1
|
Sousa A, Kämpfer AAM, Schins RPF, Carvalho F, Fernandes E, Freitas M. Protective effects of quercetin on intestinal barrier and cellular viability against silver nanoparticle exposure: insights from an intestinal co-culture model. Nanotoxicology 2025; 19:141-155. [PMID: 39895265 DOI: 10.1080/17435390.2025.2450372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025]
Abstract
The intestinal epithelium plays a pivotal role as a vital barrier between the external environment and the human body, regulating nutrient absorption and preventing the entry of harmful substances. The human oral exposure to silver nanoparticles (AgNP) raises concerns about their potential toxicity, especially at the intestinal level. The objective of this work was to investigate the potential pro-inflammatory effects of polyvinylpyrrolidone (PVP)-AgNP of two different sizes, 5 and 50 nm, at the intestinal level, while also assessing the protective ability of quercetin against these effects. To address this, an intestinal co-culture model comprising C2BBe1 cells and THP-1 derived macrophages was established, and the effects of 5 or 50 nm PVP-AgNP were studied, alone or in combination with quercetin, over two-time points, 4 and 24 hours. PVP-AgNP, of both sizes, disrupted the barrier integrity within 4 hours of exposure. However, a notable intensification in pro-inflammatory effects was evident only after 24 hours of exposure, especially with smaller PVP-AgNP (5 nm). This resulted in heightened cellular death, increased levels of reactive species, activation of nuclear factor kappa B (NF-кB), and production of interleukin (IL)-8. Quercetin demonstrates the ability to maintain barrier integrity and mitigate oxidative stress, thereby offering protection against the detrimental effects induced by AgNP at the intestinal level.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Angela A M Kämpfer
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associated Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Rana SVS. Mechanistic paradigms of immunotoxicity, triggered by nanoparticles - a review. Toxicol Mech Methods 2025; 35:262-278. [PMID: 39585654 DOI: 10.1080/15376516.2024.2431687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Nanoparticles (NPs) possess the ability to penetrate cells and elicit a rapid and targeted immune response, influenced by their distinct physicochemical properties. These particles can engage with both micro and macromolecules, thereby impacting various downstream signaling pathways that may lead to cell death. This review provides a comprehensive overview of the primary mechanisms contributing to the immunotoxicity of both organic and inorganic nanoparticles. The effects of carbon-based nanomaterials (CNMs), including single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, and metal oxide nanoparticles, on various immune cell types such as macrophages, neutrophils, monocytes, dendritic cells (DCs), antigen-presenting cells (APCs), and RAW 264.7 cells are examined. The immune responses discussed encompass inflammation, oxidative stress, autophagy, and apoptosis. Additionally, the roles of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, and IFN-γ, along with JAK/STAT signaling pathways, are highlighted. The interaction of NPs with oxidative stress pathways, including MAPK signaling and Nrf2/ARE signaling, is also explored. Furthermore, the mechanisms by which nanoparticles induce damage to organelles such as lysosomes, the endoplasmic reticulum, exosomes, and Golgi bodies within the immune system are addressed. The review also emphasizes the genotoxic and epigenetic mechanisms associated with the immunotoxicity of NPs. Recent advancements regarding the immunotherapeutic potential of engineered NPs are reported. The roles of autophagy and apoptosis in the immunotoxicity of NPs merit further investigation. In conclusion, understanding how engineered nanoparticles modulate immune responses may facilitate the prevention and treatment of human diseases, including cancer and autoimmune disorders.
Collapse
Affiliation(s)
- S V S Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
3
|
Šíma M, Líbalová H, Závodná T, Vrbová K, Kléma J, Rössner P. Gene expression profiles and protein-protein interaction networks in THP-1 cells exposed to metal-based nanomaterials. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104469. [PMID: 38759848 DOI: 10.1016/j.etap.2024.104469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
We analyzed gene expression in THP-1 cells exposed to metal-based nanomaterials (NMs) [TiO2 (NM-100), ZnO (NM-110), SiO2 (NM-200), Ag (NM-300 K)]. A functional enrichment analysis of the significant differentially expressed genes (DEGs) identified the key modulated biological processes and pathways. DEGs were used to construct protein-protein interaction networks. NM-110 and NM-300 K induced changes in the expression of genes involved in oxidative and genotoxic stress, immune response, alterations of cell cycle, detoxification of metal ions and regulation of redox-sensitive pathways. Both NMs shared a number of highly connected protein nodes (hubs) including CXCL8, ATF3, HMOX1, and IL1B. NM-200 induced limited transcriptional changes, mostly related to the immune response; however, several hubs (CXCL8, ATF3) were identical with NM-110 and NM-300 K. No effects of NM-100 were observed. Overall, soluble nanomaterials NM-110 and NM-300 K exerted a wide variety of toxic effects, while insoluble NM-200 induced immunotoxicity; NM-100 caused no detectable changes on the gene expression level.
Collapse
Affiliation(s)
- Michal Šíma
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Helena Líbalová
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Táňa Závodná
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Kristýna Vrbová
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University in Prague, Prague, Czech Republic
| | - Pavel Rössner
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic.
| |
Collapse
|
4
|
Lamas B, Martins Breyner N, Malaisé Y, Wulczynski M, Galipeau HJ, Gaultier E, Cartier C, Verdu EF, Houdeau E. Evaluating the Effects of Chronic Oral Exposure to the Food Additive Silicon Dioxide on Oral Tolerance Induction and Food Sensitivities in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27007. [PMID: 38380914 PMCID: PMC10880545 DOI: 10.1289/ehp12758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND The increasing prevalence of food sensitivities has been attributed to changes in gut microenvironment; however, ubiquitous environmental triggers such as inorganic nanoparticles (NPs) used as food additives have not been thoroughly investigated. OBJECTIVES We explored the impact of the NP-structured food-grade silicon dioxide (f g - SiO 2 ) on intestinal immune response involved in oral tolerance (OT) induction and evaluated the consequences of oral chronic exposure to this food-additive using a mouse model of OT to ovalbumin (OVA) and on gluten immunopathology in mice expressing the celiac disease risk gene, HLA-DQ8. METHODS Viability, proliferation, and cytokine production of mesenteric lymph node (MLN) cells were evaluated after exposure to f g - SiO 2 . C57BL/6J mice and a mouse model of OT to OVA were orally exposed to f g - SiO 2 or vehicle for 60 d. Fecal lipocalin-2 (Lcn-2), anti-OVA IgG, cytokine production, and immune cell populations were analyzed. Nonobese diabetic (NOD) mice expressing HLA-DQ8 (NOD/DQ8), exposed to f g - SiO 2 or vehicle, were immunized with gluten and immunopathology was investigated. RESULTS MLN cells exposed to f g - SiO 2 presented less proliferative T cells and lower secretion of interleukin 10 (IL-10) and transforming growth factor beta (TGF- β ) by T regulatory and CD 45 + CD 11 b + CD 103 + cells compared to control, two factors mediating OT. Mice given f g - SiO 2 exhibited intestinal Lcn-2 level and interferon gamma (IFN- γ ) secretion, showing inflammation and less production of IL-10 and TGF- β . These effects were also observed in OVA-tolerized mice exposed to f g - SiO 2 , in addition to a breakdown of OT and a lower intestinal frequency of T cells. In NOD/DQ8 mice immunized with gluten, the villus-to-crypt ratio was decreased while the CD 3 + intraepithelial lymphocyte counts and the Th1 inflammatory response were aggravated after f g - SiO 2 treatment. DISCUSSION Our results suggest that chronic oral exposure to f g - SiO 2 blocked oral tolerance induction to OVA, and worsened gluten-induced immunopathology in NOD/DQ8 mice. The results should prompt investigation on the link between SiO 2 exposure and food sensitivities in humans. https://doi.org/10.1289/EHP12758.
Collapse
Affiliation(s)
- Bruno Lamas
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Natalia Martins Breyner
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Yann Malaisé
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Mark Wulczynski
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Heather J. Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Eric Gaultier
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Christel Cartier
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Elena F. Verdu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Eric Houdeau
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| |
Collapse
|
5
|
Anh NH, Min YJ, Thi My Nhung T, Long NP, Han S, Kim SJ, Jung CW, Yoon YC, Kang YP, Park SK, Kwon SW. Unveiling potentially convergent key events related to adverse outcome pathways induced by silver nanoparticles via cross-species omics-scale analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132208. [PMID: 37544172 DOI: 10.1016/j.jhazmat.2023.132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The adverse effects of silver nanoparticles (AgNPs) have been studied in various models. However, there has been discordance between molecular responses across the literature, attributed to methodological biases and the physicochemical variability of AgNPs. In this study, a gene pathway meta-analysis was conducted to identify convergent and divergent key events (KEs) associated with AgNPs and explore common patterns of these KEs across species. We performed a cross-species analysis of transcriptomic data from multiple studies involving various AgNPs exposure. Pathway enrichment analysis revealed a set of pathways linked to oxidative stress, apoptosis, and metabolite and lipid metabolism, which are considered potentially conserved KEs across species. Subsequently, experiments confirmed that oxidative stress responses could be early KEs in both Caenorhabditis elegans and HepG2 cells. Moreover, AgNPs preferentially impaired the mitochondria, as evidenced by mitochondrial fragmentation and dysfunction. Furthermore, disruption of amino acids, nucleotides, sulfur compounds, glycerolipids, and glycerophospholipids metabolism were in good agreement with gene pathway shreds of evidence. Our findings imply that, although there may be organism-specific responses, potentially conserved events could exist regardless of species and physicochemical factors. These results provide valuable insights into the development of adverse outcome pathways of AgNPs across species and the regulatory toxicity of AgNPs.
Collapse
Affiliation(s)
- Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Young Jin Min
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, the Republic of Korea
| | - Seunghyeon Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Cheol Woon Jung
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Young Cheol Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Yun Pyo Kang
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, the Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, the Republic of Korea.
| |
Collapse
|
6
|
Lamas B, Chevalier L, Gaultier E, Cartier C, Weingarten L, Blanc X, Fisicaro P, Oster C, Noireaux J, Evariste L, Breyner NM, Houdeau E. The food additive titanium dioxide hinders intestinal production of TGF-β and IL-10 in mice, and long-term exposure in adults or from perinatal life blocks oral tolerance to ovalbumin. Food Chem Toxicol 2023; 179:113974. [PMID: 37516336 DOI: 10.1016/j.fct.2023.113974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Food hypersensitivities are increasing in industrialized countries, and foodborne nanoparticles (NPs) are suspected as co-factors in their aetiology. Food-grade titanium dioxide (fg-TiO2), a food colouring agent, is composed of NPs with immunomodulatory properties. We investigated whether fg-TiO2 may compromise the establishment of oral tolerance (OT) to food proteins using a model of OT induction to ovalbumin (OVA) in mice, and whether a perinatal exposure could trigger this effect. In pregnant mice fed a TiO2-enriched diet, ICP-MS and TEM-EDX analyses showed passage of TiO2 NPs into the foetus. When their weaned offspring were fed the same diet, a breakdown in OT to OVA was observed at adulthood, characterized by a high anti-OVA IgG production compared to controls. However, adult mice directly exposed to fg-TiO2 did not induce OT to OVA either, ruling out a developmental origin for these effects. When these mice were orally challenged with OVA, intestinal inflammation demonstrated hypersensitivity to OVA. In OVA-naïve mice, fg-TiO2 exposure impaired intestinal TGF-β and IL-10 production, of key role in OT induction and maintenance. These findings showed that long-term exposure to TiO2 as food additive alters anti-inflammatory cytokine profile, and leads to OT failure regardless of the timing of TiO2 exposure throughout life.
Collapse
Affiliation(s)
- Bruno Lamas
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Laurence Chevalier
- Group Physic of Materials, GPM-UMR6634, CNRS, Rouen University, Rouen, France
| | - Eric Gaultier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Christel Cartier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Weingarten
- Centre de MicroCaractérisation Raimond Castaing, UAR 3623, Toulouse, France
| | - Xavier Blanc
- Sciences de l'Animal et de l'Aliment de Jouy, SAAJ UE1298, INRAE, Jouy-en-Josas, France
| | - Paola Fisicaro
- Department for Biomedical and Inorganic Chemistry, LNE, Paris, France
| | - Caroline Oster
- Department for Biomedical and Inorganic Chemistry, LNE, Paris, France
| | - Johanna Noireaux
- Department for Biomedical and Inorganic Chemistry, LNE, Paris, France
| | - Lauris Evariste
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Natalia Martins Breyner
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Eric Houdeau
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
7
|
Cary C, Stapleton P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch Toxicol 2023; 97:2111-2131. [PMID: 37303009 PMCID: PMC10540313 DOI: 10.1007/s00204-023-03528-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Biological barriers protect delicate internal tissues from exposures to and interactions with hazardous materials. Primary anatomical barriers prevent external agents from reaching systemic circulation and include the pulmonary, gastrointestinal, and dermal barriers. Secondary barriers include the blood-brain, blood-testis, and placental barriers. The tissues protected by secondary barriers are particularly sensitive to agents in systemic circulation. Neurons of the brain cannot regenerate and therefore must have limited interaction with cytotoxic agents. In the testis, the delicate process of spermatogenesis requires a specific milieu distinct from the blood. The placenta protects the developing fetus from compounds in the maternal circulation that would impair limb or organ development. Many biological barriers are semi-permeable, allowing only materials or chemicals, with a specific set of properties, that easily pass through or between cells. Nanoparticles (particles less than 100 nm) have recently drawn specific concern due to the possibility of biological barrier translocation and contact with distal tissues. Current evidence suggests that nanoparticles translocate across both primary and secondary barriers. It is known that the physicochemical properties of nanoparticles can affect biological interactions, and it has been shown that nanoparticles can breach primary and some secondary barriers. However, the mechanism by which nanoparticles cross biological barriers has yet to be determined. Therefore, the purpose of this review is to summarize how different nanoparticle physicochemical properties interact with biological barriers and barrier products to govern translocation.
Collapse
Affiliation(s)
- Chelsea Cary
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
8
|
Allwin Mabes Raj AFP, Bauman M, Dimitrušev N, Ali LMA, Onofre M, Gary-Bobo M, Durand JO, Lobnik A, Košak A. Superparamagnetic Spinel-Ferrite Nano-Adsorbents Adapted for Hg 2+, Dy 3+, Tb 3+ Removal/Recycling: Synthesis, Characterization, and Assessment of Toxicity. Int J Mol Sci 2023; 24:10072. [PMID: 37373219 DOI: 10.3390/ijms241210072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
In the present work, superparamagnetic adsorbents based on 3-aminopropyltrimethoxy silane (APTMS)-coated maghemite (γFe2O3@SiO2-NH2) and cobalt ferrite (CoFe2O4@SiO2-NH2) nanoparticles were prepared and characterized using transmission-electron microscopy (TEM/HRTEM/EDXS), Fourier-transform infrared spectroscopy (FTIR), specific surface-area measurements (BET), zeta potential (ζ) measurements, thermogravimetric analysis (TGA), and magnetometry (VSM). The adsorption of Dy3+, Tb3+, and Hg2+ ions onto adsorbent surfaces in model salt solutions was tested. The adsorption was evaluated in terms of adsorption efficiency (%), adsorption capacity (mg/g), and desorption efficiency (%) based on the results of inductively coupled plasma optical emission spectrometry (ICP-OES). Both adsorbents, γFe2O3@SiO2-NH2 and CoFe2O4@SiO2-NH2, showed high adsorption efficiency toward Dy3+, Tb3+, and Hg2+ ions, ranging from 83% to 98%, while the adsorption capacity reached the following values of Dy3+, Tb3+, and Hg2+, in descending order: Tb (4.7 mg/g) > Dy (4.0 mg/g) > Hg (2.1 mg/g) for γFe2O3@SiO2-NH2; and Tb (6.2 mg/g) > Dy (4.7 mg/g) > Hg (1.2 mg/g) for CoFe2O4@SiO2-NH2. The results of the desorption with 100% of the desorbed Dy3+, Tb3+, and Hg2+ ions in an acidic medium indicated the reusability of both adsorbents. A cytotoxicity assessment of the adsorbents on human-skeletal-muscle derived cells (SKMDCs), human fibroblasts, murine macrophage cells (RAW264.7), and human-umbilical-vein endothelial cells (HUVECs) was conducted. The survival, mortality, and hatching percentages of zebrafish embryos were monitored. All the nanoparticles showed no toxicity in the zebrafish embryos until 96 hpf, even at a high concentration of 500 mg/L.
Collapse
Affiliation(s)
- A F P Allwin Mabes Raj
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Environmental Science, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska 7, 2000 Maribor, Slovenia
| | - Maja Bauman
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska 7, 2000 Maribor, Slovenia
| | - Nena Dimitrušev
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska 7, 2000 Maribor, Slovenia
- Faculty for Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Lamiaa M A Ali
- IBMM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Mélanie Onofre
- IBMM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | | | - Aleksandra Lobnik
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska 7, 2000 Maribor, Slovenia
- Faculty for Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Aljoša Košak
- Faculty for Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| |
Collapse
|
9
|
Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, Liu Z, Jia B, Xu S. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci 2023. [PMID: 37161951 DOI: 10.1039/d3bm00271c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of metal and metal oxide nanomaterials on various fields since their discovery has been remarkable. They have unique properties, and therefore, have been employed in specific applications, including biomedicine. However, their potential health risks cannot be ignored. Several studies have shown that exposure to metal and metal oxide nanoparticles can lead to immunotoxicity. Different types of metals and metal oxide nanoparticles may have a negative impact on the immune system through various mechanisms, such as inflammation, oxidative stress, autophagy, and apoptosis. As an essential factor in determining the function and fate of immune cells, immunometabolism may also be an essential target for these nanoparticles to exert immunotoxic effects in vivo. In addition, the biodegradation and metabolic outcomes of metal and metal oxide nanoparticles are also important considerations in assessing their immunotoxic effects. Herein, we focus on the cellular mechanism of the immunotoxic effects and toxic effects of different types of metal and metal oxide nanoparticles, as well as the metabolism and outcomes of these nanoparticles in vivo. Also, we discuss the relationship between the possible regulatory effect of nanoparticles on immunometabolism and their immunotoxic effects. Finally, we present perspectives on the future research and development direction of metal and metal oxide nanomaterials to promote scientific research on the health risks of nanomaterials and reduce their adverse effects on human health.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Qi M, Wang X, Chen J, Liu Y, Liu Y, Jia J, Li L, Yue T, Gao L, Yan B, Zhao B, Xu M. Transformation, Absorption and Toxicological Mechanisms of Silver Nanoparticles in the Gastrointestinal Tract Following Oral Exposure. ACS NANO 2023; 17:8851-8865. [PMID: 37145866 DOI: 10.1021/acsnano.3c00024] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Oral exposure is known as the primary way for silver nanoparticles (AgNPs), which are commonly used as food additives or antibacterial agents in commercial products, to enter the human body. Although the health risk of AgNPs has been a concern and extensively researched over the past few decades, there are still numerous knowledge gaps that need to be filled to disclose what AgNPs experience in the gastrointestinal tract (GIT) and how they cause oral toxicity. In order to gain more insight into the fate of AgNPs in the GIT, the main gastrointestinal transformation of AgNPs, including aggregation/disaggregation, oxidative dissolution, chlorination, sulfuration, and corona formation, is first described. Second, the intestinal absorption of AgNPs is presented to show how AgNPs interact with epithelial cells and cross the intestinal barrier. Then, more importantly, we make an overview of the mechanisms underlying the oral toxicity of AgNPs in light of recent advances as well as the factors affecting the nano-bio interactions in the GIT, which have rarely been thoroughly elaborated in published literature. At last, we emphatically discuss the issues that need to be addressed in the future to answer the question "How does oral exposure to AgNPs cause detrimental effects on the human body?".
Collapse
Affiliation(s)
- Mengying Qi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xudong Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Chen
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Hu W, Wang C, Gao D, Liang Q. Toxicity of transition metal nanoparticles: A review of different experimental models in the gastrointestinal tract. J Appl Toxicol 2023; 43:32-46. [PMID: 35289422 DOI: 10.1002/jat.4320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
The development of nanotechnology is becoming a major trend nowadays. Nanoparticles (NPs) have been widely used in fields including food, biomedicine, and cosmetics, endowing NPs more opportunities to enter the human body. It is well-known that the gut microbiome plays a key role in human health, and the exposure of intestines to NPs is unavoidable. Accordingly, the toxicity of NPs has attracted more attention than before. This review mainly highlights recent advances in the evaluation of NPs' toxicity in the gastrointestinal system from the existing cell-based experimental models, such as the original mono-culture models, co-culture models, three-dimensional (3D) culture models, and the models established on microfluidic chips, to those in vivo experiments, such as mice models, Caenorhabditis elegans models, zebrafish models, human volunteers, as well as computer-simulated toxicity models. Owing to these models, especially those more biomimetic models, the outcome of the toxicity of NPs acting in the gastrointestinal tract can get results closer to what happened inside the real human microenvironment.
Collapse
Affiliation(s)
- Wanting Hu
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Center for Synthetic and Systems Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Chenlong Wang
- Center for Synthetic and Systems Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Wang S, Kang X, Alenius H, Wong SH, Karisola P, El-Nezami H. Oral exposure to Ag or TiO 2 nanoparticles perturbed gut transcriptome and microbiota in a mouse model of ulcerative colitis. Food Chem Toxicol 2022; 169:113368. [PMID: 36087619 DOI: 10.1016/j.fct.2022.113368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Silver (nAg) and titanium dioxide (nTiO2) nanoparticles improve texture, flavour or anti-microbial properties of various food products and packaging materials. Despite their increased oral exposure, their potential toxicities in the dysfunctional intestine are unclear. Here, the effects of ingested nAg or nTiO2 on inflamed colon were revealed in a mouse model of chemical-induced acute ulcerative colitis. Mice (eight/group) were exposed to nAg or nTiO2 by oral gavage for 10 consecutive days. We characterized disease phenotypes, histology, and alterations in colonic transcriptome (RNA sequencing) and gut microbiome (16S sequencing). Oral exposure to nAg caused only minor changes in phenotypic hallmarks of colitic mice but induced extensive responses in gene expression enriching processes of apoptotic cell death and RNA metabolism. Instead, ingested nTiO2 yielded shorter colon, aggravated epithelial hyperplasia and deeper infiltration of inflammatory cells. Both nanoparticles significantly changed the gut microbiota composition, resulting in loss of diversity and increase of potential pathobionts. They also increased colonic mucus and abundance of Akkermansia muciniphila. Overall, nAg and nTiO2 induce dissimilar immunotoxicological changes at the molecular and microbiome level in the context of colon inflammation. The results provide valuable information for evaluation of utilizing metallic nanoparticles in food products for the vulnerable population.
Collapse
Affiliation(s)
- Shuyuan Wang
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| | - Xing Kang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Harri Alenius
- Human Microbiome Research Program, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland; Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, 171 77, Sweden.
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| | - Piia Karisola
- Human Microbiome Research Program, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland.
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China; Nutrition and Health, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
13
|
Fabrication of ssDNA functionalized MoS 2 nanoflakes based label-free electrochemical biosensor for explicit silver ion detection at sub-pico molar level. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, Wang H, Liu Y. Cytotoxicity of Metal-Based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106049. [PMID: 35343105 PMCID: PMC9165481 DOI: 10.1002/advs.202106049] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Indexed: 05/05/2023]
Abstract
Metal-based nanoparticles (NPs) are particularly important tools in tissue engineering-, drug carrier-, interventional therapy-, and biobased technologies. However, their complex and varied migration and transformation pathways, as well as their continuous accumulation in closed biological systems, cause various unpredictable toxic effects that threaten human and ecosystem health. Considerable experimental and theoretical efforts have been made toward understanding these cytotoxic effects, though more research on metal-based NPs integrated with clinical medicine is required. This review summarizes the mechanisms and evaluation methods of cytotoxicity and provides an in-depth analysis of the typical effects generated in the nervous, immune, reproductive, and genetic systems. In addition, the challenges and opportunities are discussed to enhance future investigations on safer metal-based NPs for practical commercial adoption.
Collapse
Affiliation(s)
- Peizheng Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Xiangming Huang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, 530023, P. R. China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Qunwen Lu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Gang Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Shunlin Peng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Hongbo Wang
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 611700, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yiyao Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
15
|
Sousa A, Bradshaw TD, Ribeiro D, Fernandes E, Freitas M. Pro-inflammatory effects of silver nanoparticles in the intestine. Arch Toxicol 2022; 96:1551-1571. [PMID: 35296919 DOI: 10.1007/s00204-022-03270-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022]
Abstract
Nanotechnology is a promising technology of the twenty-first century, being a rapidly evolving field of research and industrial innovation widely applied in our everyday life. Silver nanoparticles (AgNP) are considered the most commercialized nanosystems worldwide, being applied in diverse sectors, from medicine to the food industry. Considering their unique physical, chemical and biological properties, AgNP have gained access into our daily life, with an exponential use in food industry, leading to an increased inevitable human oral exposure. With the growing use of AgNP, several concerns have been raised, in recent years, about their potential hazards to human health, more precisely their pro-inflammatory effects within the gastrointestinal system. Therefore a review of the literature has been undertaken to understand the pro-inflammatory potential of AgNP, after human oral exposure, in the intestine. Despite the paucity of information reported in the literature about this issue, existing studies indicate that AgNP exert a pro-inflammatory action, through generation of oxidative stress, accompanied by mitochondrial dysfunction, interference with transcription factors and production of cytokines. However, further studies are needed to elucidate the mechanistic pathways and molecular targets involved in the intestinal pro-inflammatory effects of AgNP.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Tracey D Bradshaw
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, 9700-042, Angra do Heroísmo, Açores, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| |
Collapse
|
16
|
Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. EMERGENT MATERIALS 2022; 5:1593-1615. [PMID: 35005431 PMCID: PMC8724657 DOI: 10.1007/s42247-021-00335-x] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/09/2021] [Indexed: 05/02/2023]
Abstract
Over the past few years, nanotechnology has been attracting considerable research attention because of their outstanding mechanical, electromagnetic and optical properties. Nanotechnology is an interdisciplinary field comprising nanomaterials, nanoelectronics, and nanobiotechnology, as three areas which extensively overlap. The application of metal nanoparticles (MNPs) has drawn much attention offering significant advances, especially in the field of medicine by increasing the therapeutic index of drugs through site specificity preventing multidrug resistance and delivering therapeutic agents efficiently. Apart from drug delivery, some other applications of MNPs in medicine are also well known such as in vivo and in vitro diagnostics and production of enhanced biocompatible materials and nutraceuticals. The use of metallic nanoparticles for drug delivery systems has significant advantages, such as increased stability and half-life of drug carrier in circulation, required biodistribution, and passive or active targeting into the required target site. Green synthesis of MNPs is an emerging area in the field of bionanotechnology and provides economic and environmental benefits as an alternative to chemical and physical methods. Therefore, this review aims to provide up-to-date insights on the current challenges and perspectives of MNPs in drug delivery systems. The present review was mainly focused on the greener methods of metallic nanocarrier preparations and its surface modifications, applications of different MNPs like silver, gold, platinum, palladium, copper, zinc oxide, metal sulfide and nanometal organic frameworks in drug delivery systems.
Collapse
Affiliation(s)
- V. Chandrakala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| | - Valmiki Aruna
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| | - Gangadhara Angajala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| |
Collapse
|
17
|
Wang LM, Wang YT, Yang WX. Engineered nanomaterials induce alterations in biological barriers: focus on paracellular permeability. Nanomedicine (Lond) 2021; 16:2725-2741. [PMID: 34870452 DOI: 10.2217/nnm-2021-0165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Engineered nanoparticles (ENPs) are widely used in medical diagnosis and treatment, as food additives and as energy materials. ENPs may exert adverse or beneficial effects on the human body, which may be linked to interactions with biological barriers. In this review, the authors summarize the influences of four typical metal/metal oxide nanomaterials (Ag, TiO2, Au, ZnO nanoparticles) on the paracellular permeability of biological barriers. Disruptions on tight junctions, adhesion junctions, gap junctions and desmosomes via complex signaling pathways, such as the MAPK, PKC and ROCK signaling pathways, affect paracellular permeability. Reactive oxygen species and cytokines underlie the mechanism of ENP-triggered alterations in paracellular permeability. This review provides the information necessary for the cautious application of nanoparticles in medicine and life sciences in the future.
Collapse
Affiliation(s)
- Lan-Min Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu-Ting Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
18
|
Rufino AT, Ramalho A, Sousa A, de Oliveira JMPF, Freitas P, Gómez MAG, Piñeiro-Redondo Y, Rivas J, Carvalho F, Fernandes E, Freitas M. Protective Role of Flavonoids against Intestinal Pro-Inflammatory Effects of Silver Nanoparticles. Molecules 2021; 26:6610. [PMID: 34771019 PMCID: PMC8588041 DOI: 10.3390/molecules26216610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Silver nanoparticles (AgNP) have been increasingly incorporated into food-related and hygiene products for their unique antimicrobial and preservative properties. The consequent oral exposure may then result in unpredicted harmful effects in the gastrointestinal tract (GIT), which should be considered in the risk assessment and risk management of these materials. In the present study, the toxic effects of polyethyleneimine (PEI)-coated AgNP (4 and 19 nm) were evaluated in GIT-relevant cells (Caco-2 cell line as a model of human intestinal cells, and neutrophils as a model of the intestinal inflammatory response). This study also evaluated the putative protective action of dietary flavonoids against such harmful effects. The obtained results showed that AgNP of 4 and 19 nm effectively induced Caco-2 cell death by apoptosis with concomitant production of nitric oxide, irrespective of the size. It was also observed that AgNP induced human neutrophil oxidative burst. Interestingly, some flavonoids, namely quercetin and quercetagetin, prevented the deleterious effects of AgNP in both cell types. Overall, the data of the present study provide a first insight into the promising protective role of flavonoids against the potentially toxic effects of AgNP at the intestinal level.
Collapse
Affiliation(s)
- Ana T. Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - Ana Ramalho
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - José Miguel P. Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - Paulo Freitas
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal;
| | - Manuel A. Gonzalez Gómez
- Nanotechnology and Magnetism Lab—NANOMAG, Department of Applied Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.G.G.); (Y.P.-R.); (J.R.)
| | - Yolanda Piñeiro-Redondo
- Nanotechnology and Magnetism Lab—NANOMAG, Department of Applied Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.G.G.); (Y.P.-R.); (J.R.)
| | - José Rivas
- Nanotechnology and Magnetism Lab—NANOMAG, Department of Applied Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.G.G.); (Y.P.-R.); (J.R.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| |
Collapse
|
19
|
Bhaskaran NA, Kumar L. Treating colon cancers with a non-conventional yet strategic approach: An overview of various nanoparticulate systems. J Control Release 2021; 336:16-39. [PMID: 34118336 DOI: 10.1016/j.jconrel.2021.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Regardless of progress in therapy management which are developed for colon cancer (CC), it remains the third most common cause of mortality due to cancers around the world. Conventional medicines pose side effects due to untoward action on non-target cells. Their inability to deliver drugs to the affected regions of the colon locally, in a reproducible manner raises a concern towards the efficacy of therapy. In this regard, nanoparticles emerged as a promising drug delivery system due to their flexibility in designing, drug release modulation and cancer cell targeting. Not only are nanoparticles making their way into colon cancer research in the revolution of conventional onco-therapeutics, but they also offer promising scope in the development of colon cancer vaccines and theranostic tools. However, there are challenges with respect to drug delivery using nanoparticles, which may hamper the delivery of these novel carriers to the colon. The present review addresses recent advents in nanotechnology for colon-specific drug delivery (CDDS) which may help to overcome the existing challenges and intends to recognize futuristic potentials in the treatment of CC with CDDS.
Collapse
Affiliation(s)
- N A Bhaskaran
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi, Karnataka, India
| | - L Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi, Karnataka, India.
| |
Collapse
|
20
|
Saarimäki LA, Federico A, Lynch I, Papadiamantis AG, Tsoumanis A, Melagraki G, Afantitis A, Serra A, Greco D. Manually curated transcriptomics data collection for toxicogenomic assessment of engineered nanomaterials. Sci Data 2021; 8:49. [PMID: 33558569 PMCID: PMC7870661 DOI: 10.1038/s41597-021-00808-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Toxicogenomics (TGx) approaches are increasingly applied to gain insight into the possible toxicity mechanisms of engineered nanomaterials (ENMs). Omics data can be valuable to elucidate the mechanism of action of chemicals and to develop predictive models in toxicology. While vast amounts of transcriptomics data from ENM exposures have already been accumulated, a unified, easily accessible and reusable collection of transcriptomics data for ENMs is currently lacking. In an attempt to improve the FAIRness of already existing transcriptomics data for ENMs, we curated a collection of homogenized transcriptomics data from human, mouse and rat ENM exposures in vitro and in vivo including the physicochemical characteristics of the ENMs used in each study.
Collapse
Affiliation(s)
- Laura Aliisa Saarimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
- NovaMechanics Ltd, P.O Box 26014 1666, Nicosia, Cyprus
| | | | | | | | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- BioMediTech Institute, Tampere University, Tampere, Finland.
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
- Finnish Centre for Alternative Methods (FICAM), Faculty of Medicine and Heath Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
21
|
Jiang M, Jin J, Ye X, Wang J, Shen H, Zhen J, Zhou Y. Construction of Lycetin Nanocarriers and Its Effect on the Proliferation and Apoptosis of Hepatocellular Carcinoma Cells by Regulating Nuclear Factor E2 Related Factor/Antioxidant Response Element Pathway. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:1054-1060. [PMID: 33183443 DOI: 10.1166/jnn.2021.18630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article explores the role of lysin nanocarriers in inducing apoptosis of human hepatocellular carcinoma cells and the possible molecular mechanisms. Cytotoxicity tests were performed in human fibroblast cell line MRC-5. Anti-cancer activity was tested in liver cancer cell lines HepG2 and HCCLM3. The results show that nanocarriers have a targeting effect on cancer cells, have high safety, and are good delivery vehicles for drugs. In this paper, the stability of lycopene and its degradation in aqueous solutions at different temperatures were studied, and the structure and mechanism of degradation products were determined. A new type of mesoporous silica nanocarrier was synthesized as a delivery carrier of lysin and its derivatives, which has a targeting effect on cancer cells and has a slow-release effect. Surface modification can improve circulation time and stability for future resistance in vivo. The cancer experiment laid the foundation. The results showed that the lysin nanocarriers inhibited the proliferation of HepG2 and HCCLM3 human liver cancer cells in a dependent manner. After the lysin nanocarriers acted on HepG2 human hepatocellular carcinoma cells for 48 h, the cell apoptosis rate was significantly increased by flow cytometry analysis. The carrier can significantly increase the levels of reactive oxygen species and malondialdehyde, and reduce the content of reduced glutathione and superoxide dismutase. At the same time, the lysin nanocarrier can down-regulate the expression of Nrf2 and HO-1 proteins, and inhibit the occurrence of Nrf2 Nuclear displacement. The lycopene nanocarrier inhibits the proliferation of HepG2, HCCLM3 human liver cancer cells, induces apoptosis, regulates the oxidative stress response in the cell, and regulates the Nrf2/AREE antioxidant signaling pathway, thereby promoting tumor cell apoptosis.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Hepatobiliary Surgery 2, People's Hospital of Quzhou, Quzhou City, 324000, Zhejiang Province, China
| | - Jing Jin
- Department of Hepatobiliary Surgery 2, People's Hospital of Quzhou, Quzhou City, 324000, Zhejiang Province, China
| | - Xiaohui Ye
- Department of Intravenous Care, People's Hospital of Quzhou, Quzhou City, 324000, Zhejiang Province, China
| | - Jing Wang
- Department of Hepatobiliary Surgery 2, People's Hospital of Quzhou, Quzhou City, 324000, Zhejiang Province, China
| | - Hongbo Shen
- Department of Hepatobiliary Surgery 2, People's Hospital of Quzhou, Quzhou City, 324000, Zhejiang Province, China
| | - Jie Zhen
- Department of Hepatobiliary Surgery 2, People's Hospital of Quzhou, Quzhou City, 324000, Zhejiang Province, China
| | - Yinong Zhou
- Department of Hepatobiliary Surgery 2, People's Hospital of Quzhou, Quzhou City, 324000, Zhejiang Province, China
| |
Collapse
|
22
|
Gillois K, Stoffels C, Leveque M, Fourquaux I, Blesson J, Mils V, Cambier S, Vignard J, Terrisse H, Mirey G, Audinot JN, Theodorou V, Ropers MH, Robert H, Mercier-Bonin M. Repeated exposure of Caco-2 versus Caco-2/HT29-MTX intestinal cell models to (nano)silver in vitro: Comparison of two commercially available colloidal silver products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142324. [PMID: 33254900 DOI: 10.1016/j.scitotenv.2020.142324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Colloidal silver products are sold for a wide range of disinfectant and health applications. This has increased the potential for human exposure to silver nanoparticles (AgNPs) and ions (Ag+), for which oral ingestion is considered to be a major route of exposure. Our objective was to evaluate and compare the toxicity of two commercially available colloidal silver products on two human intestinal epithelial models under realistic exposure conditions. Mesosilver™ and AgC were characterized and a concentration range between 0.1 and 12 μg/mL chosen. Caco-2 cells vs. co-culture of Caco-2 and mucus-secreting HT29-MTX cells (90/10) were used. Repeated exposure was carried out to determine cell viability over 18 days of cell differentiation in 24-well plates. Selected concentrations (0.1, 1, and 3 μg/mL) were tested on cells cultured in E-plates and Transwells with the same repeated exposure regimen, to determine cell impedance, and cell viability and trans-epithelial electrical resistance (TEER), respectively. Silver uptake, intracellular localisation, and translocation were determined by CytoViva™, HIM-SIMS, and ICP-MS. Genotoxicity was determined on acutely-exposed proliferating Caco-2 cells by γH2AX immunofluorescence staining. Repeated exposure of a given concentration of AgC, which is composed solely of ionic silver, generally exerted more toxic effects on Caco-2 cells than Mesosilver™, which contains a mix of AgNPs and ionic silver. Due to its patchy structure, the presence of mucus in the Caco-2/HT29-MTX co-culture only slightly mitigated the deleterious effects on cell viability. Increased genotoxicity was observed for AgC on proliferating Caco-2 cells. Silver uptake, intracellular localisation, and translocation were similar. In conclusion, Mesosilver™ and AgC colloidal silver products show different levels of gut toxicity due to the forms of distinct silver (AgNPs and/or Ag+) contained within. This study highlights the applicability of high-resolution (chemical) imaging to detect and localize silver and provides insights into its uptake mechanisms, intracellular fate and cellular effects.
Collapse
Affiliation(s)
- Kévin Gillois
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Charlotte Stoffels
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Mathilde Leveque
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Isabelle Fourquaux
- Centre de Microscopie Électronique Appliquée à la Biologie, CMEAB, 133 route de Narbonne, 31062 Toulouse, France
| | - Justine Blesson
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Valérie Mils
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Julien Vignard
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Hélène Terrisse
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Gladys Mirey
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Nicolas Audinot
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Vassilia Theodorou
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | | | - Hervé Robert
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Muriel Mercier-Bonin
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France.
| |
Collapse
|
23
|
Human Intestinal Tissue Explant Exposure to Silver Nanoparticles Reveals Sex Dependent Alterations in Inflammatory Responses and Epithelial Cell Permeability. Int J Mol Sci 2020; 22:ijms22010009. [PMID: 33374948 PMCID: PMC7792613 DOI: 10.3390/ijms22010009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Consumer products manufactured with antimicrobial silver nanoparticles (AgNPs) may affect the gastrointestinal (GI) system. The human GI-tract is complex and there are physiological and anatomical differences between human and animal models that limit comparisons between species. Thus, assessment of AgNP toxicity on the human GI-tract may require tools that allow for the examination of subtle changes in inflammatory markers and indicators of epithelial perturbation. Fresh tissues were excised from the GI-tract of human male and female subjects to evaluate the effects of AgNPs on the GI-system. The purpose of this study was to perform an assessment on the ability of the ex vivo model to evaluate changes in levels of pro-/anti-inflammatory cytokines/chemokines and mRNA expression of intestinal permeability related genes induced by AgNPs in ileal tissues. The ex vivo model preserved the structural and biological functions of the in-situ organ. Analysis of cytokine expression data indicated that intestinal tissue of male and female subjects responded differently to AgNP treatment, with male samples showing significantly elevated Granulocyte-macrophage colony-stimulating factor (GM-CSF) after treatment with 10 nm and 20 nm AgNPs for 2 h and significantly elevated RANTES after treatment with 20 nm AgNPs for 24 h. In contrast, tissues of female showed no significant effects of AgNP treatment at 2 h and significantly decreased RANTES (20 nm), TNF-α (10 nm), and IFN-γ (10 nm) at 24 h. Smaller size AgNPs (10 nm) perturbed more permeability-related genes in samples of male subjects, than in samples from female subjects. In contrast, exposure to 20 nm AgNPs resulted in upregulation of a greater number of genes in female-derived samples (36 genes) than in male-derived samples (8 genes). The ex vivo tissue model can distinguish sex dependent effects of AgNP and could serve as a translational non-animal model to assess the impacts of xenobiotics on human intestinal mucosa.
Collapse
|
24
|
de Oliveira IM, Cavallin MD, Corrêa DEDC, Razera A, Mariano DD, Ferreira F, Romano MA, Marino Romano R. Proteomic Profiles of Thyroid Gland and Gene Expression of the Hypothalamic-Pituitary-Thyroid Axis Are Modulated by Exposure to AgNPs during Prepubertal Rat Stages. Chem Res Toxicol 2020; 33:2605-2622. [PMID: 32972137 DOI: 10.1021/acs.chemrestox.0c00250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Silver nanoparticles (AgNPs) have potent antimicrobial activity and, for this reason, are incorporated into a variety of products, raising concern about their potential risks and impacts on human health and the environment. The developmental period is highly dependent on thyroid hormones (THs), and puberty is a sensitive period, where changes in the hormonal environment may have permanent effects. We evaluated the hypothalamic-pituitary (HP)-thyroid axis after exposure to low doses of AgNPs using a validated protocol to assess pubertal development and thyroid function in immature male rats. For stimulatory events of the HP-thyroid axis, we observed an increase in the expression of Trh mRNA and serum triiodothyronine. Negative feedback reduced the hypothalamic expression of Dio2 mRNA and increased the expression of Thra1, Thra2, and Thrb2 mRNAs. In the pituitary, there was a reduced expression of Mct-8 mRNA and Dio2 mRNA. For peripheral T3-target tissues, a reduced expression of Mct-8 mRNA was observed in the heart and liver. An increased expression of Dio3 mRNA was observed in the heart and liver, and an increased expression of Thrb2 mRNA was observed in the liver. The quantitative proteomic profile of the thyroid gland indicated a reduction in cytoskeletal proteins (Cap1, Cav1, Lasp1, Marcks, and Tpm4; 1.875 μg AgNP/kg) and a reduction in the profile of chaperones (Hsp90aa1, Hsp90ab1, Hspa8, Hspa9, P4hb) and proteins that participate in the N-glycosylation process (Ddost, Rpn1 and Rpn2) (15 μg AgNP/kg). Exposure to low doses of AgNPs during the window of puberty development affects the regulation of the HP-thyroid axis with further consequences in thyroid gland physiology.
Collapse
Affiliation(s)
- Isabela Medeiros de Oliveira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Mônica Degraf Cavallin
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Deborah Elzita do Carmo Corrêa
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Amanda Razera
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Danielle Dobner Mariano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Francine Ferreira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Marco Aurélio Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Renata Marino Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| |
Collapse
|
25
|
Laloux L, Kastrati D, Cambier S, Gutleb AC, Schneider YJ. The Food Matrix and the Gastrointestinal Fluids Alter the Features of Silver Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907687. [PMID: 32187880 DOI: 10.1002/smll.201907687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are used in the agri-food sector, which can lead to their ingestion. Their interaction with food and their passage through the gastrointestinal tract can alter their properties and influence their fate upon ingestion. Therefore, this study aims at developing an in vitro method to follow the fate of AgNPs in the gastrointestinal tract. After incorporation of AgNPs into a standardized food matrix, a precolonic digestion is simulated and AgNPs are characterized by different techniques. The presence of food influences the AgNPs properties by forming a corona around nanoparticles. Even if the salivary step does not impact significantly the AgNPs, the pH decrease and the digestive enzymes induce the agglomeration of AgNPs during the gastric phase, while the addition of intestinal fluids disintegrates these clusters. AgNPs can thus reach the intestinal cells under nanometric form, although the presence of food and gastrointestinal fluids modifies their properties compared to pristine AgNPs. They can form a corona around the nanoparticles and act as colloidal stabilizer, which can impact the interaction of AgNPs with intestinal epithelium. This study demonstrates the importance of taking the fate of AgNPs in the gastrointestinal tract into account to perform an accurate risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Laurie Laloux
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| | - Donika Kastrati
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Rue du Brill, 41, Belvaux, L-4422, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Rue du Brill, 41, Belvaux, L-4422, Luxembourg
| | - Yves-Jacques Schneider
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| |
Collapse
|
26
|
Raja G, Jang YK, Suh JS, Kim HS, Ahn SH, Kim TJ. Microcellular Environmental Regulation of Silver Nanoparticles in Cancer Therapy: A Critical Review. Cancers (Basel) 2020; 12:E664. [PMID: 32178476 PMCID: PMC7140117 DOI: 10.3390/cancers12030664] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Silver nanoparticles (AgNPs) play significant roles in various cancer cells such as functional heterogeneity, microenvironmental differences, and reversible changes in cell properties (e.g., chemotherapy). There is a lack of targets for processes involved in tumor cellular heterogeneity, such as metabolic clampdown, cytotoxicity, and genotoxicity, which hinders microenvironmental biology. Proteogenomics and chemical metabolomics are important tools that can be used to study proteins/genes and metabolites in cells, respectively. Chemical metabolomics have many advantages over genomics, transcriptomics, and proteomics in anticancer therapy. However, recent studies with AgNPs have revealed considerable genomic and proteomic changes, particularly in genes involved in tumor suppression, apoptosis, and oxidative stress. Metabolites interact biochemically with energy storage, neurotransmitters, and antioxidant defense systems. Mechanobiological studies of AgNPs in cancer metabolomics suggest that AgNPs may be promising tools that can be exploited to develop more robust and effective adaptive anticancer therapies. Herein, we present a proof-of-concept review for AgNPs-based proteogenomics and chemical metabolomics from various tumor cells with the help of several technologies, suggesting their promising use as drug carriers for cancer therapy.
Collapse
Affiliation(s)
- Ganesan Raja
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea;
| | - Yoon-Kwan Jang
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Jung-Soo Suh
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Heon-Su Kim
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Sang Hyun Ahn
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Tae-Jin Kim
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea;
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
- Institute of Systems Biology, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
27
|
Kämpfer AAM, Urbán P, La Spina R, Jiménez IO, Kanase N, Stone V, Kinsner-Ovaskainen A. Ongoing inflammation enhances the toxicity of engineered nanomaterials: Application of an in vitro co-culture model of the healthy and inflamed intestine. Toxicol In Vitro 2020; 63:104738. [PMID: 31760064 PMCID: PMC6961208 DOI: 10.1016/j.tiv.2019.104738] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Chronic inflammatory conditions can negatively impact intestinal barrier function and affect the epithelium's interaction with nano-sized materials. We demonstrate the application of a Caco-2/THP-1 co-culture mimicking the intestine in healthy (i.e. stable) or inflamed state in nanotoxicological research. The co-cultures were exposed to non-toxic concentrations of silver nanoparticles (AgNPs) or silver nitrate (AgNO3) for 24 h. The barrier integrity and cytokine release as well as necrotic and apoptotic cell death were investigated. AgNPs and AgNO3 most strongly affected the inflamed co-culture. Higher concentrations of AgNPs induced a significant increase in barrier integrity in the inflamed but not the stable co-culture. Necrotic and apoptotic cell death was detected in both conditions but were significantly more pronounced in the inflamed condition. The exposure to AgNO3 affected barrier integrity in all experimental set-ups, but caused nuclear condensation only in the Caco-2 monoculture and the inflamed co-culture. AgNPs reduced the release of monocyte chemoattractant protein-1 in the stable model. Clear differences were observed in the effects of AgNPs and AgNO3 in relation to the model's health status. The results suggest an increased vulnerability of the inflamed epithelial barrier towards AgNPs underlining the importance to consider the intestinal health status in the safety assessment of nanomaterials.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- European Commission, Joint Research Centre (JRC), Ispra, Italy; Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Patricia Urbán
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Nilesh Kanase
- Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Vicki Stone
- Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | | |
Collapse
|
28
|
Marimuthu S, Antonisamy AJ, Malayandi S, Rajendran K, Tsai PC, Pugazhendhi A, Ponnusamy VK. Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111823. [PMID: 32120184 DOI: 10.1016/j.jphotobiol.2020.111823] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/05/2020] [Accepted: 02/16/2020] [Indexed: 01/02/2023]
Abstract
The current scenario of water resources shows the dominance of pollution caused by the draining of industrial effluents. The polluted waters have resulted in severe health and environmental hazards urging for a suitable alternative to resolve the implications. Various physical and chemical treatment steps currently in use for dye effluent treatment are more time consuming, cost-intensive, and less effective. Alternatively, nanoparticles due to their excellent surface properties and chemical reactivity have emerged as a better solution for dye removal and degradation. In this regard, the potential of silver nanoparticles in dye effluent treatment was greatly explored. Efforts were taken to unravel the kinetics and statistical optimization of the treatment conditions for the efficient removal of dyes. In addition, the role of silver nanocomposites has also experimented with colossal success. On the contrary, studies have also recognized the mechanisms of silver nanoparticle-mediated toxicity even at deficient concentrations and their deleterious biological effects when present in treated water. Hence, the fate of the silver nanoparticles released into the treated water and sludge, contaminating the soil, aquatic environment, and underground water is of significant concern. This review summarizes the current state of knowledge regarding the use of silver nanoparticles and silver-based nanocomposites in effluent treatment and comprehends the recent research on mitigation of silver nanoparticle-induced toxicity.
Collapse
Affiliation(s)
- Sivasankari Marimuthu
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi 626 005, Tamil Nadu, India
| | - Arul Jayanthi Antonisamy
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi 626 005, Tamil Nadu, India
| | - Sankar Malayandi
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi 626 005, Tamil Nadu, India
| | - Karthikeyan Rajendran
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi 626 005, Tamil Nadu, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan.
| |
Collapse
|
29
|
Polet M, Laloux L, Cambier S, Ziebel J, Gutleb AC, Schneider YJ. Soluble silver ions from silver nanoparticles induce a polarised secretion of interleukin-8 in differentiated Caco-2 cells. Toxicol Lett 2020; 325:14-24. [PMID: 32062016 DOI: 10.1016/j.toxlet.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
Because of their antimicrobial properties, silver nanoparticles are increasingly incorporated in food-related and hygiene products, which thereby could lead to their ingestion. Although their cytotoxicity mediated by oxidative stress has been largely studied, their effects on inflammation remain controversial. Moreover, the involvement of silver ions (originating from Ag0 oxidation) in their mode of action is still unclear. In this context, the present study aims at assessing the impact of silver nanoparticles on the secretion of the pro-inflammatory chemokine interleukin-8 by Caco-2 cells forming an in vitro model of the intestinal mucosal barrier. Silver nanoparticles induced a vectorized secretion of interleukin-8 towards the apical compartment, which is found in the medium 21 h after the incubation. This secretion seems mediated by Nrf2 signalling pathway that orchestrates cellular defense against oxidative stress. The soluble silver fraction of silver nanoparticles suspensions led to a similar amount of secreted interleukin-8 than silver nanoparticles, suggesting an involvement of silver ions in this interleukin-8 secretion.
Collapse
Affiliation(s)
- Madeleine Polet
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Laurie Laloux
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | - Johanna Ziebel
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | - Yves-Jacques Schneider
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium.
| |
Collapse
|
30
|
Bio-Mediated Synthesis and Characterisation of Silver Nanocarrier, and Its Potent Anticancer Action. NANOMATERIALS 2019; 9:nano9101423. [PMID: 31597260 PMCID: PMC6835987 DOI: 10.3390/nano9101423] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 12/17/2022]
Abstract
Discovery of a potent drug nanocarrier is crucial for cancer therapy in which drugs often face challenges in penetrating efficiently into solid tumours. Here, biosynthesis of silver nanoparticles (AgNPs) using a waste material, Garcinia mangostana (GM) fruit peel extract is demonstrated. The best condition for AgNPs synthesis was with 0.5 g of peel extract, 7.5 mM silver nitrate at 45 °C, ~pH 4 for 16 h. The synthesized AgNPs were spherical and 32.7 ± 5.7 nm in size. To test its efficiency to be used as drug carrier, plant-based drug, protocatechuic acid (PCA) was used as a test drug. AgNPs loaded with PCA (AgPCA) resulted in 80% of inhibition at 15.6 µg/mL as compared to AgNPs which only killed 5% of HCT116 colorectal cells at same concentration. The IC50 of AgNPs and AgPCA for HCT116 were 40.2 and 10.7 µg/mL, respectively. At 15.6 µg/mL, AgPCA was not toxic to the tested colon normal cells, CCD112. Ag-based drug carrier could also potentially reduce the toxicity of loaded drug as the IC50 of PCA alone (148.1 µg/mL) was higher than IC50 of AgPCA (10.7 µg/mL) against HCT116. Further, 24-h treatment of 15.6 µg/mL AgPCA resulted in loss of membrane potential in the mitochondria of HCT116 cells and increased level of reaction oxygen species (ROS). These could be the cellular killing mechanisms of AgPCA. Collectively, our findings show the synergistic anticancer activity of AgNPs and PCA, and its potential to be used as a potent anticancer drug nanocarrier.
Collapse
|
31
|
Ghojavand S, Bagheri F, Mesrian Tanha H. Integrative meta-analysis of publically available microarray datasets of several epithelial cell lines identifies biological processes affected by silver nanoparticles exposure. Comp Biochem Physiol C Toxicol Pharmacol 2019; 216:67-74. [PMID: 30414479 DOI: 10.1016/j.cbpc.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 01/15/2023]
Abstract
The present study aimed to identify differentially expressed genes (DEGs) under silver nanoparticle (AgNPs) treatment. We used a meta-analysis approach to integrate four publicly available microarray datasets, containing control and epithelium samples treated by either AgNPs- or Ag ions. The Fisher's method combined p-values of studies. Post hoc analyses including protein-protein interaction (PPI) and the overrepresentation test were conducted. Analytical results identified 1652 DEGs associated with AgNPs exposure. The most significant up-regulated genes, including MT1H, MT1X, and MT2A were metallothionein family members. The most significant down-regulated gene, TM4SF5, is a novel biomarker for AgNPs exposure. The PPI network analysis revealed that a member of the heat shock protein family, HSP90AA1, is the top up-regulated "hub" gene. Up-regulation of heat shock proteins and metallothionein genes is part of a cellular response to oxidative stress induced by AgNPs treatment. Interestingly, AgNPs may interact negatively with blood coagulation and amino acid metabolism systems.
Collapse
Affiliation(s)
- Solmaz Ghojavand
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Fatemeh Bagheri
- Biochemistry Division, Department of Biology, Faculty of Science, Payame Noor University of Taft, Yazd, Iran
| | - Hamzeh Mesrian Tanha
- Division of Cell and Molecular Biology, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
32
|
Chen Z, Zhou D, Wang Y, Zhao L, Hu G, Liu J, Feng H, Long C, Yan T, Zhou S, Jia G. Combined effect of titanium dioxide nanoparticles and glucose on the cardiovascular system in young rats after oral administration. J Appl Toxicol 2018; 39:590-602. [PMID: 30427543 DOI: 10.1002/jat.3750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have already been used as food additive in various products and are usually consumed with a considerable amount of sugar. Oral consumption of TiO2 NPs poses concerning health risks; however, research on the combined effect of ingested TiO2 NPs and glucose is limited. We examined young Sprague-Dawley rats administrated TiO2 NPs orally at doses of 0, 2, 10 and 50 mg/kg body weight per day with and without 1.8 g/kg body weight glucose for 30 and 90 days. Heart rate, systolic and diastolic blood pressure, blood biochemical parameters and histopathology of cardiac tissues was assessed to quantify cardiovascular damage. The results showed that oral exposure to TiO2 NPs and high doses of glucose both could induce cardiovascular injuries. The toxic effects were dose-, time- and gender-dependent. The interaction effects between oral-exposed TiO2 NPs and glucose existed and revealed to be antagonism in most of the biological parameters. However, toxic effects of the high-dose glucose seemed to be more severe than TiO2 NPs and the interaction of TiO2 NPs with glucose. These results suggest that it may be more important to control the sugar intake than TiO2 NPs for protecting the health of TiO2 NP consumers.
Collapse
Affiliation(s)
- Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Di Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Yun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Lin Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Guiping Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiaxing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Huimin Feng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Changmao Long
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Tenglong Yan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shupei Zhou
- Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing, 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
33
|
Rezaei A, Farzinpour A, Vaziry A, Jalili A. Effects of Silver Nanoparticles on Hematological Parameters and Hepatorenal Functions in Laying Japanese Quails. Biol Trace Elem Res 2018; 185:475-485. [PMID: 29450680 DOI: 10.1007/s12011-018-1267-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/06/2018] [Indexed: 01/22/2023]
Abstract
Silver nanoparticles (AgNPs) have recently emerged as a powerful agents for disinfection in the poultry industry. AgNPs are capable of epithelial barriers passing from the route of exposure to the vital organs and cells. This study evaluated the effects of AgNPs on organs weights, blood biochemical, hematological, and coagulation parameters, antioxidant enzyme activities, and histopathological changes and silver concentrations of liver and kidney tissues in laying Japanese quails after exposure to the nanoparticles. The layer quails were randomly assigned to 4 groups, consisting of six replicates, three quails each. The treatments included 0, 4, 8, and 12 mg/L of AgNPs in daily drinking water for 30 weeks. AgNPs decreased the relative weight of liver, ileum and large intestine (P < 0.05). Administration of AgNPs elevated plasma fibrinogen while decreased serum aspartate aminotransferase activity (P < 0.05). The antioxidant status of the liver showed that malondialdehyde level, an end product of lipid peroxidation, was higher (P < 0.05) and catalase activity was lower (P < 0.05) in the quails exposed to AgNPs. The accumulation of silver in the liver and kidney tissues were increased in a dose-dependent manner after exposure to AgNPs (P < 0.05). Histopathological findings showed reduced lipid vacuolization of hepatocytes in the 12 mg/L AgNPs treatment. In conclusion, the results indicated that AgNPs administration to drinking water can lead to oxidative stress and liver damage in laying quails which may be a predisposing for liver dysfunction.
Collapse
Affiliation(s)
- Ako Rezaei
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 661715175, Iran
| | - Amjad Farzinpour
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 661715175, Iran.
| | - Asaad Vaziry
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 661715175, Iran
| | - Ali Jalili
- Department of Immunology & Hematology, Kurdistan University of Medical Sciences, Sanandaj, 6618634683, Iran
| |
Collapse
|
34
|
Vila L, García-Rodríguez A, Cortés C, Marcos R, Hernández A. Assessing the effects of silver nanoparticles on monolayers of differentiated Caco-2 cells, as a model of intestinal barrier. Food Chem Toxicol 2018; 116:1-10. [DOI: 10.1016/j.fct.2018.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
|
35
|
Sinis SI, Hatzoglou C, Gourgoulianis KI, Zarogiannis SG. Carbon Nanotubes and Other Engineered Nanoparticles Induced Pathophysiology on Mesothelial Cells and Mesothelial Membranes. Front Physiol 2018; 9:295. [PMID: 29651248 PMCID: PMC5884948 DOI: 10.3389/fphys.2018.00295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have great potential for numerous applications due to their unique physicochemical properties. However, concerns have been raised that they may induce deleterious effects on biological systems. There is accumulating evidence that, like asbestos, inhaled nanomaterials of >5 μm and high aspect ratio (3:1), particularly rod-like carbon nanotubes, may inflict pleural disease including mesothelioma. Additionally, a recent set of case reports suggests that inhalation of polyacrylate/nanosilica could in part be associated with inflammation and fibrosis of the pleura of factory workers. However, the adverse outcomes of nanoparticle exposure to mesothelial tissues are still largely unexplored. In that context, the present review aims to provide an overview of the relevant pathophysiological implications involving toxicological studies describing effects of engineered nanoparticles on mesothelial cells and membranes. In vitro studies primarily emphasize on simulating cellular uptake and toxicity of nanotubes on benign or malignant cell lines. On the other hand, in vivo studies focus on illustrating endpoints of serosal pathology in rodent animal models. From a molecular aspect, some nanoparticle categories are shown to be cytotoxic and genotoxic after acute treatment, whereas chronic incubation may lead to malignant-like transformation. At an organism level, a number of fibrous shaped nanotubes are related with features of chronic inflammation and MWCNT-7 is the only type to consistently inflict mesothelioma.
Collapse
Affiliation(s)
- Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
36
|
Juling S, Böhmert L, Lichtenstein D, Oberemm A, Creutzenberg O, Thünemann AF, Braeuning A, Lampen A. Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats. Food Chem Toxicol 2018; 113:255-266. [PMID: 29408364 DOI: 10.1016/j.fct.2018.01.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 01/09/2023]
Abstract
The presence of nano-scaled particles in food and food-related products has drawn attention to the oral uptake of nanoparticles and their interactions with biological systems. In the present study, we used a toxicoproteomics approach to allow for the untargeted experimental identification and comparative analysis of cellular responses in rat liver after repeated-dose treatment with silver nanoparticles, ions, and the coating matrix used for particle stabilization. The proteomic analysis revealed treatment-related effects caused by exposure to silver in particulate and ionic form. Both silver species induced similar patterns of signaling and metabolic alterations. Silver-induced cellular alterations comprised, amongst others, proteins involved in metal homeostasis, oxidative stress response, and energy metabolism. However, we discovered that secondary nano-scaled structures were formed from ionic silver. Furthermore, also the coating matrix alone gave rise to the formation of nano-scaled particles. The present data confirm, complement, and extend previous knowledge on silver toxicity in rodent liver by providing a comprehensive proteomic data set. The observation of secondary particle formation from non-particle controls underlines the difficulties in separating particle-, ion-, and matrix coating-related effects in biological systems. Awareness of this issue will support proper evaluation of nanotoxicology-related data in the future.
Collapse
Affiliation(s)
- Sabine Juling
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Linda Böhmert
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Dajana Lichtenstein
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Axel Oberemm
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Otto Creutzenberg
- ITEM, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs Str. 1, 30623 Hannover, Germany
| | - Andreas F Thünemann
- BAM, German Federal Institute for Materials Research and Testing, Unter Den Eichen 87, 12205 Berlin, Germany
| | - Albert Braeuning
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Alfonso Lampen
- BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
37
|
Bouwmeester H, van der Zande M, Jepson MA. Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1481. [PMID: 28548289 PMCID: PMC5810149 DOI: 10.1002/wnan.1481] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/26/2022]
Abstract
Ingestion of engineered nanomaterials is inevitable due to their addition to food and prevalence in food packaging and domestic products such as toothpaste and sun cream. In the absence of robust dosimetry and particokinetic data, it is currently challenging to accurately assess the potential toxicity of food-borne nanomaterials. Herein, we review current understanding of gastrointestinal uptake mechanisms, consider some data on the potential for toxicity of the most commonly encountered classes of food-borne nanomaterials (including TiO2 , SiO2, ZnO, and Ag nanoparticles), and discuss the potential impact of the luminal environment on nanoparticle properties and toxicity. Much of our current understanding of gastrointestinal nanotoxicology is derived from increasingly sophisticated epithelial models that augment in vivo studies. In addition to considering the direct effects of food-borne nanomaterials on gastrointestinal tissues, including the potential role of chronic nanoparticle exposure in development of inflammatory diseases, we also discuss the potential for food-borne nanomaterials to disturb the normal balance of microbiota within the gastrointestinal tract. The latter possibility warrants close attention given the increasing awareness of the critical role of microbiota in human health and the known impact of some food-borne nanomaterials on bacterial viability. WIREs Nanomed Nanobiotechnol 2018, 10:e1481. doi: 10.1002/wnan.1481 This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Hans Bouwmeester
- Division of ToxicologyWageningen University and ResearchWageningenThe Netherlands
- RIKILT ‐ Wageningen University and ResearchWageningenThe Netherlands
| | | | | |
Collapse
|
38
|
Juling S, Niedzwiecka A, Böhmert L, Lichtenstein D, Selve S, Braeuning A, Thünemann AF, Krause E, Lampen A. Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects. J Proteome Res 2017; 16:4020-4034. [PMID: 28929768 DOI: 10.1021/acs.jproteome.7b00412] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment.
Collapse
Affiliation(s)
- Sabine Juling
- BfR, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Alicia Niedzwiecka
- BfR, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Linda Böhmert
- BfR, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Dajana Lichtenstein
- BfR, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Sören Selve
- Technical University Berlin, ZE Electronmicroscopy , Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Albert Braeuning
- BfR, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Andreas F Thünemann
- BAM, German Federal Institute for Materials Research and Testing , Unter den Eichen 87, 12205 Berlin, Germany
| | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology , Robert-Roessle Str. 10, 13125 Berlin, Germany
| | - Alfonso Lampen
- BfR, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
39
|
Abstract
The high success of silver nanoparticles (AgNPs), mainly associated with their proved antimicrobial properties, has led to an increasing spread in our close environment. Although many studies have been carried out to detect potential toxicity of AgNPs, most of them have been developed under unrealistic exposure conditions. In terms of human risk, the evaluation of long-term exposures to subtoxic doses of NPs remains a challenge. Here, we have determined different transformation-related end points under a scenario of 6 weeks long-term exposure to low noncytotoxic AgNPs concentrations (0.5 and 1 μg/mL) in Caco-2 cells. A significant uptake of AgNPs was demonstrated by using confocal microscopy showing a high presence of AgNPs in both the cytoplasm and the nucleus. As for the assayed parameters of cell transformation such as ability to growth without requiring adherence to a surface (soft-agar assay), the secretion of extracellular matrix metalloproteinase to the medium (zymography), migration capacity and ability of the secretome of exposed cells to promote tumor growth, significant effects were detected in all cases, with the exception of the extracellular matrix metalloproteinases (MMP2 and MMP9) secretion. Our results point out the potential carcinogenic risk associated with AgNPs exposure under long-term exposure conditions, as well as the importance of using realistic exposure scenarios to test nanomaterials.
Collapse
Affiliation(s)
- Laura Vila
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia , Facultat de Biociències, Universitat Autònoma de Barcelona , Bellaterra , Spain
| | - Ricard Marcos
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia , Facultat de Biociències, Universitat Autònoma de Barcelona , Bellaterra , Spain.,b CIBER Epidemiología y Salud Pública , ISCIII , Madrid , Spain
| | - Alba Hernández
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia , Facultat de Biociències, Universitat Autònoma de Barcelona , Bellaterra , Spain.,b CIBER Epidemiología y Salud Pública , ISCIII , Madrid , Spain
| |
Collapse
|
40
|
Müller L, Steiner SK, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B, Latzin P. Exposure to silver nanoparticles affects viability and function of natural killer cells, mostly via the release of ions. Cell Biol Toxicol 2017; 34:167-176. [PMID: 28721573 DOI: 10.1007/s10565-017-9403-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 12/28/2022]
Abstract
Natural killer (NK) cells play a crucial role in linking innate and adaptive immune responses, especially during viral infections and tumor surveillance. They have two major effector functions: the killing of stressed/abnormal cells and the release of cytokines. Their activity is regulated via inhibitory and activating surface receptors. At the same time that the production and use of engineered nanoparticles is steadily increasing, the risk for exposure to silver nanoparticles (AgNPs) from consumer products or biomedical applications is growing. Given this, we assessed the effects of 20-nm big AgNPs on NK cells, which represent an important part of the immune system. Our study involved overnight exposure of human blood NK cells to different concentrations of AgNPs, and silver (Ag) ion controls, and analyzing them for viability, surface receptor expression, intracellular markers, cytokine release, and killing potential. Exposure to AgNPs, but not to Ag ion controls, reduced the viability and the cytotoxic potential after polyriboinosinic-polyribocytidylic acid stimulation of NK cells and increased the expression of the inhibitory receptor CD159a. Exposure to AgNPs and Ag ion controls reduced the expression of the activating receptors CD335 and of CD16 and increased the expression of the activating receptor CD314. Overall, exposure to AgNPs changes NK cells' function and phenotype and may present a risk for modulating human immune responses, which should be further investigated.
Collapse
Affiliation(s)
- Loretta Müller
- University Children's Hospital Basel, Spitalstrasse 33, 4056, Basel, Switzerland.
| | - Selina K Steiner
- University Children's Hospital Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | | | - Philipp Latzin
- University Children's Hospital Basel, Spitalstrasse 33, 4056, Basel, Switzerland.,Pediatric Respiratory Medicine, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
41
|
Mercier-Bonin M, Despax B, Raynaud P, Houdeau E, Thomas M. Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles. Crit Rev Food Sci Nutr 2017; 58:1023-1032. [PMID: 27740849 DOI: 10.1080/10408398.2016.1243088] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the growing use of nanotechnology in many common consumer products, including foods, evaluation of the consequences of chronic exposure to nanoparticles in humans has become a major public health issue. The oral route of exposure has been poorly explored, despite the presence of a fraction of nanosized particles in certain food additives/supplements and the incorporation of such particles into packaging in contact with foods. After their ingestion, these nanoparticles pass through the digestive tract, where they may undergo physicochemical transformations, with consequences for the luminal environment, before crossing the epithelial barrier to reach the systemic compartment. In this review, we consider two examples, nanosilver and nanotitanium dioxide. Despite the specific features of these particles and the differences between them, both display a close relationship between physicochemical reactivity and bioavailability/biopersistence in the gastrointestinal tract. Few studies have focused on the interactions of nanoparticles of silver or titanium dioxide with the microbiota and mucus. However, the microbiota and mucus play key roles in intestinal homeostasis and host health and are undoubtedly involved in controlling the distribution of nanoparticles in the systemic compartment.
Collapse
Affiliation(s)
- Muriel Mercier-Bonin
- a Toxalim (Research Centre in Food Toxicology) , Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse , France , France
| | - Bernard Despax
- b LAPLACE, Université de Toulouse, CNRS, INPT, UPS , Toulouse cedex 9 , France
| | - Patrice Raynaud
- b LAPLACE, Université de Toulouse, CNRS, INPT, UPS , Toulouse cedex 9 , France
| | - Eric Houdeau
- a Toxalim (Research Centre in Food Toxicology) , Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse , France , France
| | - Muriel Thomas
- c Micalis Institute, INRA, AgroParisTech , Université Paris-Saclay , France
| |
Collapse
|
42
|
Go MR, Bae SH, Kim HJ, Yu J, Choi SJ. Interactions between Food Additive Silica Nanoparticles and Food Matrices. Front Microbiol 2017. [PMID: 28638373 PMCID: PMC5461366 DOI: 10.3389/fmicb.2017.01013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles (NPs) have been widely utilized in the food industry as additives with their beneficial characteristics, such as improving sensory property and processing suitability, enhancing functional and nutritional values, and extending shelf-life of foods. Silica is used as an anti-caking agent to improve flow property of powered ingredients and as a carrier for flavors or active compounds in food. Along with the rapid development of nanotechnology, the sizes of silica fall into nanoscale, thereby raising concerns about the potential toxicity of nano-sized silica materials. There have been a number of studies carried out to investigate possible adverse effects of NPs on the gastrointestinal tract. The interactions between NPs and surrounding food matrices should be also taken into account since the interactions can affect their bioavailability, efficacy, and toxicity. In the present study, we investigated the interactions between food additive silica NPs and food matrices, such as saccharides, proteins, lipids, and minerals. Quantitative analysis was performed to determine food component-NP corona using HPLC, fluorescence quenching, GC-MS, and ICP-AES. The results demonstrate that zeta potential and hydrodynamic radius of silica NPs changed in the presence of all food matrices, but their solubility was not affected. However, quantitative analysis on the interactions revealed that a small portion of food matrices interacted with silica NPs and the interactions were highly dependent on the type of food component. Moreover, minor nutrients could also affect the interactions, as evidenced by higher NP interaction with honey rather than with a simple sugar mixture containing an equivalent amount of fructose, glucose, sucrose, and maltose. These findings provide fundamental information to extend our understanding about the interactions between silica NPs and food components and to predict the interaction effect on the safety aspects of food-grade NPs.
Collapse
Affiliation(s)
- Mi-Ran Go
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's UniversitySeoul, South Korea
| | - Song-Hwa Bae
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's UniversitySeoul, South Korea
| | - Hyeon-Jin Kim
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's UniversitySeoul, South Korea
| | - Jin Yu
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's UniversitySeoul, South Korea
| | - Soo-Jin Choi
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's UniversitySeoul, South Korea
| |
Collapse
|
43
|
Wang L, Wu H, Wang L, Zhang H, Lu J, Liang Z, Liu T. Asporin promotes pancreatic cancer cell invasion and migration by regulating the epithelial-to-mesenchymal transition (EMT) through both autocrine and paracrine mechanisms. Cancer Lett 2017; 398:24-36. [PMID: 28400334 DOI: 10.1016/j.canlet.2017.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/13/2017] [Accepted: 04/01/2017] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is histopathologically characterized by excessive desmoplasia induced by pancreatic stellate cells (PSCs). Asporin, an extracellular matrix (ECM) protein, is highly expressed in cancer-associated fibroblasts (CAFs). Asporin expression in PSCs and its roles in PSC-pancreatic cancer cell (PCC) interaction remain unclear. The present study firstly showed that Asporin is highly expressed in activated PSCs and is involved in PSC-mediated invasion and migration of PCCs. Exogenous Asporin interacted with the transmembrane receptor CD44 on PCCs to activate NF-κB/p65 and promoted the epithelial-mesenchymal transition (EMT) in PCCs. Furthermore, AKT and ERK pathways participated in Asporin/CD44-induced NF-κB/p65 activation in pancreatic cancer. Asporin had similar effects on PCCs via an autocrine mechanism. Consistent with our in vitro experiments, we showed that Asporin in peritumoral stroma of pancreatic cancer tissues was associated with poor clinical outcome. In conclusion, this is the first study to show that Asporin promotes EMT, invasion, and migration of PCCs by activating CD44-AKT/ERK-NF-κB pathway in paracrine and autocrine manners. Moreover, our results indicate that Asporin may be a prognostic marker and suggest that targeting the tumor microenvironment represents a promising therapeutic strategy in pancreatic cancer.
Collapse
Affiliation(s)
- Lili Wang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huanwen Wu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li Wang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hui Zhang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Junliang Lu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhiyong Liang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Tonghua Liu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
44
|
van der Zande M, Undas AK, Kramer E, Monopoli MP, Peters RJ, Garry D, Antunes Fernandes EC, Hendriksen PJ, Marvin HJP, Peijnenburg AA, Bouwmeester H. Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology 2016; 10:1431-1441. [PMID: 27597447 DOI: 10.1080/17435390.2016.1225132] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The mode of action of silver nanoparticles (AgNPs) is suggested to be exerted through both Ag+ and AgNP dependent mechanisms. Ingestion is one of the major NP exposure routes, and potential effects are often studied using Caco-2 cells, a well-established model for the gut epithelium. MCF-7 cells are epithelial breast cancer cells with extensive well-characterized toxicogenomics profiles. In the present study, we aimed to gain a deeper understanding of the cellular molecular responses in Caco-2 and MCF-7 cells after AgNP exposure in order to evaluate whether epithelial cells derived from different tissues demonstrated similar responses. These insights could possibly reduce the size of cell panels for NP hazard identification screening purposes. AgNPs of 20, 30, 60, and 110 nm, and AgNO3 were exposed for 6 h and 24 h. AgNPs were shown to be taken up and dissolve intracellularly. Compared with MCF-7 cells, Caco-2 cells showed a higher sensitivity to AgNPs, slower gene expression kinetics and absence of NP size-dependent responses. However, on a molecular level, no significant differences were observed between the two cell types. Transcriptomic analysis showed that Ag(NP) exposure caused (oxidative) stress responses, possibly leading to cell death in both cell lines. There was no indication for effects specifically induced by AgNPs. Responses to AgNPs appeared to be induced by silver ions released from the AgNPs. In conclusion, differences in mRNA responses to AgNPs between Caco-2 and MCF-7 cells were mainly related to timing and magnitude, but not to a different underlying mechanism.
Collapse
Affiliation(s)
- Meike van der Zande
- a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and
| | - Anna K Undas
- a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and
| | - Evelien Kramer
- a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and
| | | | - Ruud J Peters
- a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and
| | - David Garry
- b University College Dublin , Dublin , Ireland
| | | | - Peter J Hendriksen
- a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and
| | - Hans J P Marvin
- a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and
| | - Ad A Peijnenburg
- a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and
| | - Hans Bouwmeester
- a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and
| |
Collapse
|
45
|
Cao Y, Li J, Liu F, Li X, Jiang Q, Cheng S, Gu Y. Consideration of interaction between nanoparticles and food components for the safety assessment of nanoparticles following oral exposure: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:206-210. [PMID: 27497726 DOI: 10.1016/j.etap.2016.07.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/14/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Nanoparticles (NPs) are increasingly used in food, and the toxicity of NPs following oral exposure should be carefully assessed to ensure the safety. Indeed, a number of studies have shown that oral exposure to NPs, especially solid NPs, may induce toxicological responses both in vivo and in vitro. However, most of the toxicological studies only used NPs for oral exposure, and the potential interaction between NPs and food components in real life was ignored. In this review, we summarized the relevant studies and suggested that the interaction between NPs and food components may exist by that 1) NPs directly affect nutrients absorption through disruption of microvilli or alteration in expression of nutrient transporter genes; 2) food components directly affect NP absorption through physico-chemical modification; 3) the presence of food components affect oxidative stress induced by NPs. All of these interactions may eventually enhance or reduce the toxicological responses induced by NPs following oral exposure. Studies only using NPs for oral exposure may therefore lead to misinterpretation and underestimation/overestimation of toxicity of NPs, and it is necessary to assess the synergistic effects of NPs in a complex system when considering the safety of NPs used in food.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Fang Liu
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Xiyue Li
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Qin Jiang
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Shanshan Cheng
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Yuxiu Gu
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| |
Collapse
|
46
|
van den Brule S, Ambroise J, Lecloux H, Levard C, Soulas R, De Temmerman PJ, Palmai-Pallag M, Marbaix E, Lison D. Dietary silver nanoparticles can disturb the gut microbiota in mice. Part Fibre Toxicol 2016; 13:38. [PMID: 27393559 PMCID: PMC4939013 DOI: 10.1186/s12989-016-0149-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/21/2016] [Indexed: 02/08/2023] Open
Abstract
Background Humans are increasingly exposed via the diet to Ag nanoparticles (NP) used in the food industry. Because of their anti-bacterial activity, ingested Ag NP might disturb the gut microbiota that is essential for local and systemic homeostasis. We explored here the possible impact of dietary Ag NP on the gut microbiota in mice at doses relevant for currently estimated human intake. Methods Mice were orally exposed to food (pellets) supplemented with increasing doses of Ag NP (0, 46, 460 or 4600 ppb) during 28 d. Body weight, systemic inflammation and gut integrity were investigated to determine overall toxicity, and feces DNA collected from the gut were analyzed by Next Generation Sequencing (NGS) to assess the effect of Ag NP on the bacterial population. Ag NP were characterized alone and in the supplemented pellets by scanning transmission electron microscopy (STEM) and energy dispersive X-ray analysis (EDX). Results No overall toxicity was recorded in mice exposed to Ag NP. Ag NP disturbed bacterial evenness (α-diversity) and populations (β-diversity) in a dose-dependent manner. Ag NP increased the ratio between Firmicutes (F) and Bacteroidetes (B) phyla. At the family level, Lachnospiraceae and the S24-7 family mainly accounted for the increase in Firmicutes and decrease in Bacteroidetes, respectively. Similar effects were not observed in mice identically exposed to the same batch of Ag NP-supplemented pellets aged during 4 or 8 months and the F/B ratio was less or not modified. Analysis of Ag NP-supplemented pellets showed that freshly prepared pellets released Ag ions faster than aged pellets. STEM-EDX analysis also showed that Ag sulfidation occurred in aged Ag NP-supplemented pellets. Conclusions Our data indicate that oral exposure to human relevant doses of Ag NP can induce microbial alterations in the gut. The bacterial disturbances recorded after Ag NP are similar to those reported in metabolic and inflammatory diseases, such as obesity. It also highlights that Ag NP aging in food, and more specifically sulfidation, can reduce the effects of Ag NP on the microbiota by limiting the release of toxic Ag ions. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0149-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sybille van den Brule
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue E. Mounier 52 - bte B1.52.12, 1200, Brussels, Belgium.
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Clos Chapelle-aux-champs 30 bte B1.30.24, 1200, Brussels, Belgium
| | - Hélène Lecloux
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue E. Mounier 52 - bte B1.52.12, 1200, Brussels, Belgium
| | - Clément Levard
- CEREGE, Aix Marseille Université, CNRS, IRD, UM34, UMR 7330, Europole de l'arbois - BP 80, 13545, Aix en Provence, France
| | - Romain Soulas
- CEA LITEN Grenoble, 17 Rue des Martyrs, 38054, GRENOBLE - CEDEX 9, France
| | - Pieter-Jan De Temmerman
- Electron Microscopy Unit, Veterinary and Agrochemical Research Centre (CODA-CERVA), Groeselenberg 99, 1180, Brussels, Belgium
| | - Mihaly Palmai-Pallag
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue E. Mounier 52 - bte B1.52.12, 1200, Brussels, Belgium
| | - Etienne Marbaix
- De Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 - bte B1.75.02, 1200, Brussels, Belgium
| | - Dominique Lison
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue E. Mounier 52 - bte B1.52.12, 1200, Brussels, Belgium
| |
Collapse
|
47
|
Costa PM, Fadeel B. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicol Appl Pharmacol 2015; 299:101-11. [PMID: 26721310 DOI: 10.1016/j.taap.2015.12.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
Abstract
Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global 'omics' approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Pedro M Costa
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|