1
|
Couvin D, Allaguy AS, Ez-zari A, Jagielski T, Rastogi N. Molecular typing of Mycobacterium tuberculosis: a review of current methods, databases, softwares, and analytical tools. FEMS Microbiol Rev 2025; 49:fuaf017. [PMID: 40287399 PMCID: PMC12065434 DOI: 10.1093/femsre/fuaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/20/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025] Open
Abstract
Studies on the epidemiology and clinical relevance of Mycobacterium tuberculosis complex (MTBC) have immensely benefited from molecular typing methods, associated software applications, and bioinformatics tools. Over the last two decades, the Pasteur Institute of Guadeloupe has developed a range of bioinformatic resources, including databases and software, to advance understanding of TB epidemiology. Traditional methods, such as IS6110-RFLP, MIRU-VNTR typing, and spoligotyping, have been instrumental but are increasingly supplanted by more precise and high-throughput techniques. These typing methods offer relatively good discrimination and reproducibility, making them popular choices for epidemiological studies. However, the advent of whole-genome sequencing (WGS) has revolutionized Mycobacterium tuberculosis complex (MTBC) typing, providing unparalleled resolution and data analysis depth. WGS enables the identification of single nucleotide polymorphisms and other genetic variations, facilitating robust phylogenetic reconstructions, and detailed outbreak investigations. This review summarizes current molecular typing methods, as well as databases and software tools used for MTBC data analysis. A comprehensive comparison of available tools and databases is provided to guide future research on the epidemiology of TB and pathogen-associated variables (drug resistance or virulence) and public health initiatives.
Collapse
Affiliation(s)
- David Couvin
- WHO Supranational TB Reference Laboratory—TB and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, F-97139, Les Abymes, Guadeloupe, France
- Laboratoire de Mathématiques Informatique et Applications (LAMIA), Université des Antilles, F-97154, Pointe-à-Pitre, Guadeloupe, France
| | - Anne-Sophie Allaguy
- Laboratoire de Mathématiques Informatique et Applications (LAMIA), Université des Antilles, F-97154, Pointe-à-Pitre, Guadeloupe, France
| | - Ayoub Ez-zari
- Laboratory of Biology and Health (UAE/U06FS), Department of Biology, Faculty of Science, Abdelmalek Essaâdi University, BP 2121, 93002 Tetouan, Morocco
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory—TB and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, F-97139, Les Abymes, Guadeloupe, France
| |
Collapse
|
2
|
Kwaghe AV, Ameh JA, Kudi CA, Ambali AG, Adesokan HK, Akinseye VO, Adelakun OD, Usman JG, Cadmus SI. Prevalence and molecular characterization of Mycobacterium tuberculosis complex in cattle and humans, Maiduguri, Borno state, Nigeria: a cross-sectional study. BMC Microbiol 2023; 23:7. [PMID: 36624395 PMCID: PMC9827019 DOI: 10.1186/s12866-022-02710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Globally, the highest burden of bovine and human tuberculosis resides in Africa and Asia. Tuberculosis (TB) is the second leading single infectious killer after severe acute respiratory syndrome corona virus-2 (SARSCOV-2). Bovine TB remains a treat to wild and domesticated animals, humans and hinders international trade in endemic countries like Nigeria. We aimed at determining the prevalence of bovine and human tuberculosis, and the spoligotypes of Mycobacterium tuberculosis complex in cattle and humans in Maiduguri. METHODS We conducted a cross sectional study on bovine and human tuberculosis in Maiduguri, Borno state. We calculated sample size using the method of Thrusfield. Lesions suggestive of TB from 160 slaughtered cattle were obtained from Maiduguri Central Abattoir. Sputum samples from humans; 82 abattoir workers and 147 suspected TB patients from hospitals/clinics were obtained. Lesions and sputum samples were cultured for the isolation of Mycobacterium spp. Positive cultures were subjected genus typing, deletion analysis and selected isolates were spoligotyped. Data was analysed using SPSS VERSION 16.0. RESULTS Prevalence of 32.5% (52/160) was obtained in cattle. Damboa local government area (LGA), where majority of the infected animals were obtained from had 35.5% bTB prevalence. All categories analysed (breed, age, sex, body conformation and score) had P-values that were not significant (P > 0.05). Sputum culture revealed a prevalence of 3.7% (3/82) from abattoir workers and 12.2% from hospitals/clinics. A significant P-value (0.03) was obtained when positive culture from abattoir and that of hospitals/clinics were compared. Out of the 52 culture positive isolates obtained from cattle, 26 (50%) belonged to M. tuberculosis complex (MTC) and 17/26 (65.4%) were characterized as M. bovis. In humans, 7/12 (58.3%) MTC obtained were characterized as M. tuberculosis. Spoligotyping revealed SB0944 and SB1025 in cattle, while SIT838, SIT61 of LAM10_CAM and SIT1054, SIT46 of Haarlem (H) families were obtained from humans. CONCLUSIONS Cattle in Damboa LGA need to be screened for bTB as majority of the infected animals were brought from there. Our findings revealed the presence of SB0944 and SB1025 spoligotypes from cattle in Borno state. We isolated M. tuberculosis strain of the H family mainly domiciled in Europe from humans.
Collapse
Affiliation(s)
- Ayi Vandi Kwaghe
- grid.473394.e0000 0004 1785 2322Department of Veterinary and Pest Control Services, Federal Ministry of Agriculture and Rural Development, P. M. B. 135, Area 11, Garki, Abuja, Nigeria ,Nigeria Field Epidemiology and Laboratory Training Programme, Abuja, Nigeria
| | - James Agbo Ameh
- grid.413003.50000 0000 8883 6523Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Caleb Ayuba Kudi
- grid.411225.10000 0004 1937 1493Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, Zaria, Kaduna State Nigeria
| | - Abdul-Ganiyu Ambali
- grid.412974.d0000 0001 0625 9425Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State Nigeria
| | - Hezekiah Kehinde Adesokan
- grid.9582.60000 0004 1794 5983Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Victor Oluwatoyin Akinseye
- grid.9582.60000 0004 1794 5983Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State Nigeria ,Department of Chemical Sciences, Augustine University Ilara-Epe, Epe, Lagos State Nigeria
| | - Olubukola Deborah Adelakun
- grid.9582.60000 0004 1794 5983Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Joy Gararawa Usman
- grid.419813.6National Veterinary Research Institute, Vom, Plateau State Nigeria
| | - Simeon Idowu Cadmus
- grid.9582.60000 0004 1794 5983Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| |
Collapse
|
3
|
Nie H, Liao Z, Wang Y, Zhou J, He X, Ou C. Exosomal long non-coding RNAs: Emerging players in cancer metastasis and potential diagnostic biomarkers for personalized oncology. Genes Dis 2021; 8:769-780. [PMID: 34522707 PMCID: PMC8427254 DOI: 10.1016/j.gendis.2020.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is a major challenge in the treatment of cancer. Exosomes are a class of small extracellular vesicles (EVs) that play critical roles in several human diseases, especially cancer, by transferring information (e.g., DNA, RNA, and protein) via cell-to-cell communication. Numerous recent studies have shown that exosomal long non-coding RNAs (lncRNAs) play crucial regulatory roles in cancer metastasis in the tumor microenvironment by altering the expression of several key signaling pathways and molecules. Due to their specificity and sensitivity, exosomal lncRNAs have potential as novel tumor markers and therapeutic targets in the treatment of cancer metastasis. In this review, we aim to summarize the roles of exosomal lncRNAs in cancer metastasis, the mechanisms underlying their roles, and their potential clinical applications.
Collapse
Affiliation(s)
- Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Zhujun Liao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Xiaoyun He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, PR China
| |
Collapse
|
4
|
Chen S, Liang T, Xue T, Xue S, Xue Q. Pridopidine for the Improvement of Motor Function in Patients With Huntington's Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Neurol 2021; 12:658123. [PMID: 34054700 PMCID: PMC8159155 DOI: 10.3389/fneur.2021.658123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Huntington's disease (HD) is a progressive neurodegenerative disorder. Generally, it is characterized by deficits in cognition, behavior, and movement. Recent studies have shown that pridopidine is a potential and effective drug candidate for the treatment of HD. In the present study, we performed a meta-analysis to evaluate the efficacy and safety of pridopidine in HD. Methods: The MEDLINE, EMBASE, CENTRAL, and Clinicaltrials.gov databases were searched for randomized controlled trials (RCTs) which had that evaluated pridopidine therapy in HD patients. Results: We pooled data from 1,119 patients across four RCTs. Patients in the pridopidine group had a significantly lower Unified Huntington's Disease Rating Scale (UHDRS)-modified Motor Score (mMS) (MD −0.79, 95% CI = −1.46 to −0.11, p = 0.02) than those in the placebo group. Additionally, no differences were observed in the UHDRS-Total Motor Score (TMS) (MD −0.91. 95% CI = −2.03 to 0.21, p = 0.11) or adverse events (RR 1.06, 95% CI = 0.96 to 1.16, p = 0.24) in the pridopidine and placebo groups. In the subgroup analysis, the short-term (≤12 weeks) and long-term (>12 weeks) subgroups exhibited similar efficacy and safety with no statistical significance in TMS, mMS, or adverse events. However, TMS (MD −1.50, 95% CI = −2.87 to −0.12, p = 0.03) and mMS (MD −1.03, 95% CI = −1.87 to −0.19, p = 0.02) were observed to be improved significantly when the dosage of pridopidine ≥90 mg/day. Additionally, pridopidine (≥90 mg/day) increased total adverse events (RR 1.11, 95% CI = 1.00 to 1.22, p = 0.04) compared with placebo. On this basis, we analyzed the incidence of various adverse events when the dosage was ≥90 mg/day. Nonetheless, these results were within the acceptable threshold, although patients developed symptoms, such as nasopharyngitis and insomnia. Conclusion: Pridopidine improved mMS and had no statistical significance in association with TMS or adverse events. Pridopidine (≥90 mg/day) improved TMS and mMS but increased adverse events, such as nasopharyngitis and insomnia. More RCTs were expected to assess pridopidine in HD.
Collapse
Affiliation(s)
- Shujun Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyu Liang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Xue
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shouru Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Ali S, Khan MT, Anwar Sheed K, Khan MM, Hasan F. Spoligotyping analysis of Mycobacterium tuberculosis in Khyber Pakhtunkhwa area, Pakistan. Infect Drug Resist 2019; 12:1363-1369. [PMID: 31190924 PMCID: PMC6535427 DOI: 10.2147/idr.s198314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/05/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Spoligotyping is a reproducible, reverse hybridization approach for genotyping of Mycobacterium tuberculosis complex (MTBC). Molecular typing of MTBC is helpful for understanding and controlling tuberculosis epidemics. Methods: Spoligotyping was performed on 166 clinical isolates of Mycobacterium tuberculosis (MTB) collected from 25 districts of Khyber Pakhtunkhwa, Pakistan. Results were compared to SITVIT2, an online database developed by the Institut Pasteur de la Guadeloupe, France. Results: Spoligotyping results showed that 145 strains (88%) displayed known patterns while 21 (12%) were new. Lineage 3/Central Asian strain (L3/CAS) was the predominant family (73%, χ2=19.9, P=0.001), followed by L2/Beijing (5.4%) and L4 (4.2%). L3/CAS1-Delhi was the major sublineage (82%) among the L3/CAS family (χ2=664, P=0.0001). Analysis showed that the majority of the clinical isolates with an unknown pattern had an evolutionary link with the L3/CAS strain, and nine (5.4%) of the unknown strains were epidemiologically linked and were tentatively named L3/CAS-KP (Khyber Pakhtunkhwa). Conclusion: The present study demonstrated that L3/CAS is the predominant lineage of MTB, widely distributed in different areas of the Khyber Pakhtunkhwa province of Pakistan. Spoligotyping patterns of some clinical isolates could not be matched to other reported patterns in an international database. Other tools, such as mycobacterial interspersed repetitive unit–variable number tandem repeat (MIRU-VNTR), will be helpful in future investigations into the epidemiological characteristics of clinical isolates in the Khyber Pakhtunkhwa province.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Khan Anwar Sheed
- Provincial TB Reference Laboratory, Provincial TB Control Program, Khyber Pakhtunkhwa, Pakistan
| | | | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
6
|
Chihota VN, Niehaus A, Streicher EM, Wang X, Sampson SL, Mason P, Källenius G, Mfinanga SG, Pillay M, Klopper M, Kasongo W, Behr MA, Gey van Pittius NC, van Helden PD, Couvin D, Rastogi N, Warren RM. Geospatial distribution of Mycobacterium tuberculosis genotypes in Africa. PLoS One 2018; 13:e0200632. [PMID: 30067763 PMCID: PMC6070189 DOI: 10.1371/journal.pone.0200632] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate the distribution of Mycobacterium tuberculosis genotypes across Africa. Methods The SITVIT2 global repository and PUBMED were searched for spoligotype and published genotype data respectively, of M. tuberculosis from Africa. M. tuberculosis lineages in Africa were described and compared across regions and with those from 7 European and 6 South-Asian countries. Further analysis of the major lineages and sub-lineages using Principal Component analysis (PCA) and hierarchical cluster analysis were done to describe clustering by geographical regions. Evolutionary relationships were assessed using phylogenetic tree analysis. Results A total of 14727 isolates from 35 African countries were included in the analysis and of these 13607 were assigned to one of 10 major lineages, whilst 1120 were unknown. There were differences in geographical distribution of major lineages and their sub-lineages with regional clustering. Southern African countries were grouped based on high prevalence of LAM11-ZWE strains; strains which have an origin in Portugal. The grouping of North African countries was due to the high percentage of LAM9 strains, which have an origin in the Eastern Mediterranean region. East African countries were grouped based on Central Asian (CAS) and East-African Indian (EAI) strain lineage possibly reflecting historic sea trade with Asia, while West African Countries were grouped based on Cameroon lineage of unknown origin. A high percentage of the Haarlem lineage isolates were observed in the Central African Republic, Guinea, Gambia and Tunisia, however, a mixed distribution prevented close clustering. Conclusions This study highlighted that the TB epidemic in Africa is driven by regional epidemics characterized by genetically distinct lineages of M. tuberculosis. M. tuberculosis in these regions may have been introduced from either Europe or Asia and has spread through pastoralism, mining and war. The vast array of genotypes and their associated phenotypes should be considered when designing future vaccines, diagnostics and anti-TB drugs.
Collapse
Affiliation(s)
- Violet N. Chihota
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- The Aurum Institute, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Antoinette Niehaus
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Elizabeth M. Streicher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Xia Wang
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Samantha L. Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter Mason
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Gunilla Källenius
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Sayoki G. Mfinanga
- National Institute for Medical Research Muhimbili Medical Research Centre, Dar es Saalam, Tanzania
| | - Marnomorney Pillay
- Department of Medical Microbiology University of KwaZulu Natal, Durban, South Africa
| | - Marisa Klopper
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | - Marcel A. Behr
- Division of Infectious Diseases, Department of Medicine McGill University Health Centre, Montreal, Quebec, Canada
| | - Nicolaas C. Gey van Pittius
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
7
|
Genetic Diversity of Mycobacterium tuberculosis Complex Isolated from Patients in the Northeast of Iran by MIRU-VNTR and Spoligotyping. Jundishapur J Microbiol 2016. [DOI: 10.5812/jjm.39568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Diverse Molecular Genotypes of Mycobacterium tuberculosis Complex Isolates Circulating in the Free State, South Africa. Int J Microbiol 2016; 2016:6572165. [PMID: 27073397 PMCID: PMC4814679 DOI: 10.1155/2016/6572165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/08/2016] [Accepted: 02/25/2016] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis is a serious public health concern especially in Africa and Asia. Studies describing strain diversity are lacking in the Free State region of South Africa. The aim of the study was to describe the diversity of Mycobacterium tuberculosis (M. tuberculosis) strain families in the Free State province of South Africa. A total of 86 M. tuberculosis isolates were genotyped using spoligotyping. A 12-locus mycobacterial interspersed repetitive units-variable-number tandem repeats (MIRU-VNTRs) typing was used to further characterize the resulting spoligotyping clusters. SITVITWEB identified 49 different patterns with allocation to six lineages including Latin-American-Mediterranean (LAM) (18 isolates), T (14 isolates), Beijing (five isolates), S (six isolates), Haarlem (one isolate), and X (five isolates), while 37 (43.0%) orphans were identified. Eight clusters included 37 isolates with identical spoligotypes (2 to 13/cluster). MIRU-VNTR typing further differentiated three spoligotyping clusters: SIT1/Beijing/MIT17, SIT33/LAM3/MIT213, and confirmed one SIT34/S/MIT311. In addition, SpolDB3/RIM assignment of the orphan strains resulted in a further 10 LAM and 13 T families. In total, LAM (28 isolates) and T (27 isolates) cause 63% of the individual cases of MTB in our study. The Free State has a highly diverse TB population with LAM being predominant. Further studies with inclusion of multidrug-resistant strains with larger sample size are warranted.
Collapse
|
9
|
Vasconcellos SEG, Acosta CC, Gomes LL, Conceição EC, Lima KV, de Araujo MI, Leite MDL, Tannure F, Caldas PCDS, Gomes HM, Santos AR, Gomgnimbou MK, Sola C, Couvin D, Rastogi N, Boechat N, Suffys PN. Strain classification of Mycobacterium tuberculosis isolates in Brazil based on genotypes obtained by spoligotyping, mycobacterial interspersed repetitive unit typing and the presence of large sequence and single nucleotide polymorphism. PLoS One 2014; 9:e107747. [PMID: 25314118 PMCID: PMC4196770 DOI: 10.1371/journal.pone.0107747] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 08/21/2014] [Indexed: 11/26/2022] Open
Abstract
Rio de Janeiro is endemic for tuberculosis (TB) and presents the second largest prevalence of the disease in Brazil. Here, we present the bacterial population structure of 218 isolates of Mycobacterium tuberculosis, derived from 186 patients that were diagnosed between January 2008 and December 2009. Genotypes were generated by means of spoligotyping, 24 MIRU-VNTR typing and presence of fbpC103, RDRio and RD174. The results confirmed earlier data that predominant genotypes in Rio de Janeiro are those of the Euro American Lineages (99%). However, we observed differences between the classification by spoligotyping when comparing to that of 24 MIRU-VNTR typing, being respectively 43.6% vs. 62.4% of LAM, 34.9% vs. 9.6% of T and 18.3% vs. 21.5% of Haarlem. Among isolates classified as LAM by MIRU typing, 28.0% did not present the characteristic spoligotype profile with absence of spacers 21 to 24 and 32 to 36 and we designated these conveniently as “LAM-like”, 79.3% of these presenting the LAM-specific SNP fbpC103. The frequency of RDRio and RD174 in the LAM strains, as defined both by spoligotyping and 24 MIRU-VNTR loci, were respectively 11% and 15.4%, demonstrating that RD174 is not always a marker for LAM/RDRio strains. We conclude that, although spoligotyping alone is a tool for classification of strains of the Euro-American lineage, when combined with MIRU-VNTRs, SNPs and RD typing, it leads to a much better understanding of the bacterial population structure and phylogenetic relationships among strains of M. tuberculosis in regions with high incidence of TB.
Collapse
Affiliation(s)
- Sidra E. G. Vasconcellos
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- Multidisciplinary Research Laboratory, University Hospital Clementino Fraga Filho – HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chyntia Carolina Acosta
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lia Lima Gomes
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Karla Valéria Lima
- Instituto Evandro Chagas, Section of Bacteriology and Mycology, Belém, Pará, Brazil
| | - Marcelo Ivens de Araujo
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria de Lourdes Leite
- Hospital Municipal Rafael de Paula Souza, Municipal Secretary of Health, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávio Tannure
- Hospital Municipal Rafael de Paula Souza, Municipal Secretary of Health, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Cesar de Souza Caldas
- Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Publica Sergio Arouca, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Harrison M. Gomes
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Rezende Santos
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michel K. Gomgnimbou
- CNRS–Université Paris–Sud, Institut de Génétique et Microbiologie–Infection Genetics Emerging Pathogens Evolution Team, Orsay, France
| | - Christophe Sola
- CNRS–Université Paris–Sud, Institut de Génétique et Microbiologie–Infection Genetics Emerging Pathogens Evolution Team, Orsay, France
| | - David Couvin
- Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Neio Boechat
- Multidisciplinary Research Laboratory, University Hospital Clementino Fraga Filho – HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Clinical Medicine, Faculty of Medicine, University Hospital Clementino Fraga Filho, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Philip Noel Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
10
|
Clark TG, Mallard K, Coll F, Preston M, Assefa S, Harris D, Ogwang S, Mumbowa F, Kirenga B, O’Sullivan DM, Okwera A, Eisenach KD, Joloba M, Bentley SD, Ellner JJ, Parkhill J, Jones-López EC, McNerney R. Elucidating emergence and transmission of multidrug-resistant tuberculosis in treatment experienced patients by whole genome sequencing. PLoS One 2013; 8:e83012. [PMID: 24349420 PMCID: PMC3859632 DOI: 10.1371/journal.pone.0083012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 11/07/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Understanding the emergence and spread of multidrug-resistant tuberculosis (MDR-TB) is crucial for its control. MDR-TB in previously treated patients is generally attributed to the selection of drug resistant mutants during inadequate therapy rather than transmission of a resistant strain. Traditional genotyping methods are not sufficient to distinguish strains in populations with a high burden of tuberculosis and it has previously been difficult to assess the degree of transmission in these settings. We have used whole genome analysis to investigate M. tuberculosis strains isolated from treatment experienced patients with MDR-TB in Uganda over a period of four years. METHODS AND FINDINGS We used high throughput genome sequencing technology to investigate small polymorphisms and large deletions in 51 Mycobacterium tuberculosis samples from 41 treatment-experienced TB patients attending a TB referral and treatment clinic in Kampala. This was a convenience sample representing 69% of MDR-TB cases identified over the four year period. Low polymorphism was observed in longitudinal samples from individual patients (2-15 SNPs). Clusters of samples with less than 50 SNPs variation were examined. Three clusters comprising a total of 8 patients were found with almost identical genetic profiles, including mutations predictive for resistance to rifampicin and isoniazid, suggesting transmission of MDR-TB. Two patients with previous drug susceptible disease were found to have acquired MDR strains, one of which shared its genotype with an isolate from another patient in the cohort. CONCLUSIONS Whole genome sequence analysis identified MDR-TB strains that were shared by more than one patient. The transmission of multidrug-resistant disease in this cohort of retreatment patients emphasises the importance of early detection and need for infection control. Consideration should be given to rapid testing for drug resistance in patients undergoing treatment to monitor the emergence of resistance and permit early intervention to avoid onward transmission.
Collapse
Affiliation(s)
- Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kim Mallard
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Francesc Coll
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Mark Preston
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Samuel Assefa
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - David Harris
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Sam Ogwang
- Joint Clinical Research Centre, Kampala, Uganda
| | - Francis Mumbowa
- Joint Clinical Research Centre, Kampala, Uganda
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Bruce Kirenga
- Mulago Hospital Tuberculosis Clinic, Mulago Hospital, Kampala, Uganda
| | - Denise M. O’Sullivan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Alphonse Okwera
- Mulago Hospital Tuberculosis Clinic, Mulago Hospital, Kampala, Uganda
| | - Kathleen D. Eisenach
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Uganda-Case Western Reserve University Research Collaboration, Kampala, Uganda
| | - Moses Joloba
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Jerrold J. Ellner
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Edward C. Jones-López
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ruth McNerney
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
11
|
Mozafari M, Farnia P, Afraei M, Derakhshani-Nezhad Z, Masjedi MR, Velayati AA. Molecular diversity of Mycobacterium tuberculosis strains indifferent provinces of Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2013; 5:366-73. [PMID: 25848506 PMCID: PMC4385162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVES Molecular epidemiology tools are widely used in determining epidemiology of tuberculosis. Spoligotyping is a molecular epidemiology method that is used for characterization and typing of Mycobacterium tuberculosis complex strains. The method is based on polymorphism of the chromosomal DR locus consisting of identical 36-bp DRs alternating with 35-41 unique spacers. The objective of this study was to investigate the prevalence of M. tuberculosis spoligotypes in different provinces of Iran. MATERIALS AND METHODS M. tuberculosis strains were isolated from TB patients of Mycobacteriology Research center (MRC). DNA was extracted from patient's clinical samples. PCR was performed by using of specific primers for DR region. The amplified DNA was hybridized to the spoligotyping Membrane. Hybridized DNA was detected with ECL detection kit and by exposing ECL Hyperfilm to the membrane. The obtained result was entered to a binary format and was analyzed using SpolDB4 database. RESULTS Spoligotyping resulted in 136 different patterns. Out of 1242 M. tuberculosis strains, 1165 strains (93.8%) were classified into 59 clusters and the remaining strains (6.2 %) were singleton. CONCLUSIONS The results of present study showed that strains of CAS family were more prevalent than other strains in Iran. Other prevalent families were Haarlem, T and Beijing, respectively.
Collapse
Affiliation(s)
- Mohadese Mozafari
- Corresponding author: Mohadese Mozafari M.Sc, Address: National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Darabad, Tehran, Iran. Tel/Fax: +98-21-26109505,
| | | | | | | | | | | |
Collapse
|
12
|
Mycobacterium tuberculosis is the causative agent of tuberculosis in the southern ecological zones of Cameroon, as shown by genetic analysis. BMC Infect Dis 2013; 13:431. [PMID: 24028382 PMCID: PMC3851856 DOI: 10.1186/1471-2334-13-431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/03/2013] [Indexed: 11/10/2022] Open
Abstract
Background Tuberculosis (TB) is a major cause of mortality and suffering worldwide, with over 95% of TB deaths occurring in low- and middle-income countries. In recent years, molecular typing methods have been widely used in epidemiological studies to aid the control of TB, but this usage has not been the case with many African countries, including Cameroon. The aims of the present investigation were to identify and evaluate the diversity of the Mycobacterium tuberculosis complex (MTBC) isolates circulating in two ecological zones of Cameroon, seven years after the last studies in the West Region, and after the re-organization of the National TB Control Program (NTBCP). These were expected to shed light also on the transmission of TB in the country. The study was conducted from February to July 2009. During this period, 169 patients with symptomatic disease and with sputum cultures that were positive for MTBC were randomly selected for the study from amongst 964 suspected patients in the savannah mosaic zone (West and North West regions) and the tropical rainforest zone (Central region). After culture and diagnosis, DNA was extracted from each of the MTBC isolates and transported to the BecA-ILRI Hub in Nairobi, Kenya for molecular analysis. Methods Genetic characterization was done by mycobacterial interspersed repetitive unit–variable number tandem repeat typing (MIRU-VNTR) and Spoligotyping. Results Molecular analysis showed that all TB cases reported in this study were caused by infections with Mycobacterium tuberculosis (98.8%) and Mycobacterium africanum (M. africanum) (1.2%) respectively. We did not detect any M. bovis. Comparative analyses using spoligotyping revealed that the majority of isolates belong to major clades of M. tuberculosis: Haarlem (7.6%), Latin American-Mediterranean (34.4%) and T clade (26.7%); the remaining isolates (31.3%) where distributed among the minor clades. The predominant group of isolates (34.4%) corresponded to spoligotype 61, previously described as the “Cameroon family. Further analysis based on MIRU-VNTR profiles had greater resolving power than spoligotyping and defined additional genotypes in the same spoligotype cluster. Conclusion The molecular characterization of MTBC strains from humans in two ecological regions of Cameroon has shown that M. tuberculosis sensu stricto is the predominant agent of TB cases in the zones. Three decades ago, TB was reported to be caused by M. africanum in 56.0% of cases. The present findings are consistent with a major shift in the prevalence of M. tuberculosis in Cameroon.
Collapse
|
13
|
Epidemic spread of multidrug-resistant tuberculosis in Johannesburg, South Africa. J Clin Microbiol 2013; 51:1818-25. [PMID: 23554196 DOI: 10.1128/jcm.00200-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Numerous reports have documented isolated transmission events or clonal outbreaks of multidrug-resistant Mycobacterium tuberculosis strains, but knowledge of their epidemic spread remains limited. In this study, we evaluated drug resistance, strain diversity, and clustering rates in patients diagnosed with multidrug-resistant (MDR) tuberculosis (TB) at the National Health Laboratory Service (NHLS) Central TB Laboratory in Johannesburg, South Africa, between March 2004 and December 2007. Phenotypic drug susceptibility testing was done using the indirect proportion method, while each isolate was genotyped using a combination of spoligotyping and 12-MIRU typing (12-locus multiple interspersed repetitive unit typing). Isolates from 434 MDR-TB patients were evaluated, of which 238 (54.8%) were resistant to four first-line drugs (isoniazid, rifampin, ethambutol, and streptomycin). Spoligotyping identified 56 different strains and 28 clusters of variable size (2 to 71 cases per cluster) with a clustering rate of 87.1%. Ten clusters included 337 (77.6%) of all cases, with strains of the Beijing genotype being most prevalent (16.4%). Combined analysis of spoligotyping and 12-MIRU typing increased the discriminatory power (Hunter Gaston discriminatory index [HGDI] = 0.962) and reduced the clustering rate to 66.8%. Resolution of Beijing genotype strains was further enhanced with the 24-MIRU-VNTR (variable-number tandem repeat) typing method by identifying 15 subclusters and 19 unique strains from twelve 12-MIRU clusters. High levels of clustering among a variety of strains suggest a true epidemic spread of MDR-TB in the study setting, emphasizing the urgency of early diagnosis and effective treatment to reduce transmission within this community.
Collapse
|
14
|
Banu S, Mahmud AM, Rahman MT, Hossain A, Uddin MKM, Ahmed T, Khatun R, Akhanda W, Brosch R. Multidrug-resistant tuberculosis in admitted patients at a tertiary referral hospital of Bangladesh. PLoS One 2012; 7:e40545. [PMID: 22808189 PMCID: PMC3394739 DOI: 10.1371/journal.pone.0040545] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/08/2012] [Indexed: 11/21/2022] Open
Abstract
Background This study was set out to investigate the magnitude, patterns and molecular characterization of drug-resistant Mycobacterium tuberculosis strains at a tertiary referral hospital in Bangladesh. Methods Pulmonary tuberculosis (TB) patients admitted at National Institute of Diseases of the Chest and Hospital from February 2002 to September 2005 with or without previous history of TB and/or other complications were randomly interviewed. Among 265 participants enrolled, M. tuberculosis isolates from 189 patients were finally tested for susceptibility to rifampicin (RMP), isoniazid (INH), ethambutol (ETM) and streptomycin (STM). Genotyping of M. tuberculosis was done using deletion analysis and spoligotyping. Results Eighty-eight percent (n = 167) of the patients had history of previous anti-TB treatment while the remaining 12% were new TB cases. Of the 189 isolates, 9% were fully susceptible to the first line anti-TB drugs and 73.5% were multi-drug resistant TB. Other susceptibility results showed 79.4%, 77.2%, 76.7% and 78.8% resistance to INH, RMP, ETM and STM respectively. Multi-drug resistance was significantly higher among the 130 (78%) patients with previous history of anti-tuberculosis treatment (95% confidence interval, p = 0.001). Among the 189 analyzed isolates, 69% were classified as “modern” M. tuberculosis strains (i.e. TbD1- strains, lacking the M. tuberculosis-deletion region TbD1), whereas the remaining 31% were found to belong to the “ancestal” TbD1+ M. tuberculosis lineages. One hundred and five different spoligotype patterns were identified in which 16 clusters contained 100 strains and 89 strains had unique pattern. Strains with a spoligotype characteristic for the “Beijing” cluster were predominant (19%) and most of these strains (75%) were multi-drug resistant (MDR). Conclusions A high level of drug resistance observed among the re-treatment patients poses a threat of transmission of resistant strains to susceptible persons in the community. Proper counseling of patients and attention towards the completion of the anti-TB treatment is needed.
Collapse
Affiliation(s)
- Sayera Banu
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Review of general algorithmic features for genome assemblers for next generation sequencers. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 10:58-73. [PMID: 22768980 PMCID: PMC5054208 DOI: 10.1016/j.gpb.2012.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 10/26/2011] [Indexed: 01/09/2023]
Abstract
In the realm of bioinformatics and computational biology, the most rudimentary data upon which all the analysis is built is the sequence data of genes, proteins and RNA. The sequence data of the entire genome is the solution to the genome assembly problem. The scope of this contribution is to provide an overview on the art of problem-solving applied within the domain of genome assembly in the next-generation sequencing (NGS) platforms. This article discusses the major genome assemblers that were proposed in the literature during the past decade by outlining their basic working principles. It is intended to act as a qualitative, not a quantitative, tutorial to all working on genome assemblers pertaining to the next generation of sequencers. We discuss the theoretical aspects of various genome assemblers, identifying their working schemes. We also discuss briefly the direction in which the area is headed towards along with discussing core issues on software simplicity.
Collapse
|
16
|
Kisa O, Tarhan G, Gunal S, Albay A, Durmaz R, Saribas Z, Zozio T, Alp A, Ceyhan I, Tombak A, Rastogi N. Distribution of spoligotyping defined genotypic lineages among drug-resistant Mycobacterium tuberculosis complex clinical isolates in Ankara, Turkey. PLoS One 2012; 7:e30331. [PMID: 22279583 PMCID: PMC3261197 DOI: 10.1371/journal.pone.0030331] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022] Open
Abstract
Background Investigation of genetic heterogeneity and spoligotype-defined lineages of drug-resistant Mycobacterium tuberculosis clinical isolates collected during a three-year period in two university hospitals and National Tuberculosis Reference and Research Laboratory in Ankara, Turkey. Methods and Findings A total of 95 drug-resistant M. tuberculosis isolates collected from three different centers were included in this study. Susceptibility testing of the isolates to four major antituberculous drugs was performed using proportion method on Löwenstein–Jensen medium and BACTEC 460-TB system. All clinical isolates were typed by using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) methods. Seventy-three of the 95 (76.8%) drug resistant M. tuberculosis isolates were isoniazid-resistant, 45 (47.4%) were rifampicin-resistant, 32 (33.7%) were streptomycin-resistant and 31 (32.6%) were ethambutol-resistant. The proportion of multidrug-resistant isolates (MDR) was 42.1%. By using spoligotyping, 35 distinct patterns were observed; 75 clinical isolates were grouped in 15 clusters (clustering rate of 79%) and 20 isolates displayed unique patterns. Five of these 20 unique patterns corresponded to orphan patterns in the SITVIT2 database, while 4 shared types containing 8 isolates were newly created. The most prevalent M. tuberculosis lineages were: Haarlem (23/95, 24.2%), ill-defined T superfamily (22/95, 23.2%), the Turkey family (19/95, 20%; previously designated as LAM7-TUR), Beijing (6/95, 6.3%), and Latin-America & Mediterranean (LAM, 5/95 or 5.3%), followed by Manu (3/95, 3.2%) and S (1/95, 1%) lineages. Four of the six Beijing family isolates (66.7%) were MDR. A combination of IS6110-RFLP and spoligotyping reduced the clustering rate from 79% to 11.5% among the drug resistant isolates. Conclusions The results obtained showed that ill-defined T, Haarlem, the Turkey family (previously designated as LAM7-TUR family with high phylogeographical specifity for Turkey), Beijing and LAM were predominant lineages observed in almost 80% of the drug-Resistant M. tuberculosis complex clinical isolates in Ankara, Turkey.
Collapse
Affiliation(s)
- Ozgul Kisa
- Department of Medical Microbiology, Gulhane Military Medical Academy and School of Medicine, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
El Khéchine A, Drancourt M. Diagnosis of pulmonary tuberculosis in a microbiological laboratory. Med Mal Infect 2011; 41:509-17. [DOI: 10.1016/j.medmal.2011.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 04/08/2011] [Accepted: 07/22/2011] [Indexed: 02/05/2023]
|
18
|
Kanji A, Hasan Z, Tanveer M, Mahboob R, Jafri S, Hasan R. Presence of RD149 deletions in M. tuberculosis Central Asian Strain 1 isolates affect growth and TNFα induction in THP-1 monocytes. PLoS One 2011; 6:e24178. [PMID: 21904612 PMCID: PMC3163664 DOI: 10.1371/journal.pone.0024178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/02/2011] [Indexed: 12/17/2022] Open
Abstract
Central Asian Strain 1 (CAS1) is the prevalent Mycobacterium tuberculosis genogroup in South Asia. CAS1 strains carry deletions in RD149 and RD152 regions. Significance of these deletions is as yet unknown. We compared CAS1 strains with RD149 and concurrent RD149-RD152 deletions with CAS1 strains without deletions and with the laboratory reference strain, M. tuberculosis H37Rv for growth and for induction of TNFα, IL6, CCL2 and IL10 in THP-1 cells. Growth of CAS1 strains with deletions was slower in broth (RD149; p = 0.024 and RD149-RD152; p = 0.025) than that of strains without deletions. CAS1 strains with RD149 deletion strains further showed reduced intracellular growth (p = 0.013) in THP-1 cells as compared with strains without deletions, and also as compared with H37Rv (p = 0.007) and with CAS1 RD149-RD152 deletion strains (p = 0.029). All CAS1 strains induced higher levels of TNFα and IL10 secretion in THP-1 cells than H37Rv. Additionally, CAS1 strains with RD149 deletions induced more TNFα secretion than those without deletions (p = 0.013). CAS1 RD149 deletion strains from extrapulmonary sources showed more rapid growth and induced lower levels of TNFα and IL6 secretion in THP-1 cells than isolates from pulmonary sources. This data suggests that presence of RD149 reduces growth and increases the induction of TNFα in host cells by CAS1 strains. Differences observed for extrapulmonary strains may indicate an adaptation which increases potential for dissemination and tropism outside the lung. Overall, we hypothesise that RD149 deletions generate genetic diversity within strains and impact interactions of CAS1 strains with host cells with important clinical consequences.
Collapse
Affiliation(s)
- Akbar Kanji
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan
| | - Mehnaz Tanveer
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan
| | - Raunaq Mahboob
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan
| | - Sana Jafri
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan
| | - Rumina Hasan
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan
- * E-mail:
| |
Collapse
|
19
|
Streptomycin resistance and lineage-specific polymorphisms in Mycobacterium tuberculosis gidB gene. J Clin Microbiol 2011; 49:2625-30. [PMID: 21593257 DOI: 10.1128/jcm.00168-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations related to streptomycin resistance in the rpsL and rrs genes are well known and can explain about 70% of this phenotypic resistance. Recently, the gidB gene was found to be associated with low-level streptomycin resistance in Mycobacterium tuberculosis. Mutations in gidB have been reported with high frequency, and this gene appears to be very polymorphic, with frameshift and point mutations occurring in streptomycin-susceptible and streptomycin-resistant strains. In this study, mutations in gidB appeared in 27% of streptomycin-resistant strains that contained no mutations in the rpsL or rrs genes, and they were associated with low-level streptomycin resistance. However, the association of certain mutations in gidB with streptomycin resistance needs to be further investigated, as we also found mutations in gidB in streptomycin-susceptible strains. This occurred only when the strain was resistant to rifampin and isoniazid. Two specific mutations appeared very frequently in this and other studies of streptomycin-susceptible and -resistant strains; these mutations were not considered related to streptomycin resistance, but as a polymorphism. We stratified the strains according to the different phylogenetic lineages and showed that the gidB(16) polymorphism (16G allele) was exclusively present in the Latin American-Mediterranean (LAM) genotype, while the gidB(92) polymorphism (92C allele) was associated with the Beijing lineage in another population. In the sample studied, the two characterized single-nucleotide polymorphisms could distinguish LAM and Beijing lineages from the other lineages.
Collapse
|
20
|
Nava-Aguilera E, López-Vidal Y, Harris E, Morales-Pérez A, Mitchell S, Flores-Moreno M, Villegas-Arrizón A, Legorreta-Soberanis J, Ledogar R, Andersson N. Clustering of Mycobacterium tuberculosis cases in Acapulco: Spoligotyping and risk factors. Clin Dev Immunol 2010; 2011:408375. [PMID: 21197077 PMCID: PMC3004385 DOI: 10.1155/2011/408375] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/28/2010] [Accepted: 10/12/2010] [Indexed: 11/18/2022]
Abstract
Recurrence and reinfection of tuberculosis have quite different implications for prevention. We identified 267 spoligotypes of Mycobacterium tuberculosis from consecutive tuberculosis patients in Acapulco, Mexico, to assess the level of clustering and risk factors for clustered strains. Point cluster analysis examined spatial clustering. Risk analysis relied on the Mantel Haenszel procedure to examine bivariate associations, then to develop risk profiles of combinations of risk factors. Supplementary analysis of the spoligotyping data used SpolTools. Spoligotyping identified 85 types, 50 of them previously unreported. The five most common spoligotypes accounted for 55% of tuberculosis cases. One cluster of 70 patients (26% of the series) produced a single spoligotype from the Manila Family (Clade EAI2). The high proportion (78%) of patients infected with cluster strains is compatible with recent transmission of TB in Acapulco. Geomatic analysis showed no spatial clustering; clustering was associated with a risk profile of uneducated cases who lived in single-room dwellings. The Manila emerging strain accounted for one in every four cases, confirming that one strain can predominate in a hyperendemic area.
Collapse
Affiliation(s)
- Elizabeth Nava-Aguilera
- Centro de Investigación de Enfermedades Tropicales, Universidad Autónoma de Guerrero, Calle Pino S/N, Colonia El Roble, 39640 Acapulco, Guerrero, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bazira J, Matte M, Asiimwe BB, Joloba LM. Genetic diversity of Mycobacterium tuberculosis in Mbarara, South Western Uganda. Afr Health Sci 2010; 10:306-311. [PMID: 21416030 PMCID: PMC3052804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND We determined the genetic diversity of mycobacteria isolated from tuberculosis patients in Mbarara Uganda, using region of difference (RD) analysis and spacer oligonucleotide typing (spoligotyping). METHODS Sputum samples were cultured on Lowenstein Jensen media. The isolates were characterized using RD analysis and spoligotyping. RESULTS The majority (92.8%) of the patients were new cases, 60% were males and 44% were HIV positive with a mean age of 33.7 years. All the 125 isolates were identified as M.tuberculosis sensu stricto. Most (92.8%) of the isolates were modern strains. Spoligotyping revealed 79 spoligotype patterns, with an overall diversity of 63.2%. Sixty (48%) isolates formed 16 clusters each consisting of 2-15 isolates. Mst (59.2 %) of the isolates were Uganda genotype strains. The major shared spoligotypes in our sample were SIT 135 (T2-Uganda) with 12 isolates and SIT 128 (T2) with 5 isolates. Sixty nine (87%) patterns had not yet been defined in the SpolDB4.0.database. CONCLUSION The TB epidemic in Mbarara is caused mainly by modern M.tuberculosis strains of the Uganda genotype. The wide diversity of strains may indicate that the majority of the TB cases are reactivation rather than re-infection. However this needs to be ascertained with more discriminative finger printing techniques.
Collapse
Affiliation(s)
- J Bazira
- Department of Microbiology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | | | | | | |
Collapse
|
22
|
Spoligotype-based comparative population structure analysis of multidrug-resistant and isoniazid-monoresistant Mycobacterium tuberculosis complex clinical isolates in Poland. J Clin Microbiol 2010; 48:3899-909. [PMID: 20810763 DOI: 10.1128/jcm.00572-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spoligotyping-based population structure of multidrug-resistant (MDR) Mycobacterium tuberculosis strains isolated in Poland (n = 46), representing all culture-positive MDR tuberculosis (MDR-TB) cases, was compared to that of isoniazid (INH)-monoresistant strains (n = 71) isolated in 2004. The latter data set from a previous study (E. Augustynowicz-Kopeć, T. Jagielski, and Z. Zwolska, J. Clin. Microbiol. 2008, 46:4041-4044) represented 87% of all INH-monoresistant strains. The clustering rates and genotypic-diversity indexes for the 2 subpopulations were not significantly different (P = 0.05). The results were entered in the SITVIT2 database to assign specific shared type designations, corresponding genotypic lineages, and geographical distributions and compared to available data from neighboring countries (Germany, n = 704; Czech Republic, n = 530; Sweden, n = 379; Kaliningrad, Russia, n = 90) and strains from previous studies in Poland (n = 317). MDR strains resulted in 27 patterns (20 unique strains within the study and 7 clusters containing 2 to 6 isolates per cluster with a clustering rate of 56.5%) and belonged to the following genotypic lineages: ill-defined T family (28.3%), Haarlem (17.4%), Latin American and Mediterranean (LAM) (13%), Beijing (8.7%), S family (4.35%), and the X clade (2.17%). Comparison of the genetic structure of the MDR strains with that of INH-monoresistant strains showed that a total of 9 patterns were shared by both groups; these represented 1/3 of the MDR strains and 2/3 of the INH-monoresistant strains. Interestingly, 76.1% of the MDR isolates and 71.8% of the INH-resistant isolates yielded spoligotypes that were previously reported from Poland. The observation that nearly half of the spoligotypes identified among both MDR (48.1%) and INH-monoresistant (43.3%) M. tuberculosis isolates were present in Poland's neighboring countries suggested that a significant proportion of MDR and INH-resistant TB cases in Poland were caused by strains actively circulating in Poland or its neighbors. Our results corroborate the leading role of the T and Haarlem genotypes in the epidemiology of drug-resistant TB in Poland. Nevertheless, the LAM and Beijing family strains that infected, correspondingly, 13% and 9% of patients with MDR-TB were absent among the strains from patients with INH-monoresistant TB, suggesting that a proportion of MDR-TB cases in Poland are due to ongoing transmission of MDR clones exhibiting specific genotypes. Study of the population genetic relationships between MDR and INH-monoresistant strains by drawing minimum spanning trees showed that ill-defined T1 sublineage strains (1/3 of all INH-monoresistant strains), represented by its prototype, SIT53, constituted the central node of the tree, followed by strains belonging to the well-defined H3, H1, and S subgroups. However, the MDR group, in addition, contained LAM (n = 6) and Beijing (n = 4) lineage isolates. With the exception of the 4 Beijing lineage strains in the latter group and a single orphan isolate in the INH-monoresistant group, none of the remaining 112/117 isolates belonged to principal genetic group 1 (PGG1) in our study. Given the high rate of clustering and the near absence of immigrants in the study, the persistence of MDR-TB in Poland seems to result from active transmission of MDR strains within the autochthonous population, the bulk of it caused by evolutionarily recent tubercle bacilli.
Collapse
|
23
|
Spoligotypes of Mycobacterium tuberculosis from different Provinces of China. J Clin Microbiol 2010; 48:4102-6. [PMID: 20739484 DOI: 10.1128/jcm.00549-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 2,346 Mycobacterium tuberculosis isolates from 13 provinces in China were genotyped by spoligotyping. Two hundred seventy-eight spoligotypes were identified: 2,153 isolates were grouped into 85 clusters, and the remaining 193 isolates were orphans. Comparison with the SpolDB4.0 database revealed that 118 spoligotypes had shared international type numbers in the database and the other 160 were novel. These 160 novel spoligotypes were assigned to families and subfamilies using the SpotClust program. The most prevalent family was the Beijing family (74.08%), followed by the T family (14.11%). CAS family strains were found only in the Xinjiang and Tibet regions, while EAI family strains were found only in Fujian Province. In conclusion, the present study of the M. tuberculosis population in China demonstrated that Beijing family isolates are the most prevalent strains in China and that they exhibit geographical variation. Furthermore, many new spoligotypes were found in this study.
Collapse
|
24
|
Aminian M, Shabbeer A, Bennett KP. A conformal Bayesian network for classification of Mycobacterium tuberculosis complex lineages. BMC Bioinformatics 2010; 11 Suppl 3:S4. [PMID: 20438651 PMCID: PMC2863063 DOI: 10.1186/1471-2105-11-s3-s4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background We present a novel conformal Bayesian network (CBN) to classify strains of Mycobacterium tuberculosis Complex (MTBC) into six major genetic lineages based on two high-throuput biomarkers: mycobacterial interspersed repetitive units (MIRU) and spacer oligonucleotide typing (spoligotyping). MTBC is the causative agent of tuberculosis (TB), which remains one of the leading causes of disease and morbidity world-wide. DNA fingerprinting methods such as MIRU and spoligotyping are key components in the control and tracking of modern TB. Results CBN is designed to exploit background knowledge about MTBC biomarkers. It can be trained on large historical TB databases of various subsets of MTBC biomarkers. During TB control efforts not all biomarkers may be available. So, CBN is designed to predict the major lineage of isolates genotyped by any combination of the PCR-based typing methods: spoligotyping and MIRU typing. CBN achieves high accuracy on three large MTBC collections consisting of over 34,737 isolates genotyped by different combinations of spoligotypes, 12 loci of MIRU, and 24 loci of MIRU. CBN captures distinct MIRU and spoligotype signatures associated with each lineage, explaining its excellent performance. Visualization of MIRU and spoligotype signatures yields insight into both how the model works and the genetic diversity of MTBC. Conclusions CBN conforms to the available PCR-based biological markers and achieves high performance in identifying major lineages of MTBC. The method can be readily extended as new biomarkers are introduced for TB tracking and control. An online tool (http://www.cs.rpi.edu/~bennek/tbinsight/tblineage) makes the CBN model available for TB control and research efforts.
Collapse
Affiliation(s)
- Minoo Aminian
- Departments of Mathematical Science and Computer Science, Rensselaer Polytechnic Institute, Troy, New York, USA.
| | | | | |
Collapse
|
25
|
Molecular epidemiology of Mycobacterium leprae as determined by structure-neighbor clustering. J Clin Microbiol 2010; 48:1997-2008. [PMID: 20351204 DOI: 10.1128/jcm.00149-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has proven challenging to investigate the molecular epidemiology of Mycobacterium leprae, the causative agent of leprosy, due to difficulties with culturing of the organism and a lack of genetic heterogeneity between strains. Recently, a cost-effective panel of variable-number tandem-repeat (VNTR) markers has been developed. Use of this panel allows some of those limitations to be overcome and has allowed the genotyping of 475 M. leprae strains from six different countries. In the present report, we provide a comprehensive analysis of the relationships among the strains in order to investigate the patterns of transmission and migration of M. leprae. We find phylogenetic analysis to be inadequate and have developed an alternative method, structure-neighbor clustering, which assigns isolates with the most similar genotypes to the same groups and, subsequently, subgroups, without inferring how the strains descended from a common ancestor. We validate the approach by using simulated data and detecting expected epidemiological relationships from experimental data. Our results suggest that most M. leprae strains from a given country cluster together and that the occasional isolates assigned to different clusters are a consequence of migration. We found three genetically distinguishable populations among isolates from the Philippines, as well as evidence for the significant influx of strains to that nation from India. We also report that reference strain TN originated from the Philippines and not from India, as was previously believed. Lastly, analysis of isolates from the same families and villages suggests that most community infections originate from a common source or person-to-person transmission but that infection from independent sources does occur with measurable frequency.
Collapse
|
26
|
Scholante Silva AB, Von Groll A, Félix C, Conceição FR, Spies FS, Scaini CJ, Rossetti ML, Borsuk S, Dellagostin OA, Almeida da Silva PE. Clonal diversity of M. tuberculosis isolated in a sea port city in Brazil. Tuberculosis (Edinb) 2009; 89:443-7. [DOI: 10.1016/j.tube.2009.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/10/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
|
27
|
Aminian M, Shabbeer A, Bennett KP. Determination of Major Lineages of Mycobacterium tuberculosis Complex using Mycobacterial Interspersed Repetitive Units. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE 2009; 2009:338-343. [PMID: 20953280 DOI: 10.1109/bibm.2009.86] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present a novel Bayesian network (BN) to classify strains of Mycobacterium tuberculosis Complex (MTBC) into six major genetic lineages using mycobacterial interspersed repetitive units (MIRUs), a high-throughput biomarker. MTBC is the causative agent of tuberculosis (TB), which remains one of the leading causes of disease and morbidity world-wide. DNA fingerprinting methods such as MIRU are key components of modern TB control and tracking. The BN achieves high accuracy on four large MTBC genotype collections consisting of over 4700 distinct 12-loci MIRU genotypes. The BN captures distinct MIRU signatures associated with each lineage, explaining the excellent performance of the BN. The errors in the BN support the need for additional biomarkers such as the expanded 24-loci MIRU used in CDC genotyping labs since May 2009. The conditional independence assumption of each locus given the lineage makes the BN easily extensible to additional MIRU loci and other biomarkers.
Collapse
Affiliation(s)
- Minoo Aminian
- Departments of Mathematical Science and Computer Science, Rensselaer Polytechnic Institute
| | | | | |
Collapse
|
28
|
Tanveer M, Hasan Z, Kanji A, Hussain R, Hasan R. Reduced TNF-alpha and IFN-gamma responses to Central Asian strain 1 and Beijing isolates of Mycobacterium tuberculosis in comparison with H37Rv strain. Trans R Soc Trop Med Hyg 2009; 103:581-7. [PMID: 19375139 DOI: 10.1016/j.trstmh.2009.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/11/2009] [Accepted: 03/11/2009] [Indexed: 11/29/2022] Open
Abstract
Pakistan ranks eighth in terms of tuberculosis burden worldwide, with an incidence of 181/100000. The predominant genotypes of Mycobacterium tuberculosis are reported to be the Central Asian strain 1 (CAS1) and Beijing families.Mycobacteriumtuberculosis down-regulates host pro-inflammatory cytokines, which are essential for protection against infection. There is currently little information regarding the interaction of the CAS1 genotype with host cells. We studied the growth rates of CAS1 and Beijing clinical isolates, and their ability to induce cytokines compared with the laboratory reference strain H37Rv. Host responses were studied using a THP-1 monocytic cell line model and an ex vivo whole blood assay. Growth rates of CAS1 and Beijing isolates were significantly lower (P=0.011) compared with H37Rv. All clinical isolates induced significantly lower levels of TNF-alpha secretion (P=0.003) than H37Rv in THP-1 cells and in the whole blood assay of healthy donors (n=8). They also induced lower IFN-gamma secretion in the whole blood assay (P<0.001). A positive correlation was observed between the growth indices (GI) of H37Rv, Beijing and CAS1 strains and the TNF-alpha responses they induced [Pearson's correlation coefficient (R(2)): 0.936, 0.775 and 0.55, respectively], and also between GI and IFN-gamma production (R(2): 0.422, 0.946, 0.674). These findings suggest that reduced growth rate, together with down-modulation of pro-inflammatory cytokines, is a contributory mechanism for the predominance of the CAS genotype.
Collapse
Affiliation(s)
- Mahnaz Tanveer
- Department of Pathology and Microbiology, The Aga Khan University, Karachi, Pakistan
| | | | | | | | | |
Collapse
|
29
|
Tanveer M, Hasan Z, Siddiqui AR, Ali A, Kanji A, Ghebremicheal S, Hasan R. Genotyping and drug resistance patterns of M. tuberculosis strains in Pakistan. BMC Infect Dis 2008; 8:171. [PMID: 19108722 PMCID: PMC2630917 DOI: 10.1186/1471-2334-8-171] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 12/24/2008] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The incidence of tuberculosis in Pakistan is 181/100,000 population. However, information about transmission and geographical prevalence of Mycobacterium tuberculosis strains and their evolutionary genetics as well as drug resistance remains limited. Our objective was to determine the clonal composition, evolutionary genetics and drug resistance of M. tuberculosis isolates from different regions of the country. METHODS M. tuberculosis strains isolated (2003-2005) from specimens submitted to the laboratory through collection units nationwide were included. Drug susceptibility was performed and strains were spoligotyped. RESULTS Of 926 M. tuberculosis strains studied, 721(78%) were grouped into 59 "shared types", while 205 (22%) were identified as "Orphan" spoligotypes. Amongst the predominant genotypes 61% were Central Asian strains (CAS ; including CAS1, CAS sub-families and Orphan Pak clusters), 4% East African-Indian (EAI), 3% Beijing, 2% poorly defined TB strains (T), 2% Haarlem and LAM (0.2). Also TbD1 analysis (M. tuberculosis specific deletion 1) confirmed that CAS1 was of "modern" origin while EAI isolates belonged to "ancestral" strain types.Prevalence of CAS1 clade was significantly higher in Punjab (P < 0.01, Pearsons Chi-square test) as compared with Sindh, North West Frontier Province and Balochistan provinces. Forty six percent of isolates were sensitive to five first line antibiotics tested, 45% were Rifampicin resistant, 50% isoniazid resistant. MDR was significantly associated with Beijing strains (P = 0.01, Pearsons Chi-square test) and EAI (P = 0.001, Pearsons Chi-square test), but not with CAS family. CONCLUSION Our results show variation of prevalent M. tuberculosis strain with greater association of CAS1 with the Punjab province. The fact that the prevalent CAS genotype was not associated with drug resistance is encouraging. It further suggests a more effective treatment and control programme should be successful in reducing the tuberculosis burden in Pakistan.
Collapse
Affiliation(s)
- Mahnaz Tanveer
- Department of Pathology and Microbiology, The Aga Khan University, Stadium Road Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Microbiology, The Aga Khan University, Stadium Road Karachi, Pakistan
| | - Amna R Siddiqui
- Department of Community Health Sciences, The Aga Khan University, Stadium Road Karachi, Pakistan
| | - Asho Ali
- Department of Pathology and Microbiology, The Aga Khan University, Stadium Road Karachi, Pakistan
| | - Akbar Kanji
- Department of Pathology and Microbiology, The Aga Khan University, Stadium Road Karachi, Pakistan
| | - Solomon Ghebremicheal
- Department of Bacteriology, Swedish Institute for Infectious Diseases Control, Stockholm, Sweden
| | - Rumina Hasan
- Department of Pathology and Microbiology, The Aga Khan University, Stadium Road Karachi, Pakistan
| |
Collapse
|
30
|
Nicol MP, Wilkinson RJ. The clinical consequences of strain diversity in Mycobacterium tuberculosis. Trans R Soc Trop Med Hyg 2008; 102:955-65. [PMID: 18513773 DOI: 10.1016/j.trstmh.2008.03.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 01/28/2023] Open
Abstract
The influence of strain variation on the outcome of infection with Mycobacterium tuberculosis is an emerging area of research. Significant genetic diversity is generated within the species through deletion, duplication and recombination events; however, unlike many bacterial pathogens gene exchange is rare in M. tuberculosis, resulting in the evolution of distinct clonal lineages. One such lineage, W-Beijing, is particularly virulent in animal models, may be emerging worldwide, has distinct phenotypic and genotypic characteristics and is associated with extrapulmonary disease and drug resistance. Strains of M. tuberculosis responsible for outbreaks have been shown to vary in virulence in animal models, which in turn has been related to their ability to inhibit innate immune responses. However, there is no clear evidence that this variability manifests as differences in human disease. An improved understanding of the phylogenetic relationship between strains of M. tuberculosis, based on increased availability of sequence data from the major strain lineages, will allow a structured approach to understand further the consequences of strain diversity in M. tuberculosis.
Collapse
Affiliation(s)
- Mark P Nicol
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, Cape Town, South Africa.
| | | |
Collapse
|
31
|
Guernier V, Sola C, Brudey K, Guégan JF, Rastogi N. Use of cluster-graphs from spoligotyping data to study genotype similarities and a comparison of three indices to quantify recent tuberculosis transmission among culture positive cases in French Guiana during a eight year period. BMC Infect Dis 2008; 8:46. [PMID: 18410681 PMCID: PMC2375894 DOI: 10.1186/1471-2334-8-46] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 04/14/2008] [Indexed: 11/30/2022] Open
Abstract
Background French Guiana has the highest tuberculosis (TB) burden among all French departments, with a strong increase in the TB incidence over the last few years. It is now uncertain how best to explain this incidence. The objective of this study was to compare three different methods evaluating the extent of recent TB transmission in French Guiana. Methods We conducted a population-based molecular epidemiology study of tuberculosis in French Guiana based on culture-positive TB strains (1996 to 2003, n = 344) to define molecular relatedness between isolates, i.e. potential transmission events. Phylogenetic relationships were inferred by comparing two methods: a "cluster-graph" method based on spoligotyping results, and a minimum spanning tree method based on both spoligotyping and variable number of tandem DNA repeats (VNTR). Furthermore, three indices attempting to reflect the extent of recent TB transmission (RTIn, RTIn-1 and TMI) were compared. Results Molecular analyses showed a total amount of 120 different spoligotyping patterns and 273 clinical isolates (79.4%) that were grouped in 49 clusters. The comparison of spoligotypes from French Guiana with an international spoligotype database (SpolDB4) showed that the majority of isolates belonged to major clades of M. tuberculosis (Haarlem, 22.6%; Latin American-Mediterranean, 23.3%; and T, 32.6%). Indices designed to quantify transmission of tuberculosis gave the following values: RTIn = 0.794, RTIn-1 = 0.651, and TMI = 0.146. Conclusion Our data showed a high number of Mycobacterium tuberculosis clusters, suggesting a high level of recent TB transmission, nonetheless an estimation of transmission rate taking into account cluster size and mutation rate of genetic markers showed a low ongoing transmission rate (14.6%). Our results indicate an endemic mode of TB transmission in French Guiana, with both resurgence of old spatially restricted genotypes, and a significant importation of new TB genotypes by migration of TB infected persons from neighgouring high-incidence countries.
Collapse
Affiliation(s)
- Vanina Guernier
- UMR 2724 IRD-CNRS, Génétique et Evolution des Maladies Infectieuses, Equipe Dynamique des Systèmes & Maladies Infectieuses, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 05, France.
| | | | | | | | | |
Collapse
|
32
|
David S, Ribeiro DR, Antunes A, Portugal C, Sancho L, de Sousa JG. Contribution of spoligotyping to the characterization of the population structure of Mycobacterium tuberculosis isolates in Portugal. INFECTION GENETICS AND EVOLUTION 2007; 7:609-17. [PMID: 17625987 DOI: 10.1016/j.meegid.2007.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 05/12/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Tuberculosis is a major health problem in Portugal. To begin characterizing the population structure of Mycobacterium tuberculosis, spoligotyping was used for the systematic typing, through consecutive sampling, of patient isolates from the Amadora-Sintra area of Greater Lisbon. Distribution amongst major spoligotype families, including the Latin American Mediterranean (LAM), T, Haarlem and Beijing, was compared to that of the international spoligotype database SpolDB4 and to the European countries of traditional Portuguese immigration represented in SpolDB4. Spoligotypes from 665 isolates were analyzed and 97 shared international types (SITs) identified. In SpolDB4 Portugal is represented by part of the spoligotypes from this study explaining the reduced number of unidentified patterns. The importance of the LAM family, and especially of LAM1 and LAM9 sub-families that alone represented 38% of all the isolates in this study as compared to 8% relative to the European sub group, led us to believe that at least in this respect the population structure was closer to that of Africa and South America than to Europe. Spoligotypes characteristic of Portugal or Portuguese related settings were identified. These included SIT244 a T1 sub-family predominant in Portugal and Bangladesh, SIT64 a LAM 6 sub-family common to Portugal and Brazil, and SIT1106 a LAM 9 sub-family. These studies were the first in Portugal stressing the importance of monitoring the population structure of M. tuberculosis isolates, an important step towards gaining an understanding of tuberculosis and the dynamics of this disease.
Collapse
Affiliation(s)
- Suzana David
- Unidade de Ensino e Investigação (UEI) de Micobactérias, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, and Serviço de Patologia Clínica, Hospital Fernando Fonseca, Amadora, Portugal.
| | | | | | | | | | | |
Collapse
|
33
|
A non-sense mutation in the putative anti-mutator gene ada/alkA of Mycobacterium tuberculosis and M. bovis isolates suggests convergent evolution. BMC Microbiol 2007; 7:39. [PMID: 17506895 PMCID: PMC1891112 DOI: 10.1186/1471-2180-7-39] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 05/16/2007] [Indexed: 12/01/2022] Open
Abstract
Background Previous studies have suggested that variations in DNA repair genes of W-Beijing strains may have led to transient mutator phenotypes which in turn may have contributed to host adaptation of this strain family. Single nucleotide polymorphism (SNP) in the DNA repair gene mutT1 was identified in MDR-prone strains from the Central African Republic. A Mycobacteriumtuberculosis H37Rv mutant inactivated in two DNA repair genes, namely ada/alkA and ogt, was shown to display a hypermutator phenotype. We then looked for polymorphisms in these genes in Central African Republic strains (CAR). Results In this study, 55 MDR and 194 non-MDR strains were analyzed. Variations in DNA repair genes ada/alkA and ogt were identified. Among them, by comparison to M. tuberculosis published sequences, we found a non-sense variation in ada/alkA gene which was also observed in M. bovis AF2122 strain. SNPs that are present in the adjacent regions to the amber variation are different in M. bovis and in M. tuberculosis strain. Conclusion An Amber codon was found in the ada/alkA locus of clustered M. tuberculosis isolates and in M. bovis strain AF2122. This is likely due to convergent evolution because SNP differences between strains are incompatible with horizontal transfer of an entire gene. This suggests that such a variation may confer a selective advantage and be implicated in hypermutator phenotype expression, which in turn contributes to adaptation to environmental changes.
Collapse
|
34
|
Kisa O, Albay A, Baylan O, Tozkoparan E, Acikel CH, Doganci L. Genetic diversity of Mycobacterium tuberculosis isolates at the Military Medical Academy in Ankara, Turkey. Res Microbiol 2007; 158:318-23. [PMID: 17398073 DOI: 10.1016/j.resmic.2007.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/01/2006] [Accepted: 01/25/2007] [Indexed: 11/23/2022]
Abstract
Genotyping of Mycobacterium tuberculosis isolates from infected individuals can play an important role in tracking the source of infection and unraveling the epidemiology of a tuberculosis pandemic. A total of 114 M. tuberculosis isolates were genotyped by spoligotyping and results were compared with an international spoligotype database (SpoIDB4). Twenty-one spoligotyping-defined clusters including 97 patients were established, and an additional 17 unique patterns were found. Ninety-eight (85.9%) isolates belonged to previously defined shared types (STs). The ST53 (ill-defined T1 superfamily, n=31), ST41 (LAM7-TUR family, n=9), ST118 (T undefined, n=8) and ST50 (Haarlem 3, n=6) were four major clusters of our isolates. After comparison with the international SpoIDB4 database, two new intrafile clusters, ST2136 and ST2139, were created and two new interfile clusters, ST2135 and ST2140, were defined. Eight (7%) of the 17 isolates with unique patterns were found to be orphans, whereas the STs of 9 isolates had previously been deposited in the international SpoIDB4 database. In addition, two isolates with an ST pattern characteristic of the Beijing family of M. tuberculosis were found. This study shows that, although ubiquitous spoligotypes are common, several spoligotypes specific to Turkey also exist. Thus, our study may help us to better understand the spread of M. tuberculosis genotypes to Turkey.
Collapse
Affiliation(s)
- Ozgul Kisa
- Department of Microbiology and Clinical Microbiology, Gulhane Military Medical Academy and School of Medicine, 06018 Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
35
|
Nouvel LX, Kassa-Kelembho E, Dos Vultos T, Zandanga G, Rauzier J, Lafoz C, Martin C, Blazquez J, Talarmin A, Gicquel B. Multidrug-resistant Mycobacterium tuberculosis, Bangui, Central African Republic. Emerg Infect Dis 2006; 12:1454-6. [PMID: 17073103 PMCID: PMC3298286 DOI: 10.3201/eid1209.060361] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We investigated multidrug-resistant (MDR) Mycobacterium tuberculosis strains in Bangui, Central African Republic. We found 39.6% with the same spoligotype and synonymous single nucleotide polymorphism in the mutT1 gene. However, strains had different rpoB mutations responsible for rifampin resistance. MDR strains in Bangui may emerge preferentially from a single, MDR-prone family.
Collapse
|
36
|
Farnia P, Masjedi MR, Mirsaeidi M, Mohammadi F, Jallaledin-Ghanavi, Vincent V, Bahadori M, Velayati AA. Prevalence of Haarlem I and Beijing types of Mycobacterium tuberculosis strains in Iranian and Afghan MDR-TB patients. J Infect 2006; 53:331-336. [PMID: 16476483 DOI: 10.1016/j.jinf.2005.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 11/26/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES This survey identified the spoligopatterns of Mycobacterium tuberculosis strains with an international designation responsible for transmission and prevalence of Multi-Drug Resistance Tuberculosis (MDR-TB) among native and immigrant population of Tehran (2000-2005). METHODS The spacer oligonucleotides typing was performed on 263 M. tuberculosis strains isolated from verified cases of MDR-TB. Clinical and demographical data of patients were collected using traditional methods. RESULTS Classical epidemiological investigation revealed that out of 263 MDR-TB cases, 175, 66.5% were isolated from Afghan immigrants. In both communities, majority of MDR-TB cases had either previous history of TB (107, 40.6%) or had a close contact (84, 31.9%). By spoligotyping, 27 distinct patterns were observed, 253 clinical isolates were grouped in 17 clusters (62.9%) and 10 isolates displayed an orphan pattern (37%). Based on an international spoligotype database, Haarlem I (85, 33.5%), Beijing (52, 20.5%), Central Asia (32, 12.1%), and EAI (21, 8.3%) were the major identified super families. Although, 76.9% of the Beijing genotypes and 100% of ST(253) strains (that was prevalent through former Soviet Union) were isolated from Afghan patients only. The linkage patterns between 30 Iranian and Afghan patients were observed. CONCLUSION The study highlighted the epidemic potential of Haarlem I and Beijing genotypes among MDR-TB cases in Tehran territory.
Collapse
Affiliation(s)
- Parissa Farnia
- National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shaheed Bahonar Avenue, Darabad, P.O. Box 19575/154, Tehran 19556, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Vitol I, Driscoll J, Kreiswirth B, Kurepina N, Bennett KP. Identifying Mycobacterium tuberculosis complex strain families using spoligotypes. INFECTION GENETICS AND EVOLUTION 2006; 6:491-504. [PMID: 16632413 DOI: 10.1016/j.meegid.2006.03.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 03/13/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
We present a novel approach for analysis of Mycobacterium tuberculosis complex (MTC) strain genotyping data. Our work presents a first step in an ongoing project dedicated to the development of decision support tools for tuberculosis (TB) epidemiologists exploiting both genotyping and epidemiological data. We focus on spacer oligonucleotide typing (spoligotyping), a genotyping method based on analysis of a direct repeat (DR) locus. We use mixture models to identify strain families of MTC based on their spoligotyping patterns. Our algorithm, SPOTCLUST, incorporates biological information on spoligotype evolution, without attempting to derive the full phylogeny of MTC. We applied our algorithm to 535 different spoligotype patterns identified among 7166 MTC strains isolated between 1996 and 2004 from New York State TB patients. Two models were employed and validated: a 36-component model based on global spoligotype database SpolDB3, and a randomly initialized model (RIM) containing 48 components. Our analysis both confirmed previously expert-defined families of MTC strains and suggested certain new families. SPOTCLUST, which is available online, can be further improved by incorporating data obtained using additional strain genetic markers and epidemiological information. We demonstrate on New York City (NYC) patient data how the resulting models can potentially form the basis of TB control tools using genotyping.
Collapse
Affiliation(s)
- Inna Vitol
- Computer Science Department, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180, USA.
| | | | | | | | | |
Collapse
|
38
|
Aristimuño L, Armengol R, Cebollada A, España M, Guilarte A, Lafoz C, Lezcano MA, Revillo MJ, Martín C, Ramírez C, Rastogi N, Rojas J, de Salas AV, Sola C, Samper S. Molecular characterisation of Mycobacterium tuberculosis isolates in the First National Survey of Anti-tuberculosis Drug Resistance from Venezuela. BMC Microbiol 2006; 6:90. [PMID: 17032442 PMCID: PMC1621067 DOI: 10.1186/1471-2180-6-90] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 10/10/2006] [Indexed: 12/02/2022] Open
Abstract
Background Molecular typing of Mycobacterium tuberculosis strains has become a valuable tool in the epidemiology of tuberculosis (TB) by allowing detection of outbreaks, tracking of epidemics, identification of genotypes and transmission events among patients who would have remained undetected by conventional contact investigation. This is the first genetic biodiversity study of M. tuberculosis in Venezuela. Thus, we investigated the genetic patterns of strains isolated in the first survey of anti-tuberculosis drug-resistance realised as part of the Global Project of Anti-tuberculosis Drug Resistance Surveillance (WHO/IUATLD). Results Clinical isolates (670/873) were genotyped by spoligotyping. The results were compared with the international spoligotyping database (SpolDB4). Multidrug resistant (MDR) strains (14/18) were also analysed by IS6110-RFLP assays, and resistance to isoniazid and rifampicin was characterised. Spoligotyping grouped 82% (548/670) of the strains into 59 clusters. Twenty new spoligotypes (SITs) specific to Venezuela were identified. Eight new inter-regional clusters were created. The Beijing genotype was not found. The genetic network shows that the Latin American and Mediterranean family constitutes the backbone of the genetic TB population-structure in Venezuela, responsible of >60% of total TB cases studied. MDR was 0.5% in never treated patients and 13.5% in previously treated patients. Mutations in rpoB gene and katG genes were detected in 64% and 43% of the MDR strains, respectively. Two clusters were found to be identical by the four different analysis methods, presumably representing cases of recent transmission of MDR tuberculosis. Conclusion This study gives a first overview of the M. tuberculosis strains circulating in Venezuela during the first survey of anti-tuberculosis drug-resistance. It may aid in the creation of a national database that will be a valuable support for further studies.
Collapse
Affiliation(s)
- Liselotte Aristimuño
- Escuela de Medicina, Universidad Centroccidental Lisandro Alvarado, Venezuela
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, España
| | - Raimond Armengol
- Programa Nacional Integrado de Control de la Tuberculosis, MSDS, Venezuela
| | - Alberto Cebollada
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, España
| | - Mercedes España
- Programa Nacional Integrado de Control de la Tuberculosis, MSDS, Venezuela
| | - Alexis Guilarte
- Programa Nacional Integrado de Control de la Tuberculosis, MSDS, Venezuela
| | - Carmen Lafoz
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, España
| | - María A Lezcano
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, España
| | - María J Revillo
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, España
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, España
| | - Carmen Ramírez
- Programa Nacional Integrado de Control de la Tuberculosis, MSDS, Venezuela
| | - Nalin Rastogi
- Unité de la Tuberculose et des Mycobactéries, Institut Pasteur, Pointe-à-Pitre, Guadeloupe
| | - Janet Rojas
- Programa Nacional Integrado de Control de la Tuberculosis, MSDS, Venezuela
| | | | - Christophe Sola
- Unité de la Tuberculose et des Mycobactéries, Institut Pasteur, Pointe-à-Pitre, Guadeloupe
| | - Sofía Samper
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, España
| |
Collapse
|
39
|
Hasan Z, Tanveer M, Kanji A, Hasan Q, Ghebremichael S, Hasan R. Spoligotyping of Mycobacterium tuberculosis isolates from Pakistan reveals predominance of Central Asian Strain 1 and Beijing isolates. J Clin Microbiol 2006; 44:1763-8. [PMID: 16672404 PMCID: PMC1479214 DOI: 10.1128/jcm.44.5.1763-1768.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The estimated incidence of tuberculosis in Pakistan is 181 per 100,000; however, there is limited information on Mycobacterium tuberculosis genotypes circulating in the country. We studied 314 M. tuberculosis clinical isolates; of these, 197 (63%) isolates grouped into 22 different clusters, while 119 (37%) had unique spoligotypes. Eighty-nine percent of the isolates were pulmonary (Pul), and 11% were extrapulmonary (E-Pul). We identified Central Asian Strain (CAS), Beijing, T1, Latin American-Mediterranean, and East African-Indian genogroups. Beijing strains, reportedly the most prevalent spoligotype worldwide, constituted 6% of our strain population. The CAS1 strain comprised 121 (39%) of the study isolates. No difference was observed between clustered isolates from cases of Pul and E-Pul tuberculosis. However, E-Pul isolates included a greater number of unique spoligotypes than Pul isolates (P = 0.005). The overall percentage of drug resistance was 54%, and that of MDR strains was 40%. While CAS1 strains were not associated with drug resistance, the relative risk of MDR was significant in Beijing strains compared to the non-Beijing groups (95% confidence interval, 1.2 to 8.9). The fact that the predominant strain, CAS1, is not associated with drug resistance is encouraging and suggests that an effective tuberculosis control program should be able to limit the high incidence of disease in this region.
Collapse
Affiliation(s)
- Zahra Hasan
- Department of Pathology and Microbiology, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan
| | | | | | | | | | | |
Collapse
|
40
|
Brudey K, Filliol I, Ferdinand S, Guernier V, Duval P, Maubert B, Sola C, Rastogi N. Long-term population-based genotyping study of Mycobacterium tuberculosis complex isolates in the French departments of the Americas. J Clin Microbiol 2006; 44:183-91. [PMID: 16390968 PMCID: PMC1351934 DOI: 10.1128/jcm.44.1.183-191.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The three French overseas departments of the Americas are characterized both by insular (Guadeloupe and Martinique) and continental (French Guiana) settings with a tuberculosis case detection rate that varies from less than 10 per 100,000 per year in insular areas to an estimated incidence of more than 55 per 100,000 in French Guiana. Under a long-term genotyping program, more than three-fourths of all the Mycobacterium tuberculosis isolates (n = 744) received from the three settings were fingerprinted over a 10-year period (1994 to 2003) by spoligotyping and variable number of tandem DNA repeats (VNTRs) in order to understand the current trends in their detection rates, drug resistance, and groups and subpopulations at risk of contracting the disease and to pinpoint the circulating phylogeographical clades of the bacilli. The major difference in the study populations was the nationality of the patients, with a high percentage of immigrants from high-incidence neighboring countries in French Guiana and a low but increasing percentage in the French Caribbean. The rate of recent transmission was calculated to be 49.3% in French Guiana, compared to 27.2% and 16.9% in Guadeloupe and Martinique, respectively. At the phylogeographic level, 77.9% of the isolates studied belonged to four major clades (Haarlem, Latin-American and Mediterranean, T, and X) which are already reported from neighboring Caribbean islands in an international database and may underline potential interregional transmission events.
Collapse
Affiliation(s)
- Karine Brudey
- Unité de la tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, French Guiana
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, Allix C, Aristimuño L, Arora J, Baumanis V, Binder L, Cafrune P, Cataldi A, Cheong S, Diel R, Ellermeier C, Evans JT, Fauville-Dufaux M, Ferdinand S, de Viedma DG, Garzelli C, Gazzola L, Gomes HM, Guttierez MC, Hawkey PM, van Helden PD, Kadival GV, Kreiswirth BN, Kremer K, Kubin M, Kulkarni SP, Liens B, Lillebaek T, Ly HM, Martin C, Martin C, Mokrousov I, Narvskaïa O, Ngeow YF, Naumann L, Niemann S, Parwati I, Rahim Z, Rasolofo-Razanamparany V, Rasolonavalona T, Rossetti ML, Rüsch-Gerdes S, Sajduda A, Samper S, Shemyakin IG, Singh UB, Somoskovi A, Skuce RA, van Soolingen D, Streicher EM, Suffys PN, Tortoli E, Tracevska T, Vincent V, Victor TC, Warren RM, Yap SF, Zaman K, Portaels F, Rastogi N, Sola C. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 2006; 6:23. [PMID: 16519816 PMCID: PMC1468417 DOI: 10.1186/1471-2180-6-23] [Citation(s) in RCA: 789] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 03/06/2006] [Indexed: 12/04/2022] Open
Abstract
Background The Direct Repeat locus of the Mycobacterium tuberculosis complex (MTC) is a member of the CRISPR (Clustered regularly interspaced short palindromic repeats) sequences family. Spoligotyping is the widely used PCR-based reverse-hybridization blotting technique that assays the genetic diversity of this locus and is useful both for clinical laboratory, molecular epidemiology, evolutionary and population genetics. It is easy, robust, cheap, and produces highly diverse portable numerical results, as the result of the combination of (1) Unique Events Polymorphism (UEP) (2) Insertion-Sequence-mediated genetic recombination. Genetic convergence, although rare, was also previously demonstrated. Three previous international spoligotype databases had partly revealed the global and local geographical structures of MTC bacilli populations, however, there was a need for the release of a new, more representative and extended, international spoligotyping database. Results The fourth international spoligotyping database, SpolDB4, describes 1939 shared-types (STs) representative of a total of 39,295 strains from 122 countries, which are tentatively classified into 62 clades/lineages using a mixed expert-based and bioinformatical approach. The SpolDB4 update adds 26 new potentially phylogeographically-specific MTC genotype families. It provides a clearer picture of the current MTC genomes diversity as well as on the relationships between the genetic attributes investigated (spoligotypes) and the infra-species classification and evolutionary history of the species. Indeed, an independent Naïve-Bayes mixture-model analysis has validated main of the previous supervised SpolDB3 classification results, confirming the usefulness of both supervised and unsupervised models as an approach to understand MTC population structure. Updated results on the epidemiological status of spoligotypes, as well as genetic prevalence maps on six main lineages are also shown. Our results suggests the existence of fine geographical genetic clines within MTC populations, that could mirror the passed and present Homo sapiens sapiens demographical and mycobacterial co-evolutionary history whose structure could be further reconstructed and modelled, thereby providing a large-scale conceptual framework of the global TB Epidemiologic Network. Conclusion Our results broaden the knowledge of the global phylogeography of the MTC complex. SpolDB4 should be a very useful tool to better define the identity of a given MTC clinical isolate, and to better analyze the links between its current spreading and previous evolutionary history. The building and mining of extended MTC polymorphic genetic databases is in progress.
Collapse
Affiliation(s)
- Karine Brudey
- Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Guadeloupe
| | | | - Leen Rigouts
- Mycobacteriology Unit, Prince Leopold Institute of Tropical Medicine, Antwerp, Belgium
| | - Wolfgang M Prodinger
- Dept. Hygiene Microbiology and Social Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Andrea Gori
- Dept of Infectious Diseases, Institut of Infectious Diseases, Milano, Italy
| | - Sahal A Al-Hajoj
- Department of Comparative Medicine, King Faisal specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Caroline Allix
- Laboratoire de la Tuberculose, Institut Pasteur de Bruxelles, Belgique
| | - Liselotte Aristimuño
- Universidad Centrooccidental Lisandro Alvarado, Barquisimeto, Venezuela and Universidad de Zaragoza, Spain
| | - Jyoti Arora
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Lothar Binder
- Institut for Hygiene, Microbiologie and Tropical Medicine, Austria
| | | | - Angel Cataldi
- Instituto de Biotecnologia INTA, Castelar, Argentina
| | - Soonfatt Cheong
- Dept of Medical Microbiology and Pathology, faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, School of Public Health
| | - Roland Diel
- University of Düsseldorf, Heinrich-Heine-University, Düsseldorf
| | | | - Jason T Evans
- Public Health Laboratory, Hearltlands Hospital, Birmingham, UK
| | | | - Séverine Ferdinand
- Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Guadeloupe
| | - Dario Garcia de Viedma
- Dept of Clinical Microbiology and Infectious Diseases, Hospital Gregorio Marañon, Madrid, Spain
| | - Carlo Garzelli
- Dept. of Experimental Pathology, Medical Biotechnology, Infection and Epidemiology, Pisa University, Pisa, Italy
| | - Lidia Gazzola
- Dept of Infectious Diseases, Institut of Infectious Diseases, Milano, Italy
| | - Harrison M Gomes
- Laboratory of Molecular Biology applied to Mycobacteria, Dept. Mycobacteriosis, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | | - Peter M Hawkey
- Public Health Laboratory, Hearltlands Hospital, Birmingham, UK
| | - Paul D van Helden
- MRC Centre for Molecular and Cellular Biology, Dept of medical Biochemistry, University of Stellenbosch, Tygerberg, South Africa
| | - Gurujaj V Kadival
- Laboratory Nuclear Medicine Section, Isotope group, Bhabha Atomic Research Centre c/T.M.H. Annexe, Parel, Mumbai-400012, India
| | | | - Kristin Kremer
- Mycobacteria reference unit, Diagnostic Laboratory for Infectious Diseases and Perinatal Screening, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Milan Kubin
- Municipal Institute of Hygiene, Prague, Czech Republic
| | - Savita P Kulkarni
- Laboratory Nuclear Medicine Section, Isotope group, Bhabha Atomic Research Centre c/T.M.H. Annexe, Parel, Mumbai-400012, India
| | - Benjamin Liens
- Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Guadeloupe
| | - Troels Lillebaek
- Statens Serum Institute, Int. Ref. lab. for Mycobacteriology, Copenhagen Denmark
| | - Ho Minh Ly
- Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Christian Martin
- Laboratoire de Bactério-virologie-hygiène, CHU Dupuytren, Limoges, France
| | - Igor Mokrousov
- Institut Pasteur de Saint-Petersbourg, Saint Petersbourg, Russia
| | - Olga Narvskaïa
- Institut Pasteur de Saint-Petersbourg, Saint Petersbourg, Russia
| | - Yun Fong Ngeow
- Dept of Medical Microbiology and Pathology, faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, School of Public Health
| | - Ludmilla Naumann
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Stefan Niemann
- Forschungszentrum, National Reference Center for Mycobacteria, Borstel, Germany
| | - Ida Parwati
- Dept of Clinical Pathology, Padjadjaran University, Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Zeaur Rahim
- Tuberculosis Laboratory, International Centre for Diarrhoeal Research, Dhaka, Bangladesh
| | | | | | | | - Sabine Rüsch-Gerdes
- Forschungszentrum, National Reference Center for Mycobacteria, Borstel, Germany
| | - Anna Sajduda
- Dept of Genetics of Microorganisms, University of Lódz, Lodz, Poland
| | - Sofia Samper
- Servicio Microbiología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Igor G Shemyakin
- State Research Center for Applied Microbiology, Obolensk, Russian Federation
| | | | - Akos Somoskovi
- Dept. of Respiratory Medicine School of Medicine Semmelweis University, Budapest, Hungary
| | - Robin A Skuce
- Veterinary Sciences Division, Department of agriculture for Northern Ireland, Belfast, UK
| | - Dick van Soolingen
- Mycobacteria reference unit, Diagnostic Laboratory for Infectious Diseases and Perinatal Screening, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Elisabeth M Streicher
- MRC Centre for Molecular and Cellular Biology, Dept of medical Biochemistry, University of Stellenbosch, Tygerberg, South Africa
| | - Philip N Suffys
- Laboratory of Molecular Biology applied to Mycobacteria, Dept. Mycobacteriosis, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Enrico Tortoli
- Centro regionale di Riferimento per i Micobatteri, Laboratorio de Microbiologia e Virologia, Ospedale Careggi, Firenze, Italy
| | | | - Véronique Vincent
- Centre National de Référence des Mycobactéries, Institut Pasteur, Paris, France
| | - Tommie C Victor
- MRC Centre for Molecular and Cellular Biology, Dept of medical Biochemistry, University of Stellenbosch, Tygerberg, South Africa
| | - Robin M Warren
- MRC Centre for Molecular and Cellular Biology, Dept of medical Biochemistry, University of Stellenbosch, Tygerberg, South Africa
| | - Sook Fan Yap
- Dept of Medical Microbiology and Pathology, faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, School of Public Health
| | - Khadiza Zaman
- Tuberculosis Laboratory, International Centre for Diarrhoeal Research, Dhaka, Bangladesh
| | - Françoise Portaels
- Mycobacteriology Unit, Prince Leopold Institute of Tropical Medicine, Antwerp, Belgium
| | - Nalin Rastogi
- Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Guadeloupe
| | - Christophe Sola
- Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Guadeloupe
| |
Collapse
|
42
|
Filliol I, Motiwala AS, Cavatore M, Qi W, Hazbón MH, Bobadilla del Valle M, Fyfe J, García-García L, Rastogi N, Sola C, Zozio T, Guerrero MI, León CI, Crabtree J, Angiuoli S, Eisenach KD, Durmaz R, Joloba ML, Rendón A, Sifuentes-Osornio J, Ponce de León A, Cave MD, Fleischmann R, Whittam TS, Alland D. Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 2006; 188:759-72. [PMID: 16385065 PMCID: PMC1347298 DOI: 10.1128/jb.188.2.759-772.2006] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed a global collection of Mycobacterium tuberculosis strains using 212 single nucleotide polymorphism (SNP) markers. SNP nucleotide diversity was high (average across all SNPs, 0.19), and 96% of the SNP locus pairs were in complete linkage disequilibrium. Cluster analyses identified six deeply branching, phylogenetically distinct SNP cluster groups (SCGs) and five subgroups. The SCGs were strongly associated with the geographical origin of the M. tuberculosis samples and the birthplace of the human hosts. The most ancestral cluster (SCG-1) predominated in patients from the Indian subcontinent, while SCG-1 and another ancestral cluster (SCG-2) predominated in patients from East Asia, suggesting that M. tuberculosis first arose in the Indian subcontinent and spread worldwide through East Asia. Restricted SCG diversity and the prevalence of less ancestral SCGs in indigenous populations in Uganda and Mexico suggested a more recent introduction of M. tuberculosis into these regions. The East African Indian and Beijing spoligotypes were concordant with SCG-1 and SCG-2, respectively; X and Central Asian spoligotypes were also associated with one SCG or subgroup combination. Other clades had less consistent associations with SCGs. Mycobacterial interspersed repetitive unit (MIRU) analysis provided less robust phylogenetic information, and only 6 of the 12 MIRU microsatellite loci were highly differentiated between SCGs as measured by GST. Finally, an algorithm was devised to identify two minimal sets of either 45 or 6 SNPs that could be used in future investigations to enable global collaborations for studies on evolution, strain differentiation, and biological differences of M. tuberculosis.
Collapse
Affiliation(s)
- Ingrid Filliol
- Division of Infectious Disease, University of Medicine and Dentistry of New Jersey, 185 South Orange Ave., MSB A920C, Newark, NJ 07103.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lavender C, Globan M, Sievers A, Billman-Jacobe H, Fyfe J. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis isolates collected in Australia. Antimicrob Agents Chemother 2006; 49:4068-74. [PMID: 16189082 PMCID: PMC1251532 DOI: 10.1128/aac.49.10.4068-4074.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elucidation of the molecular basis of isoniazid (INH) resistance in Mycobacterium tuberculosis has led to the development of different genotypic approaches for the rapid detection of INH resistance in clinical isolates. Mutations in katG, in particular the S315T substitution, are responsible for INH resistance in a large proportion of tuberculosis cases. However, the frequency of the katG S315T substitution varies with population samples. In this study, 52 epidemiologically unrelated clinical INH-resistant M. tuberculosis isolates collected in Australia were screened for mutations at katG codon 315 and the fabG1-inhA regulatory region. Importantly, 52 INH-sensitive isolates, selected to reflect the geographic and genotypic diversity of the isolates, were also included for comparison. The katG S315T substitution and fabG1-inhA -15 C-to-T mutation were identified in 34 and 13 of the 52 INH-resistant isolates, respectively, and none of the INH-sensitive isolates. Three novel katG mutations, D117A, M257I, and G491C, were identified in three INH-resistant strains with a wild-type katG codon 315, fabG1-inhA regulatory region, and inhA structural gene. When analyzed for possible associations between resistance mechanisms, resistance phenotype, and genotypic groups, it was found that neither the katG S315T nor fabG1-inhA -15 C-to-T mutation clustered with any one genotypic group, but that the -15 C-to-T substitution was associated with isolates with intermediate INH resistance and isolates coresistant to ethionamide. In total, 90.4% of unrelated INH-resistant isolates could be identified by analysis of just two loci: katG315 and the fabG1-inhA regulatory region.
Collapse
Affiliation(s)
- Caroline Lavender
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
44
|
Gazouli M, Ikonomopoulos J, Koundourakis A, Bartos M, Pavlik I, Overduin P, Kremer K, Gorgoulis V, Kittas C. Characterization of Mycobacterium tuberculosis complex isolates from Greek patients with sarcoidosis by Spoligotyping. J Clin Microbiol 2005; 43:4858-4861. [PMID: 16145159 PMCID: PMC1234046 DOI: 10.1128/jcm.43.9.4858-4861.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 02/16/2005] [Accepted: 05/16/2005] [Indexed: 11/20/2022] Open
Abstract
Spoligotyping was undertaken with 38 Mycobacterium tuberculosis isolates from Greek sarcoidosis patients and 31 isolates from patients with tuberculosis. Fifty percent of the isolates from sarcoidosis patients and 16.13% of the isolates from patients with tuberculosis were represented by a unique pattern, whereas the remaining isolates belonged to seven shared types. Interestingly, half of the isolates from sarcoidosis patients did not resemble the spoligotypes of the isolates from patients with tuberculosis, most of which pertained to shared spoligotypes.
Collapse
Affiliation(s)
- M Gazouli
- Department of Histology-Embryology, School of Medicine, University of Athens, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gori A, Esposti AD, Bandera A, Mezzetti M, Sola C, Marchetti G, Ferrario G, Salerno F, Goyal M, Diaz R, Gazzola L, Codecasa L, Penati V, Rastogi N, Moroni M, Franzetti F. Comparison between spoligotyping and IS6110 restriction fragment length polymorphisms in molecular genotyping analysis of Mycobacterium tuberculosis strains. Mol Cell Probes 2005; 19:236-44. [PMID: 16038791 DOI: 10.1016/j.mcp.2005.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 01/05/2005] [Indexed: 11/23/2022]
Abstract
Spoligotyping was compared with RFLP fingerprinting analysis in the identification of Mycobacterium tuberculosis strains. Spoligotyping sensitivity was 97.6% with a specificity of 47%. The global probability for two strains clustered with spoligotyping to be clustered also with RFLP analysis was 33%; the probability for two strains clustered with RFLP analysis to be clustered also with spoligotyping analysis was 95%. However, comparing the two methods in five outbreak episodes, full concordance was evidenced between spoligotyping and RFLP. Moreover, we evaluated the presence of our 17 largest spoligotyping clusters in spoligotyping databases from Caribbean countries, London and Cuba. Only five out of 17 patterns were present in all the cohorts. The conditional probability comparing spoligotyping and RFLP methods related to these patterns resulted in very low concordance (range from 2 to 38%). In conclusion, we confirm that spoligotyping when used alone overestimates the number of recent transmission and does not represent a suitable method for wide clinical practice application. However, it allows to get a first good picture of strain identity in a new setting and in more localized or confined settings, the probability of reaching the same result compared to RFLP was 100% confirming the usefulness of spoligotyping in the management of epidemic events, especially in hospitals, prisons and close communities.
Collapse
Affiliation(s)
- Andrea Gori
- Institute of Infectious Diseases and Tropical Medicine, Luigi Sacco Hospital, University of Milan, Via G.B.Grassi 74, Milan 20157, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Borsuk S, Dellagostin MM, Madeira SDG, Lima C, Boffo M, Mattos I, Almeida da Silva PE, Dellagostin OA. Molecular characterization of Mycobacterium tuberculosis isolates in a region of Brazil with a high incidence of tuberculosis. Microbes Infect 2005; 7:1338-44. [PMID: 16039895 DOI: 10.1016/j.micinf.2005.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 04/09/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022]
Abstract
One hundred and seventy Mycobacterium tuberculosis clinical isolates were characterized by spoligotyping to evaluate the biodiversity of tubercle bacilli in a region of Brazil with a high incidence of tuberculosis (Pelotas and Rio Grande cities - Rio Grande do Sul State). The spoligotyping results were compared to the World Spoligotyping Database (Institut Pasteur de Guadeloupe), which contains data from >14,000 worldwide isolates of M. tuberculosis. The isolates clustered by spoligotyping were further characterized by IS6110-RFLP to confirm the clonal relationship. Sixty-six different spoligotypes were identified, grouping 125 of the isolates (74%). Approximately half of the isolates belonged to seven of the most frequently occurring spoligotypes in the database. Three shared types (with two or more isolates) not previously identified were given the type numbers 826, 827 and 863. An additional 45 spoligotypes were identified that did not match any existing database pattern. RFLP characterization reduced the number of isolates in most of the clusters, thereby showing a higher differentiation capacity than spoligotyping. These results highlight the importance of molecular epidemiology studies of tuberculosis in insufficiently studied regions with a high TB burden, in order to uncover the true extent of genetic diversity of the pathogen.
Collapse
Affiliation(s)
- Sibele Borsuk
- Molecular Biology Laboratory, Center for Biotechnology, Federal University of Pelotas, Campus Universitário, Caixa Postal 354, CEP 96010-900 Pelotas, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
García de Viedma D, Bouza E, Rastogi N, Sola C. Analysis of Mycobacterium tuberculosis genotypes in Madrid and identification of two new families specific to Spain-related settings. J Clin Microbiol 2005; 43:1797-806. [PMID: 15815001 PMCID: PMC1081327 DOI: 10.1128/jcm.43.4.1797-1806.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Spain, tuberculosis (TB) patterns are changing because of the recent increase in the number of cases among immigrants. To establish the composition of circulating Mycobacterium tuberculosis strains before the effects of foreign strains appear, this study focused on molecular characterization of 233 patient isolates using spoligotyping. The spoligotyping data were further analyzed using an international database, SpolDB4. The results obtained showed that the general features of the M. tuberculosis population in Spain are coherent with those of other European countries, with the Latin American and Mediterranean group, and with the Haarlem 3 and T1 families as the most prevalent genotypes. The Spanish isolates clustered mostly with genotypes which had previously been isolated in countries linked with Spain. We also describe and fully characterize two novel M. tuberculosis families, Madrid1 and Madrid2, which are specific to Spain-related settings. The data reported here provide a solid reference when monitoring changes in the composition of the M. tuberculosis population in Spain as a consequence of the increasing rate of TB in the foreign population.
Collapse
Affiliation(s)
- Darío García de Viedma
- Servicio de Microbiología y Enfermedades Infecciosas, Hospital Gregorio Marañón, C/ Dr Esquerdo 46, 28007 Madrid, Spain.
| | | | | | | |
Collapse
|
48
|
Kulkarni S, Sola C, Filliol I, Rastogi N, Kadival G. Spoligotyping of Mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in Mumbai, India. Res Microbiol 2005; 156:588-96. [PMID: 15862459 DOI: 10.1016/j.resmic.2005.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 10/16/2004] [Accepted: 01/06/2005] [Indexed: 12/18/2022]
Abstract
Tuberculosis remains a major health problem in India, with 2 million new cases and 421,000 deaths each year. In this paper, we describe the spoligotyping results of 216 Mycobacterium tuberculosis culture isolates from patients with pulmonary tuberculosis in Mumbai, India. As spoligotyping data from India have rarely been described until now, and as there is limited information on the major circulating clades of M. tuberculosis, the data obtained were also compared to an international spoligotype database (SpolDB4) that contained patterns from 22,546 isolates from more than 100 countries. Eighty-four (39%) of the isolates were definitively marked as orphan strains, indicating the paucity of such data from India. The remaining 132 isolates clustered among 59 shared types; among these, 42 shared types were already present in the database, 17 were newly created, and 5 of them were specifically reported from Mumbai. A total of 9 major types in this study clustered 32% of the isolates. At the phylogenetic level, 30% of the isolates belonged to the Central Asian families CAS1 and CAS2, of the major genetic group (MGG) 1, 29% to MGG 2 and 3 families (spacers 33-36 missing) and 17% to the ancestral East African Indian (EAI) family. Finally, nearly 10% of the isolates belonged to the W-Beijing family in a broad sense, also in the MGG 1 group. In conclusion, historic clones of the MGG 1 group of M. tuberculosis are responsible for roughly 60% of all tuberculosis cases in Mumbai. Together with the fact that organisms presumably of European descent (such as the Haarlem family) were only rarely found, our observations suggest that tuberculosis in Mumbai, India is essentially caused by historical clones of tubercle bacilli undergoing active circulation due to uncontrolled demography, high prevalence of the disease, and a paucity of resources.
Collapse
Affiliation(s)
- Savita Kulkarni
- Laboratory Nuclear Medicine Section, Isotope Group, Bhabha Atomic Research Centre C/o T.M.H. Annexe, Parel, Mumbai 400012, India
| | | | | | | | | |
Collapse
|
49
|
Sola C, Ferdinand S, Sechi LA, Zanetti S, Martial D, Mammina C, Nastasi A, Fadda G, Rastogi N. Mycobacterium tuberculosis molecular evolution in western Mediterranean Islands of Sicily and Sardinia. INFECTION GENETICS AND EVOLUTION 2005; 5:145-56. [PMID: 15639747 DOI: 10.1016/j.meegid.2004.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 08/17/2004] [Accepted: 08/24/2004] [Indexed: 11/22/2022]
Abstract
In this study, a total of 204 Mycobacterium tuberculosis DNAs from Sicily (n = 144) and Sardinia (n = 60) were studied by three genotyping methods. Results were analyzed both within and across islands, to define the phylogeographical specificities of the genotypes, look for their diversity and infer a molecular evolutionary scenario. A strong link between geography and tuberculosis genotypes was observed in Sardinia. The results were also matched against a world-wide genetic diversity database to compare the population structure of the tubercle bacilli in the islands. Eight common genotypes between Sicily, Sardinia and continental Italy were found which underlines the influences of the Italian mainland on the population structure on the islands and vice versa. A unified evolutionary scenario of M. tuberculosis evolution was built using numerical taxonomy and maximum parsimony (MP) methods. The finding of multiple families of M. tuberculosis strains (S, T, LAM, Haarlem), their presumed links with the major genetic groups (MGG) of M. tuberculosis complex, supports the view of independent introduction of several ancestral genotypes in Sicily and in Sardinia. We conclude that the two PCR-based genotyping combination (spoligotyping-VNTR) is an excellent tool to reconstruct M. tuberculosis phylogeny, that may be used to construct global and local evolutionary scenarios of the M. tuberculosis complex. The results obtained are paradigmatic of the complex interplay that exists between epidemic dynamics and evolutionary genetics of M. tuberculosis.
Collapse
Affiliation(s)
- Christophe Sola
- Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Morne Jolivière, BP 484, F97165 Pointe-à-Pitre, Guadeloupe, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Brudey K, Gordon M, Moström P, Svensson L, Jonsson B, Sola C, Ridell M, Rastogi N. Molecular epidemiology of Mycobacterium tuberculosis in western Sweden. J Clin Microbiol 2004; 42:3046-51. [PMID: 15243058 PMCID: PMC446260 DOI: 10.1128/jcm.42.7.3046-3051.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic diversity of Mycobacterium tuberculosis isolates among patients from Sweden was determined by a combination of two PCR-based techniques (spoligotyping and variable number of tandem repeats analysis). It resulted in a clustering of 23.6% of the isolates and a rate of recent transmission of 14.1%. The clustered isolates mainly belonged to the Haarlem family (23.2%), followed by the Beijing (9.8%), Latin American and Mediterranean (LAM; 8%), and East African-Indian (EAI; 6.2%) families. A comparison of the spoligotypes with those in the international spoligotyping database showed that 62.5% of the clustered isolates and 36.6% of all isolates typed were grouped into six major shared types. A comparison of the spoligotypes with those in databases for Scandinavian countries showed that 33% of the isolates belonged to an ill-defined T family, followed by the EAI (22%), Haarlem (20%), LAM (11%), Central Asian (5%), X (5%), and Beijing (4%) families. Both the highest number of cases and the proportion of clustered cases were observed in patients ages 15 to 39 years. Nearly 10% of the isolates were resistant to one or more drugs (essentially limited to isoniazid monoresistance). However, none of the strains were multidrug resistant. Data on the geographic origins of the patients showed that more than two-thirds of the clustered patients with tuberculosis were foreign-born individuals or refugees. These results are explained on the basis of both the historical links within specific countries and recently imported cases of tuberculosis into Sweden.
Collapse
Affiliation(s)
- Karine Brudey
- Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Morne Jolivière, BP 484, 97165 Pointe-à-Pitre, Cedex, Guadeloupe
| | | | | | | | | | | | | | | |
Collapse
|