1
|
León-Flores DB, Siañez-Estada LI, Iglesias-Figueroa BF, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Varela-Ramírez A, Aguilera RJ, Rascón-Cruz Q. Anticancer potential of lactoferrin: effects, drug synergy and molecular interactions. Biometals 2025; 38:465-484. [PMID: 40117096 DOI: 10.1007/s10534-025-00672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
Cancer treatment is among today's most active and challenging research fields. In recent years, significant progress has been made in developing new cancer therapies, including nutraceuticals and natural compounds with anticancer properties. Lactoferrin, a glycoprotein present in mammals, is of significant interest due to its pleiotropic behavior, demonstrating a broad spectrum of biological activities such as antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, and anticancer effects. In this review, we examine the current knowledge of Lf's role in cancer. In addition, it exhibits a synergistic effect along with conventional drugs, potentially enhancing their efficacy and, at the same time, reducing the side effects associated with most traditional therapies. However, it is essential to consider the precise molecular mechanism by which Lf exerts its antitumor activity. Searching interactions with several molecules can provide insight into this mechanism. Additionally, finding lactoferrin receptors can improve the strategies for the specific release of the conjugates. For all these reasons, Lactoferrin becomes a potential therapeutic agent that should be examined in depth.
Collapse
Affiliation(s)
- D B León-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - L I Siañez-Estada
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - B F Iglesias-Figueroa
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - T S Siqueiros-Cendón
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - E A Espinoza-Sánchez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México
| | - A Varela-Ramírez
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - R J Aguilera
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Q Rascón-Cruz
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua. Chihuahua, Chihuahua, México.
| |
Collapse
|
2
|
Angel-Lerma LE, Carrillo-Campos J, Siañez-Estrada LI, Siqueiros-Cendón TS, León-Flores DB, Espinoza-Sánchez EA, Arévalo-Gallegos S, Iglesias-Figueroa BF, Rascón-Cruz Q. Molecular Docking of Lactoferrin with Apoptosis-Related Proteins Insights into Its Anticancer Mechanism. Int J Mol Sci 2025; 26:2023. [PMID: 40076649 PMCID: PMC11899785 DOI: 10.3390/ijms26052023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Human Lactoferrin (hLf), a multifunctional glycoprotein, has been analyzed through molecular docking to evaluate its role in apoptosis regulation and its potential as an anticancer agent. The docking results highlight XIAP (X-linked Inhibitor of Apoptosis Protein) and Caspase-3 as the most reliable targets, where hLf disrupts XIAP's inhibition of Caspase-3 and Caspase-9, potentially restoring apoptotic signaling; hLf also stabilizes Caspase-3, enhancing its activation in intrinsic and extrinsic pathways. Weaker interactions were observed with Fas, Bcl-2, and Akt. hLf's role in Fas signaling is likely due to expression upregulation rather than direct binding. In contrast, its binding to Bcl-2 may disrupt anti-apoptotic function, and its interaction with Akt suggests interference with pro-survival signaling. These findings suggest that hLf may promote apoptosis by enhancing caspase activation and modulating key apoptotic regulators, supporting its potential use in cancer treatment. However, further experimental validation is needed to confirm these interactions and their therapeutic implications.
Collapse
Affiliation(s)
- Lidia Esmeralda Angel-Lerma
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Javier Carrillo-Campos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada km 1, Chihuahua 31453, Mexico;
| | - Luis Ignacio Siañez-Estrada
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Tania Samanta Siqueiros-Cendón
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Dyada Blanca León-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Edward Alexander Espinoza-Sánchez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Sigifredo Arévalo-Gallegos
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Blanca Flor Iglesias-Figueroa
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Quintín Rascón-Cruz
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| |
Collapse
|
3
|
Xu X, Yu YB. Role of antimicrobial peptides in gastrointestinal diseases: Recent advances. Shijie Huaren Xiaohua Zazhi 2024; 32:865-871. [DOI: 10.11569/wcjd.v32.i12.865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Xia Xu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250000, Shandong Province, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250000, Shandong Province, China
| |
Collapse
|
4
|
Guan S, Zhang S, Liu M, Guo J, Chen Y, Shen X, Deng X, Lu J. Preventive effects of lactoferrin on acute alcohol-induced liver injury via iron chelation and regulation of iron metabolism. J Dairy Sci 2024; 107:5316-5329. [PMID: 38608952 DOI: 10.3168/jds.2023-24490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/02/2024] [Indexed: 04/14/2024]
Abstract
Lactoferrin is widely found in milk and has the ability to bind iron. Previous studies have reported that lactoferrin was effective in the prevention and treatment of acute alcohol-induced liver injury (AALI). Ferroptosis is a recently discovered cell death and is involved in the development of AALI. However, the potential role of lactoferrin in acute alcohol-induced ferroptosis is still unclear. In this study, we observed that lactoferrin (10, 20, and 40 μg/mL) significantly mitigated alcohol (300 mM)-induced injury in vitro. Additionally, lactoferrin (100 and 200 mg/kg BW) significantly alleviated alcohol (4.8 g/kg BW)-induced injury in vivo. Our results showed that lactoferrin inhibited alcohol-induced upregulation of the ferroptosis marker protein ACSL4 and downregulation of GPX4. Meanwhile, lactoferrin treatment successfully reversed the elevated malondialdehyde (MDA) levels and the reduced glutathione (GSH) levels caused by alcohol treatment. These results may indicate that lactoferrin significantly decreased ferroptosis in vivo and in vitro. Lactoferrin has the potential to chelate iron, and our results showed that lactoferrin (20 μg/mL) significantly reduced iron ions and the expression of the ferritin heavy chain (FTH) under FeCl3 (100 μM) treatment. It was demonstrated that lactoferrin had a significant iron-chelating effect and reduced iron overload caused by FeCl3 in AML12 cells. Next, we examined iron content and the expression of iron metabolism marker proteins transferrin receptor (TFR), divalent metal transporter 1 (DMT1), FTH, and ferroportin (FPN). Our results showed that lactoferrin alleviated iron overload induced by acute alcohol. The expression of TFR and DMT1 was downregulated, and FPN and FTH were upregulated after lactoferrin treatment in vivo and in vitro. Above all, the study suggested that lactoferrin can alleviate AALI by mitigating acute alcohol-induced ferroptosis. Lactoferrin may offer new strategies for the prevention or treatment of AALI.
Collapse
Affiliation(s)
- Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China; State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Shengzhuo Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Meitong Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jiakang Guo
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Yuelin Chen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xue Shen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China.
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
5
|
Liu Q, Wang L, He D, Wu Y, Liu X, Yang Y, Chen Z, Dong Z, Luo Y, Song Y. Application Value of Antimicrobial Peptides in Gastrointestinal Tumors. Int J Mol Sci 2023; 24:16718. [PMID: 38069041 PMCID: PMC10706433 DOI: 10.3390/ijms242316718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.
Collapse
Affiliation(s)
- Qi Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Wang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongxia He
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuewei Wu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yahan Yang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhizhi Chen
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhan Dong
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
6
|
Yang X, Hua C, Lin L, Ganting Z. Antimicrobial peptides as potential therapy for gastrointestinal cancers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2831-2841. [PMID: 37249612 DOI: 10.1007/s00210-023-02536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Since conventional therapy faces limitations in the field of different cancers as well as gastrointestinal cancers, that decrease the survival rate of patients, there is an urgent need to find new effective therapeutic approaches without the adverse effects of the traditional agents. Antimicrobial peptides (AMPs) attract much attention and are well known for their role in innate immunity. These peptides, in addition to their antimicrobial activity, exhibit strong anticancer potential against various types of malignancy. AMPs specifically target tumor cells and have selective toxicity for these cells without affecting normal cells. Here we aim to comprehensively overview the current knowledge in the field of using AMPs as novel therapeutic agents for gastrointestinal cancer.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Heping Hospital Attached to Changzhi Medical College, Changzhi, 046000, China
| | - Cui Hua
- Tangshan Fengnan District Traditional Chinese Medicine Hospital, Tangshan, 063000, China.
| | - Lin Lin
- Tangshan Hongci Hospital, Tangshan, 063000, China
| | - Zhao Ganting
- Heping Hospital Attached to Changzhi Medical College, Changzhi, 046000, China
| |
Collapse
|
7
|
Bo LY, Pan ZQ, Zhang Q, Song CL, Ren J, Zhao XH. Activity Changes of the Peptic Lactoferrin Hydrolysate in Human Gastric Cancer AGS Cells in Response to Cu(II) or Mn(II) Addition. Foods 2023; 12:2662. [PMID: 37509754 PMCID: PMC10378690 DOI: 10.3390/foods12142662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Lactoferrin is an interesting bioactive protein in milk and can interact with various metal ions of trace elements such as copper, iron, manganese, and others. In this study, a lactoferrin hydrolysate (LFH) was generated from commercial bovine lactoferrin by protease pepsin, fortified with Cu2+ (or Mn2+) at two levels of 0.64 and 1.28 (or 0.28 and 0.56) mg/g protein, respectively, and then measured for the resultant bioactivity changes in the well-differentiated human gastric cancer AGS cells. The assaying results indicated that the LFH and Cu/Mn-fortified products had long-term anti-proliferation on the cells, while the treated cells showed DNA fragmentation and increased apoptotic cell proportions. Regarding the control cells, the cells treated with the LFH and especially Cu/Mn-fortified LFH had remarkably up-regulated mRNA expression of caspase-3 and Bax by respective 1.21-3.23 and 2.23-2.83 folds, together with down-regulated mRNA expression Bcl-2 by 0.88-0.96 folds. Moreover, Western-blot assaying results also indicated that the cells exposed to the LFH and Cu/Mn-fortified LFH (especially Mn at higher level) for 24 h had an enhanced caspase-3 expression and increased ratio of Bax/Bcl-2. It can thus be concluded that the used Cu/Mn-addition to the LFH may lead to increased bioactivity in the AGS cells; to be more specific, the two metal ions at the used addition levels could endow LFH with a higher ability to cause cell apoptosis by activating caspase-3 and increasing the Bax/Bcl-2 ratio.
Collapse
Affiliation(s)
- Li-Ying Bo
- Faculty of Food Quality and Safety, Qiqihar University, Qiqihar 161006, China
| | - Zhi-Qin Pan
- Faculty of Food Quality and Safety, Qiqihar University, Qiqihar 161006, China
| | - Qiang Zhang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Chun-Li Song
- Faculty of Food Quality and Safety, Qiqihar University, Qiqihar 161006, China
| | - Jian Ren
- Faculty of Food Quality and Safety, Qiqihar University, Qiqihar 161006, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
8
|
El-Fakharany EM, Abu-Serie MM, Ibrahim A, Eltarahony M. Anticancer activity of lactoferrin-coated biosynthesized selenium nanoparticles for combating different human cancer cells via mediating apoptotic effects. Sci Rep 2023; 13:9579. [PMID: 37311791 PMCID: PMC10264462 DOI: 10.1038/s41598-023-36492-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
The present study aims to develop a novel nanocombination with high selectivity against several invasive cancer cells, sparing normal cells and tissues. Bovine lactoferrin (bLF) has recently captured the interest of numerous medical fields owing to its biological activities and well-known immunomodulatory effects. BLF is an ideal protein to be encapsulated or adsorbed into selenium nanocomposites (Se NPs) in order to produce stable nanocombinations with potent anticancer effects and improved immunological functions. The biosynthesis of the functionalized Se NPs was achieved using Rhodotorula sp. strain MZ312359 via a simultaneous bio-reduction approach to selenium sodium salts. The physicochemical properties of Se NPs using SEM, TEM, FTIR, UV Vis, XRD, and EDX confirmed the formation of uniform agglomerated spheres with a size of 18-40 nm. Se NPs were successfully embedded in apo-LF (ALF), forming a novel nanocombination of ALF-Se NPs with a spherical shape and an average nanosize of less than 200 nm. The developed ALF-Se NPs significantly displayed an effective anti-proliferation efficiency against many cancer cells, including MCF-7, HepG-2, and Caco-2 cell lines, as compared to Se NPs and ALF in free forms. ALF-Se NPs showed a significant selectivity impact (> 64) against all treated cancer cells at IC50 63.10 ≤ μg/mL, as well as the strongest upregulation of p53 and suppression of Bcl-2, MMP-9, and VEGF genes. Besides, ALF-Se NPs were able to show the maximum activation of transcrition of key redox mediator (Nrf2) with suppression in reactive oxygen species (ROS) levels inside all treated cancer cells. This study demonstrates that this novel nanocombination of ALF-Se NPs has superior selectivity and apoptosis-mediating anticancer activity over free ALF or individual form of Se NPs.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab, 21934, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GE‑BRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab, 21934, Alexandria, Egypt
| | - Amany Ibrahim
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
- Department of Biology, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- Ain Shams University, Cairo, Egypt
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab, 21934, Alexandria, Egypt
| |
Collapse
|
9
|
Pakbin B, Allahyari S, Dibazar SP, Zolghadr L, Chermahini NK, Brück WM, Brück TB, Mahmoudi R. Effects of Probiotic Saccharomyces boulardii Supernatant on Viability, Nano-Mechanical Properties of Cytoplasmic Membrane and Pro-Inflammatory Gene Expression in Human Gastric Cancer AGS Cells. Int J Mol Sci 2023; 24:ijms24097945. [PMID: 37175663 PMCID: PMC10178855 DOI: 10.3390/ijms24097945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Gastric cancer has been recognized as the second most probable cause of death in humans from cancer diseases around the world. Postbiotics, supernatant, and metabolites from probiotic microorganisms have recently been used widely to prevent and treat cancer diseases in humans, without any undesirable side effects. This study explores the antiproliferative and antitumor activities of the probiotic Saccharomyces cerevisiae var. boulardii supernatant (SBS) against AGS cancer cells, a human gastric adenocarcinoma cell line. METHODS We evaluated cell growth inhibitory and mechanical properties of the cytoplasmic membrane and the downregulation of survivin and proinflammatory genes in AGS cells treated with SBS after 24 and 48 h. RESULTS SBS significantly inhibits the AGS cell growth, and the concentrations with IC50 values after 24 and 48 h treatments are measured as 2266 and 1956 µg/mL, respectively. Regarding the AFM images and Young`s modulus analysis, SBS significantly induces morphological changes in the cytoplasmic membrane of the treated AGS cells. Expression of survivin, NFƙB, and IL-8 genes is significantly suppressed in AGS cells treated with SBS. CONCLUSIONS Considering the antitumor activities of SBS on AGS cell line, it can be regarded as a prospective therapeutic and preventive strategy against human stomach cancer disease.
Collapse
Affiliation(s)
- Babak Pakbin
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
- Werner-Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching bei München, Germany
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 34197-59811, Iran
| | - Samaneh Allahyari
- Werner-Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching bei München, Germany
| | | | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University, Qazvin 34149-16818, Iran
| | - Neda Karami Chermahini
- Department of Medicine Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Science, Qazvin 34197-59811, Iran
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| | - Thomas B Brück
- Werner-Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching bei München, Germany
| | - Razzagh Mahmoudi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 34197-59811, Iran
| |
Collapse
|
10
|
Ohradanova-Repic A, Praženicová R, Gebetsberger L, Moskalets T, Skrabana R, Cehlar O, Tajti G, Stockinger H, Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics 2023; 15:1056. [PMID: 37111542 PMCID: PMC10146187 DOI: 10.3390/pharmaceutics15041056] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Praženicová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tetiana Moskalets
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Ondrej Cehlar
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Gabor Tajti
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| |
Collapse
|
11
|
Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes. Pharmaceutics 2022; 14:2808. [PMID: 36559301 PMCID: PMC9785269 DOI: 10.3390/pharmaceutics14122808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Drug delivery systems are believed to increase pharmaceutical efficacy and the therapeutic index by protecting and stabilizing bioactive molecules, such as protein and peptides, against body fluids' enzymes and/or unsuitable physicochemical conditions while preserving the surrounding healthy tissues from toxicity. Liposomes are biocompatible and biodegradable and do not cause immunogenicity following intravenous or topical administration. Still, their most important characteristic is the ability to load any drug or complex molecule uncommitted to its hydrophobic or hydrophilic character. Selecting lipid components, ratios and thermo-sensitivity is critical to achieve a suitable nano-liposomal formulation. Nano-liposomal surfaces can be tailored to interact successfully with target cells, avoiding undesirable associations with plasma proteins and enhancing their half-life in the bloodstream. Macropinocytosis-dynamin-independent, cell-membrane-cholesterol-dependent processes, clathrin, and caveolae-independent mechanisms are involved in liposome internalization and trafficking within target cells to deliver the loaded drugs to modulate cell function. A successful translation from animal studies to clinical trials is still an important challenge surrounding the approval of new nano-liposomal drugs that have been the focus of investigations. Precision medicine based on the design of functionalized nano-delivery systems bearing highly specific molecules to drive therapies is a promising strategy to treat degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Vania Margaret Flosi Paschoalin
- Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Quimica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149-sala 545-Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
12
|
Thampy A, Palani Kumar MK, Serva Peddha M, Reddy M. The effectiveness of whey proteins in prevention and treatment of cancer: a review. Crit Rev Food Sci Nutr 2022; 64:2088-2104. [PMID: 36111369 DOI: 10.1080/10408398.2022.2121256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cancer prevalence is rising rapidly around the globe, contributing immensely to the burden on health systems, hence the search for more effective and selective treatments still remains enticing. Whey, as a natural source, has received extensive focus in recent years because of its intriguing applications to health benefits. Growing consumer appreciation of the nutraceutical effects of whey components makes them an attractive field within cancer research. Whey is a valuable source of superior-quality proteins, lactose, vitamins, and minerals that contribute to proper nutrition as well as help hamper illness and even complement certain disease-related therapy prognosis. As a result, industry leaders and dairy producers are devising new ways to valorize it. Great emphasis on cancer prevention and treatment has been given to whey protein (WP) by the scientific community. WP intake has been proven to induce anti-cancer effects in various in vitro and in vivo studies. Nutritionists and dietitians are now enormously endorsing the role of WP in the therapeutic field, notably for cancer cachexia management. However, human intervention studies with WP are in their infancy and remain to be established with different tumor entities to provide valid proof of its ability to act as a coadjuvant in cancer treatment.
Collapse
Affiliation(s)
- Anjana Thampy
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India
| | - Meena Kumari Palani Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Muthukumar Serva Peddha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Madhavi Reddy
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India
| |
Collapse
|
13
|
Bovine Lactoferrin Induces Cell Death in Human Prostate Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2187696. [PMID: 36092155 PMCID: PMC9463017 DOI: 10.1155/2022/2187696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
Bovine lactoferrin (bLf) is a multifunctional protein widely associated with anticancer activity. Prostate cancer is the second most frequent type of cancer worldwide. This study was aimed at evaluating the influence of bLf on cell viability, cell cycle progression, reactive oxygen species (ROS) production, and rate of apoptosis in the human prostate cancer cell line (DU-145). MTT assay and trypan blue exclusion were used to analyze cell viability. Morphological changes were analyzed through optical microscopy after 24 h and 48 h of bLf treatment. FITC-bLf internalization and cellular damage were observed within 24 h by confocal fluorescence microscopy. Cell cycle analyses were performed by flow cytometry and propidium iodide. For caspases 3/7 activation and reactive oxygen species production evaluation, cells were live-imaged using the high-throughput system Operetta. The cell viability assays demonstrated that bLf induces cell death and morphological changes after 24 h and 48 h of treatment compared to control on DU-145 cells. The bLf internalization was detected in DU-145 cells, G1-phase arrest of the cell cycle, caspase 3/7 activation, and increased oxidative stress on bLf-treated cells. Our data support that bLf has an important anticancer activity, thus offering new perspectives in preventing and treating prostate cancer.
Collapse
|
14
|
Antibacterial and Anticancer Activities of Pleurocidin-Amide, a Potent Marine Antimicrobial Peptide Derived from Winter Flounder, Pleuronectes americanus. Mar Drugs 2022; 20:md20080519. [PMID: 36005521 PMCID: PMC9409841 DOI: 10.3390/md20080519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
The extensive use of conventional antibiotics has led to the growing emergence of many resistant strains of pathogenic bacteria. Evidence suggests that cationic antimicrobial peptides (AMPs) have the greatest potential to serve as traditional antibiotic substitutes. Recent studies have also reported that certain AMPs have selective toxicity toward various types of cancer cells. The electrostatic attraction between the negatively charged membrane components and AMPs is believed to play a crucial role in the disruption of bacterial and cancer cell membranes. In the current study, we used a potent AMP called Pleurocidin (Ple) derived from winter flounder Pleuronectes americanus and its C-terminal-amidated derivative Pleurocidin-amide (Ple-a), and evaluated their antibacterial and anticancer activities. Our results indicated that both Ple and Ple-a exhibited significant antibacterial activity against a broad spectrum of Gram-positive and Gram-negative bacteria, especially marine pathogens, with MIC values ranging from 0.25 to 32 μg/mL. These peptides are also potent against several multidrug-resistant (MDR) bacterial strains, with MIC values ranging from 2 to 256 μg/mL. When used in combination with certain antibiotics, they exhibited a synergistic effect against MDR E. coli. Ple and Ple-a also showed notable cytotoxicity toward various cancer cell lines, with IC50 values ranging from 11 to 340 μM, while normal mouse fibroblast 3T3 cells were less susceptible to these peptides. Ple-a was then selected to study its anticancer mechanism toward A549 human lung adenocarcinoma cells. Western blot analysis and confocal microscopy showed that Ple-a could inhibit autophagy of A549 cells, and induce apoptosis 48 h after treatment. Our findings provided support for the future application of Ple-a as potential therapeutic agent for bacterial infections and cancer treatment.
Collapse
|
15
|
El-Fakharany EM, Abu-Serie MM, Habashy NH, Eltarahony M. Augmenting apoptosis-mediated anticancer activity of lactoperoxidase and lactoferrin by nanocombination with copper and iron hybrid nanometals. Sci Rep 2022; 12:13153. [PMID: 35915221 PMCID: PMC9343395 DOI: 10.1038/s41598-022-17357-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
There is an urgent need in the medicinal fields to discover biocompatible nanoformulations with low cytotoxicity, which provide new strategies for promising therapies for several types of tumors. Bovine lactoperoxidase (LP) and lactoferrin (LF) have recently attracted attention in medicine for their antitumor activities with recognized safety pattern. Both LP and LF are suitable proteins to be coated or adsorbed to Cu and Fe nanometals for developing stable nanoformulations that boost immunity and strong anticancer effects. New nanometals of Cu and Fe NPs embedded in LP and LF forming novel nanocombinations of LP-CNPs and LF-FNPs had a spherical shape with an average nanosize of about 21 nm. The combination of LP-CNPs and LF-FNPs significantly exhibited the highest growth inhibitory efficacy, in terms of effectively lowering the half-maximal inhibitory concentration (IC50) values, against Caco-2, HepG2 and MCF7 cells comparing to nanometals, LP, LF and individual nanoproteins (LP-CNPs or LF-FNPs). The highest apoptotic effect of this nanocombination (LP-CNPs and LF-FNPs) was confirmed by the highest percentages of annexin-stained apoptotic cells and G0 population with the strongest alteration in the expression of two well-characterized apoptosis guards (p53 and Bcl-2) and the maximum suppression in the proliferation marker (Ki-67). Also, the in silico analysis predicted that LP-CNPs and LF-FNPs enhanced AMP-activated protein kinase (AMPK, p53 activator) activity and inhibited cancer migration-related proteases (cathepsin B and matrix metalloproteinase (MMP)-9). Our results offer for the first time that these novel nanocombinations of LP and LF were superior in their selectivity and apoptosis-mediating anticancer activity to Cu and Fe nanometals as well as the free form of these proteins or their individual nanoforms.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, 21934, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GE-BRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, 21934, Alexandria, Egypt.
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, New Borg El-Arab, 21511, Alexandria, Egypt
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| |
Collapse
|
16
|
Barragán-Cárdenas AC, Insuasty-Cepeda DS, Cárdenas-Martínez KJ, López-Meza J, Ochoa-Zarzosa A, Umaña-Pérez A, Rivera-Monroy ZJ, García-Castañeda JE. LfcinB-Derived Peptides: Specific and punctual change of an amino acid in monomeric and dimeric sequences increase selective cytotoxicity in colon cancer cell lines. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
17
|
Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int J Mol Sci 2022; 23:ijms23095248. [PMID: 35563638 PMCID: PMC9105968 DOI: 10.3390/ijms23095248] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Structural abnormalities causing DNA modifications of the ethene and propanoadducts can lead to mutations and permanent damage to human genetic material. Such changes may cause premature aging and cell degeneration and death as well as severe impairment of tissue and organ function. This may lead to the development of various diseases, including cancer. In response to a damage, cells have developed defense mechanisms aimed at preventing disease and repairing damaged genetic material or diverting it into apoptosis. All of the mechanisms described above are part of the repertoire of action of Lactoferrin—an endogenous protein that contains iron in its structure, which gives it numerous antibacterial, antiviral, antifungal and anticancer properties. The aim of the article is to synthetically present the new and innovative role of lactoferrin in the protection of human genetic material against internal and external damage, described by the modulation mechanisms of the cell cycle at all its levels and the mechanisms of its repair.
Collapse
|
18
|
Bielecka M, Cichosz G, Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Fan H, Ou Q, Su Q, Li G, Deng Z, Huang X, Bi J. ZIPK activates the IL-6/STAT3 signaling pathway and promotes cisplatin resistance in gastric cancer cells. FEBS Open Bio 2021; 11:2655-2667. [PMID: 34375503 PMCID: PMC8409285 DOI: 10.1002/2211-5463.13270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Gastric cancer is one of the most common malignant cancers globally. Chemotherapy resistance remains a major obstacle in the treatment of gastric cancer, and the molecular mechanisms underlying drug resistance are still not well understood. We previously reported that Zipper interacting protein kinase (ZIPK), also known as death‐associated protein kinase3, exerts an oncogenic effect on gastric cancer via activation of Akt/NF‐κB signaling and promotion of stemness. Here, we explored the roles of ZIPK in cisplatin resistance. We report that ZIPK enhances cell proliferation and invasion and reduces the antitumor activity of cisplatin in gastric cancer. In addition, our western blot data suggest that ZIPK activated the IL‐6/STAT3 signaling pathway. Furthermore, ZIPK increased the expression of IL‐6 and multidrug‐resistance genes. Using the STAT3 inhibitor stattic to block the IL‐6/STAT3 signaling pathway strongly increased the sensitivity of ZIPK‐expressed cells to cisplatin. In conclusion, ZIPK may play a role in cisplatin resistance through activation of the IL‐6/ STAT3 signaling pathway. Inhibition of STAT3 in gastric cancer overexpressing ZIPK might have potential to improve the efficacy of cisplatin.
Collapse
Affiliation(s)
- Haonan Fan
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qifeng Ou
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiao Su
- Laboratory Animal Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guanman Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhijuan Deng
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Ultrasound Medical Center, the First people's Hospital of Chenzhou, Chenzhou, China
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiong Bi
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Rahman R, Fonseka AD, Sua S, Ahmad M, Rajendran R, Ambu S, Davamani F, Khoo AS, Chitra E. Inhibition of breast cancer xenografts in a mouse model and the induction of apoptosis in multiple breast cancer cell lines by lactoferricin B peptide. J Cell Mol Med 2021; 25:7181-7189. [PMID: 34236134 PMCID: PMC8335703 DOI: 10.1111/jcmm.16748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 01/03/2023] Open
Abstract
Breast cancer has a diverse aetiology characterized by the heterogeneous expression of hormone receptors and signalling molecules, resulting in varied sensitivity to chemotherapy. The adverse side effects of chemotherapy coupled with the development of drug resistance have prompted the exploration of natural products to combat cancer. Lactoferricin B (LfcinB) is a natural peptide derived from bovine lactoferrin that exhibits anticancer properties. LfcinB was evaluated in vitro for its inhibitory effects on cell lines representing different categories of breast cancer and in vivo for its suppressive effects on tumour xenografts in NOD-SCID mice. The different breast cancer cell lines exhibited varied levels of sensitivity to apoptosis induced by LfcinB in the order of SKBR3>MDA-MB-231>MDA-MB-468>MCF7, while the normal breast epithelial cells MCF-10A were not sensitive to LfcinB. The peptide also inhibited the invasion of the MDA-MB-231 and MDA-MB-468 cell lines. In the mouse xenograft model, intratumoural injections of LfcinB significantly reduced tumour growth rate and tumour size, as depicted by live imaging of the mice using in vivo imaging systems (IVIS). Harvested tumour volume and weight were significantly reduced by LfcinB treatment. LfcinB, therefore, is a promising and safe candidate that can be considered for the treatment of breast cancer.
Collapse
Affiliation(s)
- Rizdwan Rahman
- School of Post Graduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | | | - Shiang‐Chia Sua
- School of MedicineInternational Medical UniversityKuala LumpurMalaysia
| | - Munirah Ahmad
- Molecular Pathology UnitCancer Research CentreInstitute for Medical ResearchNational Institutes of HealthMinistry of Health MalaysiaShah Alam, SelangorMalaysia
| | | | - Stephen Ambu
- School of Post Graduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Fabian Davamani
- School of Health SciencesInternational Medical UniversityKuala LumpurMalaysia
| | - Alan Soo‐Beng Khoo
- School of Post Graduate StudiesInternational Medical UniversityKuala LumpurMalaysia
- Molecular Pathology UnitCancer Research CentreInstitute for Medical ResearchNational Institutes of HealthMinistry of Health MalaysiaShah Alam, SelangorMalaysia
- Institute for ResearchDevelopment and InnovationInternational Medical UniversityKuala LumpurMalaysia
| | - Ebenezer Chitra
- School of Health SciencesInternational Medical UniversityKuala LumpurMalaysia
| |
Collapse
|
21
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
22
|
Sienkiewicz M, Jaśkiewicz A, Tarasiuk A, Fichna J. Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit Rev Food Sci Nutr 2021; 62:6016-6033. [PMID: 33685299 DOI: 10.1080/10408398.2021.1895063] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (LF), a glycoprotein found in mucosal secretions, is characterized by a wide range of functions, including immunomodulatory and anti-inflammatory activities. Moreover, several investigations confirmed that LF displays high effectiveness against multiple bacteria and viruses and may be regarded as a potential inhibitor of enveloped viruses, such as presently prevailing SARS-CoV-2. In our review, we discuss available studies about LF functions and bioavailability of different LF forms in in vitro and in vivo models. Moreover, we characterize the potential benefits and side effects of LF use; we also briefly summarize the latest clinical trials examining LF application. Finally, we point potential role of LF in inflammatory bowel disease and indicate its use as a marker for disease severity.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Jaśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
23
|
Zhong C, Zhang L, Yu L, Huang J, Huang S, Yao Y. A Review for Antimicrobial Peptides with Anticancer Properties: Re-purposing of Potential Anticancer Agents. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract In recent years, various research on cancer treatment has achieved significant progress. However, some of these treatments remain disputable because of the emergence and development of drug resistance, and the toxic side effects that were brought about by the lack
of selectivity displayed by the treatments. Hence, there is considerable interest in a new class of anticancer molecules that is currently still under investigation termed the cationic antimicrobial peptides (AMPs). AMPs are a group of pervasive components of the innate immunity which can
be found throughout all classes of life. The small innate peptides cover a broad spectrum of antibacterial activities due to their electrostatic interactions with the negatively charged bacterial membrane. Compared with normal cells, cancer cells have increased proportions of negatively charged
molecules, including phosphatidylserine, glycoproteins, and glycolipids, on the outer plasma membrane. This provides an opportunity for exploiting the interaction between AMPs and negatively charged cell membranes in developing unconventional anticancer strategies. Some AMPs may also be categorized
into a group of potential anticancer agents called cationic anticancer peptides (ACPs) due to their relative selectivity in cell membrane penetration and lysis, which is similar to their interaction with bacterial membranes. Several examples of ACPs that are used in tumor therapy for their
ability in penetrating or lysing tumor cell membrane will be reviewed in this paper, along with a discussion on the recent advances and challenges in the application of ACPs.
Collapse
Affiliation(s)
- Cuiyu Zhong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lin Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiandong Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Songyin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yandan Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
24
|
Barragán‐Cárdenas A, Insuasty‐Cepeda DS, Niño‐Ramírez VA, Umaña‐Pérez A, Ochoa‐Zarzosa A, López‐Meza JE, Rivera‐Monroy ZJ, García‐Castañeda JE. The Nonapeptide RWQWRWQWR: A Promising Molecule for Breast Cancer Therapy. ChemistrySelect 2020. [DOI: 10.1002/slct.202002101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Adriana Umaña‐Pérez
- Chemistry DepartmentUniversidad Nacional de Colombia Carrera 45 No. 26–85, Building 451
| | - Alejandra Ochoa‐Zarzosa
- Multidisciplinary Centre for Studies in BiotechnologyUniversidad Michoacana de San Nicolás de Hidalgo Km 9.5 Carretera Morelia-Zinapécuaro
| | - Joel E. López‐Meza
- Multidisciplinary Centre for Studies in BiotechnologyUniversidad Michoacana de San Nicolás de Hidalgo Km 9.5 Carretera Morelia-Zinapécuaro
| | | | | |
Collapse
|
25
|
Insuasty-Cepeda DS, Barragán-Cárdenas AC, Ochoa-Zarzosa A, López-Meza JE, Fierro-Medina R, García-Castañeda JE, Rivera-Monroy ZJ. Peptides Derived from (RRWQWRMKKLG) 2-K- Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. Int J Mol Sci 2020; 21:E4550. [PMID: 32604743 PMCID: PMC7352952 DOI: 10.3390/ijms21124550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The effect on the cytotoxicity against breast cancer cell lines of the substitution of 26Met residue in the sequence of the Bovine Lactoferricin-derived dimeric peptide LfcinB (20-30)2: (20RRWQWRMKKLG30)2-K-Ahx with amino acids of different polarity was evaluated. The process of the synthesis of the LfcinB (20-30)2 analog peptides was similar to the original peptide. The cytotoxic assays showed that some analog peptides exhibited a significant cytotoxic effect against breast cancer cell lines HTB-132 and MCF-7, suggesting that the substitution of the Met with amino acids of a hydrophobic nature drastically enhances its cytotoxicity against HTB-132 and MCF-7 cells, reaching IC50 values up to 6 µM. In addition, these peptides have a selective effect, since they exhibit a lower cytotoxic effect on the non-tumorigenic cell line MCF-12. Interestingly, the cytotoxic effect is fast (90 min) and is maintained for up to 48 h. Additionally, through flow cytometry, it was found that the obtained dimeric peptides generate cell death through the apoptosis pathway and do not compromise the integrity of the cytoplasmic membrane, and there are intrinsic apoptotic events involved. These results show that the obtained peptides are extremely promising molecules for the future development of drugs for use against breast cancer.
Collapse
Affiliation(s)
- Diego Sebastián Insuasty-Cepeda
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia; (D.S.I.-C.); (A.C.B.-C.); (R.F.-M.)
| | - Andrea Carolina Barragán-Cárdenas
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia; (D.S.I.-C.); (A.C.B.-C.); (R.F.-M.)
| | - Alejandra Ochoa-Zarzosa
- Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, P.C. 58893 Morelia, Michoacán, Mexico; (A.O.-Z.); (J.E.L.-M.)
| | - Joel E. López-Meza
- Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, P.C. 58893 Morelia, Michoacán, Mexico; (A.O.-Z.); (J.E.L.-M.)
| | - Ricardo Fierro-Medina
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia; (D.S.I.-C.); (A.C.B.-C.); (R.F.-M.)
| | - Javier Eduardo García-Castañeda
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 450, Bogotá 11321, Colombia;
| | - Zuly Jenny Rivera-Monroy
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia; (D.S.I.-C.); (A.C.B.-C.); (R.F.-M.)
| |
Collapse
|
26
|
Ibrahim HM, Mohamed AH, Salem ML, Osman GY, Morsi DS. Anti-neoplastic and immunomodulatory potency of co-treatment based on bovine lactoferrin and/or muramyl dipeptide in tumor-bearing mice. Toxicol Res (Camb) 2020; 9:137-147. [PMID: 32440345 PMCID: PMC7233322 DOI: 10.1093/toxres/tfaa012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
The current study investigates anti-neoplastic and immunomodulatory activities of co-treatment based on bovine lactoferrin (bLF) and/or muramyl dipeptide (MDP) with or without cisplatin (Cis) in tumor-bearing mice. In the present study, bLF (100 mg/kg; orally) and MDP (0.5 mg/kg; subcutaneously) was administered alone or together. MDP or bLF was co-treated with Cis (1 mg/kg; intraperitoneally) in mice-bearing Ehrlich solid carcinoma. Tumor size, tumor mass proliferation, apoptosis using immunohistochemistry, the alteration in spleen cell proliferation, phenotype using flow cytometry and white blood cells total and differential counts were detected. Treatment with Cis or (bLF and MDP) significantly reduced tumor size, upregulated the pro-apoptotic p53 expression and downregulated the anti-apoptotic Bcl-2 and proliferative marker PCNA expression compared to non-treated tumor-bearing animals. Moreover, co-treatment of MDP and Cis significantly potentiated the reduction of the tumor size, downregulated the Bcl-2 and PCNA expression and upregulated the p53 expression compared to Cis-treated animals. While bLF and Cis co-treatment positively controlled PCNA and p53 expression compared to tumor-bearing animals, it significantly potentiated the reduction of the tumor size and downregulated the Bcl-2 expression compared to Cis-treated animals. Co-treatment of (bLF and MDP), (bLF and Cis) or (MDP and Cis) increased the spleen cell proliferation and altered the immunological profile of the CD3+CD4+, CD3+CD8+, CD3+CD4+CD69+, CD3+CD8+CD69+ and CD11b+Ly6G+ cells to achieve better immune response against tumor. In conclusion, co-treatments based on bLF and/or MDP are promising therapies against cancer, through their potency to control proliferation, enhance apoptosis and improve the immune status against tumor cells.
Collapse
Affiliation(s)
- Hany M Ibrahim
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Azza H Mohamed
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Mohamed L Salem
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Center of Excellence in Cancer Research, Tanta University, Tanta 31527, Egypt
| | - Gamalat Y Osman
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Dalia S Morsi
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| |
Collapse
|
27
|
Barragán-Cárdenas A, Urrea-Pelayo M, Niño-Ramírez VA, Umaña-Pérez A, Vernot JP, Parra-Giraldo CM, Fierro-Medina R, Rivera-Monroy Z, García-Castañeda J. Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin. RSC Adv 2020; 10:17593-17601. [PMID: 35515633 PMCID: PMC9053608 DOI: 10.1039/d0ra02688c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 01/09/2023] Open
Abstract
The cytotoxic effect against the breast cancer cell line MDA-MB-468 of the palindromic peptide LfcinB (21–25)Pal: 1RWQWRWQWR9 and its analogous peptides, obtained via alanine scanning, was evaluated. The results indicate that the palindromic peptide exhibited a concentration-dependent cytotoxic effect against this cell line. The cytotoxic effect of the palindromic peptide was fast and selective and was sustained for up to 48 h of treatment. MDA-MB-468 cells treated with the palindromic peptide exhibited severe cellular damage, acquiring rounded forms and shrinkage, a behavior typical of apoptotic events. The analogous peptides exhibited fewer cytotoxic effects than the original palindromic peptide, suggesting that the substitution of any amino acid with alanine diminishes the cytotoxic effect. The Arg and Trp residues proved to be the most relevant for the cytotoxic effect; the analogous peptides with substitutions of Trp with Ala did not induce a change in cellular morphology, while analogous peptides with substitutions of Arg or Gln with Ala induced cellular damage. Also, neither the palindromic peptide nor its analogues exerted a significant cytotoxic effect on normal fibroblasts, indicating that the peptides had a selective cytotoxic effect on cancerous cells. The peptide LfcinB (21–25)Pal, and its analogues exhibited antibacterial activity against E. coli and S. aureus strains and a selective cytotoxic effect against the breast cancer cell line MDA-MB-468. The cytotoxic effect against the breast cancer cell line MDA-MB-468 of the palindromic peptide LfcinB (21–25)Pal: 1RWQWRWQWR9 and its analogous peptides, obtained via alanine scanning, was evaluated.![]()
Collapse
Affiliation(s)
| | | | | | | | - Jean Paul Vernot
- Facultad de Medicina
- Departamento de Ciencias fisiológicas
- Universidad Nacional de Colombia
- 11321 Bogotá
- Colombia
| | | | | | - Zuly Rivera-Monroy
- Facultad de Ciencias
- Universidad Nacional de Colombia
- 11321 Bogotá
- Colombia
| | | |
Collapse
|
28
|
Sharma A, Shandilya UK, Sodhi M, Mohanty AK, Jain P, Mukesh M. Evaluation of Milk Colostrum Derived Lactoferrin of Sahiwal ( Bos indicus) and Karan Fries (Cross-Bred) Cows for Its Anti-Cancerous Potential. Int J Mol Sci 2019; 20:E6318. [PMID: 31847364 PMCID: PMC6940737 DOI: 10.3390/ijms20246318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
Lactoferrin (Lf) is an iron-binding glycoprotein protein known to have immune-modulatory role and recently, its anticancerous effect against different cancer cell types was emphasized. In the present investigation, a comparative evaluation of anticancer potential of colostrum-derived lactoferrin from Indian native zebu cow (Sahiwal, SAC), crossbred (Karan Fries, KFC) and commercially available (C-Lf) lactoferrin from exotic cow using cellular models was made. A protocol was standardized successfully to purify Lf protein from colostrum of both breeds using HPLC and purity was confirmed by LC-MS. A standardized dose of 750 µg/mL Lf was used to treat two cell types MDA-MB-231 and MCF-7 with Lf from three different sources; SAC-Lf, KFC-Lf and C-Lf for 48 h and 72 h. Different cellular parameters including cytotoxicity, viability, apoptosis and cell proliferation were determined. Comparatively, Lf from commercial source (C-Lf) had maximum effect in both cell types followed by SAC-Lf and KFC-Lf. Further, transcriptional changes in genes associated with apoptosis (Bax and Bcl-2), tumor progression (p53, p21, CD44 and NF-κβ) and survival (survivin) were evaluated in Lf treatment. The overall results strongly emphasized to the fact that Lf purified from cow colostrum has the capacity to inhibit the in vitro growth of cancerous cell lines albeit to a varied extent.
Collapse
Affiliation(s)
- Ankita Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, India; (A.S.); (U.K.S.); (M.S.)
- University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra 136118, India;
- Department of Animal Biosceinces, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Umesh K Shandilya
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, India; (A.S.); (U.K.S.); (M.S.)
- Department of Animal Biosceinces, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Monika Sodhi
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, India; (A.S.); (U.K.S.); (M.S.)
| | - Ashok K Mohanty
- ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India;
| | - Pranay Jain
- University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra 136118, India;
| | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, India; (A.S.); (U.K.S.); (M.S.)
| |
Collapse
|
29
|
Guerra JR, Cárdenas AB, Ochoa-Zarzosa A, Meza JL, Umaña Pérez A, Fierro-Medina R, Rivera Monroy ZJ, García Castañeda JE. The tetrameric peptide LfcinB (20-25) 4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line. RSC Adv 2019; 9:20497-20504. [PMID: 35515557 PMCID: PMC9065741 DOI: 10.1039/c9ra04145a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 12/29/2022] Open
Abstract
The cytotoxic effect of the tetrameric peptide LfcinB (20-25)4 against breast cancer cell line ATCC® HTB-22™ (MCF-7) was evaluated. The tetrameric peptide exhibited a concentration-dependent cytotoxic effect against MCF-7 cancer cells. The peptide at 22 µM had the maximum cytotoxic effect against MCF-7 cancer cells, reducing their cell viability to ∼20%. The cytotoxic effect of the tetrameric peptide against MCF-7 cells was sustained for 24 hours. Furthermore, the tetrameric peptide did not exhibit a significant cytotoxic effect against the non-tumorogenic trophoblastic cell line, which confirms their selectivity for breast cancer cell lines. The MCF-7 cells treated at 12.2 µM for 1 h exhibited morphological changes characteristic of apoptosis, such as rounded forms and cellular shrinkage. Furthermore, this peptide induces severe cellular damage to MCF-7 cells, mitochondrial membrane depolarization, and increase of cytoplasmic calcium concentration. Our results suggest that it has a significant selective cytotoxic effect against MCF-7 cells, which may be mainly associated with the apoptotic pathway. This peptide, which contains the RRWQWR motif, could be considered to be a promising candidate for developing therapeutic agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jorge Rodríguez Guerra
- Pharmacy Department, Universidad Nacional de Colombia Carrera 45 No. 26-85, Building 450, Office 213 11321 Bogotá Colombia +57-1-316-5000 ext. 14436
| | - Andrea Barragán Cárdenas
- Chemistry Department, Universidad Nacional de Colombia Carrera 45 No. 26-85, Building 451, Office 409 11321 Bogotá Colombia
| | - Alejandra Ochoa-Zarzosa
- Multidisciplinary Center for Studies in Biotechnology, Faculty of Veterinary Medicine and Zootechnics, Universidad Michoacana de San Nicolás de Hidalgo Km 9.5 Carretera Morelia-Zinapécuaro Mexico
| | - Joel López Meza
- Multidisciplinary Center for Studies in Biotechnology, Faculty of Veterinary Medicine and Zootechnics, Universidad Michoacana de San Nicolás de Hidalgo Km 9.5 Carretera Morelia-Zinapécuaro Mexico
| | - Adriana Umaña Pérez
- Chemistry Department, Universidad Nacional de Colombia Carrera 45 No. 26-85, Building 451, Office 409 11321 Bogotá Colombia
| | - Ricardo Fierro-Medina
- Chemistry Department, Universidad Nacional de Colombia Carrera 45 No. 26-85, Building 451, Office 409 11321 Bogotá Colombia
| | - Zuly Jenny Rivera Monroy
- Chemistry Department, Universidad Nacional de Colombia Carrera 45 No. 26-85, Building 451, Office 409 11321 Bogotá Colombia
| | - Javier Eduardo García Castañeda
- Pharmacy Department, Universidad Nacional de Colombia Carrera 45 No. 26-85, Building 450, Office 213 11321 Bogotá Colombia +57-1-316-5000 ext. 14436
| |
Collapse
|
30
|
Bo LY, Li TJ, Zhao XH. Copper or Manganese Supplementation Endows the Peptic Hydrolysate from Bovine Lactoferrin with Enhanced Activity to Human Gastric Cancer AGS Cells. Biol Trace Elem Res 2019; 189:64-74. [PMID: 30069694 DOI: 10.1007/s12011-018-1468-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/27/2018] [Indexed: 01/14/2023]
Abstract
A lactoferrin hydrolysate (LFH) was generated from bovine lactoferrin by pepsin, mixed with Cu2+ and Mn2+ at 0.64-1.28 and 0.28-0.56 mg/g protein, respectively; and then their in vitro effects on human gastric cancer AGS cells were assessed. With incubation times of 24 or 48 h, LFH and its Cu2+/Mn2+ mixtures at 10-30 mg/mL in dose-dependent manner inhibited cell growth; and more, these mixtures showed higher activities than LFH alone. Cell treatments of LFH and the mixtures (25 mg/mL) for 24 h could arrest cell cycle at G0/G1-phase, damage mitochondrial membrane integrity, and induce apoptosis, while the mixtures were also more powerful than LFH to exert these three effects. Higher Cu2+/Mn2+ supplementation level resulted in higher growth inhibition, cell cycle arrest, mitochondrial membrane potential disruption, and apoptosis induction; furthermore, Mn2+ was notable for its higher efficacy than Cu2+ to increase these four effects. Western-blot assay results revealed that four apoptosis-related proteins Bad, Bax, cytochrome c, and p53 were up-regulated, and both caspase-3 and caspase-9 also were cleaved and activated; moreover, two autophagy-related proteins LC3-II and cleaved Beclin-1 were down- and up-regulated, respectively. It is thus concluded that Cu2+ and especially Mn2+ could endow supplemented LFH with increased anti-cancer effects in AGS cells, with two proposed events as enhanced apoptosis induction (via activating apoptosis-related proteins) and autophagy inhibition (via activating autophagy-related proteins).
Collapse
Affiliation(s)
- Li-Ying Bo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tie-Jing Li
- College of Light Industry, Liaoning University, Shenyang, 110136, People's Republic of China.
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
31
|
Pepsin-catalyzed plastein reaction with tryptophan increases the in vitro activity of lactoferrin hydrolysates with BGC-823 cells. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
32
|
Bo LY, Li TJ, Zhao XH. Effect of Cu/Mn-Fortification on In Vitro Activities of the Peptic Hydrolysate of Bovine Lactoferrin against Human Gastric Cancer BGC-823 Cells. Molecules 2019; 24:E1195. [PMID: 30934696 PMCID: PMC6480624 DOI: 10.3390/molecules24071195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/22/2022] Open
Abstract
Bovine lactoferrin hydrolysate (BLH) was prepared with pepsin, fortified with Cu2+ (Mn2+) 0.64 and 1.28 (0.28 and 0.56) mg/g protein, and then assessed for their activity against human gastric cancer BGC-823 cells. BLH and the four fortified BLH products dose- and time-dependently had growth inhibition on the cells in both short- and long-time experiments. These samples at dose level of 25 mg/mL could stop cell-cycle progression at the G0/G1-phase, damage mitochondrial membrane, and induce cell apoptosis. In total, the fortified BLH products had higher activities in the cells than BLH alone. Moreover, higher Cu/Mn fortification level brought higher effects, and Mn was more effective than Cu to increase these effects. In the treated cells, the apoptosis-related proteins such as Bad, Bax, p53, cytochrome c, caspase-3, and caspase-9 were up-regulated, while Bcl-2 was down-regulated. Caspase-3 activation was also evidenced using a caspase-3 inhibitor, z-VAD-fmk. Thus, Cu- and especially Mn-fortification of BLH brought health benefits such as increased anti-cancer activity in the BGC-823 cells via activating the apoptosis-related proteins to induce cell apoptosis.
Collapse
Affiliation(s)
- Li-Ying Bo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Tie-Jing Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Xin-Huai Zhao
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
33
|
Maraming P, Maijaroen S, Klaynongsruang S, Boonsiri P, Daduang S, Chung JG, Daduang J. Antitumor Ability of KT2 Peptide Derived from Leukocyte Peptide of Crocodile Against Human HCT116 Colon Cancer Xenografts. In Vivo 2018; 32:1137-1144. [PMID: 30150436 DOI: 10.21873/invivo.11356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIM Many antimicrobial peptides have been shown to have anticancer activity against human cancer cell lines. Cationic KT2 peptide, derived from white blood cell extract of Crocodylus siamensis has antibacterial activity and antitumor activity against human cervical cancer cells, but there are no data on the effect of KT2 peptide on tumor growth in vivo. The anticancer activity of KT2 peptide on human colon cancer xenografts was investigated in nude mice. MATERIALS AND METHODS Tumors in nude mice (BALB/c -nu/nu mice) were induced by subcutaneous injection with HCT116 cells. Twelve days after cancer cell xenograft, mice were treated by intratumoral injection with phosphate-buffered saline or KT2 peptide (25 and 50 mg/kg) once every 2 days for a total of four times and mice were sacrificed at 2 days after the last treatment. RESULTS KT2 peptide treatment did not lead to significant difference in mouse body weight among groups, but reduced both tumor volume and weight of colon cancer xenografts. Moreover, KT2 peptide increased the expression of apoptotic proteins, such as BCL2-associated X (BAX), cleaved caspase-3, and poly (ADP-ribose) polymerase and reduced that of BCL2 apoptosis regulator in xenograft tumors. CONCLUSION This finding suggests that KT2 peptide may inhibit tumor growth via apoptosis induction in this mouse model and supports the antitumor ability of KT2 peptide.
Collapse
Affiliation(s)
- Pornsuda Maraming
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Surachai Maijaroen
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharee Boonsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jing-Gung Chung
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, R.O.C
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
34
|
Sulforaphane-N-Acetyl-Cysteine inhibited autophagy leading to apoptosis via Hsp70-mediated microtubule disruption. Cancer Lett 2018; 431:85-95. [DOI: 10.1016/j.canlet.2018.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
|
35
|
Maraming P, Klaynongsruang S, Boonsiri P, Maijaroen S, Daduang S, Chung JG, Daduang J. Antitumor activity of RT2 peptide derived from crocodile leukocyte peptide on human colon cancer xenografts in nude mice. ENVIRONMENTAL TOXICOLOGY 2018; 33:972-977. [PMID: 30019842 DOI: 10.1002/tox.22584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
RT2, derived from the leukocyte peptide of Crocodylus siamensis, can kill human cervical cancer cells via apoptosis induction, but no evidence has shown in vivo. In this study, we investigated the antitumor effect of RT2 on human colon cancer xenografts in nude mice. Twenty-four mice were injected subcutaneously with human colon cancer HCT 116 cells. Eleven days after cancer cell implantation, the mice were treated with intratumoral injections of phosphate buffered saline (PBS) or RT2 (0.01, 0.1, and 1 mg/mouse) once every 2 days for a total of 5 times. The effect of a 10-day intratumoral injection of RT2 on body weight, biochemical, and hematological parameters in BALB/c mice showed no significant difference between the groups. Tumor volume showed a significant decrease only in the treatment group with RT2 (1 mg/mouse) at day 6 (P < .05), day 8 (P < .01), and day 10 (P < .01) after the first treatment. The protein expression levels of cleaved poly (ADP-ribose) polymerase (PARP), apoptosis-inducing factor (AIF), and the p53 tumor suppressor protein (p53) in xenograft tumors increased after treatment with RT2 (1 mg/mouse) compared to those in the PBS-injected group. Moreover, RT2 increased the expression of Endo G and Bcl-2 family proteins. Therefore, the peptide RT2 can inhibit tumor growth via the induction of apoptosis in an in vivo xenograft model.
Collapse
Affiliation(s)
- Pornsuda Maraming
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharee Boonsiri
- Faculty of Medicine, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Surachai Maijaroen
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen, Thailand
| | - Jing-Gung Chung
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Jureerut Daduang
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
36
|
Hao Y, Yang N, Teng D, Wang X, Mao R, Wang J. A review of the design and modification of lactoferricins and their derivatives. Biometals 2018; 31:331-341. [PMID: 29455278 DOI: 10.1007/s10534-018-0086-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/14/2018] [Indexed: 11/28/2022]
Abstract
Lactoferricin (Lfcin), a multifunction short peptide with a length of 25 residues, is derived from the whey protein lactoferrin by acidic pepsin hydrolysis. It has potent nutritional enhancement, antimicrobial, anticancer, antiviral, antiparasitic, and anti-inflammatory activities. This review describes the research advantages of the above biological functions, with attention to the molecular design and modification of Lfcin. In this examination of design and modification studies, research on the identification of Lfcin active derivatives and crucial amino acid residues is also reviewed. Many strategies for Lfcin optimization have been studied in recent decades, but we mainly introduce chemical modification, cyclization, chimera and polymerization of this peptide. Modifications such as incorporation of D-amino acids, acetylation and/or amidation could effectively improve the activity and stability of these compounds. Due to their wide array of bio-functions and applications, Lfcins have great potential to be developed as biological agents with multiple functions involved with nutritional enhancement, as well as disease preventive and therapeutic effects.
Collapse
Affiliation(s)
- Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,R & D Center, Beijing Shengtai Clouds Bio-Technology, Inc., Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Na Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China. .,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
37
|
Abu-Serie MM, El-Fakharany EM. Efficiency of novel nanocombinations of bovine milk proteins (lactoperoxidase and lactoferrin) for combating different human cancer cell lines. Sci Rep 2017; 7:16769. [PMID: 29196676 PMCID: PMC5711920 DOI: 10.1038/s41598-017-16962-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/19/2017] [Indexed: 02/06/2023] Open
Abstract
Bovine lactoperoxidase (LPO) and lactoferrin (LF) are suitable proteins to be loaded or adsorbed to chitosan nanoparticles (NPs) for preparing stable nanoformulations with potent anticancer activity. In the present study, nanocombinations of LPO and LF revealed improvement in their stability and activity compared to single (free or nanoformulated) bovine proteins. The coating or loading of LPO-loaded NPs with LF resulted in the highest synergistic cytotoxicity effect against Caco-2, HepG-2, MCF-7 and PC-3 cells in comparison with other NPs and free proteins without causing toxicity toward normal cells. This synergistic improvement in the anticancer activity was apoptosis-dependent that was confirmed by severe alterations in cellular morphology, high percentage of annexin-stained cells and sub-G1 populations as well as nuclear staining with orange fluorescence of treated cancer cells. Additionally, significant alterations in the expression of well characterized cellular proliferation and apoptosis guards (NF-κB, Bcl-2 and p53) in these NPs-treated cancer cells compared to 5-fluorouracil (5-FU) treated cells. Our findings provide for the first time that these new synergistic nanoformulated forms of LPO and LF were superior in their selective apoptosis-mediating anticancer effect than free form of these proteins and 5-FU. LF coating or loading of LPO-loaded NPs present as promising therapy for cancer.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, 21934, Alexandria, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, 21934, Alexandria, Egypt.
| |
Collapse
|
38
|
Huang F, Ding G, Yang Z, Yu F. Two novel peptides derived from Sinonovacula constricta inhibit the proliferation and induce apoptosis of human prostate cancer cells. Mol Med Rep 2017; 16:6697-6707. [PMID: 28901516 PMCID: PMC5865786 DOI: 10.3892/mmr.2017.7418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/19/2017] [Indexed: 01/20/2023] Open
Abstract
In China, the incidence of prostate cancer has been increasing. Toxicity, drug resistance and limited transient benefits in patients are the main problems associated with standard chemotherapeutic regimens, and new drugs are therefore required to treat prostate cancer. SCH‑P9 and SCH‑P10 proteins were obtained from Sinonovacula constricta hydrolysates. The amino acid sequences of SCH‑P9 and SCH‑P10 were identified as Leu‑Pro‑Gly‑Pro and Asp‑Tyr‑Val‑Pro, with molecular weights of 382.46 Da and 492.53 Da, respectively. An MTT assay, annexin V‑fluorescein isothiocyanate (FITC) staining and cell cycle analysis were applied to identify the viability of cells, stages of apoptosis, and cell cycle distribution, respectively. SCH‑P9 and SCH‑P10 inhibited the growth of DU‑145 and PC‑3 cells in a dose‑ and time‑dependent manner. Annexin V‑FITC staining and flow cytometry analysis were employed to measure apoptosis and cell cycle arrest, respectively. SCH‑P9 and SCH‑P10 inhibited the growth of DU‑145 cells by reducing the number of cells in G0/G1 phase, increasing the number in subG1 phase and inducing apoptosis. SCH‑P9 reduced the number of PC‑3 cells in subG1 and G0/G1 phases, increased the number of cells in G2/M phase and induced apoptosis. SCH‑P10 reduced the number of PC‑3 cells in G2/M phase, increased the number of cells in G0/G1 phase and induced apoptosis. In conclusion, the results demonstrated that SCH‑P9 and SCH‑P10 induced apoptosis in DU‑145 and PC‑3 cells and may, therefore, exhibit potential for application in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Fangfang Huang
- Department of Pharmacy, School of Food Science and Pharmacy, Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, P.R. China
| | - Guofang Ding
- Department of Pharmacy, School of Food Science and Pharmacy, Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, P.R. China
| | - Zuisu Yang
- Department of Pharmacy, School of Food Science and Pharmacy, Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, P.R. China
| | - Fangmiao Yu
- Department of Pharmacy, School of Food Science and Pharmacy, Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, P.R. China
| |
Collapse
|
39
|
Xia LJ, Wu YL, Zhang FC. Combination of cecropinXJ and LY294002 induces synergistic cytotoxicity, and apoptosis in human gastric cancer cells via inhibition of the PI3K/Akt signaling pathway. Oncol Lett 2017; 14:7522-7528. [PMID: 29344198 DOI: 10.3892/ol.2017.7112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to investigate the cytotoxic and apoptotic effects of cecropinXJ against human gastric cancer BGC823 cells, either alone, or in combination with a specific phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002. Cell viability and the apoptosis rate were measured using flow cytometry with Annexin-V staining. Additionally, the expression levels of several RAC-α serine/threonine kinase (Akt) phosphorylation-associated proteins and apoptosis-regulating proteins were evaluated by western blot analysis. It was observed that the combination of cecropinXJ and LY294002 resulted in significant synergistic cytotoxic and apoptosis effects, as compared with any single agent alone, in a dose-dependent manner. Corresponding to enhanced apoptosis, the expression levels of certain apoptosis-regulating proteins were changed, the most notable being the upregulation of caspase-3, B-cell lymphoma-2 (Bcl-2)-associated death promotor, Bcl-2 homologous antagonist killer, Bcl-2 interacting killer, Bcl-2-like protein 11, Bcl-2-like protein 4 and cytochrome c, and the downregulation of phosphorylated-Bad and Bcl-2 proteins. The present study provided a novel therapeutic regimen for the use of the cecropinXJ in combination with LY294002 for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Li-Jie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Yan-Ling Wu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Fu-Chun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| |
Collapse
|
40
|
Baxter AA, Lay FT, Poon IKH, Kvansakul M, Hulett MD. Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cell Mol Life Sci 2017; 74:3809-3825. [PMID: 28770291 PMCID: PMC11107634 DOI: 10.1007/s00018-017-2604-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/18/2017] [Accepted: 07/28/2017] [Indexed: 12/26/2022]
Abstract
There is an ongoing need for effective and targeted cancer treatments that can overcome the detrimental side effects presented by current treatment options. One class of novel anticancer molecules with therapeutic potential currently under investigation are cationic antimicrobial peptides (CAPs). CAPs are small innate immunity peptides found ubiquitously throughout nature that are typically membrane-active against a wide range of pathogenic microbes. A number of CAPs can also target mammalian cells and often display selective activity towards tumor cells, making them attractive candidates as novel anticancer agents warranting further investigation. This current and comprehensive review describes key examples of naturally occurring membrane-targeting CAPs and their modified derivatives that have demonstrated anticancer activity, across multiple species of origin and structural subfamilies. In addition, we address recent advances made in the field and the ongoing challenges faced in translating experimental findings into clinically relevant treatments.
Collapse
Affiliation(s)
- Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Fung T Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| |
Collapse
|
41
|
Vargas Casanova Y, Rodríguez Guerra JA, Umaña Pérez YA, Leal Castro AL, Almanzar Reina G, García Castañeda JE, Rivera Monroy ZJ. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules 2017; 22:E1641. [PMID: 28961215 PMCID: PMC6151437 DOI: 10.3390/molecules22101641] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B, containing the RRWQWR motif, were designed, synthesized, purified, and characterized using RP-HPLC chromatography and MALDI-TOF mass spectrometry. The antibacterial activity of the designed peptides against E. coli (ATCC 11775 and 25922) and their cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines were evaluated. Dimeric and tetrameric peptides showed higher antibacterial activity in both bacteria strains than linear peptides. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strains. Furthermore, the peptides with high antibacterial activity exhibited significant cytotoxic effect against the tested breast cancer cell lines. This cytotoxic effect was fast and dependent on the peptide concentration. The tetrameric molecule containing RRWQWR motif has an optimal cytotoxic effect at a concentration of 22 µM. The evaluated dimeric and tetrameric peptides could be considered as candidates for developing new therapeutic agents against breast cancer. Polyvalence of linear sequences could be considered as a novel and versatile strategy for obtaining molecules with high anticancer activity.
Collapse
Affiliation(s)
- Yerly Vargas Casanova
- Biotechnology Institute, Universidad Nacional de Colombia, Carrera 45 No 26-85, 11321 Bogotá, Colombia.
| | - Jorge Antonio Rodríguez Guerra
- Pharmacy Department, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Office 213, 11321 Bogotá, Colombia.
| | - Yadi Adriana Umaña Pérez
- Chemistry Department, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Office 213, 11321 Bogotá, Colombia.
| | - Aura Lucía Leal Castro
- Medicine Faculty, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Office 213, 11321 Bogotá, Colombia.
| | | | - Javier Eduardo García Castañeda
- Pharmacy Department, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Office 213, 11321 Bogotá, Colombia.
| | - Zuly Jenny Rivera Monroy
- Chemistry Department, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Office 213, 11321 Bogotá, Colombia.
| |
Collapse
|
42
|
Lactoferricin Peptides Increase Macrophages' Capacity To Kill Mycobacterium avium. mSphere 2017; 2:mSphere00301-17. [PMID: 28875176 PMCID: PMC5577653 DOI: 10.1128/msphere.00301-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/04/2017] [Indexed: 01/15/2023] Open
Abstract
The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis, M. leprae, M. avium, etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we show that peptides derived from bovine lactoferricin (LFcin) improve the antimicrobial activity of ethambutol against Mycobacterium avium growing inside macrophages. Moreover, the d-enantiomer of a short version of lactoferricin containing amino acids 17 to 30 (d-LFcin17–30) causes intramacrophagic death of M. avium by increasing the formation of lysosomes and autophagosomes. This work opens the way to the use of lactoferricin-derived peptides to treat infections caused by mycobacteria and highlights important modulatory effects of d-FLcin17–30 on macrophages, which may be useful under other conditions in which macrophage activation is needed. Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17–30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17–30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17–30 did not localize to M. avium-harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17–30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis, M. leprae, M. avium, etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we show that peptides derived from bovine lactoferricin (LFcin) improve the antimicrobial activity of ethambutol against Mycobacterium avium growing inside macrophages. Moreover, the d-enantiomer of a short version of lactoferricin containing amino acids 17 to 30 (d-LFcin17–30) causes intramacrophagic death of M. avium by increasing the formation of lysosomes and autophagosomes. This work opens the way to the use of lactoferricin-derived peptides to treat infections caused by mycobacteria and highlights important modulatory effects of d-FLcin17–30 on macrophages, which may be useful under other conditions in which macrophage activation is needed.
Collapse
|
43
|
Immuno-Stimulatory Peptides as a Potential Adjunct Therapy against Intra-Macrophagic Pathogens. Molecules 2017; 22:molecules22081297. [PMID: 28777342 PMCID: PMC6152048 DOI: 10.3390/molecules22081297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023] Open
Abstract
The treatment of infectious diseases is increasingly prone to failure due to the rapid spread of antibiotic-resistant pathogens. Antimicrobial peptides (AMPs) are natural components of the innate immune system of most living organisms. Their capacity to kill microbes through multiple mechanisms makes the development of bacterial resistance less likely. Additionally, AMPs have important immunomodulatory effects, which critically contribute to their role in host defense. In this paper, we review the most recent evidence for the importance of AMPs in host defense against intracellular pathogens, particularly intra-macrophagic pathogens, such as mycobacteria. Cathelicidins and defensins are reviewed in more detail, due to the abundance of studies on these molecules. The cell-intrinsic as well as the systemic immune-related effects of the different AMPs are discussed. In the face of the strong potential emerging from the reviewed studies, the prospects for future use of AMPs as part of the therapeutic armamentarium against infectious diseases are presented.
Collapse
|
44
|
Unexpected co-immobilization of lactoferrin and methylene blue from milk solution on a Nafion/MWCNT modified electrode and application to hydrogen peroxide and lactoferrin biosensing. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Li LH, Ju TC, Hsieh CY, Dong WC, Chen WT, Hua KF, Chen WJ. A synthetic cationic antimicrobial peptide inhibits inflammatory response and the NLRP3 inflammasome by neutralizing LPS and ATP. PLoS One 2017; 12:e0182057. [PMID: 28750089 PMCID: PMC5531531 DOI: 10.1371/journal.pone.0182057] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) are one of the most important defense mechanisms against bacterial infections in insects, plants, non-mammalian vertebrates, and mammals. In the present study, a class of synthetic AMPs was evaluated for anti-inflammatory activity. One cationic AMP, GW-A2, demonstrated the ability to inhibit the expression levels of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-activated macrophages. GW-A2 reduced LPS-induced increases in the phosphorylation of mitogen-activated protein kinase and protein kinase C-α/δ and the activation of NF-κB. GW-A2 also inhibited NLRP3 inflammasome activation induced by LPS and ATP. Furthermore, in the mice injected with LPS, GW-A2 reduced (1) the concentration of IL-1β, IL-6 and TNF-α in the serum; (2) the concentration of TNF-α in the peritoneal lavage; (3) the expression levels of iNOS, COX-2 and NLRP3 in the liver and lung; (4) the infiltration of polymorphonuclear neutrophils in the liver and lung. The underlying mechanisms for the anti-inflammatory activity of GW-A2 were found to be partially due to LPS and ATP neutralization. These results provide insights into how GW-A2 inhibits inflammation and the NLRP3 inflammasome and provide a foundation for the design of rational therapeutics for inflammation-related diseases.
Collapse
Affiliation(s)
- Lan-Hui Li
- Department of Laboratory Medicine, Lisen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Tz-Chuen Ju
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Ilan, Taiwan
| | - Chih-Yu Hsieh
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Chih Dong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wan-Tze Chen
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail: (KFH); (WJC)
| | - Wei-Jung Chen
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- * E-mail: (KFH); (WJC)
| |
Collapse
|
46
|
Chen L, Li Z, Zhang Q, Wei S, Li B, Zhang X, Zhang L, Li Q, Xu H, Xu Z. Silencing of AQP3 induces apoptosis of gastric cancer cells via downregulation of glycerol intake and downstream inhibition of lipogenesis and autophagy. Onco Targets Ther 2017; 10:2791-2804. [PMID: 28620264 PMCID: PMC5466363 DOI: 10.2147/ott.s134016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Gastric cancer (GC) has a poor prognosis and is a leading cause of cancer-related death. Optimal therapeutic targets have not been identified. AQP3 is capable of transporting glycerol across the cytomembrane. Previous studies have shown that AQP3 is involved in proliferation, invasion and migration by regulating glycerol and lipid metabolism in diverse cancer cell types. However, the potential roles of glycerol and lipid metabolism in AQP3-related cell apoptosis in GC remain unclear. In this study, we observed that AQP3 expression was upregulated in tumor tissues, and positively correlated with tumor size, lymph node metastasis and glycerol concentration in human GC samples. Silencing of AQP3 resulted in decreased glycerol intake and impaired lipid synthesis, which contributed to increased cell apoptosis. Furthermore, inhibition of autophagy induced by AQP3 knockdown promoted cell apoptosis. Administration of either glycerol or rapamycin restored cell viability, and overexpression of AQP3 increased cell viability by upregulating cellular glycerol metabolism and autophagy. Our study demonstrates that the increase in cell apoptosis of AQP3-deficient GC cells is a consequence of reduced glycerol uptake and lipogenesis and is associated with autophagy inhibition induced by AQP3 deficiency.
Collapse
Affiliation(s)
- Liang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Song Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Lei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qing Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
47
|
A tetrameric peptide derived from bovine lactoferricin as a potential therapeutic tool for oral squamous cell carcinoma: A preclinical model. PLoS One 2017; 12:e0174707. [PMID: 28358840 PMCID: PMC5373611 DOI: 10.1371/journal.pone.0174707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/14/2017] [Indexed: 11/29/2022] Open
Abstract
Oral squamous cell carcinoma is the fifth most common epithelial cancer in the world, and its current clinical treatment has both low efficiency and poor selectivity. Cationic amphipathic peptides have been proposed as new drugs for the treatment of different types of cancer. The main goal of the present work was to determine the potential of LfcinB(20–25)4, a tetrameric peptide based on the core sequence RRWQWR of bovine lactoferricin LfcinB(20–25), for the treatment of OSCC. In brief, OSCC was induced in the buccal pouch of hamsters by applying 7,12-Dimethylbenz(a)anthracene, and tumors were treated with one of the following peptides: LfcinB(20–25)4, LfcinB(20–25), or vehicle (control). Lesions were macroscopically evaluated every two days and both histological and serum IgG assessments were conducted after 5 weeks. The size of the tumors treated with LfcinB(20–25)4 and LfcinB(20–25) was smaller than that of the control group (46.16±4.41 and 33.92±2.74 mm3 versus 88.77±10.61 mm3, respectively). Also, LfcinB(20–25)4 caused acellularity in the parenchymal tumor compared with LfcinB(20–25) and vehicle treatments. Furthermore, our results demonstrated that both LfcinB(20–25)4 and LfcinB(20–25) induced higher degree of apoptosis relative to the untreated tumors (75–86% vs 8%, respectively). Moreover, although the lowest inflammatory response was achieved when LfcinB(20–25)4 was used, this peptide appeared to induce higher levels of IgG antibodies relative to the vehicle and LfcinB(20–25). In addition the cellular damage and selectivity of the LfcinB(20–25)4 peptide was evaluated in vitro. These assays showed that LfcinB(20–25)4 triggers a selective necrotic effect in the carcinoma cell line. Cumulatively, these data indicate that LfcinB(20–25)4 could be considered as a new therapeutic agent for the treatment of OSCC.
Collapse
|
48
|
Wang X, Wang X, Hao Y, Teng D, Wang J. Research and development on lactoferrin and its derivatives in China from 2011–2015. Biochem Cell Biol 2017; 95:162-170. [DOI: 10.1139/bcb-2016-0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lactoferrin (Lf), a multifunctional glycoprotein, is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. Lactoferricin (Lfcin) is located in the N-terminal region of this protein. In this review, the current state of research into Lf and Lfcin in China is described. Searching with HistCite software in Web Sci located 118 papers published by Chinese researchers from 2011–2015, making China one of the top 3 producers of Lf research and development in the world. The biological functions of Lf and Lfcin are discussed, including antibacterial, antiviral, antifungal, anticarcinogenic, and anti-inflammatory activities; targeted drug delivery, induction of neurocyte, osteoblast, and tenocyte growth, and possible mechanisms of action. The preparation and heterologous expression of Lf in animals, bacteria, and yeast are discussed in detail. Five Lf-related food additive factories and 9 Lf-related health food production companies are certified by the China Food and Drug Administration (CFDA). The latest progress in the generation of transgenic livestock in China, the safety of the use of transgenic animals, and future prospects for the uses of Lf and Lfcin are also covered.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
49
|
Jiang R, Lönnerdal B. Bovine lactoferrin and lactoferricin exert antitumor activities on human colorectal cancer cells (HT-29) by activating various signaling pathways. Biochem Cell Biol 2016; 95:99-109. [PMID: 28169560 DOI: 10.1139/bcb-2016-0094] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lactoferrin (Lf) is an iron-binding glycoprotein that is present at high concentrations in milk. Bovine lactoferricin (LfcinB) is a peptide fragment generated by pepsin proteolysis of bovine lactoferrin (bLf). LfcinB consists of amino acid residues 17-41 proximal to the N-terminus of bLf and a disulfide bond between residues 19 and 36, forming a loop. Both bLf and LfcinB have been demonstrated to have antitumor activities. Colorectal cancer is the second most common cause of cancer death in developed countries. We hypothesized that bLf and LfcinB exert antitumor activities on colon cancer cells (HT-29) by triggering various signaling pathways. bLf and LfcinB significantly induced apoptosis in HT-29 cells but not in normal human intestinal epithelial cells, as revealed by the ApoTox-Glo Triplex Assay. The LIVE/DEAD cell viability assay showed that both bLf and LfcinB reduced the viability of HT-29 cells. Transcriptome analysis indicated that bLf, cyclic LfcinB, and linear LfcinB exerted antitumor activities by differentially activating diverse signaling pathways, including p53, apoptosis, and angiopoietin signaling. Immunoblotting results confirmed that both bLf and LfcinBs increased expression of caspase-8, p53, and p21, critical proteins in tumor suppression. These results provide valuable information regarding bLf and LfcinB for potential clinical applications in colon cancer therapy.
Collapse
Affiliation(s)
- Rulan Jiang
- Department of Nutrition, University of California, Davis, CA 95616, USA.,Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA 95616, USA.,Department of Nutrition, University of California, Davis, CA 95616, USA
| |
Collapse
|
50
|
Giansanti F, Panella G, Leboffe L, Antonini G. Lactoferrin from Milk: Nutraceutical and Pharmacological Properties. Pharmaceuticals (Basel) 2016; 9:E61. [PMID: 27690059 PMCID: PMC5198036 DOI: 10.3390/ph9040061] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022] Open
Abstract
Lactoferrin is an iron-binding protein present in large quantities in colostrum and in breast milk, in external secretions and in polymorphonuclear leukocytes. Lactoferrin's main function is non-immune protection. Among several protective activities shown by lactoferrin, those displayed by orally administered lactoferrin are: (i) antimicrobial activity, which has been presumed due to iron deprivation, but more recently attributed also to a specific interaction with the bacterial cell wall and extended to viruses and parasites; (ii) immunomodulatory activity, with a direct effect on the development of the immune system in the newborn, together with a specific antinflammatory effects; (iii) a more recently discovered anticancer activity. It is worth noting that most of the protective activities of lactoferrin have been found, sometimes to a greater extent, also in peptides derived from limited proteolysis of lactoferrin that could be generated after lactoferrin ingestion. Lactoferrin could therefore be considered an ideal nutraceutic product because of its relatively cheap production from bovine milk and of its widely recognized tolerance after ingestion, along with its well demonstrated protective activities. The most important protective activities shown by orally administered bovine lactoferrin are reviewed in this article.
Collapse
Affiliation(s)
- Francesco Giansanti
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila I-67100, Italy.
- Interuniversity Consortium on Biostructures and Biosystems INBB, Rome I-00136, Italy.
| | - Gloria Panella
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila I-67100, Italy.
| | - Loris Leboffe
- Department of Sciences, Roma Tre University, Rome I-00146, Italy.
| | - Giovanni Antonini
- Interuniversity Consortium on Biostructures and Biosystems INBB, Rome I-00136, Italy.
- Department of Sciences, Roma Tre University, Rome I-00146, Italy.
| |
Collapse
|