1
|
Rodríguez-Martínez A, Torrejón-Escribano B, Eritja N, Dorca-Arévalo J, Gabaldón C, Sévigny J, Matias-Guiu X, Martín-Satué M. Endometrial epithelial cell organoids as tools for studying the CD39 family of enzymes and for validating enzyme inhibitors. Histol Histopathol 2025; 40:171-182. [PMID: 38967084 DOI: 10.14670/hh-18-782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Extracellular adenosine triphosphate (ATP) conducts a complex dynamic system of broadly represented cell signaling. Ectonucleotidases are the enzymes with nucleotide hydrolytic ability that regulate ATP levels in physiological and pathological conditions, thus playing a key role in the so-called purinergic signaling. Altered ectonucleotidase expression has been reported in cancer, and the ectonucleoside triphosphate diphosphohydrolase (NTPDase) family of enzymes, with its best-known form NTPDase1 (CD39), is targeted in cancer immunotherapy. The tandem of enzymes CD39-CD73 is responsible for the generation of immunosuppressive adenosine in the tumor microenvironment, and inhibition strategies are of great interest. Organoids have emerged as very convenient models for the study of tumors since they are three-dimensional cultures that retain many of the features of tissue. The present study aims to contribute to improving the methodology and the molecular tools needed for the study of ectonucleotidases in healthy and disease conditions. The study, performed in an endometrial cancer cell model, could be extended to other types of tumors and pathologies in which the purinergic system is involved. We generated organoids from endometrial cancer cells overexpressing NTPDase2 (CD39L1) and NTPDase3 (CD39L3) as fusion proteins with EGFP, and we performed functional assays by adapting in situ cytochemistry protocols. This allowed us to simultaneously detect enzyme activity and protein expression and to demonstrate that organoids can be used to test ectonucleotidase inhibitors-a result that can be used to develop new cancer treatment options.
Collapse
Affiliation(s)
- Aitor Rodríguez-Martínez
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, Barcelona, Spain
| | - Benjamín Torrejón-Escribano
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
- Scientific and Technological Centers (CCiTUB), Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
| | - Núria Eritja
- Departament de Patologia i Genètica Molecular, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Oncologic Pathology Group, Institut d'Investigació Biomèdica de Lleida (IRBLleida), CIBERONC, Universitat de Lleida, Lleida, Spain
| | - Jonatan Dorca-Arévalo
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
| | - Clara Gabaldón
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Xavier Matias-Guiu
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, Barcelona, Spain
- Departament de Patologia i Genètica Molecular, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Oncologic Pathology Group, Institut d'Investigació Biomèdica de Lleida (IRBLleida), CIBERONC, Universitat de Lleida, Lleida, Spain
- Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Mireia Martín-Satué
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, Barcelona, Spain
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Navaridas R, Vidal‐Sabanés M, Ruiz‐Mitjana A, Altés G, Perramon‐Güell A, Yeramian A, Egea J, Encinas M, Gatius S, Matias‐Guiu X, Dolcet X. In Vivo Intra-Uterine Delivery of TAT-Fused Cre Recombinase and CRISPR/Cas9 Editing System in Mice Unveil Histopathology of Pten/p53-Deficient Endometrial Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303134. [PMID: 37749866 PMCID: PMC10646277 DOI: 10.1002/advs.202303134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Indexed: 09/27/2023]
Abstract
Phosphatase and TENsin homolog (Pten) and p53 are two of the most frequently mutated tumor suppressor genes in endometrial cancer. However, the functional consequences and histopathological manifestation of concomitant p53 and Pten loss of function alterations in the development of endometrial cancer is still controversial. Here, it is demonstrated that simultaneous Pten and p53 deletion is sufficient to cause epithelial to mesenchymal transition phenotype in endometrial organoids. By a novel intravaginal delivery method using HIV1 trans-activator of transcription cell penetrating peptide fused with a Cre recombinase protein (TAT-Cre), local ablation of both p53 and Pten is achieved specifically in the uterus. These mice developed high-grade endometrial carcinomas and a high percentage of uterine carcinosarcomas resembling those found in humans. To further demonstrate that carcinosarcomas arise from epithelium, double Pten/p53 deficient epithelial cells are mixed with wild type stromal and myometrial cells and subcutaneously transplanted to Scid mice. All xenotransplants resulted in the development of uterine carcinosarcomas displaying high nuclear pleomorphism and metastatic potential. Accordingly, in vivo CRISPR/Cas9 disruption of Pten and p53 also triggered the development of metastatic carcinosarcomas. The results unfadingly demonstrate that simultaneous deletion of p53 and Pten in endometrial epithelial cells is enough to trigger epithelial to mesenchymal transition that is consistently translated to the formation of uterine carcinosarcomas in vivo.
Collapse
Affiliation(s)
- Raúl Navaridas
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Maria Vidal‐Sabanés
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Anna Ruiz‐Mitjana
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Gisela Altés
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Aida Perramon‐Güell
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Andree Yeramian
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Sonia Gatius
- Oncologic Pathology Group, Department of Basic Medical SciencesBiomedical Research Institute of Lleida (IRBLleida), CIBERONC.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Xavier Matias‐Guiu
- Oncologic Pathology Group, Department of Basic Medical SciencesBiomedical Research Institute of Lleida (IRBLleida), CIBERONC.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Xavier Dolcet
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| |
Collapse
|
3
|
Lack of extracellular matrix switches TGF-β induced apoptosis of endometrial cells to epithelial to mesenchymal transition. Sci Rep 2022; 12:14821. [PMID: 36050359 PMCID: PMC9437059 DOI: 10.1038/s41598-022-18976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
The extracellular matrix and the correct establishment of epithelial cell polarity plays a critical role in epithelial cell homeostasis and cell polarity. In addition, loss of tissue structure is a hallmark of carcinogenesis. In this study, we have addressed the role of extracellular matrix in the cellular responses to TGF-β. It is well known that TGF-β is a double-edged sword: it acts as a tumor suppressor in normal epithelial cells, but conversely has tumor-promoting effects in tumoral cells. However, the factors that determine cellular outcome in response to TGF-β remain controversial. Here, we have demonstrated that the lack of extracellular matrix and consequent loss of cell polarity inhibits TGF-β-induced apoptosis, observed when endometrial epithelial cells are polarized in presence of extracellular matrix. Rather, in absence of extracellular matrix, TGF-β-treated endometrial epithelial cells display features of epithelial-to-mesenchymal transition. We have also investigated the molecular mechanism of such a switch in cellular response. On the one hand, we found that the lack of Matrigel results in increased AKT signaling which is sufficient to inhibit TGF-β-induced apoptosis. On the other hand, we demonstrate that TGF-β-induced epithelial-to-mesenchymal transition requires ERK and SMAD2/3 activation. In summary, we demonstrate that loss of cell polarity changes the pro-apoptotic function of TGF-β to tumor-associated phenotype such as epithelial-to-mesenchymal transition. These results may be important for understanding the dual role of TGF-β in normal versus tumoral cells.
Collapse
|
4
|
Megino-Luque C, Sisó P, Mota-Martorell N, Navaridas R, de la Rosa I, Urdanibia I, Albertí-Valls M, Santacana M, Pinyol M, Bonifaci N, Macià A, Llobet-Navas D, Gatius S, Matias-Guiu X, Eritja N. ARID1A-deficient cells require HDAC6 for progression of endometrial carcinoma. Mol Oncol 2022; 16:2235-2259. [PMID: 35167193 PMCID: PMC9168762 DOI: 10.1002/1878-0261.13193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
AT‐rich interactive domain‐containing protein 1A (ARID1A) loss‐of‐function mutation accompanied by a loss of ARID1A protein expression is frequently observed in endometrial carcinomas. However, the molecular mechanisms linking these genetic changes to the altered pathways regulating tumour initiation, maintenance and/or progression remain poorly understood. Thus, the main aim of this study was to analyse the role of ARID1A loss of function in endometrial tumorigenesis. Here, using different endometrial in vitro and in vivo models, such as tumoral cell lines, 3D primary cultures and metastatic or genetically modified mouse models, we show that altered expression of ARID1A is not enough to initiate endometrial tumorigenesis. However, in an established endometrial cancer context, ARID1A loss of function accelerates tumoral progression and metastasis through the disruption of the G2/M cell cycle checkpoint and ATM/ATR‐mediated DNA damage checkpoints, increases epithelial cell proliferation rates and induces epithelial mesenchymal transition through the activation of histone deacetylase 6 (HDAC6). Next, we demonstrated that the inhibition of HDAC6 function, using the HDAC6‐specific inhibitor ACY1215 or by transfection with HDAC6 short hairpin RNA (shRNA), can reverse the migratory and invasive phenotype of ARID1A‐knockdown cells. Further, we also show that inhibition of HDAC6 activity causes an apoptotic vulnerability to etoposide treatments in ARID1A‐deficient cells. In summary, the findings exposed in this work indicate that the inhibition of HDAC6 activity is a potential therapeutic strategy for patients suffering from ARID1A‐mutant endometrial cancer diagnosed in advanced stages.
Collapse
Affiliation(s)
- Cristina Megino-Luque
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Pol Sisó
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Natalia Mota-Martorell
- Metabolic Physiopathology Group, Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Raúl Navaridas
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Inés de la Rosa
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Izaskun Urdanibia
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Manel Albertí-Valls
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Maria Santacana
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Scientific and Technical Service of Immunohistochemistry, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Miquel Pinyol
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Department of Pathology, Hospital Universitari Arnau de Vilanova, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Núria Bonifaci
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Anna Macià
- Oncologic Pathology Group, Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - David Llobet-Navas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sònia Gatius
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Av. Gran via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Núria Eritja
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| |
Collapse
|
5
|
Eritja N, Navaridas R, Ruiz-Mitjana A, Vidal-Sabanés M, Egea J, Encinas M, Matias-Guiu X, Dolcet X. Endometrial PTEN Deficiency Leads to SMAD2/3 Nuclear Translocation. Cancers (Basel) 2021; 13:cancers13194990. [PMID: 34638474 PMCID: PMC8507901 DOI: 10.3390/cancers13194990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary PTEN is a protein highly altered in endometrial cancer. PTEN mutation or deficiency leads to the activation of other downstream proteins that are important to the development of cancers. In this study, we have identified the SMAD2/3 proteins as targets of PTEN deficiency. We have found that loss of PTEN in endometrial cells leads to SMAD2/3 activation. To investigate the role of SMAD2/3 activation downstream of PTEN deficiency, we have used endometrial cells lacking both PTEN and SMAD2/3 proteins. These cells display even more tumorigenic potential than cells lacking only PTEN. These results suggest that SMAD2/3 acts as an obstacle for cancer development triggered by PTEN loss. Abstract TGF-β has a dichotomous function, acting as tumor suppressor in premalignant cells but as a tumor promoter for cancerous cells. These contradictory functions of TGF-β are caused by different cellular contexts, including both intracellular and environmental determinants. The TGF-β/SMAD and the PI3K/PTEN/AKT signal transduction pathways have an important role in the regulation of epithelial cell homeostasis and perturbations in either of these two pathways’ contributions to endometrial carcinogenesis. We have previously demonstrated that both PTEN and SMAD2/3 display tumor-suppressive functions in the endometrium, and genetic ablation of either gene results in sustained activation of PI3K/AKT signaling that suppresses TGF-β-induced apoptosis and enhances cell proliferation of mouse endometrial cells. However, the molecular and cellular effects of PTEN deficiency on TGF-β/SMAD2/3 signaling remain controversial. Here, using an in vitro and in vivo model of endometrial carcinogenesis, we have demonstrated that loss of PTEN leads to a constitutive SMAD2/3 nuclear translocation. To ascertain the function of nuclear SMAD2/3 downstream of PTEN deficiency, we analyzed the effects of double deletion PTEN and SMAD2/3 in mouse endometrial organoids. Double PTEN/SMAD2/3 ablation results in a further increase of cell proliferation and enlarged endometrial organoids compared to those harboring single PTEN, suggesting that nuclear translocation of SMAD2/3 constrains tumorigenesis induced by PTEN deficiency.
Collapse
Affiliation(s)
- Núria Eritja
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Raúl Navaridas
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Anna Ruiz-Mitjana
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Maria Vidal-Sabanés
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
| | - Joaquim Egea
- Molecular Developmental Neurobiology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain;
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Departament de Medicina Experimental, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain;
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
- Department of Pathology, Hospital Universitari de Bellvitge, 08908 Barcelona, Spain
| | - Xavier Dolcet
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, IRBLleida, Universitat de Lleida, Centro de Investigación Biomédica en Red Cáncer CIBERONC, 25198 Lleida, Spain; (N.E.); (R.N.); (A.R.-M.); (M.V.-S.); (X.M.-G.)
- Correspondence:
| |
Collapse
|
6
|
Barés G, Beà A, Hernández L, Navaridas R, Felip I, Megino C, Blasco N, Nadeu F, Campo E, Llovera M, Dolcet X, Sanchis D. ENDOG Impacts on Tumor Cell Proliferation and Tumor Prognosis in the Context of PI3K/PTEN Pathway Status. Cancers (Basel) 2021; 13:3803. [PMID: 34359707 PMCID: PMC8345062 DOI: 10.3390/cancers13153803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
EndoG influences mitochondrial DNA replication and is involved in somatic cell proliferation. Here, we investigated the effect of ENDOG/Endog expression on proliferation in different tumor models. Noteworthy, ENDOG deficiency reduced proliferation of endometrial tumor cells expressing low PTEN/high p-AKT levels, and Endog deletion blunted the growth of PTEN-deficient 3D endometrial cultures. Furthermore, ENDOG silencing reduced proliferation of follicular thyroid carcinoma and glioblastoma cell lines with high p-AKT expression. High ENDOG expression was associated with a short time to treatment in a cohort of patients with chronic lymphocytic leukemia (CLL), a B-cell lymphoid neoplasm with activation of PI3K/AKT. This clinical impact was observed in the less aggressive CLL subtype with mutated IGHV in which high ENDOG and low PTEN levels were associated with worse outcome. In summary, our results show that reducing ENDOG expression hinders growth of some tumors characterized by low PTEN activity and high p-AKT expression and that ENDOG has prognostic value for some cancer types.
Collapse
Affiliation(s)
- Gisel Barés
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, 25198 Lleida, Spain; (G.B.); (A.B.); (N.B.); (M.L.)
| | - Aida Beà
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, 25198 Lleida, Spain; (G.B.); (A.B.); (N.B.); (M.L.)
| | - Luís Hernández
- Lymphoid Neoplasm Program, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS) and CIBERONC, 08036 Barcelona, Spain; (F.N.); (E.C.)
| | - Raul Navaridas
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLleida and CIBERONC, 25198 Lleida, Spain; (R.N.); (I.F.); (C.M.); (X.D.)
| | - Isidre Felip
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLleida and CIBERONC, 25198 Lleida, Spain; (R.N.); (I.F.); (C.M.); (X.D.)
| | - Cristina Megino
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLleida and CIBERONC, 25198 Lleida, Spain; (R.N.); (I.F.); (C.M.); (X.D.)
| | - Natividad Blasco
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, 25198 Lleida, Spain; (G.B.); (A.B.); (N.B.); (M.L.)
| | - Ferran Nadeu
- Lymphoid Neoplasm Program, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS) and CIBERONC, 08036 Barcelona, Spain; (F.N.); (E.C.)
| | - Elías Campo
- Lymphoid Neoplasm Program, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS) and CIBERONC, 08036 Barcelona, Spain; (F.N.); (E.C.)
- Department of Oncology, Hospital Clinic of Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Marta Llovera
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, 25198 Lleida, Spain; (G.B.); (A.B.); (N.B.); (M.L.)
| | - Xavier Dolcet
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLleida and CIBERONC, 25198 Lleida, Spain; (R.N.); (I.F.); (C.M.); (X.D.)
| | - Daniel Sanchis
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, 25198 Lleida, Spain; (G.B.); (A.B.); (N.B.); (M.L.)
| |
Collapse
|
7
|
Bergmann S, Schindler M, Munger C, Penfold CA, Boroviak TE. Building a stem cell-based primate uterus. Commun Biol 2021; 4:749. [PMID: 34140619 PMCID: PMC8211708 DOI: 10.1038/s42003-021-02233-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
The uterus is the organ for embryo implantation and fetal development. Most current models of the uterus are centred around capturing its function during later stages of pregnancy to increase the survival in pre-term births. However, in vitro models focusing on the uterine tissue itself would allow modelling of pathologies including endometriosis and uterine cancers, and open new avenues to investigate embryo implantation and human development. Motivated by these key questions, we discuss how stem cell-based uteri may be engineered from constituent cell parts, either as advanced self-organising cultures, or by controlled assembly through microfluidic and print-based technologies.
Collapse
Affiliation(s)
- Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Magdalena Schindler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Clara Munger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Christopher A Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
- Wellcome Trust - Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK.
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| |
Collapse
|
8
|
Nishino D, Kotake A, Yun CS, Rahman ANMI, El-Sharawy M, Yamanaka KI, Khandoker MAMY, Yamauchi N. Gene expression of bovine endometrial epithelial cells cultured in matrigel. Cell Tissue Res 2021; 385:265-275. [PMID: 33837849 DOI: 10.1007/s00441-021-03418-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/15/2021] [Indexed: 10/21/2022]
Abstract
Glandular epithelial cells (GE) in the endometrium are thought to support the elongation and survival of ruminant embryos by secreting histotrophs. In the present study, the gene expression of bovine endometrial epithelial cells cultured in matrigel was analyzed and examined whether it could be an in vitro model of GE. Bovine endometrial epithelial cells (BEE) and stromal cells (BES) were isolated from the slaughterhouse uteri and cultured in DMEM/F12 + 10% FBS. BEE showed the gland-like structure morphological changes when cultured in 15% matrigel but could not be identified in higher concentrations of the matrigel (30% or 60%). The expression of typical genes expressed in GE, SERPINA14 and GRP, was substantially high in matrigel-cultured BEE than in monolayer (P < 0.05). P4 and INFα have no significant effect on the SERPINA14 expression of BEE cultured in matrigel without co-culture with BES. On the other hand, when BEE were co-cultured with BES in matrigel culture, the expression of FGF13 was increased by the P4 treatment (P < 0.05). Furthermore, SERPINA14 and TXN expressions were increased by P4 + IFNα treatment (P < 0.05). These results demonstrate the appropriate conditions for BEE to form glandular structures in matrigel and the effect of co-culture with BES. The present study highlighted the possible use of matrigel for the culture of BEE to investigate the expression of cell-specific glandular epithelial genes as well as P4 and type-I IFN as factors controlling endometrial function during the implantation period.
Collapse
Affiliation(s)
- Daichi Nishino
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ai Kotake
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Chi Sun Yun
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Al-Nur Md Iftekhar Rahman
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Animal Nutrition, Genetics and Breeding, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Mohamed El-Sharawy
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | | | - M A M Yahia Khandoker
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Nobuhiko Yamauchi
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
9
|
Chumduri C, Turco MY. Organoids of the female reproductive tract. J Mol Med (Berl) 2021; 99:531-553. [PMID: 33580825 PMCID: PMC8026429 DOI: 10.1007/s00109-020-02028-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Healthy functioning of the female reproductive tract (FRT) depends on balanced and dynamic regulation by hormones during the menstrual cycle, pregnancy and childbirth. The mucosal epithelial lining of different regions of the FRT-ovaries, fallopian tubes, uterus, cervix and vagina-facilitates the selective transport of gametes and successful transfer of the zygote to the uterus where it implants and pregnancy takes place. It also prevents pathogen entry. Recent developments in three-dimensional (3D) organoid systems from the FRT now provide crucial experimental models that recapitulate the cellular heterogeneity and physiological, anatomical and functional properties of the organ in vitro. In this review, we summarise the state of the art on organoids generated from different regions of the FRT. We discuss the potential applications of these powerful in vitro models to study normal physiology, fertility, infections, diseases, drug discovery and personalised medicine.
Collapse
Affiliation(s)
- Cindrilla Chumduri
- Department of Microbiology, University of Würzburg, Biocenter, Würzburg, Germany.
- Max Planck Institute for Infection Biology, Berlin, Germany.
| | - Margherita Y Turco
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, Cambridge, UK.
| |
Collapse
|
10
|
Campos Muzquiz LG, Martínez Gómez D, Reyes Cruz T, Méndez Olvera ET. Evaluation of intracellular survival of Campylobacter fetus subsp. fetus in bovine endometrial cells by qPCR. IRANIAN JOURNAL OF VETERINARY RESEARCH 2021; 22:94-99. [PMID: 34306105 PMCID: PMC8294819 DOI: 10.22099/ijvr.2021.38693.5632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/02/2021] [Accepted: 02/28/2021] [Indexed: 09/30/2022]
Abstract
BACKGROUND Campylobacter fetus subsp. fetus is the causal agent of sporadic abortion and infertility in bovines that produces economic losses in livestock. AIMS This study evaluates the capability of C. fetus subsp. fetus to invade and survive in bovine endometrial epithelial cells and attempts to describe a pathogenic mechanism of this microorganism. METHODS Primary culture of bovine endometrial epithelial cells was challenged with C. fetus subsp. fetus. Intracellular bacteria, represented by the number of genomic copies (g.c.) were quantified at 0, 2, 4, 10, and 24 hours post-infection (h.p.i.), by quantitative polymerase chain reaction (qPCR). The presence of intracellular bacteria was evaluated by immunofluorescence and immunohistochemistry. RESULTS The results showed that only viable C. fetus subsp. fetus could invade endometrial cells. The g.c. number in assays with viable C. fetus subsp. fetus reached an average value of 656 g.c., remained constant until 4 h.p.i., then decreased to 100 g.c, at 24 h.p.i. In assays with non-viable microorganisms, the average value of g.c. was less than 1 g.c. and never changed. The intracellular presence of this bacteria was confirmed at 2 h.p.i. by immunofluorescence and immunohistochemistry. CONCLUSION The results suggest that only C. fetus subsp. fetus viable can invade bovine endometrial epithelial cells but will not replicate in them, indicating that the endometrial cells do not represent a replication niche for this pathogen. Nonetheless, this invasion capability suggests that this type of cell could be employed by the pathogen to spread to other tissues.
Collapse
Affiliation(s)
- L. G. Campos Muzquiz
- Department of Genetics and Virology, Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Mexico
| | - D. Martínez Gómez
- Laboratory of Agricultural Microbiology, Department of Agricultural and Animal Production, Metropolitan Autonomous University-Xochimilco, Mexico City, Mexico
| | - T. Reyes Cruz
- Biological and Health Sciences Division, Department of Agricultural and Animal Production, Metropolitan Autonomous University-Xochimilco, Mexico City, Mexico
| | - E. T. Méndez Olvera
- Laboratory of Molecular Biology, Department of Agricultural and Animal Production, Metropolitan Autonomous University-Xochimilco, Mexico City, Mexico
| |
Collapse
|
11
|
Semertzidou A, Brosens JJ, McNeish I, Kyrgiou M. Organoid models in gynaecological oncology research. Cancer Treat Rev 2020; 90:102103. [PMID: 32932156 DOI: 10.1016/j.ctrv.2020.102103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Cell culture and animal models represent experimental cornerstones for the investigation of tissue, organ and body physiology in the context of gynaecological research. However, their ability to accurately reflect human mechanisms in vivo is limited. The development of organoid technologies has begun to address this limitation by providing platforms ex vivo that resemble the phenotype and genotype of the multi-cellular tissue from which they were derived more accurately. In this review, we discuss advances in organoid derivation from endometrial, ovarian, fallopian tube and cervical tissue, both benign and malignant, the manipulation of organoid microenvironment to preserve stem cell populations and achieve long-term expansion and we explore the morphological and molecular kinship of organoids to parent tissue. Apart from providing new insight into mechanisms of carcinogenesis, gynaecological cancer-derived organoids can be utilised as tools for drug screening of chemotherapeutic and hormonal compounds where they exhibit interpatient variability consistent with states in vivo and xenografted tumours allowing for patient-tailored treatment strategies. Bridging organoid with bioengineering accomplishments is clearly the way forward to the generation of organoid-on-a-chip technologies enhancing the robustness of the model and its translational potential. Undeniably, organoids are expected to stand their ground in the years to come and revolutionize development and disease modelling studies.
Collapse
Affiliation(s)
- Anita Semertzidou
- Department of Surgery and Cancer & Department of Digestion, Metabolism and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Queen Charlotte's and Chelsea - Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Jan J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Iain McNeish
- Department of Surgery and Cancer & Department of Digestion, Metabolism and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Maria Kyrgiou
- Department of Surgery and Cancer & Department of Digestion, Metabolism and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Queen Charlotte's and Chelsea - Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK.
| |
Collapse
|
12
|
Wang J, Zhou L, Sun Q, Cai H, Tan WS. Porous chitosan derivative scaffolds affect proliferation and osteogenesis of mesenchymal stem cell via reducing intracellular ROS. Carbohydr Polym 2020; 237:116108. [DOI: 10.1016/j.carbpol.2020.116108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
|
13
|
Dundon M, Madden O, Comizzoli P. Three-dimensional culture of endometrial cells from domestic cats: A new in vitro platform for assessing plastic toxicity. PLoS One 2019; 14:e0217365. [PMID: 31136609 PMCID: PMC6538153 DOI: 10.1371/journal.pone.0217365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Plastic polymers can be combined with additives that modify physical properties and stability of the material. However, the biocompatibility of those additives is not well known. The objective of the study was to characterize the impact of zinc stearate-a common additive-through the development of a novel three-dimensional (3-D) in vitro platform with endometrial cells from domestic cats. Epithelial and stromal cells from adult uteri were isolated and cultured in medium supplemented with 3% Matrigel for two weeks in plastic tissue culture dishes that had been identified as polystyrene with and without zinc stearate by Raman, FTIR, and X-ray fluorescence spectroscopies. Three-dimensional cell structures that were obtained were measured and categorized by shape. Cell viability, proliferation, differentiation, organization, and apoptosis then were assessed by immuno-staining. Results indicated that zinc stearate did not affect 3-D endometrial cell structure morphology, viability, or cellular composition. This first study of a new in vitro platform will be useful for studies testing the influence of other additives, drugs, or exogenous hormones.
Collapse
Affiliation(s)
- Morgan Dundon
- Center for Species Survival Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States of America
- Smithsonian Museum Conservation Institute, Suitland, MD, Untied States of America
| | - Odile Madden
- Smithsonian Museum Conservation Institute, Suitland, MD, Untied States of America
| | - Pierre Comizzoli
- Center for Species Survival Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States of America
| |
Collapse
|
14
|
Felip I, Moiola CP, Megino-Luque C, Lopez-Gil C, Cabrera S, Solé-Sánchez S, Muñoz-Guardiola P, Megias-Roda E, Pérez-Montoyo H, Alfon J, Yeste-Velasco M, Santacana M, Dolcet X, Reques A, Oaknin A, Rodríguez-Freixinos V, Lizcano JM, Domènech C, Gil-Moreno A, Matias-Guiu X, Colas E, Eritja N. Therapeutic potential of the new TRIB3-mediated cell autophagy anticancer drug ABTL0812 in endometrial cancer. Gynecol Oncol 2019; 153:425-435. [PMID: 30853360 DOI: 10.1016/j.ygyno.2019.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The PI3K/AKT/mTOR pathway is frequently overactivated in endometrial cancer (EC). We assessed the efficacy of ABTL0812, a novel first-in-class molecule presenting a unique mechanism of action inhibiting this pathway. METHODS We investigated the effects of ABTL0812 on proliferation, cell death and modulation of intracellular signaling pathways in a wide panel of endometrioid and non-endometrioid cell lines, an inducible PTEN knock-out murine model, and two patient-derived xenograft murine models of EC. Then, TRIB3 expression was evaluated as potential ABTL0812 pharmacodynamic biomarker in a Phase 1b/2a clinical trial. RESULTS ABTL0812 induced an upregulation of TRIB3 expression, resulting in the PI3K/AKT/mTOR axis inhibition and autophagy cell death induction on EC cells but not in healthy endometrial cells. ABTL0812 treatment also impaired PTEN knock-out cells to progress from hyperplasia to cancer. The therapeutic effects of ABTL0812 were demonstrated in vivo. ABTL0812 increased TRIB3 mRNA levels in whole blood samples of eight EC patients, demonstrating that TRIB3 mRNA could be used as a pharmacodynamic biomarker to monitor the ABTL0812 treatment. CONCLUSIONS ABTL0812 may represent a novel and highly effective therapeutic agent by inducing TRIB3 expression and autophagy in EC patients, including those with poorer prognosis.
Collapse
Affiliation(s)
- Isidre Felip
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain
| | - Cristian Pablo Moiola
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain; Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Cristina Megino-Luque
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain
| | - Carlos Lopez-Gil
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Silvia Cabrera
- Gynecological Oncology Department, Vall Hebron University Hospital, CIBERONC, Barcelona, Spain
| | | | - Pau Muñoz-Guardiola
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain; Protein Kinases and Signal Transduction Laboratory, Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Elisabet Megias-Roda
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain; Protein Kinases and Signal Transduction Laboratory, Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - José Alfon
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain
| | | | - María Santacana
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain
| | - Armando Reques
- Pathology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Ana Oaknin
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Victor Rodríguez-Freixinos
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - José Miguel Lizcano
- Protein Kinases and Signal Transduction Laboratory, Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Carles Domènech
- Ability Pharmaceuticals, SL, Cerdanyola Del Vallès, Barcelona, Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain; Gynecological Oncology Department, Vall Hebron University Hospital, CIBERONC, Barcelona, Spain.
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain; Department of Pathology, University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain.
| | - Nuria Eritja
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, Lleida, Spain.
| |
Collapse
|
15
|
Suh DS, Park SE, Jin H, Lee K, Bae J. LRIG2 is a growth suppressor of Hec-1A and Ishikawa endometrial adenocarcinoma cells by regulating PI3K/AKT- and EGFR-mediated apoptosis and cell-cycle. Oncogenesis 2018; 7:3. [PMID: 29358688 PMCID: PMC5833696 DOI: 10.1038/s41389-017-0019-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/22/2017] [Indexed: 01/07/2023] Open
Abstract
Although endometrial cancer is the most common type of gynecological malignancy in developed countries, its molecular etiology is not well understood. Leucine-rich repeat and immunoglobulin-like domain 2 (LRIG2) is an evolutionarily conserved gene, but its functions in the endometrium are unknown. In this study, we found that LRIG2 is highly downregulated in endometrial adenocarcinoma patients and that it functions as a tumor suppressor. LRIG2 induced the mitochondrion-mediated apoptotic pathways by regulating stoichiometric balance among BCL-2 family proteins, whereby pro-survival members, MCL-1 and BCL-xL, were downregulated and pro-apoptotic BAK and BAX were upregulated. LRIG2 also inhibited proliferation of the Hec-1A and Ishikawa endometrial adenocarcinoma cells by upregulating p21. LRIG2 induced BAX- and BAK-dependent cell death that was efficiently prevented by MCL-1 overexpression. Furthermore, we found that LRIG2 unexpectedly phosphor-activates phosphoinositide 3-kinase (PI3K)/AKT and epidermal growth factor receptor (EGFR), which are conventionally accepted as survival signaling cues in diverse types of cancer. We observed that PI3K/AKT and EGFR serve as key kinases that have roles as growth suppressors of Hec-1A endometrial cancer cells by mediating the LRIG2-induced modulation of the BCL-2 family of proteins and p21. In vivo delivery of antisense DNAs against LRIG2 promoted the Hec-1A endometrial tumor growth in a xenograft mouse model, and immunoblotting of these tumor extracts showed consistent modulation of AKT, EGFR, the BCL-2 family members, and p21. Thus, our results demonstrated that LRIG2 is a growth suppressor of endometrial adenocarcinoma cells.
Collapse
Affiliation(s)
- Dae-Shik Suh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| | - Si Eun Park
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Hanyong Jin
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
16
|
Brandt LP, Albers J, Hejhal T, Catalano A, Wild PJ, Frew IJ. Oncogenic HrasG12V expression plus knockdown of Cdkn2a using ecotropic lentiviral vectors induces high-grade endometrial stromal sarcoma. PLoS One 2017; 12:e0186102. [PMID: 28982163 PMCID: PMC5628932 DOI: 10.1371/journal.pone.0186102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 01/29/2023] Open
Abstract
The uterine corpus represents the most common site for tumour development in the female genital system. Uterine neoplasms are categorised as epithelial, mesenchymal, mixed epithelial-mesenchymal or trophoblastic tumours. In this study we employed a mouse genetic approach using the MuLE lentiviral gene regulatory system to functionally test the ability of ecotropic lentiviruses to model epithelial and mesenchymal uterine malignancies ex vivo and in vivo. We discovered that MuLE lentiviruses efficiently infect uterine stromal cells but not endometrial epithelial cells when injected into the uterus of cycling, pseudopregnant or ovarectomized mice. Consistent with this cellular infection spectrum, we show that intra-uterine injection of ecotropic MuLE viruses expressing oncogenic HrasG12V together with knockdown of Cdkn2a induce high-grade endometrial stromal sarcomas. These findings establish this approach as an efficient method of generating autochthonous mouse models of uterine sarcomas and in general for performing genetic manipulations of uterine stromal cells in vivo.
Collapse
Affiliation(s)
- Laura P. Brandt
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Joachim Albers
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Tomas Hejhal
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Antonella Catalano
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Peter J. Wild
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Ian J. Frew
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Eritja N, Yeramian A, Chen BJ, Llobet-Navas D, Ortega E, Colas E, Abal M, Dolcet X, Reventos J, Matias-Guiu X. Endometrial Carcinoma: Specific Targeted Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:149-207. [PMID: 27910068 DOI: 10.1007/978-3-319-43139-0_6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in the western world with more than 280,000 cases per year worldwide. Prognosis for EC at early stages, when primary surgical resection is the most common initial treatment, is excellent. Five-year survival rate is around 70 %.Several molecular alterations have been described in the different types of EC. They occur in genes involved in important signaling pathways. In this chapter, we will review the most relevant altered pathways in EC, including PI3K/AKT/mTOR, RAS-RAF-MEK-ERK, Tyrosine kinase, WNT/β-Catenin, cell cycle, and TGF-β signaling pathways. At the end of the chapter, the most significant clinical trials will be briefly discussed.This information is important to identify specific targets for therapy.
Collapse
Affiliation(s)
- Nuria Eritja
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Bo-Juen Chen
- New York Genome Center, New York, NY, 10013, USA
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne, NE1 3BZ, UK
| | - Eugenia Ortega
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Eva Colas
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Miguel Abal
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Jaume Reventos
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
| |
Collapse
|
18
|
Abstract
AbstractGlutamine commonly becomes a conditionally essential amino acid in cancer. Glutamine is supplied to the cell by transporters such as ASCT2 (SLC1A5), which is frequently upregulated in multiple cancers. Here we investigated the expression of ASCT2 in endometrial carcinoma, and evaluated the contribution of ASCT2 to glutamine uptake and endometrial cancer cell growth. Analysis of human gene expression data showed that ASCT2 was significantly upregulated in both endometrioid and serous subtypes of endometrial carcinoma, compared to normal, age-matched endometrium. Furthermore, immunohistochemical staining of primary human endometrioid adenocarcinomas showed that tumours stain positive for ASCT2 in either a uniform or mosaic expression pattern, while normal adjacent glands appeared predominantly negative for ASCT2 staining. Chemical inhibition of glutamine transport by benzylserine or GPNA led to a significant decrease in endometrial cancer cell growth and spheroid cross-sectional area. ASCT2 knockdown recapitulated the decrease of cell growth and spheroid cross-sectional area in HEC1A cells, suggesting a reliance on ASCT2-mediated glutamine uptake. ASCT2 knockdown in Ishikawa cells led to lower glutamine uptake and cell growth, but did not affect spheroid area. Ishikawa cells express higher levels of the glutamine transporter SNAT1 compared to HEC1A cells, suggesting these cells may rely on both ASCT2 and SNAT1 for glutamine uptake. Since SNAT1 is also significantly upregulated in the endometrioid and serous subtypes, these data indicate that ASCT2 and SNAT1 could be used as markers of malignancy, and/or potential therapeutic targets in patients with endometrial carcinoma.
Collapse
|
19
|
ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogenesis 2017; 6:e367. [PMID: 28759021 PMCID: PMC5541720 DOI: 10.1038/oncsis.2017.70] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 05/18/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022] Open
Abstract
Glutamine commonly becomes a conditionally essential amino acid in cancer. Glutamine is supplied to the cell by transporters such as ASCT2 (SLC1A5), which is frequently upregulated in multiple cancers. Here we investigated the expression of ASCT2 in endometrial carcinoma, and evaluated the contribution of ASCT2 to glutamine uptake and endometrial cancer cell growth. Analysis of human gene expression data showed that ASCT2 was significantly upregulated in both endometrioid and serous subtypes of endometrial carcinoma, compared to normal, age-matched endometrium. Furthermore, immunohistochemical staining of primary human endometrioid adenocarcinomas showed that tumours stain positive for ASCT2 in either a uniform or mosaic expression pattern, while normal adjacent glands appeared predominantly negative for ASCT2 staining. Chemical inhibition of glutamine transport by benzylserine or GPNA led to a significant decrease in endometrial cancer cell growth and spheroid cross-sectional area. ASCT2 knockdown recapitulated the decrease of cell growth and spheroid cross-sectional area in HEC1A cells, suggesting a reliance on ASCT2-mediated glutamine uptake. ASCT2 knockdown in Ishikawa cells led to lower glutamine uptake and cell growth, but did not affect spheroid area. Ishikawa cells express higher levels of the glutamine transporter SNAT1 compared to HEC1A cells, suggesting these cells may rely on both ASCT2 and SNAT1 for glutamine uptake. Since SNAT1 is also significantly upregulated in the endometrioid and serous subtypes, these data indicate that ASCT2 and SNAT1 could be used as markers of malignancy, and/or potential therapeutic targets in patients with endometrial carcinoma.
Collapse
|
20
|
Eritja N, Felip I, Dosil MA, Vigezzi L, Mirantes C, Yeramian A, Navaridas R, Santacana M, Llobet-Navas D, Yoshimura A, Nomura M, Encinas M, Matias-Guiu X, Dolcet X. A Smad3-PTEN regulatory loop controls proliferation and apoptotic responses to TGF-β in mouse endometrium. Cell Death Differ 2017; 24:1443-1458. [PMID: 28524854 DOI: 10.1038/cdd.2017.73] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023] Open
Abstract
The TGF-β/Smad and the PI3K/AKT signaling pathways are important regulators of proliferation and apoptosis, and their alterations lead to cancer development. TGF-β acts as a tumor suppressor in premalignant cells, but it is a tumor promoter for cancerous cells. Such dichotomous actions are dictated by different cellular contexts. Here, we have unveiled a PTEN-Smad3 regulatory loop that provides a new insight in the complex cross talk between TGF-β/Smad and PI3K/AKT signaling pathways. We demonstrate that TGF-β triggers apoptosis of wild-type polarized endometrial epithelial cells by a Smad3-dependent activation of PTEN transcription, which results in the inhibition of PI3K/AKT signaling pathway. We show that specific Smad3 knockdown or knockout reduces basal and TGF-β-induced PTEN expression in endometrial cells, resulting in a blockade of TGF-β-induced apoptosis and an enhancement of cell proliferation. Likewise Smad3 deletion, PTEN knockout prevents TGF-β-induced apoptosis and increases cell proliferation by increasing PI3K/AKT/mTOR signaling. In summary, our results demonstrate that Smad3-PTEN signaling axis determine cellular responses to TGF-β.
Collapse
Affiliation(s)
- Nuria Eritja
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Isidre Felip
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Mari Alba Dosil
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Lucia Vigezzi
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Cristina Mirantes
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Andree Yeramian
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Raúl Navaridas
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Maria Santacana
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | - Mario Encinas
- Department Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Xavi Dolcet
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| |
Collapse
|
21
|
Dosil MA, Mirantes C, Eritja N, Felip I, Navaridas R, Gatius S, Santacana M, Colàs E, Moiola C, Schoenenberger JA, Encinas M, Garí E, Matias-Guiu X, Dolcet X. Palbociclib has antitumour effects on Pten-
deficient endometrial neoplasias. J Pathol 2017; 242:152-164. [DOI: 10.1002/path.4896] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/08/2017] [Accepted: 03/09/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Maria Alba Dosil
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Cristina Mirantes
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Núria Eritja
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Isidre Felip
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Raúl Navaridas
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Sònia Gatius
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Maria Santacana
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Eva Colàs
- Biomedical Research Group in Gynaecology, Vall Hebron Research Institute (VHIR); Universitat Autònoma de Barcelona; Barcelona Spain
| | - Cristian Moiola
- Biomedical Research Group in Gynaecology, Vall Hebron Research Institute (VHIR); Universitat Autònoma de Barcelona; Barcelona Spain
| | - Joan Antoni Schoenenberger
- Department of Pharmacology, Hospital Universitari Arnau de Vilanova. Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Mario Encinas
- Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Eloi Garí
- Cell Cycle Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Xavier Dolcet
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| |
Collapse
|
22
|
Boretto M, Cox B, Noben M, Hendriks N, Fassbender A, Roose H, Amant F, Timmerman D, Tomassetti C, Vanhie A, Meuleman C, Ferrante M, Vankelecom H. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 2017; 144:1775-1786. [PMID: 28442471 DOI: 10.1242/dev.148478] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/03/2017] [Indexed: 12/26/2022]
Abstract
The endometrium, which is of crucial importance for reproduction, undergoes dynamic cyclic tissue remodeling. Knowledge of its molecular and cellular regulation is poor, primarily owing to a lack of study models. Here, we have established a novel and promising organoid model from both mouse and human endometrium. Dissociated endometrial tissue, embedded in Matrigel under WNT-activating conditions, swiftly formed organoid structures that showed long-term expansion capacity, and reproduced the molecular and histological phenotype of the tissue's epithelium. The supplemented WNT level determined the type of mouse endometrial organoids obtained: high WNT yielded cystic organoids displaying a more differentiated phenotype than the dense organoids obtained in low WNT. The organoids phenocopied physiological responses of endometrial epithelium to hormones, including increased cell proliferation under estrogen and maturation upon progesterone. Moreover, the human endometrial organoids replicated the menstrual cycle under hormonal treatment at both the morpho-histological and molecular levels. Together, we established an organoid culture system for endometrium, reproducing tissue epithelium physiology and allowing long-term expansion. This novel model provides a powerful tool for studying mechanisms underlying the biology as well as the pathology of this key reproductive organ.
Collapse
Affiliation(s)
- Matteo Boretto
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Benoit Cox
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Manuel Noben
- Department of Clinical and Experimental Medicine, Translational Research in Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium
| | - Nikolai Hendriks
- Department of Clinical and Experimental Medicine, Translational Research in Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium
| | - Amelie Fassbender
- Department of Development and Regeneration, Cluster of Organ Systems, KU Leuven, 3000 Leuven, Belgium
| | - Heleen Roose
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Frédéric Amant
- Gynecology and Obstetrics, University Hospital Leuven (UZ Leuven), 3000 Leuven, Belgium.,PDTX Platform/TRACE, Department of Oncology, KU Leuven, 3000 Leuven, Belgium.,Center Gynecologic Oncology Amsterdam (CGOA), Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Dirk Timmerman
- Department of Development and Regeneration, Cluster of Organ Systems, KU Leuven, 3000 Leuven, Belgium.,Gynecology and Obstetrics, University Hospital Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Carla Tomassetti
- Department of Development and Regeneration, Cluster of Organ Systems, KU Leuven, 3000 Leuven, Belgium.,Gynecology and Obstetrics, University Hospital Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Arne Vanhie
- Department of Development and Regeneration, Cluster of Organ Systems, KU Leuven, 3000 Leuven, Belgium.,Gynecology and Obstetrics, University Hospital Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Christel Meuleman
- Department of Development and Regeneration, Cluster of Organ Systems, KU Leuven, 3000 Leuven, Belgium.,Gynecology and Obstetrics, University Hospital Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Marc Ferrante
- Department of Clinical and Experimental Medicine, Translational Research in Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| |
Collapse
|
23
|
Marshall AD, Bailey CG, Champ K, Vellozzi M, O'Young P, Metierre C, Feng Y, Thoeng A, Richards AM, Schmitz U, Biro M, Jayasinghe R, Ding L, Anderson L, Mardis ER, Rasko JEJ. CTCF genetic alterations in endometrial carcinoma are pro-tumorigenic. Oncogene 2017; 36:4100-4110. [PMID: 28319062 PMCID: PMC5519450 DOI: 10.1038/onc.2017.25] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022]
Abstract
CTCF is a haploinsufficient tumour suppressor gene with diverse normal functions in genome structure and gene regulation. However the mechanism by which CTCF haploinsufficiency contributes to cancer development is not well understood. CTCF is frequently mutated in endometrial cancer. Here we show that most CTCF mutations effectively result in CTCF haploinsufficiency through nonsense-mediated decay of mutant transcripts, or loss-of-function missense mutation. Conversely, we identified a recurrent CTCF mutation K365T, which alters a DNA binding residue, and acts as a gain-of-function mutation enhancing cell survival. CTCF genetic deletion occurs predominantly in poor prognosis serous subtype tumours, and this genetic deletion is associated with poor overall survival. In addition, we have shown that CTCF haploinsufficiency also occurs in poor prognosis endometrial clear cell carcinomas and has some association with endometrial cancer relapse and metastasis. Using shRNA targeting CTCF to recapitulate CTCF haploinsufficiency, we have identified a novel role for CTCF in the regulation of cellular polarity of endometrial glandular epithelium. Overall, we have identified two novel pro-tumorigenic roles (promoting cell survival and altering cell polarity) for genetic alterations of CTCF in endometrial cancer.
Collapse
Affiliation(s)
- A D Marshall
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - C G Bailey
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - K Champ
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - M Vellozzi
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - P O'Young
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - C Metierre
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Y Feng
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - A Thoeng
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - A M Richards
- Gynaecological Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - U Schmitz
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - M Biro
- Cell Motility and Mechanobiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - R Jayasinghe
- Cancer Genomics, McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA.,Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - L Ding
- Cancer Genomics, McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA.,Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - L Anderson
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - E R Mardis
- Cancer Genomics, McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA.,Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - J E J Rasko
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Lapko L, Böttcher D, Theuß T, Klug J, Schoon HA. Establishment and characterization of a coculture system of equine endometrial epithelial and stromal cells. Reprod Domest Anim 2017; 52:327-334. [DOI: 10.1111/rda.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/17/2016] [Indexed: 11/26/2022]
Affiliation(s)
- L Lapko
- Institut für Veterinär-Pathologie; Universität Leipzig; Leipzig Germany
| | - D Böttcher
- Institut für Veterinär-Pathologie; Universität Leipzig; Leipzig Germany
| | - T Theuß
- Institut für Veterinär-Pathologie; Universität Leipzig; Leipzig Germany
| | - J Klug
- Institut für Anatomie und Zellbiologie; Justus-Liebig-Universität Gießen; Gießen Germany
| | - H-A Schoon
- Institut für Veterinär-Pathologie; Universität Leipzig; Leipzig Germany
| |
Collapse
|
25
|
Eritja N, Chen BJ, Rodríguez-Barrueco R, Santacana M, Gatius S, Vidal A, Martí MD, Ponce J, Bergadà L, Yeramian A, Encinas M, Ribera J, Reventós J, Boyd J, Villanueva A, Matias-Guiu X, Dolcet X, Llobet-Navàs D. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy 2017; 13:608-624. [PMID: 28055301 PMCID: PMC5361596 DOI: 10.1080/15548627.2016.1271512] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Targeted therapies in endometrial cancer (EC) using kinase inhibitors rarely result in complete tumor remission and are frequently challenged by the appearance of refractory cell clones, eventually resulting in disease relapse. Dissecting adaptive mechanisms is of vital importance to circumvent clinical drug resistance and improve the efficacy of targeted agents in EC. Sorafenib is an FDA-approved multitarget tyrosine and serine/threonine kinase inhibitor currently used to treat hepatocellular carcinoma, advanced renal carcinoma and radioactive iodine-resistant thyroid carcinoma. Unfortunately, sorafenib showed very modest effects in a multi-institutional phase II trial in advanced uterine carcinoma patients. Here, by leveraging RNA-sequencing data from the Cancer Cell Line Encyclopedia and cell survival studies from compound-based high-throughput screenings we have identified the lysosomal pathway as a potential compartment involved in the resistance to sorafenib. By performing additional functional biology studies we have demonstrated that this resistance could be related to macroautophagy/autophagy. Specifically, our results indicate that sorafenib triggers a mechanistic MAPK/JNK-dependent early protective autophagic response in EC cells, providing an adaptive response to therapeutic stress. By generating in vivo subcutaneous EC cell line tumors, lung metastatic assays and primary EC orthoxenografts experiments, we demonstrate that targeting autophagy enhances sorafenib cytotoxicity and suppresses tumor growth and pulmonary metastasis progression. In conclusion, sorafenib induces the activation of a protective autophagic response in EC cells. These results provide insights into the unopposed resistance of advanced EC to sorafenib and highlight a new strategy for therapeutic intervention in recurrent EC.
Collapse
Affiliation(s)
- Núria Eritja
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | | | | | - Maria Santacana
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - Sònia Gatius
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - August Vidal
- e Department of Pathology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Maria Dolores Martí
- f Department of Gynecology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Jordi Ponce
- f Department of Gynecology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Laura Bergadà
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - Andree Yeramian
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - Mario Encinas
- g Department of Experimental Medicine , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8 , Lleida , Spain
| | - Joan Ribera
- g Department of Experimental Medicine , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8 , Lleida , Spain
| | - Jaume Reventós
- e Department of Pathology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain.,f Department of Gynecology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Jeff Boyd
- h Department of Human and Molecular Genetics , Herbert Wertheim College of Medicine, Florida International University , Miami , FL , USA
| | - Alberto Villanueva
- i Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE) , Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Xavier Matias-Guiu
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain.,e Department of Pathology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain.,f Department of Gynecology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Xavier Dolcet
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - David Llobet-Navàs
- d Institute of Genetic Medicine, Newcastle University , Newcastle-Upon-Tyne , UK
| |
Collapse
|
26
|
Marshall AD, van Geldermalsen M, Otte NJ, Anderson LA, Lum T, Vellozzi MA, Zhang BK, Thoeng A, Wang Q, Rasko JEJ, Holst J. LAT1 is a putative therapeutic target in endometrioid endometrial carcinoma. Int J Cancer 2016; 139:2529-39. [PMID: 27486861 DOI: 10.1002/ijc.30371] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Abstract
l-type amino acid transporters (LAT1-4) are expressed in various cancer types and are involved in the uptake of essential amino acids such as leucine. Here we investigated the expression of LAT1-4 in endometrial adenocarcinoma and evaluated the contribution of LATs to endometrial cancer cell growth. Analysis of human gene expression data showed that all four LAT family members are expressed in endometrial adenocarcinomas. LAT1 was the most highly expressed, and showed a significant increase in both serous and endometrioid subtypes compared to normal endometrium. Endometrioid patients with the highest LAT1 levels exhibited the lowest disease-free survival. The pan-LAT inhibitor BCH led to a significant decrease in cell growth and spheroid area in four endometrial cancer cell lines tested in vitro. Knockdown of LAT1 by shRNA inhibited cell growth in HEC1A and Ishikawa cells, as well as inhibiting spheroid area in HEC1A cells. These data show that LAT1 plays an important role in regulating the uptake of essential amino acids such as leucine into endometrial cancer cells. Increased ability of BCH compared to LAT1 shRNA at inhibiting Ishikawa spheroid area suggests that other LAT family members may also contribute to cell growth. LAT1 inhibition may offer an effective therapeutic strategy in endometrial cancer patients whose tumours exhibit high LAT1 expression.
Collapse
Affiliation(s)
- Amy D Marshall
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Michelle van Geldermalsen
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Origins of Cancer Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Nicholas J Otte
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Origins of Cancer Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Lyndal A Anderson
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Trina Lum
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Melissa A Vellozzi
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Blake K Zhang
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Origins of Cancer Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Annora Thoeng
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Qian Wang
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Origins of Cancer Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Jeff Holst
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. .,Origins of Cancer Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
27
|
Tang X, Jing L, Richardson WJ, Isaacs RE, Fitch RD, Brown CR, Erickson MM, Setton LA, Chen J. Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration. J Orthop Res 2016; 34:1316-26. [PMID: 27018499 PMCID: PMC5321132 DOI: 10.1002/jor.23244] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Previous study claimed that disc degeneration may be preceded by structure and matrix changes in the intervertebral disc (IVD) which coincide with the loss of distinct notochordally derived nucleus pulposus (NP) cells. However, the fate of notochordal cells and their molecular phenotype change during aging and degeneration in human are still unknown. In this study, a set of novel molecular phenotype markers of notochordal NP cells during aging and degeneration in human IVD tissue were revealed with immunostaining and flow cytometry. Furthermore, the potential of phenotype juvenilization and matrix regeneration of IVD cells in a laminin-rich pseudo-3D culture system were evaluated at day 28 by immunostaining, Safranin O, and type II collagen staining. Immunostaining and flow cytometry demonstrated that transcriptional factor Brachyury T, neuronal-related proteins (brain abundant membrane attached signal protein 1, Basp1; Neurochondrin, Ncdn; Neuropilin, Nrp-1), CD24, and CD221 were expressed only in juvenile human NP tissue, which suggested that these proteins may be served as the notochordal NP cell markers. However, the increased expression of CD54 and CD166 with aging indicated that they might be referenced as the potential biomarker for disc degeneration. In addition, 3D culture maintained most of markers in juvenile NP, and rescued the expression of Basp1, Ncdn, and Nrp 1 that disappeared in adult NP native tissue. These findings provided new insight into molecular profile that may be used to characterize the existence of a unique notochordal NP cells during aging and degeneration in human IVD cells, which will facilitate cell-based therapy for IVD regeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1316-1326, 2016.
Collapse
Affiliation(s)
- Xinyan Tang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA,Orthopaedic Surgery Department, University of California, San Francisco, CA, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - William J Richardson
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Robert E Isaacs
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Robert D Fitch
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Christopher R Brown
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Melissa M Erickson
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Lori A Setton
- Department of Biomedical Engineering, Duke University, Durham, NC, USA,Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jun Chen
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
28
|
Islam MR, Yamagami K, Yoshii Y, Yamauchi N. Growth factor induced proliferation, migration, and lumen formation of rat endometrial epithelial cells in vitro. J Reprod Dev 2016; 62:271-8. [PMID: 26946922 PMCID: PMC4919291 DOI: 10.1262/jrd.2015-158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/13/2016] [Indexed: 12/11/2022] Open
Abstract
Endometrial modulation is essential for the preservation of normal uterine physiology, and this modulation is driven by a number of growth factors. The present study investigated the mitogenic, motogenic, and morphogenic effects of epidermal growth factor (EGF) and hepatocyte growth factor (HGF) on rat endometrial epithelial (REE) cells. The REE cells were isolated and cultured and then characterized based on their morphology and their expression of epithelial cell markers. The MTT assay revealed that EGF and HGF induce proliferation of REE cells. Consistent with increased proliferation, we found that the cell cycle regulatory factor Cyclin D1 was also upregulated upon EGF and HGF addition. REE cell migration was prompted by EGF, as observed with the Oris Cell Migration Assay. The morphogenic impact of growth factors on REE cells was studied in a three-dimensional BD Matrigel cell culture system, wherein these growth factors also increased the frequency of lumen formation. In summary, we show that EGF and HGF have a stimulatory effect on REE cells, promoting proliferation, cell migration, and lumen formation. Our findings provide important insights that further the understanding of endometrial regeneration and its regulation.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
29
|
Deletion of Pten in CD45-expressing cells leads to development of T-cell lymphoblastic lymphoma but not myeloid malignancies. Blood 2016; 127:1907-11. [PMID: 26773036 DOI: 10.1182/blood-2015-09-669036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/02/2016] [Indexed: 12/14/2022] Open
Abstract
Since its discovery in the late 1990s, Pten has turned out to be one of the most important tumor suppressor genes. Pten loss results in increased activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, which is associated with increased proliferation, survival, and neoplastic growth. Here, we have addressed the effects of conditional deletion of Pten in hematopoietic cells by crossing Pten conditional knockout mice with a knock-in mouse expressing the Cre recombinase in the CD45 locus. CD45 is also known as leukocyte common antigen, and it is expressed in virtually all white cells and in hematopoietic stem cells. Using a reporter mouse, we demonstrate that CD45:Cre mouse displays recombinase activity in both myeloid and lymphoid cells. However, deletion of Pten in CD45-expressing cells induces development of T-cell acute lymphoblastic leukemia and lymphoma, but not other hematologic malignancies.
Collapse
|
30
|
Engel BJ, Constantinou PE, Sablatura LK, Doty NJ, Carson DD, Farach-Carson MC, Harrington DA, Zarembinski TI. Multilayered, Hyaluronic Acid-Based Hydrogel Formulations Suitable for Automated 3D High Throughput Drug Screening of Cancer-Stromal Cell Cocultures. Adv Healthc Mater 2015; 4:1664-74. [PMID: 26059746 PMCID: PMC4545642 DOI: 10.1002/adhm.201500258] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/14/2015] [Indexed: 12/27/2022]
Abstract
Validation of a high-throughput compatible 3D hyaluronic acid hydrogel coculture of cancer cells with stromal cells. The multilayered hyaluronic acid hydrogels improve drug screening predictability as evaluated with a panel of clinically relevant chemotherapeutics in both prostate and endometrial cancer cell lines compared to 2D culture.
Collapse
Affiliation(s)
- Brian J Engel
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Pamela E Constantinou
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Lindsey K Sablatura
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Nathaniel J Doty
- BioTime, Incorporated, 1301 Harbor Bay Parkway, Alameda, California 94502, USA
| | - Daniel D Carson
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Mary C Farach-Carson
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Daniel A Harrington
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | | |
Collapse
|
31
|
Okere B, Alviano F, Costa R, Quaglino D, Ricci F, Dominici M, Paolucci P, Bonsi L, Iughetti L. In vitro differentiation of human amniotic epithelial cells into insulin-producing 3D spheroids. Int J Immunopathol Pharmacol 2015. [PMID: 26216908 DOI: 10.1177/0394632015588439] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine and stem cell therapy may represent the solution for the treatment of non-curable human diseases such as type 1 diabetes. In this context of growing demand for functional and safe stem cells, human amniotic epithelial cells (hAECs) from term placenta have attracted increasing interest for their wide availability, stem cell properties, and differentiation plasticity, which make them a promising tool for stem cell-based therapeutic applications. We initially assayed the stemness characteristics of hAECs in serum-free conditions. Subsequently we developed a culture procedure on extracellular matrix for the formation of three-dimensional (3D) spheroids. Finally, we tested the immunomodulation and differentiation potential of hAEC spheroids: the presence of pancreatic endocrine hormones was revealed with transmission electron microscopy and immunofluorescence analyses; the release of C-peptide in hyperglycemic conditions was assayed with ELISA. The serum-free culture conditions we applied proved to maintain the basic stemness characteristics of hAECs. We also demonstrated that 3D spheroids formed by hAECs in extracellular matrix can be induced to differentiate into insulin-producing cells. Finally, we proved that control and induced cells equally inhibit the proliferation of activated mononuclear cells. The results of this study highlight the properties of amnion derived epithelial cells as promising and abundant source for cell-based therapies. In particular we are the first group to show the in vitro pancreatic induction of hAECs cultured on extracellular matrix in a 3D fashion. We accordingly propose the outcomes of this study as a novel contribution to the development of future cell replacement therapies involving placenta-derived cells.
Collapse
Affiliation(s)
- Bernard Okere
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Roberta Costa
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Ricci
- Immunohematology and Transfusion Medicine Service, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| | - Paolo Paolucci
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Lorenzo Iughetti
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| |
Collapse
|
32
|
Eritja N, Santacana M, Maiques O, Gonzalez-Tallada X, Dolcet X, Matias-Guiu X. Modeling glands with PTEN deficient cells and microscopic methods for assessing PTEN loss: endometrial cancer as a model. Methods 2014; 77-78:31-40. [PMID: 25461816 DOI: 10.1016/j.ymeth.2014.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 01/30/2023] Open
Abstract
PTEN is an important tumor suppressor gene. Interpreting PTEN deficiency in the appropriate microscopic context of cancer may be important to understand its role in tumor development and progression. This may be particularly relevant in heterogeneous tumors. Here, we discuss the usefulness of 3D cultures in understanding the consequences of PTEN inactivation in tissue architecture. Afterwards, we discuss the role of immunohistochemistry and fluorescent in situ hybridization in assessing PTEN loss in tumors. In this review, endometrial carcinoma is used as a model.
Collapse
Affiliation(s)
- Núria Eritja
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Oscar Maiques
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Gonzalez-Tallada
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain.
| |
Collapse
|
33
|
Eritja N, Domingo M, Dosil MA, Mirantes C, Santacana M, Valls J, Llombart-Cussac A, Matias-Guiu X, Dolcet X. Combinatorial Therapy Using Dovitinib and ICI182.780 (Fulvestrant) Blocks Tumoral Activity of Endometrial Cancer Cells. Mol Cancer Ther 2014; 13:776-87. [DOI: 10.1158/1535-7163.mct-13-0794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Eritja N, Mirantes C, Llobet D, Yeramian A, Bergadà L, Dosil MA, Domingo M, Matias-Guiu X, Dolcet X. Long-Term Estradiol Exposure Is a Direct Mitogen for Insulin/EGF-Primed Endometrial Cells and Drives PTEN Loss-Induced Hyperplasic Growth. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:277-87. [DOI: 10.1016/j.ajpath.2013.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/22/2013] [Accepted: 03/11/2013] [Indexed: 11/29/2022]
|
35
|
Bartel C, Tichy A, Schoenkypl S, Aurich C, Walter I. Effects of steroid hormones on differentiated glandular epithelial and stromal cells in a three dimensional cell culture model of the canine endometrium. BMC Vet Res 2013; 9:86. [PMID: 23618385 PMCID: PMC3660264 DOI: 10.1186/1746-6148-9-86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
Background Oestrogens and progesterone have a significant impact on the endometrium during the canine oestrous cycle. Their receptors mediate plasma steroid hormone levels and are expressed in several endometrial cell types. Altered steroid receptor expression patterns are involved in serious uterine diseases; however the mechanisms of hormone action during pathogenesis in these tissues remain unclear. The development of 3D culture systems of canine endometrial cells provides an opportunity for the effects of steroid hormones to be quantitatively assessed in a more in vivo-like setting. The present study aimed to determine the effects of the steroid hormones 17β-estradiol (E) and progesterone (P) on the expression of the oestrogen and progesterone receptors (ER and PR), and on proliferative activity, in a 3D co-culture system of canine uterine origin, comprising differentiated endometrial glands, and stromal cells (SCs). Results Morphology, differentiation, and apical-basolateral polarity of cultured glandular epithelial cells (GECs) were comparable to those in native uterine tissue as assessed by immunohistochemistry using differentiation markers (β-catenin, laminin), lectin histochemistry, and transmission electron microscopy. Supplementation of our 3D-culture system with E (at 15, 30 and 100 pg/mL) resulted in constant levels of ER expression in GECs, but reduced expression levels in SCs. PR expression was reduced in both GECs and SCs following treatment with E. 3 ng/mL P resulted in increased ER expression in GECs, but a decrease in SCs. PR expression in GECs increased in all P-treated groups, whereas PRs in SCs decreased with the lowest and highest doses, but increased with the middle dose of treatment. Proliferative activity, assessed by Ki67 staining, remained below 1% in all assays and cell types. Conclusions The present study demonstrates the applicability of our 3D organotypic canine endometrium-derived culture system for cellular-level studies. 3D cultures represent near-physiological systems allowing reproducible quantitative experimentation, thus reducing the need to experiment on living animals. The results of the present investigation emphasize the importance of co-culture of the uterine glands with SCs, as it was shown that the responsiveness of the different cell types to steroid hormones were divergent in the 3D cell culture model.
Collapse
Affiliation(s)
- Cordula Bartel
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna A - 1210, Austria.
| | | | | | | | | |
Collapse
|
36
|
Wang H, Bocca S, Anderson S, Yu L, Rhavi BS, Horcajadas J, Oehninger S. Sex steroids regulate epithelial-stromal cell cross talk and trophoblast attachment invasion in a three-dimensional human endometrial culture system. Tissue Eng Part C Methods 2013; 19:676-87. [PMID: 23320930 DOI: 10.1089/ten.tec.2012.0616] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human embryo implantation involves a complex network of molecular signaling that is modulated by endocrine and paracrine pathways. Here, we performed studies using a unique and recently developed three-dimensional (3D) implantation model, characterized by an endometrium-like 3D culture system and Jar cell-derived spheroids mimicking the embryo/trophoblast. The aims were to investigate the effects of 17β estradiol (E2) and medroxyprogesterone acetate (MPA) on (1) the interaction between epithelial and stromal cells, and (2) the attachment and invasion of trophoblast cells. We observed that epithelial and stromal cells in the 3D culture were ERα⁺, ERβ⁺, and PR⁺. Decidualization was confirmed by enhanced prolactin gene expression on day 7 of E2 plus MPA treatment. An effect of epithelial cells on the decidualization of stromal cells was indicated by significantly higher levels of prolactin mRNA expression in the 3D culture compared to stromal cells grown within the fibrin-agarose gel matrix. On the other hand, the relative gene expressions of E-cadherin and IL-1β in epithelial cells of the 3D culture under decidualization conditions significantly differed from those in epithelial cells grown over the fibrin-agarose gel matrix without stromal cells, pointing to regulation of epithelial cells by the stroma. The attachment rate of Jar spheroids to the 3D was significantly increased by E2 plus MPA treatment. Analyses of Z-stack confocal and stained optic microscopic images demonstrated that Jar spheroids breached the epithelial cell monolayer, invaded, and were embedded into the 3D matrix in response to decidualization signals. In summary, the newly bioengineered system provides a unique model for studying interactions between the different endometrial cell compartments, via soluble-paracrine signals as well as cell-to-cell interactions, and is a useful tool to study early embryonic implantation events.
Collapse
Affiliation(s)
- Hai Wang
- Department of Obstetrics and Gynecology, The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Macià A, Gallel P, Vaquero M, Gou-Fabregas M, Santacana M, Maliszewska A, Robledo M, Gardiner JR, Basson MA, Matias-Guiu X, Encinas M. Sprouty1 is a candidate tumor-suppressor gene in medullary thyroid carcinoma. Oncogene 2012; 31:3961-72. [PMID: 22158037 PMCID: PMC3378485 DOI: 10.1038/onc.2011.556] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/07/2011] [Accepted: 10/31/2011] [Indexed: 12/30/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a malignancy derived from the calcitonin-producing C-cells of the thyroid gland. Oncogenic mutations of the Ret proto-oncogene are found in all heritable forms of MTC and roughly one half of the sporadic cases. However, several lines of evidence argue for the existence of additional genetic lesions necessary for the development of MTC. Sprouty (Spry) family of genes is composed of four members in mammals (Spry1-4). Some Spry family members have been proposed as candidate tumor-suppressor genes in a variety of cancerous pathologies. In this work, we show that targeted deletion of Spry1 causes C-cell hyperplasia, a precancerous lesion preceding MTC, in young adult mice. Expression of Spry1 restrains proliferation of the MTC-derived cell line, TT. Finally, we found that the Spry1 promoter is frequently methylated in MTC and that Spry1 expression is consequently decreased. These findings identify Spry1 as a candidate tumor-suppressor gene in MTC.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Carcinoma, Medullary/genetics
- Carcinoma, Medullary/pathology
- Carcinoma, Neuroendocrine
- Cell Line, Tumor
- Cell Proliferation
- DNA Methylation
- Female
- Genes, Tumor Suppressor
- Humans
- Hyperplasia
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Mice, SCID
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Precancerous Conditions/pathology
- Promoter Regions, Genetic
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-ret/genetics
- RNA Interference
- RNA, Small Interfering
- Sequence Deletion
- Thyroid Gland/metabolism
- Thyroid Gland/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
Collapse
Affiliation(s)
- Anna Macià
- Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Pilar Gallel
- Department of Pathology and Molecular Genetics, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Marta Vaquero
- Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Myriam Gou-Fabregas
- Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Agnieszka Maliszewska
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - M. Albert Basson
- Department of Craniofacial Development, King’s College London, UK
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Mario Encinas
- Department of Experimental Medicine, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| |
Collapse
|
38
|
Eritja N, Mirantes C, Llobet D, Masip G, Matias-Guiu X, Dolcet X. ERα-mediated repression of pro-inflammatory cytokine expression by glucocorticoids reveals a crucial role for TNFα and IL1α in lumen formation and maintenance. J Cell Sci 2012; 125:1929-44. [PMID: 22328525 DOI: 10.1242/jcs.095067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Most glandular tissues comprise polarized epithelial cells organized around a single central lumen. Although there is active research investigating the molecular networks involved in the regulation of lumenogenesis, little is known about the extracellular factors that influence lumen formation and maintenance. Using a three-dimensional culture system of epithelial endometrial cells, we have revealed a new role for pro-inflammatory cytokines such as TNFα and IL1α in the formation and, more importantly, maintenance of a single central lumen. We also studied the mechanism by which glucocorticoids repress TNFα and IL1α expression. Interestingly, regulation of pro-inflammatory cytokine expression and subsequent lumen formation is mediated by estrogen receptor α (ERα) but not by the glucocorticoid receptor. Finally, we investigated the signaling pathways involved in the regulation of lumen formation by pro-inflammatory cytokines. Our results demonstrate that activation of the ERK/MAPK signaling pathway, but not the PI3K/Akt signaling pathway, is important for the formation and maintenance of a single central lumen. In summary, our results suggest a novel role for ERα-regulated pro-inflammatory cytokine expression in lumen formation and maintenance.
Collapse
Affiliation(s)
- Nuria Eritja
- Oncologic Pathology Group, Departamento de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Leeper AD, Farrell J, Williams LJ, Thomas JS, Dixon JM, Wedden SE, Harrison DJ, Katz E. Determining tamoxifen sensitivity using primary breast cancer tissue in collagen-based three-dimensional culture. Biomaterials 2011; 33:907-15. [PMID: 22048005 DOI: 10.1016/j.biomaterials.2011.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 10/11/2011] [Indexed: 01/08/2023]
Abstract
We developed a three-dimensional assay prepared from primary breast cancer tissue and quantified tumor response to tamoxifen therapy. Freshly harvested breast cancer biopsies obtained at the time of curative surgical resection were fragmented and embedded into collagen I cushions. Changes in proliferation, apoptosis and tumor volume in response to tamoxifen treatment were quantified using image analysis software and optical projection tomography. Individual and collective invasion of epithelial cells into the surrounding collagen I was observed over the course of the experiment using phase contrast light microscopy and histopathological methods. Addition of tamoxifen to preparations derived from ER+ tumors demonstrated a range of response as measured by proliferative and apoptotic markers. In keeping with published data, tamoxifen reduced the percentage of apoptotic cells expressing cleaved caspase-3 (p = 0.02, Poisson regression analysis). Tamoxifen also reduced residual epithelial volume in ER+ tumors (p = 0.001, Mann-Whitney test), but not in ER low/- tumors (p = 0.78). Changes in tumor volume, as measured by optical projection tomography, allowed stratification into responsive and non-responsive tumors. The model mirrors observations of breast cancer response and histopathological changes to tamoxifen in neo-adjuvant trials. This assay provides a method of screening a battery of therapeutics against individual cancers, informing subsequent design of neo-adjuvant trials.
Collapse
Affiliation(s)
- Alexander D Leeper
- Breakthrough Breast Cancer Research Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Muinelo-Romay L, Colas E, Barbazan J, Alonso-Alconada L, Alonso-Nocelo M, Bouso M, Curiel T, Cueva J, Anido U, Forteza J, Gil-Moreno A, Reventos J, Lopez-Lopez R, Abal M. High-risk endometrial carcinoma profiling identifies TGF-β1 as a key factor in the initiation of tumor invasion. Mol Cancer Ther 2011; 10:1357-66. [PMID: 21613448 DOI: 10.1158/1535-7163.mct-10-1019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endometrial cancer is among the three most common cancers in females in industrialized countries. In the majority of cases, the tumor is confined to the uterus at the time of diagnosis and presents a good prognosis. However, after primary surgery, 15% to 20% of these tumors recur and have limited response to systemic therapy. We carried out gene expression profiling of high-risk recurrence endometrial cancers to identify new therapeutic approaches targeting the molecular pathways involved in the acquisition of an aggressive tumor phenotype. A microarray gene-expression analysis on a total of 51 human endometrial carcinomas revealed 77 genes specifically altered in high-risk recurrence tumors (P < 0.001). The bioinformatics analysis of gene-gene interactions and molecular relationships among these genes pointed to a prominent role for TGF-β1 signaling in the acquisition of an aggressive phenotype. We further showed that TGF-β1 has a principal role at the initiation of endometrial carcinoma invasion through the promotion of the epithelial to mesenchymal transition that leads to the acquisition of an invasive phenotype in HEC-1A and RL95-2 cells. Impairment of this initial step with SB-431542, a specific TGF-β1 inhibitor, precluded further persistent endometrial carcinoma invasion. In conclusion, we showed that the characterization of the molecular changes associated with the acquisition of an aggressive phenotype represents a realistic strategy for the rational identification and characterization of new potential therapeutic targets in an effort to improve the clinical management and the outcome of high-risk endometrial cancer patients.
Collapse
Affiliation(s)
- Laura Muinelo-Romay
- Translational Laboratory, Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Trav. Choupana s/n 15706 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|