1
|
Liu F, Li W, Wu Y, Chen Z, Zhao X, Liu J, Peng Y, Zhao Y, Zhu Y. Impact of triclocarban exposure on development and gene expression in the wolf spider, Pardosa pseudoannulata (Araneae: Lycosidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101413. [PMID: 39817944 DOI: 10.1016/j.cbd.2025.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Triclocarban (TCC), an emerging organic contaminant, poses a potential threat to water resources and ecosystems. The wolf spider Pardosa pseudoannulata (Araneae: Lycosidae) is a dominant predator typically inhabiting rice fields or wet habitats near water sources. However, little is known about the effects of TCC on the wolf spiders. In the present study, using environmentally relevant concentrations, we systematically investigated the toxicity of TCC on the early life stages of P. pseudoannulata at both physiological and gene expression levels. Our results indicated that TCC exposure did not significantly affect the survival and development of spiderlings. Transcriptome analysis revealed that TCC stress significantly impacted drug metabolism, cell cycle and signal transduction pathways in spiderlings. Subsequently, qRT-PCR was used to verify the expression levels of genes associated with drug metabolism and cell process, and the results were consistent with the transcriptome. These findings enhance our understanding of the toxic mechanism and ecological risk of TCC on arthropods.
Collapse
Affiliation(s)
- Fengjie Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Wei Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Yanrong Wu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Zhilin Chen
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Xingyang Zhao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Jie Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| | - Yang Zhu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China.
| |
Collapse
|
2
|
Deng J, Peng Z, Xia Z, Mo Y, Guo L, Wei J, Sun L, Liu M. Five glutathione S-transferase isozymes played crucial role in the detoxification of aflatoxin B 1 in chicken liver. J Anim Sci Biotechnol 2025; 16:54. [PMID: 40197593 PMCID: PMC11977921 DOI: 10.1186/s40104-025-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND AFB1-8,9-exo-epoxide (AFBO) is the highly toxic product of Aflatoxin B1 (AFB1). Glutathione S-transferases (GSTs) play pivotal roles in detoxifying AFB1 by catalyzing the conjugation of AFBO with glutathione (GSH). Although there are over 20 GST isozymes that have been identified in chicken, GST isozymes involved in the detoxification process of AFB1 have not been identified yet. The objective of this study was to determine which GST isozymes played key role in detoxification of AFB1. RESULTS A total of 17 pcDNA3.1(+)-GST isozyme plasmids were constructed and the GST isozyme genes were overexpressed by 80-2,500,000 folds in the chicken Leghorn male hepatoma (LMH) cells. Compared to the AFB1 treatment, overexpression of GSTA2X, GSTA3, GSTT1L, GSTZ1-1, and GSTZ1-2 increased the cell viability by 6.5%-17.0% in LMH cells. Moreover, overexpression of five GST isozymes reduced the release of lactate dehydrogenase and reactive oxygen species by 8.8%-64.4%, and 57.2%-77.6%, respectively, as well as enhanced the production AFBO-GSH by 15.8%-19.6%, thus mitigating DNA damage induced by AFB1. After comprehensive evaluation of various indicators, GSTA2X displayed the best detoxification effects against AFB1. GSTA2X was expressed in Pichia pastoris X-33 and its enzymatic properties for catalyzing the conjugation of AFBO with GSH showed that the optimum temperature and pH were 20-25 °C and 7.6-8.6 as well as the enzymatic kinetic parameter Vmax was 0.23 nmol/min/mg and the Michaelis constant was 86.05 μmol/L with the AFB1 as substrate. CONCLUSIONS In conclusion, GSTA2X, GSTA3, GSTT1L, GSTZ1-1, and GSTZ1-2 played key roles in AFB1 detoxification, which will provide new remediation strategies to prevent aflatoxicosis in chickens.
Collapse
Affiliation(s)
- Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hebei Panshuo Biotechnology Co., Ltd., Baoding, Hebei, 071500, China
| | - Zhe Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhiyuan Xia
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yixin Mo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lijia Guo
- Hebei Panshuo Biotechnology Co., Ltd., Baoding, Hebei, 071500, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lvhui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
3
|
Yang F, Chen Y, Hou X. Insight into the Underlying Molecular Toxic Mechanisms of Cyantraniliprole and Broflanilide against Different Targets with Glutathione Transferase Phi8 from Arabidopsis thaliana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6537-6544. [PMID: 40042057 DOI: 10.1021/acs.jafc.4c12417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
As two typical kinds of diamide insecticides, cyantraniliprole and broflanilide are characterized by diverse target receptors and completely distinctive regulation mechanisms. However, the systematical evaluation of oxidative damage on plants induced by cyantraniliprole and broflanilide still remains elusive. In this study, the toxic effects were investigated in the biochemical and physiological aspects using AtGSTF8 as a biomarker. First, cyantraniliprole not only brought about much more detrimental impacts on the growth status of plant seedlings but also resulted in a significant upregulation of AtGSTF8 gene expression compared to broflanilide. Then, the glutathione S-transferase activities of AtGSTF8 decreased greatly with treatment of these two diamide insecticides. Moreover, biolayer interferometry analysis confirmed the interactions of both cyantraniliprole and broflanilide with AtGSTF8, especially for cyantraniliprole with stronger binding affinity, which conformed to the molecular docking results. At last, even more adverse effects on the structural conformations of AtGSTF8 upon binding with cyantraniliprole were observed.
Collapse
Affiliation(s)
- Fan Yang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yifan Chen
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Padhan P, Simran, Kumar N, Verma S. Glutathione S-transferase: A keystone in Parkinson's disease pathogenesis and therapy. Mol Cell Neurosci 2025; 132:103981. [PMID: 39644945 DOI: 10.1016/j.mcn.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that predominantly affects motor function due to the loss of dopaminergic neurons in the substantia nigra. It presents significant challenges, impacting millions worldwide with symptoms such as tremors, rigidity, bradykinesia, and postural instability, leading to decreased quality of life and increased morbidity. The pathogenesis of Parkinson's disease is multifaceted, involving complex interactions between genetic susceptibility, environmental factors, and aging, with oxidative stress playing a central role in neuronal degeneration. Glutathione S-Transferase enzymes are critical in the cellular defense mechanism against oxidative stress, catalysing the conjugation of the antioxidant glutathione to various toxic compounds, thereby facilitating their detoxification. Recent research underscores the importance of Glutathione S-Transferase in the pathophysiology of Parkinson's disease, revealing that genetic polymorphisms in Glutathione S-Transferase genes influence the risk and progression of the disease. These genetic variations can affect the enzymatic activity of Glutathione S-Transferase, thereby modulating an individual's capacity to detoxify reactive oxygen species and xenobiotics, which are implicated in Parkinson's disease neuropathological processes. Moreover, biochemical studies have elucidated the role of Glutathione S-Transferase in not only maintaining cellular redox balance but also in modulating various cellular signalling pathways, highlighting its neuroprotective potential. From a therapeutic perspective, targeting Glutathione S-Transferase pathways offers promising avenues for the development of novel treatments aimed at enhancing neuroprotection and mitigating disease progression. This review explores the evident and hypothesized roles of Glutathione S-Transferase in Parkinson's disease, providing a comprehensive overview of its importance and potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Pratyush Padhan
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Simran
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sonia Verma
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Lee Y, Ahn S, Jung E, Lim Y, Koh D, Bae DH, Shin SY. (E)-3-(3-([1,1'-Biphenyl]-4-yl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-ones inducing reactive oxygen species generation through glutathione depletion. Bioorg Med Chem Lett 2025; 117:130043. [PMID: 39608685 DOI: 10.1016/j.bmcl.2024.130043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
The accumulation of reactive oxygen species (ROS) disrupts reduction-oxidation homeostasis, which can result in damage to cancer cells. To identify the compounds generating ROS, compounds containing Michael acceptors were designed because they are suggested to be critical for ROS elevation via glutathione depletion. Twelve (E)-3-(3-([1,1'-biphenyl]-4-yl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-ones were synthesized and identified using nuclear magnetic resonance spectroscopy and mass spectrometry. Intracellular ROS levels induced by treatment with the compounds were determined using fluorescence microscopy with the oxidant-sensing fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate. We selected compound 9, which showed the highest activity, and performed further biological experiments, including glutathione depletion and apoptosis assays, using MIA PaCa-2 pancreatic cancer cells. Additionally, the reason why the intracellular ROS level by compound 9 was lower than that of menadione used as a control was explained through in silico docking experiments. Our findings suggest that compound 9 has the potential to act as an anticancer agent by inducing ROS generation through the depletion of intracellular glutathione.
Collapse
Affiliation(s)
- Youngshim Lee
- Division of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seunghyun Ahn
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Euitaek Jung
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Dong-Ho Bae
- Department of Food Sciences and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Kumari K, Sinha A, Sharma PK, Singh RP. In-depth genome and comparative genome analysis of a metal-resistant environmental isolate Pseudomonas aeruginosa S-8. Front Cell Infect Microbiol 2025; 15:1511507. [PMID: 40083908 PMCID: PMC11903748 DOI: 10.3389/fcimb.2025.1511507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
The present study aimed to identify the mechanisms underlying the survival of an environmental bacterium originally isolated from the waste-contaminated soil of Jhiri, Ranchi, India. Based on 16S rRNA, ANI (average nucleotide identity), and BLAST Ring Image Generator (BRIG) analysis, the isolated strain was identified as Pseudomonas aeruginosa. The present study extends the characterization of this bacterium through genomic and comparative genomic analysis to understand the genomic features pertaining to survival in stressed environments. The sequencing of the bacterium at Illumina HiSeq platform revealed that it possessed a 6.8 Mb circular chromosome with 65.9% GC content and 63 RNAs sequence. The genome also harbored several genes associated to plant growth promotion i.e. phytohormone and siderophore production, phosphate solubilization, motility, and biofilm formation, etc. The genomic analysis with online tools unraveled the various genes belonging to the bacterial secretion system, antibiotic resistance, virulence, and efflux pumps, etc. The presence of biosynthetic gene clusters (BCGs) indicated that large numbers of genes were associated to non-ribosomal synthesized peptide synthetase, polyketide synthetase, and other secondary metabolite production. Additionally, its genomes encode various CAZymes such as glycoside hydrolases and other genes associated with lignocellulose breakdown, suggesting that strain S-8 have strong biomass degradation potential. Furthermore, pan-genome analysis based on a comparison of whole genomes showed that core genome represented the largest part of the gene pools. Therefore, genome and comparative genome analysis of Pseudomonas strains is valuable for understanding the mechanism of resistance to metal stress, genome evolution, HGT events, and therefore, opens a new perspective to exploit a newly isolated bacterium for biotechnological applications.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Ayushi Sinha
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
7
|
Shi N, Fan Y, Zhang W, Zhang Z, Pu Z, Li Z, Hu L, Bi Z, Yao P, Liu Y, Liu Z, Bai J, Sun C. Genome-Wide Identification and Drought-Responsive Functional Analysis of the GST Gene Family in Potato ( Solanum tuberosum L.). Antioxidants (Basel) 2025; 14:239. [PMID: 40002423 PMCID: PMC11852095 DOI: 10.3390/antiox14020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Glutathione S-transferases (GSTs) play crucial roles in crop stress tolerance through protection against oxidative damage. In this study, we conducted genome-wide identification and expression analysis of the GST gene family in the autotetraploid potato cultivar Cooperative-88 (C88) using bioinformatic approaches. We identified 366 GST genes in the potato genome, which were classified into 10 subfamilies. Chromosomal mapping revealed that StGSTs were distributed across all 12 chromosomes, with 13 tandem duplication events observed in three subfamilies. Analysis of protein sequences identified 10 conserved motifs, with motif 1 potentially representing the GST domain. Analysis of cis-acting elements in the StGSTs promoter regions suggested their involvement in stress response pathways. RNA-seq analysis revealed that most StGSTs responded to both drought stress and DNA demethylation treatments. Quantitative PCR validation of 16 selected StGSTs identified four members that showed strong responses to both treatments, with distinct expression patterns between drought-tolerant (QS9) and drought-sensitive (ATL) varieties. Transient expression assays in tobacco demonstrated that these four StGSTs enhanced drought tolerance and may be regulated through DNA methylation pathways, though the precise mechanisms require further investigation. These findings provide a theoretical foundation for understanding the response and epigenetic regulation of potato GST genes under drought stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Chao Sun
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (N.S.); (Y.F.); (W.Z.); (Z.Z.); (Z.P.); (Z.L.); (L.H.); (Z.B.); (P.Y.); (Y.L.); (Z.L.); (J.B.)
| |
Collapse
|
8
|
Johnson AC, Tsitsikov EN, Phan KP, Zuccato JA, Bauer AM, Graffeo CS, Hameed S, Stephens TM, Liu Y, Dunn GP, Tsytsykova AV, Jones PS, Dunn IF. GSTM1 null genotype underpins recurrence of NF2 meningiomas. Front Oncol 2024; 14:1506708. [PMID: 39726707 PMCID: PMC11669715 DOI: 10.3389/fonc.2024.1506708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Meningiomas are the most common primary central nervous system (CNS) tumor in adults, comprising one-third of all primary adult CNS tumors. Although several recent publications have identified molecular alterations in meningioma including characteristic mutations, copy number alterations, and gene expression signatures, our understanding of the drivers of meningioma recurrence is limited. Objective To identify gene expression signatures of 1p-22q-NF2- meningioma recurrence, with concurrent biallelic inactivation of NF2 and loss of chr1p that are heterogenous but enriched for recurrent meningiomas. Methods Transcriptomic alterations present in recurrent versus primary 1p-22q-NF2- meningiomas were identified using RNA sequencing (RNA-seq) data in a clinically annotated cohort. Results Recurrent 1p-22q-NF2- meningiomas were enriched for a newly identified GSTM1 null genotype compared to primary meningiomas that showed variable GSTM1 expression and independent external validation was performed. Conclusions The GSTM1 null genotype is a novel biomarker of 1p-22q-NF2- meningioma recurrence that resolves heterogeneity in existing meningioma subtypes and may be used to guide future clinical management decisions on extent of treatment to improve patient outcomes.
Collapse
Affiliation(s)
- Anthony C. Johnson
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Erdyni N. Tsitsikov
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Khanh P. Phan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jeffrey A. Zuccato
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andrew M. Bauer
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Christopher S. Graffeo
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tressie M. Stephens
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yufeng Liu
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Gavin P. Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alla V. Tsytsykova
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Pamela S. Jones
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
9
|
Huang C, Zhao T, Li J, Wang L, Tang Y, Wang Y, Li Y, Zhang C. Glutathione transferase VvGSTU60 is essential for proanthocyanidin accumulation and cooperates synergistically with MATE in grapes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39645653 DOI: 10.1111/tpj.17197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/24/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Proanthocyanidin, synthesized in the endoplasmic reticulum and stored in vacuoles, is key to grape and wine quality. Glutathione S-transferase (GST) plays a crucial role in proanthocyanidin accumulation. However, little is known about the mechanisms of GSTs in the process. Here, we found that a TAU-type GST VvGSTU60 is required for proanthocyanidin accumulation in Vitis vinifera. Gene expression analysis revealed a favorable correlation between the expression pattern of VvGSTU60 and proanthocyanidin accumulation in the seed of V. vinifera. We discovered that the overexpression of VvGSTU60 in grapes resulted in a significant increase in proanthocyanidin content, whereas the opposite effect occurred when VvGSTU60 was interfered with. Biochemical analysis indicates that VvGSTU60 forms homodimers and heterodimers with VvGST1. Interestingly, we also found that VvGSTU60 interacts with VvDTX41B, a MATE transporter protein localized on the tonoplast. Heterologous expression of VvDTX41B in the Arabidopsis tt12 mutant rescues the proanthocyanidin deficiency, and interfering with VvDTX41B expression in grapes remarkably reduces the accumulation of proanthocyanidin. In addition, compared with the VvGSTU60-OE callus, the content of proanthocyanidin in VvDTX41B-RNAi + VvGSTU60-OE callus was significantly decreased but higher than that in VvDTX41B-RNAi callus. The results suggest that VvGSTU60 and VvDTX41B are coordinated in proanthocyanidin accumulation. These findings offer new insights into the accumulation mechanisms of proanthocyanidin in plants and provide the molecular basis for optimizing grape quality and wine production.
Collapse
Affiliation(s)
- Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Ting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Jinhua Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yan Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| |
Collapse
|
10
|
Kudhair BK, Abdulridha FM, Hussain GM, Lafta IJ, Alabid NN. The association of combined GSTM1, GSTT1, and GSTP1 genetic polymorphisms with lung cancer risk in male Iraqi Waterpipe Tobacco (Nargila) smokers. Cancer Epidemiol 2024; 93:102689. [PMID: 39476782 DOI: 10.1016/j.canep.2024.102689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Mutations in genes encoding proteins necessary for detoxifying oxidative stress products have been predicted to increase susceptibility to lung cancer (LC). Despite this, the association between waterpipe tobacco smoking (WP), genetic polymorphisms, and LC risk remains poorly understood. This is the first study to explore the relationship between WP tobacco smoking and these genetic factors. Previously, we investigated the association of GSTP1 SNPs (rs1695-A/G and rs1138272-C/T) with LC in Iraqi males who smoke WP. Here, we expanded our analysis to include GSTM1 (active/null) and GSTT1 (active/null) genotypes, both individually and in combination with GSTP1 SNPs. Multiplex PCR and RFLP-PCR assays were utilized to determine the genotypes of 123 cases and 129 controls. No significant association was observed between GSTM1-null or GSTT1-null genotypes and LC risk, either separately or in combination with variant genotypes of GSTP1 (rs1695 "AG+GG" and rs1138272 "CT+TT"). However, smoking WP and carrying null genotypes elevated the risk five-fold for GSTM1-null (OR 5.17, 95 % CI 2.02-13.24, P<0.001) and three-fold for GSTT1-null (OR 3.08, 95 % CI 1.55-6.13, P=0.001) compared to non-smokers carrying active genotypes. Conversely, genotype distribution analysis based on LC histological types did not indicate an increased risk of LC. Lung cancer is a complex multifactorial disease. WP smoking and GSTs genetic polymorphisms might be associated with an increased risk of developing LC. However, our data did not confirm an association between GST polymorphisms alone and the risk of LC.
Collapse
Affiliation(s)
- Bassam K Kudhair
- Department of Laboratory Investigations, Faculty of Science, University of Kufa, Najaf, Iraq.
| | - Fadak M Abdulridha
- Department of Medical Laboratory Techniques, Faculty of Medical Technology and Health, University of Alkafeel, Najaf, Iraq
| | - Ghadeer M Hussain
- Department of Medical Laboratory Techniques, Faculty of Medical Technology and Health, University of Alkafeel, Najaf, Iraq
| | - Inam J Lafta
- Department of Microbiology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
11
|
Aloke C, Onisuru OO, Achilonu I. Glutathione S-transferase: A versatile and dynamic enzyme. Biochem Biophys Res Commun 2024; 734:150774. [PMID: 39366175 DOI: 10.1016/j.bbrc.2024.150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The dynamic and versatile group of enzymes referred to as glutathione S-transferases (GSTs) play diverse roles in cellular detoxification, safeguarding hosts from oxidative damage, and performing various other functions. This review explores different classes of GST, existence of polymorphisms in GST, functions of GST and utilizations of GST inhibitors in treatment of human diseases. The study indicates that the cytosolic GSTs, mitochondrial GSTs, microsomal GSTs, and bacterial proteins that provide resistance to Fosfomycin are the major classes. Given a GST, variation in its expression and function among individuals is due to the presence of polymorphic alleles that encode it. Genetic polymorphism might result in the modification of GST activity, thereby increasing individuals' vulnerability to harmful chemical compounds. GSTs have been demonstrated to play a regulatory function in cellular signalling pathways through kinases, S-Glutathionylation, and in detoxification processes. Various applications of bacterial GSTs and their potential roles in plants were examined. Targeting GSTs, especially GSTP1-1, is considered a potential therapeutic strategy for treating cancer and diseases linked to abnormal cell proliferation. Their role in cancer cell growth, differentiation, and resistance to anticancer agents makes them promising targets for drug development, offering prospects for the future.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa; Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Nigeria.
| | - Olalekan Olugbenga Onisuru
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| |
Collapse
|
12
|
Cai H, Feng Y, Wang J, Cao Z, Lv R, Feng J. Loss of Gst1 enhances resistance to MMS by reprogramming the transcription of DNA damage response genes in a Rad53-dependent manner in Candida albicans. Cell Commun Signal 2024; 22:495. [PMID: 39402632 PMCID: PMC11472464 DOI: 10.1186/s12964-024-01865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
The DNA damage response is a highly conserved protective mechanism that enables cells to cope with various lesions in the genome. Extensive studies across different eukaryotic cells have identified the crucial roles played by components required for response to DNA damage. When compared to the essential signal transducers and repair factors in the DNA damage response circuitry, the negative regulators and underlying mechanisms of this circuitry have been relatively under-examined. In this study, we investigated Gst1, a putative glutathione transferase in the fungal pathogen Candida albicans. We found that under stress caused by the DNA damage agent MMS, GST1 expression was significantly upregulated, and this upregulation was further enhanced by the loss of the checkpoint kinases and DNA repair factors. Somewhat counterintuitively, deletion of GST1 conferred increased resistance to MMS, potentially via enhancing the phosphorylation of Rad53. Furthermore, overexpression of RAD53 or deletion of GST1 resulted in upregulated transcription of DNA damage repair genes, including CAS1, RAD7, and RAD30, while repression of RAD7 transcription in the GST1 deletion reversed the strain's heightened resistance to MMS. Finally, Gst1 physically interacted with Rad53, and their interaction weakened in response to MMS-induced stress. Overall, our findings suggest a negative regulatory role for GST1 in DNA damage response in C. albicans, and position Gst1 within the Rad53-mediated signaling pathway. These findings hold significant implications for understanding the mechanisms underlying the DNA damage response in this fungal pathogen and supply new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Huaxin Cai
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yuting Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Jia Wang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zhenyu Cao
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Rui Lv
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
13
|
Müller M, Gibisch M, Brocard C, Cserjan-Puschmann M, Striedner G, Hahn R. Purification of recombinantly produced somatostatin-28 comparing hydrochloric acid and polyethyleneimine as E. coli extraction aids. Protein Expr Purif 2024; 222:106537. [PMID: 38944221 DOI: 10.1016/j.pep.2024.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Peptides are used for diagnostics, therapeutics, and as antimicrobial agents. Most peptides are produced by chemical synthesis, but recombinant production has recently become an attractive alternative due to the advantages of high titers, less toxic waste and correct folding of tertiary structure. Somatostatin-28 is a peptide hormone that regulates the endocrine system, cell proliferation and inhibits the release of numerous secondary hormones in human body. It is composed of 28 amino acids and has one disulfide bond, which makes it to an optimal model peptide for a whole downstream purification process. We produced the peptide in the periplasm of E. coli using the CASPON™ technology, an affinity fusion technology system that enables high soluble expression of recombinant proteins and cleaves the fusion tag with a circularly permuted human caspase-2. Furthermore, purification of the products is straight forward using an established platform process. Two different case studies for downstream purification are presented, starting with either hydrochloric acid or polyethyleneimine as an extraction aid. After release of affinity-tagged somatostatin-28 out of E. coli's periplasm, several purification steps were performed, delivering a pure peptide solution after the final polishing step. The process was monitored by reversed-phase high-performance liquid chromatography as well as mass spectrometry to determine the yield and correct disulfide bond formation. Monitoring of impurities like host cell proteins, DNA and endotoxins after each downstream unit confirmed effective removal for both purification pathways.
Collapse
Affiliation(s)
- Matthias Müller
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Martin Gibisch
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cécile Brocard
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, A-1120, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gerald Striedner
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rainer Hahn
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
14
|
Swenson KA, Min K, Konopka JB. Candida albicans pathways that protect against organic peroxides and lipid peroxidation. PLoS Genet 2024; 20:e1011455. [PMID: 39432552 PMCID: PMC11527291 DOI: 10.1371/journal.pgen.1011455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Human fungal pathogens must survive diverse reactive oxygen species (ROS) produced by host immune cells that can oxidize a range of cellular molecules including proteins, lipids, and DNA. Formation of lipid radicals can be especially damaging, as it leads to a chain reaction of lipid peroxidation that causes widespread damage to the plasma membrane. Most previous studies on antioxidant pathways in fungal pathogens have been conducted with hydrogen peroxide, so the pathways used to combat organic peroxides and lipid peroxidation are not well understood. The most well-known peroxidase in Candida albicans, catalase, can only act on hydrogen peroxide. We therefore characterized a family of four glutathione peroxidases (GPxs) that were predicted to play an important role in reducing organic peroxides. One of the GPxs, Gpx3 is also known to activate the Cap1 transcription factor that plays the major role in inducing antioxidant genes in response to ROS. Surprisingly, we found that the only measurable role of the GPxs is activation of Cap1 and did not find a significant role for GPxs in the direct detoxification of peroxides. Furthermore, a CAP1 deletion mutant strain was highly sensitive to organic peroxides and oxidized lipids, indicating an important role for antioxidant genes upregulated by Cap1 in protecting cells from organic peroxides. We identified GLR1 (Glutathione reductase), a gene upregulated by Cap1, as important for protecting cells from oxidized lipids, implicating glutathione utilizing enzymes in the protection against lipid peroxidation. Furthermore, an RNA-sequencing study in C. albicans showed upregulation of a diverse set of antioxidant genes and protein damage pathways in response to organic peroxides. Overall, our results identify novel mechanisms by which C. albicans responds to oxidative stress resistance which open new avenues for understanding how fungal pathogens resist ROS in the host.
Collapse
Affiliation(s)
- Kara A. Swenson
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kyunghun Min
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - James B. Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
15
|
Vazzana G, Savojardo C, Martelli PL, Casadio R. Testing the Capability of Embedding-Based Alignments on the GST Superfamily Classification: The Role of Protein Length. Molecules 2024; 29:4616. [PMID: 39407545 PMCID: PMC11478096 DOI: 10.3390/molecules29194616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
In order to shed light on the usage of protein language model-based alignment procedures, we attempted the classification of Glutathione S-transferases (GST; EC 2.5.1.18) and compared our results with the ARBA/UNI rule-based annotation in UniProt. GST is a protein superfamily involved in cellular detoxification from harmful xenobiotics and endobiotics, widely distributed in prokaryotes and eukaryotes. What is particularly interesting is that the superfamily is characterized by different classes, comprising proteins from different taxa that can act in different cell locations (cytosolic, mitochondrial and microsomal compartments) with different folds and different levels of sequence identity with remote homologs. For this reason, GST functional annotation in a specific class is problematic: unless a structure is released, the protein can be classified only on the basis of sequence similarity, which excludes the annotation of remote homologs. Here, we adopt an embedding-based alignment to classify 15,061 GST proteins automatically annotated by the UniProt-ARBA/UNI rules. Embedding is based on the Meta ESM2-15b protein language. The embedding-based alignment reaches more than a 99% rate of perfect matching with the UniProt automatic procedure. Data analysis indicates that 46% of the UniProt automatically classified proteins do not conserve the typical length of canonical GSTs, whose structure is known. Therefore, 46% of the classified proteins do not conserve the template/s structure required for their family classification. Our approach finds that 41% of 64,207 GST UniProt proteins not yet assigned to any class can be classified consistently with the structural template length.
Collapse
Affiliation(s)
| | | | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (G.V.); (C.S.)
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (G.V.); (C.S.)
| |
Collapse
|
16
|
Tamir TY, Chaudhary S, Li AX, Trojan SE, Flower CT, Vo P, Cui Y, Davis JC, Mukkamala RS, Venditti FN, Hillis AL, Toker A, Vander Heiden MG, Spinelli JB, Kennedy NJ, Davis RJ, White FM. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-specific metabolic reprogramming in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609894. [PMID: 39257804 PMCID: PMC11383994 DOI: 10.1101/2024.08.28.609894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Coordination of adaptive metabolism through cellular signaling networks and metabolic response is essential for balanced flow of energy and homeostasis. Post-translational modifications such as phosphorylation offer a rapid, efficient, and dynamic mechanism to regulate metabolic networks. Although numerous phosphorylation sites have been identified on metabolic enzymes, much remains unknown about their contribution to enzyme function and systemic metabolism. In this study, we stratify phosphorylation sites on metabolic enzymes based on their location with respect to functional and dimerization domains. Our analysis reveals that the majority of published phosphosites are on oxidoreductases, with particular enrichment of phosphotyrosine (pY) sites in proximity to binding domains for substrates, cofactors, active sites, or dimer interfaces. We identify phosphosites altered in obesity using a high fat diet (HFD) induced obesity model coupled to multiomics, and interrogate the functional impact of pY on hepatic metabolism. HFD induced dysregulation of redox homeostasis and reductive metabolism at the phosphoproteome and metabolome level in a sex-specific manner, which was reversed by supplementing with the antioxidant butylated hydroxyanisole (BHA). Partial least squares regression (PLSR) analysis identified pY sites that predict HFD or BHA induced changes of redox metabolites. We characterize predictive pY sites on glutathione S-transferase pi 1 (GSTP1), isocitrate dehydrogenase 1 (IDH1), and uridine monophosphate synthase (UMPS) using CRISPRi-rescue and stable isotope tracing. Our analysis revealed that sites on GSTP1 and UMPS inhibit enzyme activity while the pY site on IDH1 induces activity to promote reductive carboxylation. Overall, our approach provides insight into the convergence points where cellular signaling fine-tunes metabolism.
Collapse
Affiliation(s)
- Tigist Y Tamir
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shreya Chaudhary
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Annie X Li
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sonia E Trojan
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cameron T Flower
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paula Vo
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yufei Cui
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey C Davis
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rachit S Mukkamala
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francesca N Venditti
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alissandra L Hillis
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Norman J Kennedy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
17
|
Yang J, Wu B, Sha X, Lu H, Pan LL, Gu Y, Dong X. Intestinal GSTpi deficiency exacerbates the severity of experimental hyperlipidemic acute pancreatitis. Int Immunopharmacol 2024; 137:112363. [PMID: 38851161 DOI: 10.1016/j.intimp.2024.112363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Intestinal dysfunction plays a pivotal role in the development of acute pancreatitis (AP), however, the underlying mechanisms of intestinal dysfunction on severity of hyperlipidemic acute pancreatitis (HLAP) are still unclear. Herein, we explored the role of intestinal function on the severity of HLAP. We found that HLAP patients exhibit higher lipid and inflammatory response than AP patients. Hyperlipidemia significantly elevates serum lipids and worsen pancreatic damage in AP mice. In addition, significant exacerbated intestinal barrier damage and inflammation were observed in experimental HLAP mice, as evidenced by increased serum amylase and lipase levels, and pancreatic edema. Further, RNA-Seq showed that a markedly decrease of glutathione S-transferase pi (GSTpi) in colonic tissue of HLAP mice compared with AP mice, accompanied with increased serum lipopolysaccharides level. However, colonic GSTpi overexpression by adeno-associated virus significantly attenuated intestinal damage and subsequent pancreatic inflammation in HLAP mice. Mechanistically, GSTpi mitigated HLAP-mediated colonic NLRP3 inflammasome activation and barrier dysfunction. These results suggest that intestinal GSTpi deficiency exacerbates the severity of experimental HLAP, providing new insights for the clinical treatment of HLAP.
Collapse
Affiliation(s)
- Jun Yang
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, PR China; Wuxi School of Medicine, Wuxi, Jiangsu, PR China.
| | - Bo Wu
- Wuxi School of Medicine, Wuxi, Jiangsu, PR China
| | - Xiaowei Sha
- Wuxi School of Medicine, Wuxi, Jiangsu, PR China; Xinjiang Production&Construction Corps Hospital, Urumchi, Xinjiang, PR China
| | - Hanxiao Lu
- Wuxi School of Medicine, Wuxi, Jiangsu, PR China
| | - Li-Long Pan
- Wuxi School of Medicine, Wuxi, Jiangsu, PR China
| | - Yuanlong Gu
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, PR China.
| | | |
Collapse
|
18
|
Camacho-Jiménez L, Leyva-Carrillo L, Gómez-Jiménez S, Yepiz-Plascencia G. Naphthalene and phenanthrene affect differentially two glutathione S-transferases (GSTs) expression, GST activity, and glutathione content in white shrimp P. vannamei. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107005. [PMID: 38897074 DOI: 10.1016/j.aquatox.2024.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants ubiquitous in coastal ecosystems. The white shrimp Penaeus vannamei naturally inhabits in coastal areas and is cultivated in farms located nearby the oceans. PAHs can damage shrimp health, endanger natural populations, and lower shrimp aquaculture productivity. However, crustaceans have enzymes capable of metabolizing organic xenobiotics as PAHs and to neutralize reactive oxygen species (ROS) produced during xenobiotics metabolism. An important superfamily of xenobiotic-metabolizing and antioxidant enzymes are glutathione S-transferases (GSTs). In white shrimp, some GSTs are known, but they have been scarcely studied in response to PAHs. In this study we report the molecular cloning and bioinformatic characterization of two novel nucleotide sequences corresponding to cytosolic GSTs belonging the Delta and Theta classes (GSTD and GSTT). Both proteins genes have tissue-specific patterns of expression under normal conditions, that do not necessarily relate to GST activity and glutathione content. The expression of the GSTD and GSTT, GST activity and glutathione content was analyzed in juvenile P. vannamei exposed to two PAHs, naphthalene (NAP) and phenanthrene (PHE) in sub-lethal concentrations for 96 h. GSTD expression was up-regulated by the two PAHs, while GSTT expression was only induced by NAP. In contrast, GST activity towards CDNB was only up-regulated by PHE, suggesting differential effects of PAHs at gene and protein level. On the other hand, lower reduced glutathione content (GSH) caused by PAHs indicates its utilization for detoxification or antioxidant defenses. However, the GSH/GSSG did not change by PAHs treatment, indicating that shrimp can maintain redox balance during short-term sub-lethal exposure to NAP and PHE. Despite the variations in the responses to NAP and PHE, all these results suggest that the GSTD and GSTT genes could be useful biomarkers for PAH exposure in P. vannamei.
Collapse
Affiliation(s)
- Laura Camacho-Jiménez
- Group of Comparative Biochemistry and Physiology. Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Lilia Leyva-Carrillo
- Group of Comparative Biochemistry and Physiology. Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Silvia Gómez-Jiménez
- Group of Comparative Biochemistry and Physiology. Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Group of Comparative Biochemistry and Physiology. Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico.
| |
Collapse
|
19
|
Lin H, Wang L, Jiang X, Wang J. Glutathione dynamics in subcellular compartments and implications for drug development. Curr Opin Chem Biol 2024; 81:102505. [PMID: 39053236 PMCID: PMC11722958 DOI: 10.1016/j.cbpa.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.
Collapse
Affiliation(s)
- Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingfei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiqian Jiang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Zoughaib M, Pashirova TN, Nikolaeva V, Kamalov M, Nakhmetova F, Salakhieva DV, Abdullin TI. Anticancer and Chemosensitizing Effects of Menadione-Containing Peptide-Targeted Solid Lipid Nanoparticles. J Pharm Sci 2024; 113:2258-2267. [PMID: 38508340 DOI: 10.1016/j.xphs.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Vitamin K derivatives such as menadione (MD) have been recognized as promising redox-modulating and chemosensitizing agents for anticancer therapy, however, their cellular activities in peptide-targeted nanocarriers have not been elucidated to date. This study provides the guidelines for developing MD-loaded solid lipid nanoparticles (SLN) modified with extracellular matrix (ECM)-derived peptides. Relationships between RGD peptide concentration and changes in DLS characteristics as well as accumulation of SLN in cancer cells were revealed to adjust the peptide-lipid ratio. SLN system maintained adequate nanoparticle concentration and low dispersity after introduction of MD and MD/RGD, whereas formulated MD was protected from immediate conjugation with reduced glutathione (GSH). RGD-modified MD-containing SLN showed enhanced prooxidant, GSH-depleting and cytotoxic activities toward PC-3 prostate cancer cells attributed to improved cellular pharmacokinetics of the targeted formulation. Furthermore, this formulation effectively sensitized PC-3 cells and OVCAR-4 ovarian cancer cells to free doxorubicin and cisplatin so that cell growth was inhibited by MD-drug composition at nontoxic concentrations of the ingredients. These results provide an important background for further improving chemotherapeutic methods based on combination of conventional cytostatics with peptide-targeted SLN formulations of MD.
Collapse
Affiliation(s)
- Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
| | - Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov St., 420088 Kazan, Russia
| | - Viktoriia Nikolaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Marat Kamalov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Fidan Nakhmetova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Diana V Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
| |
Collapse
|
21
|
Lan XY, Li D, Cui Y, Nguyen TN, Li S, Chen HS. Proteomic analysis of jugular venous blood in acute large vessel occlusion stroke with futile recanalization. J Cereb Blood Flow Metab 2024; 44:702-711. [PMID: 38000017 PMCID: PMC11197136 DOI: 10.1177/0271678x231216767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/13/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023]
Abstract
Futile recanalization (FR) after endovascular treatment (EVT) remains a significant challenge for acute ischemic stroke (AIS) with large vessel occlusion (LVO). The pathogenesis of FR has not been well elucidated. We prospectively enrolled anterior circulation LVO-AIS patients who achieved successful recanalization after EVT. The jugular venous blood ipsilateral to stroke was collected before and immediately after recanalization. Plasma proteomic analysis based on liquid chromatography-mass spectrometry was performed using data-independent acquisition method. Differentially expressed proteins (DEPs) among patients with or without FR in the whole or propensity score matching (PSM) cohorts were screened according to the absolute value of fold change ≥1.5 and P value <0.05. We identified 104 and 34 DEPs between patients with or without FR in the whole cohort and PSM cohort, respectively. Bioinformatic analysis indicated that the identified proteins were primarily related to specific biological processes including immune response, complement activation, oxidative stress, lipid metabolism, protein ubiquitylation as well as autophagy, suggesting that these may be mechanisms in FR pathogenesis. Collectively, we discovered proteins that may be potential research targets for FR. The combination of proteomic and bioinformatic analysis could provide a better understanding of the pathogenesis of FR in a comprehensive manner.
Collapse
Affiliation(s)
- Xiao-Yan Lan
- Graduate School, Dalian Medical University, Dalian, China
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
- Department of Neurointervention, Dalian Municipal Central Hospital, Dalian, China
| | - Di Li
- Department of Neurointervention, Dalian Municipal Central Hospital, Dalian, China
| | - Yu Cui
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Thanh N Nguyen
- Department of Neurology, Radiology, Boston Medical Center, Boston, Massachusetts, USA
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hui-Sheng Chen
- Graduate School, Dalian Medical University, Dalian, China
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
22
|
Sánchez Pérez LDC, Zubillaga RA, García-Gutiérrez P, Landa A. Sigma-Class Glutathione Transferases (GSTσ): A New Target with Potential for Helminth Control. Trop Med Infect Dis 2024; 9:85. [PMID: 38668546 PMCID: PMC11053550 DOI: 10.3390/tropicalmed9040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Glutathione transferases (GSTs EC 2.5.1.18) are critical components of phase II metabolism, instrumental in xenobiotics' metabolism. Their primary function involves conjugating glutathione to both endogenous and exogenous toxic compounds, which increases their solubility and enables their ejection from cells. They also play a role in the transport of non-substrate compounds and immunomodulation, aiding in parasite establishment within its host. The cytosolic GST subfamily is the most abundant and diverse in helminths, and sigma-class GST (GSTσ) belongs to it. This review focuses on three key functions of GSTσ: serving as a detoxifying agent that provides drug resistance, functioning as an immune system modulator through its involvement in prostaglandins synthesis, and acting as a vaccine antigen.
Collapse
Affiliation(s)
| | - Rafael A. Zubillaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City C.P. 09310, Mexico; (L.d.C.S.P.); (P.G.-G.)
| | - Ponciano García-Gutiérrez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City C.P. 09310, Mexico; (L.d.C.S.P.); (P.G.-G.)
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City C.P. 04510, Mexico
| |
Collapse
|
23
|
Makumbe HH, Pandian R, Valli A, Sayed Y, Achilonu I. Biophysical characterization, crystallization, and solution of the first crystal structure of the 28 kDa-Schistosoma bovis glutathione transferase. J Mol Struct 2024; 1298:136979. [DOI: 10.1016/j.molstruc.2023.136979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
24
|
Moural TW, Koirala B K S, Bhattarai G, He Z, Guo H, Phan NT, Rajotte EG, Biddinger DJ, Hoover K, Zhu F. Architecture and potential roles of a delta-class glutathione S-transferase in protecting honey bee from agrochemicals. CHEMOSPHERE 2024; 350:141089. [PMID: 38163465 DOI: 10.1016/j.chemosphere.2023.141089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The European honey bee, Apis mellifera, serves as the principle managed pollinator species globally. In recent decades, honey bee populations have been facing serious health threats from combined biotic and abiotic stressors, including diseases, limited nutrition, and agrochemical exposure. Understanding the molecular mechanisms underlying xenobiotic adaptation of A. mellifera is critical, considering its extensive exposure to phytochemicals and agrochemicals present in the environment. In this study, we conducted a comprehensive structural and functional characterization of AmGSTD1, a delta class glutathione S-transferase (GST), to unravel its roles in agrochemical detoxification and antioxidative stress responses. We determined the 3-dimensional (3D) structure of a honey bee GST using protein crystallography for the first time, providing new insights into its molecular structure. Our investigations revealed that AmGSTD1 metabolizes model substrates, including 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrophenyl acetate (PNA), phenylethyl isothiocyanate (PEITC), propyl isothiocyanate (PITC), and the oxidation byproduct 4-hydroxynonenal (HNE). Moreover, we discovered that AmGSTD1 exhibits binding affinity with the fluorophore 8-Anilinonaphthalene-1-sulfonic acid (ANS), which can be inhibited with various herbicides, fungicides, insecticides, and their metabolites. These findings highlight the potential contribution of AmGSTD1 in safeguarding honey bee health against various agrochemicals, while also mitigating oxidative stress resulting from exposure to these substances.
Collapse
Affiliation(s)
- Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Sonu Koirala B K
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Gaurab Bhattarai
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA.
| | - Ziming He
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Haoyang Guo
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Ngoc T Phan
- Department of Entomology and Plant Pathology, University of Arkansas, AR 72701, USA; Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Viet Nam.
| | - Edwin G Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - David J Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA.
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
25
|
Wu C, Li Y, Luo Y, Dai Y, Qin J, Liu N, Xu R, Li X, Zhang P. Analysis of glutathione Stransferase mu class 5 gene methylation as a prognostic indicator in low-grade gliomas. Technol Health Care 2024; 32:3925-3942. [PMID: 39031395 PMCID: PMC11612950 DOI: 10.3233/thc-231316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/22/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Low-grade gliomas (LGG) are a variety of brain tumors that show different clinical outcomes. The methylation of the GSTM5 gene has been noted in the development of LGG, however, its prognostic importance remains uncertain. OBJECTIVE The objective of this study was to examine the correlation between GSTM5 DNA methylation and clinical outcomes in individuals diagnosed with LGG. METHODS Analysis of GSTM5 methylation levels in LGG samples was conducted using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. The overall survival based on GSTM5 methylation status was evaluated using Kaplan-Meier curves. The DNA methylation heatmap for particular CpG sites in the GSTM5 gene was visualized using the "pheatmap" R package. RESULTS The study analyzed that LGG tumors had higher levels of GSTM5 methylation than normal tissues. There was an inverse relationship discovered between GSTM5 expression and methylation. LGG patients with hypermethylation of GSTM5 promoter experienced a positive outcome. Age, grade, and GSTM5 methylation were determined as independent prognostic factors in LGG through both univariate and multivariate Cox regression analyses. CONCLUSION Methylation of GSTM5 DNA, specifically at certain CpG sites, is linked to a positive outlook in patients with LGG. Utilizing the "pheatmap" R package to visualize GSTM5 methylation patterns offers important information for identifying prognostic markers and therapeutic targets in low-grade gliomas.
Collapse
Affiliation(s)
- Cuiying Wu
- Department of Neurosurgery, The Seventh Medical Centre of PLA General Hospital, Beijing, China
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yunjun Li
- Department of Neurosurgery, The Seventh Medical Centre of PLA General Hospital, Beijing, China
- Department of Neurosurgery, Senior Department of Neurosurgery, The First Medical Centre of PLA General Hospital, Beijing, China
| | - Yongchun Luo
- Department of Neurosurgery, Senior Department of Neurosurgery, The First Medical Centre of PLA General Hospital, Beijing, China
| | - Yiwu Dai
- Department of Neurosurgery, Senior Department of Neurosurgery, The First Medical Centre of PLA General Hospital, Beijing, China
| | - Jiazhen Qin
- Department of Neurosurgery, Senior Department of Neurosurgery, The First Medical Centre of PLA General Hospital, Beijing, China
| | - Ning Liu
- Department of Neurosurgery, The Seventh Medical Centre of PLA General Hospital, Beijing, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuezhen Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Neurosurgery, The Seventh Medical Centre of PLA General Hospital, Beijing, China
- Department of Neurosurgery, Senior Department of Neurosurgery, The First Medical Centre of PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Bocedi A, Gambardella G, Cattani G, Notari S, Ricci G. Erythrocyte glutathione transferase. A sensitive Up-Down biomarker of environmental and industrial pollution. Arch Biochem Biophys 2023; 750:109786. [PMID: 37839788 DOI: 10.1016/j.abb.2023.109786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Erythrocyte glutathione transferase is a well-known biomarker of environmental pollution. Examination of the extensive scientific literature discovers an atypical and very interesting property of this enzyme which may reveal a chronic exposition to many contaminants but in some cases even an acute and short-term dangerous contamination. This review also underlines the peculiar molecular and kinetic properties of this enzyme which makes it unique in the panorama of enzymes used as biomarker for environmental contamination.
Collapse
Affiliation(s)
- Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Giorgia Gambardella
- Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Giada Cattani
- Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Sara Notari
- Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| |
Collapse
|
27
|
Lapenna D. Glutathione and glutathione-dependent enzymes: From biochemistry to gerontology and successful aging. Ageing Res Rev 2023; 92:102066. [PMID: 37683986 DOI: 10.1016/j.arr.2023.102066] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
The tripeptide glutathione (GSH), namely γ-L-glutamyl-L-cysteinyl-glycine, is an ubiquitous low-molecular weight thiol nucleophile and reductant of utmost importance, representing the central redox agent of most aerobic organisms. GSH has vital functions involving also antioxidant protection, detoxification, redox homeostasis, cell signaling, iron metabolism/homeostasis, DNA synthesis, gene expression, cysteine/protein metabolism, and cell proliferation/differentiation or death including apoptosis and ferroptosis. Various functions of GSH are exerted in concert with GSH-dependent enzymes. Indeed, although GSH has direct scavenging antioxidant effects, its antioxidant function is substantially accomplished by glutathione peroxidase-catalyzed reactions with reductive removal of H2O2, organic peroxides such as lipid hydroperoxides, and peroxynitrite; to this antioxidant activity also contribute peroxiredoxins, enzymes further involved in redox signaling and chaperone activity. Moreover, the detoxifying function of GSH is basically exerted in conjunction with glutathione transferases, which have also antioxidant properties. GSH is synthesized in the cytosol by the ATP-dependent enzymes glutamate cysteine ligase (GCL), which catalyzes ligation of cysteine and glutamate forming γ-glutamylcysteine (γ-GC), and glutathione synthase, which adds glycine to γ-GC resulting in GSH formation; GCL is rate-limiting for GSH synthesis, as is the precursor amino acid cysteine, which may be supplemented as N-acetylcysteine (NAC), a therapeutically available compound. After its cell export, GSH is degraded extracellularly by the membrane-anchored ectoenzyme γ-glutamyl transferase, a process occurring, as GSH synthesis and export, in the γ-glutamyl cycle. GSH degradation occurs also intracellularly by the cytoplasmic enzymatic ChaC family of γ-glutamyl cyclotransferase. Synthesis and degradation of GSH, together with its export, translocation to cell organelles, utilization for multiple essential functions, and regeneration from glutathione disulfide by glutathione reductase, are relevant to GSH homeostasis and metabolism. Notably, GSH levels decline during aging, an alteration generally related to impaired GSH biosynthesis and leading to cell dysfunction. However, there is evidence of enhanced GSH levels in elderly subjects with excellent physical and mental health status, suggesting that heightened GSH may be a marker and even a causative factor of increased healthspan and lifespan. Such aspects, and much more including GSH-boosting substances administrable to humans, are considered in this state-of-the-art review, which deals with GSH and GSH-dependent enzymes from biochemistry to gerontology, focusing attention also on lifespan/healthspan extension and successful aging; the significance of GSH levels in aging is considered also in relation to therapeutic possibilities and supplementation strategies, based on the use of various compounds including NAC-glycine, aimed at increasing GSH and related defenses to improve health status and counteract aging processes in humans.
Collapse
Affiliation(s)
- Domenico Lapenna
- Dipartimento di Medicina e Scienze dell'Invecchiamento, and Laboratorio di Fisiopatologia dello Stress Ossidativo, Center for Advanced Studies and Technology (CAST, former CeSI-MeT, Center of Excellence on Aging), Università degli Studi "G. d'Annunzio" Chieti Pescara, U.O.C. Medicina Generale 2, Ospedale Clinicizzato "Santissima Annunziata", Via dei Vestini, 66100 Chieti, Italy.
| |
Collapse
|
28
|
Chen Y, Liu Q, Sun X, Liu L, Zhao J, Yang S, Wang X, Quentin M, Abad P, Favery B, Jian H. Meloidogyne enterolobii MeMSP1 effector targets the glutathione-S-transferase phi GSTF family in Arabidopsis to manipulate host metabolism and promote nematode parasitism. THE NEW PHYTOLOGIST 2023; 240:2468-2483. [PMID: 37823217 DOI: 10.1111/nph.19298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Meloidogyne enterolobii is an emerging root-knot nematode species that overcomes most of the nematode resistance genes in crops. Nematode effector proteins secreted in planta are key elements in the molecular dialogue of parasitism. Here, we show the MeMSP1 effector is secreted into giant cells and promotes M. enterolobii parasitism. Using co-immunoprecipitation and bimolecular fluorescent complementation assays, we identified glutathione-S-transferase phi GSTFs as host targets of the MeMSP1 effector. This protein family plays important roles in plant responses to abiotic and biotic stresses. We demonstrate that MeMSP1 interacts with all Arabidopsis GSTF. Moreover, we confirmed that the N-terminal region of AtGSTF9 is critical for its interaction, and atgstf9 mutant lines are more susceptible to root-knot nematode infection. Combined transcriptome and metabolome analyses showed that MeMSP1 affects the metabolic pathways of Arabidopsis thaliana, resulting in the accumulation of amino acids, nucleic acids, and their metabolites, and organic acids and the downregulation of flavonoids. Our study has shed light on a novel effector mechanism that targets plant metabolism, reducing the production of plant defence-related compounds while favouring the accumulation of metabolites beneficial to the nematode, and thereby promoting parasitism.
Collapse
Affiliation(s)
- Yongpan Chen
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Qian Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572024, China
| | - Xuqian Sun
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Lei Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Shanshan Yang
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiangfeng Wang
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Heng Jian
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
29
|
Lv N, Huang C, Huang H, Dong Z, Chen X, Lu C, Zhang Y. Overexpression of Glutathione S-Transferases in Human Diseases: Drug Targets and Therapeutic Implications. Antioxidants (Basel) 2023; 12:1970. [PMID: 38001822 PMCID: PMC10668987 DOI: 10.3390/antiox12111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione S-transferases (GSTs) are a major class of phase II metabolic enzymes. Besides their essential role in detoxification, GSTs also exert diverse biological activities in the occurrence and development of various diseases. In the past few decades, much research interest has been paid to exploring the mechanisms of GST overexpression in tumor drug resistance. Correspondingly, many GST inhibitors have been developed and applied, solely or in combination with chemotherapeutic drugs, for the treatment of multi-drug resistant tumors. Moreover, novel roles of GSTs in other diseases, such as pulmonary fibrosis and neurodegenerative diseases, have been recognized in recent years, although the exact regulatory mechanisms remain to be elucidated. This review, firstly summarizes the roles of GSTs and their overexpression in the above-mentioned diseases with emphasis on the modulation of cell signaling pathways and protein functions. Secondly, specific GST inhibitors currently in pre-clinical development and in clinical stages are inventoried. Lastly, applications of GST inhibitors in targeting cell signaling pathways and intracellular biological processes are discussed, and the potential for disease treatment is prospected. Taken together, this review is expected to provide new insights into the interconnection between GST overexpression and human diseases, which may assist future drug discovery targeting GSTs.
Collapse
Affiliation(s)
- Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Zhiqiang Dong
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chengcan Lu
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
- Jiangning Clinical Medical College, Jiangsu University, Nanjing 211100, China
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| |
Collapse
|
30
|
Yang X, Ong HW, Dickmander RJ, Smith JL, Brown JW, Tao W, Chang E, Moorman NJ, Axtman AD, Willson TM. Optimization of 3-Cyano-7-cyclopropylamino-pyrazolo[1,5- a]pyrimidines toward the Development of an In Vivo Chemical Probe for CSNK2A. ACS OMEGA 2023; 8:39546-39561. [PMID: 37901516 PMCID: PMC10600890 DOI: 10.1021/acsomega.3c05377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023]
Abstract
3-Cyano-7-cyclopropylamino-pyrazolo[1,5-a]pyrimidines, including the chemical probe SGC-CK2-1, are potent and selective inhibitors of CSNK2A in cells but have limited utility in animal models due to their poor pharmacokinetic properties. While developing analogues with reduced intrinsic clearance and the potential for sustained exposure in mice, we discovered that phase II conjugation by GST enzymes was a major metabolic transformation in hepatocytes. A protocol for codosing with ethacrynic acid, a covalent reversible GST inhibitor, was developed to improve the exposure of analogue 2h in mice. A double codosing protocol, using a combination of ethacrynic acid and irreversible P450 inhibitor 1-aminobenzotriazole, increased the blood level of 2h by 40-fold at a 5 h time point.
Collapse
Affiliation(s)
- Xuan Yang
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| | - Han Wee Ong
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| | - Rebekah J. Dickmander
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Department
of Microbiology & Immunology, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Jeffery L. Smith
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason W. Brown
- Takeda Development
Center Americas, Inc., San Diego, California 92121, United States
| | - William Tao
- Takeda Development
Center Americas, Inc., San Diego, California 92121, United States
| | - Edcon Chang
- Takeda Development
Center Americas, Inc., San Diego, California 92121, United States
| | - Nathaniel J. Moorman
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Department
of Microbiology & Immunology, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alison D. Axtman
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| | - Timothy M. Willson
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
31
|
Ozalp L, Orhan B, Alparslan MM, Meletli F, Çakmakçı E, Danış Ö. Arylcoumarin and novel biscoumarin derivatives as potent inhibitors of human glutathione S-transferase. J Biomol Struct Dyn 2023; 42:11456-11470. [PMID: 37768055 DOI: 10.1080/07391102.2023.2262598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
A series of arylcoumarin derivatives and two novel biscoumarin derivatives were investigated for their human recombinant glutathione S-transferase P1-1 (GSTP1-1) enzyme inhibitory activities for the first time. 4-(3,4-Dihydroxyphenyl)-6,7-dihydroxycoumarin (compound 24) was observed to be the most active coumarin derivative (IC50: 0.14 µM). The inhibition was found to be time-dependent and irreversible. Hypothetical binding modes of the ten most active compounds were calculated by molecular docking. Ligand efficiency indices (LEI) were estimated to better understand the binding performance of the coumarin derivatives. Extensive structure-activity relationship studies showed that hydroxy substitution on both the coumarin and the aryl ring enhanced the biological activity and the position of hydroxy group on the coumarin ring is critical for the binding pose and the activity. Top three ligands were subjected to molecular dynamics simulations and MM/PBSA for further investigation. Binding mode of compound 24 suggested that its high inhibitory activity might be attributed to its position between Tyr7 and the cofactor, glutathione (GS-DNB). Exhibiting favorable druglikeness profiles and pharmacokinetics based on ADME studies, compound 5 and 24 can be considered as potential drug leads in future studies for further development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lalehan Ozalp
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Berk Orhan
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | | | - Furkan Meletli
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Emrah Çakmakçı
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Özkan Danış
- Department of Chemistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
32
|
Ebner J, Schmoellerl J, Piontek M, Manhart G, Troester S, Carter BZ, Neubauer H, Moriggl R, Szakács G, Zuber J, Köcher T, Andreeff M, Sperr WR, Valent P, Grebien F. ABCC1 and glutathione metabolism limit the efficacy of BCL-2 inhibitors in acute myeloid leukemia. Nat Commun 2023; 14:5709. [PMID: 37726279 PMCID: PMC10509209 DOI: 10.1038/s41467-023-41229-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
The BCL-2 inhibitor Venetoclax is a promising agent for the treatment of acute myeloid leukemia (AML). However, many patients are refractory to Venetoclax, and resistance develops quickly. ATP-binding cassette (ABC) transporters mediate chemotherapy resistance but their role in modulating the activity of targeted small-molecule inhibitors is unclear. Using CRISPR/Cas9 screening, we find that loss of ABCC1 strongly increases the sensitivity of AML cells to Venetoclax. Genetic and pharmacologic ABCC1 inactivation potentiates the anti-leukemic effects of BCL-2 inhibitors and efficiently re-sensitizes Venetoclax-resistant leukemia cells. Conversely, ABCC1 overexpression induces resistance to BCL-2 inhibitors by reducing intracellular drug levels, and high ABCC1 levels predicts poor response to Venetoclax therapy in patients. Consistent with ABCC1-specific export of glutathionylated substrates, inhibition of glutathione metabolism increases the potency of BCL-2 inhibitors. These results identify ABCC1 and glutathione metabolism as mechanisms limiting efficacy of BCL-2 inhibitors, which may pave the way to development of more effective therapies.
Collapse
Affiliation(s)
- Jessica Ebner
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Johannes Schmoellerl
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Martin Piontek
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabriele Manhart
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Selina Troester
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heidi Neubauer
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gergely Szakács
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
- Institute of Enzymology, Research Centre of Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Thomas Köcher
- Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| |
Collapse
|
33
|
Lu C, Zhang P, Li S, Cheng M, Duan D. Isolation and characterization of glutathione S-transferase genes and their transcripts in Saccharina japonica (Laminariales, Phaeophyceae) during development and under abiotic stress. BMC PLANT BIOLOGY 2023; 23:436. [PMID: 37723443 PMCID: PMC10506224 DOI: 10.1186/s12870-023-04430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Glutathione S-transferase (GST) is a crucial enzyme for metabolism, detoxification, and stress resistance in organisms. Many GSTs have been identified in seaweeds, but the isolation and functional analysis of GSTs in Saccharina japonica have not been completed. RESULT In this study, a total of 32 SjGST genes, localized on 10 scaffolds and 6 contigs, were identified and categorized into three groups. Most of these SjGSTs were presumed to be distributed in the cytoplasm. Tandem duplication had a significant influence on the expansion of the SjGST gene family. Functional analysis of cis-acting elements in the promoter regions demonstrated that SjGSTs enhance the stress resistance of the kelp. Quantitative real-time PCR tests confirmed that SjGSTs positively influence S. japonica sporophytes under stress from low salinity, drought, and high temperature. Recombinant yeast tests further affirmed the role of SjGSTs in stress resistance; SjGSTs improved the growth rate of recombinant yeast under 1.5 M NaCl or 8 mM H2O2. Analysis of biochemical parameters indicated that the optimum temperatures for SjGST20 and SjGST22 were 20 °C, and the optimum pH values were 7.0 and 8.0 for SjGST20 and SjGST22, respectively. The Km values for the substrate 1-chloro-2,4-dinitrobenzene (CDNB) were 2.706 mM and 0.674 mM and were 6.146 mM and 3.559 mM for the substrate glutathione (GSH) for SjGST20 and SjGST22, respectively. CONCLUSION SjGSTs are important stress resistant genes in S. japonica. This research results will enhance our understanding the function of GSTs in brown seaweeds, and explained its functional roles in stress resistance in marine environments.
Collapse
Affiliation(s)
- Chang Lu
- Key Lab of Breeding Biotechnology & Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
- Department of Biological Engineering, College of Life Science, Yantai University, Yantai, 264005, China
| | - Pengyan Zhang
- Functional Lab for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Division of Mariculture Ecology and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Shuang Li
- Key Lab of Breeding Biotechnology & Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
- Functional Lab for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengzhen Cheng
- Key Lab of Breeding Biotechnology & Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
- Functional Lab for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Delin Duan
- Key Lab of Breeding Biotechnology & Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China.
| |
Collapse
|
34
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
35
|
Zhang J, Fang Y, Fu Y, Jalukar S, Ma J, Liu Y, Guo Y, Ma Q, Ji C, Zhao L. Yeast polysaccharide mitigated oxidative injury in broilers induced by mixed mycotoxins via regulating intestinal mucosal oxidative stress and hepatic metabolic enzymes. Poult Sci 2023; 102:102862. [PMID: 37419049 PMCID: PMC10466245 DOI: 10.1016/j.psj.2023.102862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023] Open
Abstract
This study was aimed to investigate the effects of yeast polysaccharides (YPS) on growth performance, intestinal health, and aflatoxin metabolism in livers of broilers fed diets naturally contaminated with mixed mycotoxins (MYCO). A total of 480 one-day-old Arbor Acre male broilers were randomly allocated into a 2 × 3 factorial arrangement of treatments (8 replicates with 10 birds per replicate) for 6 wk to assess the effects of 3 levels of YPS (0, 1, or 2 g/kg) on the broilers fed diets contaminated with or without MYCO (95 μg/kg aflatoxin B1, 1.5 mg/kg deoxynivalenol, and 490 μg/kg zearalenone). Results showed that mycotoxins contaminated diets led to significant increments in serum malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, mRNA expressions of TLR4 and 4EBP1 associated with oxidative stress, mRNA expressions of CYP1A1, CYP1A2, CYP2A6, and CYP3A4 associated with hepatic phase Ⅰ metabolizing enzymes, mRNA expressions of p53 associated with hepatic mitochondrial apoptosis, and AFB1 residues in the liver (P < 0.05); meanwhile dietary MYCO decreased the jejunal villus height (VH), villus height/crypt depth (VH/CD), the activity of serum total antioxidant capacity (T-AOC), mRNA expressions of jejunal HIF-1α, HMOX, and XDH associated with oxidative stress, mRNA expressions of jejunal CLDN1, ZO1, and ZO2, and mRNA expression of GST associated with hepatic phase Ⅱ metabolizing enzymes of broilers (P < 0.05). Notably, the adverse effects induced by MYCO on broilers were mitigated by supplementation with YPS. Dietary YPS supplementation reduced the concentrations of serum MDA and 8-OHdG, jejunal CD, mRNA expression of jejunal TLR2, and 4EBP1, hepatic CYP1A2, and p53, and the AFB1 residues in the liver (P < 0.05), and elevated the serum T-AOC and SOD, jejunal VH, and VH/CD, and mRNA expression of jejunal XDH, hepatic GST of broilers (P < 0.05). There were significant interactions between MYCO and YPS levels on the growth performance (BW, ADFI, ADG, and F/G) at d 1 to 21, d 22 to 42, and d 1 to 42, serum GSH-Px activity, and mRNA expression of jejunal CLDN2 and hepatic ras of broilers (P < 0.05). In contrast with MYCO group, the addition of YPS increased BW, ADFI, and ADG, the serum GSH-Px activity (14.31%-46.92%), mRNA levels of jejunal CLDN2 (94.39%-103.02%), decreased F/G, and mRNA levels of hepatic ras (57.83%-63.62%) of broilers (P < 0.05). In conclusion, dietary supplements with YPS protected broilers from mixed mycotoxins toxicities meanwhile keeping normal performance of broilers, presumably via reducing intestinal oxidative stress, protecting intestinal structural integrity, and improving hepatic metabolic enzymes to minimize the AFB1 residue in the liver and enhance the performance of broilers.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yong Fang
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yutong Fu
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sangita Jalukar
- Arm and Hammer Animal and Food Production, Mason City, IA 50401, USA
| | - Jinglin Ma
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Yanrong Liu
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongpeng Guo
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
36
|
Ren X, Xu K, Xu J, Mei Q. Melatonin attenuates monocrotaline-induced hepatic sinusoidal obstruction syndrome in rats via activation of Sirtuin-3. J Biochem Mol Toxicol 2023; 37:e23422. [PMID: 37350538 DOI: 10.1002/jbt.23422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/03/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Melatonin possesses potent hepatoprotective properties, but it remains to be elucidated whether melatonin has a therapeutic effect on monocrotaline (MCT)-induced hepatic sinusoidal obstruction syndrome (HSOS). In this study, male Sprague Dawley rats were intraperitoneally injected with melatonin or the same volume of vehicle at 0 and 24 h after MCT intragastric administration. Next, hematoxylin-eosin staining and electron microscopy were performed to evaluate the hepatic sinusoidal injury of rats. Endothelial cell marker RECA-1 was observed by immunohistochemistry. Hepatic oxidative stress was analyzed by detecting malondialdehyde, glutathione S-transferase, and reactive oxygen species. Assessment of liver function was carried out by analysis of serum aspartate aminotransferase, alanine aminotransferase, total bilirubin, and albumin levels. Real-time polymerase chain reaction and Western blot analysis were used to identify liver Sirtuin-3 (SIRT3) and active matrix metallopeptidase 9 (MMP-9) expression. Besides, liver sinusoidal endothelial cells (LSECs) were used for the in vitro functional verification experiment. Specifically, liver histology of the melatonin-treated groups showed that the pathological damages caused by MCT were significantly attenuated, total HSOS scores were decreased, and the elevation of serum hyaluronic acid observed in the model group was also reduced. Moreover, melatonin treatment also improved the survival of rats after partial hepatectomy. Administration of melatonin ameliorated MCT-induced LSECs injury, hepatic oxidative stress, and hepatic dysfunction. Furthermore, melatonin treatment increased SIRT3 expression while attenuating MMP-9 activity in liver tissues. Cell experiment also demonstrated that SIRT3 might mediate the protective effect of melatonin on LSECs. Collectively, our study provided the potential rationale for the application of melatonin for the prevention of MCT-induced HSOS.
Collapse
Affiliation(s)
- Xiaofei Ren
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kui Xu
- Department of Gastroenterology, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, Anhui, China
| | - Jianming Xu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
37
|
Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes. Antioxidants (Basel) 2023; 12:1199. [PMID: 37371929 DOI: 10.3390/antiox12061199] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively).
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Fanny Marceau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Sandrine Farci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| |
Collapse
|
38
|
Yu X, Mao C, Zong S, Khan A, Wang W, Yun H, Zhang P, Shigaki T, Fang Y, Han H, Li X. Transcriptome analysis reveals self-redox mineralization mechanism of azo dyes and novel decolorizing hydrolases in Aspergillus tabacinus LZ-M. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121459. [PMID: 36934962 DOI: 10.1016/j.envpol.2023.121459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Bio-degradation is the most affordable method of azo dye decontamination, while its drawbacks such as aromatic amines accumulation and low degradation efficiency must be overcome. In this study, a novel mechanism of azo dye degradation by a fungus was discovered. At a concentration of 400 mg/L, the decolorization efficiency of Acid Red 73 (AR73) by Aspergillus tabacinus LZ-M was 90.28%. Metabolite analysis and transcriptome sequencing analysis revealed a self-redox process of AR73 degradation, where the electrons generated in carbon oxidation were transferred to the reduction of -C-N = and -NN. The metabolites, 2-hydroxynaphthalene and N-phenylnitrous amide were mineralized into CO2 through catechol pathway and a glycolytic process. Furthermore, the mineralization ratio of dye was computed to be 31.8% by the carbon balance and electron balance. By using comparative transcriptome, a novel decoloring enzyme Ord95 was discovered in unknown genes through gene cloning. It hydrolyzed AR73 into 2-hydroxynaphthalene and N-phenylnitrous amide, containing a glutathione S-transferase domain with three arginines as key active sites. Here the new mechanism of azo dye degradation was discovered with identification of a novel enzyme in Aspergillus tabacinus LZ-M.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Chunlan Mao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Simin Zong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technoloy of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, Gansu, China
| | - Toshiro Shigaki
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
39
|
Chen Q, Sun S, Yang X, Yan H, Wang K, Ba X, Wang H. Sublethal Effects of Neonicotinoid Insecticides on the Development, Body Weight and Economic Characteristics of Silkworm. TOXICS 2023; 11:toxics11050402. [PMID: 37235217 DOI: 10.3390/toxics11050402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) is a critical insect for silk producers, but the inappropriate application of insecticides negatively affects the physiology and behavior of silkworms. This study found that the effects of neonicotinoid insecticides applied using two spraying methods on the growth and development of silkworms were different: the median lethal concentration (LC50) values of two pesticides applied using the leaf-dipping method were 0.33 and 0.83 mg L-1 and those of two pesticides applied using the quantitative spraying method were 0.91 and 1.23 mg kg-1. The concentration of pesticides on the mulberry leaves did not decrease after their application using the quantitative spraying method, and a uniform spraying density was observed after the mulberry leaves were air-dried (no liquid) under realistic conditions. We then treated silkworms with the quantitative spraying method and leaf-dipping method. The treatment of silkworm larvae with imidacloprid and thiamethoxam at sublethal concentrations significantly prolonged the development time and significantly decreased the weight and pupation rate, as well as economic indicators of enamel layers and sputum production. Thiamethoxam treatment significantly increased the activities of carboxylesterase (CarE) and glutathione-S-transferase (GST). The activity of CarE and GST increased, decreased, and then increased, and the highest activity was detected on the 10th and 12th days. Thiamethoxam exposure significantly elevated the transcription levels of CarE-11, GSTe3 and GSTz2 and induced DNA damage in hemocytes. This study confirmed that the quantitative spray method is more stable than the leaf-dipping method. Moreover, imidacloprid and thiamethoxam treatment affected the economy and indexes of silkworms and induced changes in detoxification enzymes and DNA damage in silkworms. These results provide a basis for understanding the mechanism of the sublethal effects of insecticides on silkworms.
Collapse
Affiliation(s)
- Qiqi Chen
- Department of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Shoumin Sun
- Department of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xiu Yang
- Department of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Haohao Yan
- Department of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Kaiyun Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xiucheng Ba
- Agricultural Technology Extension Center of Binzhou, Binzhou 256600, China
| | - Hongyan Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
40
|
Chen Y, Wu X, Liu X, Lai J, Gong Q. Comparative transcriptome analysis provides insights into the TDG supersaturation stress response of Schizothorax davidi. Comp Biochem Physiol C Toxicol Pharmacol 2023; 269:109618. [PMID: 37004899 DOI: 10.1016/j.cbpc.2023.109618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
In the dam discharge season, the supersaturation of total dissolved gas (TDG) in the downstream channel can seriously affect the survival of aquatic organisms. However, few studies have revealed the mechanism by which TDG supersaturation affects the physiology of fish thus far. The present study was conducted to study the mechanism of the effect of TDG supersaturation on Schizothorax davidi, a species that is very sensitive to gas bubble disease. S. davidi was exposed to 116 % TDG supersaturation stress for 24 h. Serum biochemical tests showed that the aspartate aminotransferase and alanine aminotransferase levels after TDG supersaturation exposure were significantly decreased compared to those in the control group, while superoxide dismutase activity was significantly increased. RNA-Seq of gill tissues identified 1890 differentially expressed genes (DEGs), which consisted of 862 upregulated genes and 1028 downregulated genes, in the TDG supersaturation group vs. the control group. Pathway enrichment analysis revealed that the cell cycle, apoptosis and immune signaling pathways were affected by TDG stress. The results of this study may contribute to our understanding of the underlying molecular mechanism of environmental stress in fish.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Xiaoqing Liu
- Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
| |
Collapse
|
41
|
Kupreienko O, Pouliou F, Konstandinidis K, Axarli I, Douni E, Papageorgiou AC, Labrou NE. Inhibition Analysis and High-Resolution Crystal Structure of Mus musculus Glutathione Transferase P1-1. Biomolecules 2023; 13:biom13040613. [PMID: 37189361 DOI: 10.3390/biom13040613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Multidrug resistance is a significant barrier that makes anticancer therapies less effective. Glutathione transferases (GSTs) are involved in multidrug resistance mechanisms and play a significant part in the metabolism of alkylating anticancer drugs. The purpose of this study was to screen and select a lead compound with high inhibitory potency against the isoenzyme GSTP1-1 from Mus musculus (MmGSTP1-1). The lead compound was selected following the screening of a library of currently approved and registered pesticides that belong to different chemical classes. The results showed that the fungicide iprodione [3-(3,5-dichlorophenyl)-2,4-dioxo-N-propan-2-ylimidazolidine-1-carboxamide] exhibited the highest inhibition potency (ΙC50 = 11.3 ± 0.5 μΜ) towards MmGSTP1-1. Kinetics analysis revealed that iprodione functions as a mixed-type inhibitor towards glutathione (GSH) and non-competitive inhibitor towards 1-chloro-2,4-dinitrobenzene (CDNB). X-ray crystallography was used to determine the crystal structure of MmGSTP1-1 at 1.28 Å resolution as a complex with S-(p-nitrobenzyl)glutathione (Nb-GSH). The crystal structure was used to map the ligand-binding site of MmGSTP1-1 and to provide structural data of the interaction of the enzyme with iprodione using molecular docking. The results of this study shed light on the inhibition mechanism of MmGSTP1-1 and provide a new compound as a potential lead structure for future drug/inhibitor development.
Collapse
|
42
|
Kaur J, Anand V, Srivastava S, Bist V, Naseem M, Singh P, Gupta V, Singh PC, Saxena S, Bisht S, Srivastava PK, Srivastava S. Mitigation of arsenic toxicity in rice by the co-inoculation of arsenate reducer yeast with multifunctional arsenite oxidizing bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:120975. [PMID: 36584855 DOI: 10.1016/j.envpol.2022.120975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The study aimed to explicate the role of microbial co-inoculants for the mitigation of arsenic (As) toxicity in rice. Arsenate (AsV) reducer yeast Debaryomyces hansenii NBRI-Sh2.11 (Sh2.11) with bacterial strains of different biotransformation potential was attempted to develop microbial co-inoculants. An experiment to test their efficacy (yeast and bacterial strains) on plant growth and As uptake was conducted under a stressed condition of 20 mg kg-1 of arsenite (AsIII). A combination of Sh2.11 with an As(III)-oxidizer, Citrobacter sp. NBRI-B5.12 (B5.12), resulted in ∼90% decrease in grain As content as compared to Sh2.11 alone (∼40%). Reduced As accumulation in rice roots under co-treated condition was validated with SEM-EDS analysis. Enhanced As expulsion in the selected combination under in vitro conditions was found to be correlated with higher As content in the soil during their interaction with plants. Selected co-inoculant mediated enhanced nutrient uptake in association with better production of indole acetic acid (IAA) and gibberellic acid (GA) in shoot, support microbial co-inoculant mediated better biomass under stressful condition. Boosted defense response in association with enhanced glutathione-S-transferase (GST) and glutathione reductase (GR), activities under in vitro and in vivo conditions were observed. These results indicated that the As(III) oxidizer-B5.12 accelerated the As detoxification property of the As(V) reducer-Sh2.11. Henceforth, the results confer that the coupled reduction-oxidation process of the co-inoculant reduces the accumulation of As in rice grain. These co-inoculants can be further developed for field trials to achieve higher biomass with alleviated As toxicity in rice.
Collapse
Affiliation(s)
- Jasvinder Kaur
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Department of Botany, Kumaun University, Nainital, 263002, India
| | - Vandana Anand
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonal Srivastava
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vidisha Bist
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mariya Naseem
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Pallavi Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Vartika Gupta
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Poonam C Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sangeeta Saxena
- Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Saraswati Bisht
- Department of Botany, Kumaun University, Nainital, 263002, India
| | - Pankaj Kumar Srivastava
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suchi Srivastava
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
43
|
A Review of the GSTM1 Null Genotype Modifies the Association between Air Pollutant Exposure and Health Problems. Int J Genomics 2023; 2023:4961487. [PMID: 36793931 PMCID: PMC9925255 DOI: 10.1155/2023/4961487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Air pollution is one of the significant environmental risks known as the cause of premature deaths. It has deleterious effects on human health, including deteriorating respiratory, cardiovascular, nervous, and endocrine functions. Exposure to air pollution stimulates reactive oxygen species (ROS) production in the body, which can further cause oxidative stress. Antioxidant enzymes, such as glutathione S-transferase mu 1 (GSTM1), are essential to prevent oxidative stress development by neutralizing excess oxidants. When the antioxidant enzyme function is lacking, ROS can accumulate and, thus, cause oxidative stress. Genetic variation studies from different countries show that GSTM1 null genotype dominates the GSTM1 genotype in the population. However, the impact of the GSTM1 null genotype in modifying the association between air pollution and health problem is not yet clear. This study will elaborate on GSTM1's null genotype role in modifying the relationship between air pollution and health problems.
Collapse
|
44
|
Vašková J, Kočan L, Vaško L, Perjési P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023; 28:molecules28031447. [PMID: 36771108 PMCID: PMC9919958 DOI: 10.3390/molecules28031447] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The tripeptide glutathione is found in all eukaryotic cells, and due to the compartmentalization of biochemical processes, its synthesis takes place exclusively in the cytosol. At the same time, its functions depend on its transport to/from organelles and interorgan transport, in which the liver plays a central role. Glutathione is determined as a marker of the redox state in many diseases, aging processes, and cell death resulting from its properties and reactivity. It also uses other enzymes and proteins, which enables it to engage and regulate various cell functions. This paper approximates the role of these systems in redox and detoxification reactions such as conjugation reactions of glutathione-S-transferases, glyoxylases, reduction of peroxides through thiol peroxidases (glutathione peroxidases, peroxiredoxins) and thiol-disulfide exchange reactions catalyzed by glutaredoxins.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
- Correspondence: (J.V.); (P.P.); Tel.: +42-155-234-3232 (J.V.)
| | - Ladislav Kočan
- Clinic of Anaesthesiology and Intensive Care Medicine, East Slovak Institute of Cardiovascular Disease, 040 11 Košice, Slovakia
| | - Ladislav Vaško
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| | - Pál Perjési
- Institute of Pharmaceutical Chemistry, University of Pécs, 7600 Pécs, Hungary
- Correspondence: (J.V.); (P.P.); Tel.: +42-155-234-3232 (J.V.)
| |
Collapse
|
45
|
Ye Z, Huang L, Zhao Q, Zhang W, Zhang L. Key genes for arsenobetaine synthesis in marine medaka (Oryzias melastigma) by transcriptomics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106349. [PMID: 36395554 DOI: 10.1016/j.aquatox.2022.106349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Marine fish undergo detoxification to overcome As stress, forming non-toxic metabolites arsenobetaine (AsB). Genes associated with AsB synthesis remain unknown. Therefore, in this study, we explored the key genes involved in the synthesis of AsB by transcriptomic analysis in marine medaka (Oryzias melastigma), and then screened candidate genes related to AsB synthesis. In the liver, 40 genes were up-regulated and 23 genes were down-regulated, whereas in muscle, 83 genes were up-regulated and 331 genes were down-regulated. We revealed that bhmt, mat2aa, and gstt1a can play a significant role in the glutathione and methionine metabolic pathway. These three genes can affect the conversion of arsenocholine (AsC) to AsB by the vitro gene transformation experiments of E. coli BL21(DE3). E. coli BL21-bhmt overexpressing bhmt resulted in more oxidation of precursor AsC to AsB. Furthermore, the AsB concentration was decreased after E. coli BL21 overexpressing mat2aa and gstt1a, which were down-regulated in marine medaka. Therefore, we concluded that bhmt, mat2aa, and gstt1a are involved in AsB synthesis. Overall, this is the first report on transcriptome screening and identification of key genes for AsB synthesis in marine medaka. We provided important insights to reveal the mystery of AsB synthesis in marine fish.
Collapse
Affiliation(s)
- Zijun Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Liping Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qianyu Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Li Zhang
- Key laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
46
|
Zhang M, Liu K. Lipid and Protein Oxidation of Brown Rice and Selenium-Rich Brown Rice during Storage. Foods 2022; 11:foods11233878. [PMID: 36496686 PMCID: PMC9737139 DOI: 10.3390/foods11233878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Selenium-rich rice has become one of the effective ways to increase people's selenium intake. Selenium-containing proteins have higher antioxidant properties, which may lead to selenium-rich brown rice (Se-BR) having better storage stability than ordinary brown rice (BR). By measuring the peroxidation value, fatty acid value, carbonyl value and protein secondary structure, it was found that Se-BR had higher oxidation resistance stability than BR. The biological function of the differential proteins (DEPs) between ordinary brown rice stored for 0 days (BR-0) and 180 days (BR-6) as well as Se-rich brown rice stored for 0 days (Se-0) and 180 days (Se-6) was investigated by using iTRAQ. A total of 237, 235, 113 and 213 DEPs were identified from group A (BR-0/BR-6), group B (Se-0/Se-6), group C (BR-0/Se-0) and group D (BR-6/Se-6), respectively. Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEPs were mainly enriched in glucose metabolism, tricarboxylic acid cycle, fatty acid biosynthesis and degradation, glutathione metabolism, sulfur metabolism, peroxisome and other metabolic pathways. This study provides theoretical support for the study of protein oxidation kinetics and storage quality control of brown rice during storage.
Collapse
Affiliation(s)
- Minghui Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-371-67758850
| |
Collapse
|
47
|
Köhler B, Dubovik S, Hörterer E, Wilk U, Stöckl JB, Tekarslan-Sahin H, Ljepoja B, Paulitschke P, Fröhlich T, Wagner E, Roidl A. Combating Drug Resistance by Exploiting miRNA-200c-Controlled Phase II Detoxification. Cancers (Basel) 2022; 14:cancers14225554. [PMID: 36428646 PMCID: PMC9688189 DOI: 10.3390/cancers14225554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acquired drug resistance constitutes a serious obstacle to the successful therapy of cancer. In the process of therapy resistance, microRNAs can play important roles. In order to combat resistance formation and to improve the efficacy of chemotherapeutics, the mechanisms of the multifaceted hsa-miR-200c on drug resistance were elucidated. Upon knockout of hsa-miR-200c in breast carcinoma cells, a proteomic approach identified altered expression of glutathione S-transferases (GSTs) when cells were treated with the chemotherapeutic drug doxorubicin. In different hsa-miR-200c expression systems, such as knockout, inducible sponge and inducible overexpression, the differential expression of all members of the GST family was evaluated. Expression of hsa-miR-200c in cancer cells led to the repression of a multitude of these GSTs and as consequence, enhanced drug-induced tumor cell death which was evaluated for two chemotherapeutic drugs. Additionally, the influence of hsa-miR-200c on the glutathione pathway, which is part of the phase II detoxification mechanism, was investigated. Finally, the long-term effects of hsa-miR-200c on drug efficacy were studied in vitro and in vivo. Upon doxycycline induction of hsa-miR-200c, MDA-MB 231 xenograft mouse models revealed a strongly reduced tumor growth and an enhanced treatment response to doxorubicin. A combined treatment of these tumors with hsa-miR-200c and doxorubicin resulted in complete regression of the tumor in 60% of the animals. These results identify hsa-miR-200c as an important player regulating the cellular phase II detoxification, thus sensitizing cancer cells not expressing this microRNA to chemotherapeutics and reversing drug resistance through suppression of GSTs.
Collapse
Affiliation(s)
- Bianca Köhler
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Sviatlana Dubovik
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Elisa Hörterer
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Jan Bernd Stöckl
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Hande Tekarslan-Sahin
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Bojan Ljepoja
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | | | - Thomas Fröhlich
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Andreas Roidl
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
- Correspondence: ; Tel.: +49-89-2180-77456
| |
Collapse
|
48
|
Cai H, Wu P, Vandemeulebroucke L, Dhondt I, Rasulova M, Vierstraete A, Braeckman BP. Axenic Culture of Caenorhabditis elegans Alters Lysosomal/Proteasomal Balance and Increases Neuropeptide Expression. Int J Mol Sci 2022; 23:11517. [PMID: 36232823 PMCID: PMC9570027 DOI: 10.3390/ijms231911517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Axenically cultured C. elegans show many characteristic traits of worms subjected to dietary restriction, such as slowed development, reduced fertility, and increased stress resistance. Hence, the term axenic dietary restriction (ADR) is often applied. ADR dramatically extends the worm lifespan compared to other DR regimens such as bacterial dilution. However, the underlying molecular mechanisms still remain unclear. The primary goal of this study is to comprehensively investigate transcriptional alterations that occur when worms are subjected to ADR and to estimate the molecular and physiological changes that may underlie ADR-induced longevity. One of the most enriched clusters of up-regulated genes under ADR conditions is linked to lysosomal activity, while proteasomal genes are significantly down-regulated. The up-regulation of genes specifically involved in amino acid metabolism is likely a response to the high peptide levels found in axenic culture medium. Genes related to the integrity and function of muscles and the extracellular matrix are also up-regulated. Consistent down-regulation of genes involved in DNA replication and repair may reflect the reduced fertility phenotype of ADR worms. Neuropeptide genes are found to be largely up-regulated, suggesting a possible involvement of neuroendocrinal signaling in ADR-induced longevity. In conclusion, axenically cultured worms seem to rely on increased amino acid catabolism, relocate protein breakdown from the cytosol to the lysosomes, and do not invest in DNA maintenance but rather retain muscle integrity and the extracellular matrix. All these changes may be coordinated by peptidergic signaling.
Collapse
Affiliation(s)
- Huaihan Cai
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
- Overseas Pharmaceuticals, Ltd., Room 201, Building C1, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou 510530, China
| | - Ping Wu
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Lieselot Vandemeulebroucke
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Madina Rasulova
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Andy Vierstraete
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
49
|
Luan YX, Cui Y, Chen WJ, Jin JF, Liu AM, Huang CW, Potapov M, Bu Y, Zhan S, Zhang F, Li S. High-quality genomes reveal significant genetic divergence and cryptic speciation in the model organism Folsomia candida (Collembola). Mol Ecol Resour 2022; 23:273-293. [PMID: 35962787 PMCID: PMC10087712 DOI: 10.1111/1755-0998.13699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
The collembolan Folsomia candida Willem, 1902, is widely distributed throughout the world and has been frequently used as a test organism in soil ecology and ecotoxicology studies. However, it is questioned as an ideal "standard" because of differences in reproductive modes and cryptic genetic diversity between strains from various geographical origins. In this study, we obtained two high-quality chromosome-level genomes of F. candida, for a parthenogenetic strain (named as FCDK, 219.08 Mb, 25,139 protein-coding genes) and a sexual strain (named as FCSH, 153.09 Mb, 21,609 protein-coding genes), reannotated the genome of the parthenogenetic strain reported by Faddeeva-Vakhrusheva et al. in 2017 (named as FCBL, 221.7 Mb, 25,980 protein-coding genes), and conducted comparative genomic analyses of three strains. High genome similarities between FCDK and FCBL on synteny, genome architecture, mitochondrial and nuclear gene sequences support they are conspecific. The seven chromosomes of FCDK are each 25-54% larger than the corresponding chromosomes of FCSH, showing obvious repetitive element expansions and large-scale inversions and translocations but no whole-genome duplication. The strain-specific genes, expanded gene families and genes in nonsyntenic chromosomal regions identified in FCDK are highly related to the broader environmental adaptation of parthenogenetic strains. In addition, FCDK has fewer strain-specific microRNAs than FCSH, and their mitochondrial and nuclear genes have diverged greatly. In conclusion, FCDK/FCBL and FCSH have accumulated independent genetic changes and evolved into distinct species since 10 Mya. Our work provides important genomic resources for studying the mechanisms of rapidly cryptic speciation and soil arthropod adaptation to soil ecosystems.
Collapse
Affiliation(s)
- Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yingying Cui
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | | | - Jian-Feng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ai-Min Liu
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Cheng-Wang Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Yun Bu
- Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Museum, Shanghai, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| |
Collapse
|
50
|
Genomic and functional insights into the diversification of the elongation factor eEF1Bγ in fungi. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|