the reduction of the proton leak component of respiration (state 4). Melatonin also improved the VL mitochondrial phosphorylation coefficient and modulated the total oxygen consumption by enhancing complex I, III and IV activity, and fatty acid oxidation (FAO) in both sex obese-diabetic rats, decreasing in male and increasing in female the complex II oxygen consumption. These findings suggest that melatonin treatment induces fiber switching in SKM improving mitochondrial functionality by NRF2/RCAN/MEF2 pathway activation.
Collapse
Affiliation(s)
- Diego Salagre
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Habiba Bajit
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | | | - Mutaz Dwairy
- Department of Civil Engineering, Yarmuk University, 21163, Irbid, Jordan
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, BioHealth Institute Granada (IBs Granada), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Rocío Haro-López
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Ahmad Agil
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
7
|
Chen S, Lee YB, Song MY, Lim C, Cho H, Shim HJ, Kim JS, Park BH, Kim JK, Bae EJ. Cannabidiol reshapes the gut microbiome to promote endurance exercise in mice. Exp Mol Med 2025; 57:489-500. [PMID: 39966566 PMCID: PMC11873264 DOI: 10.1038/s12276-025-01404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 02/20/2025] Open
Abstract
Cannabidiol (CBD), a nonpsychoactive compound from Cannabis, has various bioactive functions in humans and animals. Evidence suggests that CBD promotes muscle injury recovery in athletes, but whether and how CBD improves endurance performance remains unclear. Here we investigated the effects of CBD treatment on exercise performance in mice and assessed whether this effect involves the gut microbiome. CBD administration significantly increased treadmill running performance in mice, accompanied by an increase in oxidative myofiber composition. CBD also increased mitochondrial biogenesis and the expression of associated genes such as PGC-1α, phosphorylated CREB and AMPK in muscle tissue. Interestingly, CBD altered the composition of the gut microbiome, and antibiotic treatment reduced the muscle endurance-enhancing effects of CBD and mitochondrial biogenesis. We isolated Bifidobacterium animalis, a microbe increased by CBD administration, and named it KBP-1. Treatment with B. animalis KBP-1 in mice resulted in improved running performance. Whole-genome analysis revealed that B. animalis KBP-1 presented high expression of genes involved in branched-chain amino acid biosynthesis, expression of branched-chain amino acid release pumps and metabolism of lactic acid. In summary, our study identified CBD and B. animalis KBP-1 as potential endurance exercise-promoting agents.
Collapse
Affiliation(s)
- Si Chen
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yu-Bin Lee
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mi-Young Song
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Changjin Lim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hwangeui Cho
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyun Joo Shim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Byung-Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea
| | - Jeon-Kyung Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea.
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
8
|
Pesta D, Anadol-Schmitz E, Sarabhai T, Op den Kamp Y, Gancheva S, Trinks N, Zaharia OP, Mastrototaro L, Lyu K, Habets I, Op den Kamp-Bruls YMH, Dewidar B, Weiss J, Schrauwen-Hinderling V, Zhang D, Gaspar RC, Strassburger K, Kupriyanova Y, Al-Hasani H, Szendroedi J, Schrauwen P, Phielix E, Shulman GI, Roden M. Determinants of increased muscle insulin sensitivity of exercise-trained versus sedentary normal weight and overweight individuals. SCIENCE ADVANCES 2025; 11:eadr8849. [PMID: 39742483 PMCID: PMC11691647 DOI: 10.1126/sciadv.adr8849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals. This observational study found that ATHL show higher insulin sensitivity, muscle mitochondrial content, and capacity, but lower activation of novel protein kinase C (nPKC) isoforms, despite higher diacylglycerol concentrations. Notably, sedentary but insulin sensitive OVWE feature lower plasma membrane-to-mitochondria sn-1,2-diacylglycerol ratios. In ATHL, calpain-2, which cleaves nPKC, negatively associates with PKCε activation and positively with insulin sensitivity along with higher GLUT4 and hexokinase II content. These findings contribute to explaining the athletes' paradox by demonstrating lower nPKC activation, increased calpain, and mitochondrial partitioning of bioactive diacylglycerols, the latter further identifying an obesity subtype with increased insulin sensitivity (NCT03314714).
Collapse
Affiliation(s)
- Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Evrim Anadol-Schmitz
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Theresia Sarabhai
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Yvo Op den Kamp
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivo Habets
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Yvonne M. H. Op den Kamp-Bruls
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Klaus Strassburger
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Leiden University Medical Center, Clinical Epidemiology, Leiden, Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
9
|
Yoshiko A, Shiozawa K, Niwa S, Takahashi H, Koike T, Watanabe K, Katayama K, Akima H. Skeletal muscle oxidative capacity related to intramyocellular lipid in young but not in older individuals. Appl Physiol Nutr Metab 2025; 50:1-9. [PMID: 39761539 DOI: 10.1139/apnm-2024-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Skeletal muscles contain lipids inside and outside cells, namely intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL), respectively; lipids have also been found to be interspersed between these muscles as adipose tissue, namely intermuscular adipose tissue (IMAT). Metabolized IMCL has been recognized as an important substrate for energy production and their metabolism is determined by the muscle oxidative capacity. Therefore, it has been speculated that muscle oxidative capacity is related to muscle lipid content. Excessive accumulation of EMCL and IMAT has been confirmed in older individuals, leading to metabolic disorders and a decline in muscle strength. However, whether EMCL and IMAT contribute to muscle lipid metabolism remains unknown. This study aimed to investigate whether muscle oxidative capacity is related to IMCL, EMCL, and IMAT in young and older individuals. A total of 18 young and 14 older individuals were included and their muscle oxidative capacity was assessed based on the recovery rate of muscle oxygen saturation after exercise, using near-infrared spectroscopy of the medial gastrocnemius. IMCL, EMCL, and IMAT were assessed using magnetic resonance spectroscopy and imaging. A relationship between muscle oxidative capacity and IMCL was confirmed in young (r = -0.47, P < 0.05) but not older individuals (r = 0.22, P = 0.45). Muscle oxidative capacity was not related to EMCL or IMAT in either young or older individuals. These results suggest that IMCL in young individuals can contribute to muscle lipid metabolism, but not EMCL and IMAT, and this relationship differs with aging.
Collapse
Affiliation(s)
- Akito Yoshiko
- Faculty of Liberal Arts and Sciences, Chukyo University, Toyota, Japan
| | - Kana Shiozawa
- Department of Exercise and Sports Physiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shiori Niwa
- Department of Nursing, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hideyuki Takahashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Teruhiko Koike
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
- Department of Sports Medicine, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kohei Watanabe
- School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Keisho Katayama
- Department of Exercise and Sports Physiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Hiroshi Akima
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
- Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Martin G, Al-Sajee D, Gingrich M, Chattha R, Akcan M, Monaco CMF, Hughes MC, Perry CGR, Rebalka IA, Tarnopolsky MA, Hawke TJ. Skeletal muscle mitochondrial morphology negatively affected in mice lacking Xin. Biochem Cell Biol 2024; 102:373-384. [PMID: 38843556 DOI: 10.1139/bcb-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Altered mitochondrial structure and function are implicated in the functional decline of skeletal muscle. Numerous cytoskeletal proteins are known to affect mitochondrial homeostasis, but this complex network is still being unraveled. Here, we investigated mitochondrial alterations in mice lacking the cytoskeletal adapter protein, XIN (XIN-/-). XIN-/- and wild-type littermate male and female mice were fed a chow or high-fat diet (HFD; 60% kcal fat) for 8 weeks before analyses of their skeletal muscles were conducted. Immuno-electron microscopy (EM) and immunofluorescence staining revealed XIN in the mitochondria and peri-mitochondrial areas, as well as the myoplasm. Intermyofibrillar mitochondria in chow-fed XIN-/- mice were notably different from wild-type (large, and/or swollen in appearance). Succinate dehydrogenase and Cytochrome Oxidase IV staining indicated greater evidence of mitochondrial enzyme activity in XIN-/- mice. No difference in body mass gains or glucose handling was observed between cohorts with HFD. However, EM revealed significantly greater mitochondrial density with evident structural abnormalities (swelling, reduced cristae density) in XIN-/- mice. Absolute Complex I and II-supported respiration was not different between groups, but relative to mitochondrial density, was significantly lower in XIN-/-. These results provide the first evidence for a role of XIN in maintaining mitochondrial morphology and function.
Collapse
MESH Headings
- Animals
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Male
- Female
- Mice, Knockout
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/ultrastructure
- Diet, High-Fat/adverse effects
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/deficiency
- Mice, Inbred C57BL
- Electron Transport Complex IV/metabolism
- Cell Cycle Proteins
Collapse
Affiliation(s)
- Grace Martin
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Dhuha Al-Sajee
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Molly Gingrich
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Rimsha Chattha
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Michael Akcan
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Cynthia M F Monaco
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Megan C Hughes
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Irena A Rebalka
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Mark A Tarnopolsky
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Thomas J Hawke
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Taylor R. Understanding the cause of type 2 diabetes. Lancet Diabetes Endocrinol 2024; 12:664-673. [PMID: 39038473 DOI: 10.1016/s2213-8587(24)00157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/24/2024]
Abstract
Type 2 diabetes has long been thought to have heterogenous causes, even though epidemiological studies uniformly show a tight relationship with overnutrition. The twin cycle hypothesis postulated that interaction of self-reinforcing cycles of fat accumulation inside the liver and pancreas, driven by modest but chronic positive calorie balance, could explain the development of type 2 diabetes. This hypothesis predicted that substantial weight loss would bring about a return to the non-diabetic state, permitting observation of the pathophysiology determining the transition. These changes were postulated to reflect the basic mechanisms of causation in reverse. A series of studies over the past 15 years has elucidated these underlying mechanisms. Together with other research, the interaction of environmental and genetic factors has been clarified. This knowledge has led to successful implementation of a national programme for remission of type 2 diabetes. This Review discusses the paucity of evidence for heterogeneity in causes of type 2 diabetes and summarises the in vivo pathophysiological changes, which cause this disease of overnutrition. Type 2 diabetes has a homogenous cause expressed in genetically heterogenous individuals.
Collapse
Affiliation(s)
- Roy Taylor
- Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Lee JH, Jung IR, Tu-Sekine B, Jin S, Anokye-Danso F, Ahima RS, Kim SF. Genetic Deletion of Skeletal Muscle Inositol Polyphosphate Multikinase Disrupts Glucose Homeostasis and Impairs Exercise Tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605526. [PMID: 39131310 PMCID: PMC11312436 DOI: 10.1101/2024.07.28.605526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Inositol phosphates are critical signaling messengers involved in a wide range of biological pathways in which inositol polyphosphate multikinase (IPMK) functions as a rate-limiting enzyme for inositol polyphosphate metabolism. IPMK has been implicated in cellular metabolism, but its function at the systemic level is still poorly understood. Since skeletal muscle is a major contributor to energy homeostasis, we have developed a mouse model in which skeletal muscle IPMK is specifically deleted and examined how a loss of IPMK affects whole-body metabolism. Here, we report that mice in which IPMK knockout is deleted, specifically in the skeletal muscle, displayed an increased body weight, disrupted glucose tolerance, and reduced exercise tolerance under the normal diet. Moreover, these changes were associated with an increased accumulation of triglyceride in skeletal muscle. Furthermore, we have confirmed that a loss of IPMK led to reduced beta-oxidation, increased triglyceride accumulation, and impaired insulin response in IPMK-deficient muscle cells. Thus, our results suggest that IPMK mediates the whole-body metabolism via regulating muscle metabolism and may be potentially targeted for the treatment of metabolic syndromes.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Ik-Rak Jung
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Becky Tu-Sekine
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Sunghee Jin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Frederick Anokye-Danso
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| |
Collapse
|
13
|
Shen KC, Collins KH, Ferey JL, Fappi A, McCormick JJ, Mittendorfer B, Guilak F, Meyer GA. Excess Intramyocellular Lipid Does Not Affect Muscle Fiber Biophysical Properties in Mice or People With Metabolically Abnormal Obesity. Diabetes 2024; 73:1266-1277. [PMID: 38701374 PMCID: PMC11262043 DOI: 10.2337/db23-0991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Observational studies have shown correlations between intramyocellular lipid (IMCL) content and muscle strength and contractile function in people with metabolically abnormal obesity. However, a clear physiologic mechanism for this association is lacking, and causation is debated. We combined immunofluorescent confocal imaging with force measurements on permeabilized muscle fibers from metabolically normal and metabolically abnormal mice and people with metabolically normal (defined as normal fasting plasma glucose and glucose tolerance) and metabolically abnormal (defined as prediabetes and type 2 diabetes) overweight/obesity to evaluate relationships among myocellular lipid droplet characteristics (droplet size and density) and biophysical (active contractile and passive viscoelastic) properties. The fiber type specificity of lipid droplet parameters varied by metabolic status and by species. It was different between mice and people across the board and different between people of different metabolic status. However, despite considerable quantities of IMCL in the metabolically abnormal groups, there were no significant differences in peak active tension or passive viscoelasticity between the metabolically abnormal and control groups in mice or people. Additionally, there were no significant relationships among IMCL parameters and biophysical variables. Thus, we conclude that IMCL accumulation per se does not impact muscle fiber biophysical properties or physically impede contraction. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Karen C. Shen
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Kelsey H. Collins
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO
- Shriners Hospital for Children, St. Louis, MO
| | - Jeremie L.A. Ferey
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Alan Fappi
- Center for Human Nutrition at Washington University School of Medicine, St. Louis, MO
| | - Jeremy J. McCormick
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Bettina Mittendorfer
- Center for Human Nutrition at Washington University School of Medicine, St. Louis, MO
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO
- Shriners Hospital for Children, St. Louis, MO
| | - Gretchen A. Meyer
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
- Shriners Hospital for Children, St. Louis, MO
- Departments of Neurology and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
14
|
Bangsbo J. 10-20-30 exercise training improves fitness and health. Eur J Sport Sci 2024; 24:1162-1175. [PMID: 39031952 PMCID: PMC11295100 DOI: 10.1002/ejsc.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/10/2024] [Accepted: 06/23/2024] [Indexed: 07/22/2024]
Abstract
Intense interval exercise training has been shown to improve performance and health of untrained and trained people. However, due to the exercise intensity causing high-perceived exertion, the participants often do not wish to continue the training. The 10-20-30 training concept consists of low intensity for 30 s, 20 s at a moderate pace, and then 10 s with high intensity either running or cycling. A 10-20-30 training session consist of two to four 5-min blocks. The 10-20-30 training improved fitness and performance as well as lowered blood pressure and body fat of both untrained and trained individuals even with a significant reduction in the training volume. Similarly, hypertensive, diabetic, and asthmatic patients lowered body fat, improved fitness, and performance during a 10-20-30-training intervention period. In addition, hypertensive patients reduced systolic and diastolic blood pressure markedly with the 10-20-30 training twice a week for 8 weeks. Diabetic patients lowered long-term blood sugar (HbA1c), which did not occur with moderate-intensity exercise training. Furthermore, asthmatic patients improved their control of asthma and asthma-related quality of life with the 10-20-30 training. The adherence for the patient groups was high (>80%), and no adverse events were reported. Thus, the 10-20-30 training seems to be time efficient and feasible for untrained and trained individuals as well as patients and may be used in the prevention and treatment of noncommunicable diseases.
Collapse
Affiliation(s)
- Jens Bangsbo
- The August Krogh Section for Human PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
15
|
Osmancevic A, Allison M, Miljkovic I, Vella CA, Ouyang P, Trimpou P, Daka B. Levels of Sex Hormones and Abdominal Muscle Composition in Men from The Multi-Ethnic Study of Atherosclerosis. Sci Rep 2024; 14:16114. [PMID: 38997435 PMCID: PMC11245501 DOI: 10.1038/s41598-024-66948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Information on the associations of testosterone levels with abdominal muscle volume and density in men is limited, while the role of estradiol and SHBG on these muscle characteristics are unclear. Therefore, this study aimed to investigate the association between fasting serum sex hormones and CT-derived abdominal muscle area and radiodensity in adult men. Conducted as a cross sectional observational study using data from the Multi-Ethnic Study of Atherosclerosis, our analyses focused on a community-based sample of 907 men aged 45-84 years, with 878 men having complete data. CT scans of the abdomen were interrogated for muscle characteristics, and multivariable linear regressions were used to test the associations. After adjustment for relevant factors, higher levels of both total testosterone and estradiol were associated with higher abdominal muscle area (1.74, 0.1-3.4, and 1.84, 0.4-3.3, respectively). In the final analyses, levels of total testosterone showed a positive association, while an inverse relationship was observed for SHBG with abdominal muscle radiodensity (0.3, 0.0-0.6, and - 0.33, - 0.6 to - 0.1, respectively). Our results indicate a complex association between sex hormones and abdominal muscle characteristics in men. Specifically, total testosterone and estradiol were associated with abdominal muscle area, while only total testosterone was associated with muscle radiodensity and SHBG was inversely associated with muscle radiodensity.Clinical Trial: NCT00005487.
Collapse
Grants
- 75N92020D00005 NHLBI NIH HHS
- N01HC95160 NHLBI NIH HHS
- N01HC95163 NHLBI NIH HHS
- UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420 NCATS NIH HHS
- N01HC95168 NHLBI NIH HHS
- N01HC95165 NHLBI NIH HHS
- N01HC95159 NHLBI NIH HHS
- 75N92020D00007 NHLBI NIH HHS
- HHSN268201500003I NHLBI NIH HHS
- N01HC95167 NHLBI NIH HHS
- UL1 TR000040 NCATS NIH HHS
- 75N92020D00002 NHLBI NIH HHS
- HHSN268201500003C NHLBI NIH HHS
- UL1 TR001079 NCATS NIH HHS
- ALFGBG-966255 VGR Regional Research and Development Council Grants
- 75N92020D00001 NHLBI NIH HHS
- N01HC95169 NHLBI NIH HHS
- 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168 and N01-HC-95169 NHLBI NIH HHS
- N01HC95164 NHLBI NIH HHS
- N01HC95162 NHLBI NIH HHS
- 75N92020D00003 NHLBI NIH HHS
- N01HC95161 NHLBI NIH HHS
- UL1 TR001420 NCATS NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- 75N92020D00006 NHLBI NIH HHS
- N01HC95166 NHLBI NIH HHS
- The Local Research and Development Council Göteborg och Södra Bohuslän
- National Heart, Lung, and Blood Institute
- National Center for Advancing Translational Sciences
- University of Gothenburg
Collapse
Affiliation(s)
- Amar Osmancevic
- General Practice / Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Matthew Allison
- Division of Preventive Medicine, School of Medicine, UC San Diego, San Diego, CA, USA
| | - Iva Miljkovic
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chantal A Vella
- Department of Movement Sciences, University of Idaho, Moscow, ID, USA
| | - Pamela Ouyang
- Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Penelope Trimpou
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bledar Daka
- General Practice / Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Eurén T, Gower B, Steneberg P, Wilson A, Edlund H, Chorell E. Myofiber-specific lipidomics unveil differential contributions to insulin sensitivity in individuals of African and European ancestry. Heliyon 2024; 10:e32456. [PMID: 38994058 PMCID: PMC11237840 DOI: 10.1016/j.heliyon.2024.e32456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Aims Individuals of African ancestry (AA) present with lower insulin sensitivity compared to their European counterparts (EA). Studies show ethnic differences in skeletal muscle fiber type (lower type I fibers in AA), muscle fat oxidation capacity (lower in AA), whilst no differences in total skeletal muscle lipids. However, skeletal muscle lipid subtypes have not been examined in this context. We hypothesize that lower insulin sensitivity in AA is due to a greater proportion of type II (non-oxidative) muscle fibers, and that this would result in an ancestry-specific association between muscle lipid subtypes and peripheral insulin sensitivity. To test this hypothesis, we examined the association between insulin sensitivity and muscle lipids in AA and EA adults, and in an animal model of insulin resistance with muscle-specific fiber types. Methods In this cross-sectional study, muscle biopsies were obtained from individuals with a BMI ranging from normal to overweight with AA (N = 24) and EA (N = 19). Ancestry was assigned via genetic admixture analysis; peripheral insulin sensitivity via hyperinsulinaemic-euglycemic clamp; and myofiber content via myosin heavy chain immunohistochemistry. Further, muscle types with high (soleus) and low (vastus lateralis) type I fiber content were obtained from high-fat diet-induced insulin resistant F1 mice and littermate controls. Insulin sensitivity in mice was assessed via intraperitoneal glucose tolerance test. Mass spectrometry (MS)-based lipidomics was used to measure skeletal muscle lipid. Results Compared to EA, AA had lower peripheral insulin sensitivity and lower oxidative type 1 myofiber content, with no differences in total skeletal muscle lipid content. Muscles with lower type I fiber content (AA and vastus from mice) showed lower levels of lipids associated with fat oxidation capacity, i.e., cardiolipins, triacylglycerols with low saturation degree and phospholipids, compared to muscles with a higher type 1 fiber content (EA and soleus from mice). Further, we found that muscle diacylglycerol content was inversely associated with insulin sensitivity in EA, who have more type I fiber, whereas no association was found in AA. Similarly, we found that insulin sensitivity in mice was associated with diacylglycerol content in the soleus (high in type I fiber), not in vastus (low in type I fiber).Conclusions; Our data suggest that the lipid contribution to altered insulin sensitivity differs by ethnicity due to myofiber composition, and that this needs to be considered to increase our understanding of underlying mechanisms of altered insulin sensitivity in different ethnic populations.
Collapse
Affiliation(s)
- Tova Eurén
- Public Health and Clinical Medicine, Umeå University, Sweden
| | - Barbara Gower
- Department of Nutrition Sciences, The University of Alabama at Birmingham, USA
| | - Pär Steneberg
- Department of Medical and Translational Biology, Umeå University, Sweden
| | - Andréa Wilson
- Public Health and Clinical Medicine, Umeå University, Sweden
| | - Helena Edlund
- Department of Medical and Translational Biology, Umeå University, Sweden
| | - Elin Chorell
- Public Health and Clinical Medicine, Umeå University, Sweden
| |
Collapse
|
17
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
18
|
Lee YJ, Jang YN, Han YM, Kim HM, Seo HS, Kim HJ, Jung TW, Jeong JH, Abd El-Aty AM, Jung KO. Aster glehni Extract, Including Caffeoylquinic Acids as the Main Constituents, Induces PPAR β/δ-Dependent Muscle-Type Change and Myogenesis in Apolipoprotein E Knockout Mice. J Med Food 2024; 27:521-532. [PMID: 38651680 DOI: 10.1089/jmf.2024.k.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
To probe the functions of Aster glehni (AG) extract containing various caffeoylquinic acids on dyslipidemia, obesity, and skeletal muscle-related diseases focused on the roles of skeletal muscle, we measured the levels of biomarkers involved in oxidative phosphorylation and type change of skeletal muscle in C2C12 cells and skeletal muscle tissues from apolipoprotein E knockout (ApoE KO) mice. After AG extract treatment in cell and animal experiments, western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used to estimate the levels of proteins that participated in skeletal muscle type change and oxidative phosphorylation. AG extract elevated protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), phosphorylated 5'-AMP-activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor beta/delta (PPARβ/δ), myoblast determination protein 1 (MyoD), and myoglobin in skeletal muscle tissues. Furthermore, it elevated the ATP concentration. However, protein expression of myostatin was decreased by AG treatment. In C2C12 cells, increments of MyoD, myoglobin, myosin, ATP-producing pathway, and differentiation degree by AG were dependent on PPARβ/δ and caffeoylquinic acids. AG extract can contribute to the amelioration of skeletal muscle inactivity and sarcopenia through myogenesis in skeletal muscle tissues from ApoE KO mice, and function of AG extract may be dependent on PPARβ/δ, and the main functional constituents of AG are trans-5-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid. In addition, in skeletal muscle, AG has potent efficacies against dyslipidemia and obesity through the increase of the type 1 muscle fiber content to produce more ATP by oxidative phosphorylation in skeletal muscle tissues from ApoE KO mice.
Collapse
Affiliation(s)
- Yong-Jik Lee
- Cardiovascular Center, Korea University Guro Hospital, Seoul, the Republic of Korea
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, the Republic of Korea
| | - Yoo-Na Jang
- Cardiovascular Center, Korea University Guro Hospital, Seoul, the Republic of Korea
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, the Republic of Korea
| | - Yoon-Mi Han
- Cardiovascular Center, Korea University Guro Hospital, Seoul, the Republic of Korea
| | - Hyun-Min Kim
- Cardiovascular Center, Korea University Guro Hospital, Seoul, the Republic of Korea
- Department of Medical Science, BK21 Plus KUMS Graduate Program, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Seoul, the Republic of Korea
| | - Hyoung Ja Kim
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, the Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, the Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, the Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, the Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Kyung Oh Jung
- Department of Anatomy, Chung-Ang University College of Medicine, Seoul, the Republic of Korea
| |
Collapse
|
19
|
Liu Z, Guo Y, Zheng C. Type 2 diabetes mellitus related sarcopenia: a type of muscle loss distinct from sarcopenia and disuse muscle atrophy. Front Endocrinol (Lausanne) 2024; 15:1375610. [PMID: 38854688 PMCID: PMC11157032 DOI: 10.3389/fendo.2024.1375610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/05/2024] [Indexed: 06/11/2024] Open
Abstract
Muscle loss is a significant health concern, particularly with the increasing trend of population aging, and sarcopenia has emerged as a common pathological process of muscle loss in the elderly. Currently, there has been significant progress in the research on sarcopenia, including in-depth analysis of the mechanisms underlying sarcopenia caused by aging and the development of corresponding diagnostic criteria, forming a relatively complete system. However, as research on sarcopenia progresses, the concept of secondary sarcopenia has also been proposed. Due to the incomplete understanding of muscle loss caused by chronic diseases, there are various limitations in epidemiological, basic, and clinical research. As a result, a comprehensive concept and diagnostic system have not yet been established, which greatly hinders the prevention and treatment of the disease. This review focuses on Type 2 Diabetes Mellitus (T2DM)-related sarcopenia, comparing its similarities and differences with sarcopenia and disuse muscle atrophy. The review show significant differences between the three muscle-related issues in terms of pathological changes, epidemiology and clinical manifestations, etiology, and preventive and therapeutic strategies. Unlike sarcopenia, T2DM-related sarcopenia is characterized by a reduction in type I fibers, and it differs from disuse muscle atrophy as well. The mechanism involving insulin resistance, inflammatory status, and oxidative stress remains unclear. Therefore, future research should further explore the etiology, disease progression, and prognosis of T2DM-related sarcopenia, and develop targeted diagnostic criteria and effective preventive and therapeutic strategies to better address the muscle-related issues faced by T2DM patients and improve their quality of life and overall health.
Collapse
Affiliation(s)
- Zhenchao Liu
- Institute of Integrative Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yunliang Guo
- Institute of Integrative Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chongwen Zheng
- Department of Neurology, The 2 Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
20
|
Kim H, Lee S, Jeong C, Han Y, Lee M. RORα-GABP-TFAM axis alleviates myosteatosis with fatty atrophy through reinforcement of mitochondrial capacity. J Cachexia Sarcopenia Muscle 2024; 15:615-630. [PMID: 38272857 PMCID: PMC10995264 DOI: 10.1002/jcsm.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Fat infiltration in muscle, called 'myosteatosis', precedes muscle atrophy, which subsequently results in sarcopenia. Myosteatosis is frequently observed in patients with nonalcoholic fatty liver disease (NAFLD). We have previously reported that retinoic acid receptor-related orphan receptor-α (RORα) regulates mitochondrial dynamics and mitophagy in hepatocytes, resulting in an alleviation of NAFLD. In this study, we aimed to investigate the role of RORα in skeletal muscle and to understand molecular mechanisms by which RORα controls mitochondrial capacity, using an NAFLD-associated myosteatosis mouse model. METHODS To establish a myosteatosis model, 7-week-old C57BL/6N mice were fed with high-fat diet (HFD). After 15 weeks of diet feeding, an adeno-associated virus vector encoding RORα (AAV-RORα) was injected to gastrocnemius (GA) muscles, or after 7 weeks of HFD feeding, JC1-40, an RORα agonistic ligand, was administered daily at a dose of 5 mg/kg/day by oral gavage for 5 weeks. Histological, biochemical and molecular analyses in various in vivo and in vitro experiments were performed. RESULTS First, the number of oxidative MyHC2a fibres with intensive lipid infiltration increased by 3.8-fold in the red region of the GA of mice with myosteatosis (P < 0.001). RORα was expressed around MyHC2a fibres, and its level increased by 2.7-fold after HFD feeding (P < 0.01). Second, treatment of RORα ligands in C2C12 myoblasts, such as cholesterol sulfate and JC1-40, enhanced the number of oxidative fibres stained for MyHC1 and MyHC2a by two-fold to four-fold (P < 0.01), while it reduced the lipid levels in MyHC2a fibres by 20-50% (P < 0.001) in the presence of palmitic acids. Third, mitochondrial membrane potential (P < 0.01) and total area of mitochondria (P < 0.01) were enhanced by treatment of these ligands. Chromatin immunoprecipitation analysis showed that RORα bound the promoter of GA-binding protein α subunit gene that led to activation of mitochondrial transcription factor A (TFAM) in C2C12 myoblasts (P < 0.05). Finally, intramuscular transduction of AAV-RORα alleviated the HFD-induced myosteatosis with fatty atrophy; lipid contents in MyHC2a fibres decreased by 48% (P < 0.001), whereas the number of MyHC2b fibre increased by 22% (P < 0.001). Also, administration of JC1-40 improved the signs of myosteatosis in that it decreased the level of adipose differentiation-related protein (P < 0.01) but increased mitochondrial proteins such as cytochrome c oxidase 4 and TFAM in GA muscle (P < 0.01). CONCLUSIONS RORα plays a versatile role in regulating the quantity of mitochondria and the oxidative capacity, ultimately leading to an improvement in myosteatosis symptoms.
Collapse
Affiliation(s)
- Hyeon‐Ji Kim
- College of PharmacySeoul National UniversitySeoulSouth Korea
- Research Institute of Pharmaceutical SciencesSeoulSouth Korea
| | - Sang‐Heon Lee
- College of PharmacySeoul National UniversitySeoulSouth Korea
| | - Cheolhee Jeong
- College of PharmacySeoul National UniversitySeoulSouth Korea
| | - Yong‐Hyun Han
- College of PharmacyKangwon National UniversityChuncheonSouth Korea
| | - Mi‐Ock Lee
- College of PharmacySeoul National UniversitySeoulSouth Korea
- Research Institute of Pharmaceutical SciencesSeoulSouth Korea
- Bio‐MAX InstituteSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
21
|
Liu K, Li X, Liu Z, Ming X, Han B, Cai W, Yang X, Huang Z, Shi Z, Wu J, Hao B, Chen X. Orientin Promotes Antioxidant Capacity, Mitochondrial Biogenesis, and Fiber Transformation in Skeletal Muscles through the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6226-6235. [PMID: 38492240 DOI: 10.1021/acs.jafc.3c08039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The sleep-breathing condition obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse, which can exacerbate oxidative stress and free radical generation, thereby detrimentally impacting both motor and sensory nerve function and inducing muscular damage. OSA development is promoted by increasing proportions of fast-twitch muscle fibers in the genioglossus. Orientin, a water-soluble dietary C-glycosyl flavonoid with antioxidant properties, increased the expression of slow myosin heavy chain (MyHC) and signaling factors associated with AMP-activated protein kinase (AMPK) activation both in vivo and in vitro. Inhibiting AMPK signaling diminished the effects of orientin on slow MyHC, fast MyHC, and Sirt1 expression. Overall, orientin enhanced type I muscle fibers in the genioglossus, enhanced antioxidant capacity, increased mitochondrial biogenesis through AMPK signaling, and ultimately improved fatigue resistance in C2C12 myotubes and mouse genioglossus. These findings suggest that orientin may contribute to upper airway stability in patients with OSA, potentially preventing airway collapse.
Collapse
Affiliation(s)
- Keshu Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xufeng Li
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Zhihui Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoping Ming
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Baoai Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weisong Cai
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiuping Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zilin Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhenxiang Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianghao Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Bin Hao
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
22
|
Methenitis S, Nomikos T, Mpampoulis T, Kontou E, Evangelidou E, Papadopoulos C, Papadimas G, Terzis G. Type IIx muscle fibers are related to poor body composition, glycemic and lipidemic blood profiles in young females: the protective role of type I and IIa muscle fibers. Eur J Appl Physiol 2024; 124:585-594. [PMID: 37656281 DOI: 10.1007/s00421-023-05302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE The aim of the present study was to investigate the association between muscle fiber composition, body composition, resting glycemic-lipidemic blood profiles, in apparently healthy, young, active females. METHODS Thirty-four young healthy female volunteers were allocated into two groups, depending on their Vastus Lateralis type IIx muscle fibers percent cross-sectional area (%CSA; H: high type IIx %CSA; L: low type IIx %CSA). Body composition was determined via dual-energy X-ray absorptiometry. Venous blood samples were collected for the determination of resting serum glucose, Insulin, Apo-A1, HOMA-IR, triglycerides (TG), total cholesterol (TC), High-density lipoprotein (HDL-C), and Low-density lipoprotein (LDL-C) concentrations. Nutritional intake was also evaluated. RESULTS Individuals of the H group have significantly higher body mass, body fat percentage-mass, and resting blood indices of glycemic and lipidemic profiles, compared to those of L group (p < 0.001). Increased type IIx and low type I, IIa muscle fibers %CSAs were linked with poorer body composition, glycemic and lipidemic blood profiles (r: - 0.722 to 0.740, p < 0.001). Linear regression analyses revealed that the impact of muscle fibers %CSA (B coefficients ranged between - 0.700 and 0.835) on the above parameters, was at least, of the same or even of greater magnitude as that of body composition and daily nutritional intake (B: - 0.700 to 0.666). CONCLUSION Increased type IIx and low Type I, IIa %CSAs are associated with poorer body composition and glycemic-lipidemic profiles in young healthy females. The contribution of the muscle fiber %CSA on health status seems to be comparable to that of nutrition and body composition.
Collapse
Affiliation(s)
- Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 172 37, Ethnikis Antistassis 41, Daphne, Athens, Greece.
- Theseus, Physical Medicine and Rehabilitation Center, 17671, Athens, Greece.
| | - T Nomikos
- Department of Nutrition & Dietetics, School of Health Sciences and Education, Harokopio University, 17671, Athens, Greece
| | - T Mpampoulis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 172 37, Ethnikis Antistassis 41, Daphne, Athens, Greece
| | - E Kontou
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 172 37, Ethnikis Antistassis 41, Daphne, Athens, Greece
- Theseus, Physical Medicine and Rehabilitation Center, 17671, Athens, Greece
| | - E Evangelidou
- Department of Infection Control, G.N.N. Ionias "Konstantopouleio-Patision" hospital, 142 33, N. Ionia, Greece
| | - C Papadopoulos
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, 15784, Zografou, Greece
| | - G Papadimas
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, 15784, Zografou, Greece
| | - G Terzis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 172 37, Ethnikis Antistassis 41, Daphne, Athens, Greece
| |
Collapse
|
23
|
Zupančič B, Ugwoke CK, Abdelmonaem MEA, Alibegović A, Cvetko E, Grdadolnik J, Šerbec A, Umek N. Exploration of macromolecular phenotype of human skeletal muscle in diabetes using infrared spectroscopy. Front Endocrinol (Lausanne) 2023; 14:1308373. [PMID: 38189046 PMCID: PMC10769457 DOI: 10.3389/fendo.2023.1308373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The global burden of diabetes mellitus is escalating, and more efficient investigative strategies are needed for a deeper understanding of underlying pathophysiological mechanisms. The crucial role of skeletal muscle in carbohydrate and lipid metabolism makes it one of the most susceptible tissues to diabetes-related metabolic disorders. In tissue studies, conventional histochemical methods have several technical limitations and have been shown to inadequately characterise the biomolecular phenotype of skeletal muscle to provide a holistic view of the pathologically altered proportions of macromolecular constituents. Materials and methods In this pilot study, we examined the composition of five different human skeletal muscles from male donors diagnosed with type 2 diabetes and non-diabetic controls. We analysed the lipid, glycogen, and collagen content in the muscles in a traditional manner with histochemical assays using different staining techniques. This served as a reference for comparison with the unconventional analysis of tissue composition using Fourier-transform infrared spectroscopy as an alternative methodological approach. Results A thorough chemometric post-processing of the infrared spectra using a multi-stage spectral decomposition allowed the simultaneous identification of various compositional details from a vibrational spectrum measured in a single experiment. We obtained multifaceted information about the proportions of the different macromolecular constituents of skeletal muscle, which even allowed us to distinguish protein constituents with different structural properties. The most important methodological steps for a comprehensive insight into muscle composition have thus been set and parameters identified that can be used for the comparison between healthy and diabetic muscles. Conclusion We have established a methodological framework based on vibrational spectroscopy for the detailed macromolecular analysis of human skeletal muscle that can effectively complement or may even serve as an alternative to histochemical assays. As this is a pilot study with relatively small sample sets, we remain cautious at this stage in drawing definitive conclusions about diabetes-related changes in skeletal muscle composition. However, the main focus and contribution of our work has been to provide an alternative, simple and efficient approach for this purpose. We are confident that we have achieved this goal and have brought our methodology to a level from which it can be successfully transferred to a large-scale study that allows the effects of diabetes on skeletal muscle composition and the interrelationships between the macromolecular tissue alterations due to diabetes to be investigated.
Collapse
Affiliation(s)
- Barbara Zupančič
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | | | - Mohamed Elwy Abdelhamed Abdelmonaem
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Armin Alibegović
- Department of Forensic Medicine and Deontology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jože Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Anja Šerbec
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Serrano N, Hyatt JPK, Houmard JA, Murgia M, Katsanos CS. Muscle fiber phenotype: a culprit of abnormal metabolism and function in skeletal muscle of humans with obesity. Am J Physiol Endocrinol Metab 2023; 325:E723-E733. [PMID: 37877797 PMCID: PMC10864022 DOI: 10.1152/ajpendo.00190.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
The proportion of the different types of fibers in a given skeletal muscle contributes to its overall metabolic and functional characteristics. Greater proportion of type I muscle fibers is associated with favorable oxidative metabolism and function of the muscle. Humans with obesity have a lower proportion of type I muscle fibers. We discuss how lower proportion of type I fibers in skeletal muscle of humans with obesity may explain metabolic and functional abnormalities reported in these individuals. These include lower muscle glucose disposal rate, mitochondrial content, protein synthesis, and quality/contractile function, as well as increased risk for heart disease, lower levels of physical activity, and propensity for weight gain/resistance to weight loss. We delineate future research directions and the need to examine hybrid muscle fiber populations, which are indicative of a transitory state of fiber phenotype within skeletal muscle. We also describe methodologies for precisely characterizing muscle fibers and gene expression at the single muscle fiber level to enhance our understanding of the regulation of muscle fiber phenotype in obesity. By contextualizing research in the field of muscle fiber type in obesity, we lay a foundation for future advancements and pave the way for translation of this knowledge to address impaired metabolism and function in obesity.
Collapse
Affiliation(s)
- Nathan Serrano
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Jon-Philippe K Hyatt
- College of Integrative Sciences and Arts, Arizona State University, Tempe, Arizona, United States
| | - Joseph A Houmard
- Department of Kinesiology, Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Christos S Katsanos
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic-Arizona, Phoenix, Arizona, United States
| |
Collapse
|
25
|
Kugler BA, Lourie J, Berger N, Lin N, Nguyen P, DosSantos E, Ali A, Sesay A, Rosen HG, Kalemba B, Hendricks GM, Houmard JA, Sesaki H, Gona P, You T, Yan Z, Zou K. Partial skeletal muscle-specific Drp1 knockout enhances insulin sensitivity in diet-induced obese mice, but not in lean mice. Mol Metab 2023; 77:101802. [PMID: 37690520 PMCID: PMC10511484 DOI: 10.1016/j.molmet.2023.101802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE Dynamin-related protein 1 (Drp1) is the key regulator of mitochondrial fission. We and others have reported a strong correlation between enhanced Drp1 activity and impaired skeletal muscle insulin sensitivity. This study aimed to determine whether Drp1 directly regulates skeletal muscle insulin sensitivity and whole-body glucose homeostasis. METHODS We employed tamoxifen-inducible skeletal muscle-specific heterozygous Drp1 knockout mice (mDrp1+/-). Male mDrp1+/- and wildtype (WT) mice were fed with either a high-fat diet (HFD) or low-fat diet (LFD) for four weeks, followed by tamoxifen injections for five consecutive days, and remained on their respective diet for another four weeks. In addition, we used primary human skeletal muscle cells (HSkMC) from lean, insulin-sensitive, and severely obese, insulin-resistant humans and transfected the cells with either a Drp1 shRNA (shDrp1) or scramble shRNA construct. Skeletal muscle and whole-body insulin sensitivity, skeletal muscle insulin signaling, mitochondrial network morphology, respiration, and H2O2 production were measured. RESULTS Partial deletion of the Drp1 gene in skeletal muscle led to improved whole-body glucose tolerance and insulin sensitivity (P < 0.05) in diet-induced obese, insulin-resistant mice but not in lean mice. Analyses of mitochondrial structure and function revealed that the partial deletion of the Drp1 gene restored mitochondrial dynamics, improved mitochondrial morphology, and reduced mitochondrial Complex I- and II-derived H2O2 (P < 0.05) under the condition of diet-induced obesity. In addition, partial deletion of Drp1 in skeletal muscle resulted in elevated circulating FGF21 (P < 0.05) and in a trend towards increase of FGF21 expression in skeletal muscle tissue (P = 0.095). In primary myotubes derived from severely obese, insulin-resistant humans, ShRNA-induced-knockdown of Drp1 resulted in enhanced insulin signaling, insulin-stimulated glucose uptake and reduced cellular reactive oxygen species (ROS) content compared to the shScramble-treated myotubes from the same donors (P < 0.05). CONCLUSION These data demonstrate that partial loss of skeletal muscle-specific Drp1 expression is sufficient to improve whole-body glucose homeostasis and insulin sensitivity under obese, insulin-resistant conditions, which may be, at least in part, due to reduced mitochondrial H2O2 production. In addition, our findings revealed divergent effects of Drp1 on whole-body metabolism under lean healthy or obese insulin-resistant conditions in mice.
Collapse
Affiliation(s)
- Benjamin A Kugler
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Jared Lourie
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Nicolas Berger
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Nana Lin
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Paul Nguyen
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Edzana DosSantos
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Abir Ali
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Amira Sesay
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - H Grace Rosen
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Baby Kalemba
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Gregory M Hendricks
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Joseph A Houmard
- Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, East Carolina University, Greenville, NC, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Philimon Gona
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Tongjian You
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Zhen Yan
- Fralin Biomedical Research Institute Center for Exercise Medicine Research, Virginia Tech Carilion, Roanoke, VA, USA; Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kai Zou
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
26
|
Garcia-Gaona E, García-Gregorio A, García-Jiménez C, López-Olaiz MA, Mendoza-Ramírez P, Fernandez-Guzman D, Pillado-Sánchez RA, Soto-Pacheco AD, Yareni-Zuñiga L, Sánchez-Parada MG, González-Santiago AE, Román-Pintos LM, Castañeda-Arellano R, Hernández-Ortega LD, Mercado-Sesma AR, Orozco-Luna FDJ, Villa-Angulo C, Villa-Angulo R, Baptista-Rosas RC. mtDNA Single-Nucleotide Variants Associated with Type 2 Diabetes. Curr Issues Mol Biol 2023; 45:8716-8732. [PMID: 37998725 PMCID: PMC10670651 DOI: 10.3390/cimb45110548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Type 2 diabetes (T2D) is a chronic systemic disease with a complex etiology, characterized by insulin resistance and mitochondrial dysfunction in various cell tissues. To explore this relationship, we conducted a secondary analysis of complete mtDNA sequences from 1261 T2D patients and 1105 control individuals. Our findings revealed significant associations between certain single-nucleotide polymorphisms (SNPs) and T2D. Notably, the variants m.1438A>G (rs2001030) (controls: 32 [27.6%], T2D: 84 [72.4%]; OR: 2.46; 95%CI: 1.64-3.78; p < 0.001), m.14766C>T (rs193302980) (controls: 498 [36.9%], T2D: 853 [63.1%]; OR: 2.57, 95%CI: 2.18-3.04, p < 0.001), and m.16519T>C (rs3937033) (controls: 363 [43.4%], T2D: 474 [56.6%]; OR: 1.24, 95%CI: 1.05-1.47, p = 0.012) were significantly associated with the likelihood of developing diabetes. The variant m.16189T>C (rs28693675), which has been previously documented in several studies across diverse populations, showed no association with T2D in our analysis (controls: 148 [13.39] T2D: 171 [13.56%]; OR: 1.03; 95%CI: 0.815-1.31; p = 0.83). These results provide evidence suggesting a link between specific mtDNA polymorphisms and T2D, possibly related to association rules, topological patterns, and three-dimensional conformations associated with regions where changes occur, rather than specific point mutations in the sequence.
Collapse
Affiliation(s)
- Enrique Garcia-Gaona
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico;
| | - Alhelí García-Gregorio
- Facultad de Enfermería Región Poza Rica-Tuxpan, Universidad Veracruzana, Veracruz 91700, Mexico;
| | - Camila García-Jiménez
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Mexico;
| | | | - Paola Mendoza-Ramírez
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico;
| | | | | | - Axel David Soto-Pacheco
- Facultad de Medicina Extensión Los Mochis, Universidad Autónoma de Sinaloa, Sinaloa 81223, Mexico; (R.A.P.-S.); (A.D.S.-P.)
| | - Laura Yareni-Zuñiga
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (L.Y.-Z.); (L.M.R.-P.); (A.R.M.-S.)
| | - María Guadalupe Sánchez-Parada
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (M.G.S.-P.); (A.E.G.-S.); (R.C.-A.); (L.D.H.-O.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
| | - Ana Elizabeth González-Santiago
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (M.G.S.-P.); (A.E.G.-S.); (R.C.-A.); (L.D.H.-O.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
| | - Luis Miguel Román-Pintos
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (L.Y.-Z.); (L.M.R.-P.); (A.R.M.-S.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
| | - Rolando Castañeda-Arellano
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (M.G.S.-P.); (A.E.G.-S.); (R.C.-A.); (L.D.H.-O.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
| | - Luis Daniel Hernández-Ortega
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (M.G.S.-P.); (A.E.G.-S.); (R.C.-A.); (L.D.H.-O.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
| | - Arieh Roldán Mercado-Sesma
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (L.Y.-Z.); (L.M.R.-P.); (A.R.M.-S.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
| | | | - Carlos Villa-Angulo
- Laboratorio de Bioinformática y Biofotónica, Instituto de Ingeniería Universidad Autónoma de Baja California, Mexicali 21100, Mexico; (C.V.-A.); (R.V.-A.)
| | - Rafael Villa-Angulo
- Laboratorio de Bioinformática y Biofotónica, Instituto de Ingeniería Universidad Autónoma de Baja California, Mexicali 21100, Mexico; (C.V.-A.); (R.V.-A.)
| | - Raúl C. Baptista-Rosas
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (L.Y.-Z.); (L.M.R.-P.); (A.R.M.-S.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
- Hospital General de Occidente, Secretaría de Salud Jalisco, Zapopan 45170, Mexico
| |
Collapse
|
27
|
Ivić V, Zjalić M, Blažetić S, Fenrich M, Labak I, Scitovski R, Szűcs KF, Ducza E, Tábi T, Bagamery F, Szökő É, Vuković R, Rončević A, Mandić D, Debeljak Ž, Berecki M, Balog M, Seres-Bokor A, Sztojkov-Ivanov A, Hajagos-Tóth J, Gajović S, Imširović A, Bakula M, Mahiiovych S, Gaspar R, Vari SG, Heffer M. Elderly rats fed with a high-fat high-sucrose diet developed sex-dependent metabolic syndrome regardless of long-term metformin and liraglutide treatment. Front Endocrinol (Lausanne) 2023; 14:1181064. [PMID: 37929025 PMCID: PMC10623428 DOI: 10.3389/fendo.2023.1181064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Aim/Introduction The study aimed to determine the effectiveness of early antidiabetic therapy in reversing metabolic changes caused by high-fat and high-sucrose diet (HFHSD) in both sexes. Methods Elderly Sprague-Dawley rats, 45 weeks old, were randomized into four groups: a control group fed on the standard diet (STD), one group fed the HFHSD, and two groups fed the HFHSD along with long-term treatment of either metformin (HFHSD+M) or liraglutide (HFHSD+L). Antidiabetic treatment started 5 weeks after the introduction of the diet and lasted 13 weeks until the animals were 64 weeks old. Results Unexpectedly, HFHSD-fed animals did not gain weight but underwent significant metabolic changes. Both antidiabetic treatments produced sex-specific effects, but neither prevented the onset of prediabetes nor diabetes. Conclusion Liraglutide vested benefits to liver and skeletal muscle tissue in males but induced signs of insulin resistance in females.
Collapse
Affiliation(s)
- Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Milorad Zjalić
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Matija Fenrich
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Irena Labak
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Rudolf Scitovski
- School of Applied Mathematics and Computer Science, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kálmán Ferenc Szűcs
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Fruzsina Bagamery
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Rosemary Vuković
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Alen Rončević
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Neurosurgery, Osijek University Hospital, Osijek, Croatia
| | - Dario Mandić
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Monika Berecki
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Adrienn Seres-Bokor
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Anita Sztojkov-Ivanov
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Judit Hajagos-Tóth
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Srećko Gajović
- Croatian Institute for Brain Research, and BIMIS - Biomedical Research Institute Šalata, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alen Imširović
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marina Bakula
- Department of Clinical Pathology and Forensic Medicine, Osijek University Hospital, Osijek, Croatia
| | - Solomiia Mahiiovych
- Department of Therapy № 1 and Medical Diagnostics, Hematology and Transfusiology, Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Sandor G. Vari
- Cedars-Sinai Medical Center, International Research and Innovation in Medicine Program, Los Angeles, CA, United States
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
28
|
Whytock KL, Pino MF, Sun Y, Yu G, De Carvalho FG, Yeo RX, Vega RB, Parmar G, Divoux A, Kapoor N, Yi F, Cornnell H, Patten DA, Harper ME, Gardell SJ, Smith SR, Walsh MJ, Sparks LM. Comprehensive interrogation of human skeletal muscle reveals a dissociation between insulin resistance and mitochondrial capacity. Am J Physiol Endocrinol Metab 2023; 325:E291-E302. [PMID: 37584609 PMCID: PMC11901339 DOI: 10.1152/ajpendo.00143.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Insulin resistance and blunted mitochondrial capacity in skeletal muscle are often synonymous, however, this association remains controversial. The aim of this study was to perform an in-depth multifactorial comparison of skeletal muscle mitochondrial capacity between individuals who were lean and active (Active, n = 9), individuals with obesity (Obese, n = 9), and individuals with obesity, insulin resistance, and type 2 diabetes (T2D, n = 22). Mitochondrial capacity was assessed by ex vivo mitochondrial respiration with fatty-acid and glycolytic-supported protocols adjusted for mitochondrial content (mtDNA and citrate synthase activity). Supercomplex assembly was measured by Blue Native (BN)-PAGE and immunoblot. Tricarboxylic (TCA) cycle intermediates were assessed with targeted metabolomics. Exploratory transcriptomics and DNA methylation analyses were performed to uncover molecular differences affecting mitochondrial function among the three groups. We reveal no discernable differences in skeletal muscle mitochondrial content, mitochondrial capacity, supercomplex assembly, TCA cycle intermediates, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (body mass index, age, and aerobic capacity). We highlight that lean, active individuals have greater mitochondrial content, mitochondrial capacity, supercomplex assembly, and TCA cycle intermediates. These phenotypical changes are reflected at the level of DNA methylation and gene transcription. The collective observation of comparable muscle mitochondrial capacity in individuals with obesity and T2D (vs. individuals without T2D) underscores a dissociation from skeletal muscle insulin resistance. Clinical trial number: NCT01911104.NEW & NOTEWORTHY Whether impaired mitochondrial capacity contributes to skeletal muscle insulin resistance is debated. Our multifactorial analysis shows no differences in skeletal muscle mitochondrial content, mitochondrial capacity, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (BMI, age, aerobic capacity). We highlight that lean, active individuals have enhanced skeletal muscle mitochondrial capacity that is also reflected at the level of DNA methylation and gene transcription.
Collapse
Affiliation(s)
- Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Maria F Pino
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - GongXin Yu
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | | | - Reichelle X Yeo
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Rick B Vega
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Gaganvir Parmar
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Nidhi Kapoor
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Fancaho Yi
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Heather Cornnell
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - David A Patten
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen J Gardell
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| |
Collapse
|
29
|
Zhang J, Li J, Liu Y, Liang R, Mao Y, Yang X, Zhang Y, Zhu L. Effect of resveratrol on skeletal slow-twitch muscle fiber expression via AMPK/PGC-1α signaling pathway in bovine myotubes. Meat Sci 2023; 204:109287. [PMID: 37490793 DOI: 10.1016/j.meatsci.2023.109287] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
The purpose of this study was to evaluate the impact of resveratrol on slow-twitch muscle fiber expression in bovine myotubes. The results revealed that resveratrol enhanced slow myosin heavy chain (MyHC) and suppressed fast MyHC protein expression, accompanied by increased MyHC I/IIa and decreased MyHC IIx/IIb mRNA levels in bovine myotubes (P < 0.05). Resveratrol also enhanced the activities of succinic dehydrogenase (SDH), malate dehydrogenase (MDH) and the mitochondrial DNA (mtDNA) content, but reduced lactate dehydrogenase (LDH) activity (P < 0.05). Meanwhile, the protein and gene expression of AMPK, SIRT1 and PGC-1α were upregulated by resveratrol (P < 0.05). Furthermore, PGC-1α inhibitor SR-18292 could attenuate resveratrol-induced muscle fiber conversion from fast-twitch to slow-twitch. These results suggest that resveratrol might promote muscle fiber type transition from fast-twitch to slow-twitch through the AMPK/PGC-1α signaling pathway and mitochondrial biogenesis in bovine myotubes.
Collapse
Affiliation(s)
- Jingyue Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Jiqiang Li
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
30
|
Furuichi Y, Furutani A, Tamura K, Manabe Y, Fujii NL. Lack of Musashi-2 induces type IIa fiber-dominated muscle atrophy. FASEB J 2023; 37:e23154. [PMID: 37606581 DOI: 10.1096/fj.202300563r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Skeletal muscle is a highly plastic tissue, adapting its structure and metabolism in response to diverse conditions such as contractile activity, nutrients, and diseases. Finding a novel master regulator of muscle mass and quality will provide new therapeutic targets for the prevention and treatment of muscle weakness. Musashi is an RNA-binding protein that dynamically regulates protein expression; it was originally discovered as a cell fate determination factor in neural cells. Here, we report that Musashi-2 (Msi2) is dominantly expressed in slow-type muscle fibers, fibers characterized by high metabolism and endurance. Msi2 knockout (KO) mice exhibited a decrease in both soleus myofiber size and number compared to control mice. Biochemical and histological analyses revealed that type IIa fibers, which are of the fast type but have high metabolic capacity, were decreased in Msi2 KO mice. The contraction force of isolated soleus muscle was lower in KO mice, and the expression of the metabolic proteins, cytochrome c oxidase and myoglobin, was also decreased in KO muscle. Our data demonstrate the critical role of Msi2 in the maintenance of normal fiber-type composition and metabolism.
Collapse
Affiliation(s)
- Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Ayana Furutani
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Kotaro Tamura
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
31
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
32
|
Delgado-Bravo M, Hart DA, Reimer RA, Herzog W. Alterations in skeletal muscle morphology and mechanics in juvenile male Sprague Dawley rats exposed to a high-fat high-sucrose diet. Sci Rep 2023; 13:12013. [PMID: 37491416 PMCID: PMC10368627 DOI: 10.1038/s41598-023-38487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
Although once a health concern largely considered in adults, the obesity epidemic is now prevalent in pediatric populations. While detrimental effects on skeletal muscle function have been seen in adulthood, the effects of obesity on skeletal muscle function in childhood is not clearly understood. The purpose of this study was to determine if the consumption of a high-fat high-sucrose (HFS) diet, starting in the post-weaning period, leads to changes in skeletal muscle morphology and mechanics after 14 weeks on the HFS diet. Eighteen 3-week-old male CD-Sprague Dawley rats were randomly assigned to a HFS (C-HFS, n = 10) or standard chow diet (C-CHOW, n = 8). Outcome measures included: weekly energy intake, activity levels, oxygen consumption, body mass, body composition, metabolic profile, serum protein levels, and medial gastrocnemius gene expression, morphology, and mechanics. The main findings from this study were that C-HFS rats: (1) had a greater body mass and percent body fat than control rats; (2) showed early signs of metabolic syndrome; (3) demonstrated potential impairment in muscle remodeling; (4) produced lower relative muscle force; and (5) had a shift in the force-length relationship, indicating that the medial gastrocnemius had shorter muscle fiber lengths compared to those of C-CHOW rats. Based on the results of this study, we conclude that exposure to a HFS diet led to increased body mass, body fat percentage, and early signs of metabolic syndrome, resulting in functional deficits in MG of childhood rats.
Collapse
Affiliation(s)
- Mauricio Delgado-Bravo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Carrera de Kinesiología, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David A Hart
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Raylene A Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
33
|
Goetzman E, Gong Z, Zhang B, Muzumdar R. Complex II Biology in Aging, Health, and Disease. Antioxidants (Basel) 2023; 12:1477. [PMID: 37508015 PMCID: PMC10376733 DOI: 10.3390/antiox12071477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Aging is associated with a decline in mitochondrial function which may contribute to age-related diseases such as neurodegeneration, cancer, and cardiovascular diseases. Recently, mitochondrial Complex II has emerged as an important player in the aging process. Mitochondrial Complex II converts succinate to fumarate and plays an essential role in both the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). The dysfunction of Complex II not only limits mitochondrial energy production; it may also promote oxidative stress, contributing, over time, to cellular damage, aging, and disease. Intriguingly, succinate, the substrate for Complex II which accumulates during mitochondrial dysfunction, has been shown to have widespread effects as a signaling molecule. Here, we review recent advances related to understanding the function of Complex II, succinate signaling, and their combined roles in aging and aging-related diseases.
Collapse
Affiliation(s)
- Eric Goetzman
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhenwei Gong
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bob Zhang
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Radhika Muzumdar
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
34
|
Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. High-Intensity Interval Training Improves Glycemic Control, Cellular Apoptosis, and Oxidative Stress of Type 2 Diabetic Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1320. [PMID: 37512131 PMCID: PMC10384171 DOI: 10.3390/medicina59071320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Physical exercise is an important therapeutic modality for treating and managing diabetes. High-intensity interval training (HIIT) is considered one of the best non-drug strategies for preventing and treating type 2 diabetes mellitus (T2DM) by improving mitochondrial biogenesis and function. This study aimed to determine the effects of 12 weeks of HIIT training on the expression of tumor suppressor protein-p53, mitochondrial cytochrome c oxidase (COX), and oxidative stress in patients with T2DM. Methods: A total of thirty male sedentary patients aged (45-60 years) were diagnosed with established T2DM for more than five years. Twenty healthy volunteers, age- and sex-matched, were included in this study. Both patients and control subjects participated in the HIIT program for 12 weeks. Glycemic control variables including p53 (U/mL), COX (ng/mL), total antioxidant capacity (TAC, nmole/µL), 8-hydroxy-2'-deoxyguanosine (8-OHdG, ng/mL), as well as genomic and mitochondrial DNA content were measured in both the serum and muscle tissues of control and patient groups following exercise training. Results: There were significant improvements in fasting glucose levels. HbA1c (%), HOMA-IR (mUmmol/L2), fasting insulin (µU/mL), and C-peptide (ng/mL) were reported in T2DM and healthy controls. A significant decrease was also observed in p53 protein levels. COX, 8-OhdG, and an increase in the level of TAC were reported in T2DM following 12 weeks of HIIT exercise. Before and after exercise, p53; COX, mt-DNA content, TAC, and 8-OhdG showed an association with diabetic control parameters such as fasting glucose (FG), glycated hemoglobin (HbA1C, %), C-peptide, fasting insulin (FI), and homeostatic model assessment for insulin resistance (HOMA-IR) in patients with T2DM. These findings support the positive impact of HIIT exercise in improving regulation of mitochondrial biogenesis and subsequent control of diabetes through anti-apoptotic and anti-oxidative pathways. Conclusions: A 12-week HIIT program significantly improves diabetes by reducing insulin resistance; regulating mitochondrial biogenesis; and decreasing oxidative stress capacity among patients and healthy controls. Also; p53 protein expression; COX; 8-OhdG; and TAC and mt-DNA content were shown to be associated with T2DM before and after exercise training.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.G.); (A.H.A.)
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.G.); (A.H.A.)
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.G.); (A.H.A.)
| |
Collapse
|
35
|
Collins KA, Ambrosio F, Rogers RJ, Lang W, Schelbert EB, Davis KK, Jakicic JM. Change in circulating klotho in response to weight loss, with and without exercise, in adults with overweight or obesity. FRONTIERS IN AGING 2023; 4:1213228. [PMID: 37457921 PMCID: PMC10347392 DOI: 10.3389/fragi.2023.1213228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Introduction: Klotho is a protein associated with protection from aging-related diseases and health conditions. Obesity is associated with lower Klotho concentrations. Thus, this secondary analysis of adults with obesity examined 1) the change in serum Klotho concentration in response to a behavioral weight loss intervention by the magnitude of weight loss achieved; and 2) the association among serum Klotho concentration and weight, body composition, and cardiorespiratory fitness. Methods: Participants were randomized to either diet alone (DIET), diet plus 150 min of physical activity per week (DIET + PA150), or diet plus 250 min of physical activity per week (DIET + PA250). Participants [n = 152; age: 45.0 ± 7.9 years; body mass index (BMI): 32.4 ± 3.8 kg/m2] included in this secondary analysis provided blood samples at baseline, 6-, and 12 months, and were classified by weight loss response (Responder: achieved ≥10% weight loss at 6 or 12 months; Non-responder: achieved <5% weight loss at both 6 and 12 months). Serum Klotho was measured using a solid-phase sandwich enzyme-linked immunosorbent assay (ELISA). Analyses of covariance (ANCOVA's) were used to examine changes in weight, body composition, cardiorespiratory fitness, and Klotho concentration by weight loss response across the 12-month weight loss intervention. Results: Responders had a greater reduction in measures of weight and body composition, and a greater increase in cardiorespiratory fitness, compared to Non-Responders (p < 0.05). Change in Klotho concentration differed between Responders and Non-Responders (p < 0.05), with the increase in Klotho concentration from baseline to 6 months for Responders being statistically significant. The 6-month change in Klotho concentration was inversely associated with the 6-month change in weight (r s = -0.195), BMI (r s = -0.196), fat mass (r s = -0.184), and waist circumference (r s = -0.218) (p-values <0.05). Discussion: Findings provide evidence within the context of a behavioral intervention, with and without exercise, that change in Klotho concentration is significantly different between adults with weight loss ≥10% compared to <5% across 12 months. These findings suggest that weight loss and reduction in fat mass may be favorably associated with the change in Klotho concentration. This may reduce the risk of negative health consequences associated with accelerated aging in middle-aged adults.
Collapse
Affiliation(s)
- Katherine A. Collins
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, United States
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
| | - Renee J. Rogers
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Wei Lang
- Department of Aging Medicine and Center on Aging and Mobility, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Eric B. Schelbert
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Minneapolis Heart Institute East, Saint Paul, MN, United States
| | - Kelliann K. Davis
- Department of Health and Human Development, University of Pittsburgh, Pittsburgh, PA, United States
| | - John M. Jakicic
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
36
|
Dubé JJ, Toledo FG, Coen PM, Goodpaster BH, DeLany JP. Lower mitochondrial respiration does not lead to decreased fat oxidation in young African American women without obesity. Obesity (Silver Spring) 2023; 31:1338-1346. [PMID: 37140394 PMCID: PMC10434822 DOI: 10.1002/oby.23716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 05/05/2023]
Abstract
OBJECTIVE The prevalence of type 2 diabetes in African American women (AAW) is nearly twice that of White women. Lower insulin sensitivity and decreased mitochondrial function may be contributing factors. The purpose of this study was to compare fat oxidation in AAW and White women. METHODS Participants were 22 AAW and 22 White women, matched for age (18.7-38.3 years) and BMI (< 28 kg/m2). Participants completed two submaximal (50% VO2max) exercise tests with indirect calorimetry and stable isotope tracers to assess total, plasma, and intramyocellular triglyceride fat oxidation. RESULTS The respiratory quotient during the exercise test was nearly identical in AAW and White women (0.813 ± 0.008 vs. 0.810 ± 0.008, p = 0.83). Although absolute total and plasma fat oxidation was lower in AAW, adjusting for the lower workload in AAW eliminated these racial differences. There was no racial difference in plasma and intramyocellular triglyceride source of fat for oxidation. No racial differences were observed in rates of ex vivo fat oxidation. Exercise efficiency was lower in AAW when adjusted to leg fat free mass. CONCLUSIONS The data suggest that fat oxidation is not lower in AAW compared with White women, but additional studies are needed across exercise intensity, body weight, and age to confirm these results.
Collapse
Affiliation(s)
- John J. Dubé
- School of Arts, Science, and Business, Chatham University, Pittsburgh, PA
| | - Frederico G.S. Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Paul M. Coen
- AdventHealth Orlando, Translational Research Institute, Orlando, FL
| | | | - James P. DeLany
- AdventHealth Orlando, Translational Research Institute, Orlando, FL
| |
Collapse
|
37
|
Feraco A, Gorini S, Mammi C, Lombardo M, Armani A, Caprio M. Neutral Effect of Skeletal Muscle Mineralocorticoid Receptor on Glucose Metabolism in Mice. Int J Mol Sci 2023; 24:ijms24087412. [PMID: 37108574 PMCID: PMC10139152 DOI: 10.3390/ijms24087412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The mineralocorticoid receptor (MR) is able to regulate the transcription of a number of genes in the myotube, although its roles in skeletal muscle (SM) metabolism still await demonstration. SM represents a major site for glucose uptake, and its metabolic derangements play a pivotal role in the development of insulin resistance (IR). The aim of this study was to investigate the contribution of SM MR in mediating derangements of glucose metabolism in a mouse model of diet-induced obesity. We observed that mice fed a high-fat diet (HFD mice) showed impaired glucose tolerance compared to mice fed a normal diet (ND mice). Mice fed a 60% HFD treated with the MR antagonist Spironolactone (HFD + Spiro) for 12 weeks revealed an improvement in glucose tolerance, as measured with an intraperitoneal glucose tolerance test, compared with HFD mice. To investigate if blockade of SM MR could contribute to the favorable metabolic effects observed with pharmacological MR antagonism, we analyzed MR expression in the gastrocnemius, showing that SM MR protein abundance is downregulated by HFD compared to ND mice and that pharmacological treatment with Spiro was able to partially revert this effect in HFD + Spiro mice. Differently from what we have observed in adipose tissue, where HDF increased adipocyte MR expression, SM MR protein was down-regulated in our experimental model, suggesting a completely different role of SM MR in the regulation of glucose metabolism. To confirm this hypothesis, we investigated the effects of MR blockade on insulin signaling in a cellular model of IRin C2C12 myocytes, which were treated with or without Spiro. We confirmed MR protein downregulation in insulin-resistant myotubes. We also analyzed Akt phosphorylation upon insulin stimulation, and we did not observe any difference between palmitate- and palmitate + Spiro-treated cells. These results were confirmed by in vitro glucose uptake analysis. Taken together, our data indicate that reduced activity of SM MR does not improve insulin signaling in mouse skeletal myocytes and does not contribute to the favorable metabolic effects on glucose tolerance and IR induced by systemic pharmacological MR blockade.
Collapse
Affiliation(s)
- Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| | - Stefania Gorini
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| |
Collapse
|
38
|
Methenitis S, Nomikos T, Kontou E, Kiourelli KM, Papadimas G, Papadopoulos C, Terzis G. Skeletal muscle fiber composition may modify the effect of nutrition on body composition in young females. Nutr Metab Cardiovasc Dis 2023; 33:817-825. [PMID: 36725423 DOI: 10.1016/j.numecd.2022.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIM The aim of this study was to investigate the hypothesis that healthy, normal-weight females with greater proportions and sizes of the oxidative muscle fibers would also be characterized by a healthier body composition compared with individuals with increased glycolytic fibers, even if both follow similar nutritional plans. METHODS AND RESULTS Vastus lateralis muscle fiber-type composition, body composition through dual-energy X-ray absorptiometry, and dietary intakes through questionnaire were evaluated in twenty-two young, healthy, non-obese females (age: 21.3±1.8yrs, body mass: 67.5±6.2 kg, body height: 1.66±0.05m, body mass index (BMI): 24.2±2.6 kg m-2). The participants were allocated into two groups according to their type I muscle fibers percentage [high (HI) and low (LI)]. The participants of the LI group were characterized by significantly higher body mass, fat mass, BMI, and cross-sectional and percentage cross-sectional area (%CSA) of type IIx muscle fibers compared with participants of the HI group (p < 0.021). In contrast, the HI group was characterized by higher cross-sectional and %CSA of type I muscle fibers compared with the LI group (p < 0.038). Significant correlations were observed between body fat mass, lean body mass, total energy intake, fat energy intake, and %CSAs of type I and IIx muscle fibers (r: -0.505 to 0.685; p < 0.05). CONCLUSION In conclusion, this study suggests that muscle fiber composition is an important factor that at least partly could explain the observed differential inter-individual responses of the body composition to nutrition in female individuals. Increased %CSAs of type I muscle fibers seem to act as a protective mechanism against obesity and favor a healthier body composition, neutralizing the negative effect of increased caloric fats intake on body composition, probably because of their greater oxidative metabolic properties and fat utilization capacities. In contrast, female individuals with low type I and high type IIx %CSAs of type I seem to be more metabolically inflexible and dietinduced obesity prone, even if they consume fewer total daily calories and fats.
Collapse
Affiliation(s)
- Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Greece.
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Greece.
| | - Eleni Kontou
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Greece; Theseus, Physical Medicine and Rehabilitation Center, Athens, Greece.
| | - Kleio-Maria Kiourelli
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Greece.
| | - George Papadimas
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Constantinos Papadopoulos
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
39
|
Yang L, Chen X, Chen D, Yu B, He J, Luo Y, Zheng P, Chen H, Yan H, Huang Z. Effects of protocatechuic acid on antioxidant capacity, mitochondrial biogenesis and skeletal muscle fiber transformation. J Nutr Biochem 2023; 116:109327. [PMID: 36958419 DOI: 10.1016/j.jnutbio.2023.109327] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
In skeletal muscle, the increased proportion of type I muscle fibers has the potential to improve muscle atrophy and prevent human metabolic diseases. Protocatechuic acid (PCA), as a kind of anthocyanin metabolite, has antioxidant and anti-inflammatory physiological activities. The purpose of this experiment was to use mice and C2C12 myotubes to examine if PCA can induce the transformation of muscle fiber and the mechanisms involved. We found that PCA significantly increased the expression of slow myosin heavy chain (MyHC), and markedly decreased the expression of fast MyHC in gastrocnemius muscle of mice and C2C12 myotubes. In addition, PCA also enhanced the antioxidant capacity and promoted mitochondrial biogenesis in mice. Importantly, the AMP-activated protein kinase (AMPK) signaling pathway was activated and AMPK inhibitor compound C attenuated the positive effect of PCA on myofiber conversion. To sum up, we revealed that PCA was able to promote the conversion of skeletal muscle fiber from type II to type I through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, 625014, P. R. China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China.
| |
Collapse
|
40
|
Kirwan JP, Heintz EC, Rebello CJ, Axelrod CL. Exercise in the Prevention and Treatment of Type 2 Diabetes. Compr Physiol 2023; 13:4559-4585. [PMID: 36815623 DOI: 10.1002/cphy.c220009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Type 2 diabetes is a systemic, multifactorial disease that is a leading cause of morbidity and mortality globally. Despite a rise in the number of available medications and treatments available for management, exercise remains a first-line prevention and intervention strategy due to established safety, efficacy, and tolerability in the general population. Herein we review the predisposing risk factors for, prevention, pathophysiology, and treatment of type 2 diabetes. We emphasize key cellular and molecular adaptive processes that provide insight into our evolving understanding of how, when, and what types of exercise may improve glycemic control. © 2023 American Physiological Society. Compr Physiol 13:1-27, 2023.
Collapse
Affiliation(s)
- John P Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth C Heintz
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Candida J Rebello
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Christopher L Axelrod
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
41
|
Le Corre A, Caron N, Turpin NA, Dalleau G. Mechanisms underlying altered neuromuscular function in people with DPN. Eur J Appl Physiol 2023:10.1007/s00421-023-05150-2. [PMID: 36763123 DOI: 10.1007/s00421-023-05150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
Diabetes alters numerous physiological functions and can lead to disastrous consequences in the long term. Neuromuscular function is particularly affected and is impacted early, offering an opportunity to detect the onset of diabetes-related dysfunctions and follow the advancement of the disease. The role of physical training for counteracting the deleterious effects of diabetes is well accepted but at the same time, it appears difficult to reliably assess the effects of exercise on functional capacity in patients with diabetic peripheral neuropathy (DPN). In this paper, we will review the specific characteristics of various neuromuscular dysfunctions associated with diabetes according to the DPN presence or not, and their changes over time. We present several propositions regarding the onset of neuromuscular alterations in people with diabetes compared to people with DPN. It appears that motor unit loss and neuromuscular transmission impairment are among the main mechanisms explaining the considerable degradation of neuromuscular function in the transition from a diabetic to neuropathic state. Rate of force development and contractile properties could start to decrease with the onset of preferential type II fiber atrophy, commonly reported in people with DPN. Finally, Mmax amplitude could decrease with neuromuscular fatigue only in people with DPN, reflecting the fatigue-related neuromuscular transmission impairment reported in people with DPN. In this review, we show that the different neuromuscular parameters are altered at different stages of diabetes, according to the presence of DPN or not. The precise evaluation of these parameters might participate in adapting the physical training prescription.
Collapse
Affiliation(s)
- Antonin Le Corre
- IRISSE (EA 4075), UFR SHE, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France.
| | - Nathan Caron
- IRISSE (EA 4075), UFR SHE, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France
| | - Nicolas A Turpin
- IRISSE (EA 4075), UFR SHE, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France
| | - Georges Dalleau
- IRISSE (EA 4075), UFR SHE, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France
| |
Collapse
|
42
|
Methenitis S, Nomikos T, Mpampoulis T, Kontou E, Kiourelli KM, Evangelidou E, Papadopoulos C, Papadimas G, Terzis G. Different eccentric-based power training volumes improve glycemic, lipidemic profile and body composition of females in a dose-dependent manner: Associations with muscle fibres composition adaptations. Eur J Sport Sci 2023; 23:241-250. [PMID: 35001855 DOI: 10.1080/17461391.2022.2027024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate the effect of different volumes of fast eccentric-based training on body composition and lipidemic-glycemic profiles in females, as well as to explore the relationship between the change in glycemic-lipidemic profiles and the change in muscle fibre composition. Twenty-nine young females were assigned into three groups and performed 10 weeks (2 training sessions per week) of either 3 (LV), 6 (MV) or 9 (HV) sets/session of four fast velocity eccentric-only half-squats against 70% of concentric 1RM, followed by 3 maximum countermovement jumps (CMJ) after each set. Body composition, vastus lateralis fibre-type composition, and resting blood lipidemic and glycemic indices were evaluated 1 week before and after the training intervention. Significant changes in body composition, fasting glucose, HOMA-IR and blood lipids were found after training with MV and HV (p < 0.05; η2: 0.135-0.390). Significant correlations were found between muscle fibres' percentage cross-sectional areas (%CSA) and resting glycemic-lipid values (r:-0.543to 0.730, p < 0.05). Training-induced changes of glycemic-lipid profiles were highly correlated to those of type IIa and IIx %CSAs (r: -0.895 to 0.898, p < 0.05). Partial Correlations revealed a significant impact of the imposed training volumes on these correlations. These results suggest that six but mostly nine sets per training session of the imposed training stimuli are needed for beneficial changes in resting glycemic-lipidemic profiles, changes which are related to the training-induced changes in muscle fibre composition. However, these relationships are dictated by the imposed training volumes.Highlights Power training induces beneficial changes in body composition, glycemic and lipidemic profiles.Greater training volumes are needed for the healthier changes in glycemic-lipidemic profiles.Higher Type I, IIA and lower IIX percentage cross-sectional areas are linked with healthier body composition and glycemic-lipidemic profiles.Individuals experiencing the greatest increase in Type IIa and decrease in Type IIX muscle fibres cross-sectional areas after power training are those with the greatest beneficial changes in body composition, glycemic and lipidemic profiles.
Collapse
Affiliation(s)
- Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - Thomas Mpampoulis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Kontou
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleio-Maria Kiourelli
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - Eftychia Evangelidou
- Department of Infection Control, G.N.N. Ionias "Konstantopouleio-Patision" Hospital, Athens, Greece
| | - Constantinos Papadopoulos
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Papadimas
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
43
|
Bai W, Zhang Y, Ma J, Du M, Xu H, Wang J, Zhang L, Li W, Hou Y, Liu X, Zhang X, Peng Y, Li J, Zhan X, Jiang W, Liu S, Liu X, Li Q, Miao Y, Sui M, Yang Y, Zhang S, Xu Z, Zuo B. FHL3 promotes the formation of fast glycolytic muscle fibers by interacting with YY1 and muscle glycolytic metabolism. Cell Mol Life Sci 2023; 80:27. [PMID: 36602641 PMCID: PMC11073127 DOI: 10.1007/s00018-022-04680-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
The proportions of the various muscle fiber types are important in the regulation of skeletal muscle metabolism, as well as animal meat production. Four-and-a-half LIM domain protein 3 (FHL3) is highly expressed in fast glycolytic muscle fibers and differentially regulates the expression of myosin heavy chain (MyHC) isoforms at the cellular level. Whether FHL3 regulates the transformation of muscle fiber types in vivo and the regulatory mechanism is unclear. In this study, muscle-specific FHL3 transgenic mice were generated by random integration, and lentivirus-mediated gene knockdown or overexpression in muscles of mice or pigs was conducted. Functional analysis showed that overexpression of FHL3 in muscles significantly increased the proportion of fast-twitch myofibers and muscle mass but decreased muscle succinate dehydrogenase (SDH) activity and whole-body oxygen consumption. Lentivirus-mediated FHL3 knockdown in muscles significantly decreased muscle mass and the proportion of fast-twitch myofibers. Mechanistically, FHL3 directly interacted with the Yin yang 1 (YY1) DNA-binding domain, repressed the binding of YY1 to the fast glycolytic MyHC2b gene regulatory region, and thereby promoted MyHC2b expression. FHL3 also competed with EZH2 to bind the repression domain of YY1 and reduced H3K27me3 enrichment in the MyHC2b regulatory region. Moreover, FHL3 overexpression reduced glucose tolerance by affecting muscle glycolytic metabolism, and its mRNA expression in muscle was positively associated with hemoglobin A1c (HbA1c) in patients with type 2 diabetes. Therefore, FHL3 is a novel potential target gene for the treatment of muscle metabolism-related diseases and improvement of animal meat production.
Collapse
Affiliation(s)
- Wei Bai
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yunxia Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Jun Ma
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Mengmeng Du
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Haiyang Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jian Wang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Lu Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wentao Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yunqing Hou
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xinyue Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jianan Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xizhen Zhan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Jiang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shengsi Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiao Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qinying Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yang Miao
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Mengru Sui
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yuhan Yang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Shenghao Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
44
|
Muscle fiber composition affects the postmortem redox characteristics of yak beef. Food Chem 2022; 397:133797. [DOI: 10.1016/j.foodchem.2022.133797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/25/2022] [Accepted: 07/24/2022] [Indexed: 11/19/2022]
|
45
|
Zupančič B, Umek N, Ugwoke CK, Cvetko E, Horvat S, Grdadolnik J. Application of FTIR Spectroscopy to Detect Changes in Skeletal Muscle Composition Due to Obesity with Insulin Resistance and STZ-Induced Diabetes. Int J Mol Sci 2022; 23:ijms232012498. [PMID: 36293355 PMCID: PMC9603871 DOI: 10.3390/ijms232012498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Age, obesity, and diabetes mellitus are pathophysiologically interconnected factors that significantly contribute to the global burden of non-communicable diseases. These metabolic conditions are associated with impaired insulin function, which disrupts the metabolism of carbohydrates, lipids, and proteins and can lead to structural and functional changes in skeletal muscle. Therefore, the alterations in the macromolecular composition of skeletal muscle may provide an indication of the underlying mechanisms of insulin-related disorders. The aim of this study was to investigate the potential of Fourier transform infrared (FTIR) spectroscopy to reveal the changes in macromolecular composition in weight-bearing and non-weight-bearing muscles of old, obese, insulin-resistant, and young streptozotocin (STZ)-induced diabetic mice. The efficiency of FTIR spectroscopy was evaluated by comparison with the results of gold-standard histochemical techniques. The differences in biomolecular phenotypes and the alterations in muscle composition in relation to their functional properties observed from FTIR spectra suggest that FTIR spectroscopy can detect most of the changes observed in muscle tissue by histochemical analyses and more. Therefore, it could be used as an effective alternative because it allows for the complete characterization of macromolecular composition in a single, relatively simple experiment, avoiding some obvious drawbacks of histochemical methods.
Collapse
Affiliation(s)
- Barbara Zupančič
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (N.U.); (J.G.)
| | | | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simon Horvat
- Chair for Genetics, Biotechnology and Immunology, Biotechnical Faculty, University of Ljubljana, 1230 Domžale, Slovenia
| | - Jože Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Correspondence: (N.U.); (J.G.)
| |
Collapse
|
46
|
Noone J, O'Gorman DJ, Kenny HC. OPA1 regulation of mitochondrial dynamics in skeletal and cardiac muscle. Trends Endocrinol Metab 2022; 33:710-721. [PMID: 35945104 DOI: 10.1016/j.tem.2022.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
The mitochondria are double-membrane organelles integral for energy metabolism. Mitochondrial dynamics is regulated by inner and outer mitochondrial membrane (IMM and OMM) proteins, which promote fission and fusion. Optic atrophy 1 (OPA1) regulates IMM fusion, prevents apoptosis, and is a key regulator of morphological change in skeletal and cardiac muscle physiology and pathophysiology. OPA1 fuses the inner membranes of adjacent mitochondria, allowing for an increase in oxidative phosphorylation (OXPHOS). Considering the importance of energy metabolism in whole-body physiology, OPA1 and its regulators have been proposed as novel targets for the treatment of skeletal muscle atrophy and heart failure. Here, we review the role and regulation of OPA1 in skeletal muscle and cardiac pathophysiology, epitomizing its critical role in the cell.
Collapse
Affiliation(s)
- John Noone
- 3U Diabetes Partnership, School of Health and Human Performance, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland; Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Donal J O'Gorman
- 3U Diabetes Partnership, School of Health and Human Performance, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Helena C Kenny
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
47
|
Guo Z, Chen X, Chen D, Yu B, He J, Zheng P, Luo Y, Chen H, Yan H, Huang Z. Dihydromyricetin alters myosin heavy chain expression via AMPK signaling pathway in porcine myotubes. Food Funct 2022; 13:10525-10534. [PMID: 36149397 DOI: 10.1039/d2fo02173k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dihydromyricetin (DHM) has attracted wide concern for its excellent biological function and pharmacological activities and was reported to have a positive effect on skeletal muscle insulin resistance, slow-twitch fibers expression and AMPK signaling. Thus, we took porcine myotubes derived from skeletal muscle satellite cells as the object to investigate the effects of DHM on myosin heavy chain (MyHC) expression and its mechanism in this study. Data showed that DHM up-regulated protein expression of MyHC I and down-regulated the protein expression of MyHC IIb, accompanied by an increase of MyHC I mRNA level and a decrease of MyHC IIb mRNA level. Besides, DHM increased the activities of malate dehydrogenase and succinic dehydrogenase and reduced lactate dehydrogenase activity. AMP-activated protein kinase (AMPK) was phosphorylated and AMPKα1 mRNA level was increased by DHM. The AMPK signaling-related factors including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), sirtuin1 (Sirt1), nuclear respiratory factor 1 (NRF1), and phospho-calmodulin-dependent protein kinase kinase-β (p-CaMKKβ) were increased by DHM. Inhibition of the AMPK signaling by compound C and AMPKα1 siRNA significantly attenuated the effects of DHM on expressions of MyHC I, MyHC IIb, PGC-1α and Sirt1. As a whole, DHM increased MyHC I expression and decreased MyHC IIb expression by the AMPK signaling.
Collapse
Affiliation(s)
- Zhongyang Guo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, P. R. China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| |
Collapse
|
48
|
Nomikos T, Methenitis S, Panagiotakos DB. The emerging role of skeletal muscle as a modulator of lipid profile the role of exercise and nutrition. Lipids Health Dis 2022; 21:81. [PMID: 36042487 PMCID: PMC9425975 DOI: 10.1186/s12944-022-01692-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
The present article aims to discuss the hypothesis that skeletal muscle per se but mostly its muscle fiber composition could be significant determinants of lipid metabolism and that certain exercise modalities may improve metabolic dyslipidemia by favorably affecting skeletal muscle mass, fiber composition and functionality. It discusses the mediating role of nutrition, highlights the lack of knowledge on mechanistic aspects of this relationship and proposes possible experimental directions in this field.
Collapse
Affiliation(s)
- Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece.
| | - Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education and Sports. Science, National and Kapodistrian University of Athens, Athens, Greece.,Theseus, Physical Medicine and Rehabilitation Center, Athens, Greece
| | - Demosthenes B Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| |
Collapse
|
49
|
Obesity impairs skeletal muscle repair through NID-1 mediated extracellular matrix remodeling by mesenchymal progenitors. Matrix Biol 2022; 112:90-115. [PMID: 35963565 DOI: 10.1016/j.matbio.2022.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
Obesity triggers skeletal muscle physio-pathological alterations. However, the crosstalk between adipose tissue and myogenic cells remains poorly understood during obesity. We identified NID-1 among the adipose tissue secreted factors impairing myogenic potential of human myoblasts and murine muscle stem cells in vitro. Mice under High Fat Diet (HFD) displayed increased NID-1 expression in the skeletal muscle endomysium associated with intramuscular fat adipose tissue expansion and compromised muscle stem cell function. We show that NID-1 is highly secreted by skeletal muscle fibro-adipogenic/mesenchymal progenitors (FAPs) during obesity. We demonstrate that increased muscle NID-1 impairs muscle stem cells proliferation and primes the fibrogenic differentiation of FAPs, giving rise to an excessive deposition of extracellular matrix. Finally, we propose a model in which obesity leads to skeletal muscle extracellular matrix remodeling by FAPs, mediating the alteration of myogenic function by adipose tissue and highlighting the key role of NID-1 in the crosstalk between adipose tissue and skeletal muscle.
Collapse
|
50
|
Lee S, Xu H, Van Vleck A, Mawla AM, Li AM, Ye J, Huising MO, Annes JP. β-Cell Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic Diabetes. Diabetes 2022; 71:1439-1453. [PMID: 35472723 PMCID: PMC9233299 DOI: 10.2337/db21-0834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/26/2022] [Indexed: 11/20/2022]
Abstract
Mitochondrial dysfunction plays a central role in type 2 diabetes (T2D); however, the pathogenic mechanisms in pancreatic β-cells are incompletely elucidated. Succinate dehydrogenase (SDH) is a key mitochondrial enzyme with dual functions in the tricarboxylic acid cycle and electron transport chain. Using samples from human with diabetes and a mouse model of β-cell-specific SDH ablation (SDHBβKO), we define SDH deficiency as a driver of mitochondrial dysfunction in β-cell failure and insulinopenic diabetes. β-Cell SDH deficiency impairs glucose-induced respiratory oxidative phosphorylation and mitochondrial membrane potential collapse, thereby compromising glucose-stimulated ATP production, insulin secretion, and β-cell growth. Mechanistically, metabolomic and transcriptomic studies reveal that the loss of SDH causes excess succinate accumulation, which inappropriately activates mammalian target of rapamycin (mTOR) complex 1-regulated metabolic anabolism, including increased SREBP-regulated lipid synthesis. These alterations, which mirror diabetes-associated human β-cell dysfunction, are partially reversed by acute mTOR inhibition with rapamycin. We propose SDH deficiency as a contributing mechanism to the progressive β-cell failure of diabetes and identify mTOR complex 1 inhibition as a potential mitigation strategy.
Collapse
Affiliation(s)
- Sooyeon Lee
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
| | - Haixia Xu
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
| | - Aidan Van Vleck
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
| | - Alex M. Mawla
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
| | - Albert Mao Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA
| | - Mark O. Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Justin P. Annes
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
- Stanford ChEM-H and Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|