1
|
Lyons SA, McClelland GB. Highland deer mice support increased thermogenesis in response to chronic cold hypoxia by shifting uptake of circulating fatty acids from muscles to brown adipose tissue. J Exp Biol 2024; 227:jeb247340. [PMID: 38506250 PMCID: PMC11057874 DOI: 10.1242/jeb.247340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
During maximal cold challenge (cold-induced V̇O2,max) in hypoxia, highland deer mice (Peromyscus maniculatus) show higher rates of circulatory fatty acid delivery compared with lowland deer mice. Fatty acid delivery also increases with acclimation to cold hypoxia (CH) and probably plays a major role in supporting the high rates of thermogenesis observed in highland deer mice. However, it is unknown which tissues take up these fatty acids and their relative contribution to thermogenesis. The goal of this study was to determine the uptake of circulating fatty acids into 24 different tissues during hypoxic cold-induced V̇O2,max, by using [1-14C]2-bromopalmitic acid. To uncover evolved and environment-induced changes in fatty acid uptake, we compared lab-born and -raised highland and lowland deer mice, acclimated to either thermoneutral (30°C, 21 kPa O2) or CH (5°C, 12 kPa O2) conditions. During hypoxic cold-induced V̇O2,max, CH-acclimated highlanders decreased muscle fatty acid uptake and increased uptake into brown adipose tissue (BAT) relative to thermoneutral highlanders, a response that was absent in lowlanders. CH acclimation was also associated with increased activities of enzymes citrate synthase and β-hydroxyacyl-CoA dehydrogenase in the BAT of highlanders, and higher levels of fatty acid translocase CD36 (FAT/CD36) in both populations. This is the first study to show that cold-induced fatty acid uptake is distributed across a wide range of tissues. Highland deer mice show plasticity in this fatty acid distribution in response to chronic cold hypoxia, and combined with higher rates of tissue delivery, this contributes to their survival in the cold high alpine environment.
Collapse
Affiliation(s)
- Sulayman A. Lyons
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | | |
Collapse
|
2
|
Van Huynh T, Rethi L, Rethi L, Chen CH, Chen YJ, Kao YH. The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes. Cells 2023; 12:1223. [PMID: 37174622 PMCID: PMC10177489 DOI: 10.3390/cells12091223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global burden, with an increasing number of people affected and increasing treatment costs. The advances in research and guidelines improve the management of blood glucose and related diseases, but T2DM and its complications are still a big challenge in clinical practice. T2DM is a metabolic disorder in which insulin signaling is impaired from reaching its effectors. Mitochondria are the "powerhouses" that not only generate the energy as adenosine triphosphate (ATP) using pyruvate supplied from glucose, free fatty acid (FFA), and amino acids (AA) but also regulate multiple cellular processes such as calcium homeostasis, redox balance, and apoptosis. Mitochondrial dysfunction leads to various diseases, including cardiovascular diseases, metabolic disorders, and cancer. The mitochondria are highly dynamic in adjusting their functions according to cellular conditions. The shape, morphology, distribution, and number of mitochondria reflect their function through various processes, collectively known as mitochondrial dynamics, including mitochondrial fusion, fission, biogenesis, transport, and mitophagy. These processes determine the overall mitochondrial health and vitality. More evidence supports the idea that dysregulated mitochondrial dynamics play essential roles in the pathophysiology of insulin resistance, obesity, and T2DM, as well as imbalanced mitochondrial dynamics found in T2DM. This review updates and discusses mitochondrial dynamics and the complex interactions between it and metabolic disorders.
Collapse
Affiliation(s)
- Tin Van Huynh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City 700000, Vietnam
| | - Lekha Rethi
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hwa Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Magkos F, Reeds DN, Mittendorfer B. Evolution of the diagnostic value of "the sugar of the blood": hitting the sweet spot to identify alterations in glucose dynamics. Physiol Rev 2023; 103:7-30. [PMID: 35635320 PMCID: PMC9576168 DOI: 10.1152/physrev.00015.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
In this paper, we provide an overview of the evolution of the definition of hyperglycemia during the past century and the alterations in glucose dynamics that cause fasting and postprandial hyperglycemia. We discuss how extensive mechanistic, physiological research into the factors and pathways that regulate the appearance of glucose in the circulation and its uptake and metabolism by tissues and organs has contributed knowledge that has advanced our understanding of different types of hyperglycemia, namely prediabetes and diabetes and their subtypes (impaired fasting plasma glucose, impaired glucose tolerance, combined impaired fasting plasma glucose, impaired glucose tolerance, type 1 diabetes, type 2 diabetes, gestational diabetes mellitus), their relationships with medical complications, and how to prevent and treat hyperglycemia.
Collapse
Affiliation(s)
- Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
4
|
Cao C, Koh HCE, Van Vliet S, Patterson BW, Reeds DN, Laforest R, Gropler RJ, Mittendorfer B. Increased plasma fatty acid clearance, not fatty acid concentration, is associated with muscle insulin resistance in people with obesity. Metabolism 2022; 132:155216. [PMID: 35577100 PMCID: PMC10424797 DOI: 10.1016/j.metabol.2022.155216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Although it is well-accepted that increased plasma free fatty acid (FFA) concentration causes lipid overload and muscle insulin resistance in people with obesity, plasma FFA concentration poorly predicts insulin-resistant glucose metabolism. It has been proposed that hyperinsulinemia in people with obesity sufficiently inhibits adipose tissue triglyceride lipolysis to prevent FFA-induced insulin resistance. However, we hypothesized enhanced FFA clearance in people with obesity, compared with lean people, prevents a marked increase in plasma FFA even when FFA appearance is high. METHODS We assessed FFA kinetics during basal conditions and during a hyperinsulinemic-euglycemic clamp procedure in 14 lean people and 46 people with obesity by using [13C]palmitate tracer infusion. Insulin-stimulated muscle glucose uptake rate was evaluated by dynamic PET-imaging of skeletal muscles after [18F]fluorodeoxyglucose injection. RESULTS Plasma FFA clearance was accelerated in participants with obesity and correlated negatively with muscle insulin sensitivity without a difference between lean and obese participants. Furthermore, insulin infusion increased FFA clearance and the increase was greater in obese than lean participants. CONCLUSIONS Our findings suggest plasma FFA extraction efficiency, not just plasma FFA concentration, is an important determinant of the cellular fatty acid load and the stimulatory effect of insulin on FFA clearance counteracts some of its antilipolytic effect.
Collapse
Affiliation(s)
- Chao Cao
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Han-Chow E Koh
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Stephan Van Vliet
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Bruce W Patterson
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America.
| |
Collapse
|
5
|
Bruce CR, Hamley S, Ang T, Howlett KF, Shaw CS, Kowalski GM. Translating glucose tolerance data from mice to humans: Insights from stable isotope labelled glucose tolerance tests. Mol Metab 2021; 53:101281. [PMID: 34175474 PMCID: PMC8313600 DOI: 10.1016/j.molmet.2021.101281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
Objective The glucose tolerance test (GTT) is widely used in human and animal biomedical and pharmaceutical research. Despite its prevalent use, particularly in mouse metabolic phenotyping, to the best of our knowledge we are not aware of any studies that have attempted to qualitatively compare the metabolic events during a GTT in mice with those performed in humans. Methods Stable isotope labelled oral glucose tolerance tests (siOGTTs; [6,6-2H2]glucose) were performed in both human and mouse cohorts to provide greater resolution into postprandial glucose kinetics. The siOGTT allows for the partitioning of circulating glucose into that derived from exogenous and endogenous sources. Young adults spanning the spectrum of normal glucose tolerance (n = 221), impaired fasting (n = 14), and impaired glucose tolerance (n = 19) underwent a 75g siOGTT, whereas a 50 mg siOGTT was performed on chow (n = 43) and high-fat high-sucrose fed C57Bl6 male mice (n = 46). Results During the siOGTT in humans, there is a long period (>3hr) of glucose absorption and, accordingly, a large, sustained insulin response and robust suppression of lipolysis and endogenous glucose production (EGP), even in the presence of glucose intolerance. In contrast, mice appear to be highly reliant on glucose effectiveness to clear exogenous glucose and experience only modest, transient insulin responses with little, if any, suppression of EGP. In addition to the impaired stimulation of glucose uptake, mice with the worst glucose tolerance appear to have a paradoxical and persistent rise in EGP during the OGTT, likely related to handling stress. Conclusions The metabolic response to the OGTT in mice and humans is highly divergent. The potential reasons for these differences and their impact on the interpretation of mouse glucose tolerance data and their translation to humans are discussed. We compared the mechanisms governing glucose handling in humans and mice. Humans and mice underwent stable isotope labelled oral glucose tolerance tests. Metabolic responses between humans and mice were highly divergent. Unlike humans, most mice exhibit little EGP suppression or insulin response.
Collapse
Affiliation(s)
- Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Steven Hamley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia; Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia.
| |
Collapse
|
6
|
Vendramini THA, Macedo HT, Zafalon RVA, Macegoza MV, Pedrinelli V, Risolia LW, Ocampos FMM, Jeremias JT, Pontieri CFF, Ferriolli E, Colnago LA, Brunetto MA. Serum metabolomics analysis reveals that weight loss in obese dogs results in a similar metabolic profile to dogs in ideal body condition. Metabolomics 2021; 17:27. [PMID: 33594460 DOI: 10.1007/s11306-020-01753-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/26/2020] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The study of metabolic profile can be an important tool to better understand, at a systemic level, metabolic alterations caused by different pathological conditions, such as obesity. Furthermore, it allows the discovery of metabolic biomarkers, which may help to diagnose alterations caused by obesity. OBJECTIVE To investigate the metabolic profile of blood serum of obese dogs, control dogs, and dogs that were subjected to a weight loss program. METHODS Ten obese adult spayed female dogs were included, and their body composition was determined by the deuterium isotope dilution method. The dogs were subjected to a weight loss program and formed a new experimental group after losing 20% of the initial body weight. A third experimental group was composed of ten lean adult spayed female dogs. The metabolic profile of blood serum was evaluated through nuclear magnetic resonance (NMR). Principal Component Analyses (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) models were constructed using Pareto scaling pre-processing. Pathway analysis was also performed using the MetaboAnalist online tool. RESULTS The PCA shows that the control and after weight loss groups presented a trend to negative PC1, indicating similarities between these two groups. In contrast, obese animals presented a tendency to appear on negative PC2 indicating a different metabolic profile. The OPLS-DA analysis of the serum indicated that healthy groups presented higher content of glucose, while animals that lost weight had higher levels of cholesterol and lactate than the control group. On the other hand, the analysis showed that lipid content, cholesterol, and branched-chain amino acids were highest in obese animals. Variable Influence on Projection (VIP) analysis demonstrated that Lactate is the most important metabolite for the OPLS-DA model and Hierarchical Cluster Analysis (HCA) corroborated the similarity between the control group and the obese after weight loss groups. Moreover, the pathway analysis indicated the most important metabolic pathways related to this dataset. CONCLUSIONS The metabolomic assessment based on NMR of blood serum differed between obese dogs and animals in optimal body condition. Moreover, the weight loss resulted in metabolic profiles similar to those observed in lean animals.
Collapse
Affiliation(s)
- Thiago H A Vendramini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Henrique T Macedo
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Rafael V A Zafalon
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Matheus V Macegoza
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Vivian Pedrinelli
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), Sao Paulo, 13635-900, Brazil
| | - Larissa W Risolia
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), Sao Paulo, 13635-900, Brazil
| | - Fernanda M M Ocampos
- Brazilian Agricultural Research Corporation (Embrapa-CNPDIA), São Carlos, 13560-970, Brazil
| | | | | | - Eduardo Ferriolli
- Medical School of Ribeirão Preto, University of Sao Paulo (USP), Ribeirão Preto, 14049900, Brazil
| | - Luiz A Colnago
- Brazilian Agricultural Research Corporation (Embrapa-CNPDIA), São Carlos, 13560-970, Brazil
| | - Marcio A Brunetto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil.
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), Sao Paulo, 13635-900, Brazil.
| |
Collapse
|
7
|
Abstract
Adipose, or fat, tissue (AT) was once considered an inert tissue that primarily existed to store lipids, and was not historically recognized as an important organ in the regulation and maintenance of health. With the rise of obesity and more rigorous research, AT is now recognized as a highly complex metabolic organ involved in a host of important physiological functions, including glucose homeostasis and a multitude of endocrine capabilities. AT dysfunction has been implicated in several disease states, most notably obesity, metabolic syndrome and type 2 diabetes. The study of AT has provided useful insight in developing strategies to combat these highly prevalent metabolic diseases. This review highlights the major functions of adipose tissue and the consequences that can occur when disruption of these functions leads to systemic metabolic dysfunction.
Collapse
Affiliation(s)
- Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
8
|
p38 MAPK in Glucose Metabolism of Skeletal Muscle: Beneficial or Harmful? Int J Mol Sci 2020; 21:ijms21186480. [PMID: 32899870 PMCID: PMC7555282 DOI: 10.3390/ijms21186480] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscles respond to environmental and physiological changes by varying their size, fiber type, and metabolic properties. P38 mitogen-activated protein kinase (MAPK) is one of several signaling pathways that drive the metabolic adaptation of skeletal muscle to exercise. p38 MAPK also participates in the development of pathological traits resulting from excessive caloric intake and obesity that cause metabolic syndrome and type 2 diabetes (T2D). Whereas p38 MAPK increases insulin-independent glucose uptake and oxidative metabolism in muscles during exercise, it contrastingly mediates insulin resistance and glucose intolerance during metabolic syndrome development. This article provides an overview of the apparent contradicting roles of p38 MAPK in the adaptation of skeletal muscles to exercise and to pathological conditions leading to glucose intolerance and T2D. Here, we focus on the involvement of p38 MAPK in glucose metabolism of skeletal muscle, and discuss the possibility of targeting this pathway to prevent the development of T2D.
Collapse
|
9
|
Zhang Z, Yan B, Gao F, Li Q, Meng X, Chen P, Zhou L, Deng W, Li C, Xu W, Han S, Feng H, Li Y, Chen J, Yin Z, Liao C, Tse HF, Xu A, Lian Q. PSCs Reveal PUFA-Provoked Mitochondrial Stress as a Central Node Potentiating RPE Degeneration in Bietti's Crystalline Dystrophy. Mol Ther 2020; 28:2642-2661. [PMID: 32755565 PMCID: PMC7704739 DOI: 10.1016/j.ymthe.2020.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Bietti’s crystalline dystrophy (BCD) is an incurable retinal disorder caused by the polypeptide 2 of cytochrome P450 family 4 subfamily V (CYP4V2) mutations. Patients with BCD present degeneration of retinal pigmented epithelial (RPE) cells and consequent blindness. The lack of appropriate disease models and patients’ RPE cells limits our understanding of the pathological mechanism of RPE degeneration. In this study, using CYP4V2 mutant pluripotent stem cells as disease models, we demonstrated that RPE cells with CYP4V2 mutations presented a disrupted fatty acid homeostasis, which were characterized with excessive accumulation of poly-unsaturated fatty acid (PUFA), including arachidonic acid (AA) and eicosapentaenoic acid (EPA). The PUFA overload increased mitochondrial reactive oxygen species, impaired mitochondrial respiratory functions, and triggered mitochondrial stress-activated p53-independent apoptosis in CYP4V2 mutant RPE cells. Restoration of the mutant CYP4V2 using adeno-associated virus 2 (AAV2) can effectively reduce PUFA deposition, alleviate mitochondria oxidative stresses, and rescue RPE cell death in BCD RPE cells. Taken together, our results highlight a role of PUFA-induced mitochondrial damage as a central node to potentiate RPE degeneration in BCD patients. AAV2-mediated gene therapy may represent a feasible strategy for the treatment of BCD.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Prenatal Diagnostic Centre and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Bin Yan
- Department of Computer Science, The University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fei Gao
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Qing Li
- Ophthalmology, Grantham Hospital, Hospital Authority, Hong Kong SAR, China
| | - Xiaohong Meng
- Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
| | - Peikai Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Lei Zhou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Deng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Cheng Li
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Weiyi Xu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Shuo Han
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hong Feng
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yaping Li
- Ophthalmology, The Second Hospital of Jilin University, Changchun 130022, China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhengqin Yin
- Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
| | - Can Liao
- Prenatal Diagnostic Centre and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Hung-Fat Tse
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Aimin Xu
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China.
| | - Qizhou Lian
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Prenatal Diagnostic Centre and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
10
|
Messa GAM, Piasecki M, Hurst J, Hill C, Tallis J, Degens H. The impact of a high-fat diet in mice is dependent on duration and age, and differs between muscles. J Exp Biol 2020; 223:jeb217117. [PMID: 31988167 PMCID: PMC7097303 DOI: 10.1242/jeb.217117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
Prolonged high-fat diets (HFDs) can cause intramyocellular lipid (IMCL) accumulation that may negatively affect muscle function. We investigated the duration of a HFD required to instigate these changes, and whether the effects are muscle specific and aggravated in older age. Muscle morphology was determined in the soleus, extensor digitorum longus (EDL) and diaphragm muscles of female CD-1 mice from 5 groups: young fed a HFD for 8 weeks (YS-HFD, n=16), young fed a HFD for 16 weeks (YL-HFD, n=28) and young control (Y-Con, n=28). The young animals were 20 weeks old at the end of the experiment. Old (70 weeks) female CD-1 mice received either a normal diet (O-Con, n=30) or a HFD for 9 weeks (OS-HFD, n=30). Body mass, body mass index and intramyocellular lipid (IMCL) content increased in OS-HFD (P≤0.003). In the young mice, this increase was seen in YL-HFD and not YS-HFD (P≤0.006). The soleus and diaphragm fibre cross-sectional area (FCSA) in YL-HFD was larger than that in Y-Con (P≤0.004) while OS-HFD had a larger soleus FCSA compared with that of O-Con after only 9 weeks on a HFD (P<0.001). The FCSA of the EDL muscle did not differ significantly between groups. The oxidative capacity of fibres increased in young mice only, irrespective of HFD duration (P<0.001). High-fat diet-induced morphological changes occurred earlier in the old animals than in the young, and adaptations to HFD were muscle specific, with the EDL being least responsive.
Collapse
Affiliation(s)
- Guy A M Messa
- Department of Life Sciences, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Mathew Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Josh Hurst
- Center for Sport, Exercise and Life Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Cameron Hill
- Center for Sport, Exercise and Life Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, Kings College, London SE1 1UL, UK
| | - Jason Tallis
- Center for Sport, Exercise and Life Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Hans Degens
- Department of Life Sciences, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester M1 5GD, UK
- Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
- University of Medicine and Pharmacy of Targu Mures, Târgu Mureş 540139, Romania
| |
Collapse
|
11
|
Verpoorten S, Sfyri P, Scully D, Mitchell R, Tzimou A, Mougios V, Patel K, Matsakas A. Loss of CD36 protects against diet-induced obesity but results in impaired muscle stem cell function, delayed muscle regeneration and hepatic steatosis. Acta Physiol (Oxf) 2020; 228:e13395. [PMID: 31599493 DOI: 10.1111/apha.13395] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
AIM The prevalence of obesity is a major risk factor for cardiovascular and metabolic diseases including impaired skeletal muscle regeneration. Since skeletal muscle regenerative capacity is regulated by satellite cells, we aimed to investigate whether a high-fat diet impairs satellite cell function and whether this is linked to fatty acid uptake via CD36. We also aimed to determine whether loss of CD36 impacts on muscle redox homeostasis and skeletal muscle regenerative capacity. METHODS We studied the impact of a high-fat diet and CD36 deficiency on murine skeletal muscle morphology, redox homeostasis, satellite cell function, bioenergetics and lipid accumulation in the liver. We also determined the effect of CD36 deficiency on skeletal muscle regeneration. RESULTS High-fat diet increased body weight, intramuscular lipid accumulation and oxidative stress in wild-type mice that were significantly mitigated in CD36-deficient mice. High-fat diet and CD36 deficiency independently attenuated satellite cell function on single fibres and myogenic capacity on primary satellite cells. CD36 deficiency resulted in delayed skeletal muscle regeneration following acute injury with cardiotoxin. CD36-deficient and wild-type primary satellite cells had distinct bioenergetic profiles in response to palmitate. High-fat diet induced hepatic steatosis in both genotypes that was more pronounced in the CD36-deficient mice. CONCLUSION This study demonstrates that CD36 deficiency protects against diet-induced obesity, intramuscular lipid deposition and oxidative stress but results in impaired muscle satellite cell function, delayed muscle regeneration and hepatic steatosis. CD36 is a key mediator of fatty acid uptake in skeletal muscle, linking obesity with satellite cell function and muscle regeneration.
Collapse
Affiliation(s)
- Sandrine Verpoorten
- Molecular Physiology Laboratory Centre for Atherothrombosis & Metabolic Disease Hull York Medical School University of Hull Hull UK
| | - Peggy Sfyri
- Molecular Physiology Laboratory Centre for Atherothrombosis & Metabolic Disease Hull York Medical School University of Hull Hull UK
| | - David Scully
- Molecular Physiology Laboratory Centre for Atherothrombosis & Metabolic Disease Hull York Medical School University of Hull Hull UK
| | - Robert Mitchell
- School of Biological Sciences University of Reading Reading UK
| | - Anastasia Tzimou
- Laboratory of Evaluation of Human Biological Performance School of Physical Education and Sports Science at Thessaloniki Aristotle University of Thessaloniki Thessaloniki Greece
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance School of Physical Education and Sports Science at Thessaloniki Aristotle University of Thessaloniki Thessaloniki Greece
| | - Ketan Patel
- School of Biological Sciences University of Reading Reading UK
| | - Antonios Matsakas
- Molecular Physiology Laboratory Centre for Atherothrombosis & Metabolic Disease Hull York Medical School University of Hull Hull UK
| |
Collapse
|
12
|
Zheng L, Rao Z, Guo Y, Chen P, Xiao W. High-Intensity Interval Training Restores Glycolipid Metabolism and Mitochondrial Function in Skeletal Muscle of Mice With Type 2 Diabetes. Front Endocrinol (Lausanne) 2020; 11:561. [PMID: 32922365 PMCID: PMC7456954 DOI: 10.3389/fendo.2020.00561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
High-intensity interval training has been reported to lower fasting blood glucose and improve insulin resistance of type 2 diabetes without clear underlying mechanisms. The purpose of this study was to investigate the effect of high-intensity interval training on the glycolipid metabolism and mitochondrial dynamics in skeletal muscle of high-fat diet (HFD) and one-time 100 mg/kg streptozocin intraperitoneal injection-induced type 2 diabetes mellitus (T2DM) mice. Our results confirmed that high-intensity interval training reduced the body weight, fat mass, fasting blood glucose, and serum insulin of the T2DM mice. High-intensity interval training also improved glucose tolerance and insulin tolerance of the T2DM mice. Moreover, we found that high-intensity interval training also decreased lipid accumulation and increased glycogen synthesis in skeletal muscle of the T2DM mice. Ultrastructural analysis of the mitochondria showed that mitochondrial morphology and quantity were improved after 8 weeks of high-intensity interval training. Western blot analysis showed that the expression of mitochondrial biosynthesis related proteins and mitochondrial dynamics related proteins in high-intensity interval trained mice in skeletal muscle were enhanced. Taken together, these data suggest high-intensity interval training improved fasting blood glucose and glucose homeostasis possibly by ameliorating glycolipid metabolism and mitochondrial dynamics in skeletal muscle of the T2DM mice.
Collapse
Affiliation(s)
- Lifang Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Yifan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Peijie Chen
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Weihua Xiao
| |
Collapse
|
13
|
Lino ADDS, Aquino Júnior AED, Leite RD, Speretta GFF, Moraes FDD, Fabrizzi F, Moraes G, Selistre-de-Araújo HS, Duarte ACGDO. Resistance training improves the lipid profile, combat oxidative stress and inhibit MMP-2 activity in the left ventricle diet-induced obese rats. MOTRIZ: REVISTA DE EDUCACAO FISICA 2020. [DOI: 10.1590/s1980-6574202000030199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Wu Q, Wang Q, Fu J, Ren R. Polysaccharides derived from natural sources regulate triglyceride and cholesterol metabolism: a review of the mechanisms. Food Funct 2019; 10:2330-2339. [DOI: 10.1039/c8fo02375a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper presents a comprehensive review of hypolipidemic mechanism of polysaccharides from natural sources.
Collapse
Affiliation(s)
- Qingqian Wu
- Department of Pathology and Pathophysiology
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- First Affiliated Hospital
- School of Medicine
- Zhejiang University
| | - Qintao Wang
- Department of Pathology and Pathophysiology
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- First Affiliated Hospital
- School of Medicine
- Zhejiang University
| | - Junfen Fu
- Children's Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
- China
| | - Rendong Ren
- School of Public Health
- Fujian Medical University
- Fuzhou
- China
| |
Collapse
|
15
|
DiMenna FJ, Arad AD. Exercise as 'precision medicine' for insulin resistance and its progression to type 2 diabetes: a research review. BMC Sports Sci Med Rehabil 2018; 10:21. [PMID: 30479775 PMCID: PMC6251139 DOI: 10.1186/s13102-018-0110-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/13/2018] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes and obesity epidemics are in effect in the United States and the two pathologies are linked. In accordance with the growing appreciation that ‘exercise is medicine,’ it is intuitive to suggest that exercise can play an important role in the prevention and/or treatment of these conditions. However, if exercise is to truly be considered as a viable alternative to conventional healthcare prevention/treatment strategies involving pharmaceuticals, it must be prescribed with similar scrutiny. Indeed, it seems reasonable to posit that the recent initiative calling for ‘precision medicine’ in the US standard healthcare system should also be applied in the exercise setting. In this narrative review, we consider a number of explanations that have been forwarded regarding the pathological progression to type 2 diabetes both with and without the concurrent influence of overweight/obesity. Our goal is to provide insight regarding exercise strategies that might be useful as ‘precision medicine’ to prevent/treat this disease. Although the etiology of type 2 diabetes is complex and cause/consequence characteristics of associated dysfunctions have been debated, it is well established that impaired insulin action plays a critical early role. Consequently, an exercise strategy to prevent/treat this disease should be geared toward improving insulin sensitivity both from an acute and chronic standpoint. However, research suggests that a chronic improvement in insulin sensitivity only manifests when weight loss accompanies an exercise intervention. This has resonance because ectopic fat accumulation appears to represent a central component of disease progression regardless of whether obesity is also part of the equation. The cause/consequence characteristics of the relationship between insulin resistance, pathological fat deposition and/or mobilsation, elevated and/or poorly-distributed lipid within myocytes and an impaired capacity to use lipid as fuel remains to be clarified as does the role of muscle mitochondria in the metabolic decline. Until these issues are resolved, a multidimensional exercise strategy (e.g., aerobic exercise at a range of intensities and resistance training for muscular hypertrophy) could provide the best alternative for prevention/treatment.
Collapse
Affiliation(s)
- Fred J DiMenna
- 1Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, 1111 Amsterdam Avenue, Babcock 10th Floor, Suite 1020, New York, 10025 New York USA.,2Department of Biobehavioral Sciences, Columbia University Teachers College, 525 W. 120th Street, New York, 10027 New York USA
| | - Avigdor D Arad
- 1Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, 1111 Amsterdam Avenue, Babcock 10th Floor, Suite 1020, New York, 10025 New York USA
| |
Collapse
|
16
|
Baek KW, Cha HJ, Ock MS, Kim HS, Gim JA, Park JJ. Effects of regular-moderate exercise on high-fat diet-induced intramyocellular lipid accumulation in the soleus muscle of Sprague-Dawley rats. J Exerc Rehabil 2018; 14:32-38. [PMID: 29511650 PMCID: PMC5833965 DOI: 10.12965/jer.1835166.583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/16/2018] [Indexed: 11/22/2022] Open
Abstract
Previously, we monitored the expression level of the pro-apoptotic proteins caspase-3 and cleaved poly-ADP-ribose polymerase in the skeletal muscle of high-fat diet-induced obese rats in order to assess muscle damage. In this study, we analyzed whether exercise or dietary adjustment was more effective at preventing high-fat diet-induced muscle damage. High-fat diet-induced obese rats were divided into three groups: the high-fat diet (HFD), the combined high-fat diet and exercise (HFD+EXE), and the dietary adjustment (DA) groups. For 6 weeks, the HFD+EXE group was subjected to exercise on an animal treadmill. Capsase-3 protein was quantified, and histopathology of the soleus muscle was performed. Both the HFD+EXE and DA interventions resulted in a reduction of lipid accumulation in the soleus muscle, and nucleus infiltration was significantly lower in the DA group. The inflammatory response, caspase-3 level, and relative muscle weight were significantly higher in the HFD+EXE group compared to the HFD group. An increase in intramyocellular lipids in the soleus muscle by obesity and exercise stimulated apoptosis. When the rats exercised, muscle growth was normal and unrelated to the effects of lipid accumulation. These data indicate that exercise was more effective than dietary adjustment in reducing lipid accumulation and increasing muscle metabolism.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Division of Sport Science, Pusan National University, Busan, Korea.,Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Korea
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Korea
| | - Hong Soo Kim
- Department of Gastroenterology/Hepatology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jeong-An Gim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Jung-Jun Park
- Division of Sport Science, Pusan National University, Busan, Korea
| |
Collapse
|
17
|
Lopes-Coelho F, André S, Félix A, Serpa J. Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol 2018; 462:93-106. [PMID: 28119133 DOI: 10.1016/j.mce.2017.01.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022]
Abstract
The cellular components of microenvironment are partners of cancer cells, sharing soluble factors and organic molecules to accomplish tumor energy and biomass demands. We tested the role of fibroblasts in fatty acids metabolism in breast cancer, addressing fatty acid synthase (FASN) expression and activity, the expression of lipids chaperons (FABPs) and transporters (FATPs) and lipids cellular content. We showed that the amount of lipids increased in cancer cells exposed to fibroblasts conditioned media, showing that lipids transfer is crucial in this metabolic cross-talk. Accordingly, it was seen in those cancer cells a concomitant decrease in the expression of FABP2 and FABP3 and an increase in FATP1 expression, whose function is independent of FABPs. The in vivo experiment corroborates the role of CAFs in tumor growth. Our study is one more step toward the understanding of metabolic dynamics between cancer cells and CAFs, disclosing FATP1 as a putative target to disturb the transfer of lipids between CAFs and breast cancer cells.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Saudade André
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Pathology Department, IPOLFG, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Ana Félix
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Pathology Department, IPOLFG, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Jacinta Serpa
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal.
| |
Collapse
|
18
|
Gong Z, Tas E, Yakar S, Muzumdar R. Hepatic lipid metabolism and non-alcoholic fatty liver disease in aging. Mol Cell Endocrinol 2017; 455:115-130. [PMID: 28017785 DOI: 10.1016/j.mce.2016.12.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/23/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Aging is associated with dysregulation of glucose and lipid metabolism. Various factors that contribute to the dysregulation include both modifiable (e.g. obesity, insulin resistance) and non-modifiable risk factors (age-associated physiologic changes). Although there is no linear relationship between aging and prevalence of non-alcoholic fatty liver disease, current data strongly suggests that advanced age leads to more severe histological changes and poorer clinical outcomes. Hepatic lipid accumulation could lead to significant hepatic and systemic consequences including steatohepatitis, cirrhosis, impairment of systemic glucose metabolism and metabolic syndrome, thereby contributing to age-related diseases. Insulin, leptin and adiponectin are key regulators of the various physiologic processes that regulate hepatic lipid metabolism. Recent advances have expanded our understanding in this field, highlighting the role of novel mediators such as FGF 21, and mitochondria derived peptides. In this review, we will summarize the mediators of hepatic lipid metabolism and how they are altered in aging.
Collapse
Affiliation(s)
- Zhenwei Gong
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Emir Tas
- Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Radhika Muzumdar
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, 5362 Biomedical Sciences Tower, Pittsburgh, PA 15261, USA.
| |
Collapse
|
19
|
Guo X, Wang O, Wang Y, Wang K, Ji B, Zhou F. Phenolic acids alleviate high-fat and high-fructose diet-induced metabolic disorders in rats. J Food Biochem 2017. [DOI: 10.1111/jfbc.12419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoxuan Guo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 People's Republic of China
| | - Ou Wang
- National Institute for Nutrition and Health; Chinese Center for Disease Control and Prevention; Beijing 100050 People's Republic of China
| | - Yong Wang
- Academy of State Administration of Grain; Beijing 100037 People's Republic of China
| | - Kai Wang
- Institute of Apicultural Research; Chinese Academy of Agricultural Sciences; Beijing 100093 People's Republic of China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 People's Republic of China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 People's Republic of China
| |
Collapse
|
20
|
Kowalski GM, Kraakman MJ, Mason SA, Murphy AJ, Bruce CR. Resolution of glucose intolerance in long-term high-fat, high-sucrose-fed mice. J Endocrinol 2017; 233:269-279. [PMID: 28360081 DOI: 10.1530/joe-17-0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/30/2017] [Indexed: 02/03/2023]
Abstract
The high-fat, high-sucrose diet (HFSD)-fed C57Bl/6 mouse is a widely used model of prediabetes. However, studies typically implement a relatively short dietary intervention lasting between 4 and 16 weeks; as a result, little is known about how a long-term HFSD influences the metabolic profile of these mice. Therefore, the aim of this investigation was to examine the effects of consuming a HFSD for 42 weeks on the development of hyperinsulinaemia and glucose intolerance in male C57Bl/6 mice. Two cohorts of HFSD mice were studied at independent institutes and they underwent an oral glucose tolerance test (OGTT) with measures of plasma insulin and free fatty acids (FFA). Age-matched chow-fed control mice were also studied. The HFSD-fed mice were hyperinsulinaemic and grossly obese, being over 25 g heavier than chow-fed mice, which was due to a marked expansion of subcutaneous adipose tissue. This was associated with a 3-fold increase in liver lipid content. Glucose tolerance, however, was either the same or better than control mice due to the preservation of glucose disposal as revealed by a dynamic stable isotope-labelled OGTT. In addition, plasma FFAs were suppressed to lower levels in HFSD mice during the OGTT. In conclusion, we have made the paradoxical observation that long-term HFSD feeding results in the resolution of glucose intolerance in the C57Bl/6 mouse. Mechanistically, we propose that the gross expansion of subcutaneous adipose tissue increases the glucose disposal capacity of the HFSD-fed mouse, which overcomes the prevailing insulin resistance to improve glucose tolerance.
Collapse
Affiliation(s)
- Greg M Kowalski
- Institute for Physical Activity and NutritionSchool of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Michael J Kraakman
- Haematopoiesis and Leukocyte Biology LaboratoryBaker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of MedicineColumbia University College of Physicians and Surgeons, New York, New York, USA
| | - Shaun A Mason
- Institute for Physical Activity and NutritionSchool of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology LaboratoryBaker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and NutritionSchool of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
21
|
Mikłosz A, Łukaszuk B, Żendzian-Piotrowska M, Brańska-Januszewska J, Ostrowska H, Chabowski A. Challenging of AS160/TBC1D4 Alters Intracellular Lipid milieu in L6 Myotubes Incubated With Palmitate. J Cell Physiol 2017; 232:2373-2386. [PMID: 27714805 PMCID: PMC5485047 DOI: 10.1002/jcp.25632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/05/2016] [Indexed: 12/14/2022]
Abstract
The Akt substrate of 160 kDa (AS160) is a key regulator of GLUT4 translocation from intracellular depots to the plasma membrane in myocytes. Likely, AS160 also controls LCFAs transport, which requires relocation of fatty acid transporters. The aim of the present study was to determine the impact of AS160 knockdown on lipid milieu in L6 myotubes incubated with palmitate (PA). Therefore, we compared two different settings, namely: 1) AS160 knockdown prior to palmitate incubation (pre-PA-silencing, AS160- /PA); 2) palmitate incubation with subsequent AS160 knockdown (post-PA-silencing, PA/AS160- ). The efficiency of AS160 silencing was checked at mRNA and protein levels. The expression and localization of FA transporters were determined using Western Blot and immunofluorescence analyses. Intracellular lipid content (FFA, DAG, TAG, and PL) and FA composition were estimated by GLC, whereas basal palmitate uptake was analyzed by means of scintigraphy. Both groups with silenced AS160 were characterized by a greater expression of FA transporters (FAT/CD36, FATP-1, 4) which had contributed to an increased FA cellular influx. Accordingly, we observed that post-PA-silencing of AS160 resulted in a marked decrement in DAG, TAG, and PL contents, but increased FFA content (PA/AS160- vs. PA). The opposite effect was observed in the group with pre-PA-silencing of AS160 in which AS160 knockdown did not affect the lipid pools (AS160- /PA vs. PA). Our results indicate that post-PA-silencing of AS160 has a capacity to decrease the lipotoxic effect(s) of PA by decreasing the content of lipids (DAG and PL) that promote insulin resistance in myotubes. J. Cell. Physiol. 232: 2373-2386, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Bartłomiej Łukaszuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | | | - Halina Ostrowska
- Department of Biology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
22
|
Correa-de-Araujo R, Harris-Love MO, Miljkovic I, Fragala MS, Anthony BW, Manini TM. The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report. Front Physiol 2017; 8:87. [PMID: 28261109 PMCID: PMC5310167 DOI: 10.3389/fphys.2017.00087] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and providing recommendations to address critical clinical and technology research gaps within the field.
Collapse
Affiliation(s)
- Rosaly Correa-de-Araujo
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, USA
| | - Michael O Harris-Love
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center - Human Performance Research Unit, Veterans Affairs Medical CenterWashington, DC, USA; Geriatrics and Extended Care Service/Research Service, Veterans Affairs Medical CenterWashington, DC, USA; Department of Exercise and Nutritional Sciences, Milken Institute School of Public Health, The George Washington UniversityWashington, DC, USA
| | - Iva Miljkovic
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | | | - Brian W Anthony
- Laboratory for Manufacturing and Productivity, Massachusetts Institute of TechnologyCambridge, MA, USA; Medical Electronic Device Realization Center, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Todd M Manini
- Department of Aging & Geriatric Research, Institute on Aging, University of Florida College of Medicine Gainesville, FL, USA
| |
Collapse
|
23
|
Wu W, Feng J, Jiang D, Zhou X, Jiang Q, Cai M, Wang X, Shan T, Wang Y. AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N 6-methyladenosine. Sci Rep 2017; 7:41606. [PMID: 28176824 PMCID: PMC5296945 DOI: 10.1038/srep41606] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/22/2016] [Indexed: 11/28/2022] Open
Abstract
Skeletal muscle plays important roles in whole-body energy homeostasis. Excessive skeletal muscle lipid accumulation is associated with some metabolic diseases such as obesity and Type 2 Diabetes. The energy sensor AMPK (AMP-activated protein kinase) is a key regulator of skeletal muscle lipid metabolism, but the precise regulatory mechanism remains to be elucidated. Here, we provide a novel mechanism by which AMPK regulates skeletal muscle lipid accumulation through fat mass and obesity-associated protein (FTO)-dependent demethylation of N6-methyladenosine (m6A). We confirmed an inverse correlation between AMPK and skeletal muscle lipid content. Moreover, inhibition of AMPK enhanced lipid accumulation, while activation of AMPK reduced lipid accumulation in skeletal muscle cells. Notably, we found that mRNA m6A methylation levels were inversely correlated with lipid content in skeletal muscle. Furthermore, AMPK positively regulated the m6A methylation levels of mRNA, which could negatively regulate lipid accumulation in C2C12. At the molecular level, we demonstrated that AMPK regulated lipid accumulation in skeletal muscle cells by regulating FTO expression and FTO-dependent demethylation of m6A. Together, these results provide a novel regulatory mechanism of AMPK on lipid metabolism in skeletal muscle cells and suggest the possibility of controlling skeletal muscle lipid deposition by targeting AMPK or using m6A related drugs.
Collapse
Affiliation(s)
- Weiche Wu
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jie Feng
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Denghu Jiang
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xihong Zhou
- Institute of Subtropical Agriculture, The Chinese Academy of Science, Changsha, Hunan 410125, P. R. China
| | - Qin Jiang
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Min Cai
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xinxia Wang
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Tizhong Shan
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yizhen Wang
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
24
|
Warner A, Kjellstedt A, Carreras A, Böttcher G, Peng XR, Seale P, Oakes N, Lindén D. Activation of β3-adrenoceptors increases in vivo free fatty acid uptake and utilization in brown but not white fat depots in high-fat-fed rats. Am J Physiol Endocrinol Metab 2016; 311:E901-E910. [PMID: 27780820 PMCID: PMC5183882 DOI: 10.1152/ajpendo.00204.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/23/2016] [Accepted: 10/19/2016] [Indexed: 12/28/2022]
Abstract
Activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) present potential new therapies for obesity and type 2 diabetes. Here, we examined the effects of β3-adrenergic stimulation on tissue-specific uptake and storage of free fatty acids (FFA) and its implications for whole body FFA metabolism in diet-induced obese rats using a multi-radiotracer technique. Male Wistar rats were high fat-fed for 12 wk and administered β3-agonist CL316,243 (CL, 1 mg·kg-1·day-1) or saline via osmotic minipumps during the last 3 wk. The rats were then fasted and acutely infused with a tracer mixture ([14C]palmitate and the partially metabolized R-[3H]bromopalmitate) under anesthesia. CL infusion decreased body weight gain and fasting plasma glucose levels. While core body temperature was unaffected, infrared thermography showed an increase in tail heat dissipation following CL infusion. Interestingly, CL markedly increased both FFA storage and utilization in interscapular and perirenal BAT, whereas the flux of FFA to skeletal muscle was decreased. In this rat model of obesity, only sporadic populations of beige adipocytes were detected in the epididymal WAT depot of CL-infused rats, and there was no change in FFA uptake or utilization in WAT following CL infusion. In summary, β3-agonism robustly increased FFA flux to BAT coupled with enhanced utilization. Increased BAT activation most likely drove the increased tail heat dissipation to maintain thermostasis. Our results emphasize the quantitative role of brown fat as the functional target of β3-agonism in obesity.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Animals
- Blotting, Western
- Carbon Radioisotopes
- Diet, High-Fat
- Dioxoles/pharmacology
- Fatty Acids, Nonesterified/metabolism
- Immunohistochemistry
- Male
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Obesity/metabolism
- Palmitates/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta-3
- Reverse Transcriptase Polymerase Chain Reaction
- Thermography
- Tritium
- Uncoupling Protein 1/drug effects
- Uncoupling Protein 1/metabolism
Collapse
Affiliation(s)
- Amy Warner
- Cardiovascular and Metabolic Diseases Innovative Medicines and Early Development Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Ann Kjellstedt
- Cardiovascular and Metabolic Diseases Innovative Medicines and Early Development Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Alba Carreras
- Discovery Sciences, Transgenics, AstraZeneca Gothenburg, Sweden
| | - Gerhard Böttcher
- Pathology, Drug Safety and Metabolism, AstraZeneca Gothenburg, Sweden; and
| | - Xiao-Rong Peng
- Cardiovascular and Metabolic Diseases Innovative Medicines and Early Development Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Patrick Seale
- University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicholas Oakes
- Cardiovascular and Metabolic Diseases Innovative Medicines and Early Development Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Daniel Lindén
- Cardiovascular and Metabolic Diseases Innovative Medicines and Early Development Biotech Unit, AstraZeneca Gothenburg, Sweden;
| |
Collapse
|
25
|
Sawin EA, Stroup BM, Murali SG, O’Neill LM, Ntambi JM, Ney DM. Differential Effects of Dietary Fat Content and Protein Source on Bone Phenotype and Fatty Acid Oxidation in Female C57Bl/6 Mice. PLoS One 2016; 11:e0163234. [PMID: 27695036 PMCID: PMC5047596 DOI: 10.1371/journal.pone.0163234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/06/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Glycomacropeptide (GMP) is a 64-amino acid glycophosphopeptide released from κ-casein during cheesemaking that promotes satiety, reduces body fat, increases bone mass and infers prebiotic and anti-inflammatory effects. The impact of adiposity and gender on bone health is unclear. OBJECTIVE To determine how feeding female mice diets providing 60% Fat Kcal (high-fat) or 13% Fat Kcal (control) with either GMP or casein as the protein source impacts: body composition, ex vivo fatty acid oxidation, bone (femoral) biomechanical performance, and the relationship between body composition and bone. METHODS Weanling female C57Bl/6 mice were fed high-fat (60% Fat Kcal) or control diets (13% Fat Kcal) with GMP or casein from 3 to 32 weeks of age with assessment of body weight and food intake. Body composition was assessed by dual-energy X-ray absorptiometry (DXA). Fatty acid oxidation was measured in liver, muscle, and fat tissues using 14C-palmitate. Plasma concentrations of hormones and cytokines were determined. Bone biomechanical performance was assessed by the 3-point bending test. RESULTS Female mice fed high-fat diets showed increased fatty acid oxidation capacity in both gastrocnemius muscle and brown adipose tissue compared to mice fed the control diets with a lower fat content. Despite increased fat mass in mice fed the high-fat diets, there was little evidence of glucose impairment or inflammation. Mice fed the high-fat diets had significantly greater total body bone mineral density (BMD), femoral BMD, and femoral cross-sectional area than mice fed the control diets. Femora of mice fed the high-fat diets had increased yield load and maximum load before fracture, consistent with greater bone strength, but reduced post-yield displacement or ductility, consistent with bone brittleness. Female mice fed a high-fat GMP diet displayed increased fat oxidation capacity in subcutaneous fat relative to mice fed the high-fat casein diet. Regardless of dietary fat content, GMP increased total body bone mineral content and femur length. The prebiotic properties of GMP may mediate the beneficial effects of GMP on bone. CONCLUSIONS Female mice adapt to high-fat feeding by increasing oxidative capacity in muscle tissue and to a lesser extent brown adipose tissue. High-fat feeding in female mice leads to development of a bone phenotype where femora show increased BMD and are stronger, yet more brittle. The increased brittleness of bone was associated with increased body fat content due to high-fat feeding. In summary, high-fat feeding in female mice increases mineralization of bone, but negatively impacts bone quality resulting in brittle bones.
Collapse
Affiliation(s)
- Emily A. Sawin
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bridget M. Stroup
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sangita G. Murali
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lucas M. O’Neill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Denise M. Ney
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
26
|
Kowalski GM, Hamley S, Selathurai A, Kloehn J, De Souza DP, O'Callaghan S, Nijagal B, Tull DL, McConville MJ, Bruce CR. Reversing diet-induced metabolic dysregulation by diet switching leads to altered hepatic de novo lipogenesis and glycerolipid synthesis. Sci Rep 2016; 6:27541. [PMID: 27273128 PMCID: PMC4895138 DOI: 10.1038/srep27541] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/18/2016] [Indexed: 02/02/2023] Open
Abstract
In humans, low-energy diets rapidly reduce hepatic fat and improve/normalise glycemic control. Due to difficulties in obtaining human liver, little is known about changes to the lipid species and pathway fluxes that occur under these conditions. Using a combination of stable isotope, and targeted metabolomic approaches we investigated the acute (7-9 days) hepatic effects of switching high-fat high-sucrose diet (HFD) fed obese mice back to a chow diet. Upon the switch, energy intake was reduced, resulting in reductions of fat mass and hepatic triacyl- and diacylglycerol. However, these parameters were still elevated compared to chow fed mice, thus representing an intermediate phenotype. Nonetheless, glucose intolerance and hyperinsulinemia were completely normalized. The diet reversal resulted in marked reductions in hepatic de novo lipogenesis when compared to the chow and HFD groups. Compared with HFD, glycerolipid synthesis was reduced in the reversal animals, however it remained elevated above that of chow controls, indicating that despite experiencing a net loss in lipid stores, the liver was still actively esterifying available fatty acids at rates higher than that in chow control mice. This effect likely promotes the re-esterification of excess free fatty acids released from the breakdown of adipose depots during the weight loss period.
Collapse
Affiliation(s)
- Greg M Kowalski
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Steven Hamley
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Ahrathy Selathurai
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Joachim Kloehn
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Sean O'Callaghan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Brunda Nijagal
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Dedreia L Tull
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Malcolm J McConville
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Clinton R Bruce
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
27
|
Killeen AP, Diskin MG, Morris DG, Kenny DA, Waters SM. Endometrial gene expression in high- and low-fertility heifers in the late luteal phase of the estrous cycle and a comparison with midluteal gene expression. Physiol Genomics 2016; 48:306-19. [PMID: 26850042 DOI: 10.1152/physiolgenomics.00042.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 02/02/2016] [Indexed: 12/27/2022] Open
Abstract
Embryonic mortality is a major constraint to improving reproductive efficiency and profitability in livestock enterprises. We previously reported differential expression of genes with identified roles in cellular growth and proliferation, lipid metabolism, endometrial remodeling, inflammation, angiogenesis, and metabolic exchange in endometrial tissue on day 7 of the estrous cycle (D7), between heifers ranked as either high (HF) or low (LF) for fertility. The aim of the current study was to further elucidate the underlying molecular mechanisms contributing to early embryo loss by examining differential endometrial gene expression in HF or LF heifers at a later stage of the estrous cycle;day 14(D14). A second objective was to compare these expression profiles with those from midluteal HF and LF endometrium. Using the same animal model as employed in the previous study, we slaughtered HF and LF animals on D14, harvested endometrial tissue, and carried out global gene expression analysis using the Affymetrix Bovine GeneChip. Microarray analysis detected 430 differentially expressed genes (DEG) between HF and LF animals. Ingenuity Pathway Analysis revealed enrichment for a host of biological pathways including lipid metabolism, molecular transport, immune response, cell morphology and development, and cell growth and proliferation. Important DEG includedALB, BMPR2, CCL28, COL4A3/4, FADS1, ITGA6, LDLR, PLCB3, PPARG, PTGS2, and SLC27A4 Furthermore, DEG expressed on both D7 and D14 included:PCCB,SLC25A24,DAP, and COL4A4 This study highlights some of the pathways and mechanisms underpinning late luteal bovine endometrial physiology and endometrial-related conception rate variance.
Collapse
Affiliation(s)
- Aideen P Killeen
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, County Meath, Ireland; School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland; and
| | - Michael G Diskin
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, County Galway, Ireland
| | - Dermot G Morris
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, County Galway, Ireland
| | - David A Kenny
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, County Meath, Ireland
| | - Sinéad M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, County Meath, Ireland;
| |
Collapse
|
28
|
Miljkovic I, Kuipers AL, Cvejkus R, Bunker CH, Patrick AL, Gordon CL, Zmuda JM. Myosteatosis increases with aging and is associated with incident diabetes in African ancestry men. Obesity (Silver Spring) 2016; 24:476-82. [PMID: 26694517 PMCID: PMC4731257 DOI: 10.1002/oby.21328] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/12/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Skeletal muscle fat infiltration (known as myosteatosis) is greater in African compared with European ancestry men and may play an important role in the development of type 2 diabetes (T2D). However, prospective studies examining the magnitude of changes in myosteatosis with aging and their metabolic consequences are sparse. METHODS Longitudinal changes in peripheral quantitative computed tomography measured calf myosteatosis [intermuscular fat (mm(2) ) and skeletal muscle density as a measure of intramuscular fat (mg/cm(3) )] were examined in 1515 Afro-Caribbean men aged 40+ years recruited without regard to their health status. RESULTS During an average of 6.2 years of follow-up, an age-related increase in intermuscular fat and a decrease in skeletal muscle density were observed (all P < 0.0001), which remained significant in those who lost weight, gained weight, or remained weight stable (all P < 0.0001). In addition, muscle density loss accelerated with increasing age (P < 0.0001). Increased intermuscular fat during follow-up was associated with an increased incident risk of T2D independent of factors known to be associated with T2D (odds ratios per 1-SD increase in intermuscular fat = 1.29; 95% CI = 1.08-1.53). CONCLUSIONS Our findings suggest that both inter- and intramuscular fat increase with advancing age and that intermuscular fat contributes to development of T2D among African ancestry men.
Collapse
Affiliation(s)
- Iva Miljkovic
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Allison L Kuipers
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan Cvejkus
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clareann H Bunker
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan L Patrick
- Tobago Health Studies Office, Scarborough, Tobago, Trinidad and Tobago, West Indies
| | | | - Joseph M Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Jaiswal N, Maurya CK, Arha D, Avisetti DR, Prathapan A, Raj PS, Raghu KG, Kalivendi SV, Tamrakar AK. Fructose induces mitochondrial dysfunction and triggers apoptosis in skeletal muscle cells by provoking oxidative stress. Apoptosis 2016; 20:930-47. [PMID: 25913123 DOI: 10.1007/s10495-015-1128-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitochondrial dysfunction in skeletal muscle has been implicated in the development of insulin resistance, a major characteristic of type 2 diabetes. There is evidence that oxidative stress results from the increased production of reactive oxygen species and reactive nitrogen species leads to mitochondrial dysfunction, tissue damage, insulin resistance, and other complications observed in type 2 diabetes. It has been suggested that intake of high fructose contributes to insulin resistance and other metabolic disturbances. However, there is limited information about the direct effect of fructose on the mitochondrial function of skeletal muscle, the major metabolic determinant of whole body insulin activity. Here, we assessed the effect of fructose exposure on mitochondria-mediated mechanisms in skeletal muscle cells. Exposure of L6 myotubes to high fructose stimulated the production of mitochondrial reactive oxygen species and nitric oxide (NO), and the expression of inducible NO synthase. Fructose-induced oxidative stress was associated with increased translocation of nuclear factor erythroid 2-related factor-2 to the nucleus, decreases in mitochondrial DNA content and mitochondrial dysfunctions, as evidenced by decreased activities of citrate synthase and mitochondrial dehydrogenases, loss of mitochondrial membrane potential, decreased activity of the mitochondrial respiratory complexes, and impaired mitochondrial energy metabolism. Furthermore, positive Annexin-propidium iodide staining and altered expression of Bcl-2 family members and caspases in L6 myotubes indicated that the cells progressively became apoptotic upon fructose exposure. Taken together, these findings suggest that exposure of skeletal muscle cells to fructose induced oxidative stress that decreased mitochondrial DNA content and triggered mitochondrial dysfunction, which caused apoptosis.
Collapse
Affiliation(s)
- Natasha Jaiswal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Postnatal high-fat diet enhances ectopic fat deposition in pigs with intrauterine growth retardation. Eur J Nutr 2015; 56:483-490. [PMID: 26707995 DOI: 10.1007/s00394-015-1093-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Intrauterine growth retardation (IUGR) and postnatal nutrition are risk factors for adult metabolic syndrome. However, the influences of long-term high-fat diet (HFD) intake on ectopic fat deposition in non-adipose tissues in IUGR pigs remain unclear. The present study was to determine whether HFD consumption would enhance ectopic fat deposition in IUGR pigs. METHODS At day 28, IUGR and control pigs were fed ad libitum to either a regular diet or a HFD. Lipid store, enzymatic activities and mRNA expression of lipid metabolism-related factors in liver and semitendinosus muscle (SM) were quantified at postnatal day 178. RESULTS Feeding a HFD to IUGR pigs but not to control pigs significantly increased daily weight gain, carcass fat mass, plasma leptin level and lipid content and lipoprotein lipase (LPL) activity and mRNA abundances of LPL and peroxisome proliferator-activated receptor gamma (PPARγ) in liver and SM, but decreased daily feed intake and mRNA expression of hormone-sensitive lipase (LIPE) and carnitine palmitoyl transferase-1 (CPT-1) in liver and SM (P < 0.05). Compared with control pigs, IUGR pigs had a lower body weight but higher plasma levels of total cholesterol (TC) and insulin (P < 0.05). HFD-fed pigs exhibited greater body weight, plasma concentrations of triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), regardless of birth weight (P < 0.05). CONCLUSION Our results suggested that IUGR increased the vulnerability of HFD-fed pigs to ectopic fat deposition via enhanced fatty acid flux toward ectopic sites and reduced lipolysis and fatty acid oxidation.
Collapse
|
31
|
Janssens S, Jonkers RAM, Groen AK, Nicolay K, van Loon LJC, Prompers JJ. Effects of acute exercise on lipid content and dietary lipid uptake in liver and skeletal muscle of lean and diabetic rats. Am J Physiol Endocrinol Metab 2015; 309:E874-83. [PMID: 26419590 DOI: 10.1152/ajpendo.00292.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/26/2015] [Indexed: 12/24/2022]
Abstract
Insulin resistance is associated with ectopic lipid accumulation. Physical activity improves insulin sensitivity, but the impact of exercise on lipid handling in insulin-resistant tissues remains to be elucidated. The present study characterizes the effects of acute exercise on lipid content and dietary lipid partitioning in liver and skeletal muscle of lean and diabetic rats by use of magnetic resonance spectroscopy (MRS). After baseline measurements, rats were randomized to exercise or no-exercise groups. A subset of animals was subjected to MRS directly after 1 h of treadmill running for measurement of total intrahepatocellular lipid (IHCL) and intramyocellular lipid (IMCL) content (n=7 lean and diabetic rats). The other animals were administered 13C-labeled lipids orally after treadmill visit (with or without exercise) followed by MRS measurements after 4 and 24 h to determine the 13C enrichment of IHCL and IMCL (n=8 per group). Total IHCL and IMCL content were fivefold higher in diabetic vs. lean rats (P<0.001). Exercise did not significantly affect IHCL content but reduced IMCL by 25±7 and 33±4% in lean and diabetic rats (P<0.05), respectively. Uptake of dietary lipids in liver and muscle was 2.3-fold greater in diabetic vs. lean rats (P<0.05). Prior exercise did not significantly modulate dietary lipid uptake into muscle, but in liver of both lean and diabetic rats, lipid uptake was 44% reduced after acute exercise (P<0.05). In conclusion, IMCL but not IHCL represents a viable substrate source during exercise in both lean and diabetic rats, and exercise differentially affects dietary lipid uptake in muscle and liver.
Collapse
Affiliation(s)
- Sharon Janssens
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; The Netherlands Consortium for Systems Biology, Den Haag, The Netherlands
| | - Richard A M Jonkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Albert K Groen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Luc J C van Loon
- NUTRIM, School for Nutrition, Toxicology and Metabolism, Department of Human Movement Sciences, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands;
| |
Collapse
|
32
|
Tumova J, Andel M, Trnka J. Excess of free fatty acids as a cause of metabolic dysfunction in skeletal muscle. Physiol Res 2015; 65:193-207. [PMID: 26447514 DOI: 10.33549/physiolres.932993] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity is often associated with metabolic impairments in peripheral tissues. Evidence suggests an excess of free fatty acids (FFA) as one factor linking obesity and related pathological conditions and the impact of FFA overload on skeletal muscle metabolism is described herein. Obesity is associated with dysfunctional adipose tissue unable to buffer the flux of dietary lipids. Resulting increased levels and fluxes of plasma FFA lead to ectopic lipid deposition and lipotoxicity. FFA accumulated in skeletal muscle are associated with insulin resistance and overall cellular dysfunction. Mechanisms supposed to be involved in these conditions include the Randle cycle, intracellular accumulation of lipid metabolites, inflammation and mitochondrial dysfunction or mitochondrial stress. These mechanisms are described and discussed in the view of current experimental evidence with an emphasis on conflicting theories of decreased vs. increased mitochondrial fat oxidation associated with lipid overload. Since different types of FFA may induce diverse metabolic responses in skeletal muscle cells, this review also focuses on cellular mechanisms underlying the different action of saturated and unsaturated FFA.
Collapse
Affiliation(s)
- J Tumova
- Department of Nutrition and Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | |
Collapse
|
33
|
Stinkens R, Goossens GH, Jocken JWE, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 2015; 16:715-57. [PMID: 26179344 DOI: 10.1111/obr.12298] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
Abstract
Disturbances in fatty acid metabolism in adipose tissue, liver, skeletal muscle, gut and pancreas play an important role in the development of insulin resistance, impaired glucose metabolism and type 2 diabetes mellitus. Alterations in diet composition may contribute to prevent and/or reverse these disturbances through modulation of fatty acid metabolism. Besides an increased fat mass, adipose tissue dysfunction, characterized by an altered capacity to store lipids and an altered secretion of adipokines, may result in lipid overflow, systemic inflammation and excessive lipid accumulation in non-adipose tissues like liver, skeletal muscle and the pancreas. These impairments together promote the development of impaired glucose metabolism, insulin resistance and type 2 diabetes mellitus. Furthermore, intrinsic functional impairments in either of these organs may contribute to lipotoxicity and insulin resistance. The present review provides an overview of fatty acid metabolism-related pathways in adipose tissue, liver, skeletal muscle, pancreas and gut, which can be targeted by diet or food components, thereby improving glucose metabolism.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
34
|
Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes. Sci Rep 2015; 5:13092. [PMID: 26271607 PMCID: PMC4536527 DOI: 10.1038/srep13092] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/17/2015] [Indexed: 12/22/2022] Open
Abstract
The biomechanics stress and chronic inflammation in obesity are causally linked to osteoarthritis. However, the metabolic factors mediating obesity-related osteoarthritis are still obscure. Here we scanned and identified at least two elevated metabolites (stearic acid and lactate) from the plasma of diet-induced obese mice. We found that stearic acid potentiated LDH-a-dependent production of lactate, which further stabilized HIF1α protein and increased VEGF and proinflammatory cytokine expression in primary mouse chondrocytes. Treatment with LDH-a and HIF1α inhibitors notably attenuated stearic acid-or high fat diet-stimulated proinflammatory cytokine production in vitro and in vivo. Furthermore, positive correlation of plasma lactate, cartilage HIF1α and cytokine levels with the body mass index was observed in subjects with osteoarthritis. In conclusion, saturated free fatty acid induced proinflammatory cytokine production partly through activation of a novel lactate-HIF1α pathway in chondrocytes. Our findings hold promise of developing novel clinical strategies for the management of obesity-related diseases such as osteoarthritis.
Collapse
|
35
|
Miljkovic I, Kuipers AL, Cauley JA, Prasad T, Lee CG, Ensrud KE, Cawthon PM, Hoffman AR, Dam TT, Gordon CL, Zmuda JM. Greater Skeletal Muscle Fat Infiltration Is Associated With Higher All-Cause and Cardiovascular Mortality in Older Men. J Gerontol A Biol Sci Med Sci 2015; 70:1133-40. [PMID: 25838547 DOI: 10.1093/gerona/glv027] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Skeletal muscle fat infiltration (myosteatosis) increases with aging, and has been associated with poor metabolic and musculoskeletal health, independent of overall adiposity. Studies examining the relationship of myosteatosis and mortality among older individuals recruited without regard to their health status are sparse. METHODS We evaluated the association of peripheral computed tomography measured calf myosteatosis (intermuscular fat and muscle density as a measure of intramuscular fat) with mortality in 1,063 community-dwelling older men. Cox proportional hazards models were used to estimate the risk of mortality independent of potential confounders. RESULTS During a mean follow-up of 7.2 years, 317 participants died. After adjustment for potential covariates and additional adjustment for whole body fat, lower skeletal muscle density was associated with increased all-cause mortality and cardiovascular disease mortality (hazard ratio [95% confidence interval] per standard deviation lower skeletal muscle density: 1.24 [1.09-1.41] and 1.46 [1.15-1.86], respectively), and to some extent with noncardiovascular disease mortality (1.18 [1.0-1.38], p = .053). After adjusting for trunk fat in a separate multivariable model, the association between skeletal muscle density and all-cause and cardiovascular disease mortality remained significant (both p < .01), while its association with noncardiovascular disease mortality became of borderline significance (p = .085). No other measures of adiposity, including calf intermuscular fat, were associated with mortality. CONCLUSION Our study reveals an independent association between skeletal muscle density and mortality in a community-based sample of older, predominantly Caucasian men. Further studies are needed to establish if this association is independent of other ectopic fat depots, and to identify the biological mechanisms underlying this relationship.
Collapse
Affiliation(s)
- Iva Miljkovic
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania.
| | - Allison L Kuipers
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | - Tanushree Prasad
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | - Christine G Lee
- Research Service, Veterans Affairs Medical Center, Portland, Oregon
| | - Kristine E Ensrud
- Center for Chronic Disease Outcomes Research, Veterans Affairs Medical Center, Minneapolis, Minneapolis
| | | | - Andrew R Hoffman
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA
| | - Thuy-Tien Dam
- Department of Medicine, Columbia University, New York, New York
| | | | - Joseph M Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | | |
Collapse
|
36
|
Obesity and cancer progression: is there a role of fatty acid metabolism? BIOMED RESEARCH INTERNATIONAL 2015; 2015:274585. [PMID: 25866768 PMCID: PMC4383231 DOI: 10.1155/2015/274585] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022]
Abstract
Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.
Collapse
|
37
|
Connor T, Martin SD, Howlett KF, McGee SL. Metabolic remodelling in obesity and type 2 diabetes: pathological or protective mechanisms in response to nutrient excess? Clin Exp Pharmacol Physiol 2014; 42:109-15. [DOI: 10.1111/1440-1681.12315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Timothy Connor
- Metabolic Remodelling Laboratory; Metabolic Research Unit; School of Medicine; Deakin University; Geelong Vic. Australia
| | - Sheree D Martin
- Metabolic Remodelling Laboratory; Metabolic Research Unit; School of Medicine; Deakin University; Geelong Vic. Australia
| | - Kirsten F Howlett
- Centre for Physical Activity and Nutrition; School of Exercise and Nutrition Sciences; Deakin University; Geelong Vic. Australia
| | - Sean L McGee
- Metabolic Remodelling Laboratory; Metabolic Research Unit; School of Medicine; Deakin University; Geelong Vic. Australia
- Division of Cell Signalling and Metabolism; Baker IDI Heart and Diabetes Institute; Melbourne Vic. Australia
| |
Collapse
|
38
|
Abbott MJ, Turcotte LP. AMPK-α2 is involved in exercise training-induced adaptations in insulin-stimulated metabolism in skeletal muscle following high-fat diet. J Appl Physiol (1985) 2014; 117:869-79. [DOI: 10.1152/japplphysiol.01380.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AMP-activated protein kinase (AMPK) has been studied extensively and postulated to be a target for the treatment and/or prevention of metabolic disorders such as insulin resistance. Exercise training has been deemed a beneficial treatment for obesity and insulin resistance. Furthermore, exercise is a feasible method to combat high-fat diet (HFD)-induced alterations in insulin sensitivity. The purpose of this study was to determine whether AMPK-α2 activity is required to gain beneficial effects of exercise training with high-fat feeding. Wild-type (WT) and AMPK-α2 dominant-negative (DN) male mice were fed standard diet (SD), underwent voluntary wheel running (TR), fed HFD, or trained with HFD (TR + HFD). By week 6, TR, irrespective of genotype, decreased blood glucose and increased citrate synthase activity in both diet groups and decreased insulin levels in HFD groups. Hindlimb perfusions were performed, and, in WT mice with SD, TR increased insulin-mediated palmitate uptake (76.7%) and oxidation (>2-fold). These training-induced changes were not observed in the DN mice. With HFD, TR decreased palmitate oxidation (61–64%) in both WT and DN and increased palmitate uptake (112%) in the WT with no effects on palmitate uptake in the DN. With SD, TR increased ERK1/2 and JNK1/2 phosphorylation, regardless of genotype. With HFD, TR reduced JNK1/2 phosphorylation, regardless of genotype, carnitine palmitoyltransferase 1 expression in WT, and CD36 expression in both DN and WT. These data suggest that low AMPK-α2 signaling disrupts, in part, the exercise training-induced adaptations in insulin-stimulated metabolism in skeletal muscle following HFD.
Collapse
Affiliation(s)
- Marcia J. Abbott
- Department of Biological Sciences, Human and Evolutionary Biology Section, Dana and David Dornsife College of Arts, Letters, and Sciences, University of Southern California, Los Angeles, California; and
- Crean College of Health and Behavioral Sciences, Chapman University, Orange, California
| | - Lorraine P. Turcotte
- Department of Biological Sciences, Human and Evolutionary Biology Section, Dana and David Dornsife College of Arts, Letters, and Sciences, University of Southern California, Los Angeles, California; and
| |
Collapse
|
39
|
Turner N, Robker RL. Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes play a role? Mol Hum Reprod 2014; 21:23-30. [PMID: 24923276 DOI: 10.1093/molehr/gau042] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insulin resistance is a key defect associated with obesity, type 2 diabetes and other metabolic diseases. While a number of factors have been suggested to cause defects in insulin action, there is a very strong association between inappropriate lipid deposition in insulin target tissues and the development of insulin resistance. In recent times, a large number of studies have reported changes in markers of mitochondrial metabolism in insulin-resistant individuals, leading to the theory that defects in mitochondrial substrate oxidation are responsible for the buildup of lipid intermediates and the development of insulin resistance. The primary support for the mitochondrial theory of insulin resistance comes from studies in skeletal muscle; however, there is recent evidence in murine models that mitochondrial dysfunction in oocytes may also play a role. Oocytes from obese or insulin-resistant mice have been shown to exhibit abnormalities in many different mitochondrial parameters, including mitochondrial morphology and membrane potential. Here we review the findings regarding the link between mitochondrial dysfunction and insulin resistance, and propose that abnormalities in mitochondrial metabolism in oocytes may predispose to the development of obesity and insulin resistance and thus contribute to the inter-generational programming of metabolic disease.
Collapse
Affiliation(s)
- Nigel Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
40
|
Kim T, He L, Johnson MS, Li Y, Zeng L, Ding Y, Long Q, Moore JF, Sharer JD, Nagy TR, Young ME, Wood PA, Yang Q. Carnitine Palmitoyltransferase 1b Deficiency Protects Mice from Diet-Induced Insulin Resistance. JOURNAL OF DIABETES & METABOLISM 2014; 5:361. [PMID: 25309812 PMCID: PMC4190034 DOI: 10.4172/2155-6156.1000361] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Carnitine Palmitoyl Transferase 1 (CPT1) is the rate-limiting enzyme governing long-chain fatty acid entry into mitochondria. CPT1 inhibitors have been developed and exhibited beneficial effects against type II diabetes in short-term preclinical animal studies. However, the long-term effects of treatment remain unclear and potential non-specific effects of these CPT1 inhibitors hamper in-depth understanding of the potential molecular mechanisms involved. METHODS We investigated the effects of restricting the activity of the muscle isoform CPT1b in mice using heterozygous CPT1b deficient (Cpt1b+/-) and Wild Type (WT) mice fed with a High Fat Diet (HFD) for 22 weeks. Insulin sensitivity was assessed using Glucose Tolerance Test (GTT), insulin tolerance test and hyperinsulinemic euglycemic clamps. We also examined body weight/composition, tissue and systemic metabolism/energetic status, lipid profile, transcript analysis, and changes in insulin signaling pathways. RESULTS We found that Cpt1b+/- mice were protected from HFD-induced insulin resistance compared to WT littermates. Cpt1b+/- mice exhibited elevated whole body glucose disposal rate and skeletal muscle glucose uptake. Furthermore, Cpt1b+/- skeletal muscle showed diminished ex vivo palmitate oxidative capacity by ~40% and augmented glucose oxidation capacity by ~50% without overt change in whole body energy metabolism. HFD feeding Cpt1b+/- but not WT mice exhibited well-maintained insulin signaling in skeletal muscle, heart, and liver. CONCLUSION The present study on a genetic model of CPT1b restriction supports the concept that partial CPT1b inhibition is a potential therapeutic strategy.
Collapse
Affiliation(s)
- Teayoun Kim
- Department of Nutrition Sciences, University of Alabama at Birmingham, USA
| | - Lan He
- Department of Nutrition Sciences, University of Alabama at Birmingham, USA
| | - Maria S. Johnson
- Department of Nutrition Sciences, University of Alabama at Birmingham, USA
| | - Yan Li
- Department of Nutrition Sciences, University of Alabama at Birmingham, USA
| | - Ling Zeng
- Department of Nutrition Sciences, University of Alabama at Birmingham, USA
- Department of Anatomy, Guangzhou University of Chinese Medicine, Higher Education Mega Center Campus, China
| | - Yishu Ding
- Department of Nutrition Sciences, University of Alabama at Birmingham, USA
| | - Qinqiang Long
- Department of Nutrition Sciences, University of Alabama at Birmingham, USA
| | - John F. Moore
- Department of Genetics, University of Alabama at Birmingham, USA
| | - Jon D. Sharer
- Department of Genetics, University of Alabama at Birmingham, USA
| | - Tim R. Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham, USA
| | - Martin E. Young
- Department of Medicine, University of Alabama at Birmingham, USA
| | - Philip A. Wood
- Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, USA
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, USA
| |
Collapse
|
41
|
Klingerman CM, Stipanovic ME, Bader M, Lynch CJ. Second-generation antipsychotics cause a rapid switch to fat oxidation that is required for survival in C57BL/6J mice. Schizophr Bull 2014; 40:327-40. [PMID: 23328157 PMCID: PMC3932077 DOI: 10.1093/schbul/sbs196] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Some second-generation antipsychotics (SGAs) increase insulin resistance and fat oxidation, but counter intuitively they do not activate lipolysis. This seems unsustainable for meeting energy demands. Here, we measured dose-dependent effects of SGAs on rates of oxygen consumption (VO2), respiratory exchange ratio (RER), and physical activity in C57BL/6J mice. The role of H1-histamine receptors and consequences of blocking fat oxidation were also examined. Olanzapine, risperidone, and clozapine (2.5-10mg/kg) elicited rapid drops in dark-cycle RER (~0.7) within minutes, whereas aripiprazole exerted only modest changes. Higher doses of olanzapine decreased VO2, and this was associated with accumulation of glucose in plasma. Clozapine and risperidone also lowered VO2, in contrast to aripiprazole, whereas all decreased physical activity. Astemizole and terfenadine had no significant effects on RER, VO2, or physical activity. The VO2 and RER effects appear independent of sedation/physical activity or H1-receptors. CPT-1 inhibitors can enhance muscle glucose utilization and prevent fat oxidation. However, after etomoxir (2 × 30 mg/kg), a low dose of olanzapine that did not significantly affect VO2 by itself caused precipitous drops in VO2 and body temperature, leading to death within hours or a moribund state requiring euthanasia. One 30 mg/kg dose of either etomoxir or 2-tetradecylglycidate followed by olanzapine, risperidone, or clozapine, but not aripiprazole, dramatically lowered VO2 and body temperature. Thus, mice treated with some SGAs shift their fuel utilization to mostly fat but are unable to either switch back to glucose or meet their energy demands when either higher doses are used or when fat oxidation is blocked.
Collapse
Affiliation(s)
| | | | | | - Christopher J. Lynch
- *To whom correspondence should be addressed; Department of Cellular & Molecular Physiology, Penn State College of Medicine, 500 University Drive, MC-H166, Hershey, PA 17033, US; tel: 717-531-5170, fax: 717-531-7667, e-mail:
| |
Collapse
|
42
|
Song GY, Ren LP, Chen SC, Wang C, Liu N, Wei LM, Li F, Sun W, Peng LB, Tang Y. Similar changes in muscle lipid metabolism are induced by chronic high-fructose feeding and high-fat feeding in C57BL/J6 mice. Clin Exp Pharmacol Physiol 2014; 39:1011-8. [PMID: 23039229 DOI: 10.1111/1440-1681.12017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 09/14/2012] [Accepted: 09/30/2012] [Indexed: 01/08/2023]
Abstract
The aim of the present study was to investigate the effects of high fructose and high fat feeding on muscle lipid metabolism and to illustrate the mechanisms by which the two different dietary factors induce muscle lipid accumulation. C57BL/J6 mice were fed either a standard, high-fructose (HFru) or high-fat diet. After 16 weeks feeding, mice were killed and plasma triglyceride (TG) and free fatty acid (FFA) levels were detected. In addition, muscle TG and long chain acyl CoA (LCACoA) content was determined, glucose tolerance was evaluated and the protein content of fatty acid translocase CD36 (FATCD36) in muscle was measured. Mitochondrial oxidative function in the muscle was evaluated by estimating the activity of oxidative enzymes, namely cytochrome oxidase (COx), citrate synthase (CS) and β-hydroxyacyl CoA dehydrogenase (β-HAD), and the muscle protein content of carnitine palmitoyltransferase-1 (CPT-1), cyclo-oxygenase (COX)-1 and proliferator-activated receptor coactivator (PGC)-1α was determined. Finally, sterol regulatory element-binding protein-1c (SREBP-1c) gene expression and fatty acid synthase (FAS) protein content were determined in muscle tissues. After 16 weeks, plasma TG and FFA levels were significantly increased in both the HFru and HF groups. In addition, mice in both groups exhibited significant increases in muscle TG and LCACoA content. Compared with mice fed the standard diet (control group), those in the HFru and HF groups developed glucose intolerance and exhibited increased FATCD36 protein levels, enzyme activity related to fatty acid utilization in the mitochondria and protein expressions of CPT-1, COX-1 and PGC-1α in muscle tissue. Finally, mice in both the HFru and HF groups exhibited increase SREBP-1c expression and FAS protein content. In conclusion, high fructose and high fat feeding lead to similar changes in muscle lipid metabolism in C57BL/J6 mice. Lipid accumulation in the muscle may be associated with increased expression of proteins related to lipid transportation and synthesis.
Collapse
Affiliation(s)
- Guang-Yao Song
- Department of Endocrinology, General Hospital of Hebei, Hebei, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pires KM, Ilkun O, Valente M, Boudina S. Treatment with a SOD mimetic reduces visceral adiposity, adipocyte death, and adipose tissue inflammation in high fat-fed mice. Obesity (Silver Spring) 2014; 22:178-87. [PMID: 23526686 PMCID: PMC3758415 DOI: 10.1002/oby.20465] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/08/2013] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Obesity is associated with enhanced reactive oxygen species (ROS) accumulation in adipose tissue. However, a causal role for ROS in adipose tissue expansion after high fat feeding is not established. The aim of this study is to investigate the effect of the cell permeable superoxide dismutase mimetic and peroxynitrite scavenger Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP) on adipose tissue expansion and remodeling in response to high fat diet (HFD) in mice. DESIGN AND METHODS Male C57BL/6j mice were fed normal chow or high fat diet (HFD) and treated with saline or MnTBAP for 5 weeks. The effects of MnTBAP on body weights, whole body energy expenditure, adipose tissue morphology, and gene expression were determined. RESULTS MnTBAP attenuated weight gain and adiposity through a reduction in adipocyte hypertrophy, adipogenesis, and fatty acid uptake in epididymal (eWAT) but not in inguinal (iWAT) white adipose tissue. Furthermore, MnTBAP reduced adipocyte death and inflammation in eWAT and diminished circulating levels of free fatty acids and leptin. Despite these improvements, the development of systemic insulin resistance and diabetes after HFD was not prevented with MnTBAP treatment. CONCLUSIONS Taken together, these data suggest a causal role for ROS in the development of diet-induced visceral adiposity but not in the development of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Karla M Pires
- Division of Endocrinology, Metabolism and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
44
|
Sun H, Jiang T, Wang S, He B, Zhang Y, Piao D, Yu C, Wu N, Han P. The effect of LXRα, ChREBP and Elovl6 in liver and white adipose tissue on medium- and long-chain fatty acid diet-induced insulin resistance. Diabetes Res Clin Pract 2013; 102:183-92. [PMID: 24262945 DOI: 10.1016/j.diabres.2013.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/03/2013] [Accepted: 10/02/2013] [Indexed: 12/31/2022]
Abstract
AIMS We aimed to investigate the effects of LXRα, ChREBP and Elovl6 in the development of insulin resistance-induced by medium- and long-chain fatty acids. METHODS Sprague Dawley rats were fed a standard chow diet (Control group) or a high-fat, high sucrose diet with different fat sources (coconut oil, lard, sunflower and fish oil) for 8 weeks. These oils were rich in medium-chain saturated fatty acids (MCFA group), long-chain saturated fatty acids (LCFA group), n-6 and n-3 long-chain polyunsaturated fatty acids (n-6 PUFA and n-3 PUFA groups), respectively, which had different chain lengths and degrees of unsaturation. Hyperinsulinemic-euglycemic clamp with [6-(3)H] glucose infusion was performed in conscious rats to assess hepatic insulin sensitivity. RESULTS LCFA and n-6 PUFA groups induced hepatic insulin resistance and increased liver X receptor α (LXRα), carbohydrate response element binding protein (ChREBP) and long-chain fatty acid elongase 6 (Elovl6) expression in liver and white adipose tissue (WAT). Furthermore, LCFA and n-6 PUFA groups suppressed Akt serine 473 phosphorylation in liver and WAT. By contrast, in liver and WAT, MCFA and n-3 PUFA groups decreased LXRα, ChREBP and Elovl6 expression and improved insulin signaling and insulin resistance, but Akt serine 473 phosphorylation was not restored by MCFA group in WAT. CONCLUSIONS This study demonstrated that the mechanism of the different effects of medium- and long-chain fatty acids on hepatic insulin resistance involves LXRα, ChREBP and Elovl6 alternations in liver and WAT. It points to a new strategy for ameliorating insulin resistance and diabetes through intervention on Elovl6 or its control genes.
Collapse
Affiliation(s)
- He Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stefanyk LE, Bonen A, Dyck DJ. Fatty acid transport proteins chronically relocate to the transverse-tubules in muscle from obese Zucker rats but are resistant to further insulin-induced translocation. Metabolism 2013; 62:1296-304. [PMID: 23743348 DOI: 10.1016/j.metabol.2013.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/12/2013] [Accepted: 04/29/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Recently, we have demonstrated that FA transport proteins are located within the t-tubule fraction of rodent muscle, and that insulin stimulation causes their translocation to this membrane fraction. Chronic relocation of the FA transport protein FAT/CD36 to the sarcolemma is observed in obese rodents and humans, and correlates with intramuscular lipid accumulation and insulin resistance. It is not known whether in an obese, insulin resistant state FA transporters also chronically relocate to the t-tubules. Furthermore, it is not known whether the insulin-stimulated translocation of the various FA transport proteins to the t-tubules is impaired in insulin resistance. METHODS Sarcolemmal and t-tubule membrane fractions were isolated via differential centrifugation from muscles of lean and obese female Zucker rats during basal or insulin stimulated conditions. FA transport proteins were measured via western blot on both membrane fractions. RESULTS Our results demonstrate that in muscle from insulin resistant Zucker rats, FAT/CD36, FABPpm and FATP1 are all increased on the t-tubules in the basal state (+72%, +120%, and +69%, respectively), potentially contributing to the accumulation of intramuscular lipids. Insulin failed to increase the content of the FA transport proteins on either the t-tubule or sarcolemma above the elevated basal levels, analogous to the well characterized impairment of insulin-stimulated GLUT4 translocation to both membrane domains in obesity. CONCLUSION FA transport proteins chronically relocate to the t-tubule domain in insulin resistant muscle, potentially contributing to lipid accumulation. Further translocation of the FA transport proteins to this domain during insulin stimulation, however, is impaired.
Collapse
Affiliation(s)
- Leslie E Stefanyk
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | | | | |
Collapse
|
46
|
Green CJ, Bunprajun T, Pedersen BK, Scheele C. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate. J Physiol 2013; 591:4621-35. [PMID: 23774280 DOI: 10.1113/jphysiol.2013.251421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture. Metabolic differences were then investigated in the basal state or after chronic palmitate treatment. At basal, myocytes from sedentary individuals exhibited higher CD36 and HSP70 protein expression as well as elevated phosphorylation of c-Jun NH2-terminal kinase (JNK) and insulin receptor substrate 1 (IRS1) serine(307) compared to myocytes from active individuals. Despite equal lipid accumulation following palmitate treatment, myocytes from sedentary individuals exhibited delayed acetyl coenzyme A carboxylase phosphorylation compared to the active group. Myocytes from sedentary individuals had significantly higher basal glucose uptake and palmitate promoted insulin resistance in sedentary myocytes. Importantly, myocytes from active individuals were partially protected from palmitate-induced insulin resistance. Palmitate treatment enhanced IRS1 serine307 phosphorylation in myocytes from sedentary individuals and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance, a dysregulated function could have profound effects on health. Therefore the effects of lifestyle on satellite cells needs to be delineated.
Collapse
Affiliation(s)
- C J Green
- C. J. Green: Centre of Inflammation and Metabolism, Rigshospitalet - Section 7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
47
|
Roles of Fatty Acid oversupply and impaired oxidation in lipid accumulation in tissues of obese rats. J Lipids 2013; 2013:420754. [PMID: 23762564 PMCID: PMC3666279 DOI: 10.1155/2013/420754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/19/2013] [Indexed: 12/30/2022] Open
Abstract
To test the roles of lipid oversupply versus oxidation in causing tissue lipid accumulation associated with insulin resistance/obesity, we studied in vivo fatty acid (FA) metabolism in obese (Obese) and lean (Lean) Zucker rats. Indices of local FA utilization and storage were calculated using the partially metabolizable [9,10-3H]-(R)-2-bromopalmitate (3H-R-BrP) and [U-14C]-palmitate (14C-P) FA tracers, respectively. Whole-body FA appearance (Ra) was estimated from plasma 14C-P kinetics. Whole-body FA oxidation rate (Rox) was assessed using 3H2O production from 3H-palmitate infusion, and tissue FA oxidative capacity was evaluated ex vivo. In the basal fasting state Obese had markedly elevated FA levels and Ra, associated with elevated FA utilization and storage in most tissues. Estimated rates of muscle FA oxidation were not lower in obese rats and were similarly enhanced by contraction in both lean and obese groups. At comparable levels of FA availability, achieved by nicotinic acid, Rox was lower in Obese than Lean. In Obese rats, FA oxidative capacity was 35% higher than that in Lean in skeletal muscle, 67% lower in brown fat and comparable in other organs. In conclusion, lipid accumulation in non-adipose tissues of obese Zucker rats appears to result largely from systemic FA oversupply.
Collapse
|
48
|
Davaatseren M, Hur HJ, Yang HJ, Hwang JT, Park JH, Kim HJ, Kim MJ, Kwon DY, Sung MJ. Taraxacum official (dandelion) leaf extract alleviates high-fat diet-induced nonalcoholic fatty liver. Food Chem Toxicol 2013; 58:30-6. [PMID: 23603008 DOI: 10.1016/j.fct.2013.04.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 12/26/2022]
Abstract
The purpose of this study is to determine the protective effect of Taraxacum official (dandelion) leaf extract (DLE) on high-fat-diet (HFD)-induced hepatic steatosis, and elucidate the molecular mechanisms behind its effects. To determine the hepatoprotective effect of DLE, we fed C57BL/6 mice with normal chow diet (NCD), high-fat diet (HFD), HFD supplemented with 2g/kg DLE DLE (DL), and HFD supplemented with 5 g/kg DLE (DH). We found that the HFD supplemented by DLE dramatically reduced hepatic lipid accumulation compared to HFD alone. Body and liver weights of the DL and DH groups were significantly lesser than those of the HFD group, and DLE supplementation dramatically suppressed triglyceride (TG), total cholesterol (TC), insulin, fasting glucose level in serum, and Homeostatic Model Assessment Insulin Resistance (HOMA-IR) induced by HFD. In addition, DLE treatment significantly increased activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) in liver and muscle protein. DLE significantly suppressed lipid accumulation in the liver, reduced insulin resistance, and lipid in HFD-fed C57BL/6 mice via the AMPK pathway. These results indicate that the DLE may represent a promising approach for the prevention and treatment of obesity-related nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Munkhtugs Davaatseren
- Research Division Emerging Innovative Technology, Korea Food Research Institute, Songnam, Keongki 463-746, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jonkers RAM, van Loon LJC, Nicolay K, Prompers JJ. In vivo postprandial lipid partitioning in liver and skeletal muscle in prediabetic and diabetic rats. Diabetologia 2013; 56:618-26. [PMID: 23238787 PMCID: PMC3563947 DOI: 10.1007/s00125-012-2792-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/12/2012] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Insulin resistance and type 2 diabetes have been associated with ectopic lipid deposition. This study investigates the derangements in postprandial lipid handling in liver and skeletal muscle tissue at different stages during the pathogenesis of type 2 diabetes in a rat model. METHODS Four groups (n = 6) of male Zucker diabetic fatty rats were used for this study: prediabetic fa/fa rats and healthy fa/+ littermates at the age of 6 weeks, and diabetic fa/fa rats and healthy fa/+ littermates at the age of 12 weeks. In vivo (1)H-[(13)C] magnetic resonance spectroscopy measurements were performed in liver and tibialis anterior muscle at baseline and 4, 24 and 48 h after oral administration of 1.5 g [U-(13)C]algal lipid mixture per kilogram body weight. Total and (13)C-labelled intracellular lipid contents were determined from the magnetic resonance spectra. RESULTS In both prediabetic and diabetic rats, total lipid contents in muscle and liver were substantially higher than in healthy controls and this was accompanied by a 2.3-fold greater postprandial lipid uptake in the liver (p < 0.001). Interestingly, in prediabetic rats, skeletal muscle appeared to be protected from excess lipid uptake whereas after developing overt diabetes muscle lipid uptake was 3.4-fold higher than in controls (p < 0.05). Muscle lipid use was significantly lower in prediabetic and diabetic muscle, indicative of impairments in lipid oxidation. CONCLUSIONS/INTERPRETATION In vivo postprandial lipid handling is disturbed in both liver and skeletal muscle tissue in prediabetic and diabetic rats, but the uptake of dietary lipids in muscle is only increased after the development of overt diabetes.
Collapse
Affiliation(s)
- R. A. M. Jonkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - L. J. C. van Loon
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Human Movement Sciences, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - K. Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - J. J. Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| |
Collapse
|
50
|
O'Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol 2013; 366:135-51. [PMID: 22750049 DOI: 10.1016/j.mce.2012.06.019] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 03/13/2012] [Accepted: 06/21/2012] [Indexed: 12/25/2022]
Abstract
Skeletal muscle plays an important role in regulating whole-body energy expenditure given it is a major site for glucose and lipid oxidation. Obesity and type 2 diabetes are causally linked through their association with skeletal muscle insulin resistance, while conversely exercise is known to improve whole body glucose homeostasis simultaneously with muscle insulin sensitivity. Exercise activates skeletal muscle AMP-activated protein kinase (AMPK). AMPK plays a role in regulating exercise capacity, skeletal muscle mitochondrial content and contraction-stimulated glucose uptake. Skeletal muscle AMPK is also thought to be important for regulating fatty acid metabolism; however, direct genetic evidence in this area is currently lacking. This review will discuss the current paradigms regarding the influence of AMPK in regulating skeletal muscle fatty acid metabolism and mitochondrial biogenesis at rest and during exercise, and highlight the potential implications in the development of insulin resistance.
Collapse
Affiliation(s)
- Hayley M O'Neill
- University of Melbourne, Department of Medicine, St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|