1
|
Wang X, Li X, Yuan S, Gu Z, An Z, Xu Q, Cao B, Song Y, Tang C. Regulation of placental development and function by ubiquitination. Mol Med 2025; 31:202. [PMID: 40410732 PMCID: PMC12101010 DOI: 10.1186/s10020-025-01268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 05/15/2025] [Indexed: 05/25/2025] Open
Abstract
The proper distribution of nutrients and metabolites between the mother and fetus is one important factor for successful pregnancy. As a bridge, the placenta plays a key role in sensing the nutritional needs of the fetus, coordinating the maternal nutrition supply, and enhancing its nutritional transport capabilities. Imperfect placental development can lead to pregnancy-related disorders such as preeclampsia, recurrent miscarriage, and/or fetal growth restriction, posing risks to both mother and child in the short and long term. However, current understanding of the human placenta remains as a "black box", and its developmental control mechanisms for adaptive pregnant regulation still needs to be elucidated. As one form of post-translational modification (PTM), ubiquitination plays an important role in regulating cellular functions and is regarded as a valuable drug target. Particularly, ubiquitination related to placenta development has been discovered in recent years. Placental development processes closely associated with pregnant complications, such as blastocyst implantation, syncytiotrophoblast cell differentiation, and immune barrier maintenance, have been reported to be affected by ubiquitination. However, the diagnosis and intervention of pregnancy diseases also urgently need to be improved. Thus, aiming to comprehensive summarize and further exploring the molecular mechanism, target and regulatory mechanism of pregnancy complications, we have herein reviewed genes and pathways regulating pregnancy progress and diseases and focusing on ubiquitin-related physiological process in placenta.
Collapse
Affiliation(s)
- Xue Wang
- National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Xiaoqing Li
- Department of Pathophysiology, Medical School of Nantong University, Nantong, 226001, China
| | - Shanshan Yuan
- Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhiju Gu
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Zihao An
- National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Xu
- National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yanhua Song
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chao Tang
- National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Vera MD, Arce LP, Müller MF, Raya Tonetti F, Ortiz Moyano R, Blanco HL, Kitazawa H, Vizoso-Pinto MG, Villena J. Enhancing Resistance to Enterococcus faecalis: Immunobiotic Lactiplantibacillus plantarum Strains as a Strategy for Malnourished Hosts. Nutrients 2025; 17:1770. [PMID: 40507039 PMCID: PMC12157614 DOI: 10.3390/nu17111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
Background:Enterococcus faecalis causes serious opportunistic infections in patients with weakened immune defenses, such as individuals suffering from malnutrition. We investigated the effects of Lactiplantibacillus plantarum MPL16 and CRL1506 on the resistance to E. faecalis infection in mice immunosuppressed by protein malnutrition. Methods: Male BALB/c mice received a protein-deficient diet for 21 days, followed by a 7-day renourishment period with a balanced conventional diet (BCD) with or without lactobacilli supplementation. Malnourished controls (MN) and renourished mice were treated with gentamicin for 3 days and then challenged orally with E. faecalis 102. Infection levels in the gut, liver, spleen, and blood, intestinal tissue damage, and the cytokine response were evaluated 2 days after the challenge. Results: Malnourished mice had an impaired ability to produce pro-inflammatory cytokines (TNF, IFN-γ, IL-1β, IL-6, IL-17, and KC) and the regulatory IL-10 in response to the infection compared to mice in the BCD group. The imbalance of inflammatory and regulatory mediators in MN mice favors colonization and invasion by E. faecalis and increases tissue damage, making the disease more severe than in animals renourished with BCD. Supplementing the BCD with L. plantarum strains significantly enhanced resistance to E. faecalis 102 infections, as evidenced by a marked reduction in bacterial loads and intestinal damage. The effect of lactobacilli was associated with enhanced levels of IFN-γ, IL-6, and IL-10 and reduced TNF, IL-1β, IL-17, and KC. Conclusions: Given their efficacy in enhancing host resistance, these Lactiplantibacillus strains hold great promise as a preventive strategy against E. faecalis infections in susceptible individuals.
Collapse
Affiliation(s)
- María Daniela Vera
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucumán 4000, Argentina; (M.D.V.); (L.P.A.); (M.F.M.); (H.L.B.)
- Laboratorio Central de Ciencias Básicas, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán 4000, Argentina
| | - Lorena Paola Arce
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucumán 4000, Argentina; (M.D.V.); (L.P.A.); (M.F.M.); (H.L.B.)
- Laboratorio Central de Ciencias Básicas, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán 4000, Argentina
| | - Melisa Florencia Müller
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucumán 4000, Argentina; (M.D.V.); (L.P.A.); (M.F.M.); (H.L.B.)
- Laboratorio Central de Ciencias Básicas, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán 4000, Argentina
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145, Tucumán 4000, Argentina; (F.R.T.); (R.O.M.)
| | - Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145, Tucumán 4000, Argentina; (F.R.T.); (R.O.M.)
| | - Héctor Luis Blanco
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucumán 4000, Argentina; (M.D.V.); (L.P.A.); (M.F.M.); (H.L.B.)
- Laboratorio Central de Ciencias Básicas, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán 4000, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - María Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucumán 4000, Argentina; (M.D.V.); (L.P.A.); (M.F.M.); (H.L.B.)
- Laboratorio Central de Ciencias Básicas, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán 4000, Argentina
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145, Tucumán 4000, Argentina; (F.R.T.); (R.O.M.)
| |
Collapse
|
3
|
Cheng L, Feng B, Xie C, Chen C, Guo L. Overexpression of miR-20a targeting DUSP3 inhibits OCLN ubiquitination levels and alleviates sepsis induced intestinal barrier dysfunction. In Vitro Cell Dev Biol Anim 2025; 61:459-471. [PMID: 40392484 DOI: 10.1007/s11626-025-01052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/05/2025] [Indexed: 05/22/2025]
Abstract
Sepsis is a severe organ dysfunction syndrome caused by the host's dysfunctional response to infection. Sepsis can severely damage intestinal epithelial tissue, lead to intestinal barrier dysfunction, and seriously endanger human health. Therefore, this study aimed to explore the mechanism of miR-20a in sepsis-induced intestinal barrier dysfunction. In this study, mice and NCM460 cells were subjected to cecal ligation and puncture (CLP) and 1 μg/mL LPS, respectively, to establish a sepsis model. The expression of relevant genes, apoptosis, inflammation, and intestinal barrier dysfunction-related indices under the conditions of overexpression of miR-20a or DUSP3 and knockdown of DUSP3 or OCLN were assessed by western blotting, RT-qPCR, ELISA, flow cytometry, immunofluorescence, and HE staining. The experimental results revealed that in sepsis-induced intestinal barrier dysfunction, the expression of miR-20a and OCLN was downregulated, whereas that of DUSP3 was upregulated. Functionally, miR-20a inhibited LPS-induced intestinal epithelial cell apoptosis and inflammation and relieved sepsis-induced intestinal barrier dysfunction in mice. Experiments investigating the downstream mechanisms revealed that miR-20a overexpression suppressed LPS-induced intestinal epithelial cell apoptosis and inflammation and relieved sepsis-induced intestinal barrier dysfunction by targeting and inhibiting DUSP3 levels and OCLN ubiquitination. In conclusion, miR-20a relieves sepsis-induced intestinal barrier dysfunction by inhibiting DUSP3 and suppressing the ubiquitination of OCLN.
Collapse
Affiliation(s)
- Liming Cheng
- Department of Anesthesia, Kunming Children's Hospital, No.288 Qianxing Road, Xishan District, Kunming, 650100, Yunnan, China.
| | - Bo Feng
- Department of Anesthesia, Kunming Children's Hospital, No.288 Qianxing Road, Xishan District, Kunming, 650100, Yunnan, China
| | - Chao Xie
- Department of Anesthesia, Kunming Children's Hospital, No.288 Qianxing Road, Xishan District, Kunming, 650100, Yunnan, China
| | - Chunyan Chen
- Department of Anesthesia, Kunming Children's Hospital, No.288 Qianxing Road, Xishan District, Kunming, 650100, Yunnan, China
| | - Linghui Guo
- Department of Anesthesia, Kunming Children's Hospital, No.288 Qianxing Road, Xishan District, Kunming, 650100, Yunnan, China
| |
Collapse
|
4
|
Villanacci V, Del Sordo R, Lanzarotto F, Ricci C, Sidoni A, Manenti S, Mino S, Bugatti M, Bassotti G. Claudin-2: A marker for a better evaluation of histological mucosal healing in inflammatory bowel diseases. Dig Liver Dis 2025; 57:827-832. [PMID: 39155205 DOI: 10.1016/j.dld.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Histological mucosal healing has become a paramount target goal to achieve in the treatment of inflammatory bowel diseases. However, there is still a lack of agreement on the best way to reach this goal, since numerous histological scores are available worldwide. AIMS We investigated whether claudin-2, a member of claudin family involved in the regulation of intestinal tight junctions, might be useful to assess the presence of active disease in patients with inflammatory bowel diseases. METHODS Biopsies from 123 patients with ulcerative colitis, Crohn's disease, infectious colitides and irritable bowel syndrome patients where tested with immunohistochemistry for claudin-2. RESULTS Claudin-2 appeared to be a very sensitive marker of disease activity in inflammatory bowel diseases, but was negative in the other kinds of patients. In addition, immunohistochemistry for claudin-2 showed good reproducibility by different pathologists. CONCLUSIONS Should these findings be confirmed in more numerous cohorts of patients, and especially in those with minimal or focal residual disease activity, this simple assessment could be useful in the routine daily practice to facilitate the task of pathologists and clinicians in the diagnosis and management of patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Vincenzo Villanacci
- Institute of Pathology, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Rachele Del Sordo
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy.
| | - Francesco Lanzarotto
- Gastroenterology Unit, Department of Clinical and Experimental Sciences, Spedali Civili Hospital, University of Brescia, Brescia, Italy
| | - Chiara Ricci
- Gastroenterology Unit, Department of Clinical and Experimental Sciences, Spedali Civili Hospital, University of Brescia, Brescia, Italy
| | - Angelo Sidoni
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Stefania Manenti
- Institute of Pathology, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Sara Mino
- Institute of Pathology, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Mattia Bugatti
- Institute of Pathology, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Gabrio Bassotti
- Gastroenterology and Hepatology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Song W, Chen J, Ai G, Xiong P, Song Q, Wei Q, Zou Z, Chen X. Mechanisms of the effects of turpiniae folium extract on growth performance, immunity, antioxidant activity and intestinal barrier function in LPS-challenged broilers. Poult Sci 2025; 104:104903. [PMID: 39985896 PMCID: PMC11904579 DOI: 10.1016/j.psj.2025.104903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/24/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025] Open
Abstract
Turpiniae folium extract (TFE) has shown anti-inflammatory and immunomodulatory effects in broilers. However, its mechanisms remain unclear. The aim of this study is to investigate the underlying mechanisms by which TFE influences growth performance, jejunal morphology, immune function, antioxidant capacity and barrier integrity in broilers challenged with Lipopolysaccharide (LPS). A total of 240 one-day-old female broilers were randomly divided into four groups with six replicates of ten birds each. A 2 × 2 factorial design with TFE (basal diets supplemented with 0 or 500 mg/kg TFE) and LPS challenge (intraperitoneal injection of 1 mg/kg body weight of sterile saline or LPS at 21, 23 and 25 days of age). The trial lasted for 26 days. The results showed that: Prior to the LPS challenge, dietary supplementation with TFE for 21 days increased both average daily gain (ADG) (P = 0.037) and average daily feed intake (ADFI) (P = 0.045) in broilers. During the LPS challenge period, LPS challenge led to a decline in growth performance and a negative impact on intestinal morphology, while TFE supplementation significantly reversed these adverse effects, as evidenced by increases in ADG (P = 0.004), ADFI (P = 0.046), jejunal villus height (VH) (P = 0.035), the villus height to crypt depth ratio (VH/CD) (P = 0.007) and decreases in the feed-to-gain ratio (F/G) (P = 0.025), jejunal crypt depth (CD) (P = 0.049). LPS induced inflammatory responses and oxidative stress in the jejunum, leading to a significant upregulation of pro-inflammatory factor gene and protein expression, and a marked downregulation of anti-inflammatory and antioxidant gene and protein expression. TFE supplementation mitigated these effects by yielding completely opposite results except for the expression of toll-like receptor 4 (TLR4) protein (P = 0.916). LPS negatively regulates the expression of genes and proteins involved in intestinal mucosal barrier function. In contrast, TFE supplementation significantly upregulated the expression of zonula occludens-1 (ZO-1) (P < 0.001) gene and ZO-1 (P < 0.001), occludin (OCLN) (P < 0.001), claudin (CLDN) (P < 0.001) proteins. In conclusion, dietary supplementation with TFE effectively counteracts the intestinal immune and oxidative stress induced by LPS challenge in broilers, improves intestinal mucosal barrier integrity and tissue morphology, and ultimately mitigates the negative impact of LPS on broiler growth performance. This effect may involve the modulation of the Nrf2 and nuclear factor kappa B (NF-κB) signaling pathways.
Collapse
Affiliation(s)
- Wenjing Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Jiang Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Gaoxiang Ai
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Pingwen Xiong
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Qiongli Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Zhiheng Zou
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang 330200, PR China.
| |
Collapse
|
6
|
Narvey S, Ghia JE, Marrie RA, Armstrong H, Bernstein CN. Heavy Metals and Inflammatory Bowel Disease. Gastroenterology 2025:S0016-5085(25)00540-2. [PMID: 40157433 DOI: 10.1053/j.gastro.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/27/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Affiliation(s)
- Samuel Narvey
- University of Manitoba IBD Clinical and Research Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jean-Eric Ghia
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ruth Ann Marrie
- Department of Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba; Department of Medicine, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Heather Armstrong
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Manitoba Centre for Proteomics and Systems Biology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Charles N Bernstein
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Gong GZ, Li RT, Cui SS, Zhu YT, Duan ZZ, Yang JX, Wang YX, Chen LY, Xiao QH. Synbiotic yacon juice fermented by Lactiplantibacillus plantarum QS7T attenuates dextran sodium sulfate-induced ulcerative colitis in mice. J Food Sci 2025; 90:e17478. [PMID: 40035703 DOI: 10.1111/1750-3841.17478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 03/06/2025]
Abstract
Ulcerative colitis (UC) is a prevalent inflammatory bowel disease associated with abnormal immune responses to commensal bacteria. The study investigated the effects of synbiotic yacon juice fermented by Lactiplantibacillus plantarum QS7T (FYJ) on ameliorating UC and modulating gut microbiota in a dextran sodium sulfate (DSS)-induced colitis mouse model. FYJ intervention significantly improved body weight and colon length, reduced the disease activity index and histopathological scores, and effectively alleviated colon tissue damage compared with treatments with L. plantarum QS7T suspension or yacon juice alone. Additionally, DSS-induced colitis led to a significant decrease in occludin mRNA expression and an upregulation of genes encoding pro-inflammatory cytokines, which were normalized by FYJ treatment. These effects were accompanied by a significant inhibition of the TLR4/MyD88/NF-κB signaling pathway. Moreover, FYJ treatment reversed DSS-induced alternations in gut community beta diversity and composition. In conclusion, FYJ could reduce intestinal mucosal inflammation, repair colonic mucosa, and improve the physiological status of DSS-induced UC mice, possibly through the regulation of the TLR4/MyD88/NF-κB signaling pathway and gut microbiota composition. PRACTICAL APPLICATION: The synbiotic yacon juice significantly restores the DSS-induced imbalance in the intestinal microbiota in mice, thereby preserving mucosal immunity and intestinal barrier integrity. The insights derived from this study are expected to provide a novel perspective on the potential application of synbiotic yacon juice as a functional food agent for treating UC.
Collapse
Affiliation(s)
- Gui Zhen Gong
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Rui Tong Li
- College of Life Science, Sichuan Normal University, Chengdu, China
| | | | - Yuan Ting Zhu
- College of Life Science, Sichuan Normal University, Chengdu, China
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, China
| | - Zhen Zhen Duan
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Jian Xia Yang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yi Xin Wang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Lan Yue Chen
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Qi Huan Xiao
- College of Life Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
8
|
Husien HM, Peng W, Essa MOA, Adam SY, Ur Rehman S, Ali R, Saleh AA, Wang M, Li J. The Anti-Inflammatory Properties of Polysaccharides Extracted from Moringa oleifera Leaves on IEC6 Cells Stimulated with Lipopolysaccharide In Vitro. Animals (Basel) 2024; 14:3508. [PMID: 39682473 DOI: 10.3390/ani14233508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Moringa oleifera (M. oleifera) is a plant with significant medicinal and nutritional value and contains various bioactive compounds, particularly in its leaves (MOL). This study sought to explore the impact of M. oleifera leaf polysaccharides (MOLPs) on lipopolysaccharide (LPS)-activated intestinal epithelial cells (IEC6) and to uncover the mechanisms involved. The cytotoxicity of MOLP on IEC6 cells was assessed using the Cell Counting Kit-8 (CCK-8) assay, which demonstrated a safe concentration range of 0-1280 µg/mL. The impact of MOLP on cell viability was further evaluated over 12 to 48 h. IEC6 cells were treated with three concentrations of MOLP low (25 µg/mL), medium (50 µg/mL), and high (100 µg/mL) alongside LPS (50 µg/mL) stimulation for one day. The findings revealed that treatment with MOLP significantly promoted cell migration and increased the production of interleukin-10 (IL-10), while it simultaneously decreased cell apoptosis and the levels of pro-inflammatory cytokines, such as tumour necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6). Additionally, MOLP treatments across all concentrations significantly reduced the expression of Toll-like receptor 4 (TLR-4), myeloid differentiation primary response 88 (MyD88), phosphorylated nuclear factor kappa B-alpha (pIκB-α), and phosphorylated NF-κB p65 signalling pathways. Moreover, MOLP restored the expression of tight junction proteins, such as zonula occludens-1 (ZO-1) and occludin, which had been disrupted by LPS. These results indicate that MOLP exhibits anti-inflammatory properties by inhibiting inflammatory signalling pathways and maintaining intestinal barrier integrity through the upregulation of tight junction proteins in IEC6 cells. This study enhances our understanding of the anti-inflammatory capabilities of MOLP.
Collapse
Affiliation(s)
- Hosameldeen Mohamed Husien
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Albutana University, Rufaa 22217, Sudan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Weilong Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mohamed Osman Abdalrahem Essa
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Albutana University, Rufaa 22217, Sudan
| | - Saber Y Adam
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shahab Ur Rehman
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Rahmat Ali
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ahmed A Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City 11865, Egypt
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- State Key-Laboratory of Sheep Genetic Improvement and Healthy-Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - Jingui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Fan R, Wei W, Wei Y, Lin X, Zhou S, Wang L. Phenolics-Rich Extract from Agarwood Leaf-Tea Alleviate Dextran Sulfate Sodium (DSS)-Induced Ulcerative Colitis Via Modulating Intestinal Barrier Function, Liver Inflammation, and Gut Microbiota. Mol Nutr Food Res 2024; 68:e2400566. [PMID: 39573890 DOI: 10.1002/mnfr.202400566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/01/2024] [Indexed: 12/28/2024]
Abstract
SCOPE At present, the incidence rate of ulcerative colitis (UC) continues to increase, causing a global burden. In addition, therapeutic drugs have great side effects. According to modern pharmacology, agarwood leaves have anti-inflammatory, antibacterial, hypoglycemic, and lipid-lowering effects. Therefore, this experiment on DSS induced colitis treatment of polyphenolic substances in agarwood leaves is feasible and in line with the current hot topic of using natural substances instead of drugs for treatment. METHODS AND RESULTS ALP supplementation promotes the expression of tight junction proteins occludin and Zonula occludens protein 1 (ZO-1) on colonic tissues, repairs the intestinal barrier, and relieves further colonic tissue damage. Besides, ALP effectively inhibits the activation of nuclear factor kappa-B (NF-кB) signaling pathway and reduces the release of proinflammatory cytokines. Moreover, ALP reverses the alteration of gut microbiota in the colitic mice by increasing the abundances of Parabacteroides, Chlamydia, and Lachnospiraceae, and decreasing the abundances of Bacteroides and Phocaeicola. Furthermore, the correlation analysis suggested that ALP can attenuate DSS-induced UC, which is probably related to the alterations in the gut microbiota. CONCLUSION ALP can ameliorate DSS-induced UC by modulating gut microbiota, intestinal barrier function, and inflammatory responses.
Collapse
Affiliation(s)
- Ruyan Fan
- School of Food Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Wensong Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Product Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Youjing Wei
- School of Food Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Shaobo Zhou
- School of, Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham, ME44TB, UK
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou, 570228, P. R. China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
10
|
Peng K, Xiao S, Xia S, Li C, Yu H, Yu Q. Butyrate Inhibits the HDAC8/NF-κB Pathway to Enhance Slc26a3 Expression and Improve the Intestinal Epithelial Barrier to Relieve Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24400-24416. [PMID: 39440960 DOI: 10.1021/acs.jafc.4c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Dietary fiber is known to promote the production of short-chain fatty acids (SCFAs) by gut bacteria, which can enhance intestinal epithelial barrier function and ameliorate intestinal inflammation in patients with inflammatory bowel disease (IBD). Interestingly, some IBD patients show reduced expression of solute carrier family member 3 (Slc26a3) in intestinal epithelial cells. The objective of this research was to investigate the interaction between SCFAs and Slc26a3 during colitis and assess how this interaction affects intestinal epithelial barrier function. We showed that butyrate alleviated colonic inflammation in a dose-dependent manner in a dextran sulfate sodium salt (DSS)-induced colitis model. Consistent with this, butyrate increased Slc26a3 and tight junction protein levels. In addition, butyrate inhibited histone deacetylase (HDAC) levels and significantly increased the expression of Slc26a3 by the acetylation of histones in Caco-2BBe cells. The utilization of a pan-HDAC inhibitor or inhibitors specific to certain classes of HDACs revealed that butyrate primarily suppressed HDAC8 to blunt the NF-κB pathways and enhance the expression of Slc26a3. Notably, we demonstrated that HDAC8 activation counteracted the beneficial effect of butyrate in DSS-induced colitis. Therefore, we concluded that butyrate improves the expression of Slc26a3 via inhibition of the HDAC8/NF-κB pathway, leading to increased intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Kaixin Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Siqi Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Suhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Congxin Li
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hongbing Yu
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City 66160, Kansas, United States
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver V6H 3N1, British Columbia, Canada
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
11
|
Weng S, Tian E, Gao M, Zhang S, Yang G, Zhou B. Eimeria: Navigating complex intestinal ecosystems. PLoS Pathog 2024; 20:e1012689. [PMID: 39576763 PMCID: PMC11584145 DOI: 10.1371/journal.ppat.1012689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Eimeria is an intracellular obligate apicomplexan parasite that parasitizes the intestinal epithelial cells of livestock and poultry, exhibiting strong host and tissue tropism. Parasite-host interactions involve complex networks and vary as the parasites develop in the host. However, understanding the underlying mechanisms remains a challenge. Acknowledging the lack of studies on Eimeria invasion mechanism, we described the possible invasion process through comparative analysis with other apicomplexan parasites and explored the fact that parasite-host interactions serve as a prerequisite for successful recognition, penetration of the intestinal mechanical barrier, and completion of the invasion. Although it is recognized that microbiota can enhance the host immune capacity to resist Eimeria invasion, changes in the microenvironment can, in turn, contribute to Eimeria invasion and may be associated with reduced immune capacity. We also discuss the immune evasion strategies of Eimeria, emphasizing that the host employs sophisticated immune regulatory mechanisms to suppress immune evasion by parasites, thereby sustaining a balanced immune response. This review aims to deepen our understanding of Eimeria-host interactions, providing a theoretical basis for the study of the pathogenicity of Eimeria and the development of novel anticoccidial drugs.
Collapse
Affiliation(s)
- Shengjie Weng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Meng Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Siyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Guodong Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Bianhua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| |
Collapse
|
12
|
Yang D, Sun Y, Wen P, Chen Y, Cao J, Sun X, Dong Y. Chronic Stress-induced Serotonin Impairs Intestinal Epithelial Cell Mitochondrial Biogenesis via the AMPK-PGC-1α Axis. Int J Biol Sci 2024; 20:4476-4495. [PMID: 39247815 PMCID: PMC11380450 DOI: 10.7150/ijbs.97275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Chronic stress is closely associated with gastrointestinal disorders. However, the impact of stress-related neurotransmitters such as serotonin (5-hydroxytryptamine, 5-HT) on the intestines under chronic stress conditions remains poorly understood. This study aims to elucidate the mechanisms by which 5-HT affects mitochondrial biogenesis and intestinal barrier integrity during chronic stress. Employing a chronic restraint stress (CRS) mouse model, we observed elevated intestinal 5-HT levels, altered colonic mucosal structure, and disrupted tight junctions. The increase in 5-HT was associated with up-regulated serotonin synthesis enzymes and downregulated serotonin reuptake transporters, indicating an imbalance in serotonin homeostasis imbalance caused by chronic stress. Furthermore, serotonin exacerbated oxidative stress and impaired tight junction protein expression, highlighting its role in promoting intestinal barrier dysfunction. Experiments with cells in vitro demonstrated that 5-HT impairs mitochondrial biogenesis by inhibiting the AMPK-PGC-1α axis via 5-HT7 receptors and the cAMP-PKA pathway. Pharmacological inhibition of serotonin synthesis or 5-HT7 receptors alleviated the intestinal barrier damage caused by 5-HT and chronic stress, restoring mitochondrial biogenesis. These findings provide compelling evidence that serotonin exacerbates chronic stress-induced intestinal barrier disruption by inhibiting the AMPK-PGC-1α axis, paving the way for novel therapeutic interventions targeting the detrimental effects of serotonin on the intestine, particularly under chronic stress conditions.
Collapse
Affiliation(s)
- Ding Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, P.R. China
| | - Pei Wen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Xuelin Sun
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
13
|
Liu T, Ma W, Wang J, Wei Y, Wang Y, Luo Z, Zhang Y, Zeng X, Guan W, Shao D, Chen F. Dietary Protease Supplementation Improved Growth Performance and Nutrients Digestion via Modulating Intestine Barrier, Immunological Response, and Microbiota Composition in Weaned Piglets. Antioxidants (Basel) 2024; 13:816. [PMID: 39061885 PMCID: PMC11273905 DOI: 10.3390/antiox13070816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Despite mounting evidence for dietary protease benefits, the mechanisms beyond enhanced protein degradation are poorly understood. This study aims to thoroughly investigate the impact of protease addition on the growth performance, intestinal function, and microbial composition of weaned piglets. Ninety 28-day-old weaned pigs were randomly assigned to the following three experimental diets based on their initial body weight for a 28-day experiment: (1) control (CC), a basic diet with composite enzymes without protease; (2) negative control (NC), a diet with no enzymes; and (3) dietary protease (PR), a control diet with protease. The results show that dietary proteases significantly enhanced growth performance and boosted antioxidant capacity, increasing the total antioxidant capacity (T-AOC) levels (p < 0.05) while reducing malonaldehyde levels (p < 0.05). Additionally, protease addition reduced serum levels of inflammatory markers TNF-α, IL-1β, and IL-6 (p < 0.05), suppressed mRNA expression of pro-inflammatory factors in the jejunum (p < 0.01), and inhibited MAPK and NF-κB signaling pathways. Moreover, protease-supplemented diets improved intestinal morphology and barrier integrity, including zonula occludens protein 1(ZO-1), Occludin, and Claudin-1 (p < 0.05). Microbiota compositions were also significantly altered by protease addition with increased abundance of beneficial bacteria (Lachnospiraceae_AC2044_group and Prevotellaceae_UCG-001) (p < 0.05) and reduced harmful Terrisporobacter (p < 0.05). Further correlation analysis revealed a positive link between beneficial bacteria and growth performance and a negative association with inflammatory factors and intestinal permeability. In summary, dietary protease addition enhanced growth performance in weaned piglets, beneficial effects which were associated with improved intestinal barrier integrity, immunological response, and microbiota composition.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Wen Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
| | - Jun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
| | - Yulong Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
| | - Yibo Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
| | - Zheng Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Ying Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China;
| | - Wutai Guan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Fang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Shao G, Liu Y, Lu L, Wang L, Ji G, Xu H. Therapeutic potential of traditional Chinese medicine in the prevention and treatment of digestive inflammatory cancer transformation: Portulaca oleracea L. as a promising drug. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117999. [PMID: 38447616 DOI: 10.1016/j.jep.2024.117999] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been used for centuries to treat various types of inflammation and tumors of the digestive system. Portulaca oleracea L. (POL), has been used in TCM for thousands of years. The chemical composition of POL is variable and includes flavonoids, alkaloids, terpenoids and organic acids and other classes of natural compounds. Many of these compounds exhibit powerful anti-inflammatory and anti-cancer-transforming effects in the digestive system. AIM OF STUDY In this review, we focus on the potential therapeutic role of POL in NASH, gastritis and colitis and their associated cancers, with a focus on the pharmacological properties and potential mechanisms of action of the main natural active compounds in POL. METHODS The information and data on Portulaca oleracea L. and its main active ingredients were collated from various resources like ethnobotanical textbooks and literature databases such as CNKI, VIP (Chinese literature), PubMed, Science Direct, Elsevier and Google Scholar (English literatures), Wiley, Springer, Tailor and Francis, Scopus, Inflibnet. RESULTS Kaempferol, luteolin, myricetin, quercetin, genistein, EPA, DHA, and melatonin were found to improve NASH and NASH-HCC, while kaempferol, apigenin, luteolin, and quercetin played a therapeutic role in gastritis and gastric cancer. Apigenin, luteolin, myricetin, quercetin, genistein, lupeol, vitamin C and melatonin were found to have therapeutic effects in the treatment of colitis and its associated cancers. The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. CONCLUSION The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. However, clinical data describing the mode of action of the naturally active compounds of POL are still lacking. In addition, pharmacokinetic data for POL compounds, such as changes in drug dose and absorption rates, cannot be extrapolated from animal models and need to be measured in patients in clinical trials. On the one hand, a systematic meta-analysis of the existing publications on TCM containing POL still needs to be carried out. On the other hand, studies on the hepatic and renal toxicity of POL are also needed. Additionally, well-designed preclinical and clinical studies to validate the therapeutic effects of TCM need to be performed, thus hopefully providing a basis for the validation of the clinical benefits of POL.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China.
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China.
| |
Collapse
|
15
|
Zhu HTL, Luo J, Peng Y, Cheng XF, Wu SZ, Zhao YD, Chang L, Sun ZJ, Dong DL. Nitazoxanide protects against experimental ulcerative colitis through improving intestinal barrier and inhibiting inflammation. Chem Biol Interact 2024; 395:111013. [PMID: 38663798 DOI: 10.1016/j.cbi.2024.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Ulcerative colitis is a chronic disease with colonic mucosa injury. Nitazoxanide is an antiprotozoal drug in clinic. Nitazoxanide and its metabolite tizoxanide have been demonstrated to activate AMPK and inhibit inflammation, therefore, the aim of the present study is to investigate the effect of nitazoxanide on dextran sulfate sodium (DSS)-induced colitis and the underlying mechanism. Oral administration of nitazoxanide ameliorated the symptoms of mice with DSS-induced colitis, as evidenced by improving the increased disease activity index (DAI), the decreased body weight, and the shortened colon length. Oral administration of nitazoxanide ameliorated DSS-induced intestinal barrier dysfunction and reduced IL-6 and IL-17 expression in colon tissues. Mechanistically, nitazoxanide and its metabolite tizoxanide treatment activated AMPK and inhibited JAK2/STAT3 signals. Nitazoxanide and tizoxanide treatment increased caudal type homeobox 2 (CDX2) expression, increased alkaline phosphatase (ALP) activity and promoted tight junctions in Caco-2 cells. Nitazoxanide and tizoxanide treatment restored the decreased zonula occludens-1(ZO-1) and occludin protein levels induced by LPS or IL-6 in Caco-2 cells. On the other hand, nitazoxanide and tizoxanide regulated macrophage bias toward M2 polarization, as evidenced by the increased arginase-1expression in bone marrow-derived macrophages (BMDM). Nitazoxanide and tizoxanide reduced the increased IL-6, iNOS and CCL2 pro-inflammatory gene expressions and inhibited JAK2/STAT3 activation in BMDM induced by LPS. In conclusion, nitazoxanide protects against DSS-induced ulcerative colitis in mice through improving intestinal barrier and inhibiting inflammation and the underlying mechanism involves AMPK activation and JAK2/STAT3 inhibition.
Collapse
Affiliation(s)
- Hu-Tai-Long Zhu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jing Luo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yi Peng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiao-Fan Cheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Shang-Ze Wu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yin-Di Zhao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Le Chang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
16
|
Huang Y, Zhang P, Han S, Hu B, Zhang Q, He H. Effect of Enteromorpha polysaccharides on gut-lung axis in mice infected with H5N1 influenza virus. Virology 2024; 593:110031. [PMID: 38401339 DOI: 10.1016/j.virol.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Enteromorpha polysaccharides (EPPs) have been reported to have antiviral and anti-inflammatory properties. To explore the effect of EPPs on H5N1-infected mice, mice were pretreated with EPPs before being infected with the H5N1 influenza virus intranasally. H5N1 infection resulted in body-weight loss, pulmonary and intestinal damage, and an imbalance of gut microbiota in mice. As a result of the inclusion of EPPs, the body weight of mice recovered and pathological damage to the lung and intestine was reduced. EPPs also diminished inflammation by drastically lowering the expression of proinflammatory cytokines in lungs and intestines. H5N1 infection reduced bacterial diversity, and the abundance of pathogenic bacteria such as Desulfovibrio increased. However, the beneficial bacteria Alistipes rebounded in the groups which received EPPs before the infection. The modulation of the gut-lung axis may be related to the mechanism of EPPs in antiviral and anti-inflammatory responses. EPPs have shown potential in protecting the host from the influenza A virus infection.
Collapse
Affiliation(s)
- Yanyi Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peiyang Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qingxun Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Mukai H, Takanashi M, Ogawara KI, Maruyama M, Higaki K. Possible Regulation of P-Glycoprotein Function by Adrenergic Agonists II: Study with Isolated Rat Jejunal Sheets and Caco-2 Cell monolayers. J Pharm Sci 2024; 113:1209-1219. [PMID: 37984697 DOI: 10.1016/j.xphs.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
To clarify the regulation of drug absorption by the enteric nervous system, we investigated how adrenergic agonists (adrenaline (ADR), clonidine (CLO), dobutamine (DOB)) and dibutyryl cAMP (DBcAMP) affected P-glycoprotein (P-gp) function by utilizing isolated rat jejunal sheets and Caco-2 cell monolayers. ADR and CLO significantly decreased the secretory transport (Papptotal) of rhodamine-123 and tended to decrease the transport via P-gp (PappP-gp) and passive transport (Papppassive). In contrast, DBcAMP significantly increased and DOB tended to increase Papptotal and both tended to increase PappP-gpand Papppassive. Changes in P-gp expression on brush border membrane by adrenergic agonists and DBcAMP were significantly correlated with PappP-gp, while P-gp expression was not changed in whole cell homogenates, suggesting that the trafficking of P-gp would be responsible for its functional changes. Papppassive was inversely correlated with transmucosal or transepithelial electrical resistance, indicating that adrenergic agonists affected the paracellular permeability. Adrenergic agonists also changed cAMP levels, which were significantly correlated with PappP-gp. Furthermore, protein kinase A (PKA) or PKC inhibitor significantly decreased PappP-gp in Caco-2 cell monolayers, suggesting that they would partly contribute to the changes in P-gp activity. In conclusion, adrenergic agonists regulated P-gp function and paracellular permeability, which would be caused via adrenoceptor stimulation.
Collapse
Affiliation(s)
- Hironori Mukai
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Production Department, Odawara Central Factory, Nippon Shinyaku Co., Ltd., 676-1 Kuwahara, Odawara, Kanagawa 250-0861, Japan
| | - Masashi Takanashi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Central Hyogo Area, Hanshin Dispensing Pharmacy, I & H Co., Ltd., 1-18 Ohmasu-cho, Ashiya, Hyogo 659-0066, Japan
| | - Ken-Ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada-ku, Kobe, Hyogo 658-8558, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
18
|
Zhao X, Hao S, Zhang J, Yao Y, Li L, Sun L, Qin S, Nian F, Tang D. Aerial parts of Angelica sinensis supplementation for improved broiler growth and intestinal health. Poult Sci 2024; 103:103473. [PMID: 38340660 PMCID: PMC10869287 DOI: 10.1016/j.psj.2024.103473] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
This research examined the impact of incorporating Angelica sinensis's aerial components (APA), commonly referred to as "female ginseng", into broilers' diet. Two hundred eighty-eight 1-day-old Cobb 500 broilers were randomly assigned to the 4 experimental groups with 6 replications and 12 birds/replicate. The 4 groups were fed the diets included 4 concentrations of APA (0, 1, 2, and 3%, respectively). The study spanned 42 d, categorized as the starter phase (1-21 d) and the finisher phase (22-42 d). Notably, broilers fed with 3% APA demonstrated a pronounced surge in feed consumption and weight gain during the 22 to 42 d and over the full 42-d period (P < 0.05). Furthermore, when examining the broilers' intestinal structure, there was a notable increase in the villus height and villi ratio across the duodenum, jejunum, and ileum, with a decrease in crypt depth upon 3% APA inclusion (P < 0.05). On a molecular note, certain genes connected to the intestinal mechanical barrier, such as Zona Occludens 1 and Claudin-2, saw significant elevation in the jejunum (P < 0.05). The jejunum also displayed heightened levels of antimicrobial peptides like lysozyme, mucin 2, sIgA, IgG, and IgM, showcasing an enhanced chemical and immune barrier (P < 0.05). Delving into the 16SrDNA sequencing of intestinal content, a higher microbial diversity was evident with a surge in beneficial bacteria, particularly Firmicutes, advocating a resilient and balanced microecosystem. The findings imply that a 3% APA dietary addition bolsters growth metrics and fortifies the intestinal barrier's structural and functional integrity in broilers.
Collapse
Affiliation(s)
- Xiangmin Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shengyan Hao
- Animal Husbandry, Pasture and Green Agricultute, Gansu Academy of Agricultural Science, Lanzhou, 730070, China
| | - Jiawei Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yali Yao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lulu Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Likun Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fang Nian
- College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
19
|
Xu CL, Wang C, Li GB, Zhao T, Zhou RL, Chen J. Antibiotic administration aggravates asthma by disrupting gut microbiota and the intestinal mucosal barrier in an asthma mouse model. Exp Ther Med 2024; 27:157. [PMID: 38476896 PMCID: PMC10928978 DOI: 10.3892/etm.2024.12445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
In humans, gut microbiota can determine the health status. The regulatory mechanisms of the gut microbiota in asthma must be elucidated. Although antibiotics (ABXs) can clear infections, they markedly alter the composition and abundance of gut microbiota. The present study used ABX-treated mice to examine the time-dependent effects of ABX administration on the gut microbiota and intestinal mucosal barrier. The mouse asthma model was established using ovalbumin (OVA) and gavaged with an ABX cocktail for different durations (1 or 2 weeks) and stacked sequences. The pathology of the model, model 2, OVA-ABX, OVA-ABX 2, ABX-OVA and ABX-OVA was severe when compared with the control group as evidenced by the following results: i) significantly increased pulmonary and colonic inflammatory cell infiltration; ii) enhanced pause values and iii) OVA-induced immunoglobulin E (IgE) and TGF-β expression levels, and significantly downregulated Tight Junction Protein 1 (TJP1), claudin 1 and Occludin expression levels. Furthermore, the intestinal bacterial load in the OVA-ABX and OVA-ABX 2 groups was significantly lower than that in the ABX-OVA and ABX-OVA 2 groups, respectively. The predominant taxa were as follows: phyla, Firmicutes and Proteobacteria, genera, Escherichia-Shigella, Lactobacillus and Lachnospira. The abundances of Lachnospira and Escherichia-Shigella were correlated with the expression of OVA-induced IgE and TJPs. These findings indicated that ABX administration, which modifies microbiome diversity and bacterial abundance, can disrupt colonic integrity, downregulate TJ proteins, damage the intestinal barrier, enhance enterocyte permeability, and promote the release of inflammatory factors, adversely affecting asthma alleviation and long-term repair.
Collapse
Affiliation(s)
- Cheng-Ling Xu
- College of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Cui Wang
- College of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Gao-Bin Li
- College of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Tong Zhao
- College of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Rui-Ling Zhou
- Department of Dermatology, First Affiliated Hospital, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650504, P.R. China
| | - Jing Chen
- College of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
20
|
Giri S, Takada A, Paudel D, Uehara O, Kurashige Y, Kuramitsu Y, Furukawa M, Matsushita K, Arakawa T, Nagasawa T, Abiko Y, Furuichi Y. Oral infection with Porphyromonas gingivalis augmented gingival epithelial barrier molecules alteration with aging. J Oral Biosci 2024; 66:126-133. [PMID: 38336260 DOI: 10.1016/j.job.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Disruption of the gingival epithelial barrier is often mediated by aging or the pathogen Porphyromonas gingivalis. This study examined the combined effects of aging and P. gingivalis exposure on gingival epithelial barrier molecules. METHODS In vitro experiments involved treating young- and senescence-induced primary human gingival epithelial progenitor cells (HGEPp) with P. gingivalis lipopolysaccharide (LPS). Transepithelial electrical resistance (TER) and paracellular permeability were measured. In vivo, male C57BL/6J mice aged 10 (young) and 80 (old) weeks were divided into four groups: young, old, young with P. gingivalis (Pg-Young) inoculation, and old with P. gingivalis (Pg-Old) inoculation. P. gingivalis was inoculated orally thrice a week for 5 weeks. The mice were sacrificed 30 days after the last inoculation, and samples were collected for further procedures. The junctional molecules (Claudin-1, Claudin-2, E-cadherin, and Connexin) were analyzed for mRNA expression using qRT-PCR and protein production using western blotting and immunohistochemistry. The alveolar bone loss and inflammatory cytokine levels in gingival tissues were also assessed. RESULTS LPS-treated senescent cells exhibited a pronounced reduction in TER, increased permeability to albumin protein, significant upregulation of Claudin-1 and Claudin-2, and significant downregulation of E-cadherin and Connexin. Furthermore, the Pg-Old group showed identical results with aging in addition to an increase in alveolar bone loss, significantly higher than that in the other groups. CONCLUSION In conclusion, the host susceptibility to periodontal pathogens increases with age through changes in the gingival epithelial barrier molecules.
Collapse
Affiliation(s)
- Sarita Giri
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Ayuko Takada
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Durga Paudel
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yoshihito Kurashige
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yasuhiro Kuramitsu
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Masae Furukawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Toshiya Arakawa
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Toshiyuki Nagasawa
- Division of Advanced Clinical Education, Department of Integrated Dental Education, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Japan
| | - Yasushi Furuichi
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| |
Collapse
|
21
|
Liu Z, Nong K, Qin X, Fang X, Zhang B, Chen W, Wang Z, Wu Y, Shi H, Wang X, Liu Y, Guan Q, Zhang H. The antimicrobial peptide Abaecin alleviates colitis in mice by regulating inflammatory signaling pathways and intestinal microbial composition. Peptides 2024; 173:171154. [PMID: 38242174 DOI: 10.1016/j.peptides.2024.171154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Abaecin is a natural antimicrobial peptide (AMP) rich in proline from bees. It is an important part of the innate humoral immunity of bees and has broad-spectrum antibacterial ability. This study aimed to determine the effect of Abaecin on dextran sulfate sodium (DSS) -induced ulcerative colitis (UC) in mice and to explore its related mechanisms. Twenty-four mice with similar body weight were randomly divided into 4 groups. 2.5% DSS was added to drinking water to induce colitis in mice. Abaecin and PBS were administered rectally on the third, fifth, and seventh days of the experimental period. The results showed that Abaecin significantly alleviated histological damage and intestinal mucosal barrier damage caused by colitis in mice, reduced the concentration of pro-inflammatory cytokines IL-1β, IL-6, TNF-α, IFN-γ, and the phosphorylation of NF-κB / MAPK inflammatory signaling pathway proteins, and improved the composition of intestinal microorganisms. These findings suggest that Abaecin may have potential prospects for the treatment of UC.
Collapse
Affiliation(s)
- Zhineng Liu
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Keyi Nong
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Xinyun Qin
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Xin Fang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Bin Zhang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Wanyan Chen
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Zihan Wang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Yijia Wu
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Huiyu Shi
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Xuemei Wang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Youming Liu
- Yibin Academy of Agricultural Sciences, Yibin 644600, China
| | - Qingfeng Guan
- College of Life and Health, Hainan University, Haikou 570228, China
| | - Haiwen Zhang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
22
|
Zhang H, Liu M, Song F, Zhu X, Lu Q, Liu R. Fermentation enhances the amelioration effect of bee pollen on Caco-2 monolayer epithelial barrier dysfunction based on NF-κB-mediated MLCK-MLC signaling pathway. Food Res Int 2024; 178:113938. [PMID: 38309866 DOI: 10.1016/j.foodres.2024.113938] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Intestinal barrier integrity is essential for normal nutrient digestion and absorption and disease resistance. This study aims to investigate how fermentation affects the ameliorative effect of bee pollen on the intestinal barrier dysfunction stimulated by interferon-γ and tumor necrosis factor (IFN-γ/TNF-α) cytokines. The results indicated that fermentation enhances the alleviating effect of bee pollen on intestinal barrier dysfunction (including elevated trans epithelial electrical resistance and decreased paracellular permeability). In addition, fermented bee pollen (FBP) significantly decreased (p < 0.05) the secretion levels of interleukin (IL)-6, IL-8, and IL-1β and expression of cyclooxygenase (COX)-2 protein in intestinal barrier cells. Furthermore, fermentation improved the ability of bee pollen to up-regulate the expression of tight junction proteins including zonula occludens (ZO)-1, occluding, and claudin-1. Notably, FBP showed stronger ability to inhibit the expression of nuclear factor kappa-B (NF-κB) mediated myosin light chain kinase (MLCK) and myosin light chain (MLC) signaling pathway associated with phosphorylated proteins. Overall, our results indicated that fermentation enhances the protective effect of bee pollen on the intestinal barrier, and FBP has promising potential to be used as a novel functional food to protect the intestinal barrier.
Collapse
Affiliation(s)
- Huifang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China
| | - Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China
| | - Fanfen Song
- Research Unit VEG-i-TEC, Faculty of BioscienceEngineering, Ghent University, Sint-Martens-Latemlaan2B, 8500 Kortrijk, Belgium
| | - Xiaoling Zhu
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan 430075, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China.
| |
Collapse
|
23
|
Wee VTK, Shirakawa H, Yeh SL, Yeh CL. Fermented rice bran supplementation attenuates colonic injury through modulating intestinal aryl hydrocarbon receptor and innate lymphoid cells in mice with dextran sodium sulfate-induced acute colitis. J Nutr Biochem 2024; 123:109493. [PMID: 37871768 DOI: 10.1016/j.jnutbio.2023.109493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
This study investigated the effects of fermented rice bran (FRB) on modulating intestinal aryl hydrocarbon receptor (AhR) expression, innate lymphoid cell (ILC)3 populations, the fecal microbiota distribution, and their associations with dextran sodium sulfate (DSS)-induced acute colitis. C57BL/6 mice were assigned to four groups: 1) NC group, normal mice fed the AIN-93M diet; 2) FRB group, normal mice fed a diet supplemented with 5% FRB; 3) NCD group, DSS-treated mice fed AIN-93M; 4) FRBD group, DSS-treated mice fed a 5% FRB-supplemented diet. DSS was administered for 5 d and followed by 5 d for recovery. At the end of the experiment, mice were sacrificed. Their blood and intestinal tissues were collected. Results showed that there were no differences in colonic biological parameters and function between the NC and FRB groups. Similar fecal microbiota diversity was noted between these two groups. Compared to the non-DSS-treated groups, DSS administration led to increased intestinal permeability, enhanced inflammatory cytokine production and disease severity, whereas tight junctions and AhR, interleukin (IL)-22 expressions were downregulated, and the ILC3 population had decreased. Also, gut microbiota diversity differs from the non-DSS-treated groups and more detrimental bacterial populations exist when compared to the FRBD group. FRB supplementation in DSS-treated mice attenuated fecal microbial dysbiosis, decreased intestinal permeability, improved the barrier integrity, upregulated AhR and IL-22 expression, maintained the ILC3 population, and pathologically mitigated colonic injury. These findings suggest enhanced ILC3- and AhR-mediated functions may be partly responsible for the anti-colitis effects of FRB supplementation in DSS-induced colitis.
Collapse
Affiliation(s)
- ViVi Tang Kang Wee
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiu-Li Yeh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Research Center for Digestive Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
24
|
Shuai C, Chen D, Yu B, Luo Y, Zheng P, Huang Z, Yu J, Mao X, Yan H, He J. Effect of fermented rapeseed meal on growth performance, nutrient digestibility, and intestinal health in growing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:420-429. [PMID: 38058565 PMCID: PMC10696392 DOI: 10.1016/j.aninu.2023.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 12/08/2023]
Abstract
To explore the effects of fermented rapeseed meal (FRSM) on growth performance and intestinal health, a total of 30 growing pigs were randomly allotted to three treatments consisting of corn-soybean meal diet (CSD), rapeseed meal diet (RSD), and fermented rapeseed meal diet (FRSD). Results showed that compared with RSD, FRSD feeding increased the average daily gain and final body weight in pigs (P < 0.01). Compared with RSD feeding, FRSD feeding elevated the apparent digestibility of crude protein, acid detergent fiber, and ether extract in pigs (P < 0.01). Moreover, the FRSD group exhibited greater apparent ileal digestibility of His, Thr, Lys, and Ser than the RSD group (P < 0.01). The digestible energy, metabolic energy, and nitrogen utilization were higher in the FRSD and CSD groups than in the RSD group (P < 0.01). As compared to the RSD, FRSD feeding decreased the serum concentration of leptin but significantly increased the concentrations of immunoglobulin (Ig) A, IgG, ghrelin, and enzyme activities of amylase, lipase, and trypsin in the pancreas (P < 0.05). Interestingly, the villus height, the ratio of villus height to crypt depth, and the activities of brush border enzymes (e.g., maltase and sucrase) in the small intestine were higher in the CSD and FRSD groups than in the RSD group (P < 0.05). As compared to the RSD, the FRSD feeding not only increased the expression level of the occludin in the small intestinal epithelium (P < 0.05) but also elevated the expression levels of claudin-1, MUC1, and PepT1 genes in the duodenum, and elevated the expression levels of SGLT1 and CAT1 genes in the jejunum (P < 0.05). Importantly, FRSD feeding significantly decreased the abundance of Escherichia coli, but increased the abundance of Lactobacillus and the content of butyrate in the cecum and colon (P < 0.05). These results indicated that compared with rapeseed meal, fermented rapeseed meal exhibited a positive effect on improving the growth performance and intestinal health in growing pigs, and the results may also help develop novel protein sources for animal nutrition and the feed industry.
Collapse
Affiliation(s)
- Changyi Shuai
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, China
| |
Collapse
|
25
|
Liu X, Xi C, Li W, Su H, Yang H, Bai Z, Tian Y, Song S. Moringa oleifera Leaves Protein Enhances Intestinal Permeability by Activating TLR4 Upstream Signaling and Disrupting Tight Junctions. Int J Mol Sci 2023; 24:16425. [PMID: 38003615 PMCID: PMC10671199 DOI: 10.3390/ijms242216425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Changes in intestinal mucosal barrier permeability lead to antigen sensitization and mast cell-mediated allergic reactions, which are considered to play important roles in the occurrence and development of food allergies. It has been suggested that protein causes increased intestinal permeability via mast cell degranulation, and we investigated the effect of camellia Moringa oleifera leaves protein on intestinal permeability and explored its role in the development of food allergies. The current study investigated the effect of M. oleifera leaves protein on intestinal permeability through assessments of transepithelial electrical resistance (TEER) and transmembrane transport of FITC-dextran by Caco-2 cells. The expression levels of Toll-like receptor 4 (TLR4), IL-8, Occludin, Claudin-1, and perimembrane protein family (ZO-1) were detected by real-time PCR and Western blotting. The effect of M. oleifera leaves protein on intestinal permeability was verified in mice in vivo. The serum fluorescence intensity was measured using the FITC-dextran tracer method, and the expression of tight junction proteins was detected using Western blotting. The results showed that M. oleifera leaves protein widened the gaps between Caco-2 cells, reduced transmembrane resistance, and increased permeability. This protein also reduced the mRNA and protein levels of Occludin, Claudin-1, and ZO-1. Animal experiments showed that intestinal permeability was increased, and that the expression of the tight junction proteins Occludin and Claudin-1 were downregulated in mice. This study shows that M. oleifera leaves protein has components that increase intestinal permeability, decrease tight junction protein expression, promote transmembrane transport in Caco-2 cells, and increase intestinal permeability in experimental animals. The finding that M. oleifera leaves active protein increases intestinal permeability suggests that this protein may be valuable for the prevention, diagnosis, and treatment of M. oleifera leaves allergy.
Collapse
Affiliation(s)
- Xiaoxue Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Chuyu Xi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Wenjie Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Hairan Su
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Hao Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Zhongbin Bai
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China;
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China;
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shuang Song
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China;
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
26
|
Nakutis FS, Nishitokukado I, Dos Santos FM, Ortiz-Agostinho CL, de Alencar DT, Achtschin CG, Nunes VS, Leite AZA, Sipahi AM. Evaluation of oxidative stress in an experimental model of Crohn's disease treated with hyperbaric oxygen therapy. Clinics (Sao Paulo) 2023; 78:100305. [PMID: 37976650 PMCID: PMC10685139 DOI: 10.1016/j.clinsp.2023.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Treatments of Inflammatory Bowel Disease (IBD) are able to control symptoms in most cases, however, a fraction of patients do not improve or have a loss of response to treatments, making it important to explore new therapeutic strategies. Hyperbaric oxygen therapy (HBO) may represent one of them. The aim of this study was to evaluate the effects of HBO therapy in an experimental model of IBD. METHODS Sixty male BALBc mice were divided into six groups. Group 1 was colitis-induced with trinitrobenzene sulfonic acid (TNBS) + ethanol, group 2 received TNBS + ethanol plus HBO, group 3 received only ethanol, group 4 received ethanol plus HBO, group 5 received saline solution, and group 6 received saline solution plus HBO. HBO was performed for four days, subsequently, the mice were evaluated daily. At the end of the study, samples from the intestine were collected for histological analysis as well as for measurement of antioxidant enzymes and cytokine levels. RESULTS HBO significantly improved the clinical and histological status of the animals. Treatment with HBO increased the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) in all of the groups; moreover, the difference was only significant between the TNBS and TNBS + HBO groups and treatments promoted a reduction in the proinflammatory cytokines IFN-γ, IL-12, IL-17 and TNF-α and increased the anti-inflammatory cytokines IL-4 and IL-10, with no changes in IL-13. CONCLUSION HBO effectively treats TNBS-induced colitis by increasing the activity of antioxidant enzymes and modulating cytokine profiles.
Collapse
Affiliation(s)
- Fernanda Serafim Nakutis
- Laboratory of Experimental Clinical Gastroenterology (LIM-07), Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Iêda Nishitokukado
- Laboratory of Experimental Clinical Gastroenterology (LIM-07), Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Fabiana Maria Dos Santos
- Laboratory of Experimental Clinical Gastroenterology (LIM-07), Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Carmen Lucia Ortiz-Agostinho
- Laboratory of Experimental Clinical Gastroenterology (LIM-07), Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Daniel Teixeira de Alencar
- Laboratory of Experimental Clinical Gastroenterology (LIM-07), Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Cassiana Ganem Achtschin
- Laboratory of Experimental Clinical Gastroenterology (LIM-07), Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Valeria Sutti Nunes
- Lipids Laboratory (LIM-10), Division of Endocrinology and Metabolism, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - André Zonetti Arruda Leite
- Laboratory of Experimental Clinical Gastroenterology (LIM-07), Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Aytan Miranda Sipahi
- Laboratory of Experimental Clinical Gastroenterology (LIM-07), Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| |
Collapse
|
27
|
Niazi SK. A Critical Analysis of the FDA's Omics-Driven Pharmacodynamic Biomarkers to Establish Biosimilarity. Pharmaceuticals (Basel) 2023; 16:1556. [PMID: 38004421 PMCID: PMC10675618 DOI: 10.3390/ph16111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/26/2023] Open
Abstract
Demonstrating biosimilarity entails comprehensive analytical assessment, clinical pharmacology profiling, and efficacy testing in patients for at least one medical indication, as required by the U.S. Biologics Price Competition and Innovation Act (BPCIA). The efficacy testing can be waived if the drug has known pharmacodynamic (PD) markers, leaving most therapeutic proteins out of this concession. To overcome this, the FDA suggests that biosimilar developers discover PD biomarkers using omics technologies such as proteomics, glycomics, transcriptomics, genomics, epigenomics, and metabolomics. This approach is redundant since the mode-action-action biomarkers of approved therapeutic proteins are already available, as compiled in this paper for the first time. Other potential biomarkers are receptor binding and pharmacokinetic profiling, which can be made more relevant to ensure biosimilarity without requiring biosimilar developers to conduct extensive research, for which they are rarely qualified.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Liang C, Fu R, Chen D, Tian G, He J, Zheng P, Mao X, Yu B. Effects of mixed fibres and essential oils blend on growth performance and intestinal barrier function of piglets challenged with enterotoxigenic Escherichia coli K88. J Anim Physiol Anim Nutr (Berl) 2023; 107:1356-1367. [PMID: 37555469 DOI: 10.1111/jpn.13866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
This study was to evaluate the effects of supplementing mixed dietary fibres (MDF) and essential oils blend (EOB) either alone or in combination on growth performance and intestinal barrier function in weaned piglets challenged with enterotoxigenic Escherichia coli K88 (ETEC). Forty-two piglets (28 days old) were randomly allocated into six treatments in a 25-day experiment, and fed the basal diet (CON or ETEC) either with antibiotics (AT), MDF, EOB or MDF + EOB. On Day 22 of the experiment, pigs in CON and challenged groups (ETEC, AT, MDF, EOB and MDF + EOB) were orally administered sterile saline and ETEC containing 6 × 1010 CFU/kg body weight respectively. On Day 26, all pigs were euthanized to collect samples. Before ETEC challenge, piglets in MDF and EOB had lower diarrhoea incidence (p < 0.01) than others. After ETEC challenge, piglets in ETEC had lower average daily gain and higher diarrhoea incidence (p < 0.05) than those of CON. Furthermore, compared to CON, ETEC group increased the serum lipopolysaccharide concentration and diamine oxidase activity, and decreased mRNA levels of genes relating to barrier function (aquaporin 3, AQP3; mucin1, MUC1; zonula occludens-1, ZO-1; Occludin), and increased the concentration of cytokines (interleukin-1β/4/6/10, IL-1β/4/6/10) and secretory immunoglobulin A (sIgA) in jejunal mucosa (p < 0.05). However, these deleterious effects induced by ETEC were partly alleviated by MDF, EOB, MDF + EOB and AT. Additionally, compared to ETEC group, MDF increased Bifidobacterium abundance in cecal digesta and butyrate concentration in colonic digesta (p < 0.05). Also, EOB improved propionate concentration in cecal digesta, and MDF + EOB decreased IL-10 concentration in jejunal mucosa (p < 0.05) compared with ETEC. Conclusively, MDF and EOB either alone or in combination can improve growth performance and alleviate diarrhoea via improving intestinal barrier function of piglets after ETEC challenge, and all may serve as potential alternatives to AT for piglets.
Collapse
Affiliation(s)
- Chan Liang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Runqi Fu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Liu Y, Duan H, Chen Y, Zhang C, Zhao J, Narbad A, Tian F, Zhai Q, Yu L, Chen W. Intraspecific difference of Latilactobacillus sakei in inflammatory bowel diseases: Insights into potential mechanisms through comparative genomics and metabolomics analyses. IMETA 2023; 2:e136. [PMID: 38868211 PMCID: PMC10989848 DOI: 10.1002/imt2.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory diseases of the gastrointestinal tract that have become a global health burden. Studies have revealed that Latilactobacillus sakei can effectively alleviate various immune diseases, including colitis, rheumatoid arthritis, and metabolic disorders. Here, we obtained 72 strains of L. sakei from 120 fermentation and fecal samples across China. In total, 16 strains from different sources were initially screened in an in vitro Caco-2 model induced by dextran sulfate sodium. Subsequently, six strains (four exhibiting effectiveness and two exhibiting ineffectiveness) were selected for further validation in an in vivo colitis mouse model. The results demonstrated that L. sakei strains exhibited varying degrees of amelioration of the colitis disease process. Notably, L. sakei CCFM1267, the most effective strain, significantly restored colon length and tight-junction protein expression, and reduced the levels of cytokines and associated inflammatory enzymes. Moreover, L. sakei CCFM1267 upregulated the abundance of Enterorhabdus, Alloprevotella, and Roseburia, leading to increased levels of acetic acid and propionic acid. Conversely, the other four strains (L. sakei QJSSZ1L4, QJSSZ4L10, QGZZYRHMT1L6, and QGZZYRHMT2L6) only exhibited a partial remission effect, while L. sakei QJSNT1L10 displayed minimal impact. Therefore, L. sakei CCFM1267 and QJSNT1L10 were selected for further exploration of the mechanisms underlying their differential mitigating effects. Comparative genomics analysis revealed significant variations between the two strains, particularly in genes associated with carbohydrate-active enzymes, such as the glycoside hydrolase family, which potentially contribute to the diverse profiles of short-chain fatty acids in vivo. Additionally, metabolome analysis demonstrated that acetylcholine and indole-3-acetic acid were the main differentiating metabolites of the two strains. Therefore, the strains of L. sakei exhibited varying degrees of effectiveness in alleviating IBD-related symptoms, and the possible reasons for these variations were attributed to discrepancies in the carbohydrate-active enzymes and metabolites among the strains.
Collapse
Affiliation(s)
- Yaru Liu
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Hui Duan
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Ying Chen
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Jianxin Zhao
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Arjan Narbad
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
- Gut Health and Microbiome Institute Strategic ProgrammeQuadram Institute BioscienceNorwichUK
| | - Fengwei Tian
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Qixiao Zhai
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Leilei Yu
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| | - Wei Chen
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
- International Joint Research Laboratory for ProbioticsJiangnan UniversityWuxiChina
| |
Collapse
|
30
|
Song M, Zhang Z, Li Y, Xiang Y, Li C. Midgut microbiota affects the intestinal barrier by producing short-chain fatty acids in Apostichopus japonicus. Front Microbiol 2023; 14:1263731. [PMID: 37915855 PMCID: PMC10616862 DOI: 10.3389/fmicb.2023.1263731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction The intestinal microbiota participates in host physiology and pathology through metabolites, in which short-chain fatty acids (SCFAs) are considered principal products and have extensive influence on intestine homeostasis. It has been reported that skin ulceration syndrome (SUS), the disease of Apostichopus japonicus caused by Vibrio splendidus, is associated with the alteration of the intestinal microbiota composition. Method To investigate whether the intestinal microbiota affects A. japonicus health via SCFAs, in this study, we focus on the SCFA profiling and intestinal barrier function in A. japonicus treated with V. splendidus. Results and discussion We found that V. splendidus could destroy the mid-intestine integrity and downregulate the expression of tight junction proteins ZO-1 and occludin in A. japonicus, which further dramatically decreased microorganism abundance and altered SCFAs contents. Specifically, acetic acid is associated with the largest number of microorganisms and has a significant correlation with occludin and ZO-1 among the seven SCFAs. Furthermore, our findings showed that acetic acid could maintain the intestinal barrier function by increasing the expression of tight junction proteins and rearranging the tight junction structure by regulating F-actin in mid-intestine epithelial cells. Thus, our results provide insights into the effects of the gut microbiome and SCFAs on intestine barrier homeostasis and provide essential knowledge for intervening in SUS by targeting metabolites or the gut microbiota.
Collapse
Affiliation(s)
- Mingshan Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Yanan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Yangxi Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
31
|
Zhou F, Wu NZ, Xie Y, Zhou XJ. Intestinal barrier in inflammatory bowel disease: A bibliometric and knowledge-map analysis. World J Gastroenterol 2023; 29:5254-5267. [PMID: 37901448 PMCID: PMC10600957 DOI: 10.3748/wjg.v29.i36.5254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Barrier surfaces composed of specialized epithelial cells separate the host body from the external environment, and are essential for maintaining proper intestinal physiologic and immune homeostasis. AIM To explore the development trends and research hotspots of intestinal barrier research in inflammatory bowel disease (IBD). METHODS The publications related to the intestinal barrier in IBD were obtained from the Web of Science Core Collection database. Bibliometric analysis and visualization were conducted using VOSviewer, CiteSpace and R software. RESULTS A total of 4482 articles published between 2002 and 2022 were identified. The United States is dominant in intestinal barrier research, whereas the University of Chicago is the most active institution. Jerrold from Harvard Medical School was the most productive authors with the most citations. The journals Inflammatory Bowel Disease and Gastroenterology have made significant contributions in this field. The keywords appearing at high frequency related to the intestinal barrier in IBD were detected, including nuclear factor kappa B, tumor necrosis factor-α, apoptosis, oxidative stress and probiotics. Among them, antioxidants, Akkermansia muciniphila, nanoparticles, short-chain fatty acids and extracellular vesicles have received growing interest in recent research. CONCLUSION The intestinal barrier field is developing rapidly with extensive cooperation. Targeting the gut microbiota and dietary metabolism to regulate the intestinal barrier has shown promising prospective applications and has generated broad interest. The importance of the intestinal barrier in IBD is gradually being fully recognized, providing a new therapeutic perspective for improving inflammation and prognosis.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Nan-Zhen Wu
- Department of Gastrointestinal Surgery, Fengcheng People's Hospital, Fengcheng 331100, Jiangxi Province, China
| | - Yong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Xiao-Jiang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| |
Collapse
|
32
|
Zhao W, Chen Y, Tian Y, Wang Y, Du J, Ye X, Lu L, Sun C. Dietary supplementation with Dendrobium officinale leaves improves growth, antioxidant status, immune function, and gut health in broilers. Front Microbiol 2023; 14:1255894. [PMID: 37789853 PMCID: PMC10544969 DOI: 10.3389/fmicb.2023.1255894] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Background The Dendrobium officinale leaves (DOL) is an underutilized by-product with a large biomass, which have been shown to exhibit immunomodulatory and antioxidant functions. The purpose of this research was to investigate the effects of DOL on broiler growth performance, antioxidant status, immune function, and gut health. Methods One hundred and ninety-two 1-day-old chicks were selected and divided into 4 groups at random, 6 replicates for each group and 8 in each. Chicks were given a basal diet supplemented with different amounts of DOL: 0% (control group, NC), 1% (LD), 5% (MD), or 10% (HD). During the feeding trial (70 days), broiler body weight, feed intake, and residual feeding were recorded. On d 70, 12 broilers from each group were sampled for serum antioxidant and immune indexes measurement, intestinal morphological analysis, as well as 16S rRNA sequencing of cecal contents and short-chain fatty acid (SCFA) determination. Results In comparison to the NC group, the LD group had greater final body weight and average daily gain, and a lower feed conversion ratio (p < 0.05, d 1 to 70). However, in MD group, no significant change of growth performance occurred (p > 0.05). Furthermore, DOL supplementation significantly improved the levels of serum total antioxidant capacity, glutathione peroxidase, superoxide dismutase, and catalase, but reduced the level of malondialdehyde (p < 0.05). Higher serum immunoglobulin A (IgA) content and lower cytokine interleukin-2 (IL-2) and IL-6 contents were observed in DOL-fed broilers than in control chickens (p <0.05). Compared to the NC group, duodenal villus height (VH) and villus height-to-crypt depth (VH:CD) ratio were considerably higher in three DOL supplementation groups (p < 0.05). Further, 16S rRNA sequencing analysis revealed that DOL increased the diversity and the relative abundance of cecal bacteria, particularly helpful microbes like Faecalibacterium, Lactobacillus, and Oscillospira, which improved the production of SCFA in cecal content. According to Spearman correlation analysis, the increased butyric acid and acetic acid concentrations were positively related to serum antioxidant enzyme activities (T-AOC and GSH-Px) and immunoglobulin M (IgM) level (p < 0.05). Conclusion Overall, the current study demonstrated that supplementing the dies with DOL in appropriate doses could enhance growth performance, antioxidant capacity, and immune response, as well as gut health by promoting intestinal integrity and modulating the cecal microbiota in broilers. Our research may serve as a preliminary foundation for the future development and application of DOL as feed additive in broiler chicken diets.
Collapse
Affiliation(s)
- Wanqiu Zhao
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Yunzhu Wang
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Jianke Du
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Xuan Ye
- Zhejiang Xianju Breeding Chicken Farm, Xianju, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| |
Collapse
|
33
|
Hamid O, Alsabbagh Alchirazi K, Eltelbany A, Nanah R, Regueiro M. Increased prevalence of gout in patients with inflammatory bowel disease: A population-based study. JGH Open 2023; 7:640-644. [PMID: 37744707 PMCID: PMC10517438 DOI: 10.1002/jgh3.12963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/14/2023] [Accepted: 08/19/2023] [Indexed: 09/26/2023]
Abstract
Background and Aim Arthritis is a recognized extra-intestinal manifestation of inflammatory bowel disease (IBD). Studies show altered uric acid metabolism in IBD. This study aims to investigate the association between IBD and gout. Methods We used a multi-center database (Explorys Inc.) consisting of data from several US healthcare systems. We identified adults diagnosed with Crohn's disease (CD) and ulcerative colitis (UC) between 1999 and 2022. In this cohort, we identified patients diagnosed with gout. We collected demographic data and identified patients diagnosed with IBD-associated arthritis and those who had intestinal resection. Risk factors associated with gout were collected. Multivariate analysis was used. Results Out of the 69 260 780 patients in the database, we identified 209 020 patients with UC (0.30%) of whom 9130 had gout (4.3%). Additionally, 249 480 had CD (0.36%) of whom 14 000 had gout (5.61%). Males were more prevalent in the UC and gout group than in the CD and gout group (58% vs 51%). After adjustment, CD was significantly associated with gout (odds ratio [OR] 1.68, confidence interval [CI]: 1.60-1.75). UC was also significantly associated with gout (OR 1.38, CI: 1.31-1.44). In subgroup analysis with intestinal resection, CD patients who had intestinal resection had higher association with gout versus those without surgery (OR 2.34, CI: 2.25-2.43). Similar increase was observed in the UC group with intestinal resection (OR 1.53, CI: 1.49-1.56). Conclusion IBD is strongly associated with gout, with higher correlation observed with CD. Intestinal resection is associated with an increase in the risk of gout. Patients with IBD who present with new-onset arthritis should be investigated for gout.
Collapse
Affiliation(s)
- Osama Hamid
- Department of Hospital MedicineCleveland ClinicClevelandOhioUSA
| | | | - Ahmed Eltelbany
- Department of Hospital MedicineCleveland ClinicClevelandOhioUSA
| | - Rama Nanah
- Department of Hospital MedicineCleveland ClinicClevelandOhioUSA
| | - Miguel Regueiro
- Department of Gastroenterology and HepatologyCleveland ClinicClevelandOhioUSA
- Department of MedicineCleveland Clinic Lerner College of Medicine, Case Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
34
|
Yeh CL, Wu JM, Chen KY, Wu MH, Yang PJ, Lee PC, Chen PD, Kuo TC, Yeh SL, Lin MT. Potential therapeutic implications of calcitriol administration and weight reduction on CD4 T cell dysregulation and renin angiotensin system-associated acute lung injury in septic obese mice. Biomed Pharmacother 2023; 165:115127. [PMID: 37423172 DOI: 10.1016/j.biopha.2023.115127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023] Open
Abstract
This study investigated the effects of weight reduction and/or calcitriol administration on regulating CD4 T cell subsets and renin-angiotensin system (RAS)-associated acute lung injury (ALI) in obese mice with sepsis. Half of the mice were fed a high-fat diet for 16 weeks, half of them had high-fat diet for 12 weeks then were transferred to a low-energy diet for 4 weeks. After feeding the respective diets, cecal ligation and puncture (CLP) were performed to induce sepsis. There were four sepsis groups: OSS group, obese mice injected with saline; OSD group, obese mice given calcitriol; WSS group, mice with weight reduction and saline; WSD group, mice with weight reduction and calcitriol. Mice were sacrificed after CLP. The findings showed that CD4 T subsets distribution did not differ among the experimental groups. Calcitriol-treated groups had higher RAS-associated AT2R, MasR, ACE2, and angiopoietin 1-7 (Ang(1-7)) levels in the lungs. Also, higher tight junction proteins were noted 12 h after CLP. At 24 h post-CLP, weight reduction and/or calcitriol treatment reduced plasma inflammatory mediator production. Calcitriol-treated groups had higher CD4/CD8, T helper (Th)1/Th2 and lower Th17/regulatory T (Treg) ratios than the groups without calcitriol. In the lungs, calcitriol-treated groups had lower AT1R levels, whereas the RAS anti-inflammatory protein levels were higher than those groups without calcitriol. Lower injury scores were also noted at this time point. These findings suggested weight reduction decreased systemic inflammation. However, calcitriol administration produced a more-balanced Th/Treg distribution, upregulated the RAS anti-inflammatory pathway, and attenuated ALI in septic obese mice.
Collapse
Affiliation(s)
- Chiu-Li Yeh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Hsun Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Po-Da Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ting-Chun Kuo
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
35
|
Huang L, Liu B, Yu XW, Pan GQ, Xu JY, Yan D, Wang YL, Guo QN. Rat tight junction proteins are disrupted after subchronic exposure to okadaic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62201-62212. [PMID: 36940028 DOI: 10.1007/s11356-023-26471-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Okadaic acid (OA), a lipophilic phycotoxin distributed worldwide, causes diarrheic shellfish poisoning and even leads to tumor formation. Currently, the consumption of contaminated seafood is the most likely cause of chronic OA exposure, but there is a serious lack of relevant data. Here, the Sprague-Dawley rats were exposure to OA by oral administration at 100 µg/kg body weight, and the tissues were collected and analyzed to assess the effect of subchronic OA exposure. The results showed that subchronic OA administration disturbed colonic mucosal integrity and induced colitis. The colonic tight junction proteins were disrupted and the cell cycle of colonic epithelial cells was accelerated. It is inferred that disruption of the colonic tight junction proteins might be related to the development of chronic diarrhea by affecting water and ion transport. Moreover, the accelerated proliferation of colonic epithelial cells indicated that subchronic OA exposure might promote the restitution process of gut barrier or induce tumor promoter activity in rat colon.
Collapse
Affiliation(s)
- Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Bo Liu
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Xiao-Wen Yu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, 400021, People's Republic of China
| | - Guang-Qiang Pan
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Jia-Yi Xu
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Dong Yan
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Ya-Li Wang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
36
|
Xue W, Honda M, Hibi T. Mechanisms of gastrointestinal barrier dysfunction in COVID-19 patients. World J Gastroenterol 2023; 29:2283-2293. [PMID: 37124884 PMCID: PMC10134419 DOI: 10.3748/wjg.v29.i15.2283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a major global public health event, resulting in a significant social and economic burden. Although COVID-19 was initially characterized as an upper respiratory and pulmonary infection, recent evidence suggests that it is a complex disease including gastrointestinal symptoms, such as diarrhea, nausea, and vomiting. Moreover, it remains unclear whether the gastrointestinal symptoms are caused by direct infection of the gastrointestinal tract by SARS-CoV-2 or are the result of systemic immune activation and subsequent dysregulation of homeostatic mechanisms. This review provides a brief overview of the mechanisms by which SARS-CoV-2 disrupts the integrity of the gastrointestinal barrier including the mechanical barrier, chemical barrier, microbial barrier, and immune barrier.
Collapse
Affiliation(s)
- Weijie Xue
- Department of Transplantation and Pediatric Surgery, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaki Honda
- Department of Transplantation and Pediatric Surgery, Kumamoto University, Kumamoto 860-8556, Japan
| | - Taizo Hibi
- Department of Transplantation and Pediatric Surgery, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
37
|
Zhang C, Liu Y, Yao C, Zhang J, Wang Y, Liu J, Hong Y, Mai K, Ai Q. Effects of supplemental fulvic acid on survival, growth performance, digestive ability and immunity of large yellow croaker (Larimichthys crocea) larvae. Front Physiol 2023; 14:1159320. [PMID: 37064905 PMCID: PMC10102811 DOI: 10.3389/fphys.2023.1159320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
A 30-day feeding trial was designed to evaluate the effect of supplemental fulvic acid (FA) on survival, growth performance, digestive ability and immunity of large yellow croaker (Larimichthys crocea) larvae (initial body weight 11.33 ± 0.57 mg). Four isonitrogenous and isolipids diets containing 0.00%, 0.01%, 0.02% and 0.04% FA were formulated, respectively. Results showed that the supplementation of 0.04% FA significantly improved survival rate of large yellow croaker larvae. Meanwhile, supplemental FA significantly increased final body weight and specific growth rate. Based on the specific growth rate, the optimal supplementation was 0.0135% FA. Larvae fed the diet with 0.01% FA had significantly higher villus height than the control. The supplementation of 0.01%–0.02% FA significantly increased the muscular thickness of intestine. Moreover, supplementation of FA significantly increased mRNA expression of intestinal epithelial proliferation and barrier genes (pcna, zo-1 and zo-2). Diets supplemented with 0.02%–0.04% FA significantly increased the activity of trypsin in the intestinal segment, while 0.01%–0.02% FA significantly increased the activity of trypsin in the pancreatic segment. Compared with the control, supplementation of FA remarkably increased activities of alkaline phosphatase and leucine aminopeptidase in the brush border membrane of intestine. Larvae fed the diet with 0.01% FA significantly increased activities of lysozyme and total nitric oxide synthase. Furthermore, the supplementation of 0.01% to 0.02% FA significantly decreased the mRNA expression of pro-inflammatory cytokines (tnf-α and il-6). Concurrently, supplemental FA significantly increased anti-inflammatory cytokine (il-10) mRNA expression level. In conclusion, this study indicated that the supplementation of FA could improve the survival rate and growth performance of larvae by promoting intestinal development, digestive enzymes activities and innate immunity.
Collapse
Affiliation(s)
- Chenxiang Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Chuanwei Yao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Jianmin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yuntao Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Jiahui Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yucong Hong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Qinghui Ai,
| |
Collapse
|
38
|
Eum SY, Schurhoff N, Teglas T, Wolff G, Toborek M. Circadian disruption alters gut barrier integrity via a ß-catenin-MMP-related pathway. Mol Cell Biochem 2023; 478:581-595. [PMID: 35976519 PMCID: PMC9938043 DOI: 10.1007/s11010-022-04536-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
We evaluated the mechanistic link between circadian rhythms and gut barrier permeability. Mice were subjected to either constant 24-h light (LL) or 12-h light/dark cycles (LD). Mice housed in LL experienced a significant increase in gut barrier permeability that was associated with dysregulated ß-catenin expression and altered expression of tight junction (TJ) proteins. Silencing of ß-catenin resulted in disruption of barrier function in SW480 cells, with ß-catenin appearing to be an upstream regulator of the core circadian components, such as Bmal1, Clock, and Per1/2. In addition, ß-catenin silencing downregulated ZO-1 and occludin TJ proteins with only limited or no changes at their mRNA levels, suggesting post transcriptional regulation. Indeed, silencing of ß-catenin significantly upregulated expression of matrix metallopeptidase (MMP)-2 and MMP-9, and blocking MMP-2/9 activity attenuated epithelial disruption induced by ß-catenin silencing. These results indicate the regulatory role of circadian disruption on gut barrier integrity and the associations between TJ proteins and circadian rhythms, while demonstrating the regulatory role of ß-catenin in this process.
Collapse
Affiliation(s)
- Sung Yong Eum
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Gretchen Wolff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
- Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Centre Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
39
|
Kommineni N, Sainaga Jyothi VGS, Butreddy A, Raju S, Shapira T, Khan W, Angsantikul P, Domb AJ. SNAC for Enhanced Oral Bioavailability: An Updated Review. Pharm Res 2023; 40:633-650. [PMID: 36539668 DOI: 10.1007/s11095-022-03459-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The delivery of proteins and peptides via an oral route poses numerous challenges to improve the oral bioavailability and patient compliance. To overcome these challenges, as well as to improve the permeation of proteins and peptides via intestinal mucosa, several chemicals have been studied such as surfactants, fatty acids, bile salts, pH modifiers, and chelating agents, amongst these medium chain fatty acid like C10 (sodium caprate) and Sodium N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC) and its derivatives that have been well studied from a clinical perspective. This current review enumerates the challenges involved in protein and peptide delivery via the oral route, i.e., non-invasive routes of protein and peptide administration. This review also covers the chemistry behind SNAC and toxicity as well as mechanisms to enhance the oral delivery of clinically proven molecules like simaglutide and other small molecules under clinical development, as well as other permeation enhancers for efficient delivery of proteins and peptides.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research, Population Council, New York, NY, 10065, USA.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| | - Vaskuri G S Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS, 38677, USA
| | - Saka Raju
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Tovi Shapira
- School of Pharmacy and Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical Center, Ein Kerem Campus, 91120, Jerusalem, Israel
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
- Natco Research Centre, NATCO Pharma Limited, Hyderabad, 500018, India
| | - Pavimol Angsantikul
- Center for Biomedical Research, Population Council, New York, NY, 10065, USA
| | - Abraham J Domb
- School of Pharmacy and Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical Center, Ein Kerem Campus, 91120, Jerusalem, Israel.
| |
Collapse
|
40
|
Liu Y, Li P, Jiang T, Li Y, Wang Y, Cheng Z. Epidermal growth factor receptor in asthma: A promising therapeutic target? Respir Med 2023; 207:107117. [PMID: 36626942 DOI: 10.1016/j.rmed.2023.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Activation of the epidermal growth factor receptor (EGFR) pathway is involved in the pathogenesis of asthma. Although decades of intensive research have focused on the role of EGFR in asthma, the specific mechanisms and pathways of EGFR signaling remain unclear. Various reports have indicated that inhibition of EGFR improves the pathological features in asthma models. However, extending these experimental findings to clinical applications is difficult. Several measures can be adopted to promote clinical application of EGFR inhibitors. This review focuses on the role of EGFR in the pathogenesis of asthma and the development of a potentially novel therapeutic target for asthma.
Collapse
Affiliation(s)
- Ye Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tianci Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhe Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
41
|
Earley ZM, Lisicka W, Sifakis JJ, Aguirre-Gamboa R, Kowalczyk A, Barlow JT, Shaw DG, Discepolo V, Tan IL, Gona S, Ernest JD, Matzinger P, Barreiro LB, Morgun A, Bendelac A, Ismagilov RF, Shulzhenko N, Riesenfeld SJ, Jabri B. GATA4 controls regionalization of tissue immunity and commensal-driven immunopathology. Immunity 2023; 56:43-57.e10. [PMID: 36630917 PMCID: PMC10262782 DOI: 10.1016/j.immuni.2022.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023]
Abstract
There is growing recognition that regionalization of bacterial colonization and immunity along the intestinal tract has an important role in health and disease. Yet, the mechanisms underlying intestinal regionalization and its dysregulation in disease are not well understood. This study found that regional epithelial expression of the transcription factor GATA4 controls bacterial colonization and inflammatory tissue immunity in the proximal small intestine by regulating retinol metabolism and luminal IgA. Furthermore, in mice without jejunal GATA4 expression, the commensal segmented filamentous bacteria promoted pathogenic inflammatory immune responses that disrupted barrier function and increased mortality upon Citrobacter rodentium infection. In celiac disease patients, low GATA4 expression was associated with metabolic alterations, mucosal Actinobacillus, and increased IL-17 immunity. Taken together, these results reveal broad impacts of GATA4-regulated intestinal regionalization on bacterial colonization and tissue immunity, highlighting an elaborate interdependence of intestinal metabolism, immunity, and microbiota in homeostasis and disease.
Collapse
Affiliation(s)
- Zachary M Earley
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Wioletta Lisicka
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Joseph J Sifakis
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | | | - Anita Kowalczyk
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jacob T Barlow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dustin G Shaw
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Valentina Discepolo
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food Induced Diseases, University of Federico II, Naples, Italy
| | - Ineke L Tan
- Department of Gastroenterology and Hepatology, University of Groningen and University of Medical Center Groningen, Groningen, the Netherlands
| | - Saideep Gona
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Jordan D Ernest
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Polly Matzinger
- Ghost Lab, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Rustem F Ismagilov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Natalia Shulzhenko
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Samantha J Riesenfeld
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA; Department of Pediatrics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
42
|
López-Cauce B, Puerto M, García JJ, Ponce-Alonso M, Becerra-Aparicio F, del Campo R, Peligros I, Fernández-Aceñero MJ, Gómez-Navarro Y, Lara JM, Miranda-Bautista J, Marín-Jiménez I, Bañares R, Menchén L. Akkermansia deficiency and mucin depletion are implicated in intestinal barrier dysfunction as earlier event in the development of inflammation in interleukin-10-deficient mice. Front Microbiol 2023; 13:1083884. [PMID: 36699599 PMCID: PMC9869054 DOI: 10.3389/fmicb.2022.1083884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Dysbiosis and mucin depletion are related with intestinal barrier dysfunction and seems to be an early pathophysiological event in inflammatory bowel disease (IBD). The objective of this work is to study these parameters in the natural history of colitis in IL-10 deficient mice (IL-10-/-). METHODS Wild type (WT) and IL-10-/-. mice were followed until sacrifice at 3, 5, 10, 20, 57, and 70 weeks. Body weight, colonic weight/length ratio and in vivo intestinal permeability were registered. Expression of inflammatory and adhesion molecules in the colon was explored by qPCR as Mucin-2 (MUC-2) and molecules involved in goblet cell maturation Interleukin-18 (IL-18) and WAP Four-Disulfide Core Domain 2 (WFDC2), the endoplasmic reticulum stress markers X-box-binding protein (Xbp-1) and Reticulon-4B (RTN-4B). Bacterial composition in feces and colonic mucosa was determined by massive sequencing of the V3-V4 regions of 16S rDNA gene. RESULTS IL-10-/- mice showed histological inflammation at weeks 20 and 57, but most notably the intestinal permeability was significantly higher from week 10. Concordantly, the number of goblet cells and expression of MUC-2, IL-18, WFDC2 and Xbp-1 were significantly lower in KO from week 10. Nevertheless, no significant differences were found in the mRNA expression of MUC-2 or Xbp-1 between both groups-derived colon organoids. Significant bacterial differences began at week 5, being the Akkermansia deficiency in KO the most relevant result. CONCLUSION Gut microbiota alterations and mucin depletion are associated with early intestinal barrier dysfunction and precede overt gut inflammation in this animal model of IBD.
Collapse
Affiliation(s)
- Beatriz López-Cauce
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Departamento de Microbiología y Parasitología Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Marta Puerto
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Juan José García
- Departamento de Microbiología y Parasitología Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Manuel Ponce-Alonso
- Servicio de Microbiología, Hospital Ramón y Cajal, CIBERINFEC, IRYCIS, Madrid, Spain
| | | | - Rosa del Campo
- Servicio de Microbiología, Hospital Ramón y Cajal, CIBERINFEC, IRYCIS, Madrid, Spain
| | - Isabel Peligros
- Servicio de Anatomía Patológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Yésica Gómez-Navarro
- Servicio de Anatomía Patológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José M. Lara
- Servicio de Anatomía Patológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José Miranda-Bautista
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Ignacio Marín-Jiménez
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rafael Bañares
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
43
|
Agarwal S, Goswami P, Poudel S, Gunjan D, Singh N, Yadav R, Kumar U, Pandey G, Saraya A. Acute pancreatitis is characterized by generalized intestinal barrier dysfunction in early stage. Pancreatology 2023; 23:9-17. [PMID: 36509643 DOI: 10.1016/j.pan.2022.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS The role of intestinal-barrier in acute pancreatitis(AP) is poorly understood. We aimed to assess structural and functional changes in the intestinal-barrier in patients with early AP (time from onset<2 weeks) and the effect of enteral nutrition on them. METHODS In this prospective observational study, patients with early AP not on enteral nutrition were compared with controls for baseline intestinal-permeability(lactulose: mannitol ratio(L:M)), endotoxinemia(serum IgM/IgG anti-endotoxin antibodies), bacterial-translocation(serum bacterial 16S rRNA) and duodenal epithelial tight-junction structure by immunohistochemistry(IHC) for tight-junction proteins(claudin-2,-3,-4, zonula occludens-1(ZO1), junctional adhesion molecule(JAM) and occludin) and electron microscopy. These parameters were reassessed after 2 weeks enteral feeding in a AP patients subset. RESULTS 96 patients with AP(age: 38.0 ± 14.5 years; etiology: biliary[46.8%]/alcohol[39.6%]; severe:53.2%, mortality:11.4%) and 40 matched controls were recruited. Patients with AP had higher baseline intestinal permeability(median L:M 0.176(IQR 0.073-0.376) vs 0.049(0.024-0.075) in controls; p < 0.001) and more frequent bacteraemia(positive bacterial 16S rRNA in 24/48 AP vs 0/21 controls; p < 0.001) with trend towards higher serum endotoxinemia(median IgG anti-endotoxin 78(51.2-171.6) GMU/ml vs 51.2(26.16-79.2) in controls; p = 0.061). Claudin-2, claudin-3, ZO1 were downregulated in both duodenal crypts and villi while claudin-4 and JAM were downregulated in duodenal villi and crypts respectively. 22 AP patients reassessed after initiation of enteral nutrition showed trend towards improving intestinal permeability, serum endotoxinemia and bacteraemia, with significant improvement in claudin-2,-3 in duodenal villi. CONCLUSION Patients with AP have significant disturbances in intestinal barrier structure and function in first 2 weeks from onset that persist despite institution of enteral nutrition.
Collapse
Affiliation(s)
- Samagra Agarwal
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Pooja Goswami
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Shekhar Poudel
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Gunjan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Namrata Singh
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Umesh Kumar
- Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Gaurav Pandey
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
44
|
Qi X, Chen H, Guan K, Sun Y, Wang R, Ma Y. Identification, inhibitory mechanism and transepithelial transport of xanthine oxidase inhibitory peptides from whey protein after simulated gastrointestinal digestion and intestinal absorption. Food Res Int 2022; 162:111959. [DOI: 10.1016/j.foodres.2022.111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/02/2022] [Accepted: 09/18/2022] [Indexed: 11/04/2022]
|
45
|
Liu MX, Li T, Wang WG, Guo J, Wang RR, He HP, Li SQ, Li YP. Regulatory effect of isovitexin on MAPK/NF- κB signal in mice with acute ulcerative colitis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022:1-18. [PMID: 36394271 DOI: 10.1080/10286020.2022.2142121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the anti-inflammatory effects and mechanism of isovitexin on ulcerative colitis mice and RAW264.7 cells. The results showed that isovitexin had strong antioxidant and anti-inflammatory effects, and could restore intestinal barrier integrity (p < 0.01). In addition, isovitexin inhibited the expression of MyD88, TLR4 and NF-κB p65 proteins. At the same time, isovitexin can inhibit the activation of MAPK/NF-κB signaling pathway in RAW264.7 cells. In conclusion, isovitexin has a protective effect on UC mice, and its improvement mechanism of UC might be related to MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ming-Xiu Liu
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Ting Li
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Wei-Guang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Jing Guo
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Rui-Rui Wang
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Hong-Ping He
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Shu-Quan Li
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yan-Ping Li
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
46
|
Maruyama M, Nishida Y, Tanaka H, Minami T, Ogawara KI, Miyake M, Takamura Y, Kakuta H, Higaki K. Analysis of absorption-enhancing mechanisms for combinatorial use of spermine with sodium taurocholate in Caco-2 cells. Eur J Pharm Biopharm 2022; 180:332-343. [PMID: 36307000 DOI: 10.1016/j.ejpb.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022]
|
47
|
Cui C, Wu C, Wang J, Ma Z, Zheng X, Zhu P, Wang N, Zhu Y, Guan W, Chen F. Restored intestinal integrity, nutrients transporters, energy metabolism, antioxidative capacity and decreased harmful microbiota were associated with IUGR piglet's catch-up growth before weanling. J Anim Sci Biotechnol 2022; 13:129. [PMID: 36229888 PMCID: PMC9564052 DOI: 10.1186/s40104-022-00770-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is a major inducer of higher morbidity and mortality in the pig industry and catch-up growth (CUG) before weanling could significantly restore this negative influence. But there was limited knowledge about the underlying mechanism of CUG occurrence. METHODS Eighty litters of newborn piglets were divided into normal birth weight (NBW) and IUGR groups according to birth weight. At 26 d, those piglets with IUGR but over average body weight of eighty litters of weaned piglets were considered as CUG, and the piglets with IUGR still below average body weight were considered as NCUG. This study was conducted to systemically compare the intestinal difference among NBW, CUG and NCUG weaned piglets considering the crucial role of the intestine for piglet growth. RESULTS The results indicated that the mRNA expression of nutrients (amino acids, glucose, and fatty acids) transporters, and mitochondrial electron transport chain (ETC) I were upregulated in CUG piglets' gut with improved morphology compared with those NCUG, as well as the ratio of P-AMPK/AMPK protein expression which is the indicator of energy metabolism. Meanwhile, CUG piglet's gut showed higher antioxidative capacity with increased SOD and GSH-Px activity, decreased MDA levels, as well as higher mRNA expressions of Nrf2, Keap1, SOD, and GSH-Px. Furthermore, inflammatory parameters including TNF-α, IL-1β, IL-6, and IL-12 factors, and the activation of MAPK and NF-κB signaling pathways were significantly elevated in the NCUG intestine, while the protein expression of ZO-1, Occludin and Claudin-1 was reduced. The alpha diversity of fecal microbiota was higher in CUG piglets in contrast with NCUG piglets, and the increased beneficial bacteria and decreased pathogenic bacteria was also observed in CUG piglets. CONCLUSIONS CUG piglet's intestine showed comprehensive restoration including higher nutrients transport, energy metabolism, antioxidant capacity, and intestinal physical barrier, while lower oxidative stress, inflammatory response, and pathogenic microbiota.
Collapse
Affiliation(s)
- Chang Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Caichi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ziwei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Pengwei Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Nuan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuhua Zhu
- Shenzhen Kingsino Technology CO., LTD, Shenzhen, 518107, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
48
|
Effects of Different Routes and Forms of Vitamin D Administration on Mesenteric Lymph Node CD4+ T Cell Polarization and Intestinal Injury in Obese Mice Complicated with Polymicrobial Sepsis. Nutrients 2022; 14:nu14173557. [PMID: 36079813 PMCID: PMC9460651 DOI: 10.3390/nu14173557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
This study compared the efficacies of enteral cholecalciferol and/or intravenous (IV) calcitriol administration on mesenteric lymph node (MLN) cluster-of-differentiation-4-positive (CD4+) T cell distribution and intestinal barrier damage in obese mice complicated with sepsis. Mice were fed a high-fat diet for 16 weeks and then sepsis was induced by cecal ligation and puncture (CLP). Mice were divided into the following sepsis groups: without vitamin D (VD) (S); with oral cholecalciferol 1 day before CLP (G); with IV calcitriol 1 h after CLP (V); and with both cholecalciferol before and IV calcitriol after CLP (GV). All mice were sacrificed at 12 or 24 h after CLP. The findings show that the S group had a higher T helper (Th)17 percentage than the VD-treated groups at 12 h after CLP. The V group exhibited a higher Th1 percentage and Th1/Th2 ratio than the other groups at 24 h, whereas the V and GV groups had a lower Th17/regulatory T (Treg) ratio 12 h post-CLP in MLNs. In ileum tissues, the VD-treated groups had higher tight junction protein and cathelicidin levels, and higher mucin gene expression than the S group at 24 h post-CLP. Also, aryl hydrocarbon receptor (AhR) and its associated cytochrome P450 1A1 and interleukin 22 gene expressions were upregulated. In contrast, levels of lipid peroxides and inflammatory mediators in ileum tissues were lower in the groups with VD treatment after CLP. These results suggest that IV calcitriol seemed to have a more-pronounced effect on modulating the homeostasis of Th/Treg subsets in MLNs. Both oral cholecalciferol before and IV calcitriol after CLP promoted cathelicidin secretion, alleviated intestinal inflammation, and ameliorated the epithelial integrity in obese mice complicated with sepsis possibly via VD receptor and AhR signaling pathways.
Collapse
|
49
|
Mannose ameliorates experimental colitis by protecting intestinal barrier integrity. Nat Commun 2022; 13:4804. [PMID: 35974017 PMCID: PMC9381535 DOI: 10.1038/s41467-022-32505-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolite alteration has been associated with the pathogenesis of inflammatory bowel disease (IBD), including colitis. Mannose, a natural bioactive monosaccharide that is involved in metabolism and synthesis of glycoproteins, exhibits anti-inflammatory and anti-oxidative activities. We show here that the circulating level of mannose is increased in patients with IBD and mice with experimental colitis. Mannose treatment attenuates intestinal barrier damage in two mouse colitis models, dextran sodium sulfate (DSS)-induced colitis and spontaneous colitis in IL-10-deficient mice. We demonstrate that mannose treatment enhanced lysosomal integrity and limited the release of cathepsin B, preventing mitochondrial dysfunction and myosin light chain kinase (MLCK)-induced tight junction disruption in the context of intestinal epithelial damage. Mannose exerts a synergistic therapeutic effect with mesalamine on mouse colitis. Cumulatively, the results indicate that mannose supplementation may be an optional approach to the treatment of colitis and other diseases associated with intestinal barrier dysfunction.
Collapse
|
50
|
The Chinese Herbal Formula Huoxiang Zhengqi Dropping Pills Prevents Acute Intestinal Injury Induced by Heatstroke by Increasing the Expression of Claudin-3 in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9230341. [PMID: 35958934 PMCID: PMC9357687 DOI: 10.1155/2022/9230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Intestinal injury has been regarded as an important causative factor for systemic inflammation during heatstroke, and maintaining intestinal integrity has been a potential target for the prevention of HS. Huoxiang Zhengqi Dropping Pills (HZPD) is a modern preparation of Huoxiang Zhengqi and widely used to prevent HS. The present study aims to explore the protective effect of HZDP on intestinal injury during heatstroke and analyze its potential pharmacodynamic basis. Male rats in the control and HS groups were given normal saline, and those in the HZDP groups were given HZDP (0.23, 0.46, and 0.92 g/kg) before induction of HS. Serum contents of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), intestinal fatty acid-binding protein (iFABP), and diamine oxidase (DAO) were determined using ELISA. Histopathology of intestinal injury was observed following H&E staining. The expression of claudin-3 was determined using western blot, immunohistochemistry, and immunofluorescence techniques. Moreover, network pharmacological tools were used to analyze the potential pharmacodynamic basis and the mechanism of HZDP. Treatment with HZDP significantly prolonged the time to reach Tc. Compared with the control group, the contents of TNF-α, IL-6, iFABP, and DAO in HS rats increased markedly. HZDP treatments reduced these levels significantly, and the effects in the middle dose group (0.46 g/kg) were most obvious. HZDP also attenuated intestinal injury and significantly reversed the decrease in claudin-3 expression. Bioinformatics analysis suggested that 35 active ingredients and 128 target genes of HZDP were screened from TCMSP and 93 target genes intersected with heatstroke target genes, which were considered potential therapeutic targets. TNF-α and IL-6 were the main inflammatory target genes of HZDP correlated with HS. These results indicated that HZDP effectively protected intestinal barrier function and prevented acute intestinal injury by increasing the expression of claudin-3 in rats, eventually improving heat resistance.
Collapse
|