1
|
Reynolds CA, Morrison SY. Effects of kefir fermented with or without 1% autolyzed yeast powder on dry matter intake, intestinal permeability, and rumen fermentation profile of Holstein calves. J Dairy Sci 2025; 108:5889-5903. [PMID: 40221031 DOI: 10.3168/jds.2024-26190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
Co-fermenting kefir with Saccharomyces cerevisiae has been shown to enhance the exopolysaccharides (EPS) produced by lactic acid bacteria during fermentation, which may further promote intestinal development in the calf. Four different concentrations (0%, 0.25%, 0.5%, and 1%) on a weight/weight basis (g/20 g kefir grain) of either dried, activated distillers yeast or autolyzed yeast powder were evaluated for EPS optimization in kefir, and inclusion of 1% autolyzed yeast powder resulted in the greatest EPS yield. In a randomized, complete block design, 81 Holstein heifers were enrolled at 3 d of age, blocked by birth weight, and randomized within block to receive either 125 mL of salable whole milk (CON), 125 mL of kefir (KEF), or 125 mL of kefir fermented with 1% autolyzed yeast powder (YAK) in milk replacer 1×/d until 28 d of age. Feed intake and health scores were recorded daily for each calf through 1-wk postweaning (63 d of age). Growth measurements were recorded weekly until 9 wk. Indigestible markers d-mannitol and Cr-EDTA were administered at 15, 29, and 50 d to a subset of calves (n = 36) and recovered in plasma and serum to measure intestinal permeability. Rumen fluid was collected from calves (n = 35) via gastric tube at 63 ± 2 d to measure pH and VFA concentrations, as well as serum BHB at 14, 28, 42, 56, and 63 d. Although health outcomes (diarrhea, respiratory illness, dehydration) were not affected by treatment, supplementation with YAK significantly improved starter DMI and BW in the preweaning period compared with CON and KEF, and postweaning DMI was significantly improved in both KEF and YAK compared with CON. Increased butyrate was observed in rumen fluid of calves fed YAK, although serum BHB was not affected. This work contributes to further understanding kefir as a promoter of gastrointestinal development in calves and the potential benefits of EPS in the developing ruminant.
Collapse
Affiliation(s)
- C A Reynolds
- The William H. Miner Agricultural Research Institute, Chazy, NY 12921
| | - S Y Morrison
- The William H. Miner Agricultural Research Institute, Chazy, NY 12921.
| |
Collapse
|
2
|
Xu H, Duan X, Wang Y, Geng W. Amelioration Effect of Lactobacillus kefiranofaciens ZW3 on Ovalbumin-Induced Allergic Symptoms in BALB/c Mice. Foods 2024; 14:16. [PMID: 39796306 PMCID: PMC11720023 DOI: 10.3390/foods14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Previous studies have shown that supplementation with specific probiotics can be used to alleviate allergy symptoms. The purpose of this study was to evaluate the anti-allergic effects of Lactobacillus kefiranofaciens ZW3 (ZW3) in ovalbumin (OVA)-induced allergic mice. The mice were divided into six groups: the food allergy group, positive group (Lactobacillus rhamnosus GG), low-dose ZW3 group, middle-dose ZW3 group, high-dose ZW3 group, and the control group involving healthy mice. BALB/c mice were intraperitoneally injected with OVA/complete Freund's adjuvant (CFA) for allergy sensitization. Probiotics were administered orally once every two days in the probiotic-treated groups. The allergic score, serum OVA-sIgE, body mass, thymus, and spleen indexes were detected on day 22, and the relative mRNA expression of inflammatory cytokines was detected via RT-qPCR. The results suggest that the body weight and thymus index returned to normal levels; allergy scores, serum OVA-sIgE, IL-4, IL-5, and IL-10 expression decreased; and IFN-γ and IL-2 increased significantly in the ZW3 group compared with the allergy group. Furthermore, ZW3 decreased Muribaculaceae and Ruminococcaceae abundance and increased Lachnospiraceae abundance in the intestinal flora. In summary, ZW3 induced anti-allergic effects by increasing Th1 cytokines and decreasing Th2 cytokines, which can remarkably ameliorate the symptoms of an ovalbumin-induced food allergy.
Collapse
Affiliation(s)
| | | | | | - Weitao Geng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (H.X.); (X.D.); (Y.W.)
| |
Collapse
|
3
|
Zapico A, Salazar N, Arboleya S, González del Rey C, Diaz E, Alonso A, Gueimonde M, de los Reyes-Gavilán CG, Gonzalez C, González S. Potential of Fiber and Probiotics to Fight Against the Effects of PhIP + DSS-Induced Carcinogenic Process of the Large Intestine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25161-25172. [PMID: 39470985 PMCID: PMC11565705 DOI: 10.1021/acs.jafc.4c07366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
We determined the in vivo counteracting effect of fiber and probiotic supplementation on colonic mucosal damage and alterations in gut microbiota caused by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) and sodium dextran sulfate (DSS). Male Fischer-344 rats were randomly divided into 4 groups: control (standard diet), PhIP + DSS group (standard diet + PhIP + DSS), fiber (fiber diet + PhIP + DSS), and probiotic (probiotic diet + PhIP + DSS). The intake of PhIP + DSS for 3 weeks induced colonic mucosal erosion, crypt loss, and inflammation, and the distal colon was more severely damaged. Fiber alleviated colonic mucosal damage by reducing crypt loss and inflammation, while the probiotic increased colon length. The intake of PhIP + DSS increased the fecal relative abundance of Clostridia UCG014 along the intervention, in contrast to the lower abundances of these taxa found after PhIP + DSS administration in the rats supplemented with probiotics or fiber. Fiber supplementation mitigated the histological damage caused by PhIP + DSS shifting the gut microbiota toward a reduction of pro-inflammatory taxa.
Collapse
Affiliation(s)
- Aida Zapico
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Nuria Salazar
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Silvia Arboleya
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Carmen González del Rey
- Anatomical
Pathology Service, Central University Hospital of Asturias (HUCA), Oviedo 33011, Spain
| | - Elena Diaz
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Ana Alonso
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Miguel Gueimonde
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Clara G. de los Reyes-Gavilán
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Celestino Gonzalez
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Sonia González
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| |
Collapse
|
4
|
González-Orozco BD, McGovern CJ, Barringer SA, Simons C, Jiménez-Flores R, Alvarez VB. Development of probiotic yogurt products incorporated with Lactobacillus kefiranofaciens OSU-BSGOA1 in mono- and coculture with Kluyveromyces marxianus. J Dairy Sci 2024; 107:7718-7733. [PMID: 38851574 DOI: 10.3168/jds.2024-24756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024]
Abstract
The bacterium Lactobacillus kefiranofaciens OSU-BDGOA1 and yeast Kluyveromyces marxianus bdgo-ym6 were previously isolated from kefir grains and have shown probiotic traits in mono- and coculture. This research evaluates the effect of introducing probiotic kefir microorganisms in monoculture and in coculture alongside yogurt starter cultures on the physicochemical and rheological properties, volatile flavor compounds, survival of the microorganisms during simulated digestion, and sensory attributes of the final fermented products. The incorporation of L. kefiranofaciens OSU-BDGOA1 in monoculture showed promising outcomes, resulting in a final product showing more solid-like characteristics and potentially improving the texture of the product. There was also a significant increase in the concentration of desirable volatile flavor compounds in the yogurt with the monoculture, particularly 2,3-butanedione, displaying a positive correlation with buttery flavor in the sensory analysis. The inclusion of L. kefiranofaciens in monoculture also promoted better sensory attributes and was significantly better than the yogurt with the coculture with the yeast, showing promising results for the incorporation of this probiotic bacterium into functional fermented dairy products.
Collapse
Affiliation(s)
| | - Chloe J McGovern
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Sheryl A Barringer
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Christopher Simons
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Valente B Alvarez
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
5
|
Qiu Y, Yan F, Yu H, Li H, Xia S, Zhang J, Zhu J. The protective effects of Kefir extract (KE) on intestinal damage in larval zebrafish induced by Oxytetracycline: Insights into intestinal function, morphology, and molecular mechanisms. Food Res Int 2024; 190:114642. [PMID: 38945628 DOI: 10.1016/j.foodres.2024.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
The antibiotic oxytetracycline (OTC) can be detected in contemporary natural aquatic environments and has been implicated in causing intestinal damage in humans exposed to OTC-contaminated food or water. The irreversible damage caused by high concentrations of OTC to the intestine suggests that treatment through dietary means could still be necessary. This study proved the effectiveness of kefir extract (KE) in reversing intestinal damage caused by oxytetracycline (OTC) exposure. Following a 24-hour KE treatment subsequent to OTC exposure from 3 to 8 days post-fertilization of zebrafish larvae, molecular-level and microbiomic assessments revealed significant improvements. These included reduced expression of proinflammatory factors (IL-8 and IL-1β), increased antioxidant levels, and reversed unhealthy distribution of intestinal microbiota. Furthermore, KE supplementation showed potential in enhancing intestinal motility in the experiment of Nile red staining and fluorescent microbead transit. However, histological analysis showed that this short-term treatment with KE only partially reversed the intestinal morphological changes induced by OTC, suggesting that a longer treatment period might be necessary for complete restoration.
Collapse
Affiliation(s)
- Yang Qiu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huilin Yu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Honghao Li
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shengyao Xia
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Zhu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
6
|
Abstract
Increasing research has been conducted on the role of probiotics in disease treatment. Kefir, a safe, low-cost probiotic fermented milk drink, has been investigated in many in vitro and animal studies, although parameters for human therapeutic dose or treatment time have not yet been determined. Here we perform a scoping review of clinical studies that have used kefir as a therapeutic agent, compiling the results for perspectives to support and direct further research. This review was based on Joanna Briggs Institute guidelines, including studies on the effects of kefir-fermented milk in humans. Using the term KEFIR, the main international databases were searched for studies published in English, Spanish or Portuguese until 9 March 2022. A total of 5835 articles were identified in the four databases, with forty-four eligible for analysis. The research areas were classified as metabolic syndrome and type 2 diabetes, gastrointestinal health/disorders, maternal/child health and paediatrics, dentistry, oncology, women's and geriatric health, and dermatology. The many study limitations hampered generalisation of the results. The small sample sizes, methodological variation and differences in kefir types, dosage and treatment duration prevented clear conclusions about its benefits for specific diseases. We suggest using a standard therapeutic dose of traditionally prepared kefir in millilitres according to body weight, making routine consumption more feasible. The studies showed that kefir is safe for people without serious illnesses.
Collapse
Affiliation(s)
- Milena Klippel Bessa
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, 90050-170, Porto Alegre, RS, Brazil
| | | | - Renan Rangel Bonamigo
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
8
|
Jin W, Ai H, Huang Q, Li C, He X, Jin Z, Zuo Y. Preclinical evidence of probiotics in ulcerative colitis: a systematic review and network meta-analysis. Front Pharmacol 2023; 14:1187911. [PMID: 37361217 PMCID: PMC10288114 DOI: 10.3389/fphar.2023.1187911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The imbalance of gastrointestinal microbial composition has been identified as the main factor of chronic inflammatory diseases. At present, probiotics have a beneficial effect on the microbial composition of the human gastrointestinal tract, but it is still controversial and the specific mechanism is unknown. The purpose of this network meta-analysis is to compare the mechanism of different probiotics on ulcerative colitis. PubMed, Embase, and Web of Science were searched till 16 November 2022. The SYRCLE risk bias assessment tool was used to assess the quality of the research studies. A total of 42 studies, 839 ulcerative colitis models, and 24 kinds of probiotics were finally included. The results showed that L. rhamnosus has the best effect in relieving weight loss and improving the Shannon index in the ulcerative colitis model. E. faecium has the best effect in reducing colon injury; L. reuteri has the best effect in reducing the DAI; L. acidophilus has the best effect in reducing the HIS index and increasing the expression of tight junction protein ZO-1; and L. coryniformis has the best effect in reducing the content of serum pro-inflammatory factor TNF-α. It indicated that probiotics can improve ulcerative colitis by improving histopathological manifestations, reducing inflammatory reaction, and repairing the mucosal barrier, and different probiotics showed different effects. However, considering the limitations of this study, preclinical studies that require more large samples and high-quality and more reliable and rigorous experimental designs and reports need to be conducted in the future. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/#record details, identifier CRD42022383383.
Collapse
Affiliation(s)
- Wenqin Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huangping Ai
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingqing Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuncai Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuling Zuo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Nascimento da Silva K, Fávero AG, Ribeiro W, Ferreira CM, Sartorelli P, Cardili L, Bogsan CS, Bertaglia Pereira JN, de Cássia Sinigaglia R, Cristina de Moraes Malinverni A, Ribeiro Paiotti AP, Miszputen SJ, Ambrogini-Júnior O. Effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Heliyon 2022; 9:e12707. [PMID: 36685418 PMCID: PMC9852935 DOI: 10.1016/j.heliyon.2022.e12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Background and aim The etiopathogenesis of inflammatory bowel disease (IBD) is associated with different factors such as genetic, infectious, immunological, and environmental, including modification of the gut microbiota. IBD's conventional pharmacological therapeutic approaches have become a challenge due to side effects, complications from prolonged use, and higher costs. Kefir fermented milk beverage is a functional food that has demonstrated multiple beneficial effects including anti-inflammatory and antioxidant activity. Alternative therapeutic strategies have been used for IBD as more natural products with low-cost and easy acquisition. The aim of this study is to evaluate the anti-inflammatory effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Methods We used 4 groups to perform this study: baseline control (BC), kefir control (KC), 5% untreated DSS-induced colitis (DSS), and 5% DSS-induced colitis treated with kefir (DSSK). The animals received fermented kefir milk beverage ad libitum for six days and the disease activity index was recorded daily. Colon samples were processed for Transmission Electron Microscopy and histopathological evaluation. We analyzed short fatty chain acids through the fecal sample using gas chromatography. Results Kefir supplementation was able to reduce the clinical activity index and inflammatory process evidenced by decreased neutrophil accumulation, decreased reticulum edema, and increased autophagosomes. Also, showed a trend to increase the levels of acetate and propionate. Conclusions Our results suggest that kefir fermented milk beverage may have an anti-inflammatory effect minimizing the intestinal damage of DSS-induced colitis.
Collapse
Affiliation(s)
- Karina Nascimento da Silva
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Aline Garnevi Fávero
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - William Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Patrícia Sartorelli
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Leonardo Cardili
- Laboratory of Experimental and Molecular Pathology, Department of Pathology - Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristina Stewart Bogsan
- Laboratory of Fermented Foods of the Faculty of Pharmaceutical Sciences – University of São Paulo
| | | | | | | | - Ana Paula Ribeiro Paiotti
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil,Corresponding author.
| | - Sender Jankiel Miszputen
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Orlando Ambrogini-Júnior
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| |
Collapse
|
10
|
Liu Y, Liu Q, Zhao J, Zhang H, Zhai Q, Chen W. Strain-specific regulative effects of Lactobacillus plantarum on intestinal barrier dysfunction are associated with their capsular polysaccharides. Int J Biol Macromol 2022; 222:1343-1352. [PMID: 36126811 DOI: 10.1016/j.ijbiomac.2022.09.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022]
Abstract
The intestinal barrier is integral to the host's defense, and disrupting its integrity contributes to gut and systemic diseases. Lactobacillus plantarum has been widely reported to exhibit a protective effect on the gut barrier. However, the strain-specific mechanism of this bacterium's function remains unclear. This study characterized the regulative effects of 55 L. plantarum strains on the intestinal barrier using TNF-α-induced Caco-2 cells and a dextran sulfate sodium-induced colitis animal model and found that the regulative effect is strain-specific. Comparative genomic analysis suggested that the ability of L. plantarum to regulate the intestinal barrier is exerted in part by genes encoding proteins associated with polysaccharide synthesis. This observation was verified using surface protein/capsular polysaccharides separation experiments. Structural analysis of capsular polysaccharides showed that molecular weight and mole ratios of monosaccharide compositions may play important roles in strain-specific protective effects on the gut barrier. This study identified different effects of L. plantarum strains on intestinal barrier dysfunction and proved that this regulative ability relies on the characteristic of the capsular polysaccharides of the strains. Thus, our data provided genetic targets and molecular for screening L. plantarum strains with the ability to protect the gut barrier, and suggested the capsular polysaccharides of L. plantarum may be explored as a potential functional food component against intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research, Institute Wuxi Branch, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Subspecies Classification and Comparative Genomic Analysis of Lactobacillus kefiranofaciens HL1 and M1 for Potential Niche-Specific Genes and Pathways. Microorganisms 2022; 10:microorganisms10081637. [PMID: 36014054 PMCID: PMC9415760 DOI: 10.3390/microorganisms10081637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Strains HL1 and M1, isolated from kefir grains, have been tentatively identified, based on their partial 16S rRNA gene sequences, as Lactobacillus kefiranofaciens. The two strains demonstrated different health benefits. Therefore, not only the genetic factors exerting diverse functionalities in different L. kefiranofaciens strains, but also the potential niche-specific genes and pathways among the L. kefiranofaciens strains, should be identified. (2) Methods: Phenotypic and genotypic approaches were employed to identify strains HL1 and M1 at the subspecies level. For the further characterization of the probiotic properties of both strains, comparative genomic analyses were used. (3) Results: Both strains were identified as L. kefiranofaciens subsp. kefirgranum. According to the COG function category, dTDP-rhamnose and rhamnose-containing glycans were specifically detected in the L. kefiranofaciens subsp. Kefirgranum genomes. Three unique genes (epsI, epsJ, and epsK) encoding glycosyltransferase in the EPS gene cluster, and the ImpB/MucB/SamB family protein encoding gene were found in HL1 and M1. The specific ability to degrade arginine via the ADI pathway was found in HL1. The presence of the complete glycogen metabolism (glg) operon in the L. kefiranofaciens strains suggested the importance of glycogen synthesis to enable colonization in kefir grains and extend survival under environmental stresses. (4) Conclusions: The obtained novel information on the potential genes and pathways for polysaccharide synthesis and other functionalities in our HL1 and M1 strains could be applied for further functionality predictions for potential probiotic screening.
Collapse
|
12
|
Culpepper T. The Effects of Kefir and Kefir Components on Immune and Metabolic Physiology in Pre-Clinical Studies: A Narrative Review. Cureus 2022; 14:e27768. [PMID: 36106262 PMCID: PMC9450431 DOI: 10.7759/cureus.27768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 02/01/2023] Open
Abstract
Kefir, a fermented beverage made from kefir grains, has gained immense popularity around the world due to its potential health-promoting properties. Kefir beverages are both marketed commercially and brewed privately by individuals. Both milk and sugar solutions can be used as substrates with various additives included based on consumer preference. Fermentation occurs via microorganisms including lactic acid bacteria, acetic acid bacteria, and yeasts, which are naturally present in kefir grains. Health-promoting effects of kefir are thought to occur through immune, gastrointestinal, and metabolic regulation. Both clinical trials and mechanistic studies in cell culture and animal models have explored these effects. Studies in vitro and in animals have shown the ability of kefir and kefir components to antagonize pathogens, reduce proinflammatory cytokine production, contribute to cytotoxicity of tumor cell lines and reduce tumor burden, and improve serum glycemic and lipid profiles. However, some data from clinical trials are conflicting, and the precise mechanisms by which kefir promotes well-being are not completely defined. This review summarizes the current body of evidence in both cell culture and animal models that provide insight into the mechanisms by which kefir beverages may protect consumers from enteric infections and improve immune and metabolic health. We believe that readers will gain knowledge helpful for both developing more targeted mechanistic studies and selecting informative outcomes when designing clinical studies.
Collapse
|
13
|
Zeng X, Jia H, Shi Y, Chen K, Wang Z, Gao Z, Yuan Y, Yue T. Lactobacillus kefiranofaciens JKSP109 and Saccharomyces cerevisiae JKSP39 isolated from Tibetan kefir grain co-alleviated AOM/DSS induced inflammation and colorectal carcinogenesis. Food Funct 2022; 13:6947-6961. [PMID: 35575226 DOI: 10.1039/d1fo02939h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the alleviative effects of Lactobacillus kefiranofaciens JKSP109 (LK) and Saccharomyces cerevisiae JKSP39 (SC) isolated from Tibetan kefir grain on colon inflammation and colorectal carcinogenesis. Azoxymethane (AOM) and dextran sulfate sodium (DSS) were used to establish a mouse model of colorectal cancer (CRC). The treatment group mice were administered with LK, SC, or the combination of LK and SC for five days per week from the day of receiving AOM. The composition of the gut microbiota was assessed using internal transcribed spacer 2 and 16S rRNA gene high-throughput sequencing. Furthermore, the biomarkers associated with gut barrier integrity, inflammation, regulators of cell proliferation, and apoptosis were evaluated. The results showed that the administration of LK, SC, and their combination increased the body weights and decreased the disease activity index (DAI) score and tumor multiplicity. As compared to the CRC model group, the three treatment groups positively regulated the gut microbiota. Meanwhile, the three treatments also enhanced the gut barrier, decreased the expression of proinflammatory cytokines and oncocyte proliferation indicators, and increased the expression of terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive tumor epithelial cells and content of short chain fatty acids in fecal samples. All these results indicated that the LK and SC alleviated the inflammation and colorectal carcinogenesis in AOM/DSS-induced CRC mouse models, and the majority of tested indexes in the combination group were superior to single strain groups.
Collapse
Affiliation(s)
- Xuejun Zeng
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yiheng Shi
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.,College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
14
|
Yilmaz B, Sharma H, Melekoglu E, Ozogul F. Recent developments in dairy kefir-derived lactic acid bacteria and their health benefits. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Dębińska A, Sozańska B. Fermented Food in Asthma and Respiratory Allergies—Chance or Failure? Nutrients 2022; 14:nu14071420. [PMID: 35406034 PMCID: PMC9002914 DOI: 10.3390/nu14071420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
In the last few decades, a dramatic increase in the global prevalence of allergic diseases and asthma was observed. It was hypothesized that diet may be an important immunomodulatory factor influencing susceptibility to allergic diseases. Fermented food, a natural source of living microorganisms and bioactive compounds, has been demonstrated to possess health-promoting potentials and seems to be a promising strategy to reduce the risk of various immune-related diseases, such as allergic diseases and asthma. The exact mechanisms by which allergic diseases and asthma can be alleviated or prevented by fermented food are not well understood; however, its potential to exert an effect through modulating the immune response and influencing the gut microbiota has been recently studied. In this review, we provide the current knowledge on the role of diet, including fermented foods, in preventing or treating allergic diseases and asthma.
Collapse
|
16
|
Ellatif SA, Abdel Razik ES, Abu-Serie MM, Mahfouz A, Shater AF, Saleh FM, Hassan MM, Alsanie WF, Altalhi A, Daigham GE, Mahfouz AY. Immunomodulatory Efficacy-Mediated Anti-HCV and Anti-HBV Potential of Kefir Grains; Unveiling the In Vitro Antibacterial, Antifungal, and Wound Healing Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27062016. [PMID: 35335377 PMCID: PMC8951848 DOI: 10.3390/molecules27062016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022]
Abstract
The utilization of fermented foods with health-promoting properties is becoming more popular around the world. Consequently, kefir, a fermented milk beverage made from kefir grains, was shown in numerous studies to be a probiotic product providing significant health benefits. Herein, we assessed the antibacterial and antifungal potential of kefir against a variety of pathogenic bacteria and fungi. This study also showed the effectiveness of kefir in healing wounds in human gastric epithelial cells (GES-1) by (80.78%) compared with control (55.75%) within 48 h. The quantitative polymerase chain reaction (qPCR) results of kefir-treated HCV- or HBV- infected cells found that 200 µg/mL of kefir can eliminate 92.36% of HCV and 75.71% of HBV relative to the untreated infected cells, whereas 800 µg/mL (the highest concentration) completely eradicated HCV and HBV. Moreover, the estimated IC50 values of kefir, at which HCV and HBV were eradicated by 50%, were 63.84 ± 5.81 µg/mL and 224.02 ± 14.36 µg/mL, correspondingly. Kefir can significantly suppress the elevation of TNF-α and upregulate IL-10 and INF-γ in both treated HCV- and HBV-infected cells. High-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) analysis of kefir revealed the presence of numerous active metabolites which mainly contribute to the antimicrobial, antiviral, and immunomodulatory activities. This study demonstrated, for the first time, the anti-HBV efficacy of kefir while also illustrating the immunomodulatory impact in the treated HBV-infected cells. Accordingly, kefir represents a potent antiviral agent against both viral hepatitis C and B, as well as having antimicrobial and wound healing potential.
Collapse
Affiliation(s)
- Sawsan Abd Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Elsayed S. Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Ahmed Mahfouz
- National Health Service Foundation Trust (NHS), Manchester University, Manchester M14 5RH, UK;
| | - Abdullah F. Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.M.H.); (A.A.)
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdullah Altalhi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.M.H.); (A.A.)
| | - Ghadir E. Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11651, Egypt;
| | - Amira Y. Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11651, Egypt;
- Correspondence:
| |
Collapse
|
17
|
González-Orozco BD, García-Cano I, Jiménez-Flores R, Alvárez VB. Invited review: Milk kefir microbiota—Direct and indirect antimicrobial effects. J Dairy Sci 2022; 105:3703-3715. [DOI: 10.3168/jds.2021-21382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022]
|
18
|
Zeng X, Wang Y, Jia H, Wang Z, Gao Z, Luo Y, Sheng Q, Yuan Y, Yue T. Metagenomic analysis of microflora structure and functional capacity in probiotic Tibetan kefir grains. Food Res Int 2022; 151:110849. [PMID: 34980387 DOI: 10.1016/j.foodres.2021.110849] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/06/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022]
Abstract
Tibetan kefir grains (TKGs) are distinctive and complex mixtures with protein-lipid-polysaccharide matrices and multiple microorganism species. The objective of this study was to evaluate the microflora composition, probiotic species and functional genes within TKGs. Metagenomic analysis was used to evaluate communities of three TKGs, revealing the presence of 715 species, with Lactobacillus kefiranofaciens as the most dominant species. The relative abundances of acetic acid bacteria and yeast significantly differed among the three TKGs (acetic acid bacteria: p < 0.01; yeast: p < 0.05), and the dominant yeast species also varied across three TKGs. Lactobacillus helveticus was the most abundant listed probiotic species, and its abundance did not significantly differ across three TKGs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that ko01501 was the most abundant pathway that related to human disease. There are 16 different KOs (KEGG Orthology) in the ko01501 pathway were annotated in TKGs, which helps to resist β-lactam. This study provided a new insight into the microbial community structures and the presence of probiotic species within TKGs and provides a foundation for further targeted studies.
Collapse
Affiliation(s)
- Xuejun Zeng
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Yuwei Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qinglin Sheng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
19
|
de Souza da Motta A, Nespolo CR, Breyer GM. Probiotics in milk and dairy foods. PROBIOTICS 2022:103-128. [DOI: 10.1016/b978-0-323-85170-1.00004-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Zeng X, Jia H, Zhang X, Wang X, Wang Z, Gao Z, Yuan Y, Yue T. Supplementation of kefir ameliorates azoxymethane/dextran sulfate sodium induced colorectal cancer by modulating the gut microbiota. Food Funct 2021; 12:11641-11655. [PMID: 34724014 DOI: 10.1039/d1fo01729b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the efficacy of kefir on colorectal cancer (CRC) via regulating the microbiota structure in the colon using the azoxymethane/dextran sulfate sodium (AOM/DSS) induced CRC mouse model. Mice in the treatment group were orally administered with milk or kefir. The gut microbiota composition was assessed by internally transcribed spacer 2 (ITS2) and 16S rRNA high-throughput sequencing. Furthermore, the biomarkers associated with the gut barrier, inflammation, and cell proliferation regulators were evaluated. The results indicated that the size and the amount of tumor were decreased and the immunity regulators (TNF-α, IL-6, and IL-17a) and oncocyte proliferation indicator (Ki67, NF-κB, and β-catenin) were all decreased. Increased short chain fatty acids (SCFAs) lowered the pH in the colon and helped enhance the intestinal barrier. The Firmicutes/Bacteroidetes ratio and Ascomycota/Basidiomycota ratio were decreased at the phylum level; the relative abundance of probiotics was increased and the pathogenic bacterium (Clostridium sensu stricto, Aspergillus and Talaromyces) were decreased after supplementation of kefir. Consequently, kefir could regulate the gut microbiota composition and ameliorate AOM/DSS induced colorectal cancer.
Collapse
Affiliation(s)
- Xuejun Zeng
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xiao Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.,College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
21
|
Buffalo Milk as a Source of Probiotic Functional Products. Microorganisms 2021; 9:microorganisms9112303. [PMID: 34835429 PMCID: PMC8620832 DOI: 10.3390/microorganisms9112303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
In the past two decades, consumption of food has been accruing due to its health claims which include gastrointestinal health, improved immunity, and well-being. Currently, the dairy industry is the sector where probiotics are most widely used, especially in fermented milk, cheese, yoghurt, butter, and dairy beverages. Although, it is still necessary to face many challenges regarding their stability and functionality in food. Considering the increasing demand for healthy products, it is necessary to develop strategies that aim to increase the consumption of functional foods in order to meet probiotic usefulness criteria and the consumer market. This review aimed to promote the utilization of buffalo milk considering its probiotic effects as a functional food and natural remedy to various ailments, emphasizing the potential of innovation and the importance of milk-based products as health promoters. The intake of probiotics plays an important role in modulating the health of the host, as a result of a balanced intestinal microbiota, reducing the risk of development of various diseases such as cancer, colitis, lactose intolerance, heart diseases, and obesity, among other disorders. However, further studies should be carried out to deepen the knowledge on the relationship between raw buffalo milk, its dairy products microbiota and consumer’s health beneficial effects, as well as to implement a strategy to increase the variety and availability of its products as a functional food in the market.
Collapse
|
22
|
Georgalaki M, Zoumpopoulou G, Anastasiou R, Kazou M, Tsakalidou E. Lactobacillus kefiranofaciens: From Isolation and Taxonomy to Probiotic Properties and Applications. Microorganisms 2021; 9:2158. [PMID: 34683479 PMCID: PMC8540521 DOI: 10.3390/microorganisms9102158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
One of the main lactic acid bacterial species found in the kefir grain ecosystem worldwide is Lactobacillus kefiranofaciens, exhibiting strong auto-aggregation capacity and, therefore, being involved in the mechanism of grain formation. Its occurrence and dominance in kefir grains of various types of milk and geographical origins have been verified by culture-dependent and independent approaches using multiple growth media and regions of the 16S rRNA gene, respectively, highlighting the importance of their combination for its taxonomic identification. L. kefiranofaciens comprises two subspecies, namely kefiranofaciens and kefirgranum, but only the first one is responsible for the production of kefiran, the water-soluble polysaccharide, which is a basic component of the kefir grain and famous for its technological as well as health-promoting properties. L. kefiranofaciens, although very demanding concerning its growth conditions, can be involved in mechanisms affecting intestinal health, immunomodulation, control of blood lipid levels, hypertension, antimicrobial action, and protection against diabetes and tumors. These valuable bio-functional properties place it among the most exquisite candidates for probiotic use as a starter culture in the production of health-beneficial dairy foods, such as the kefir beverage.
Collapse
Affiliation(s)
- Marina Georgalaki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (G.Z.); (R.A.); (M.K.); (E.T.)
| | | | | | | | | |
Collapse
|
23
|
Coculture Strategy for Developing Lactobacillus paracasei PS23 Fermented Milk with Anti-Colitis Effect. Foods 2021; 10:foods10102337. [PMID: 34681392 PMCID: PMC8535234 DOI: 10.3390/foods10102337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Few studies have documented the effects of fermented milk on intestinal colitis, which are mediated by regulating various microbial and inflammatory processes. Here, we investigated the effects of fermented milk with Lactobacillus paracasei PS23 on intestinal epithelial cells in vitro and dextran sulfate sodium (DSS)-induced colitis in vivo. As L. paracasei PS23 grew poorly in milk, a coculture strategy with yogurt culture was provided to produce fermented milk (FM). The results indicated that the coculture exhibited a symbiotic effect, contributing to the better microbial and physicochemical property of the fermented milk products. We further evaluated the anti-colitis effect of fermented milk with L. paracasei PS23 in vitro. Both PS23-fermented milk (PS23 FM) and its heat-killed counterpart (HK PS23 FM) could protect or reverse the increased epithelial permeability by strengthening the epithelial barrier function in vitro by increasing transepithelial electrical resistance (TEER). In vivo analysis of the regulation of intestinal physiology demonstrated that low-dose L. paracasei PS23-fermented ameliorated DSS-induced colitis, with a significant attenuation of the bleeding score and reduction of fecal calprotectin levels. This anti-colitis effect may be exerted by deactivating the inflammatory cascade and strengthening the tight junction through the modification of specific cecal bacteria and upregulation of short-chain fatty acids. Our findings can clarify the role of L. paracasei PS23 in FM products when cocultured with yogurt culture and can elucidate the mechanisms of the anti-colitis effect of L. paracasei PS23 FM, which may be considered for therapeutic intervention.
Collapse
|
24
|
Hurtado-Romero A, Del Toro-Barbosa M, Gradilla-Hernández MS, Garcia-Amezquita LE, García-Cayuela T. Probiotic Properties, Prebiotic Fermentability, and GABA-Producing Capacity of Microorganisms Isolated from Mexican Milk Kefir Grains: A Clustering Evaluation for Functional Dairy Food Applications. Foods 2021; 10:foods10102275. [PMID: 34681324 PMCID: PMC8534820 DOI: 10.3390/foods10102275] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023] Open
Abstract
Isolation and functional characterization of microorganisms are relevant steps for generating starter cultures with functional properties, and more recently, those related to improving mental health. Milk kefir grains have been recently investigated as a source of health-related strains. This study focused on the evaluation of microorganisms from artisanal Mexican milk kefir grains regarding probiotic properties, in vitro fermentability with commercial prebiotics (lactulose, inulin, and citrus pectin), and γ-aminobutyric acid (GABA)-producing capacity. Microorganisms were identified belonging to genera Lactococcus, Lactobacillus, Leuconostoc, and Kluyveromyces. The probiotic properties were assessed by aggregation abilities, antimicrobial activity, antibiotic susceptibility, and resistance to in vitro gastrointestinal digestion, showing a good performance compared with commercial probiotics. Most of isolates maintained a concentration above 6 log colony forming units/mL after the intestinal phase. Specific isolates of Kluyveromyces (BIOTEC009 and BIOTEC010), Leuconostoc (BIOTEC011 and BIOTEC012), and Lactobacillus (BIOTEC014 and BIOTEC15) showed a high fermentability in media supplemented with commercial prebiotics. The capacity to produce GABA was classified as medium for L. lactis BIOTEC006, BIOTEC007, and BIOTEC008; K. lactis BIOTEC009; L. pseudomesenteroides BIOTEC012; and L. kefiri BIOTEC014, and comparable to that obtained for commercial probiotics. Finally, a multivariate approach was performed, allowing the grouping of 2-5 clusters of microorganisms that could be further considered new promising cultures for functional dairy food applications.
Collapse
|
25
|
Guzel-Seydim ZB, Gökırmaklı Ç, Greene AK. A comparison of milk kefir and water kefir: Physical, chemical, microbiological and functional properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Milk Kefir therapy reduces inflammation and alveolar bone loss on periodontitis in rats. Biomed Pharmacother 2021; 139:111677. [PMID: 33965727 DOI: 10.1016/j.biopha.2021.111677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that affects the tooth-supporting tissues. This study evaluated the anti-inflammatory and antiresorptive effects of milk kefir (MK) on periodontitis in rats. Micro-Raman spectroscopy was performed on MK at different fermentation times to verify the presence of Lactobacillus kefiri. From these results, Wistar rats were divided into the following groups: C (Control); EP (experimental periodontitis); K1 (animals that received MK with one day of fermentation); K1+EP; K4 (animals without EP using MK with four days of fermentation) and K4+EP. MK was administered 28 days before EP induction and during the disease development period (11 days). On day 28, in the EP groups, periodontitis was induced. The animals were euthanized on day 39. The hemimaxillae were removed and the following parameters were evaluated: micro-Raman analysis of the presence of inflammation; histomorphometric analysis to quantify alveolar bone loss and immunohistochemistry for IL-6, TNF-α, IL-Iβ and IL-10 in the periodontal ligament. Micro-Raman analysis showed that four days fermentation MK has a higher intensity spectrum of L. kefiri. Furthermore, the administration of this probiotic reduced the intensity of the inflammation spectrum when compared to one day fermentation MK. It was observed that the animals from the K4+EP group showed significant reduction of alveolar bone loss, as well as a lower IL-6, TNF-α and IL-Iβ immunoexpression and a higher IL-10 immunoexpression, when compared to EP groups. We conclude that MK has anti-inflammatory and antiresorptive effects on periodontitis in rats and that these effects are fermentation time dependent.
Collapse
|
27
|
He X, Luan M, Han N, Wang T, Zhao X, Yao Y. Construction and Analysis of Food-Grade Lactobacillus kefiranofaciens β-Galactosidase Overexpression System. J Microbiol Biotechnol 2021; 31:550-558. [PMID: 33622994 PMCID: PMC9705900 DOI: 10.4014/jmb.2101.01028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Lactobacillus kefiranofaciens contains two types of β-galactosidase, LacLM and LacZ, belonging to different glycoside hydrolase families. The difference in function between them has been unclear so far for practical application. In this study, LacLM and LacZ from L. kefiranofaciens ATCC51647 were cloned into constitutive lactobacillal expression vector pMG36e, respectively. Furtherly, pMG36n-lacs was constructed from pMG36e-lacs by replacing erythromycin with nisin as selective marker for food-grade expressing systems in Lactobacillus plantarum WCFS1, designated recombinant LacLM and LacZ respectively. The results from hydrolysis of o-nitrophenyl-β-galactopyranoside (ONPG) showed that the β-galactosidases activity of the recombinant LacLM and LacZ was 1460% and 670% higher than that of the original L. kefiranofaciens. Moreover, the lactose hydrolytic activity of recombinant LacLM was higher than that of LacZ in milk. Nevertheless, compare to LacZ, in 25% lactose solution the galacto-oligosaccharides (GOS) production of recombinant LacLM was lower. Therefore, two β-galactopyranosides could play different roles in carbohydrate metabolism of L. kefiranofaciens. In addition, the maximal growth rate of two recombinant strains were evaluated with different temperature level and nisin concentration in fermentation assay for practical purpose. The results displayed that 37°C and 20-40 U/ml nisin were the optimal fermentation conditions for the growth of recombinant β-galactosidase strains. Altogether the food-grade Expression system of recombinant β-galactosidase was feasible for applications in the food and dairy industry.
Collapse
Affiliation(s)
- Xi He
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province, P.R. China,College of Biologic Engineering, Qi Lu University of Technology, Jinan, Shandong Province, P.R. China
| | - MingJian Luan
- College of Biologic Engineering, Qi Lu University of Technology, Jinan, Shandong Province, P.R. China
| | - Ning Han
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province, P.R. China,College of Biologic Engineering, Qi Lu University of Technology, Jinan, Shandong Province, P.R. China,Corresponding author Phone/ Fax: +86-0531-89631776 E-mail:
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province, P.R. China,College of Biologic Engineering, Qi Lu University of Technology, Jinan, Shandong Province, P.R. China
| | - Xiangzhong Zhao
- College of Biologic Engineering, Qi Lu University of Technology, Jinan, Shandong Province, P.R. China
| | - Yanyan Yao
- National Engineering Research Center for Marine Shellfish, Weihai, Shandong Province, P.R. China
| |
Collapse
|
28
|
Bourrie BCT, Ju T, Fouhse JM, Forgie AJ, Sergi C, Cotter PD, Willing BP. Kefir microbial composition is a deciding factor in the physiological impact of kefir in a mouse model of obesity. Br J Nutr 2021; 125:129-138. [PMID: 32684173 DOI: 10.1017/s0007114520002743] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Kefir consumption has been demonstrated to improve lipid and cholesterol metabolism; however, our previous study identified that benefits vary between different commercial and traditional kefir. Here, we investigate the ability of pitched culture kefir, that is, kefir produced by a small number of specific strains, to recapitulate health benefits of a traditional kefir, in a diet-induced obesity mouse model, and examine how microbial composition of kefir impacts these benefits. Eight-week-old female C57BL/6 mice were fed a high-fat diet (40 % energy from fat) supplemented with one of five kefir varieties (traditional, pitched, pitched with no Lactobacillus, pitched with no yeast and commercial control) at 2 ml in 20 g of food for 8 weeks prior to analysis of plasma and liver lipid profiles, and liver gene expression profiles related to lipid metabolism. Both traditional and pitched kefir lowered plasma cholesterol by about 35 % (P = 0·0005) and liver TAG by about 55 % (P = 0·0001) when compared with commercial kefir despite no difference in body weight. Furthermore, pitched kefir produced without either yeast or Lactobacillus did not lower cholesterol. The traditional and pitched kefir with the full complement of microbes were able to impart corresponding decreases in the expression of the cholesterol and lipid metabolism genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase, PPARγ and CD36 in the liver. These results demonstrate that traditional kefir organisms can successfully be utilised in a commercial process, while highlighting the importance of microbial interactions during fermentation in the ability of fermented foods to benefit host health.
Collapse
Affiliation(s)
- Benjamin C T Bourrie
- Department of Agricultural Food and Nutritional Science, Agriculture/Forestry Center, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61C996, Republic of Ireland
| | - Tingting Ju
- Department of Agricultural Food and Nutritional Science, Agriculture/Forestry Center, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Janelle M Fouhse
- Department of Agricultural Food and Nutritional Science, Agriculture/Forestry Center, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Andrew J Forgie
- Department of Agricultural Food and Nutritional Science, Agriculture/Forestry Center, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine & Pathology Division of Anatomical Pathology, Walter C. MacKenzie Health Sciences Centre, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
| | - Paul D Cotter
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61C996, Republic of Ireland
- APC Microbiome Ireland, Cork, Republic of Ireland
| | - Benjamin P Willing
- Department of Agricultural Food and Nutritional Science, Agriculture/Forestry Center, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
29
|
Hung YK, Ho ST, Kuo CY, Chen MJ. In vitro effects of velvet antler water extracts from Formosan Sambar deer and red deer on barrier integrity in Caco-2 cell. Int J Med Sci 2021; 18:1778-1785. [PMID: 33746595 PMCID: PMC7976581 DOI: 10.7150/ijms.53599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Background: The mucus integrity and abnormal inflammatory response are the crucial biomarker of inflammatory bowel disease (IBD). Velvet antler (VA) has been used as traditional Chinese medicines for many years. Anti-inflammatory property was demonstrated via suppression of cyclooxygenase-2 and cytokines protein expression. And it has further proved to promote wound healing in streptozotocin-induced diabetic rats model. The aforementioned functionalities of VA extracts may be associated with the treatment of IBD. Thus, the aim of present study was to evaluate the effect of velvet antler water extracts form Formosan Sambar deer (Rusa unicolor swinhoei, SVAE) and red deer (Cervus elaphus, RVAE) on the barrier function and to investigate the possible mechanism using in vitro model. Methods: Human colonic epithelial cell models (Caco-2) were co-cultured with various concentrations of both SVAE and RVAE (250-500 µg mL-1) in dextran sulfate sodium (DSS)-induced colitis model. Trans-epithelial electrical resistance (TEER) value and the macromolecule permeability of Fluorescein isothiocyanate (FITC)-labeled dextran were measured to evaluate the integrity of monolayer of Caco-2. Western blotting was performed for analysis of protein expressions of occludin, Zonula occludens-1 (ZO-1), claudin-1, claudin-2 and myosin light chain kinase (MLCK). The cytotoxicity was conducted by MTT assay. Results: Results indicated that both SVAE and RVAE could enhance integrity of monolayer in dextran sulfate sodium (DSS)-induced colonic epithelial cell model (Caco-2) through reducing the decline of trans-epithelial electrical resistance (TEER) and macromolecule permeability at the concentration of 250 μg mL-1. RVAE significantly increased the expression of tight junction proteins (occludin and ZO-1) while SVAE significantly reduced the activity of MLCK (P < 0.05.). Elevated C-C chemokine ligand 20 (CCL20) production suggested that both SVAE and RVAE could enhance the repair of epithelial cell. Besides, MTT assay revealed that both extracts showed no cytotoxicity. Conclusion: Thus, SVAE and RVAE supplementation may attenuate barrier damage by enhancing the occludin and ZO-1 protein expression, decreasing MLCK expression, promoting the CCL20 production. In the future, animal study is needed for further confirmation.
Collapse
Affiliation(s)
- Ying-Kai Hung
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Shang-Tse Ho
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi 600, Taiwan
| | - Ching-Yun Kuo
- Taiwan Livestock Research Institute, Council of Agriculture, Tainan 712, Taiwan
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
30
|
Bacterial Populations in International Artisanal Kefirs. Microorganisms 2020; 8:microorganisms8091318. [PMID: 32872546 PMCID: PMC7565184 DOI: 10.3390/microorganisms8091318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Artisanal kefir is a traditional fermented dairy product made using kefir grains. Kefir has documented natural antimicrobial activity and health benefits. A typical kefir microbial community includes lactic acid bacteria (LAB), acetic acid bacteria, and yeast among other species in a symbiotic matrix. In the presented work, the 16S rRNA gene sequencing was used to reveal bacterial populations and elucidate the diversity and abundance of LAB species in international artisanal kefirs from Fusion Tea, Britain, the Caucuses region, Ireland, Lithuania, and South Korea. Bacterial species found in high abundance in most artisanal kefirs included Lactobacillus kefiranofaciens, Lentilactobacillus kefiri,Lactobacillus ultunensis, Lactobacillus apis, Lactobacillus gigeriorum, Gluconobacter morbifer, Acetobacter orleanensis, Acetobacter pasteurianus, Acidocella aluminiidurans, and Lactobacillus helveticus. Some of these bacterial species are LAB that have been reported for their bacteriocin production capabilities and/or health promoting properties.
Collapse
|
31
|
Lin YC, Chen YT, Li KY, Chen MJ. Investigating the Mechanistic Differences of Obesity-Inducing Lactobacillus kefiranofaciens M1 and Anti-obesity Lactobacillus mali APS1 by Microbolomics and Metabolomics. Front Microbiol 2020; 11:1454. [PMID: 32733406 PMCID: PMC7360855 DOI: 10.3389/fmicb.2020.01454] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022] Open
Abstract
Many studies have investigated the anti-obesity effects of probiotics in animal models and humans. However, few studies have focused on the mechanisms of obesity-inducing probiotics. In a previous study, we demonstrated that specific bacterial strains isolated from kefir, Lactobacillus kefirnofaciens M1 and Lactobacillus mali APS1, possess obesity and anti-obesity effects, respectively, in high-fat diet (HFD)-induced obese mice. Thus, in the present study, we systematically investigated whether APS1 and M1 affect energy homeostasis and lipid metabolism in HFD-induced obese mice and how this might be achieved. We observed that the M1/APS1 intervention influenced fat accumulation by regulating adipogenesis and inflammation-related marker expression both in vitro and in a HFD induced C57BL/6J mice model. We also observed putative links between key taxa and possible metabolic processes of the gut microbiota. Notably, families Christensenellaceae and S24_7 were negatively correlated with body weight gain through increase in the essential esterized carnitine for energy expenditure. These results suggest the importance of specific probiotic interventions affecting leanness and obesity of subjects under a HFD, which are operated by modulating the tripartite relationship among the host, microbiota, and metabolites.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan.,Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yung-Tsung Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yi Li
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Ng KS, Wang SY, Chen MJ. A novel immobilized cell system involving Taiwanese kefir microorganisms and sugar cane pieces for fermented milk production. J Dairy Sci 2019; 103:141-149. [PMID: 31629528 DOI: 10.3168/jds.2019-16763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/30/2019] [Indexed: 11/19/2022]
Abstract
The objective of this study was to develop a novel immobilized system using kefir lactic acid bacteria and sugar cane pieces for the production of fermented milk. Lactobacillus kefiranofaciens HL1, Lactobacillus kefiri HL2, Leuconostoc mesenteroides HL3, and Lactococcus lactis HL4 were isolated from Taiwanese kefir grains and immobilized on pieces of sugar cane using adsorption. Scanning electron micrographs of the cell-immobilized sugar cane pieces (CISCP) showed that the microorganisms were embedded within the porous structures of the sugar cane pieces. During 28 cycles of repeated batch fermentation, viable cells on both sugar cane pieces and fermented products were maintained at 10 log cfu/g (cfu/mL). Random amplified polymorphic DNA PCR analysis revealed that Leu. mesenteroides HL3 (29-43%) and Lc. lactis HL4 (31-49%) were predominant on the CISCP, and the fermented samples had 79% Lc. lactis HL4. When tracking fermentation parameters, the data on the microbial, chemical, and physical properties of the fermented milk suggested that the CISCP had stable fermentative ability over the course of successive fermentations. We found an enhancement of the acid-producing ability of CISCP as the number of fermentations increased, with a significant growth in titratable acidity from 0.65 to 0.81% by the end.
Collapse
Affiliation(s)
- Ker-Sin Ng
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Sheng-Yao Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617.
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617.
| |
Collapse
|
33
|
Zhang JS, Corredig M, Morales-Rayas R, Hassan A, Griffiths MW, LaPointe G. Downregulation of Salmonella Virulence Gene Expression During Invasion of Epithelial Cells Treated with Lactococcus lactis subsp. cremoris JFR1 Requires OppA. Probiotics Antimicrob Proteins 2019; 12:577-588. [PMID: 31377945 DOI: 10.1007/s12602-019-09574-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Invasion of Salmonella into host intestinal epithelial cells requires the expression of virulence genes. In this study, cell culture models of human intestinal cells (mucus-producing HT29-MTX cells, absorptive Caco-2 cells, and combined cocultures of the two) were used to determine the effects of Lactococcus lactis subsp. cremoris treatments (exopolysaccharide producing and nonproducing strains) on the virulence gene expression of Salmonella Typhimurium and its mutant lacking the oligopeptide permease subunit A (ΔoppA). During the course of epithelial cell (HT29-MTX, Caco-2, and combined) infection by Salmonella Typhimurium DT104, improved barrier function was reflected by increased transepithelial electrical resistance in cells treated with both strains of L. lactis subsp. cremoris. In addition, virulence gene expression was downregulated, accompanied with lower numbers of invasive bacteria into epithelial cells in the presence of L. lactis subsp. cremoris treatments. Similarly, virulence gene expression of Salmonella was also suppressed when coincubated with overnight cultures of both L. lactis subsp. cremoris strains in the absence of epithelial cells. However, in medium or in the presence of cell cultures, Salmonella lacking the OppA permease function remained virulent. HT29-MTX cells and combined cultures stimulated by Salmonella Typhimurium DT104 showed significantly lower secretion levels of pro-inflammatory cytokine IL-8 after treatment with L. lactis subsp. cremoris cell suspensions. Contrarily, these responses were not observed during infection with S. Typhimurium ΔoppA. Both the exopolysaccharide producing and nonproducing strains of L. lactis subsp. cremoris JFR1 exhibited an antivirulence effect against S. Typhimurium DT104 although no significant difference between the two strains was observed. Our results show that an intact peptide transporter is essential for the suppression of Salmonella virulence genes which leads to the protection of the barrier function in the cell culture models studied.
Collapse
Affiliation(s)
- J S Zhang
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M Corredig
- Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - R Morales-Rayas
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Hassan
- Daisy Brand, Dallas, TX, 75251, USA
| | - M W Griffiths
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Gisèle LaPointe
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
34
|
Purutoğlu K, İspirli H, Yüzer MO, Serencam H, Dertli E. Diversity and functional characteristics of lactic acid bacteria from traditional kefir grains. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12633] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kübra Purutoğlu
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| | - Hümeyra İspirli
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| | - Mustafa Onur Yüzer
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| | - Hüseyin Serencam
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| |
Collapse
|
35
|
Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir. Nutrients 2019; 11:nu11061252. [PMID: 31159409 PMCID: PMC6627492 DOI: 10.3390/nu11061252] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Lactobacilli are among the most common microorganisms found in kefir; a traditional fermented milk beverage produced locally in many locations around the world. Kefir has been associated with a wide range of purported health benefits; such as antimicrobial activity; cholesterol metabolism; immunomodulation; anti-oxidative effects; anti-diabetic effects; anti-allergenic effects; and tumor suppression. This review critically examines and assesses these claimed benefits and mechanisms with regard to particular Lactobacillus species and/or strains that have been derived from kefir; as well as detailing further potential avenues for experimentation.
Collapse
|
36
|
Molina-Tijeras JA, Gálvez J, Rodríguez-Cabezas ME. The Immunomodulatory Properties of Extracellular Vesicles Derived from Probiotics: A Novel Approach for the Management of Gastrointestinal Diseases. Nutrients 2019; 11:E1038. [PMID: 31075872 PMCID: PMC6567093 DOI: 10.3390/nu11051038] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Probiotics, included in functional foods, nutritional supplements, or nutraceuticals, exhibit different beneficial effects on gut function. They are extensively used to improve the digestive processes as well as reduce the symptoms and progression of different diseases. Probiotics have shown to improve dysbiosis and modulate the immune response of the host by interacting with different cell types. Probiotics and the host can interact in a direct way, but it is becoming apparent that communication occurs also through extracellular vesicles (EVs) derived from probiotics. EVs are key for bacteria-bacteria and bacteria-host interactions, since they carry a wide variety of components that can modulate different signaling pathways, including those involved in the immune response. Interestingly, EVs are recently starting to be considered as an alternative to probiotics in those cases for which the use of live bacteria could be dangerous, such as immunocompromised individuals or situations where the intestinal barrier is impaired. EVs can spread through the mucus layer and interact with the host, avoiding the risk of sepsis. This review summarizes the existing knowledge about EVs from different probiotic strains, their properties, and their potential use for the prevention or treatment of different gastrointestinal diseases.
Collapse
Affiliation(s)
- Jose Alberto Molina-Tijeras
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18071-Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada 18012, Spain.
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18071-Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada 18012, Spain.
| | - Maria Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18071-Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada 18012, Spain.
| |
Collapse
|
37
|
Culture supernatant produced by Lactobacillus kefiri from kefir inhibits the growth of Cronobacter sakazakii. J DAIRY RES 2018; 85:98-103. [PMID: 29468996 DOI: 10.1017/s0022029917000802] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cronobacter sakazakii is a life-threatening foodborne pathogen found in powdered infant formula and dairy products. Kefir is a dairy probiotic product and its antimicrobial activity against C. sakazakii was reported in our previous study. To identify key microorganisms that mediate growth suppression, we tested the antimicrobial activity of culture supernatants derived from lactic acid bacteria found in kefir. Lactobacillus kefiri DH5, L. kefiranofaciens DH101, and Bifidobacterium longum 720 (a commercial probiotic strain that served as a positive control) all significantly inhibited the growth of C. sakazakii ATCC 29544, delaying the initiation of exponential growth from 3 to 9 h in the nutrient broth. Among them, L. kefiri DH5 exerted the strongest antimicrobial effects against C. sakazakii, showing bactericidal effect at the addition of 300 µl of supernatant in 1 ml of nutrient broth. Interestingly, the supernatant of L. kefiri DH5 has higher pH and lower titrable acidity than that of L. kefiranofaciens DH101, suggesting metabolites produced by heterofermentation of L. kefiri acted more effectively to antagonise the growth of C. sakazakii. In addition, the supernatant of L. kefiri DH5 induced the leakage of cytoplasmic materials including nucleic acid and proteins, suggesting L. kefiri DH5 disrupted the cellular membrane integrity of C. sakazakii. Considering that pH neutralisation reduced the L. kefiri-dependent growth suppression, it is inferred that this activity is mainly due to organic acids produced during the fermentation process.
Collapse
|
38
|
Probiotic Mixture Protects Dextran Sulfate Sodium-Induced Colitis by Altering Tight Junction Protein Expressions and Increasing Tregs. Mediators Inflamm 2018; 2018:9416391. [PMID: 29849501 PMCID: PMC5925202 DOI: 10.1155/2018/9416391] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/27/2017] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
Bifico is a probiotic mixture containing Bifidobacterium, Lactobacillus acidophilus, and Enterococcus. Studies support that Bifico has a protective effect in experimental colitis (IL-10-deficient and TNBS) models and in patients with inflammatory bowel disease (IBD). However, the mechanism underlying the protective effects of this mixture of probiotic bacteria remains incompletely clear. Here, we investigated the effect of Bifico on intestinal inflammation. In an in vivo experiment, dextran sulfate sodium was used to induce colitis. Bifico treatment significantly attenuated the severity of colitis in this model. Bifico increased the expression of tight junction proteins (TJs). In addition, Bifico increased the number of Tregs, but reduced the number of total CD4+ T cells in the peripheral blood. Furthermore, the expression of colonic CD4 protein was decreased while the level of forkhead box P3 (Foxp3) was upregulated. These results suggested that Bifico exerts beneficial effects on experimental colitis by increasing the expressions of TJs, upregulating the number of Tregs, and reducing the total CD4+ T cell number in both colon and peripheral blood. The intestinal damage in the pretreated + treated-Bifico-colitis group was more severe than that in only the pretreated-Bifico-colitis group. This suggested that Bifico might aggravate intestinal damage when the mucosal barrier is impaired.
Collapse
|
39
|
Tuo Y, Song X, Song Y, Liu W, Tang Y, Gao Y, Jiang S, Qian F, Mu G. Screening probiotics from Lactobacillus strains according to their abilities to inhibit pathogen adhesion and induction of pro-inflammatory cytokine IL-8. J Dairy Sci 2018; 101:4822-4829. [PMID: 29550135 DOI: 10.3168/jds.2017-13654] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
Abstract
Probiotics can be screened according to their abilities to inhibit pathogen adhesion and inhibit the production of pro-inflammatory cytokines. Eleven Lactobacillus strains isolated from traditional fermented dairy foods in Xinjiang, China, were studied for their potential to inhibit adhesion of Escherichia coli to intestinal epithelial cells and to inhibit E. coli-induced production of interleukin (IL)-8 by intestinal epithelial cells. The results showed that the 11 strains could inhibit adhesion of E. coli to Caco-2 cell monolayers and inhibit the induction of IL-8 production by E. coli in HT-29 cells. The inhibiting activities of the Lactobacillus strains against E. coli adhesion and IL-8 induction were strain-specific and not positively correlated, whereas the excluding activity of the strains against E. coli adhesion and their coaggregation with E. coli were positively correlated. The effector molecules of the strains with probiotic potential should be identified to explain the mechanism behind these observations.
Collapse
Affiliation(s)
- Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xing Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Wenwen Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yu Tang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yuan Gao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Shujuan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| |
Collapse
|
40
|
Inoue R, Fujiwara S, Tsukahara T. Ileal mucosal response to the same probiotic Lactobacillus strains is markedly different between suckling and adult mice. Biosci Biotechnol Biochem 2018; 82:329-333. [PMID: 29316868 DOI: 10.1080/09168451.2017.1422387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
While evidence shows that probiotic supplementation exerts beneficial effects on developing children and animals, it is unclear whether it would exert equal or similar effects on adult human and animals. In this study, response to probiotic lactobacilli in ileal mucosa of suckling and adult mice was compared by evaluating gene expression profiles using DNA microarray. Two probiotic strains, Lactobacillus gasseri CP2305s and Lactobacillus plantarum CPA305C were used. Supplementation of probiotics for 7 days affected completely different genes in suckling and adult mice, regardless of the probiotic strain. The results suggested that ileal mucosal responses to probiotics are age stage specific.
Collapse
Affiliation(s)
- Ryo Inoue
- a Laboratory of Animal Science , Kyoto Prefectural University , Kyoto , Japan
| | - Shigeru Fujiwara
- b Core Technology Laboratories , Asahi Group Holdings, Ltd. , Sagamihara , Kanagawa , Japan
| | | |
Collapse
|
41
|
Akal HC, Öztürkoğlu Budak Ş, Yetisemiyen A. Potential Probiotic Microorganisms in Kefir. MICROBIAL CULTURES AND ENZYMES IN DAIRY TECHNOLOGY 2018. [DOI: 10.4018/978-1-5225-5363-2.ch015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Probiotic microorganisms are defined as living microorganisms that provide health benefits on the host when administered in adequate amounts. The benefits include improvement of microbial balance immune system and oral health, provision of cholesterol-lowering effect, and antimicrobial activity against a wide variety of bacteria and some fungi. Kefir microbiota contains active living microorganisms. Many researches were carried out that potential probiotic bacteria such as Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus kefir, Lactobacillus kefiranofaciens, Leuconostoc mesenteroides, or yeasts like microorganisms such as Saccharomyces cerevisiae, Kluyveromyces lactis, and Kluyveromyces marxianus were isolated from kefir grains. This chapter presents the data both on the probiotic bacteria isolated from kefir grains or kefir and the probiotic properties of kefir produced with these microorganisms.
Collapse
|
42
|
Jeong D, Kim DH, Chon JW, Song KY, Kim H, Seo KH. Preparation of Bioactive Kefir with Added Flaxseed (Linum
usitatissimumL.) Extract. ACTA ACUST UNITED AC 2017. [DOI: 10.22424/jmsb.2017.35.3.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Chen MJ, Tang HY, Chiang ML. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1. Food Microbiol 2017; 66:20-27. [DOI: 10.1016/j.fm.2017.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 01/01/2023]
|
44
|
Jeong D, Kim DH, Kang IB, Kim H, Song KY, Kim HS, Seo KH. Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1. Food Funct 2017; 8:680-686. [PMID: 28121325 DOI: 10.1039/c6fo01559j] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lactobacillus kefiranofaciens is the key probiotic bacterium in kefir. In this study, we investigated the effects of oral consumption of L. kefiranofaciens on the fecal quality and intestinal microbiota of mice. Four-week-old Balb/c mice were divided into two groups (n = 8 each) and administered 0.2 mL of saline (control group) or saline containing 2 × 108 cfu L. kefiranofaciens DN1 (LKF_DN1 group) for two weeks. At the end of the experiment, their fecal samples were collected and the fecal quality and microbiota were assessed. The LKF_DN1 group exhibited higher total fecal weight and fecal weight per stool sample than the control group (p < 0.05). Interestingly, the fecal water content was significantly higher in the fecal samples of the LKF_DN1 group than in those of the control group (p < 0.05). The numbers of total bacteria, Firmicutes, Bacteroidetes, Lactobacillus, and Prevotella were significantly higher in the LKF_DN1 group than in the control group (p < 0.05). In contrast, the number of opportunistic pathogens, including Proteobacteria and Enterobacteriaceae, and the percentage of genus Clostridium among the total bacteria were significantly reduced in the LKF_DN1 group (p < 0.05). Our data suggest that regular L. kefiranofaciens DN1 administration could alleviate constipation and improve gut microbiota.
Collapse
Affiliation(s)
- Dana Jeong
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea.
| | - Dong-Hyeon Kim
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea.
| | - Il-Byeong Kang
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea.
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Kwang-Young Song
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea.
| | - Hong-Seok Kim
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea.
| | - Kun-Ho Seo
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
45
|
Englerová K, Nemcová R, Mudroňová D. The Study of the Probiotic Potential of the Beneficial Bacteria Isolated from Kefir Grains. FOLIA VETERINARIA 2017. [DOI: 10.1515/fv-2017-0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The aim of this study was to identify beneficial bacteria with probiotic potential from kefir grains. The lactobacilli isolated from kefir grains were characterised as: Lactobacillus plantarum, Lactobacillus paraplantarum, Lactobacillus paracasei, and Lactobacillus kefiri. The strains Lb. plantarum 1Ž, Lb. paraplantarum S10, and Lb. paracasei 2Ž tolerated better the test gastric juice at pH 2 and 2.6 during 120 min of incubation in comparison with the strains Lb. kefiri. On the other hand, the strains Lb. kefiri were resistant to 0.3 % bile acid salts. The Lb. paracasei 2Ž showed the significantly highest survival (P < 0.001) at pH 2 in comparison with all other strains tested and was also able to tolerate 0.3 % concentration of the bile salts. All strains produced medium to strong biofilms on abiotic surfaces and inhibited the growth of selected potential pathogens with varying intensity. All kefir isolates were susceptible to the antibiotics tested and exhibited positive β-galactosidase activity with the exception of Lb. paracasei 2Ž which did not show any activity of undesirable enzymes, such as β-glucosidase and β-glucuronidase. Additional testing and validation of the biological properties and safety of the strain Lb. paracasei 2Ž under in vivo conditions are needed to confirm the prospective use of this strain in practice.
Collapse
Affiliation(s)
- K. Englerová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - R. Nemcová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - D. Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| |
Collapse
|
46
|
Abstract
Kefir is fermented milk produced from grains that comprise a specific and complex mixture of bacteria and yeasts that live in a symbiotic association. The nutritional composition of kefir varies according to the milk composition, the microbiological composition of the grains used, the time/temperature of fermentation and storage conditions. Kefir originates from the Caucasus and Tibet. Recently, kefir has raised interest in the scientific community due to its numerous beneficial effects on health. Currently, several scientific studies have supported the health benefits of kefir, as reported historically as a probiotic drink with great potential in health promotion, as well as being a safe and inexpensive food, easily produced at home. Regular consumption of kefir has been associated with improved digestion and tolerance to lactose, antibacterial effect, hypocholesterolaemic effect, control of plasma glucose, anti-hypertensive effect, anti-inflammatory effect, antioxidant activity, anti-carcinogenic activity, anti-allergenic activity and healing effects. A large proportion of the studies that support these findings were conducted in vitro or in animal models. However, there is a need for systematic clinical trials to better understand the effects of regular use of kefir as part of a diet, and for their effect on preventing diseases. Thus, the present review focuses on the nutritional and microbiological composition of kefir and presents relevant findings associated with the beneficial effects of kefir on human and animal health.
Collapse
|
47
|
|
48
|
Shi LH, Balakrishnan K, Thiagarajah K, Mohd Ismail NI, Yin OS. Beneficial Properties of Probiotics. Trop Life Sci Res 2016. [PMID: 27688852 DOI: 10.21315/tlsr2016.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Probiotics are live microorganisms that can be found in fermented foods and cultured milk, and are widely used for the preparation of infant food. They are well-known as "health friendly bacteria", which exhibit various health beneficial properties such as prevention of bowel diseases, improving the immune system, for lactose intolerance and intestinal microbial balance, exhibiting antihypercholesterolemic and antihypertensive effects, alleviation of postmenopausal disorders, and reducing traveller's diarrhoea. Recent studies have also been focused on their uses in treating skin and oral diseases. In addition to that, modulation of the gut-brain by probiotics has been suggested as a novel therapeutic solution for anxiety and depression. Thus, this review discusses on the current probiotics-based products in Malaysia, criteria for selection of probiotics, and evidences obtained from past studies on how probiotics have been used in preventing intestinal disorders via improving the immune system, acting as an antihypercholesterolemic factor, improving oral and dermal health, and performing as anti-anxiety and anti-depressive agents.
Collapse
Affiliation(s)
- Lye Huey Shi
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Kunasundari Balakrishnan
- Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
| | - Kokila Thiagarajah
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Nor Ismaliza Mohd Ismail
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Ooi Shao Yin
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
49
|
Shi LH, Balakrishnan K, Thiagarajah K, Mohd Ismail NI, Yin OS. Beneficial Properties of Probiotics. Trop Life Sci Res 2016; 27:73-90. [PMID: 27688852 DOI: 10.21315/tlsr2016.27.2.6] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Probiotics are live microorganisms that can be found in fermented foods and cultured milk, and are widely used for the preparation of infant food. They are well-known as "health friendly bacteria", which exhibit various health beneficial properties such as prevention of bowel diseases, improving the immune system, for lactose intolerance and intestinal microbial balance, exhibiting antihypercholesterolemic and antihypertensive effects, alleviation of postmenopausal disorders, and reducing traveller's diarrhoea. Recent studies have also been focused on their uses in treating skin and oral diseases. In addition to that, modulation of the gut-brain by probiotics has been suggested as a novel therapeutic solution for anxiety and depression. Thus, this review discusses on the current probiotics-based products in Malaysia, criteria for selection of probiotics, and evidences obtained from past studies on how probiotics have been used in preventing intestinal disorders via improving the immune system, acting as an antihypercholesterolemic factor, improving oral and dermal health, and performing as anti-anxiety and anti-depressive agents.
Collapse
Affiliation(s)
- Lye Huey Shi
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Kunasundari Balakrishnan
- Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
| | - Kokila Thiagarajah
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Nor Ismaliza Mohd Ismail
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Ooi Shao Yin
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
50
|
Probiotic Properties of Lactobacillus crispatus 2,029: Homeostatic Interaction with Cervicovaginal Epithelial Cells and Antagonistic Activity to Genitourinary Pathogens. Probiotics Antimicrob Proteins 2016; 6:165-76. [PMID: 25028263 DOI: 10.1007/s12602-014-9164-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lactobacillus crispatus 2029 isolated upon investigation of vaginal lactobacilli of healthy women of reproductive age was selected as a probiotic candidate. The aim of the present study was elucidation of the role of L. crispatus 2029 in resistance of the female reproductive tract to genitourinary pathogens using cervicovaginal epithelial model. Lactobacillus crispatus 2029 has surface layers (S-layers), which completely surround cells as the outermost component of their envelope. S-layers are responsible for the adhesion of lactobacilli on the surface of cervicovaginal epithelial cells. Study of interactions between L. crispatus 2029 and a type IV collagen, a major molecular component of epithelial cell extracellular matrix, showed that 125I-labeled type IV collagen binds to lactobacilli with high affinity (Kd = (8.0 ± 0.7) × 10(-10) M). Lactobacillus crispatus 2029 consistently colonized epithelial cells. There were no toxicity, epithelial damage and apoptosis after 24 h of colonization. Electronic microscope images demonstrated intimate association between L. crispatus 2029 and epithelial cells. Upon binding to epithelial cells, lactobacilli were recognized by toll-like 2/6 receptors. Lactobacillus crispatus induced NF-κB activation in epithelial cells and did not induce expression of innate immunity mediators IL-8, IL-1β, IL-1α and TNF-α. Lactobacillus crispatus 2029 inhibited IL-8 production in epithelial cells induced by MALP-2 and increased production of anti-inflammatory cytokine IL-6, maintaining the homeostasis of female reproductive tract. Lactobacillus crispatus 2029 produced H2O2 and provided wide spectrum of antagonistic activity increasing colonization resistance to urinary tract infections by bacterial vaginosis and vulvovaginal candidiasis associated agents.
Collapse
|