1
|
Xu H, Fu X, Wang S, Ge Y, Zhang L, Li J, Zhang F, Yang Y, He Y, Sun Y, Gao A. Immunoglobulin-like transcript 5 polarizes M2-like tumor-associated macrophages for immunosuppression in non-small cell lung cancer. Int J Cancer 2025; 156:2225-2236. [PMID: 39910654 PMCID: PMC11970544 DOI: 10.1002/ijc.35360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 02/07/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have shifted the treatment paradigm of non-small cell lung cancer (NSCLC) over the last decade. Despite notable therapeutic advancements in responders, the response rate remains limited owing to the immunosuppressive tumor microenvironment (TME). Therefore, to improve the efficacy of ICIs, it is essential to explore alternative targets or signals that mediate immunosuppression. Immunoglobulin-like transcript (ILT) 5 is a negative regulator of immune activation in myeloid cells. However, the expression and function of ILT5 in NSCLC remain unknown. Here, we found that ILT5 was highly expressed in tumor-associated macrophages (TAMs) of NSCLC tissues and predicted poor patient survival. Functionally, ILT5 induces the M2-like polarization of TAMs, which subsequently decreases the density of T cells, and increases FOXP3+T cell accumulation, leading to an immunosuppressive TME. The combination of ILT5 expression with M2-like TAM density is a more reliable biomarker of patient survival than ILT5 expression alone. ILT5 knockout mitigates the reprogramming of TAM and T cell subsets toward immunosuppressive phenotypes and inhibits tumor growth in vivo. These findings highlight that ILT5 is a potential immunotherapeutic target and a promising prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Huijun Xu
- Jinan Central HospitalShandong UniversityJinanShandongChina
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Xuebing Fu
- Department of Thoracic Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shuyun Wang
- Phase I Clinical Research Center, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Yihui Ge
- Phase I Clinical Research Center, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Lu Zhang
- Department of OncologyThe Fourth People's Hospital of ZiboZiboShandongChina
| | - Juan Li
- Phase I Clinical Research Center, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Fang Zhang
- Department of OncologyCentral Hospital affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yang Yang
- Department of Ultrasound, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Yifu He
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Yuping Sun
- Phase I Clinical Research Center, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Aiqin Gao
- Department of Thoracic Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
2
|
Shi Z, Hu C, Li Q, Sun C. Cancer-Associated Fibroblasts as the "Architect" of the Lung Cancer Immune Microenvironment: Multidimensional Roles and Synergistic Regulation with Radiotherapy. Int J Mol Sci 2025; 26:3234. [PMID: 40244052 PMCID: PMC11989671 DOI: 10.3390/ijms26073234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs), as the "architect" of the immune microenvironment in lung cancer, play a multidimensional role in tumor progression and immune regulation. In this review, we summarize the heterogeneity of the origin and the molecular phenotype of CAFs in lung cancer, and explore the complex interactions between CAFs and multiple components of the tumor microenvironment, including the regulatory relationships with innate immune cells (e.g., tumor-associated macrophages, tumor-associated neutrophils), adaptive immune cells (e.g., T cells), and extracellular matrix (ECM). CAFs significantly influence tumor progression and immunomodulation through the secretion of cytokines, remodeling of the ECM, and the regulation of immune cell function significantly affects the immune escape and treatment resistance of tumors. In addition, this review also deeply explored the synergistic regulatory relationship between CAF and radiotherapy, revealing the key role of CAF in radiotherapy-induced remodeling of the immune microenvironment, which provides a new perspective for optimizing the comprehensive treatment strategy of lung cancer. By comprehensively analyzing the multidimensional roles of CAF and its interaction with radiotherapy, this review aims to provide a theoretical basis for the precise regulation of the immune microenvironment and clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Zheng Shi
- School of Biopharmaceutical and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Zheng L, Cai W, Ke Y, Hu X, Yang C, Zhang R, Wu H, Liu D, Yu H, Wu C. Cancer‑associated fibroblasts: a pivotal regulator of tumor microenvironment in the context of radiotherapy. Cell Commun Signal 2025; 23:147. [PMID: 40114180 PMCID: PMC11927177 DOI: 10.1186/s12964-025-02138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND In the course of tumor treatment, radiation therapy (RT) not only kills cancer cells, but also induces complex biological effects in non-malignant cells around cancer cells. These biological effects such as angiogenesis, changes in stromal composition and immune cell infiltration remodel the tumor microenvironment (TME). As one of the major components of the TME, Cancer‑associated fibroblasts (CAFs) are not only involved in tumorigenesis, progression, recurrence, and metastasis but also regulate the tumor-associated immune microenvironment. CAFs and tumor cells or immune cells have complex intercellular communication in the context of tumor radiation. MAIN CONTENT Different cellular precursors, spatial location differences, absence of specific markers, and advances in single-cell sequencing technology have gradually made the abundant heterogeneity of CAFs well known. Due to unique radioresistance properties, CAFs can survive under high doses of ionizing radiation. However, radiation can induce phenotypic and functional changes in CAFs and further act on tumor cells and immune cells to promote or inhibit tumor progression. To date, the effect of RT on CAFs and the effect of irradiated CAFs on tumor progression and TME are still not well defined. CONCLUSION In this review, we review the origin, phenotypic, and functional heterogeneity of CAFs and describe the effects of RT on CAFs, focusing on the mutual crosstalk between CAFs and tumor or immune cells after radiation. We also discuss emerging strategies for targeted CAFs therapy.
Collapse
Affiliation(s)
- Linhui Zheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Wenqi Cai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yuan Ke
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Xiaoyan Hu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Chunqian Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Runze Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Huachao Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Dong Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Haijun Yu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China.
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China.
| | - Chaoyan Wu
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China.
| |
Collapse
|
4
|
Yamazaki M, Ishimoto T. Targeting Cancer-Associated Fibroblasts: Eliminate or Reprogram? Cancer Sci 2025; 116:613-621. [PMID: 39745128 PMCID: PMC11875776 DOI: 10.1111/cas.16443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 03/05/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME). Given their various roles in tumor progression and treatment resistance, CAFs are promising therapeutic targets in cancer. The elimination of tumor-promoting CAFs has been investigated in various animal models to determine whether it effectively suppresses tumor growth. Based on recent evidence, several simple strategies have been proposed to eliminate tumor-promoting CAFs and attenuate these features. In addition, attention has focused on the critical role that CAFs play in the immunosuppressive TME. Therefore, the functional reprogramming of CAFs in combination with immune checkpoint inhibitors has also been investigated as a possible therapeutic approach. However, although potential targets in CAFs have been widely characterized, the plasticity and heterogeneity of CAFs complicate the understanding of their properties and present difficulties for clinical application. Moreover, the identification of tumor-suppressive CAFs highlights the necessity for the development of therapeutic approaches that can distinguish and switch between tumor-promoting and tumor-suppressive CAFs in an appropriate manner. In this review, we introduce the origins and diversity of CAFs, their role in cancer, and current therapeutic strategies aimed at targeting CAFs, including ongoing clinical evaluations.
Collapse
Affiliation(s)
- Masaya Yamazaki
- Division of CarcinogenesisThe Cancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Takatsugu Ishimoto
- Division of CarcinogenesisThe Cancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- International Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
5
|
Kwon JY, Vera RE, Fernandez-Zapico ME. The multi-faceted roles of cancer-associated fibroblasts in pancreatic cancer. Cell Signal 2025; 127:111584. [PMID: 39756502 PMCID: PMC11807759 DOI: 10.1016/j.cellsig.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
The tumor microenvironment (TME) has been linked with the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer. A central component of the TME are cancer-associated fibroblasts (CAFs), which can either suppress or promote tumor growth in a context-dependent manner. In this review, we will discuss the multi-faceted roles of CAFs in tumor-stroma interactions influencing cancer initiation, progression and therapeutic response.
Collapse
Affiliation(s)
- John Y Kwon
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | | |
Collapse
|
6
|
Urano Y, Mii S, Asai S, Esaki N, Ando R, Shiraki Y, Iida T, Kato K, Hori M, Hayashi Y, Shimizu T, Enomoto A. Superoxide dismutase 2 deficiency in mesenchymal stromal cells induces sympathetic denervation and functional impairment of brown adipose tissue. Pathol Int 2025; 75:69-81. [PMID: 39760485 PMCID: PMC11848962 DOI: 10.1111/pin.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Brown adipose tissue (BAT) is an energy-consuming organ, and its functional dysregulation contributes to the development of metabolic diseases and obesity. BAT function is regulated by the sympathetic nervous system but declines with age, which is partly caused by reduced sympathetic nerve fibers innervating BAT. Thus far, the role of mesenchymal stromal/stem cells in age-related BAT dysfunction remains unknown. Here, we show that BAT dysfunction may be induced by a defect in the antioxidant capacity of stromal cells that localize in and around the nerve fibers (perineurial cells) of BAT. These cells express Meflin, a marker of mesenchymal stromal/stem cells. Specific deletion of the antioxidant enzyme superoxide dismutase 2 in Meflin-lineage cells caused sympathetic denervation and whitening of BAT and its functional impairment, as exemplified by a decline in the fat oxidation rate during the daytime. This phenotype was accompanied by overexpression of the neurorepulsive factor semaphorin 3A in perineurial cells. Notably, Meflin-deficient mice exhibited resistance to doxorubicin-induced BAT dysfunction. These results highlight the role of Meflin+ stromal cells, including perineurial cells, in maintaining BAT function and suggest that targeting BAT stromal cells provides a new avenue for improving BAT function.
Collapse
Affiliation(s)
- Yuya Urano
- Department of Tumor PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Shinji Mii
- Department of Tumor PathologyNagoya University Graduate School of MedicineNagoyaJapan
- Present address:
Department of Molecular Pathology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Shun Asai
- Department of Tumor PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Nobutoshi Esaki
- Department of Tumor PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Ryota Ando
- Department of Tumor PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yukihiro Shiraki
- Department of Tumor PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Tadashi Iida
- Department of Tumor PathologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of Gastroenterology and HepatologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Katsuhiro Kato
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Mika Hori
- Department of Endocrinology, Research Institute of Environmental MedicineNagoya UniversityNagoyaJapan
| | - Yoshitaka Hayashi
- Department of Endocrinology, Research Institute of Environmental MedicineNagoya UniversityNagoyaJapan
| | - Takahiko Shimizu
- Aging Stress Response Research Project TeamNational Center for Geriatrics and GerontologyObuJapan
- Department of Food and Reproductive Function Advanced ResearchJuntendo University Graduate School of MedicineTokyoJapan
| | - Atsushi Enomoto
- Department of Tumor PathologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
7
|
Mitriashkin A, Yap JYY, Fernando EAK, Iyer NG, Grenci G, Fong ELS. Cell confinement by micropatterning induces phenotypic changes in cancer-associated fibroblasts. Acta Biomater 2025; 192:61-76. [PMID: 39637956 DOI: 10.1016/j.actbio.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Recent advances in single-cell studies have revealed the vast transcriptomic heterogeneity of cancer-associated fibroblasts (CAFs), with each subset likely having unique roles in the tumor microenvironment. However, it is still unclear how different CAF subsets should be cultured in vitro to recapitulate their in vivo phenotype. The inherent plasticity of CAFs, or their ability to dynamically change their phenotype in response to different environmental stimuli, makes it highly challenging to induce and maintain a specific CAF state in vitro. In this study, we investigated how cell shape and confinement on two-dimensional culture substrates with different stiffnesses influence CAF transcriptomic profile and phenotype. Using micropatterning of polyacrylamide hydrogels to induce shape- and confinement-dependent changes in cell morphology, we observed that micropatterned CAFs exhibited phenotypic shifts towards more desmoplastic and inflammatory CAF subsets. Additionally, micropatterning enabled control over a range of CAF-specific markers and pathways. Lastly, we report how micropatterned and non-micropatterned CAFs respond differently to anti-cancer drugs, highlighting the importance of phenotype-oriented therapy that considers for CAF plasticity and regulatory networks. Control over CAF morphology offers a unique opportunity to establish highly robust CAF phenotypes in vitro, facilitating deeper understanding of CAF plasticity, heterogeneity, and development of novel therapeutic targets. STATEMENT OF SIGNIFICANCE: Cancer-associated fibroblasts (CAFs) are the dominant stromal cell type in many cancers, and recent studies have revealed that they are highly heterogeneous and comprise several subpopulations. It is still unclear how different subsets of CAFs should be cultured in vitro to recapitulate their in vivo phenotype. In this study, we investigated how cell shape and confinement affect CAF transcriptomic profile and phenotype. We report that micropatterned CAFs resemble desmoplastic and inflammatory CAF subsets observed in vivo and respond differently to anti-cancer drugs as compared to non-patterned CAFs. Control over CAF morphology enables the generation of highly robust CAF phenotypes in vitro, facilitating deeper understanding of CAF plasticity and heterogeneity.
Collapse
Affiliation(s)
- Aleksandr Mitriashkin
- Translational Tumor Engineering Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Josephine Yu Yan Yap
- Translational Tumor Engineering Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore
| | - Elekuttige Anton Kanishka Fernando
- Translational Tumor Engineering Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore 168583, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Eliza Li Shan Fong
- Translational Tumor Engineering Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore; Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
8
|
Lacina L, Kolář M, Pfeiferová L, Gál P, Smetana K. Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation. Front Immunol 2024; 15:1403570. [PMID: 39676864 PMCID: PMC11638159 DOI: 10.3389/fimmu.2024.1403570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024] Open
Abstract
Wound healing represents a complex and evolutionarily conserved process across vertebrates, encompassing a series of life-rescuing events. The healing process runs in three main phases: inflammation, proliferation, and maturation/remodelling. While acute inflammation is indispensable for cleansing the wound, removing infection, and eliminating dead tissue characterised by the prevalence of neutrophils, the proliferation phase is characterised by transition into the inflammatory cell profile, shifting towards the prevalence of macrophages. The proliferation phase involves development of granulation tissue, comprising fibroblasts, activated myofibroblasts, and inflammatory and endothelial cells. Communication among these cellular components occurs through intercellular contacts, extracellular matrix secretion, as well as paracrine production of bioactive factors and proteolytic enzymes. The proliferation phase of healing is intricately regulated by inflammation, particularly interleukin-6. Prolonged inflammation results in dysregulations during the granulation tissue formation and may lead to the development of chronic wounds or hypertrophic/keloid scars. Notably, pathological processes such as autoimmune chronic inflammation, organ fibrosis, the tumour microenvironment, and impaired repair following viral infections notably share morphological and functional similarities with granulation tissue. Consequently, wound healing emerges as a prototype for understanding these diverse pathological processes. The prospect of gaining a comprehensive understanding of wound healing holds the potential to furnish fundamental insights into modulation of the intricate dialogue between cancer cells and non-cancer cells within the cancer ecosystem. This knowledge may pave the way for innovative approaches to cancer diagnostics, disease monitoring, and anticancer therapy.
Collapse
Affiliation(s)
- Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc., Košice, Slovakia
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czechia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| |
Collapse
|
9
|
Huang S, Chung JYF, Li C, Wu Y, Qiao G, To KF, Tang PMK. Cellular dynamics of tumor microenvironment driving immunotherapy resistance in non-small-cell lung carcinoma. Cancer Lett 2024; 604:217272. [PMID: 39326553 DOI: 10.1016/j.canlet.2024.217272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have profoundly reshaped the treatment paradigm for non-small cell lung cancer (NSCLC). Despite these advancements, primary and secondary resistance to ICIs remain prevalent challenges in managing advanced NSCLC. Recent studies have highlighted the significant role of the tumor microenvironment (TME) in modulating treatment responses. This review aims to comprehensively examine the interactive roles of immune/stromal cells-such as T cells, B cells, neutrophils, macrophages, and CAFs within the TME, elucidating how these diverse cellular interactions contribute to immunotherapy resistance. It focuses on the dynamic interactions among diverse cell types such as the varying states of T cells under the influence of TME constituents like immune cells and cancer-associated fibroblasts (CAFs). By exploring the mechanisms involved in the complex cellular interactions, we highlight novel therapeutic targets and strategies aimed at overcoming resistance, thereby enhancing the efficacy of ICIs in NSCLC. Our synthesis of recent research provides critical insights into the multifaceted mechanisms of resistance and paves the way for the development of more effective, personalized treatment approaches.
Collapse
Affiliation(s)
- Shujie Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Farahani M, Ghazimoradi MH. Dissecting the roles of exosomal cancer-associated fibroblasts-derived non-coding RNAs in tumor progression: A complete guide. Pathol Res Pract 2024; 262:155576. [PMID: 39232286 DOI: 10.1016/j.prp.2024.155576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Cancer-associated fibroblasts are the most important cellular component of the tumor microenvironment, controlling cancer progression and therapeutic response. These cells in the tumor microenvironment regulate tumor progression and development as oncogenic or tumor suppressor agents. However, the mechanisms by which CAFs communicate with cancer cells remain to investigate. Here, we review evidence that extracellular vesicles, particularly exosomes, serve as vehicles for the intercellular transfer of bioactive cargos, notably microRNAs and long non-coding RNAs, from CAFs to cancer cells. We try to highlight molecular pathways of non-coding RNAs and the interaction among these molecules. Together, these findings elucidate a critical exosome-based communication axis by which CAFs create mostly a supportive pro-tumorigenic microenvironment and highlight therapeutic opportunities for disrupting this intercellular crosstalk.
Collapse
Affiliation(s)
- Mahnaz Farahani
- Department of Neurology, School of Medicine, Hazrat Rasool-E Akram, General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Ishihara T, Kato K, Matsumoto K, Tanaka M, Hara A, Shiraki Y, Morisaki H, Urano Y, Ando R, Ito K, Mii S, Esaki N, Furuhashi K, Takefuji M, Suganami T, Murohara T, Enomoto A. Meflin/ISLR is a marker of adipose stem and progenitor cells in mice and humans that suppresses white adipose tissue remodeling and fibrosis. Genes Cells 2024; 29:902-920. [PMID: 39136356 PMCID: PMC11555626 DOI: 10.1111/gtc.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024]
Abstract
Identifying specific markers of adipose stem and progenitor cells (ASPCs) in vivo is crucial for understanding the biology of white adipose tissues (WAT). PDGFRα-positive perivascular stromal cells represent the best candidates for ASPCs. This cell lineage differentiates into myofibroblasts that contribute to the impairment of WAT function. However, ASPC marker protein(s) that are functionally crucial for maintaining WAT homeostasis are unknown. We previously identified Meflin as a marker of mesenchymal stem cells (MSCs) in bone marrow and tissue-resident perivascular fibroblasts in various tissues. We also demonstrated that Meflin maintains the undifferentiated status of MSCs/fibroblasts. Here, we show that Meflin is expressed in WAT ASPCs. A lineage-tracing experiment showed that Meflin+ ASPCs proliferate in the WAT of obese mice induced by a high-fat diet (HFD), while some of them differentiate into myofibroblasts or mature adipocytes. Meflin knockout mice fed an HFD exhibited a significant fibrotic response as well as increases in adipocyte cell size and the number of crown-like structures in WAT, accompanied by impaired glucose tolerance. These data suggested that Meflin expressed by ASPCs may have a role in reducing disease progression associated with WAT dysfunction.
Collapse
Grants
- 22ck0106779h0001 Japan Agency for Medical Research and Development
- 23gm1210009s0105 Japan Agency for Medical Research and Development
- 20H03467 Ministry of Education, Culture, Sports, Science and Technology
- 22H02848 Ministry of Education, Culture, Sports, Science and Technology
- 22K18390 Ministry of Education, Culture, Sports, Science and Technology
- Japan Agency for Medical Research and Development
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Toshikazu Ishihara
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Katsuhiro Kato
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Kotaro Matsumoto
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Miyako Tanaka
- Department of ImmunometabolismNagoya University Graduate School of MedicineNagoyaJapan
- Department of Molecular Medicine and MetabolismResearch Institute of Environmental Medicine, Nagoya UniversityNagoyaJapan
| | - Akitoshi Hara
- Center for Cardiovascular Research, University of Hawaii at ManoaHonoluluHawaiiUSA
| | - Yukihiro Shiraki
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hidenori Morisaki
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yuya Urano
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Ryota Ando
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Kisuke Ito
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Shinji Mii
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Nobutoshi Esaki
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Kazuhiro Furuhashi
- Department of NephrologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Mikito Takefuji
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Takayoshi Suganami
- Department of ImmunometabolismNagoya University Graduate School of MedicineNagoyaJapan
- Department of Molecular Medicine and MetabolismResearch Institute of Environmental Medicine, Nagoya UniversityNagoyaJapan
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Atsushi Enomoto
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced StudyGifuJapan
| |
Collapse
|
12
|
Joy JD, Malacrida B, Laforêts F, Kotantaki P, Maniati E, Manchanda R, Annibaldi A, Hopkins S, Garrobo-Calleja I, Gautrot J, Balkwill FR. Human 3D Ovarian Cancer Models Reveal Malignant Cell-Intrinsic and -Extrinsic Factors That Influence CAR T-cell Activity. Cancer Res 2024; 84:2432-2449. [PMID: 38819641 PMCID: PMC11292204 DOI: 10.1158/0008-5472.can-23-3007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
In vitro preclinical testing of chimeric antigen receptor (CAR) T cells is mostly carried out in monolayer cell cultures. However, alternative strategies are needed to take into account the complexity and the effects of the tumor microenvironment. Here, we describe the modulation of CAR T-cell activity by malignant cells and fibroblasts in human three-dimensional (3D) in vitro cell models of increasing complexity. In models combining mucin-1 (MUC1) and TnMUC1 CAR T cells with human high-grade serous ovarian cancer cell spheroids, malignant cell-intrinsic resistance to CAR T-cell killing was due to defective death receptor signaling involving TNFα. Adding primary human fibroblasts to spheroids unexpectedly increased the ability of CAR T cells to kill resistant malignant cells as CCL2 produced by fibroblasts activated CCR2/4+ CAR T cells. However, culturing malignant cells and fibroblasts in collagen gels engendered production of a dense extracellular matrix that impeded CAR T-cell activity in a TGFβ-dependent manner. A vascularized microfluidic device was developed that allowed CAR T cells to flow through the vessels and penetrate the gels in a more physiological way, killing malignant cells in a TNFα-dependent manner. Complex 3D human cell models may provide an efficient way of screening multiple cytotoxic human immune cell constructs while also enabling evaluation of mechanisms of resistance involving cell-cell and cell-matrix interactions, thus accelerating preclinical research on cytotoxic immune cell therapies in solid tumors. Significance: Three-dimensional in vitro models of increasing complexity uncover mechanisms of resistance to CAR T cells in solid tumors, which could help accelerate development of improved CAR T-cell constructs.
Collapse
Affiliation(s)
- Joash D. Joy
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Beatrice Malacrida
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Florian Laforêts
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Panoraia Kotantaki
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Cancer Research UK, Barts Centre, Queen Mary University of London, London, United Kingdom.
- Department of Gynaecological Oncology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom.
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | - Sarah Hopkins
- GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom.
| | | | - Julien Gautrot
- School of Engineering and Material Science, Centre for Bioengineering, Queen Mary University of London, London, United Kingdom.
| | - Frances R. Balkwill
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
13
|
Chen M, Chen F, Gao Z, Li X, Hu L, Yang S, Zhao S, Song Z. CAFs and T cells interplay: The emergence of a new arena in cancer combat. Biomed Pharmacother 2024; 177:117045. [PMID: 38955088 DOI: 10.1016/j.biopha.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The interaction between the immune system and the tumor matrix has a huge impact on the progression and treatment of cancer. This paper summarizes and discusses the crosstalk between T cells and cancer-associated fibroblasts (CAFs). CAFs can also produce inhibitors that counteract the function of T cells and promote tumor immune escape, while T cells can also engage in complex two-way interactions with CAFs through direct cell contact, the exchange of soluble factors such as cytokines, and the remodeling of the extracellular matrix. Precise targeted intervention can effectively reverse tumor-promoting crosstalk between T cells and CAFs, improve anti-tumor immune response, and provide a new perspective for cancer treatment. Therefore, it is important to deeply understand the mechanism of crosstalk between T cells and CAFs. This review aims to outline the underlying mechanisms of these interactions and discuss potential therapeutic strategies that may become fundamental tools in the treatment of cancer, especially hard-to-cure cancers.
Collapse
Affiliation(s)
- Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuying Yang
- Department of intensive medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Siqi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
14
|
Owaki T, Iida T, Miyai Y, Kato K, Hase T, Ishii M, Ando R, Hinohara K, Akashi T, Mizutani Y, Ishikawa T, Mii S, Shiraki Y, Esaki N, Yamamoto M, Tsukamoto T, Nomura S, Murakami T, Takahashi M, Yuguchi Y, Maeda M, Sano T, Sassa N, Matsukawa Y, Kawashima H, Akamatsu S, Enomoto A. Synthetic retinoid-mediated preconditioning of cancer-associated fibroblasts and macrophages improves cancer response to immune checkpoint blockade. Br J Cancer 2024; 131:372-386. [PMID: 38849479 PMCID: PMC11263587 DOI: 10.1038/s41416-024-02734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The proliferation of cancer-associated fibroblasts (CAFs) hampers drug delivery and anti-tumor immunity, inducing tumor resistance to immune checkpoint blockade (ICB) therapy. However, it has remained a challenge to develop therapeutics that specifically target or modulate CAFs. METHODS We investigated the involvement of Meflin+ cancer-restraining CAFs (rCAFs) in ICB efficacy in patients with clear cell renal cell carcinoma (ccRCC) and urothelial carcinoma (UC). We examined the effects of Am80 (a synthetic retinoid) administration on CAF phenotype, the tumor immune microenvironment, and ICB efficacy in cancer mouse models. RESULTS High infiltration of Meflin+ CAFs correlated with ICB efficacy in patients with ccRCC and UC. Meflin+ CAF induction by Am80 administration improved ICB efficacy in the mouse models of cancer. Am80 exerted this effect when administered prior to, but not concomitant with, ICB therapy in wild-type but not Meflin-deficient mice. Am80-mediated induction of Meflin+ CAFs was associated with increases in antibody delivery and M1-like tumor-associated macrophage (TAM) infiltration. Finally, we showed the role of Chemerin produced from CAFs after Am80 administration in the induction of M1-like TAMs. CONCLUSION Our data suggested that Am80 administration prior to ICB therapy increases the number of Meflin+ rCAFs and ICB efficacy by inducing changes in TAM phenotype.
Collapse
Affiliation(s)
- Takayuki Owaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yuki Miyai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Ishii
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Tomohiro Akashi
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masami Yamamoto
- Laboratory of Physiological Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tetsuya Tsukamoto
- Division of Analytical Pathology, Oncology Innovation Center, Fujita Health University, Toyoake, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Saitama, Japan
| | - Masahide Takahashi
- Department of Pathology, Fujita Health University, Toyoake, Japan
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Yuri Yuguchi
- Department of Urology, Chukyo Hospital, Nagoya, Japan
| | | | - Tomoyasu Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoto Sassa
- Department of Urology, Aichi Medical University, Nagakute, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shusuke Akamatsu
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| |
Collapse
|
15
|
Ahuja S, Sureka N, Zaheer S. Unraveling the intricacies of cancer-associated fibroblasts: a comprehensive review on metabolic reprogramming and tumor microenvironment crosstalk. APMIS 2024. [PMID: 38873945 DOI: 10.1111/apm.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are crucial component of tumor microenvironment (TME) which undergo significant phenotypic changes and metabolic reprogramming, profoundly impacting tumor growth. This review delves into CAF plasticity, diverse origins, and the molecular mechanisms driving their continuous activation. Emphasis is placed on the intricate bidirectional crosstalk between CAFs and tumor cells, promoting cancer cell survival, proliferation, invasion, and immune evasion. Metabolic reprogramming, a cancer hallmark, extends beyond cancer cells to CAFs, contributing to the complex metabolic interplay within the TME. The 'reverse Warburg effect' in CAFs mirrors the Warburg effect, involving the export of high-energy substrates to fuel cancer cells, supporting their rapid proliferation. Molecular regulations by key players like p53, Myc, and K-RAS orchestrate this metabolic adaptation. Understanding the metabolic symbiosis between CAFs and tumor cells opens avenues for targeted therapeutic strategies to disrupt this dynamic crosstalk. Unraveling CAF-mediated metabolic reprogramming provides valuable insights for developing novel anticancer therapies. This comprehensive review consolidates current knowledge, shedding light on CAFs' multifaceted roles in the TME and offering potential targets for future therapies.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
16
|
Kimura T, Akazawa T, Mizote Y, Nakamura H, Sakaue M, Maniwa T, Shintani Y, Honma K, Tahara H, Okami J. Progressive changes in the protein expression profile of alveolar septa in early-stage lung adenocarcinoma. Int J Clin Oncol 2024; 29:771-779. [PMID: 38600426 DOI: 10.1007/s10147-024-02507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Adenocarcinomas show a stepwise progression from atypical adenomatous hyperplasia (AAH) through adenocarcinoma in situ (AIS) to invasive adenocarcinoma (IA). Immunoglobulin superfamily containing leucine-rich repeat (ISLR) is a marker of tumor-restraining cancer-associated fibroblasts (CAFs), which are distinct from conventional, strongly α-smooth muscle actin (αSMA)-positive CAFs. Fibroblast activation protein (FAP) has been focused on as a potential therapeutic and diagnostic target of CAFs. METHODS We investigated the changes in protein expression during adenocarcinoma progression in the pre-existing alveolar septa by assessing ISLR, αSMA, and FAP expression in normal lung, AAH, AIS, and IA. Fourteen AAH, seventeen AIS, and twenty IA lesions were identified and randomly sampled. Immunohistochemical analysis was performed to evaluate cancer-associated changes and FAP expression in the pre-existing alveolar structures. RESULTS Normal alveolar septa expressed ISLR. The ISLR level in the alveolar septa decreased in AAH and AIS tissues when compared with that in normal lung tissue. The αSMA-positive area gradually increased from the adjacent lung tissue (13.3% ± 15%) to AIS (87.7% ± 14%), through AAH (70.2% ± 21%). Moreover, the FAP-positive area gradually increased from AAH (1.69% ± 1.4%) to IA (11.8% ± 7.1%), through AIS (6.11% ± 5.3%). Protein expression changes are a feature of CAFs in the pre-existing alveolar septa that begin in AAH. These changes gradually progressed from AAH to IA through AIS. CONCLUSIONS FAP-positive fibroblasts may contribute to tumor stroma formation in early-stage lung adenocarcinoma, and this could influence the development of therapeutic strategies targeting FAP-positive CAFs for disrupting extracellular matrix formation.
Collapse
Affiliation(s)
- Toru Kimura
- Department of General Thoracic Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan.
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, , Suita, 565-0871, Japan.
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| | - Yu Mizote
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| | - Harumi Nakamura
- Laboratory of Genomic Pathology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| | - Miki Sakaue
- Department of General Thoracic Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| | - Tomohiro Maniwa
- Department of General Thoracic Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, , Suita, 565-0871, Japan
| | - Keiichiro Honma
- Department of Pathology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| | - Hideaki Tahara
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
- Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Jiro Okami
- Department of General Thoracic Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| |
Collapse
|
17
|
Cantallops Vilà P, Ravichandra A, Agirre Lizaso A, Perugorria MJ, Affò S. Heterogeneity, crosstalk, and targeting of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology 2024; 79:941-958. [PMID: 37018128 DOI: 10.1097/hep.0000000000000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/25/2022] [Indexed: 04/06/2023]
Abstract
Cholangiocarcinoma (CCA) comprises diverse tumors of the biliary tree and is characterized by late diagnosis, short-term survival, and chemoresistance. CCAs are mainly classified according to their anatomical location and include diverse molecular subclasses harboring inter-tumoral and intratumoral heterogeneity. Besides the tumor cell component, CCA is also characterized by a complex and dynamic tumor microenvironment where tumor cells and stromal cells crosstalk in an intricate network of interactions. Cancer-associated fibroblasts, one of the most abundant cell types in the tumor stroma of CCA, are actively involved in cholangiocarcinogenesis by participating in multiple aspects of the disease including extracellular matrix remodeling, immunomodulation, neo-angiogenesis, and metastasis. Despite their overall tumor-promoting role, recent evidence indicates the presence of transcriptional and functional heterogeneous CAF subtypes with tumor-promoting and tumor-restricting properties. To elucidate the complexity and potentials of cancer-associated fibroblasts as therapeutic targets in CCA, this review will discuss the origin of cancer-associated fibroblasts, their heterogeneity, crosstalk, and role during tumorigenesis, providing an overall picture of the present and future perspectives toward cancer-associated fibroblasts targeting CCA.
Collapse
Affiliation(s)
| | - Aashreya Ravichandra
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, Munich, Germany
| | - Aloña Agirre Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
- CIBERehd, Institute of Health Carlos III, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Silvia Affò
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
18
|
Wang F, Li Z, Xu T, Zhang Q, Ma T, Li S, Wang X. A comprehensive multi-omics analysis identifies a robust scoring system for cancer-associated fibroblasts and intervention targets in colorectal cancer. J Cancer Res Clin Oncol 2024; 150:124. [PMID: 38478111 PMCID: PMC10937804 DOI: 10.1007/s00432-023-05548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/15/2023] [Indexed: 03/17/2024]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAF) play a critical role in promoting tumor growth, metastasis, and immune evasion. While numerous studies have investigated CAF, there remains a paucity of research on their clinical application in colorectal cancer (CRC). METHODS In this study, we collected differentially expressed genes between CAF and normal fibroblasts (NF) from previous CRC studies, and utilized machine learning analysis to differentiate two distinct subtypes of CAF in CRC. To enable practical application, a CAF-related genes (CAFGs) scoring system was developed based on multivariate Cox regression. We then conducted functional enrichment analysis, Kaplan-Meier plot, consensus molecular subtypes (CMS) classification, and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to investigate the relationship between the CAFGs scoring system and various biological mechanisms, prognostic value, tumor microenvironment, and response to immune checkpoint blockade (ICB) therapy. Moreover, single-cell transcriptomics and proteomics analyses have been employed to validate the significance of scoring system-related molecules in the identity and function of CAF. RESULTS We unveiled significant distinctions in tumor immune status and prognosis not only between the CAF clusters, but also across high and low CAFGs groups. Specifically, patients in CAF cluster 2 or with high CAFGs scores exhibited higher CAF markers and were enriched for CAF-related biological pathways such as epithelial-mesenchymal transition (EMT) and angiogenesis. In addition, CAFGs score was identified as a risk index and correlated with poor overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), and recurrence-free survival (RFS). High CAFGs scores were observed in patients with advanced stages, CMS4, as well as lymphatic invasion. Furthermore, elevated CAFG scores in patients signified a suppressive tumor microenvironment characterized by the upregulation of programmed death-ligand 1 (PD-L1), T-cell dysfunction, exclusion, and TIDE score. And high CAFGs scores can differentiate patients with lower response rates and poor prognosis under ICB therapy. Notably, single-cell transcriptomics and proteomics analyses identified several molecules related to CAF identity and function, such as FSTL1, IGFBP7, and FBN1. CONCLUSION We constructed a robust CAFGs score system with clinical significance using multiple CRC cohorts. In addition, we identified several molecules related to CAF identity and function that could be potential intervention targets for CRC patients.
Collapse
Affiliation(s)
- Feng Wang
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Zhenlin Li
- Department of Surgical Clinical, School of Heze Medical College, Heze, China
| | - Tianlei Xu
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qian Zhang
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Tianyi Ma
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Sijia Li
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiaohui Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Ando R, Shiraki Y, Miyai Y, Shimizu H, Furuhashi K, Minatoguchi S, Kato K, Kato A, Iida T, Mizutani Y, Ito K, Asai N, Mii S, Esaki N, Takahashi M, Enomoto A. Meflin is a marker of pancreatic stellate cells involved in fibrosis and epithelial regeneration in the pancreas. J Pathol 2024; 262:61-75. [PMID: 37796386 DOI: 10.1002/path.6211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/18/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023]
Abstract
Pancreatic stellate cells (PSCs) are stromal cells in the pancreas that play an important role in pancreatic pathology. In chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC), PSCs are known to get activated to form myofibroblasts or cancer-associated fibroblasts (CAFs) that promote stromal fibroinflammatory reactions. However, previous studies on PSCs were mainly based on the findings obtained using ex vivo expanded PSCs, with few studies that addressed the significance of in situ tissue-resident PSCs using animal models. Their contributions to fibrotic reactions in CP and PDAC are also lesser-known. These limitations in our understanding of PSC biology have been attributed to the lack of specific molecular markers of PSCs. Herein, we established Meflin (Islr), a glycosylphosphatidylinositol-anchored membrane protein, as a PSC-specific marker in both mouse and human by using human pancreatic tissue samples and Meflin reporter mice. Meflin-positive (Meflin+ ) cells contain lipid droplets and express the conventional PSC marker Desmin in normal mouse pancreas, with some cells also positive for Gli1, the marker of pancreatic tissue-resident fibroblasts. Three-dimensional analysis of the cleared pancreas of Meflin reporter mice showed that Meflin+ PSCs have long and thin cytoplasmic protrusions, and are localised on the abluminal side of vessels in the normal pancreas. Lineage tracing experiments revealed that Meflin+ PSCs constitute one of the origins of fibroblasts and CAFs in CP and PDAC, respectively. In these diseases, Meflin+ PSC-derived fibroblasts showed a distinctive morphology and distribution from Meflin+ PSCs in the normal pancreas. Furthermore, we showed that the genetic depletion of Meflin+ PSCs accelerated fibrosis and attenuated epithelial regeneration and stromal R-spondin 3 expression, thereby implying that Meflin+ PSCs and their lineage cells may support tissue recovery and Wnt/R-spondin signalling after pancreatic injury and PDAC development. Together, these data indicate that Meflin may be a marker specific to tissue-resident PSCs and useful for studying their biology in both health and disease. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Miyai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Shimizu
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Furuhashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shun Minatoguchi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Kato
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kisuke Ito
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Asai
- Department of Molecular Pathology, Fujita Health University, Toyoake, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Division of International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| |
Collapse
|
20
|
You T, Tang H, Wu W, Gao J, Li X, Li N, Xu X, Xing J, Ge H, Xiao Y, Guo J, Wu B, Li X, Zhou L, Zhao L, Bai C, Han Q, Sun Z, Zhao RC. POSTN Secretion by Extracellular Matrix Cancer-Associated Fibroblasts (eCAFs) Correlates with Poor ICB Response via Macrophage Chemotaxis Activation of Akt Signaling Pathway in Gastric Cancer. Aging Dis 2023; 14:2177-2192. [PMID: 37199594 PMCID: PMC10676785 DOI: 10.14336/ad.2023.0503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment, but its clinical benefit is limited in advanced gastric cancer (GC). Cancer-associated fibroblasts (CAFs) have been reported to be associated with ICB resistance, but the underlying mechanism has not been fully elucidated. Our previous single-cell RNA-seq analysis of GC revealed that POSTN+FAP+ extracellular matrix CAFs (eCAFs) communicate with macrophages. Here, we evaluated the correlation between eCAFs and ICB response in TCGA-STAD and real-world cohorts. Immune infiltration analysis and correlation analysis were performed to assess the relationship between eCAFs and macrophages. We first confirmed a negative correlation between the abundance of eCAFs and the overall response rate (ORR) to anti-PD-1 treatment in TCGA-STAD and real-world GC cohorts. Overexpression of POSTN in CAFs enhanced macrophage chemotaxis, while POSTN interference showed the opposite effect in vitro and in vivo. Furthermore, the cell density of POSTN+ CAFs was positively correlated with the infiltration level of CD163+ macrophages in GC patient tissues. The results demonstrated that POSTN secreted by CAFs enhances macrophage chemotaxis by activating the Akt signaling pathway in macrophages. Additionally, we found that POSTN+FAP+ eCAFs may exist in multiple solid tumors and are associated with ICB resistance. eCAFs promote macrophage chemotaxis through the secretion of POSTN, thereby leading to ICB resistance. High expression of POSTN is likely to predict a poor response to ICB. POSTN downregulation may be considered as a candidate therapeutic strategy to improve ICB efficacy.
Collapse
Affiliation(s)
- Tingting You
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hui Tang
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wenjing Wu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Jingxi Gao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Xuechun Li
- Department of Stomatology Center, Xiangya Hospital, Central South University, Changsha, China.
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China.
| | - Ningning Li
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiuxiu Xu
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiazhang Xing
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hui Ge
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yi Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiaoyi Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Liangrui Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Lin Zhao
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Zhao Sun
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
21
|
Guo S, Yuan J, Meng X, Feng X, Ma D, Han Y, Li K. Cancer-associated fibroblasts: Just on the opposite side of antitumour immunity? Int Immunopharmacol 2023; 122:110601. [PMID: 37418988 DOI: 10.1016/j.intimp.2023.110601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
The tumour microenvironment (TME) is critical for the initiation, progression, and metastasis of tumours, and cancer-associated fibroblasts (CAFs) are the most dominant cells and have attracted interest as targets for cancer therapy among the stromal components within the TME. Currently, most of the identified CAF subpopulations are believed to exhibit suppressive effects on antitumour immunity. However, accumulating evidence indicates the presence of immunostimulatory CAF subpopulations, which play an important role in the maintenance and amplification of antitumour immunity, in the TME. Undoubtedly, these findings provide novel insights into CAF heterogeneity. Herein, we focus on summarizing CAF subpopulations that promote antitumour immunity, the surface markers of these populations, and possible immunostimulatory mechanisms in the context of recent advances in research on CAF subpopulations. In addition, we discuss the possibility of new therapies targeting CAF subpopulations and conclude with a brief description of some prospective avenues for CAF research.
Collapse
Affiliation(s)
- Shuaiqingying Guo
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaolin Meng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue Feng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding Ma
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingyan Han
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Kezhen Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal 2023; 21:96. [PMID: 37143134 PMCID: PMC10158035 DOI: 10.1186/s12964-023-01125-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
The tumor microenvironment is one of the important drivers of tumor development. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma and actively participate in tumor development, invasion, metastasis, drug resistance, and other biological behaviors. CAFs are a highly heterogeneous group of cells, a reflection of the diversity of their origin, biomarkers, and functions. The diversity of CAF origin determines the complexity of CAF biomarkers, and CAF subpopulations expressing different biomarkers may play contrasting roles in tumor progression. In this review, we provide an overview of these emerging CAF biomarkers and the biological functions that they suggest, which may give a better understanding of the relationship between CAFs and tumor cells and be of great significance for breakthroughs in precision targeted therapy for tumors. Video Abstract.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, No. 155 of Nanjing Road, Heping District, Shenyang, 110001, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
23
|
Brichkina A, Polo P, Sharma SD, Visestamkul N, Lauth M. A Quick Guide to CAF Subtypes in Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15092614. [PMID: 37174079 PMCID: PMC10177377 DOI: 10.3390/cancers15092614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer represents one of the most desmoplastic malignancies and is characterized by an extensive deposition of extracellular matrix. The latter is provided by activated cancer-associated fibroblasts (CAFs), which are abundant cells in the pancreatic tumor microenvironment. Many recent studies have made it clear that CAFs are not a singular cellular entity but represent a multitude of potentially dynamic subgroups that affect tumor biology at several levels. As mentioned before, CAFs significantly contribute to the fibrotic reaction and the biomechanical properties of the tumor, but they can also modulate the local immune environment and the response to targeted, chemo or radiotherapy. As the number of known and emerging CAF subgroups is steadily increasing, it is becoming increasingly difficult to keep up with these developments and to clearly discriminate the cellular subsets identified so far. This review aims to provide a helpful overview that enables readers to quickly familiarize themselves with field of CAF heterogeneity and to grasp the phenotypic, functional and therapeutic distinctions of the various stromal subpopulations.
Collapse
Affiliation(s)
- Anna Brichkina
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Pierfrancesco Polo
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Shrey Dharamvir Sharma
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Nico Visestamkul
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Matthias Lauth
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| |
Collapse
|
24
|
Abe Y, Sano T, Tanaka N. The Role of PRMT5 in Immuno-Oncology. Genes (Basel) 2023; 14:678. [PMID: 36980950 PMCID: PMC10048035 DOI: 10.3390/genes14030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has caused a paradigm shift in cancer therapeutic strategy. However, this therapy only benefits a subset of patients. The difference in responses to ICIs is believed to be dependent on cancer type and its tumor microenvironment (TME). The TME is favorable for cancer progression and metastasis and can also help cancer cells to evade immune attacks. To improve the response to ICIs, it is crucial to understand the mechanism of how the TME is maintained. Protein arginine methyltransferase 5 (PRMT5) di-methylates arginine residues in its substrates and has essential roles in the epigenetic regulation of gene expression, signal transduction, and the fidelity of mRNA splicing. Through these functions, PRMT5 can support cancer cell immune evasion. PRMT5 is necessary for regulatory T cell (Treg) functions and promotes cancer stemness and the epithelial-mesenchymal transition. Specific factors in the TME can help recruit Tregs, tumor-associated macrophages, and myeloid-derived suppressor cells into tumors. In addition, PRMT5 suppresses antigen presentation and the production of interferon and chemokines, which are necessary to recruit T cells into tumors. Overall, PRMT5 supports an immunosuppressive TME. Therefore, PRMT5 inhibition would help recover the immune cycle and enable the immune system-mediated elimination of cancer cells.
Collapse
Affiliation(s)
| | | | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| |
Collapse
|
25
|
Dong J, Wang F, Gao X, Zhao H, Zhang J, Wang N, Liu Z, Yan X, Jin J, Ba Y, Ma S, Du J, Ji H, Hu S. Integrated analysis of genome-wide DNA methylation and cancer-associated fibroblasts identified prognostic biomarkers and immune checkpoint blockade in lower grade gliomas. Front Oncol 2023; 12:977251. [PMID: 36727078 PMCID: PMC9885112 DOI: 10.3389/fonc.2022.977251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are vital components of prominent cellular components in lower-grade gliomas (LGGs) that contribute to LGGs' progression, treatment resistance, and immunosuppression. Epigenetic modification and immunity have significant implications for tumorigenesis and development. Methods We combined aberrant methylation and CAFs abundances to build a prognostic model and the impact on the biological properties of LGGs. Grouping based on the median CAFs abundances score of samples in the TCGA-LGGs dataset, differentially expressed genes and aberrantly methylated genes were combined for subsequent analysis. Results We identified five differentially methylated and expressed genes (LAT32, SWAP70, GSAP, EMP3, and SLC2A10) and established a prognostic gene signature validated in the CGGA-LGGs dataset. Immunohistochemistry (IHC) and in vitro tests were performed to verify these expressions. The high-risk group increased in tumor-promoting immune cells and tumor mutational burden. Notably, risk stratification had different ICB sensitivities in LGGs, and there were also significant sensitivity differences for temozolomide and the other three novel chemotherapeutic agents. Conclusion Our study reveals characteristics of CAFs in LGGs, refines the direct link between epigenetics and tumor stroma, and might provide clinical implications for guiding tailored anti-CAFs therapy in combination with immunotherapy for LGGs patients.
Collapse
Affiliation(s)
- Jiawei Dong
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Gao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiheng Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Liu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiuwei Yan
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaqi Jin
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yixu Ba
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Ma
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianyang Du
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hang Ji
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,*Correspondence: Shaoshan Hu, ; Hang Ji,
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,*Correspondence: Shaoshan Hu, ; Hang Ji,
| |
Collapse
|
26
|
Zhou Z, Wei J, Kuang L, Zhang K, Liu Y, He Z, Li L, Lu B. Characterization of aging cancer-associated fibroblasts draws implications in prognosis and immunotherapy response in low-grade gliomas. Front Genet 2022; 13:897083. [PMID: 36092895 PMCID: PMC9449154 DOI: 10.3389/fgene.2022.897083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Due to the highly variable prognosis of low-grade gliomas (LGGs), it is important to find robust biomarkers for predicting clinical outcomes. Aging cancer-associated fibroblasts (CAFs) within the senescent stroma of a tumor microenvironment (TME) have been recently reported to play a key role in tumor development. However, there are few studies focusing on this topic in gliomas. Methods and Results: Based on the transcriptome data from TCGA and CGGA databases, we identified aging CAF-related genes (ACAFRGs) in LGGs by the weighted gene co-expression network analysis (WGCNA) method, followed by which LGG samples were classified into two aging CAF-related gene clusters with distinct prognosis and characteristics of the TME. Machine learning algorithms were used to screen out eight featured ACAFRGs to characterize two aging CAF-related gene clusters, and a nomogram model was constructed to predict the probability of gene cluster A for each LGG sample. Then, a powerful aging CAF scoring system was developed to predict the prognosis and response to immune checkpoint blockage therapy. Finally, the ACAFRGs were verified in two glioma-related external datasets. The performance of the aging CAF score in predicting the immunotherapy response was further validated in two independent cohorts. We also confirmed the expression of ACAFRGs at the protein level in glioma tissues through the Human Protein Atlas website and Western blotting analysis. Conclusion: We developed a robust aging CAF scoring system to predict the prognosis and immunotherapy response in LGGs. Our findings may provide new targets for therapeutics and contribute to the exploration focusing on aging CAFs.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- *Correspondence: Bin Lu, ; Zijian Zhou,
| | - Jinhong Wei
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Lijun Kuang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ke Zhang
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
| | - Yini Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhongming He
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Luo Li
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bin Lu
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- *Correspondence: Bin Lu, ; Zijian Zhou,
| |
Collapse
|
27
|
Shiraki Y, Mii S, Esaki N, Enomoto A. Possible disease-protective roles of fibroblasts in cancer and fibrosis and their therapeutic application. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:484-496. [PMID: 36237894 PMCID: PMC9529631 DOI: 10.18999/nagjms.84.3.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Cancer and fibrotic diseases are characterized by continuous inflammation, tissue wounds, and injuries. Cancer is a "wound that does not heal," and the uncontrolled proliferation of cancer cells disrupts normal tissue integrity and induces stromal fibroinflammatory reactions. Fibroblasts proliferate extensively in the stroma, playing a major role in the development of these diseases. There has been considerable evidence that fibroblasts contribute to fibrosis and tissue stiffening and promote disease progression via multiple mechanisms. However, recent emerging findings, mainly derived from single-cell transcriptomic analysis, indicated that fibroblasts are functionally heterogeneous, leading to the hypothesis that both disease-promoting and -restraining fibroblasts exist. We recently showed that a fibroblast population, defined by the expression of the glycosylphosphatidylinositol-anchored membrane protein Meflin may suppress but not promote fibrotic response and disease progression in cancer and fibrotic diseases. Although currently hypothetical, the primary function of Meflin-positive fibroblasts may be tissue repair after injury and cancer initiation occurred. This observation has led to the proposal of a potential therapy that converts the phenotype of fibroblasts from pro-tumor to anti-tumor. In this short review, we summarize our recent findings on the function of Meflin in the context of cancer and fibrotic diseases and discuss how we can utilize this knowledge on fibroblasts in translational medicine. We also discuss several aspects of the interpretation of survival analysis data, such as Kaplan-Meier analysis, to address the function of specific genes expressed in fibroblasts.
Collapse
Affiliation(s)
- Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
28
|
Ando R, Sakai A, Iida T, Kataoka K, Mizutani Y, Enomoto A. Good and Bad Stroma in Pancreatic Cancer: Relevance of Functional States of Cancer-Associated Fibroblasts. Cancers (Basel) 2022; 14:cancers14143315. [PMID: 35884375 PMCID: PMC9317763 DOI: 10.3390/cancers14143315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recent progress in research on the biology of cancer-associated fibroblasts (CAFs) in pancreatic ductal adenocarcinoma (PDAC) indicates their diverse states and plasticity, which may lead to good and bad stroma, suppressing and promoting cancer progression, respectively. The characteristics of the stroma differ spatially, even within the same tumors, based on the balance between cancer-restraining CAF and cancer-promoting CAF proliferation at the site. These heterogeneous CAFs also influence the sensitivity of PDAC to anticancer therapeutics. Further preclinical and clinical studies will advance our understanding of the roles of CAFs in disease progression and aid the development of therapeutics that modulate or ameliorate the tumor microenvironment in PDAC. Abstract A well-known feature of human pancreatic ductal adenocarcinoma (PDAC) is the extensive proliferation of cancer-associated fibroblasts (CAFs) and highly fibrotic stroma. Recent evidence, based mainly on single-cell analyses, has identified various subsets of CAFs in PDAC mouse models. However, we do not know how these CAF subsets are involved in the progression and drug resistance of human PDAC. Additionally, it remains unclear whether these diverse CAFs have distinct origins and are indicators of genuinely distinct CAF lineages or reflect different states of the same CAFs depending on the tumor microenvironment. Interestingly, recent preclinical studies have started to characterize the nature of cancer-restraining CAFs and have identified their markers Meflin and collagen type I alpha 1. These studies have led to the development of strategies to induce changes in CAF phenotypes using chemical reagents or recombinant viruses, and some of them have been tested in clinical studies. These strategies have the unique potential to convert the so-called bad stroma to good stroma and may also have therapeutic implications for non-cancer diseases such as fibrotic diseases. Together with recently developed sophisticated strategies that specifically target distinct CAF subsets via adoptive cell transfer therapy, vaccination, and antibody–drug conjugates, any future findings arising from these clinical efforts may expand our understanding of the significance of CAF diversity in human PDAC.
Collapse
Affiliation(s)
- Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
| | - Akihiro Sakai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kunio Kataoka
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
- Correspondence: ; Tel.: +81-52-744-2093
| |
Collapse
|
29
|
Zhang F, Liu H, Duan M, Wang G, Zhang Z, Wang Y, Qian Y, Yang Z, Jiang X. Crosstalk among m6A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol 2022; 15:84. [PMID: 35794625 PMCID: PMC9258089 DOI: 10.1186/s13045-022-01304-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME), which is regulated by intrinsic oncogenic mechanisms and epigenetic modifications, has become a research hotspot in recent years. Characteristic features of TME include hypoxia, metabolic dysregulation, and immunosuppression. One of the most common RNA modifications, N6-methyladenosine (m6A) methylation, is widely involved in the regulation of physiological and pathological processes, including tumor development. Compelling evidence indicates that m6A methylation regulates transcription and protein expression through shearing, export, translation, and processing, thereby participating in the dynamic evolution of TME. Specifically, m6A methylation-mediated adaptation to hypoxia, metabolic dysregulation, and phenotypic shift of immune cells synergistically promote the formation of an immunosuppressive TME that supports tumor proliferation and metastasis. In this review, we have focused on the involvement of m6A methylation in the dynamic evolution of tumor-adaptive TME and described the detailed mechanisms linking m6A methylation to change in tumor cell biological functions. In view of the collective data, we advocate treating TME as a complete ecosystem in which components crosstalk with each other to synergistically achieve tumor adaptive changes. Finally, we describe the potential utility of m6A methylation-targeted therapies and tumor immunotherapy in clinical applications and the challenges faced, with the aim of advancing m6A methylation research.
Collapse
|
30
|
A novel renal perivascular mesenchymal cell subset gives rise to fibroblasts distinct from classic myofibroblasts. Sci Rep 2022; 12:5389. [PMID: 35354870 PMCID: PMC8967907 DOI: 10.1038/s41598-022-09331-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Perivascular mesenchymal cells (PMCs), which include pericytes, give rise to myofibroblasts that contribute to chronic kidney disease progression. Several PMC markers have been identified; however, PMC heterogeneity and functions are not fully understood. Here, we describe a novel subset of renal PMCs that express Meflin, a glycosylphosphatidylinositol-anchored protein that was recently identified as a marker of fibroblasts essential for cardiac tissue repair. Tracing the lineage of Meflin+ PMCs, which are found in perivascular and periglomerular areas and exhibit renin-producing potential, showed that they detach from the vasculature and proliferate under disease conditions. Although the contribution of Meflin+ PMCs to conventional α-SMA+ myofibroblasts is low, they give rise to fibroblasts with heterogeneous α-SMA expression patterns. Genetic ablation of Meflin+ PMCs in a renal fibrosis mouse model revealed their essential role in collagen production. Consistent with this, human biopsy samples showed that progressive renal diseases exhibit high Meflin expression. Furthermore, Meflin overexpression in kidney fibroblasts promoted bone morphogenetic protein 7 signals and suppressed myofibroblastic differentiation, implicating the roles of Meflin in suppressing tissue fibrosis. These findings demonstrate that Meflin marks a PMC subset that is functionally distinct from classic pericytes and myofibroblasts, highlighting the importance of elucidating PMC heterogeneity.
Collapse
|