1
|
Padilla S, Andreo M, Marco P, Marco-Rico A, Ledesma C, Fernández-González M, García-Abellán J, Mascarell P, Botella Á, Gutiérrez F, Masiá M. Enhanced prediction of thrombotic events in hospitalized COVID-19 patients with soluble thrombomodulin. PLoS One 2025; 20:e0319666. [PMID: 40106444 PMCID: PMC11922281 DOI: 10.1371/journal.pone.0319666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/06/2025] [Indexed: 03/22/2025] Open
Abstract
We aimed to determine the predictive accuracy of elevated soluble thrombomodulin (sTM) and angiopoietin-2 (Ang2) for thrombotic events (TE) in hospitalized COVID-19 patients. We conducted a nested case-control study within a cohort of people admitted to hospital with COVID-19 from March 2020 to August 2022. The cases (people with TE within 28 days after hospital admission) were matched by propensity score to comparable patients without TE. We determined plasma levels of sTM and Ang2 in all available frozen samples, prioritizing the earliest post-admission samples, using an automated immunoassay technique. Among 2,524 hospitalized COVID-19 patients (43% females; median age 67 years), 73 had TE (incidence 1.15 events per 1000 patient-days of follow-up). Frozen plasma samples were available for 43 cases and 176 controls. Elevated plasma concentration of sTM was significantly associated with TE (2.8 [1.8, 4] vs. 1.52 [1.1, 2.65] ng/mL; p = 0.001) and mortality (median [Q1, Q3], 3.32 [2.16, 4.65] vs. 1.58 [1.11, 2.73] ng/mL; p = 0.001), while D-dimer showed a specific association with TE (2.3 [0.8, 7.4] vs. 0.75 [0.4, 1.6] mcg/mL; p = 0.001). In contrast, Ang2 was not associated with any of these events. The association with thrombotic events remained in adjusted models (HR [95%CI] per unit increase, 1.24 [1.04-1.47] for sTM; 1.07 [1.03-1.10] for D-dimer). The adjusted regression model that included both biomarkers, sTM and D-dimer, improved (AUC 73%, sensitivity 77% and specificity 65% for TE diagnosis; p = 0.007) the predictive capacity of the same model without sTM. In conclusion, determination of soluble thrombomodulin along with D-dimer enhances thrombotic risk assessment in hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Sergio Padilla
- Infectious Diseases Unit and Department of Clinical Medicine, Hospital General Universitario and Universidad Miguel Hernández de Elche, Alicante, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC; Biomedical Research Networking Center for Infectious Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - María Andreo
- Internal Medicine Service and Department of Clinical Medicine, Hospital General Universitario and Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Pascual Marco
- Hematology Department, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Ana Marco-Rico
- Hematology Department, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Christian Ledesma
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
| | - Marta Fernández-González
- CIBER de Enfermedades Infecciosas (CIBERINFEC; Biomedical Research Networking Center for Infectious Diseases), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
| | - Javier García-Abellán
- Infectious Diseases Unit and Department of Clinical Medicine, Hospital General Universitario and Universidad Miguel Hernández de Elche, Alicante, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC; Biomedical Research Networking Center for Infectious Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Mascarell
- Infectious Diseases Unit and Department of Clinical Medicine, Hospital General Universitario and Universidad Miguel Hernández de Elche, Alicante, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC; Biomedical Research Networking Center for Infectious Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángela Botella
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
| | - Félix Gutiérrez
- Infectious Diseases Unit and Department of Clinical Medicine, Hospital General Universitario and Universidad Miguel Hernández de Elche, Alicante, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC; Biomedical Research Networking Center for Infectious Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Masiá
- Infectious Diseases Unit and Department of Clinical Medicine, Hospital General Universitario and Universidad Miguel Hernández de Elche, Alicante, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC; Biomedical Research Networking Center for Infectious Diseases), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Wang T, Wang ZB, Jiang CM, Zhao Y, Tang L, Xiao XM, Fu J. Oroxylin A inhibits inflammatory cytokines in periodontitis via HO‑1. Mol Med Rep 2024; 30:126. [PMID: 38785151 PMCID: PMC11134221 DOI: 10.3892/mmr.2024.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/06/2024] [Indexed: 05/25/2024] Open
Abstract
Periodontal disease is a common infectious disease that can lead to the loss of teeth. Hower how to effectively suppress the inflammation with medication is unclear. The aim of the present study was to investigate the anti‑inflammatory effect of Oroxylin A in periodontitis and its potential role through heme oxygenase‑1 (HO‑1). Primary rat gingival fibroblasts (RGFs) were cultured using the tissue block method and identified by immunofluorescence. Following lipopolysaccharide (LPS) stimulation of RGFs, Oroxylin A was administered at 50, 100, 200 or 400 µg/ml. Reverse transcription‑quantitative PCR was used to assess mRNA expression of cyclooxygenase (COX)‑2, TNF‑α, RANKL and osteoprotegerin (OPG). Western blotting was used to detect protein expression levels of COX ‑2, TNF‑α, RANKL and OPG. Following HO‑1 knockdown, the same treatment was performed. The expression of COX‑2 in rat gingival tissue was observed by immunohistochemistry. One‑way analysis of variance and Student's t test were used for statistical analysis. Oroxylin A downregulated mRNA expression of COX‑2, TNF‑α, RANKL and OPG in LPS‑induced RGFs. With increase of Oroxylin A dose, the expression of HO‑1 was gradually upregulated. When HO‑1 was knocked down, Oroxylin A did not downregulate the expression of COX‑2, TNF‑α, RANKL and OPG in LPS‑induced RGFs. Immunohistochemical results showed that expression of COX‑2 was downregulated by Oroxylin A, and the expression of TNF‑α, RANKL and OPG were also downregulated. Oroxylin A decreased expression of inflammatory cytokines in LPS‑induced RGFs and had a good inhibitory effect on periodontitis in rats.
Collapse
Affiliation(s)
- Ting Wang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhao-Bo Wang
- Department of Medical Imaging, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital) Qingdao, Shandong 266003, P.R. China
| | - Chun-Miao Jiang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yang Zhao
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Li Tang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xi-Mei Xiao
- Department of Endodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jing Fu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
3
|
Ibrahim NA, Buabeid MA, Shaimaa Arafa E, Elmorshedy KE. Zinc's protective role against hydroxychloroquine-induced cardiac effects in adult male albino rats. Saudi J Biol Sci 2023; 30:103733. [PMID: 37521750 PMCID: PMC10374629 DOI: 10.1016/j.sjbs.2023.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Background Long exposure to Hydroxychloroquine (HCQ) has been complicated by some dangerous though infrequent cardiotoxicity. Methods A total of 40 normal adult male albino rats dispersed into 4 groups were used. Group 1 (Control group), Group II (HCQ treated group), Group III (zinc [Zn]-treated group), and Group IV (HCQ and Zn treated group). Once the experimentation ended, rats were sacrificed and cardiac soft tissue sections were processed twenty-four hours at the end of the experiment for histological study. Results Cardiac-stained sections revealed that HCQ induced widespread necrosis, dilatation, and vacuolar degeneration. However, the combination of HCQ with Zn ameliorated these damaging effects. Cardiac enzyme parameters were also studied in the 4 groups and revealed CK-MB and troponin were considerably elevated in groups II associated to the control group. Conclusion It was concluded that Zn revealed a protective role against HCQ cardiomyopathy in adult male albino rats. This might signify an appreciated means for Zn-based treatment in the upcoming subsequent clinical records to adjust doses and guarantee patient safeguard.
Collapse
Affiliation(s)
- Nihal A. Ibrahim
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, UAE
- Centre of Medical and Bio-allied Health Sciences Research (CMBAHSR), Ajman University, Ajman, UAE
| | | | - El Shaimaa Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, UAE
- Centre of Medical and Bio-allied Health Sciences Research (CMBAHSR), Ajman University, Ajman, UAE
| | | |
Collapse
|
4
|
Ding J, Song B, Xie X, Li X, Chen Z, Wang Z, Pan L, Lan D, Meng R. Inflammation in Cerebral Venous Thrombosis. Front Immunol 2022; 13:833490. [PMID: 35444662 PMCID: PMC9013750 DOI: 10.3389/fimmu.2022.833490] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/28/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral venous thrombosis (CVT) is a rare form of cerebrovascular disease that impairs people's wellbeing and quality of life. Inflammation is considered to play an important role in CVT initiation and progression. Several studies have reported the important role of leukocytes, proinflammatory cytokines, and adherence molecules in the CVT-related inflammatory process. Moreover, inflammatory factors exacerbate CVT-induced brain tissue injury leading to poor prognosis. Based on clinical observations, emerging evidence shows that peripheral blood inflammatory biomarkers-especially neutrophil-to-lymphocyte ratio (NLR) and lymphocyte count-are correlated with CVT [mean difference (MD) (95%CI), 0.74 (0.11, 1.38), p = 0.02 and -0.29 (-0.51, -0.06), p = 0.01, respectively]. Moreover, increased NLR and systemic immune-inflammation index (SII) portend poor patient outcomes. Evidence accumulated since the outbreak of coronavirus disease-19 (COVID-19) indicates that COVID-19 infection and COVID-19 vaccine can induce CVT through inflammatory reactions. Given the poor understanding of the association between inflammation and CVT, many conundrums remain unsolved. Further investigations are needed to elucidate the exact relationship between inflammation and CVT in the future.
Collapse
Affiliation(s)
- Jiayue Ding
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Baoying Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiran Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xaingyu Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhiying Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhongao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Duo Lan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
5
|
Vargas-Rodriguez JR, Garza-Veloz I, Flores-Morales V, Badillo-Almaraz JI, Rocha-Pizaña MR, Valdés-Aguayo JJ, Martinez-Fierro ML. Hyperglycemia and Angiotensin-Converting Enzyme 2 in Pulmonary Function in the Context of SARS-CoV-2 Infection. Front Med (Lausanne) 2022; 8:758414. [PMID: 35096863 PMCID: PMC8792738 DOI: 10.3389/fmed.2021.758414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 01/18/2023] Open
Abstract
Since the appearance of the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 in China, diabetes mellitus (DM) and hyperglycemia in patients infected with SARS-CoV, represent independent predictors of mortality. Therefore, metabolic control has played a major role in the prognosis of these patients. In the current pandemic of coronavirus disease 19 (COVID-19), multiple studies have shown that DM is one of the main comorbidities associated with COVID-19 and higher risk of complications and death. The incidence and prevalence of COVID-19 complications and death related with hyperglycemia in patients with or without DM are high. There are many hypotheses related with worse prognosis and death related to COVID-19 and/or hyperglycemia. However, the information about the interplay between hyperglycemia and angiotensin-converting enzyme 2 (ACE2), the critical receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in the context of SARS-CoV-2 infection, is almost null, but there is enough information to consider the possible participation of hyperglycemia in the glycation of this protein, unleashing a pool of reactions leading to acute respiratory distress syndrome and death in patients with COVID-19. In this document we investigated the current evidence related with ACE2 as a key element within the pathophysiological mechanism related with hyperglycemia extrapolating it to context of SARS-CoV-2 infection and its relationship with worse prognosis and death for COVID-19.
Collapse
Affiliation(s)
- Jose R Vargas-Rodriguez
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ Siglo XXI, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ Siglo XXI, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Virginia Flores-Morales
- Laboratorio de Sintesis Asimetrica y Bioenergetica, Ingenieria Quimica, Unidad Academica de Ciencias Quimicas, Campus UAZ Siglo XXI, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Jose I Badillo-Almaraz
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ Siglo XXI, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Maria R Rocha-Pizaña
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey Campus Puebla, Puebla, Mexico
| | - José J Valdés-Aguayo
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ Siglo XXI, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ Siglo XXI, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
6
|
Pillet S, Arunachalam PS, Andreani G, Golden N, Fontenot J, Aye PP, Röltgen K, Lehmicke G, Gobeil P, Dubé C, Trépanier S, Charland N, D'Aoust MA, Russell-Lodrigue K, Monjure C, Blair RV, Boyd SD, Bohm RP, Rappaport J, Villinger F, Landry N, Pulendran B, Ward BJ. Safety, immunogenicity, and protection provided by unadjuvanted and adjuvanted formulations of a recombinant plant-derived virus-like particle vaccine candidate for COVID-19 in nonhuman primates. Cell Mol Immunol 2022; 19:222-233. [PMID: 34983950 PMCID: PMC8727235 DOI: 10.1038/s41423-021-00809-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Although antivirals are important tools to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, effective vaccines are essential to control the current coronavirus disease 2019 (COVID-19) pandemic. Plant-derived virus-like particle (VLP) vaccine candidates have previously demonstrated immunogenicity and efficacy against influenza. Here, we report the immunogenicity and protection induced in rhesus macaques by intramuscular injections of a VLP bearing a SARS-CoV-2 spike protein (CoVLP) vaccine candidate formulated with or without Adjuvant System 03 (AS03) or cytidine-phospho-guanosine (CpG) 1018. Although a single dose of the unadjuvanted CoVLP vaccine candidate stimulated humoral and cell-mediated immune responses, booster immunization (at 28 days after priming) and adjuvant administration significantly improved both responses, with higher immunogenicity and protection provided by the AS03-adjuvanted CoVLP. Fifteen micrograms of CoVLP adjuvanted with AS03 induced a polyfunctional interleukin-2 (IL-2)-driven response and IL-4 expression in CD4 T cells. Animals were challenged by multiple routes (i.e., intratracheal, intranasal, and ocular) with a total viral dose of 106 plaque-forming units of SARS-CoV-2. Lower viral replication in nasal swabs and bronchoalveolar lavage fluid (BALF) as well as fewer SARS-CoV-2-infected cells and immune cell infiltrates in the lungs concomitant with reduced levels of proinflammatory cytokines and chemotactic factors in the BALF were observed in animals immunized with the CoVLP adjuvanted with AS03. No clinical, pathologic, or virologic evidence of vaccine-associated enhanced disease was observed in vaccinated animals. The CoVLP adjuvanted with AS03 was therefore selected for vaccine development and clinical trials.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/adverse effects
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/epidemiology
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/adverse effects
- Disease Models, Animal
- Drug Combinations
- Drug Compounding/methods
- Immunity, Humoral
- Immunogenicity, Vaccine/immunology
- Macaca mulatta
- Male
- Pandemics/prevention & control
- Polysorbates/administration & dosage
- Polysorbates/adverse effects
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Squalene/administration & dosage
- Squalene/adverse effects
- Nicotiana/metabolism
- Treatment Outcome
- Vaccination/methods
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/adverse effects
- alpha-Tocopherol/administration & dosage
- alpha-Tocopherol/adverse effects
Collapse
Affiliation(s)
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Nadia Golden
- Tulane National Primate Research Center, Covington, LA, USA
| | - Jane Fontenot
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | | | - Katharina Röltgen
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | - Robert V Blair
- Tulane National Primate Research Center, Covington, LA, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Rudolf P Bohm
- Tulane National Primate Research Center, Covington, LA, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - François Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | | | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Brian J Ward
- Medicago Inc., Québec, QC, Canada.
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
7
|
Wade H, Duan Q, Su Q. Interaction between Sars-CoV-2 structural proteins and host cellular receptors: From basic mechanisms to clinical perspectives. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:243-277. [PMID: 36088078 PMCID: PMC9182089 DOI: 10.1016/bs.apcsb.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) has caused a global pandemic that has affected the lives of billions of individuals. Sars-CoV-2 primarily infects human cells by binding of the viral spike protein to angiotensin-converting enzyme 2 (ACE2). In addition, novel means of viral entry are currently being investigated, including Neuropillin 1, toll-like receptors (TLRs), cluster of differentiation 147 (CD147), and integrin α5β1. Enriched expression of these proteins across metabolic regulatory organs/tissues, including the circulatory system, liver, pancreas, and intestine contributes to major clinical complications among COVID-19 patients, particularly the development of hypertension, myocardial injury, arrhythmia, acute coronary syndrome and increased coagulation in the circulatory system during and post-infection. Pre-existing metabolic disease, such as cardiovascular disease, obesity, diabetes, and non-alcoholic fatty liver disease, is associated with increased risk of hospitalization, persistent post-infection complications and worse outcomes in patients with COVID-19. This review overviews the biological features of Sars-CoV-2, highlights recent findings that delineate the pathological mechanisms of COVID-19 and the consequent clinical diseases.
Collapse
|
8
|
Pandemics of the 21st Century: The Risk Factor for Obese People. Viruses 2021; 14:v14010025. [PMID: 35062229 PMCID: PMC8779521 DOI: 10.3390/v14010025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
The number of obese adults and children is increasing worldwide, with obesity now being a global epidemic. Around 2.8 million people die annually from clinical overweight or obesity. Obesity is associated with numerous comorbid conditions including hypertension, cardiovascular disease, type 2 diabetes, hypercholesterolemia, hypertriglyceridemia, nonalcoholic fatty liver disease, and cancer, and even the development of severe disease after infection with viruses. Over the past twenty years, a number of new viruses has emerged and entered the human population. Moreover, influenza (H1N1)pdm09 virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused pandemics. During pandemics, the number of obese patients presents challenging and complex issues in medical and surgical intensive care units. Morbidity amongst obese individuals is directly proportional to body mass index. In this review, we describe the impact of obesity on the immune system, adult mortality, and immune response after infection with pandemic influenza virus and SARS-CoV-2. Finally, we address the effect of obesity on vaccination.
Collapse
|
9
|
Steadman E, Fandaros M, Yin W. SARS-CoV-2 and Plasma Hypercoagulability. Cell Mol Bioeng 2021; 14:513-522. [PMID: 34221178 PMCID: PMC8238024 DOI: 10.1007/s12195-021-00685-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Hypercoagulability has emerged as a prominent consequence of COVID-19. This presents challenges not only in the clinic, but also in thrombosis research. Health and safety considerations, the status of the blood and plasma supply, the infection status of individual donors, and the mechanisms by which SARS-CoV-2 activates coagulation are all of concern. In this review, we discuss these topics from the basic research perspective. As in other respiratory illnesses, blood and plasma from COVID-19 positive patients carries minimal to no risk of infection to practitioners or researchers. There are currently no special regulatory mandates directing individual donors (for research purposes), blood centers/services or vendors (for blood products for research) to test blood/plasma for SARS-CoV-2 or antibodies. We discuss current theories about how SARS-CoV-2 leads to hyper-coagulant state in severe cases of COVID-19. Our current understanding of the mechanisms behind COVID-19 associated thromboembolic events have centered around three different pathways: (1) direct activation of platelets, enhancing coagulation; (2) direct infection and indirect activation (e.g. cytokine storm) of endothelial cells by SARS-CoV-2, shifting endothelium from an anti-thrombotic to a pro-thrombotic state; and (3) direct activation of complement pathways, promoting thrombin generation. Further investigation on how SARS-CoV-2 affects thrombosis in COVID-19 patients may bring novel anti-thrombotic therapies to combat the disease.
Collapse
Affiliation(s)
- Elisabeth Steadman
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, Stony Brook, NY 11794 USA
| | - Marina Fandaros
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, Stony Brook, NY 11794 USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, Stony Brook, NY 11794 USA
| |
Collapse
|
10
|
Ghosh R, Roy D, Mandal A, Pal SK, Chandra Swaika B, Naga D, Pandit A, Ray BK, Benito-León J. Cerebral venous thrombosis in COVID-19. Diabetes Metab Syndr 2021; 15:1039-1045. [PMID: 34015627 PMCID: PMC8128714 DOI: 10.1016/j.dsx.2021.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Initially, novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) was considered primarily a respiratory pathogen. However, with time it has behaved as a virus with the potential to cause multi-system involvement, including neurological manifestations. Cerebral venous sinus thrombosis (CVT) has increasingly been reported in association with coronavirus infectious disease of 2019 (COVID-19). Here, we have shed light upon CVT and its possible mechanisms in the backdrop of the ongoing COVID-19 pandemic. METHODS In this review, data were collected from PubMed, EMBASE and Web of Science, until March 30, 2021, using pre-specified searching strategies. The search strategy consisted of a variation of keywords of relevant medical subject headings and keywords, including "COVID-19", "SARS-CoV-2", "coronavirus", and "cerebral venous sinus thrombosis". RESULTS COVID-19 has a causal association with a plethora of neurological, neuropsychiatric and psychological effects. CVT has gained particular importance in this regard. The known hypercoagulable state in SARS-CoV-2 infection is thought to be the main mechanism in COVID-19 related CVT. Other plausible mechanisms may include vascular endothelial dysfunction and altered flow dynamics. CONCLUSIONS Although there are no specific clinical characteristics, insidious or acute onset headache, seizures, stroke-like, or encephalopathy symptoms in a patient with, or who has suffered COVID-19, should prompt the attending physician to investigate for CVT. The treatment of COVID-19 associated CVT does not differ radically from the therapy of CVT without the infection, i.e. urgent initiation of parenteral unfractionated heparin or low molecular weight heparin followed by conventional or mostly newer oral anticoagulants.
Collapse
Affiliation(s)
- Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College and Hospital, Burdwan, West Bengal, India
| | - Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Arpan Mandal
- Department of General Medicine, Burdwan Medical College and Hospital, Burdwan, West Bengal, India
| | - Shyamal Kanti Pal
- Department of General Medicine, Burdwan Medical College and Hospital, Burdwan, West Bengal, India
| | - Bikash Chandra Swaika
- Department of General Medicine, Burdwan Medical College and Hospital, Burdwan, West Bengal, India
| | - Dinabandhu Naga
- Department of General Medicine, Burdwan Medical College and Hospital, Burdwan, West Bengal, India
| | - Alak Pandit
- Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Biman Kanti Ray
- Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Julián Benito-León
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
11
|
Choudhary S, Sreenivasulu K, Mitra P, Misra S, Sharma P. Role of Genetic Variants and Gene Expression in the Susceptibility and Severity of COVID-19. Ann Lab Med 2021; 41:129-138. [PMID: 33063674 PMCID: PMC7591285 DOI: 10.3343/alm.2021.41.2.129] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023] Open
Abstract
Since its first report in December 2019, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly emerged as a pandemic affecting nearly all countries worldwide. As the COVID-19 pandemic progresses, the need to identify genetic risk factors for susceptibility to this serious illness has emerged. Host genetic factors, along with other risk factors may help determine susceptibility to respiratory tract infections. It is hypothesized that the ACE2 gene, encoding angiotensin-converting enzyme 2 (ACE2), is a genetic risk factor for SARS-CoV-2 infection and is required by the virus to enter cells. Together with ACE2, transmembrane protease serine 2 (TMPRSS2) and dipeptidyl peptidase-4 (DPP4) also play an important role in disease severity. Evaluating the role of genetic variants in determining the direction of respiratory infections will help identify potential drug target candidates for further study in COVID-19 patients. We have summarized the latest reports demonstrating that ACE2 variants, their expression, and epigenetic factors may influence an individual's susceptibility to SARS-CoV-2 infection and disease outcome.
Collapse
Affiliation(s)
- Sarita Choudhary
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Karli Sreenivasulu
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
12
|
Iwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K, Ma D. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Inflammation 2021; 44:13-34. [PMID: 33029758 PMCID: PMC7541099 DOI: 10.1007/s10753-020-01337-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023]
Abstract
The widespread occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a pandemic of coronavirus disease 2019 (COVID-19). The S spike protein of SARS-CoV-2 binds with angiotensin-converting enzyme 2 (ACE2) as a functional "receptor" and then enters into host cells to replicate and damage host cells and organs. ACE2 plays a pivotal role in the inflammation, and its downregulation may aggravate COVID-19 via the renin-angiotensin system, including by promoting pathological changes in lung injury and involving inflammatory responses. Severe patients of COVID-19 often develop acute respiratory distress syndrome and multiple organ dysfunction/failure with high mortality that may be closely related to the hyper-proinflammatory status called the "cytokine storm." Massive cytokines including interleukin-6, nuclear factor kappa B (NFκB), and tumor necrosis factor alpha (TNFα) released from SARS-CoV-2-infected macrophages and monocytes lead inflammation-derived injurious cascades causing multi-organ injury/failure. This review summarizes the current evidence and understanding of the underlying mechanisms of SARS-CoV-2, ACE2 and inflammation co-mediated multi-organ injury or failure in COVID-19 patients.
Collapse
Affiliation(s)
- Masae Iwasaki
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Junichi Saito
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| |
Collapse
|
13
|
Chen W, Pan JY. Anatomical and Pathological Observation and Analysis of SARS and COVID-19: Microthrombosis Is the Main Cause of Death. Biol Proced Online 2021; 23:4. [PMID: 33472576 PMCID: PMC7816139 DOI: 10.1186/s12575-021-00142-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The spread of the coronavirus (SARS-CoV-2, COVID-19 for short) has caused a large number of deaths around the world. We summarized the data reported in the past few months and emphasized that the main causes of death of COVID-19 patients are DAD (Diffuse Alveolar Damage) and DIC (Disseminated intravascular coagulation). Microthrombosis is a prominent clinical feature of COVID-19, and 91.3% of dead patients had microthrombosis.Endothelial damage caused by SARS-CoV-2 cell invasion and subsequent host response disorders involving inflammation and coagulation pathways play a key role in the progression of severe COVID-19. Microvascular thrombosis may lead to microcirculation disorders and multiple organ failure lead to death.The characteristic pathological changes of DAD include alveolar epithelial and vascular endothelial injury, increased alveolar membrane permeability, large numbers of neutrophil infiltration, alveolar hyaline membrane formation, and hypoxemia and respiratory distress as the main clinical manifestations. DAD leads to ARDS in COVID-19 patients. DIC is a syndrome characterized by the activation of systemic intravascular coagulation, which leads to extensive fibrin deposition in the blood. Its occurrence and development begin with the expression of tissue factor and interact with physiological anticoagulation pathways. The down-regulation of fibrin and the impaired fibrinolysis together lead to extensive fibrin deposition.DIC is described as a decrease in the number of platelets and an increase in fibrin degradation products, such as D-dimer and low fibrinogen. The formation of microthrombus leads to the disturbance of microcirculation, which in turn leads to the death of the patient. However, the best prevention and treatment of COVID-19 microthrombosis is still uncertain.This review discusses the latest findings of basic and clinical research on COVID-19-related microthrombosis, and then we proposed the theory of microcirculation perfusion bundle therapy to explore effective methods for preventing and treating COVID-19-related microthrombosis. Further research is urgently needed to clarify how SARS-CoV-2 infection causes thrombotic complications, and how it affects the course and severity of the disease. To cultivate a more comprehensive understanding of the underlying mechanism of this disease. Raise awareness of the importance of preventing and treating microthrombosis in patients with COVID-19.
Collapse
Affiliation(s)
- Wenjing Chen
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jing Ye Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| |
Collapse
|
14
|
Yuen E, Gudis DA, Rowan NR, Nguyen SA, Schlosser RJ. Viral Infections of the Upper Airway in the Setting of COVID-19: A Primer for Rhinologists. Am J Rhinol Allergy 2021; 35:122-131. [PMID: 32762250 PMCID: PMC8685738 DOI: 10.1177/1945892420947929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Viral respiratory tract infections are associated with a significant burden of disease and represent one of the leading causes of mortality worldwide. The current Coronavirus Disease 2019 (COVID-19) pandemic highlights the devastating toll that respiratory viruses have on humanity and the desperate need to understand the biological characteristics that define them in order to develop efficacious treatments and vaccines. To date, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected nearly 600 times more people and resulted in 200 times more deaths relative to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) combined. OBJECTIVE Through this review, we aim to summarize the key characteristics of respiratory viruses that hold global significance, with a focus on SARS-CoV-2. Our goal is to disseminate our current knowledge of these infectious agents to otolaryngologists, in particular rhinologists, practicing in the COVID-19 era. METHODS The general and clinical characteristics of selected respiratory viruses along with available viral treatments and vaccines are reviewed. RESULTS There has been significant progress in our understanding of the epidemiology and pathogenesis of various respiratory viruses. However, despite the advancement in knowledge, efficacious vaccines and antiviral treatments remain elusive for most respiratory viruses. The dire need for these scientific discoveries is highlighted by the recent COVID-19 pandemic, which has prompted investigators worldwide to conduct clinical trials at an accelerated timeline in an effort to reduce the morbidity and mortality associated with SARS-CoV-2 infection. Rhinologists will continue to remain on the front-lines of pandemics associated with respiratory viruses. CONCLUSION In light of these unprecedented times, the need to understand the nuances of these viral respiratory pathogens, especially SARS-CoV-2, cannot be overemphasized. This knowledge base is of particular importance to otolaryngologists, whose expertise in the upper airway coincides with the anatomic tropism of these infectious agents.
Collapse
Affiliation(s)
- Erick Yuen
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - David A Gudis
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Nicholas R Rowan
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shaun A Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Rodney J Schlosser
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
15
|
Elyaspour Z, Zibaeenezhad MJ, Razmkhah M, Razeghian-Jahromi I. Is It All About Endothelial Dysfunction and Thrombosis Formation? The Secret of COVID-19. Clin Appl Thromb Hemost 2021; 27:10760296211042940. [PMID: 34693754 PMCID: PMC8543709 DOI: 10.1177/10760296211042940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023] Open
Abstract
The world is in a hard battle against COVID-19. Endothelial cells are among the most critical targets of SARS-CoV-2. Dysfunction of endothelium leads to vascular injury following by coagulopathies and thrombotic conditions in the vital organs increasing the risk of life-threatening events. Growing evidences revealed that endothelial dysfunction and consequent thrombotic conditions are associated with the severity of outcomes. It is not yet fully clear that these devastating sequels originate directly from the virus or a side effect of virus-induced cytokine storm. Due to endothelial dysfunction, plasma levels of some biomarkers are changed and relevant clinical manifestations appear as well. Stabilization of endothelial integrity and supporting its function are among the promising therapeutic strategies. Other than respiratory, COVID-19 could be called a systemic vascular disease and this aspect should be scrutinized in more detail in order to reduce related mortality. In the present investigation, the effects of COVID-19 on endothelial function and thrombosis formation are discussed. In this regard, critical players, laboratory findings, clinical manifestation, and suggestive therapies are presented.
Collapse
Affiliation(s)
- Zahra Elyaspour
- Cardiovascular Research Center, Shiraz
University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research,
Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
16
|
Abbasinia M, Hormati A, Eshagh Hossaini SK, Foroghi Ghomi SY, Zamani F, Afifian M, Ahmadpour S. Clinical Manifestations of Gastrointestinal Symptoms in COVID-19 Patients: An Integrative Review. Gastroenterol Nurs 2021; 44:E1-E10. [PMID: 33538525 PMCID: PMC7853724 DOI: 10.1097/sga.0000000000000584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
After the outbreak of novel coronavirus disease 2019 (COVID-19) in Wuhan, China, its spread to other countries is rapidly increasing. In this integrative review, we report the prevalence of gastrointestinal symptoms in patients with COVID-19. For this purpose, available articles on gastrointestinal manifestations in patients with COVID-19, which were reported from China, were reviewed. All reviewed articles were searched from December 11, 2019, to June 20, 2020, based on specific key words. Related findings in these articles show that the main target of COVID-19 is lung tissue, as after the virus enters the body, it mainly causes respiratory symptoms in affected patients. But in addition to respiratory symptoms, it is possible that, over time, these patients present with other symptoms, the most obvious of which are gastrointestinal symptoms. It is well documented that diarrhea and vomiting are the most common gastrointestinal symptoms in COVID-19 patients. As part of this report, we also look at the incidence and frequency of gastrointestinal symptoms in COVID-19 patients in Iran. The results can be used by providers as a guideline for better management of gastrointestinal symptoms in these patients.
Collapse
Affiliation(s)
- Mohammad Abbasinia
- Mohammad Abbasinia, PhD, MSc, is Assistant Professor of Nursing, Department of Nursing, School of Nursing and Midwifery, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Ahmad Hormati, PhD, MD, is Assistant Professor of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; and Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
- Seyed Kamal Eshagh Hossaini, PhD, MD, is Assistant Professor of Pediatric Hematology and Oncology, Department of Pediatrics, School of Medicine, Hazrat-e Fateme Masoume Hospital, Qom University of Medical Sciences, Qom, Iran
- Seyed Yaser Foroghi Ghomi, PhD, MD, is Assistant Professor of Emergency Medicine, Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Farhad Zamani, PhD, MD, is Professor of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Mahboubeh Afifian, MSc, Department of Health Information Technology, Tehran University of Medical Sciences, Tehran, Iran
- Sajjad Ahmadpour, PhD, MSc, is Assistant Professor of Nuclear Pharmacy, Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Ahmad Hormati
- Mohammad Abbasinia, PhD, MSc, is Assistant Professor of Nursing, Department of Nursing, School of Nursing and Midwifery, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Ahmad Hormati, PhD, MD, is Assistant Professor of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; and Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
- Seyed Kamal Eshagh Hossaini, PhD, MD, is Assistant Professor of Pediatric Hematology and Oncology, Department of Pediatrics, School of Medicine, Hazrat-e Fateme Masoume Hospital, Qom University of Medical Sciences, Qom, Iran
- Seyed Yaser Foroghi Ghomi, PhD, MD, is Assistant Professor of Emergency Medicine, Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Farhad Zamani, PhD, MD, is Professor of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Mahboubeh Afifian, MSc, Department of Health Information Technology, Tehran University of Medical Sciences, Tehran, Iran
- Sajjad Ahmadpour, PhD, MSc, is Assistant Professor of Nuclear Pharmacy, Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Seyed Kamal Eshagh Hossaini
- Mohammad Abbasinia, PhD, MSc, is Assistant Professor of Nursing, Department of Nursing, School of Nursing and Midwifery, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Ahmad Hormati, PhD, MD, is Assistant Professor of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; and Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
- Seyed Kamal Eshagh Hossaini, PhD, MD, is Assistant Professor of Pediatric Hematology and Oncology, Department of Pediatrics, School of Medicine, Hazrat-e Fateme Masoume Hospital, Qom University of Medical Sciences, Qom, Iran
- Seyed Yaser Foroghi Ghomi, PhD, MD, is Assistant Professor of Emergency Medicine, Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Farhad Zamani, PhD, MD, is Professor of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Mahboubeh Afifian, MSc, Department of Health Information Technology, Tehran University of Medical Sciences, Tehran, Iran
- Sajjad Ahmadpour, PhD, MSc, is Assistant Professor of Nuclear Pharmacy, Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Seyed Yaser Foroghi Ghomi
- Mohammad Abbasinia, PhD, MSc, is Assistant Professor of Nursing, Department of Nursing, School of Nursing and Midwifery, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Ahmad Hormati, PhD, MD, is Assistant Professor of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; and Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
- Seyed Kamal Eshagh Hossaini, PhD, MD, is Assistant Professor of Pediatric Hematology and Oncology, Department of Pediatrics, School of Medicine, Hazrat-e Fateme Masoume Hospital, Qom University of Medical Sciences, Qom, Iran
- Seyed Yaser Foroghi Ghomi, PhD, MD, is Assistant Professor of Emergency Medicine, Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Farhad Zamani, PhD, MD, is Professor of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Mahboubeh Afifian, MSc, Department of Health Information Technology, Tehran University of Medical Sciences, Tehran, Iran
- Sajjad Ahmadpour, PhD, MSc, is Assistant Professor of Nuclear Pharmacy, Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Farhad Zamani
- Mohammad Abbasinia, PhD, MSc, is Assistant Professor of Nursing, Department of Nursing, School of Nursing and Midwifery, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Ahmad Hormati, PhD, MD, is Assistant Professor of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; and Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
- Seyed Kamal Eshagh Hossaini, PhD, MD, is Assistant Professor of Pediatric Hematology and Oncology, Department of Pediatrics, School of Medicine, Hazrat-e Fateme Masoume Hospital, Qom University of Medical Sciences, Qom, Iran
- Seyed Yaser Foroghi Ghomi, PhD, MD, is Assistant Professor of Emergency Medicine, Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Farhad Zamani, PhD, MD, is Professor of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Mahboubeh Afifian, MSc, Department of Health Information Technology, Tehran University of Medical Sciences, Tehran, Iran
- Sajjad Ahmadpour, PhD, MSc, is Assistant Professor of Nuclear Pharmacy, Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mahboubeh Afifian
- Mohammad Abbasinia, PhD, MSc, is Assistant Professor of Nursing, Department of Nursing, School of Nursing and Midwifery, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Ahmad Hormati, PhD, MD, is Assistant Professor of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; and Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
- Seyed Kamal Eshagh Hossaini, PhD, MD, is Assistant Professor of Pediatric Hematology and Oncology, Department of Pediatrics, School of Medicine, Hazrat-e Fateme Masoume Hospital, Qom University of Medical Sciences, Qom, Iran
- Seyed Yaser Foroghi Ghomi, PhD, MD, is Assistant Professor of Emergency Medicine, Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Farhad Zamani, PhD, MD, is Professor of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Mahboubeh Afifian, MSc, Department of Health Information Technology, Tehran University of Medical Sciences, Tehran, Iran
- Sajjad Ahmadpour, PhD, MSc, is Assistant Professor of Nuclear Pharmacy, Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Sajjad Ahmadpour
- Correspondence to: Sajjad Ahmadpour, PhD, MSc, Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran ()
| |
Collapse
|
17
|
Bernard I, Limonta D, Mahal LK, Hobman TC. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses 2020; 13:E29. [PMID: 33375371 PMCID: PMC7823949 DOI: 10.3390/v13010029] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) poses a persistent threat to global public health. Although primarily a respiratory illness, extrapulmonary manifestations of COVID-19 include gastrointestinal, cardiovascular, renal and neurological diseases. Recent studies suggest that dysfunction of the endothelium during COVID-19 may exacerbate these deleterious events by inciting inflammatory and microvascular thrombotic processes. Although controversial, there is evidence that SARS-CoV-2 may infect endothelial cells by binding to the angiotensin-converting enzyme 2 (ACE2) cellular receptor using the viral Spike protein. In this review, we explore current insights into the relationship between SARS-CoV-2 infection, endothelial dysfunction due to ACE2 downregulation, and deleterious pulmonary and extra-pulmonary immunothrombotic complications in severe COVID-19. We also discuss preclinical and clinical development of therapeutic agents targeting SARS-CoV-2-mediated endothelial dysfunction. Finally, we present evidence of SARS-CoV-2 replication in primary human lung and cardiac microvascular endothelial cells. Accordingly, in striving to understand the parameters that lead to severe disease in COVID-19 patients, it is important to consider how direct infection of endothelial cells by SARS-CoV-2 may contribute to this process.
Collapse
Affiliation(s)
- Isabelle Bernard
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Daniel Limonta
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada;
| | - Tom C. Hobman
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada;
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Women & Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
18
|
Medetalibeyoglu A, Emet S, Kose M, Akpinar TS, Senkal N, Catma Y, Kaytaz AM, Genc S, Omer B, Tukek T. Serum Endocan Levels on Admission Are Associated With Worse Clinical Outcomes in COVID-19 Patients: A Pilot Study. Angiology 2020; 72:187-193. [PMID: 32969233 DOI: 10.1177/0003319720961267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thrombotic and embolic complications in the cardiovascular system are evident and associated with worse prognosis in coronavirus disease 2019 (COVID-19) patients. Endothelial-specific molecule 1 (endocan) plays a role in vascular pathology. We hypothesized serum endocan levels on admission are associated with primary composite end point (mortality and intensive care unit hospitalization) in COVID-19 patients. Patients (n = 80) with laboratory, clinical, and radiological confirmed COVID-19 were included in this cross-sectional study. Ten milliliter of peripheral venous blood were drawn within 24 hours of admission to estimate serum endocan levels. Data were analyzed using SPSS version 26.0 (IBM). Patients with the primary composite end point had significantly higher serum endocan levels than patients without (852.2 ± 522.7 vs 550.2 ± 440.8 ng/L, respectively; P < .01). In the logistic regression analysis, only increased serum endocan levels and increase in age were independent predictors of the primary composite end point (P < .05). In the receiver operating characteristics curve analysis, we found that a serum endocan level of 276.4 ng/L had a 97% sensitivity and 85% specificity for prediction of the primary composite end point. Baseline serum endocan levels may prove useful as a prognostic factor in patients hospitalized for COVID-19.
Collapse
Affiliation(s)
- Alpay Medetalibeyoglu
- Department of Internal Medicine, 64041Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Samim Emet
- Department of Cardiology, 64041Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Murat Kose
- Department of Internal Medicine, 64041Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Timur Selcuk Akpinar
- Department of Internal Medicine, Faculty of Medicine, Koc University, Istanbul, Turkey
| | - Naci Senkal
- Department of Internal Medicine, 64041Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yunus Catma
- Department of Internal Medicine, 64041Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Arif Murat Kaytaz
- Department of Biochemistry, 64041Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sema Genc
- Department of Biochemistry, 64041Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Beyhan Omer
- Department of Biochemistry, 64041Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tufan Tukek
- Department of Internal Medicine, 64041Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
19
|
Goldin CJ, Vázquez R, Polack FP, Alvarez-Paggi D. Identifying pathophysiological bases of disease in COVID-19. TRANSLATIONAL MEDICINE COMMUNICATIONS 2020; 5:15. [PMID: 32984543 PMCID: PMC7506209 DOI: 10.1186/s41231-020-00067-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/15/2020] [Indexed: 05/14/2023]
Abstract
COVID-19 is an infectious disease caused by the SARS-CoV-2 virus that can affect lung physiology encompassing a wide spectrum of severities, ranging from asymptomatic and mild symptoms to severe and fatal cases; the latter including massive neutrophil infiltration, stroke and multiple organ failure. Despite many recents findings, a clear mechanistic description underlying symptomatology is lacking. In this article, we thoroughly review the available data involving risk factors, age, gender, comorbidities, symptoms of disease, cellular and molecular mechanisms and the details behind host/pathogen interaction that hints at the existence of different pathophysiological mechanisms of disease. There is clear evidence that, by targeting the angiotensin-converting enzyme II (ACE2) -its natural receptor-, SARS-CoV-2 would mainly affect the renin-angiotensin-aldosterone system (RAAS), whose imbalance triggers diverse symptomatology-associated pathological processes. Downstream actors of the RAAS cascade are identified, and their interaction with risk factors and comorbidities are presented, rationalizing why a specific subgroup of individuals that present already lower ACE2 levels is particularly more susceptible to severe forms of disease. Finally, the notion of endotype discovery in the context of COVID-19 is introduced. We hypothesize that COVID-19, and its associated spectrum of severities, is an umbrella term covering different pathophysiological mechanisms (endotypes). This approach should dramatically accelerate our understanding and treatment of disease(s), enabling further discovery of pathophysiological mechanisms and leading to the identification of specific groups of patients that may benefit from personalized treatments.
Collapse
Affiliation(s)
- Carla J. Goldin
- INFANT Foundation, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Ramiro Vázquez
- Early Drug Development Group (E2DG), Boulogne-Billancourt, France
- Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | | | | |
Collapse
|
20
|
Caniglia JL, Asuthkar S, Tsung AJ, Guda MR, Velpula KK. Immunopathology of galectin-3: an increasingly promising target in COVID-19. F1000Res 2020; 9:1078. [PMID: 33082935 PMCID: PMC7536583 DOI: 10.12688/f1000research.25979.2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 01/18/2023] Open
Abstract
The pandemic brought on by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has become a global health crisis, with over 22 million confirmed cases and 777,000 fatalities due to coronavirus disease 2019 (COVID-19) reported worldwide. The major cause of fatality in infected patients, now referred to as the "Cytokine Storm Syndrome" (CSS), is a direct result of aberrant immune activation following SARS-CoV2 infection and results in excess release of inflammatory cytokines, such as interleukin (IL)-1, tumor necrosis factor α (TNF-α), and IL-6, by macrophages, monocytes, and dendritic cells. Single cell analysis has also shown significantly elevated levels of galectin 3 (Gal-3) in macrophages, monocytes, and dendritic cells in patients with severe COVID-19 as compared to mild disease. Inhibition of Gal-3 reduces the release of IL-1, IL-6, and TNF-α from macrophages in vitro, and as such may hold promise in reducing the incidence of CSS. In addition, Gal-3 inhibition shows promise in reducing transforming growth factor ß (TGF-ß) mediated pulmonary fibrosis, likely to be a major consequence in survivors of severe COVID-19. Finally, a key domain in the spike protein of SARS-CoV2 has been shown to bind N-acetylneuraminic acid (Neu5Ac), a process that may be essential to cell entry by the virus. This Neu5Ac-binding domain shares striking morphological, sequence, and functional similarities with human Gal-3. Here we provide an updated review of the literature linking Gal-3 to COVID-19 pathogenesis. Dually targeting galectins and the Neu5Ac-binding domain of SARS-CoV2 shows tentative promise in several stages of the disease: preventing viral entry, modulating the host immune response, and reducing the post-infectious incidence of pulmonary fibrosis.
Collapse
Affiliation(s)
- John L. Caniglia
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Swapna Asuthkar
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Andrew J. Tsung
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Illinois Neurological Institute, Peoria, IL, USA
| | - Maheedhara R. Guda
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Kiran K. Velpula
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| |
Collapse
|
21
|
Ahmed S, Zimba O, Gasparyan AY. Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow's triad. Clin Rheumatol 2020; 39:2529-2543. [PMID: 32654082 PMCID: PMC7353835 DOI: 10.1007/s10067-020-05275-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis of Coronavirus disease 2019 (COVID-19) is gradually being comprehended. A high number of thrombotic episodes are reported, along with the mortality benefits of heparin. COVID-19 can be viewed as a prothrombotic disease. We overviewed the available evidence to explore this possibility. We identified various histopathology reports and clinical case series reporting thromboses in COVID-19. Also, multiple coagulation markers support this. COVID-19 can be regarded as a risk factor for thrombosis. Applying the principles of Virchow's triad, we described abnormalities in the vascular endothelium, altered blood flow, and platelet function abnormalities that lead to venous and arterial thromboses in COVID-19. Endothelial dysfunction, activation of the renin-angiotensin-aldosterone system (RAAS) with the release of procoagulant plasminogen activator inhibitor (PAI-1), and hyperimmune response with activated platelets seem to be significant contributors to thrombogenesis in COVID-19. Stratifying risk of COVID-19 thromboses should be based on age, presence of comorbidities, D-dimer, CT scoring, and various blood cell ratios. Isolated heparin therapy may not be sufficient to combat thrombosis in this disease. There is an urgent need to explore newer avenues like activated protein C, PAI-1 antagonists, and tissue plasminogen activators (tPA). These should be augmented with therapies targeting RAAS, antiplatelet drugs, repurposed antiinflammatory, and antirheumatic drugs. Key Points • Venous and arterial thromboses in COVID-19 can be viewed through the prism of Virchow's triad. • Endothelial dysfunction, platelet activation, hyperviscosity, and blood flow abnormalities due to hypoxia, immune reactions, and hypercoagulability lead to thrombogenesis in COVID-19. • There is an urgent need to stratify COVID-19 patients at risk for thrombosis using age, comorbidities, D-dimer, and CT scoring. • Patients with COVID-19 at high risk for thrombosis should be put on high dose heparin therapy.
Collapse
Affiliation(s)
- Sakir Ahmed
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar, India
| | - Olena Zimba
- Department of Internal Medicine No. 2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Armen Yuri Gasparyan
- Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK) Russells Hall Hospital, Pensnett Road, Dudley, West Midlands DY1 2HQ UK
| |
Collapse
|
22
|
Caniglia JL, Asuthkar S, Tsung AJ, Guda MR, Velpula KK. Immunopathology of galectin-3: an increasingly promising target in COVID-19. F1000Res 2020; 9:1078. [PMID: 33082935 PMCID: PMC7536583 DOI: 10.12688/f1000research.25979.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 01/11/2024] Open
Abstract
The pandemic brought on by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has become a global health crisis, with over 22 million confirmed cases and 777,000 fatalities due to coronavirus disease 2019 (COVID-19) reported worldwide. The major cause of fatality in infected patients, now referred to as the "Cytokine Storm Syndrome" (CSS), is a direct result of aberrant immune activation following SARS-CoV2 infection and results in excess release of inflammatory cytokines, such as interleukin (IL)-1, tumor necrosis factor α (TNF-α), and IL-6, by macrophages, monocytes, and dendritic cells. Single cell analysis has also shown significantly elevated levels of galectin 3 (Gal-3) in macrophages, monocytes, and dendritic cells in patients with severe COVID-19 as compared to mild disease. Inhibition of Gal-3 reduces the release of IL-1, IL-6, and TNF-α from macrophages in vitro, and as such may hold promise in reducing the incidence of CSS. In addition, Gal-3 inhibition shows promise in reducing transforming growth factor ß (TGF-ß) mediated pulmonary fibrosis, likely to be a major consequence in survivors of severe COVID-19. Finally, a key domain in the spike protein of SARS-CoV2 has been shown to bind N-acetylneuraminic acid (Neu5Ac), a process that may be essential to cell entry by the virus. This Neu5Ac-binding domain shares striking morphological, sequence, and functional similarities with human Gal-3. Here we provide an updated review of the literature linking Gal-3 to COVID-19 pathogenesis. Dually targeting galectins and the Neu5Ac-binding domain of SARS-CoV2 shows tentative promise in several stages of the disease: preventing viral entry, modulating the host immune response, and reducing the post-infectious incidence of pulmonary fibrosis.
Collapse
Affiliation(s)
- John L. Caniglia
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Swapna Asuthkar
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Andrew J. Tsung
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Illinois Neurological Institute, Peoria, IL, USA
| | - Maheedhara R. Guda
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Kiran K. Velpula
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| |
Collapse
|
23
|
McGonagle D, O'Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. THE LANCET. RHEUMATOLOGY 2020. [PMID: 32835247 DOI: 10.1016/s2665-9913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lung pathology seen in patients with coronavirus disease 2019 (COVID-19) shows marked microvascular thrombosis and haemorrhage linked to extensive alveolar and interstitial inflammation that shares features with macrophage activation syndrome (MAS). We have termed the lung-restricted vascular immunopathology associated with COVID-19 as diffuse pulmonary intravascular coagulopathy, which in its early stages is distinct from disseminated intravascular coagulation. Increased circulating D-dimer concentrations (reflecting pulmonary vascular bed thrombosis with fibrinolysis) and elevated cardiac enzyme concentrations (reflecting emergent ventricular stress induced by pulmonary hypertension) in the face of normal fibrinogen and platelet levels are key early features of severe pulmonary intravascular coagulopathy related to COVID-19. Extensive immunothrombosis over a wide pulmonary vascular territory without confirmation of COVID-19 viraemia in early disease best explains the adverse impact of male sex, hypertension, obesity, and diabetes on the prognosis of patients with COVID-19. The immune mechanism underlying diffuse alveolar and pulmonary interstitial inflammation in COVID-19 involves a MAS-like state that triggers extensive immunothrombosis, which might unmask subclinical cardiovascular disease and is distinct from the MAS and disseminated intravascular coagulation that is more familiar to rheumatologists.
Collapse
Affiliation(s)
- Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| | - James S O'Donnell
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kassem Sharif
- Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| | - Charles Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| |
Collapse
|
24
|
Henry BM, Vikse J, Benoit S, Favaloro EJ, Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta 2020; 507:167-173. [PMID: 32348783 PMCID: PMC7195008 DOI: 10.1016/j.cca.2020.04.027] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Early clinical evidence suggests that severe cases of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are frequently characterized by hyperinflammation, imbalance of renin-angiotensin-aldosterone system, and a particular form of vasculopathy, thrombotic microangiopathy, and intravascular coagulopathy. In this paper, we present an immunothrombosis model of COVID-19. We discuss the underlying pathogenesis and the interaction between multiple systems, resulting in propagation of immunothrombosis, which through investigation in the coming weeks, may lead to both an improved understanding of COVID-19 pathophysiology and identification of innovative and efficient therapeutic targets to reverse the otherwise unfavorable clinical outcome of many of these patients.
Collapse
Affiliation(s)
- Brandon Michael Henry
- Cardiac Intensive Care Unit, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Jens Vikse
- Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - Stefanie Benoit
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Emmanuel J Favaloro
- Department of Haematology, Sydney Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia; School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| |
Collapse
|
25
|
Elrashdy F, Aljaddawi AA, Redwan EM, Uversky VN. On the potential role of exosomes in the COVID-19 reinfection/reactivation opportunity. J Biomol Struct Dyn 2020; 39:5831-5842. [PMID: 32643586 PMCID: PMC7441802 DOI: 10.1080/07391102.2020.1790426] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We propose here that one of the potential mechanisms for the relapse of the COVID-19 infection could be a cellular transport pathway associated with the release of the SARS-CoV-2-loaded exosomes and other extracellular vesicles. It is possible that this “Trojan horse” strategy represents possible explanation for the re-appearance of the viral RNA in the recovered COVID-19 patients 7–14 day post discharge, suggesting that viral material was hidden within such exosomes or extracellular vesicles during this “silence” time period and then started to re-spread again. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Abdullah A Aljaddawi
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| |
Collapse
|
26
|
Artika IM, Wiyatno A, Ma'roef CN. Pathogenic viruses: Molecular detection and characterization. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104215. [PMID: 32006706 PMCID: PMC7106233 DOI: 10.1016/j.meegid.2020.104215] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Pathogenic viruses are viruses that can infect and replicate within human cells and cause diseases. The continuous emergence and re-emergence of pathogenic viruses has become a major threat to public health. Whenever pathogenic viruses emerge, their rapid detection is critical to enable implementation of specific control measures and the limitation of virus spread. Further molecular characterization to better understand these viruses is required for the development of diagnostic tests and countermeasures. Advances in molecular biology techniques have revolutionized the procedures for detection and characterization of pathogenic viruses. The development of PCR-based techniques together with DNA sequencing technology, have provided highly sensitive and specific methods to determine virus circulation. Pathogenic viruses potentially having global catastrophic consequences may emerge in regions where capacity for their detection and characterization is limited. Development of a local capacity to rapidly identify new viruses is therefore critical. This article reviews the molecular biology of pathogenic viruses and the basic principles of molecular techniques commonly used for their detection and characterization. The principles of good laboratory practices for handling pathogenic viruses are also discussed. This review aims at providing researchers and laboratory personnel with an overview of the molecular biology of pathogenic viruses and the principles of molecular techniques and good laboratory practices commonly implemented for their detection and characterization.
Collapse
Affiliation(s)
- I Made Artika
- Biosafety Level 3 Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia; Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor 16680, Indonesia.
| | - Ageng Wiyatno
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
| | - Chairin Nisa Ma'roef
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
| |
Collapse
|
27
|
McGonagle D, O'Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. THE LANCET. RHEUMATOLOGY 2020; 2:e437-e445. [PMID: 32835247 PMCID: PMC7252093 DOI: 10.1016/s2665-9913(20)30121-1] [Citation(s) in RCA: 547] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lung pathology seen in patients with coronavirus disease 2019 (COVID-19) shows marked microvascular thrombosis and haemorrhage linked to extensive alveolar and interstitial inflammation that shares features with macrophage activation syndrome (MAS). We have termed the lung-restricted vascular immunopathology associated with COVID-19 as diffuse pulmonary intravascular coagulopathy, which in its early stages is distinct from disseminated intravascular coagulation. Increased circulating D-dimer concentrations (reflecting pulmonary vascular bed thrombosis with fibrinolysis) and elevated cardiac enzyme concentrations (reflecting emergent ventricular stress induced by pulmonary hypertension) in the face of normal fibrinogen and platelet levels are key early features of severe pulmonary intravascular coagulopathy related to COVID-19. Extensive immunothrombosis over a wide pulmonary vascular territory without confirmation of COVID-19 viraemia in early disease best explains the adverse impact of male sex, hypertension, obesity, and diabetes on the prognosis of patients with COVID-19. The immune mechanism underlying diffuse alveolar and pulmonary interstitial inflammation in COVID-19 involves a MAS-like state that triggers extensive immunothrombosis, which might unmask subclinical cardiovascular disease and is distinct from the MAS and disseminated intravascular coagulation that is more familiar to rheumatologists.
Collapse
Affiliation(s)
- Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK.
| | - James S O'Donnell
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kassem Sharif
- Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| | - Charles Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| |
Collapse
|
28
|
Ramos I, Stamatakis K, Oeste CL, Pérez-Sala D. Vimentin as a Multifaceted Player and Potential Therapeutic Target in Viral Infections. Int J Mol Sci 2020; 21:E4675. [PMID: 32630064 PMCID: PMC7370124 DOI: 10.3390/ijms21134675] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vimentin is an intermediate filament protein that plays key roles in integration of cytoskeletal functions, and therefore in basic cellular processes such as cell division and migration. Consequently, vimentin has complex implications in pathophysiology. Vimentin is required for a proper immune response, but it can also act as an autoantigen in autoimmune diseases or as a damage signal. Although vimentin is a predominantly cytoplasmic protein, it can also appear at extracellular locations, either in a secreted form or at the surface of numerous cell types, often in relation to cell activation, inflammation, injury or senescence. Cell surface targeting of vimentin appears to associate with the occurrence of certain posttranslational modifications, such as phosphorylation and/or oxidative damage. At the cell surface, vimentin can act as a receptor for bacterial and viral pathogens. Indeed, vimentin has been shown to play important roles in virus attachment and entry of severe acute respiratory syndrome-related coronavirus (SARS-CoV), dengue and encephalitis viruses, among others. Moreover, the presence of vimentin in specific virus-targeted cells and its induction by proinflammatory cytokines and tissue damage contribute to its implication in viral infection. Here, we recapitulate some of the pathophysiological implications of vimentin, including the involvement of cell surface vimentin in interaction with pathogens, with a special focus on its role as a cellular receptor or co-receptor for viruses. In addition, we provide a perspective on approaches to target vimentin, including antibodies or chemical agents that could modulate these interactions to potentially interfere with viral pathogenesis, which could be useful when multi-target antiviral strategies are needed.
Collapse
Affiliation(s)
- Irene Ramos
- Department of Neurology and Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Clara L. Oeste
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
29
|
Marchetti M. COVID-19-driven endothelial damage: complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann Hematol 2020; 99:1701-1707. [PMID: 32583086 PMCID: PMC7312112 DOI: 10.1007/s00277-020-04138-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 pandemia is a major health emergency causing hundreds of deaths worldwide. The high reported morbidity has been related to hypoxia and inflammation leading to endothelial dysfunction and aberrant coagulation in small and large vessels. This review addresses some of the pathways leading to endothelial derangement, such as complement, HIF-1α, and ABL tyrosine kinases. This review also highlights potential targets for prevention and therapy of COVID-19-related organ damage and discusses the role of marketed drugs, such as eculizumab and imatinib, as suitable candidates for clinical trials.
Collapse
Affiliation(s)
- Monia Marchetti
- Hematology Department, Az Osp SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy.
| |
Collapse
|
30
|
Delpino MV, Quarleri J. SARS-CoV-2 Pathogenesis: Imbalance in the Renin-Angiotensin System Favors Lung Fibrosis. Front Cell Infect Microbiol 2020; 10:340. [PMID: 32596170 PMCID: PMC7303284 DOI: 10.3389/fcimb.2020.00340] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/04/2020] [Indexed: 01/18/2023] Open
Affiliation(s)
- M. Victoria Delpino
- Facultad de Farmacia y Bioquímica, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge Quarleri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
31
|
Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel A, Mehra MR, Scholkmann F, Schüpbach R, Ruschitzka F, Moch H. Electron microscopy of SARS-CoV-2: a challenging task - Authors' reply. Lancet 2020; 395:e100. [PMID: 32442527 PMCID: PMC7237177 DOI: 10.1016/s0140-6736(20)31185-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Andreas J Flammer
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Peter Steiger
- Institute for Intensive Care Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Martina Haberecker
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Rea Andermatt
- Institute for Intensive Care Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Annelies Zinkernagel
- Division of Infectious Diseases, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Mandeep R Mehra
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Reto Schüpbach
- Institute for Intensive Care Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
32
|
Preventive effects of "ovalbumin-conjugated celastrol-loaded nanomicelles'' in a mouse model of ovalbumin-induced allergic airway inflammation. Eur J Pharm Sci 2019; 143:105172. [PMID: 31841695 DOI: 10.1016/j.ejps.2019.105172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/15/2019] [Accepted: 12/01/2019] [Indexed: 12/22/2022]
Abstract
Allergies affect a significant proportion of the world's population, and existing vaccination strategies to restrict their adverse pathologies often render side-effects. The aim of this study was to design a new vaccine for allergen-specific immunotherapy (SIT), and to investigate its preventive effects during allergic inflammation. We constructed ovalbumin (OVA)-conjugated celastrol-loaded nanomicelles (OVA-NMs-celastrol), wherein celastrol (a bioactive anti-inflammatory compound) was loaded into carboxyl-functioned polymeric nanomicelles using a thin-film hydration method. OVA was used as a model allergen and conjugated on nanomicelles. The OVA-NMs-celastrol obtained were characterized based on particle size, morphology, drug encapsulation efficiency, and drug loading percentage. Further, the preventive effect of OVA-NMs-celastrol was evaluated in a mouse model of allergic asthma. Our results showed that OVA-NMs-celastrol possessed valuable characteristics such as small particle size (50.72 ± 0.98 nm) and spherical-like shape, with celastrol encapsulation efficiency of 99.89 ± 0.85% and a drug loading percentage of 4.76 ± 0.03%. Further, in vivo results showed that treatment with OVA-NMs-celastrol could decrease OVA specific IgE and histamine levels, Th2 cytokine (IL-4, IL-5) levels, and inflammatory cell infiltration in the lung tissues. Moreover, it could enhance the OVA specific IgG1 and IgG2a levels and decrease the IgE / IgG2a ratio. These results demonstrate the successful construction of OVA-NMs-celastrol as a potential vaccine candidate for use in SIT for allergic inflammation.
Collapse
|
33
|
Miura TA. Respiratory epithelial cells as master communicators during viral infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:10-17. [PMID: 31592409 PMCID: PMC6779166 DOI: 10.1007/s40588-019-0111-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Communication by epithelial cells during respiratory viral infections is critical in orchestrating effective anti-viral responses but also can lead to excessive inflammation. This review will evaluate studies that investigate how respiratory epithelial cells influence the behavior of immune cells and how epithelial cell/immune cell interactions contribute to antiviral responses and immunopathology outcomes. RECENT FINDINGS Previous studies have characterized cytokine responses of virus-infected epithelial cells. More recent studies have carefully demonstrated the effects of these cytokines on cellular behaviors within the infected lung. Infected epithelial cells release exosomes that specifically regulate responses of monocytes and neighboring epithelial cells without promoting spread of virus. In contrast, rhinovirus-infected cells induce monocytes to upregulate expression of the viral receptor, promoting spread of the virus to alternate cell types. The precise alteration of PDL expression on infected epithelial cells has been shown to switch between inhibition and activation of antiviral responses. SUMMARY These studies have more precisely defined the interactions between epithelial and immune cells during viral infections. This level of understanding is critical for the development of novel therapeutic strategies that promote effective antiviral responses or epithelial repair, or inhibit damaging inflammatory responses during severe respiratory viral infections.
Collapse
Affiliation(s)
- Tanya A Miura
- Department of Biological Sciences and Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA,
| |
Collapse
|
34
|
Beidas M, Chehadeh W. PCR array profiling of antiviral genes in human embryonic kidney cells expressing human coronavirus OC43 structural and accessory proteins. Arch Virol 2018; 163:2065-2072. [PMID: 29619598 PMCID: PMC7086905 DOI: 10.1007/s00705-018-3832-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/22/2018] [Indexed: 10/26/2022]
Abstract
Human coronavirus OC43 (HCoV-OC43) is a respiratory virus that usually causes a common cold. However, it has the potential to cause severe infection in young children and immunocompromised adults. Both SARS-CoV and MERS-CoV were shown to express proteins with the potential to evade early innate immune responses. However, the ability of HCoV-OC43 to antagonise the intracellular antiviral defences has not yet been investigated. The potential role of the HCoV-OC43 structural (M and N) and accessory proteins (ns2a and ns5a) in the alteration of antiviral gene expression was investigated in this study. HCoV-OC43M, N, ns2a and ns5a proteins were expressed in human embryonic kidney 293 (HEK-293) cells before challenge with Sendai virus. The Human Antiviral Response PCR array was used to profile the antiviral gene expression in HEK-293 cells. Over 30 genes were downregulated in the presence of one of the HCoV-OC43 proteins, e.g. genes representing mitogen-activated protein kinases, toll-like receptors, interferons, interleukins, and signaling transduction proteins. Our findings suggest that similarly to SARS-CoV and MERS-CoV, HCoV-OC43 has the ability to downregulate the transcription of genes critical for the activation of different antiviral signaling pathways. Further studies are needed to confirm the role of HCoV-OC43 structural and accessory proteins in antagonising antiviral gene expression.
Collapse
Affiliation(s)
- Meshal Beidas
- Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, 13310, Safat, Kuwait
| | - Wassim Chehadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, 13310, Safat, Kuwait.
| |
Collapse
|
35
|
Abstract
A review of pulmonary infections of all types with diagnostic and morphological features.
Collapse
|
36
|
Xue R, Gu H, Qiu Y, Guo Y, Korteweg C, Huang J, Gu J. Expression of Cystic Fibrosis Transmembrane Conductance Regulator in Ganglia of Human Gastrointestinal Tract. Sci Rep 2016; 6:30926. [PMID: 27491544 PMCID: PMC4974654 DOI: 10.1038/srep30926] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/11/2016] [Indexed: 02/05/2023] Open
Abstract
CF is caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) which is an anion selective transmembrane ion channel that mainly regulates chloride transport, expressed in the epithelia of various organs. Recently, we have demonstrated CFTR expression in the brain, the spinal cord and the sympathetic ganglia. This study aims to investigate the expression and distribution of CFTR in the ganglia of the human gastrointestinal tract. Fresh tissue and formalin-fixed paraffin-embedded normal gastrointestinal tract samples were collected from eleven surgical patients and five autopsy cases. Immunohistochemistry, in situ hybridization, laser-assisted microdissection and nested reverse transcriptase polymerase chain reaction were performed. Expression of CFTR protein and mRNA was detected in neurons of the ganglia of all segments of the human gastrointestinal tract examined, including the stomach, duodenum, jejunum, ileum, cecum, appendix, colon and rectum. The extensive expression of CFTR in the enteric ganglia suggests that CFTR may play a role in the physiology of the innervation of the gastro-intestinal tract. The presence of dysfunctional CFTRs in enteric ganglia could, to a certain extent, explain the gastrointestinal symptoms frequently experienced by CF patients.
Collapse
Affiliation(s)
- Ruiqi Xue
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Huan Gu
- Department of Pathology, Key Laboratory of Infectious Diseases and Molecular Pathology, Guangdong Province, Collaborative and Creative Center of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou, China
- Department of Physics, University of Maryland, College Park, MD, USA
| | - Yamei Qiu
- Department of Pathology, Key Laboratory of Infectious Diseases and Molecular Pathology, Guangdong Province, Collaborative and Creative Center of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou, China
| | - Yong Guo
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Christine Korteweg
- Department of Pathology, Key Laboratory of Infectious Diseases and Molecular Pathology, Guangdong Province, Collaborative and Creative Center of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou, China
| | - Jin Huang
- Department of Pathology, Key Laboratory of Infectious Diseases and Molecular Pathology, Guangdong Province, Collaborative and Creative Center of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou, China
| | - Jiang Gu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Pathology, Key Laboratory of Infectious Diseases and Molecular Pathology, Guangdong Province, Collaborative and Creative Center of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou, China
| |
Collapse
|
37
|
Tu X, Chong WP, Zhai Y, Zhang H, Zhang F, Wang S, Liu W, Wei M, Siu NHO, Yang H, Yang W, Cao W, Lau YL, He F, Zhou G. Functional polymorphisms of the CCL2 and MBL genes cumulatively increase susceptibility to severe acute respiratory syndrome coronavirus infection. J Infect 2015; 71:101-9. [PMID: 25818534 PMCID: PMC7112636 DOI: 10.1016/j.jinf.2015.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/02/2015] [Accepted: 03/22/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVES To assess associations between the functional polymorphisms G-2518A at the chemokine (C-C motif) ligand 2 gene (CCL2) and mannose binding lectin (MBL) codon 54 variant (A/B) and susceptibility to SARS. METHODS We genotyped the CCL2 G-2518A and MBL codon 54 variant (A/B) in 4 case-control populations of Chinese descent, totally consisting of 932 patients with SARS and 982 control subjects. RESULTS Both the high-CCL2-producing GG genotype and the low-MBL-producing B allele were consistently associated with increased risks of SARS-CoV infection in all 4 case-control populations (joint P = 1.6 × 10(-4) and 4.9 × 10(-8), for CCL2 and MBL respectively), with no interaction between polymorphisms could be detected. Furthermore, all the 4 case-control studies demonstrated a cumulative effect on risk of SARS-CoV infection for the combination of polymorphisms (joint P = 1.3 × 10(-10)). However, tests using the area under the curve (AUC) indicated that at this stage, the polymorphisms were unlikely to be appropriate for risk prediction testing because of low AUC values (all <66%). Additionally, no association was observed between the polymorphisms and severity of SARS. CONCLUSIONS The CCL2 G-2518A and MBL codon 54 variant have a significantly cumulative effect on increased risk of SARS-CoV infection.
Collapse
Affiliation(s)
- Xinyi Tu
- School of Life Sciences, Tsinghua University, Beijing, China; The State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China; National Engineering Research Center for Protein Drugs, Beijing, China; National Center for Protein Science at Beijing, Beijing, China
| | - Wai Po Chong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yun Zhai
- The State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China; National Engineering Research Center for Protein Drugs, Beijing, China; National Center for Protein Science at Beijing, Beijing, China
| | - Hongxing Zhang
- The State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China; National Engineering Research Center for Protein Drugs, Beijing, China; National Center for Protein Science at Beijing, Beijing, China
| | - Fang Zhang
- The State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shixin Wang
- Wujing Medical College at Tianjin, Tianjin, China
| | - Wei Liu
- The State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Maoti Wei
- Wujing Medical College at Tianjin, Tianjin, China
| | - Nora Ho On Siu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hao Yang
- The State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China; National Engineering Research Center for Protein Drugs, Beijing, China; National Center for Protein Science at Beijing, Beijing, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wuchun Cao
- The State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Fuchu He
- School of Life Sciences, Tsinghua University, Beijing, China; The State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China; National Engineering Research Center for Protein Drugs, Beijing, China; National Center for Protein Science at Beijing, Beijing, China.
| | - Gangqiao Zhou
- The State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China; National Engineering Research Center for Protein Drugs, Beijing, China; National Center for Protein Science at Beijing, Beijing, China.
| |
Collapse
|
38
|
Bosch BJ, Smits SL, Haagmans BL. Membrane ectopeptidases targeted by human coronaviruses. Curr Opin Virol 2014; 6:55-60. [PMID: 24762977 PMCID: PMC4072739 DOI: 10.1016/j.coviro.2014.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/12/2022]
Abstract
Six coronaviruses, including the recently identified Middle East respiratory syndrome coronavirus, are known to target the human respiratory tract causing mild to severe disease. Their interaction with receptors expressed on cells located in the respiratory tract is an essential first step in the infection. Thus far three membrane ectopeptidases, dipeptidyl peptidase 4 (DPP4), angiotensin-converting enzyme 2 (ACE2) and aminopeptidase N (APN), have been identified as entry receptors for four human-infecting coronaviruses. Although the catalytic activity of the ACE2, APN, and DPP4 peptidases is not required for virus entry, co-expression of other host proteases allows efficient viral entry. In addition, evolutionary conservation of these receptors may permit interspecies transmissions. Because of the physiological function of these peptidase systems, pathogenic host responses may be potentially amplified and cause acute respiratory distress.
Collapse
Affiliation(s)
- Berend Jan Bosch
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, the Netherlands
| | - Saskia L Smits
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
39
|
Li J, Zhou Y, Gu J. Stain-Decolorize-Stain (SDS): a new technique for multiple staining. Histochem Cell Biol 2014; 141:251-62. [PMID: 24390593 DOI: 10.1007/s00418-013-1177-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2013] [Indexed: 02/05/2023]
Abstract
Multiple staining of more than one gene/antigen on a single tissue section is an indispensable tool in cell and tissue research. However, most of the available multiple staining techniques have limitations, and there has been no technique to simultaneously visualize and distinguish tissue antigens, nucleotide sequences and other chemical compounds on the same slide. Here, we present a practical and economic multiple stain technique, with which multiple cellular components including mRNA (with in situ hybridization), antigen epitope (with immunohistochemistry) and chemical molecules (with histochemistry) can be stained on a single tissue section to study their relationship. In addition, this technique also offers the possibility to evaluate morphology with an H&E staining on the same sections. We used the placenta, pancreas, breast ductal carcinoma, colon adenocarcinoma, cerebellum, tonsil and heart tissue sections to evaluate the applicability of this new technique. The sensitivity and specificity of the technique have been tested, and an optimal protocol is recommended. Its applications in surgical pathology and research are discussed. This technique offers a novel tool to evaluate the relationship among multiple components at the same or adjacent locations to meet the needs of pathology diagnosis and research.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathology, Shantou University Medical College, Shantou, China
| | | | | |
Collapse
|
40
|
Human coronavirus HKU1 infection of primary human type II alveolar epithelial cells: cytopathic effects and innate immune response. PLoS One 2013; 8:e70129. [PMID: 23894604 PMCID: PMC3722178 DOI: 10.1371/journal.pone.0070129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/17/2013] [Indexed: 01/08/2023] Open
Abstract
Because they are the natural target for respiratory pathogens, primary human respiratory epithelial cells provide the ideal in vitro system for isolation and study of human respiratory viruses, which display a high degree of cell, tissue, and host specificity. Human coronavirus HKU1, first discovered in 2005, has a worldwide prevalence and is associated with both upper and lower respiratory tract disease in both children and adults. Research on HCoV-HKU1 has been difficult because of its inability to be cultured on continuous cell lines and only recently it was isolated from clinical specimens using primary human, ciliated airway epithelial cells. Here we demonstrate that HCoV-HKU1 can infect and be serially propagated in primary human alveolar type II cells at the air-liquid interface. We were not able to infect alveolar type I-like cells or alveolar macrophages. Type II alveolar cells infected with HCoV-HKU1 demonstrated formation of large syncytium. At 72 hours post inoculation, HCoV-HKU1 infection of type II cells induced increased levels of mRNAs encoding IL29,CXCL10, CCL5, and IL-6 with no significant increases in the levels of IFNβ. These studies demonstrate that type II cells are a target cell for HCoV-HKU1 infection in the lower respiratory tract, that type II alveolar cells are immune-competent in response to infection exhibiting a type III interferon and proinflammatory chemokine response, and that cell to cell spread may be a major factor for spread of infection. Furthermore, these studies demonstrate that human alveolar cells can be used to isolate and study novel human respiratory viruses that cause lower respiratory tract disease.
Collapse
|
41
|
Li Z, Li J, Zhang Y, Li L, Ma L, Li D, Gao F, Xia Z. Aerosolized avian influenza virus by laboratory manipulations. Virol J 2012; 9:146. [PMID: 22866888 PMCID: PMC3439333 DOI: 10.1186/1743-422x-9-146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 07/16/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. RESULTS Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. CONCLUSIONS Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.
Collapse
Affiliation(s)
- Zhiping Li
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jinsong Li
- Insititute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yandong Zhang
- Department of Rheumatology, First Hospital, Jilin University, Changchun, 130021, China
| | - Lin Li
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Limin Ma
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Dan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Feng Gao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhiping Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, China
| |
Collapse
|
42
|
Weinheimer VK, Becher A, Tönnies M, Holland G, Knepper J, Bauer TT, Schneider P, Neudecker J, Rückert JC, Szymanski K, Temmesfeld-Wollbrueck B, Gruber AD, Bannert N, Suttorp N, Hippenstiel S, Wolff T, Hocke AC. Influenza A viruses target type II pneumocytes in the human lung. J Infect Dis 2012; 206:1685-94. [PMID: 22829640 PMCID: PMC7107318 DOI: 10.1093/infdis/jis455] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background. Highly pathogenic avian H5N1 influenza viruses preferentially infect alveolar type II pneumocytes in human lung. However, it is unknown whether this cellular tropism contributes to high viral virulence because the primary target cells of other influenza viruses have not been systematically studied. Methods. We provide the first comparison of the replication, tropism, and cytokine induction of human, highly pathogenic avian influenza A virus subtype H5N1 and other animal influenza A viruses in primary human lung organ cultures. Results. Subytpe H5N1 and human-adapted subtype H1N1 and H3N2 viruses replicated efficiently in the lung tissue, whereas classic swine and low-pathogenicity avian viruses propagated only poorly. Nevertheless, all viruses examined were detected almost exclusively in type II pneumocytes, with a minor involvement of alveolar macrophages. Infection with avian viruses that have a low and high pathogenicity provoked a pronounced induction of cytokines and chemokines, while human and pandemic H1N1-2009 viruses triggered only weak responses. Conclusions. These findings show that differences in the pathogenic potential of influenza A viruses in the human lung cannot be attributed to a distinct cellular tropism. Rather, high or low viral pathogenicity is associated with a strain-specific capacity to productively replicate in type II pneumocytes and to cope with the induced cytokine response.
Collapse
Affiliation(s)
- Viola K Weinheimer
- Division of Influenza/Respiratory Viruses, Robert Koch Institut, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Coughlin MM, Prabhakar BS. Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action, and therapeutic potential. Rev Med Virol 2011; 22:2-17. [PMID: 21905149 PMCID: PMC3256278 DOI: 10.1002/rmv.706] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 12/12/2022]
Abstract
The emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS‐CoV) led to a rapid response not only to contain the outbreak but also to identify possible therapeutic interventions, including the generation of human monoclonal antibodies (hmAbs). hmAbs may be used therapeutically without the drawbacks of chimeric or animal Abs. Several different methods have been used to generate SARS‐CoV specific neutralizing hmAbs including the immunization of transgenic mice, cloning of small chain variable regions from naïve and convalescent patients, and the immortalization of convalescent B cells. Irrespective of the techniques used, the majority of hmAbs specifically reacted with the receptor binding domain (RBD) of the spike (S) protein and likely prevented receptor binding. However, several hmAbs that can bind to epitopes either within the RBD, located N terminal of the RBD or in the S2 domain, and neutralize the virus with or without inhibiting receptor binding have been identified. Therapeutic utility of hmAbs has been further elucidated through the identification of potential combinations of hmAbs that could neutralize viral variants including escape mutants selected using hmAbs. These results suggest that a cocktail of hmAbs that can bind to unique epitopes and have different mechanisms of action might be of clinical utility against SARS‐CoV infection, and indicate that a similar approach may be applied to treat other viral infections. Copyright © 2011 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Melissa M Coughlin
- Centers for Disease Control and Prevention, Measles, Mumps, Rubella and Herpes Virus Laboratory Branch, Atlanta, GA, USA.
| | | |
Collapse
|
44
|
Zhao Y, Liu Y, Chen Z, Korteweg C, Gu J. Immunoglobulin g (IgG) expression in human umbilical cord endothelial cells. J Histochem Cytochem 2011; 59:474-88. [PMID: 21430258 DOI: 10.1369/0022155411400871] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traditional views hold that immunoglobulin G (IgG) in the human umbilical cord is internalized by human umbilical endothelial cells for passive immunity. In this study, the protein and mRNA transcripts of IgG were found in the cytoplasm of human umbilical endothelial cells by immunohistochemistry, in situ hybridization, and reverse transcription PCR (RT-PCR). The essential enzymes for IgG synthesis and assembling, RAG1 (recombination activating gene 1), RAG2, and variable (V), diversity (D), and joining (J) segments for recombination of IgG, were also found in these cells by RT-PCR and real-time PCR. These results indicate that umbilical endothelial cells are capable of synthesizing IgG with properties similar to those of immune cells and that they may play additional roles besides lining the vessels and transporting IgG.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
45
|
Kumaki Y, Wandersee MK, Smith AJ, Zhou Y, Simmons G, Nelson NM, Bailey KW, Vest ZG, Li JKK, Chan PKS, Smee DF, Barnard DL. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral Res 2011; 90:22-32. [PMID: 21338626 PMCID: PMC3085190 DOI: 10.1016/j.antiviral.2011.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 02/04/2023]
Abstract
Urtica dioica agglutinin (UDA) is a small plant monomeric lectin, 8.7 kDa in size, with an N-acetylglucosamine specificity that inhibits viruses from Nidovirales in vitro. In the current study, we first examined the efficacy of UDA on the replication of different SARS-CoV strains in Vero 76 cells. UDA inhibited virus replication in a dose-dependent manner and reduced virus yields of the Urbani strain by 90% at 1.1 ± 0.4 μg/ml in Vero 76 cells. Then, UDA was tested for efficacy in a lethal SARS-CoV-infected BALB/c mouse model. BALB/c mice were infected with two LD50 (575 PFU) of virus for 4 h before the mice were treated intraperitoneally with UDA at 20, 10, 5 or 0 mg/kg/day for 4 days. Treatment with UDA at 5 mg/kg significantly protected the mice against a lethal infection with mouse-adapted SARS-CoV (p < 0.001), but did not significantly reduce virus lung titers. All virus-infected mice receiving UDA treatments were also significantly protected against weight loss (p < 0.001). UDA also effectively reduced lung pathology scores. At day 6 after virus exposure, all groups of mice receiving UDA had much lower lung weights than did the placebo-treated mice. Thus, our data suggest that UDA treatment of SARS infection in mice leads to a substantial therapeutic effect that protects mice against death and weight loss. Furthermore, the mode of action of UDA in vitro was further investigated using live SARS-CoV Urbani strain virus and retroviral particles pseudotyped with SARS-CoV spike (S). UDA specifically inhibited the replication of live SARS-CoV or SARS-CoV pseudotyped virus when added just before, but not after, adsorption. These data suggested that UDA likely inhibits SARS-CoV infection by targeting early stages of the replication cycle, namely, adsorption or penetration. In addition, we demonstrated that UDA neutralizes the virus infectivity, presumably by binding to the SARS-CoV spike (S) glycoprotein. Finally, the target molecule for the inhibition of virus replication was partially characterized. When UDA was exposed to N-acetylglucosamine and then UDA was added to cells just prior to adsorption, UDA did not inhibit the virus infection. These data support the conclusion that UDA might bind to N-acetylglucosamine-like residues present on the glycosylated envelope glycoproteins, thereby preventing virus attachment to cells.
Collapse
Affiliation(s)
- Yohichi Kumaki
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Epithelial cells lining salivary gland ducts are early target cells of severe acute respiratory syndrome coronavirus infection in the upper respiratory tracts of rhesus macaques. J Virol 2011; 85:4025-30. [PMID: 21289121 DOI: 10.1128/jvi.02292-10] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The shedding of severe acute respiratory syndrome coronavirus (SARS-CoV) into saliva droplets plays a critical role in viral transmission. The source of high viral loads in saliva, however, remains elusive. Here we investigate the early target cells of infection in the entire array of respiratory tissues in Chinese macaques after intranasal inoculations with a single-cycle pseudotyped virus and a pathogenic SARS-CoV. We found that angiotensin-converting enzyme 2-positive (ACE2(+)) cells were widely distributed in the upper respiratory tract, and ACE2(+) epithelial cells lining salivary gland ducts were the early target cells productively infected. Our findings also have implications for SARS-CoV early diagnosis and prevention.
Collapse
|
47
|
|
48
|
Autocrine interferon priming in macrophages but not dendritic cells results in enhanced cytokine and chemokine production after coronavirus infection. mBio 2010; 1. [PMID: 20978536 PMCID: PMC2957079 DOI: 10.1128/mbio.00219-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 09/20/2010] [Indexed: 12/14/2022] Open
Abstract
Coronaviruses efficiently inhibit interferon (IFN) induction in nonhematopoietic cells and conventional dendritic cells (cDC). However, IFN is produced in infected macrophages, microglia, and plasmacytoid dendritic cells (pDC). To begin to understand why IFN is produced in infected macrophages, we infected bone marrow-derived macrophages (BMM) and as a control, bone marrow-derived DC (BMDC) with the coronavirus mouse hepatitis virus (MHV). As expected, BMM but not BMDC expressed type I IFN. IFN production in infected BMM was nearly completely dependent on signaling through the alpha/beta interferon (IFN-α/β) receptor (IFNAR). Several IFN-dependent cytokines and chemokines showed the same expression pattern, with enhanced production in BMM compared to BMDC and dependence upon signaling through the IFNAR. Exogenous IFN enhanced IFN-dependent gene expression in BMM at early times after infection and in BMDC at all times after infection but did not stimulate expression of molecules that signal through myeloid differentiation factor 88 (MyD88), such as tumor necrosis factor (TNF). Collectively, our results show that IFN is produced at early times postinfection (p.i.) in MHV-infected BMM, but not in BMDC, and primes expression of IFN and IFN-responsive genes. Further, our results also show that BMM are generally more responsive to MHV infection, since MyD88-dependent pathways are also activated to a greater extent in these cells than in BMDC. Coronaviruses cause diseases with various degrees of severity in humans, including severe acute respiratory syndrome (SARS). In domestic and companion animals, coronaviruses induce interferon (IFN) in only a few cell types. In particular, macrophages, which are known to have both protective and pathogenic roles in coronavirus infections, express IFN while dendritic cells do not. Little is known about the basis of these cell-specific differences in IFN induction. Here, we show that an animal coronavirus, mouse hepatitis virus, induces IFN and other IFN-responsive molecules in macrophages, but not in dendritic cells, via a feedback loop that is dependent upon low-level IFN expression at early times after infection. This pathway of cellular activation may be a useful target for modulating macrophage function in order to selectively enhance the antivirus immune response and diminish the pathogenic role of these cells in SARS and other coronavirus infections.
Collapse
|
49
|
Su M, Guo Y, Zhao Y, Korteweg C, Gu J. Expression of cystic fibrosis transmembrane conductance regulator in paracervical ganglia. Biochem Cell Biol 2010; 88:747-55. [PMID: 20651848 DOI: 10.1139/o10-016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an important protein that acts as a chloride channel and regulates many physiological functions, including salt transport and fluid flow. Mutations in the gene encoding the CFTR protein cause cystic fibrosis. CFTR is expressed in the epithelial cells of the lungs, pancreas, intestines, and other organs. In the peripheral and central nervous system, CFTR expression has been detected in the neurons of rat brains, ganglion cells of rat hearts, human hypothalamus, human spinal cord, and human spinal and sympathetic ganglia. However, CFTR has not been identified in other parts of the nervous system. In this study, we used immunohistochemistry, in situ hybridization, and laser-assisted microdissection (LMD) followed by reverse transcriptase (RT) PCR to identify CFTR proteins and messenger RNA in human and rat paracervical ganglion cells. CFTR and its gene expression were both detected in paracervical ganglion cells, a finding that might link this important protein to the neuronal regulation of female urogenital function. These findings could provide new insights into the symptoms related to the reproductive system frequently observed in female cystic fibrosis patients.
Collapse
Affiliation(s)
- Meng Su
- Department of Pathology, Shantou University Medical College, Shantou, China
| | | | | | | | | |
Collapse
|
50
|
Nagata N, Iwata-Yoshikawa N, Taguchi F. Studies of severe acute respiratory syndrome coronavirus pathology in human cases and animal models. Vet Pathol 2010; 47:881-92. [PMID: 20664013 DOI: 10.1177/0300985810378760] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the severe acute respiratory syndrome (SARS) outbreak of 2003, approximately 10% of SARS patients developed progressive respiratory failure and died. Since then, several animal models have been established to study SARS coronavirus, with the aim of developing new antiviral agents and vaccines. This short review describes the pathologic features of SARS in relation to their clinical presentation in human cases. It also looks at animal susceptibility after experimental infection, animal models of SARS, and the pathogenesis of this disease. It seems that adaptation of the virus within the host animal and the subsequent abnormal immune responses may be key factors in the pathogenesis of this new and fatal respiratory disease. The proteases produced in the lung during inflammation could also play an important role for exacerbation of SARS in animals.
Collapse
Affiliation(s)
- N Nagata
- DVM, PhD, Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo, Japan,
| | | | | |
Collapse
|