1
|
Ashique S, Biswas A, Mohanto S, Srivastava S, Hussain MS, Ahmed MG, Subramaniyan V. Anthrax: A narrative review. New Microbes New Infect 2024; 62:101501. [PMID: 39497912 PMCID: PMC11532300 DOI: 10.1016/j.nmni.2024.101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024] Open
Abstract
Bacillus anthracis is a zoonotic bacterium, majorly responsible for causing human anthrax and the possibility of the outbreak spreading globally. Herbivorous animals serve as the inherent reservoir for the disease, whereas all endothermic species are vulnerable. Humans contract the disease inadvertently by contact with diseased animals or animal products or through the consumption or handling of infected flesh. There is no such reported data indicating the transmission of anthrax from human to human, which further does not guarantee the bacterium's mutations and new transmission route. Nevertheless, it can lead to various infections, including endophthalmitis, bacteremia, cutaneous infection, central nervous system infection, and pneumonia. Therefore, it is crucial to examine the present epidemiological situation of human anthrax in densely populated nations, including the altered symptoms, indications in people, and the method of transmission. This article highlights the current diagnostic methods for human anthrax, further examines the available therapy options and future perspectives in treatment protocol. This narrative review resulted from a simple search strategy on "PubMed", "ScienceDirect", "ClinicalTrials.gov" and web reports using "AND" as Boolean operator with search keywords, i.e., "Anthrax" AND "Infection", "Anthrax" AND "Pandemic", "Anthrax" AND "Infectious disease", "Anthrax" AND "Vaccine", "Anthrax" AND "Diagnosis" shows minimal narrative literature in between 2024 and 2005. Furthermore, this narrative review highlights the potential approaches for detecting anthrax infection, establishing suitable protocols for prevention, and focusing on the current epidemiology and available therapeutics, vaccine and its future developmental strategies for the prevention of infectious disorder.
Collapse
Affiliation(s)
- Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 700118, West Bengal, India
- UNESCO Regional Centre for Biotechnology, Department of Biotechnology, Government of India, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Beliveau M, Rubets I, Bojan D, Hall C, Toth D, Kodihalli S, Kammanadiminti S. Animal-to-Human Dose Translation of ANTHRASIL for Treatment of Inhalational Anthrax in Healthy Adults, Obese Adults, and Pediatric Subjects. Clin Pharmacol Ther 2024; 115:248-255. [PMID: 38082506 DOI: 10.1002/cpt.3097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024]
Abstract
Anthrax Immune Globulin Intravenous (AIGIV [ANTHRASIL]), was developed for the treatment of toxemia associated with inhalational anthrax. It is a plasma product collected from individuals vaccinated with anthrax vaccine and contains antitoxin IgG antibodies against Bacillus anthracis protective antigen. A pharmacokinetic (PK) and exposure-response model was constructed to assess the PKs of AIGIV in anthrax-free and anthrax-exposed rabbits, non-human primates and anthrax-free humans, as well as the relationship between AIGIV exposure and survival from anthrax, based on available preclinical/clinical studies. The potential effect of anthrax on the PKs of AIGIV was evaluated and estimates of survival odds following administration of AIGIV protective doses with and without antibiotic co-treatment were established. As the developed PK model can simulate exposure of AIGIV in any species for any dosing scenario, the relationship between the predicted area under the concentration curve of AIGIV in humans and the probability of survival observed in preclinical studies was explored. Based on the simulation results, the intravenous administration of 420 U (units of potency as measured by validated Toxin Neutralization Assay) of AIGIV is expected to result in a > 80% probability of survival in more than 90% of the human population. Additional simulations suggest that exposure levels were similar in healthy and obese humans, and exposure in pediatrics is expected to be up to approximately seven-fold higher than in healthy adults, allowing for doses in pediatric populations that ranged from one to seven vials. Overall, the optimal human dose was justified based on the PK/pharmacodynamic (PD) properties of AIGIV in animals and model-based translation of PK/PD to predict human exposure and efficacy.
Collapse
Affiliation(s)
- Martin Beliveau
- Integrated Drug Development, Certara, Montreal, Quebec, Canada
| | - Igor Rubets
- Integrated Drug Development, Certara, Montreal, Quebec, Canada
| | - Drobic Bojan
- Emergent BioSolutions Inc., Winnipeg, Manitoba, Canada
| | | | - Derek Toth
- Emergent BioSolutions Inc., Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
3
|
Rodríguez-Penedo A, Costa-Rama E, Fernández B, García-Cabo C, Benavente L, Calleja S, Fernández-Abedul MT, Pereiro R. Palladium nanoclusters as a label to determine GFAP in human serum from donors with stroke by bimodal detection: inductively coupled plasma-mass spectrometry and linear sweep voltammetry. Mikrochim Acta 2023; 190:493. [PMID: 38032374 PMCID: PMC10689531 DOI: 10.1007/s00604-023-06059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Water-soluble, stable, and monodisperse palladium nanoclusters (PdNCs) were synthesized using NaBH4 as a reductant and lipoic acid as a ligand. PdNCs, measured by high-resolution transmission electron microscopy, showed a round shape and a diameter of 2.49 ± 0.02 nm. It was found that each PdNC contains 550 Pd atoms on average. These PdNCs offer high amplification as a label of biochemical reactions when inductively coupled plasma-mass spectrometry (ICP-MS) is used as a detector. In addition, PdNCs have catalytic activity on electrochemical reactions, allowing detection by linear sweep voltammetry (LSV). As a proof of applicability, a competitive immunoassay based on PdNC labels was developed for the determination of glial fibrillary acidic protein (GFAP) in human serum, comparing ICP-MS and LSV detection. GFAP is a biomarker for differentiating between patients with ischemic stroke (IS) and hemorrhagic stroke (HS). The limit of detection (LoD), corresponding to IC10 (4-parameter logistic curve), was 0.03 pM of GFAP, both by ICP-MS and LSV, being lower than the 0.31 pM LoD provided by the ELISA commercial kit. Using the error profile method, 0.03 pM and 0.11 pM LoDs were obtained respectively by ICP-MS and LSV: LoD is lower by ICP-MS due to the better precision of the measurements. The analyses of human serum samples from IS, HS, and control (CT) donors using PdNC labels and detection by ICP-MS and LSV were validated with a commercial ELISA kit (for CT donors only ICP-MS provided enough sensitivity). Results point out toward the future use of PdNCs as a label in other immunoprobes for the determination of specific proteins requiring very low LoDs as well as the development of electrochemical decentralized methodologies.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Penedo
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Estefanía Costa-Rama
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain.
| | - Carmen García-Cabo
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Lorena Benavente
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Sergio Calleja
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - M Teresa Fernández-Abedul
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain.
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
4
|
Narayan B, Verma SK, Singh S, Gupta MK, Kumar S. Protective antigen of Bacillus anthracis in combination with TLR4 or TLR5 agonist confers superior protection against lethal challenge in mouse model. Microbes Infect 2023; 25:105183. [PMID: 37437686 DOI: 10.1016/j.micinf.2023.105183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
The immunogenicity and protective ability of recombinant PA (rPA) with two innate immune system modulators, i.e., monophosphoryl lipid A (MPLA), a TLR4 agonist, and recombinant flagellin C (FliC), a TLR5 agonist, were studied in the mouse model. BALB/c mice were inoculated with three doses of rPA + alum (Alum group), rPA + FliC + alum (FliC group), rPA + MPLA + alum (MPLA group), or only alum adjuvant (Alum alone group). Significant increases in anti-PA IgG titers were observed in the Alum, FliC and MPLA groups when compared to control Alum alone group. Similarly, a significant enhancement of proinflammatory (TNF-α, IL-1β), Th1 (IFN-γ, IL-12(p70), IL-2) and Th2 (IL-10, IL-4) cytokines were also noticed in Alum, FliC and MPLA groups compared to Alum alone group. The rPA-specific IgG and cytokine responses in MPLA and FliC groups were significantly higher than the Alum group, suggesting enhancement of immune response by these TLR agonists. MPLA was also found to skew the IgG1:IgG2a ratio towards IgG2a. At a challenge dose of 25 LD50, complete protection was observed in mice of MPLA group whereas lesser protection was observed in FliC (87%) and Alum (50%) groups. Therefore, we suggest the use of MPLA in further development of rPA based anthrax vaccines.
Collapse
Affiliation(s)
- Bineet Narayan
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India
| | - Shailendra Kumar Verma
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India
| | - Sandeep Singh
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India
| | - Mahendra K Gupta
- School of Studies in Botany and Microbiology, Jiwaji University, Gwalior, India
| | - Subodh Kumar
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
5
|
Niemuth NA, Triplett CA, Anderson MS, Sankovich KA, Rudge TL. A Case Study for Critical Reagent Qualification for Ligand Binding Assays Using Equivalence Test Methodology. AAPS J 2023; 25:89. [PMID: 37715073 DOI: 10.1208/s12248-023-00857-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/26/2023] [Indexed: 09/17/2023] Open
Abstract
Qualifying critical reagents in ligand binding assays by parallel testing of current and candidate reagent lots is recommended by regulatory agencies and industry groups, but specific guidance on the format of reagent qualification experiments is limited. Equivalence testing is a statistically sound approach that is consistent with the objective of critical reagent qualification. We present power analysis for equivalence regions ranging from 1.25- to 1.5-fold multiples of the GM ratio (centered on 1) of current and candidate lots, over a range of assay variability from 5 to 30% coefficient of variation (CV). A 1.25-fold equivalence region can be tested using 6 to 12 plates per lot for assays with up to 15% CV but is not practical for more variable assays. For these assays, wider equivalence regions are justified so long as care is taken to avoid assay drift and the assay remains suitable for the intended use. The equivalence test method is illustrated using historical data from passing and failing reagent qualification experiments. Simulation analysis was performed to support the design of qualification experiments using 6, 12, or 18 plates per lot over a broad range of assay variability. A challenge in implementing the equivalence test approach is selecting an appropriate equivalence region. Equivalence regions providing 90% power using 12 plates/lot were consistent with 1.5σ bounds, which are recommended for equivalence testing of critical quality attributes of biosimilars.
Collapse
Affiliation(s)
| | | | | | | | - Thomas L Rudge
- Battelle Biomedical Research Center, West Jefferson, OH, USA
| |
Collapse
|
6
|
Cavalera S, Serra T, Abad-Fuentes A, Mercader JV, Abad-Somovilla A, Nardo FD, D'Avolio A, De Nicolò A, Testa V, Chiarello M, Baggiani C, Anfossi L. Development and In-House Validation of an Enzyme-Linked Immunosorbent Assay and a Lateral Flow Immunoassay for the Dosage of Tenofovir in Human Saliva. BIOSENSORS 2023; 13:667. [PMID: 37367032 DOI: 10.3390/bios13060667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Highly active antiretroviral therapy (HAART) includes very potent drugs that are often characterized by high toxicity. Tenofovir (TFV) is a widely used drug prescribed mainly for pre-exposure prophylaxis (PreP) and the treatment of human immunodeficiency virus (HIV). The therapeutic range of TFV is narrow, and adverse effects occur with both underdose and overdose. The main factor contributing to therapeutic failure is the improper management of TFV, which may be caused by low compliance or patient variability. An important tool to prevent inappropriate administration is therapeutic drug monitoring (TDM) of compliance-relevant concentrations (ARCs) of TFV. TDM is performed routinely using time-consuming and expensive chromatographic methods coupled with mass spectrometry. Immunoassays, such as enzyme-linked immunosorbent assays (ELISAs) and lateral flow immunoassays (LFIAs), are based on antibody-antigen specific recognition and represent key tools for real-time quantitative and qualitative screening for point-of-care testing (POCT). Since saliva is a non-invasive and non-infectious biological sample, it is well-suited for TDM. However, saliva is expected to have a very low ARC for TFV, so tests with high sensitivity are required. Here, we have developed and validated a highly sensitive ELISA (IC50 1.2 ng/mL, dynamic range 0.4-10 ng/mL) that allows the quantification of TFV in saliva at ARCs and an extremely sensitive LFIA (visual LOD 0.5 ng/mL) that is able to distinguish between optimal and suboptimal ARCs of TFV in untreated saliva.
Collapse
Affiliation(s)
- Simone Cavalera
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Thea Serra
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Antonio Abad-Fuentes
- Institute of Agricultural Chemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Paterna, 46980 Valencia, Spain
| | - Josep V Mercader
- Institute of Agricultural Chemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Paterna, 46980 Valencia, Spain
| | - Antonio Abad-Somovilla
- Department of Organic Chemistry, University of Valencia, Burjassot, 46100 Valencia, Spain
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Antonio D'Avolio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Amedeo De Nicolò
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Valentina Testa
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Matteo Chiarello
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Claudio Baggiani
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Laura Anfossi
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| |
Collapse
|
7
|
Gumus E, Bingol H, Zor E. Lateral flow assays for detection of disease biomarkers. J Pharm Biomed Anal 2023; 225:115206. [PMID: 36586382 DOI: 10.1016/j.jpba.2022.115206] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Early diagnosis saves lives in many diseases. In this sense, monitoring of biomarkers is crucial for the diagnosis of diseases. Lateral flow assays (LFAs) have attracted great attention among paper-based point-of-care testing (POCT) due to their low cost, user-friendliness, and time-saving advantages. Developments in the field of health have led to an increase of interest in these rapid tests. LFAs are used in the diagnosis and monitoring of many diseases, thanks to biomarkers that can be observed in body fluids. This review covers the recent advances dealing with the design and strategies for the development of LFA for the detection of biomarkers used in clinical applications in the last 5 years. We focus on various strategies such as choosing the nanoparticle type, single or multiple test approaches, and equipment for signal transducing for the detection of the most common biomarkers in different diseases such as cancer, cardiovascular, infectious, and others including Parkinson's and Alzheimer's diseases. We expect that this study will contribute to the different approaches in LFA and pave the way for other clinical applications.
Collapse
Affiliation(s)
- Eda Gumus
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey
| | - Haluk Bingol
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Chemistry Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Erhan Zor
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Science Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|
8
|
Shewell LK, Day CJ, De Bisscop X, Edwards JL, Jennings MP. Repurposing Carbamazepine To Treat Gonococcal Infection in Women: Oral Delivery for Control of Epilepsy Generates Therapeutically Effective Levels in Vaginal Secretions. Antimicrob Agents Chemother 2023; 67:e0096822. [PMID: 36602335 PMCID: PMC9872610 DOI: 10.1128/aac.00968-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Neisseria gonorrhoeae has developed resistance to all previous antibiotics used for treatment. This highlights a crucial need for novel antimicrobials to treat gonococcal infections. We previously showed that carbamazepine (Cz), one of the most commonly prescribed antiepileptic drugs, can block the interaction between gonococcal pili and the I-domain region of human complement receptor 3 (CR3)-an interaction that is vital for infection of the female cervix. We also show that Cz can completely clear an established N. gonorrhoeae infection of primary human cervical cells. In this study, we quantified Cz in serum, saliva, and vaginal fluid collected from 16 women who were, or were not, regularly taking Cz. We detected Cz in lower reproductive tract mucosal secretions in the test group (women taking Cz) at potentially therapeutic levels using a competitive ELISA. Furthermore, we found that Cz concentrations present in vaginal fluid from women taking this drug were sufficient to result in a greater than 99% reduction (within 24 h) in the number of viable gonococci recovered from ex vivo, human, primary cervical cell infections. These data provide strong support for the further development of Cz as a novel, host-targeted therapy to treat gonococcal cervicitis.
Collapse
Affiliation(s)
- Lucy K. Shewell
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Xavier De Bisscop
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Jennifer L. Edwards
- The Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- The Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
9
|
Hendricks K, Martines RB, Bielamowicz H, Boyer AE, Long S, Byers P, Stoddard RA, Taylor K, Kolton CB, Gallegos-Candela M, Roberts C, DeLeon-Carnes M, Salzer J, Dawson P, Brown D, Templeton-LeBouf L, Maves RC, Gulvik C, Lonsway D, Barr JR, Bower WA, Hoffmaster A. Welder's Anthrax: A Tale of 2 Cases. Clin Infect Dis 2022; 75:S354-S363. [PMID: 36251561 PMCID: PMC9649440 DOI: 10.1093/cid/ciac535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bacillus anthracis has traditionally been considered the etiologic agent of anthrax. However, anthrax-like illness has been documented in welders and other metal workers infected with Bacillus cereus group spp. harboring pXO1 virulence genes that produce anthrax toxins. We present 2 recent cases of severe pneumonia in welders with B. cereus group infections and discuss potential risk factors for infection and treatment options, including antitoxin.
Collapse
Affiliation(s)
- Katherine Hendricks
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Roosecelis Brasil Martines
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hannah Bielamowicz
- Pathology Department, Fort Bend County Medical Examiner Office, Rosenberg, Texas, USA
| | - Anne E Boyer
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen Long
- Houston Laboratory Response Network, Houston Health Department, Houston, Texas, USA
| | - Paul Byers
- Office of Communicable Diseases, Mississippi State Department of Health, Jackson, Mississippi, USA
| | - Robyn A Stoddard
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kathryn Taylor
- Office of Communicable Diseases, Mississippi State Department of Health, Jackson, Mississippi, USA
| | - Cari Beesley Kolton
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maribel Gallegos-Candela
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christine Roberts
- Office of Communicable Diseases, Mississippi State Department of Health, Jackson, Mississippi, USA
| | - Marlene DeLeon-Carnes
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Johanna Salzer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patrick Dawson
- Office of Science, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dannette Brown
- King Daughters Medical Center, Brookhaven, Mississippi, USA
| | | | - Ryan C Maves
- Departments of Infectious Diseases and Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Chris Gulvik
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David Lonsway
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John R Barr
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - William A Bower
- Correspondence: W. A. Bower, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, MS H24-12, Atlanta, GA 30329 ()
| | - Alex Hoffmaster
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Zhong J, Liu S, Zou T, Yan W, Zhou M, Liu B, Rao X, Wang Y, Sun Z, Wang Y. All Fiber-Optic Immunosensors Based on Elliptical Core Helical Intermediate-Period Fiber Grating with Low-Sensitivity to Environmental Disturbances. BIOSENSORS 2022; 12:99. [PMID: 35200359 PMCID: PMC8869875 DOI: 10.3390/bios12020099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
An all fiber-optic immunosensor based on elliptical core helical intermediate-period fiber grating (E-HIPFG) is proposed for the specific detection of human immunoglobulin G (human IgG). E-HIPFGs are all-fiber transducers that do not include any additional coating materials or fiber architectures, simplifying the fabrication process and promising the stability of the E-HIPFG biosensor. For human IgG recognition, the surface of an E-HIPFG is functionalized by goat anti-human IgG. The functionalized E-HIPFG is tested by human IgG solutions with a concentration range of 10-100 μg/mL and shows a high sensitivity of 0.018 nm/(μg/mL) and a limit of detection (LOD) of 4.7 μg/mL. Notably, the functionalized E-HIPFG biosensor is found to be insensitive to environmental disturbances, with a temperature sensitivity of 2.6 pm/°C, a strain sensitivity of 1.2 pm/με, and a torsion sensitivity of -23.566 nm/(rad/mm). The results demonstrate the considerable properties of the immunosensor, with high resistance to environmental perturbations, indicating significant potential for applications in mobile biosensors and compact devices.
Collapse
Affiliation(s)
- Junlan Zhong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Shen Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Tao Zou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Wenqi Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Min Zhou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Bonan Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Xing Rao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Ying Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Zhongyuan Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
| |
Collapse
|
11
|
Nascimento EJM, Norwood B, Parker A, Braun R, Kpamegan E, Dean HJ. Development and Characterization of a Multiplex Assay to Quantify Complement-Fixing Antibodies against Dengue Virus. Int J Mol Sci 2021; 22:ijms222112004. [PMID: 34769432 PMCID: PMC8584793 DOI: 10.3390/ijms222112004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies capable of activating the complement system (CS) when bound with antigen are referred to as "complement-fixing antibodies" and are involved in protection against Flaviviruses. A complement-fixing antibody test has been used in the past to measure the ability of dengue virus (DENV)-specific serum antibodies to activate the CS. As originally developed, the test is time-consuming, cumbersome, and has limited sensitivity for DENV diagnosis. Here, we developed and characterized a novel multiplex anti-DENV complement-fixing assay based on the Luminex platform to quantitate serum antibodies against all four serotypes (DENV1-4) that activate the CS based on their ability to fix the complement component 1q (C1q). The assay demonstrated good reproducibility and showed equivalent performance to a DENV microneutralization assay that has been used to determine DENV serostatus. In non-human primates, antibodies produced in response to primary DENV1-4 infection induced C1q fixation on homologous and heterologous serotypes. Inter-serotype cross-reactivity was associated with homology of the envelope protein. Interestingly, the antibodies produced following vaccination against Zika virus fixed C1q on DENV. The anti-DENV complement fixing antibody assay represents an alternative approach to determine the quality of functional antibodies produced following DENV natural infection or vaccination and a biomarker for dengue serostatus, while providing insights about immunological cross-reactivity among different Flaviviruses.
Collapse
|
12
|
Hwang MT, Park I, Heiranian M, Taqieddin A, You S, Faramarzi V, Pak AA, van der Zande AM, Aluru NR, Bashir R. Ultrasensitive Detection of Dopamine, IL-6 and SARS-CoV-2 Proteins on Crumpled Graphene FET Biosensor. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2100712. [PMID: 34901384 PMCID: PMC8646936 DOI: 10.1002/admt.202100712] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Indexed: 05/03/2023]
Abstract
Universal platforms for biomolecular analysis using label-free sensing modalities can address important diagnostic challenges. Electrical field effect-sensors are an important class of devices that can enable point-of-care sensing by probing the charge in the biological entities. Use of crumpled graphene for this application is especially promising. It is previously reported that the limit of detection (LoD) on electrical field effect-based sensors using DNA molecules on the crumpled graphene FET (field-effect transistor) platform. Here, the crumpled graphene FET-based biosensing of important biomarkers including small molecules and proteins is reported. The performance of devices is systematically evaluated and optimized by studying the effect of the crumpling ratio on electrical double layer (EDL) formation and bandgap opening on the graphene. It is also shown that a small and electroneutral molecule dopamine can be captured by an aptamer and its conformation change induced electrical signal changes. Three kinds of proteins were captured with specific antibodies including interleukin-6 (IL-6) and two viral proteins. All tested biomarkers are detectable with the highest sensitivity reported on the electrical platform. Significantly, two COVID-19 related proteins, nucleocapsid (N-) and spike (S-) proteins antigens are successfully detected with extremely low LoDs. This electrical antigen tests can contribute to the challenge of rapid, point-of-care diagnostics.
Collapse
Affiliation(s)
- Michael Taeyoung Hwang
- Department of BioNano TechnologyGachon University1342 Seongnam‐Daero, Sujeong‐GuSeongnamGyeonggi13120Republic of Korea
| | - Insu Park
- Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Mohammad Heiranian
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Amir Taqieddin
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Seungyong You
- Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Vahid Faramarzi
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Angela A. Pak
- Materials Research LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Arend M. van der Zande
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Materials Research LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Narayana R. Aluru
- Materials Research LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Walker Department of Mechanical EngineeringOden Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinTX78712USA
| | - Rashid Bashir
- Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Materials Research LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
13
|
Rao VV, Godin CS, Lacy MJ, Inglefield JR, Park S, Blauth B, Reece JJ, Ionin B, Savransky V. Evaluation of the AV7909 Anthrax Vaccine Toxicity in Sprague Dawley Rats Following Three Intramuscular Administrations. Int J Toxicol 2021; 40:442-452. [PMID: 34281421 PMCID: PMC8532110 DOI: 10.1177/10915818211031239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AV7909 is a next-generation anthrax vaccine under development for post-exposure prophylaxis following suspected or confirmed Bacillus anthracis exposure, when administered in conjunction with the recommended antibacterial regimen. AV7909 consists of the FDA-approved BioThrax® vaccine (anthrax vaccine adsorbed) and an immunostimulatory Toll-like receptor 9 agonist oligodeoxynucleotide adjuvant, CPG 7909. The purpose of this study was to evaluate the potential systemic and local toxicity of AV7909 when administered via repeat intramuscular injection to the right thigh muscle (biceps femoris) to male and female Sprague Dawley rats. The vaccine was administered on Days 1, 15, and 29 and the animals were assessed for treatment-related effects followed by a 2-week recovery period to evaluate the persistence or reversibility of any toxic effects. The AV7909 vaccine produced no apparent systemic toxicity based on evaluation of clinical observations, body weights, body temperature, clinical pathology, and anatomic pathology. Necrosis and inflammation were observed at the injection sites as well as in regional lymph nodes and adjacent tissues and were consistent with immune stimulation. Antibodies against B. anthracis protective antigen (PA) were detected in rats treated with the AV7909 vaccine, confirming relevance of this animal model for the assessment of systemic toxicity of AV7909. In contrast, sera of rats that received saline or soluble CPG 7909 alone were negative for anti-PA antibodies. Overall, 3 intramuscular immunizations of Sprague Dawley rats with AV7909 were well tolerated, did not induce mortality or any systemic adverse effects, and did not result in any delayed toxicity.
Collapse
Affiliation(s)
| | | | | | - Jon R. Inglefield
- Frederick National Laboratory for Cancer Research, Frederick, MD (current affiliation; JRI was affiliated with the Emergent BioSolutions Inc, Gaithersburg, MD at the time of the work)
| | | | | | | | | | | |
Collapse
|
14
|
Taylor SC, Hurst B, Martiszus I, Hausman MS, Sarwat S, Schapiro JM, Rowell S, Lituev A. Semi-quantitative, high throughput analysis of SARS-CoV-2 neutralizing antibodies: Measuring the level and duration of immune response antibodies post infection/vaccination. Vaccine 2021; 39:5688-5698. [PMID: 34426026 PMCID: PMC8343386 DOI: 10.1016/j.vaccine.2021.07.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/24/2021] [Accepted: 07/31/2021] [Indexed: 02/06/2023]
Abstract
The question associated with efficacy and longevity of SARS-CoV-2 protection post-vaccination is paramount. The cPass surrogate virus neutralization test (sVNT) has gained popularity globally as a dual application assay for: 1. Accurate SARS-CoV-2 population surveillance (seroprevalence) analysis and 2. Revealing the presence of antibodies that block and effectively neutralize the interaction between the SARS-CoV-2 receptor binding domain and the host cell ACE2 receptor in recovered or vaccinated individuals. This study describes an approach for accurate quantification of neutralizing antibodies using the cPass sVNT with an automated workflow on the Tecan EVO and Dynex Agility platforms that is applicable to other liquid handling systems. This methodology was used to assess the stability of SARS-CoV-2 neutralizing antibodies between freeze/thaw and refrigerated sample storage conditions. Furthermore, a subset of twenty-five samples from SARS-CoV-2 infected/recovered individuals revealed a 600-fold difference in the neutralizing antibody response where low titers were represented in about half of the samples. Finally, pre- and post-vaccination samples were tested for neutralizing antibodies using the qualitative and semi-quantitative cPass sVNT protocols revealing undetectable or relatively low levels after the first vaccine dose and a decline in levels longitudinally over the months following the second dose. This wide range in neutralizing (blocking) antibodies from both natural infection and vaccination supports a differential immune response that may be attributed to several physiological and genetic factors underlining the potential for measuring SARS-CoV-2 neutralizing antibody titer levels post-vaccination to help ensure robust and prolonged immunity.
Collapse
Affiliation(s)
- Sean C Taylor
- GENSCRIPT USA INC., 860 Centennial Ave., Piscataway, NJ 08854, USA.
| | - Beth Hurst
- Cayman Chemical, 1180 E. Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Ian Martiszus
- Cure-Hub, 12655 SW Beaverdam Rd., Beaverton, OR 97005, USA
| | - Marvin S Hausman
- FourthWall Testing LLC, 455 9th Street Suite 128, Winter Garden, FL 34787, USA
| | - Samar Sarwat
- DYNEX Technologies, 14340 Sullyfield Circle, Chantilly, VA 20151-1621, USA
| | | | - Sarah Rowell
- Kaiser Permanente, 1795 A Second Street, Berkeley, CA 94710, USA
| | - Alexander Lituev
- Kaiser Permanente, 1795 A Second Street, Berkeley, CA 94710, USA
| |
Collapse
|
15
|
Kim HM, Kim J, Bock S, An J, Choi YS, Pham XH, Cha MG, Seong B, Kim W, Kim YH, Song H, Kim JW, Park SM, Lee SH, Rho WY, Lee S, Jeong DH, Lee HY, Jun BH. Silver-Assembled Silica Nanoparticles in Lateral Flow Immunoassay for Visual Inspection of Prostate-Specific Antigen. SENSORS (BASEL, SWITZERLAND) 2021; 21:4099. [PMID: 34203603 PMCID: PMC8232291 DOI: 10.3390/s21124099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022]
Abstract
Prostate-specific antigen (PSA) is the best-known biomarker for early diagnosis of prostate cancer. For prostate cancer in particular, the threshold level of PSA <4.0 ng/mL in clinical samples is an important indicator. Quick and easy visual detection of the PSA level greatly helps in early detection and treatment of prostate cancer and reducing mortality. In this study, we developed optimized silica-coated silver-assembled silica nanoparticles (SiO2@Ag@SiO2 NPs) that were applied to a visual lateral flow immunoassay (LFIA) platform for PSA detection. During synthesis, the ratio of silica NPs to silver nitrate changed, and as the synthesized NPs exhibited distinct UV spectra and colors, most optimized SiO2@Ag@SiO2 NPs showed the potential for early prostate cancer diagnosis. The PSA detection limit of our LFIA platform was 1.1 ng/mL. By applying each SiO2@Ag@SiO2 NP to the visual LFIA platform, optimized SiO2@Ag@SiO2 NPs were selected in the test strip, and clinical samples from prostate cancer patients were successfully detected as the boundaries of non-specific binding were clearly seen and the level of PSA was <4 ng/mL, thus providing an avenue for quick prostate cancer diagnosis and early treatment.
Collapse
Affiliation(s)
- Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Sungje Bock
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Jaehyun An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Yun-Sik Choi
- Department of Chemistry Education, Seoul National University, Seoul 05029, Korea; (Y.-S.C.); (M.G.C.); (D.H.J.)
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Myeong Geun Cha
- Department of Chemistry Education, Seoul National University, Seoul 05029, Korea; (Y.-S.C.); (M.G.C.); (D.H.J.)
| | - Bomi Seong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Wooyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| | - Hobeom Song
- BioSquare Inc., Seongnam 13620, Korea; (H.S.); (J.-W.K.)
| | - Jung-Won Kim
- BioSquare Inc., Seongnam 13620, Korea; (H.S.); (J.-W.K.)
| | - Seung-min Park
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea;
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea;
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul 05029, Korea; (Y.-S.C.); (M.G.C.); (D.H.J.)
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.K.); (S.B.); (J.A.); (X.-H.P.); (B.S.); (W.K.); (Y.-H.K.)
| |
Collapse
|
16
|
Smith K, Garman L, Norris K, Muther J, Duke A, Engler RJM, Nelson MR, Collins LC, Spooner C, Guthridge C, James JA. Insufficient Anthrax Lethal Toxin Neutralization Is Associated with Antibody Subclass and Domain Specificity in the Plasma of Anthrax-Vaccinated Individuals. Microorganisms 2021; 9:microorganisms9061204. [PMID: 34199431 PMCID: PMC8229884 DOI: 10.3390/microorganisms9061204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Anthrax vaccine adsorbed (AVA) is a significant line of defense against bioterrorist attack from Bacillus anthracis spores. However, in a subset of individuals, this vaccine may produce a suboptimal quantity of anti-protective antigen (PA), antibodies that are poorly neutralizing, and/or antibody titers that wane over time, necessitating annual boosters. To study individuals with such poor responses, we examine the properties of anti-PA in a subset of vaccinated individuals that make significant quantities of antibody but are still unable to neutralize toxin. In this cohort, characterized by poorly neutralizing antibody, we find that increased IgG4 to IgG1 subclass ratios, low antibody avidity, and insufficient antibody targeting domain 4 associate with improper neutralization. Thus, future vaccines and vaccination schedules should be formulated to improve these deficiencies.
Collapse
Affiliation(s)
- Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA; (K.N.); (J.M.); (A.D.); (C.G.)
- Correspondence: (K.S.); (J.A.J.); Tel.: +1-405-271-3275 (K.S.); +1-405-271-4987 (J.A.J.)
| | - Lori Garman
- Department of Genes and Human Disease, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA;
| | - Kathleen Norris
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA; (K.N.); (J.M.); (A.D.); (C.G.)
| | - Jennifer Muther
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA; (K.N.); (J.M.); (A.D.); (C.G.)
| | - Angie Duke
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA; (K.N.); (J.M.); (A.D.); (C.G.)
| | - Renata J. M. Engler
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20814, USA; (R.J.M.E.); (M.R.N.); (L.C.C.); (C.S.)
| | - Michael R. Nelson
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20814, USA; (R.J.M.E.); (M.R.N.); (L.C.C.); (C.S.)
| | - Limone C. Collins
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20814, USA; (R.J.M.E.); (M.R.N.); (L.C.C.); (C.S.)
| | - Christina Spooner
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20814, USA; (R.J.M.E.); (M.R.N.); (L.C.C.); (C.S.)
| | - Carla Guthridge
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA; (K.N.); (J.M.); (A.D.); (C.G.)
| | - Judith A. James
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA; (K.N.); (J.M.); (A.D.); (C.G.)
- Department of Microbiology and Immunology, Oklahoma University Health Science Center, 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Departments of Medicine and Pathology, Oklahoma University Health Science Center, 1000 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Correspondence: (K.S.); (J.A.J.); Tel.: +1-405-271-3275 (K.S.); +1-405-271-4987 (J.A.J.)
| |
Collapse
|
17
|
Galula JU, Salem GM, Destura RV, Remenyi R, Chao DY. Comparable Accuracies of Nonstructural Protein 1- and Envelope Protein-Based Enzyme-Linked Immunosorbent Assays in Detecting Anti-Dengue Immunoglobulin G Antibodies. Diagnostics (Basel) 2021; 11:diagnostics11050741. [PMID: 33919324 PMCID: PMC8143319 DOI: 10.3390/diagnostics11050741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Dengue virus (DENV) infection remains a global public health concern. Enzyme-linked immunosorbent assays (ELISAs), which detect antibodies targeting the envelope (E) protein of DENV, serve as the front-line serological test for presumptive dengue diagnosis. Very few studies have determined the serostatus by detecting antibodies targeting the nonstructural protein 1 (NS1), which can function as diagnostic biomarkers to distinguish natural immunity from vaccine-induced immunity. Methods: We used community-acquired human serum specimens, with the serostatus confirmed by focus reduction microneutralization test (FRμNT), to evaluate the diagnostic performances of two NS1-based ELISA methods, namely, immunoglobulin G antibody-capture ELISA (NS1 GAC–ELISA) and indirect NS1 IgG ELISA, and compared the results with an E-based virus-like particle (VLP) GAC–ELISA. Results: NS1-based methods had comparable accuracies as VLP GAC–ELISA. Although the sensitivity in detecting anti-NS1 IgM was poor, indirect NS1 IgG ELISA showed similar limits of detection (~1–2 ng/mL) as NS1 GAC–ELISA in detecting anti-NS1 IgG. Combining the results from two or more tests as a composite reference standard can determine the DENV serostatus with a specificity reaching 100%. Conclusion: NS1-based ELISAs have comparable accuracies as VLP GAC–ELISA in determining dengue serostatus, which could effectively assist clinicians during assessments of vaccine eligibility.
Collapse
Affiliation(s)
- Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (J.U.G.); (G.M.S.)
| | - Gielenny M. Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (J.U.G.); (G.M.S.)
| | - Raul V. Destura
- Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, Manila 1000, Philippines;
| | - Roland Remenyi
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Pasig 1605, Philippines;
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (J.U.G.); (G.M.S.)
- Correspondence: ; Tel.: +886-4-22840694
| |
Collapse
|
18
|
Zhang X, Shuai Y, Tao H, Li C, He L. Novel Method for the Quantitative Analysis of Protease Activity: The Casein Plate Method and Its Applications. ACS OMEGA 2021; 6:3675-3680. [PMID: 33585747 PMCID: PMC7876679 DOI: 10.1021/acsomega.0c05192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
No simple methods are used for the quantitative analysis of the protease activity in colored food up till now. Thus, this study aims to establish a new and simple method for the quantitative detection of protease activity, especially in colored food. The detection accuracy, detection limit, and repeatability of the casein plate method were analyzed. Then, the application of the casein plate method in sample detection and recovery was further evaluated. The results showed that the casein plate method for the quantitative detection of protease activity has high accuracy, high precision, and low detection limit. The recoveries of eight kinds of colored samples were in the range of 92.26-97.84%, and the relative standard deviation (RSD) was in the range of 3.56-10.88%. The results of the casein plate method exhibited high accuracy. This indicated that the method was suitable for the detection of colored samples. The casein plate method for the quantitative detection of protease activity is simple. The newly constructed casein plate method has broad potential application value in food industry, especially for the detection of dark food.
Collapse
Affiliation(s)
- Xin Zhang
- Key
Laboratory of Agricultural and Animal Products Store & Processing
of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
- College
of Artificial Intelligence and Electrical Engineering, Guizhou Institute of Technology, Guiyang 550005, P. R. China
| | - Yao Shuai
- Key
Laboratory of Agricultural and Animal Products Store & Processing
of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
- College
of Liquor and Food Engineering, Guizhou
University, Guiyang 550025, P. R. China
| | - Han Tao
- College
of Artificial Intelligence and Electrical Engineering, Guizhou Institute of Technology, Guiyang 550005, P. R. China
- College
of Liquor and Food Engineering, Guizhou
University, Guiyang 550025, P. R. China
| | - Cuiqin Li
- Key
Laboratory of Agricultural and Animal Products Store & Processing
of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, P. R. China
| | - Laping He
- Key
Laboratory of Agricultural and Animal Products Store & Processing
of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
- College
of Liquor and Food Engineering, Guizhou
University, Guiyang 550025, P. R. China
| |
Collapse
|
19
|
Daniels JB, Sykes JE. Miscellaneous Gram-Positive Bacterial Infections. GREENE'S INFECTIOUS DISEASES OF THE DOG AND CAT 2021:627-642. [DOI: 10.1016/b978-0-323-50934-3.00052-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Schlichtmann BW, Kondru N, Hepker MM, Kanthasamy AG, Anantharam V, John M, Ban B, Mallapragada SK, Narasimhan B. Enzyme Immunoassay-Based Platform for Accurate Detection of Serum Pathological α-Synuclein in Parkinson's Disease Patients. ACS Chem Neurosci 2020; 11:4179-4190. [PMID: 33196164 DOI: 10.1021/acschemneuro.0c00461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
An assay for accurately diagnosing early stage Parkinson's Disease (PD) is currently unavailable, and therefore, there is an urgent and unmet need. Such a diagnostic assay will enable prompt institution of appropriate supportive management measures to prevent rapid deterioration of disease and improve both quality of life and life expectancy of PD patients. A reliable assay platform will also be of great benefit to drug discovery and drug development in the area of PD. To this end, we describe the development of two indirect, competitive, semiquantitative enzyme immunoassays (EIAs), each employing a disparate singularly specific mouse monoclonal antibody (ssMAb) against pathological aggregates of human α-Synuclein (αSynagg), a well-established biomarker pathognomonic of PD. Our results demonstrate that these EIAs in tandem accurately discriminated between αSynagg serum concentrations from PD patients and age-matched healthy control (HC) individuals (PD = 1700 ± 220 ng/mL; HC = 870 ± 120 ng/mL with an overall sensitivity of 56%, specificity of 63%, positive predictive value of 60%, and negative predictive value of 59%). The limits of detection of αSynagg were 400 and 300 pg/mL for ssMAbs 3C5 and 5H6, respectively. These tandem EIAs have the potential to add to the repertoire of tools for earlier diagnosis of this debilitating disorder, as well as for drug development strategies.
Collapse
Affiliation(s)
- Benjamin W Schlichtmann
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Ames, Iowa 50011, United States
| | - Naveen Kondru
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States
| | - Monica M Hepker
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Ames, Iowa 50011, United States
| | - Vellareddy Anantharam
- PK Biosciences Corporation, Ames, Iowa 50011, United States
- Nanovaccine Institute, Ames, Iowa 50011, United States
| | - Manohar John
- PathoVacs, Incorporated, Ames, Iowa 50011, United States
- Nanovaccine Institute, Ames, Iowa 50011, United States
| | - Bhupal Ban
- Indiana Biosciences Research Institute (IBRI), Indianapolis, Indiana 46202, United States
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Ames, Iowa 50011, United States
| |
Collapse
|
21
|
Wolfe DN, Espeland EM, Gao Y, Lu D, Blatner G, Amass K, Horwith G, Tong XM, Hopkins R, David GL, Jepson BM, King JC. Evaluation of BioThrax® and AV7909 anthrax vaccines in adults 66 years of age or older. Vaccine 2020; 38:7970-7976. [PMID: 33129609 DOI: 10.1016/j.vaccine.2020.10.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Multiple Anthrax vaccines are licensed or in development for post-exposure prophylaxis in individuals 18 to 65 years of age. No information exists on anthrax vaccines in populations over the age of 65. It is critical that we assess the capacity of anthrax vaccines to generate a protective immune response in older individuals. In this study, we compared BioThrax® to a formulation containing a CpG adjuvant (AV7909). METHODS We conducted a Phase 2 clinical study to evaluate safety and immunogenicity of three vaccination schedules of the AV7909 vaccine candidate and one vaccination schedule of BioThrax® vaccine in adults over 65 years of age. A total of 305 subjects were enrolled to assess safety and immunogenicity by seroprotection rates, toxin neutralizing antibody titers, and anti-Protective Antigen ELISA titers. RESULTS Compared to BioThrax, AV7909 elicited a more robust immune response in older subjects, especially with three doses of AV7909 at Days 1, 15, and 29, or two doses at Days 1 and 29. These trends were true with both seroprotection rates as defined by the percentage of subjects with 50 percent neutralization factors greater than 0.56, and geometric mean antibody titers. The responses to both AV7909 and BioThax were lower in older subjects compared to those aged 18-50. CONCLUSION The immunogenicity data suggest that the CpG adjuvant in the AV7909 vaccine helps to elicit a more robust immune response in subjects over the age of 65. Alternative dosing strategies may be considered in this population given the high seroprotection rates with Day 1 and 29, or Day 1, 15, and 29 regimens. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT03518125.
Collapse
Affiliation(s)
- Daniel N Wolfe
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority, Washington, DC, United States.
| | - Eric M Espeland
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Yonghong Gao
- Division of Clinical Development, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Di Lu
- Division of Clinical Development, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Gretta Blatner
- Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Kathryn Amass
- Division of Clinical Development, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Gary Horwith
- Division of Clinical Development, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Xiaomi M Tong
- Regulatory and Quality Affairs Division, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | - Robert Hopkins
- Division of Clinical Development, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| | | | | | - James C King
- Division of Clinical Development, Biomedical Advanced Research and Development Authority, Washington, DC, United States
| |
Collapse
|
22
|
Mukarati NL, Ndumnego OC, Ochai SO, Jauro S, Loveridge A, van Heerden H, Matope G, Caron A, Hanyire TG, de Garine-Wichatitsky M, Pfukenyi DM. A serological survey of Bacillus anthracis reveals widespread exposure to the pathogen in free-range and captive lions in Zimbabwe. Transbound Emerg Dis 2020; 68:1676-1684. [PMID: 32964687 DOI: 10.1111/tbed.13842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022]
Abstract
Numerous unknown factors influence anthrax epidemiology in multi-host systems, especially at wildlife/livestock/human interfaces. Serology tests for anti-anthrax antibodies in carnivores are useful tools in identifying the presence or absence of Bacillus anthracis in a range. These were employed to ascertain whether the disease pattern followed the recognized high- and low-risk anthrax zonation in Zimbabwe and also to establish whether anthrax was absent from Hwange National Park in which there have been no reported outbreaks. African lions (Panthera leo) (n = 114) drawn from free-range protected areas and captive game parks located in recognized high- and low-risk zones across Zimbabwe were tested for antibodies to anthrax PA antigen using the ELISA immunoassay. A random selection of 27 lion sera samples comprising 17 seropositive and 10 seronegative sera was further tested in the species-independent toxin neutralization assay (TNA) in order to validate the former as a surveillance tool for anthrax in African lions. Using the ELISA-PA immunoassay, 21.9% (25/114) of the lions tested positive for antibodies to anthrax. Seropositivity was recorded in all study areas, and there was no significant difference (p = .852) in seropositivity between lions in high- and low-risk anthrax zones. Also, there was no significant difference (McNemar's chi-square test = 0.9, p = .343) in the proportion of lions testing positive to anti-PA anthrax antibodies on ELISA-PA immunoassay compared with the TNA, with fair agreement between the two tests [kappa (K) statistic = 0.30; 0.08 < K<0.613]. Results of this study indicate that anthrax could be more widespread than 42 currently realized in Zimbabwe, and present in recognized high- and low-risk zones, including 43 where it has not been reported in over 20 years such as Hwange National Park. This is also the 44 first report documenting the presence of anthrax lethal toxin-neutralizing antibodies in naturally 45 infected carnivores, further confirming exposure to B. anthracis. The research results point to a 46 need for revisiting the currently recognized anthrax risk zones in Zimbabwe. This should be based 47 on improved surveillance of the disease in both wild and domestic animals for better understanding and control of the disease.
Collapse
Affiliation(s)
- Norman L Mukarati
- Faculty of Veterinary Science, University of Zimbabwe, Harare, Zimbabwe
| | - Okechukwu C Ndumnego
- Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.,Moredun Scientific, Edinburgh, UK
| | - Sunday O Ochai
- Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Solomon Jauro
- Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | | | | | - Gift Matope
- Faculty of Veterinary Science, University of Zimbabwe, Harare, Zimbabwe
| | - Alexandre Caron
- ASTRE, Univ. de Montpellier, CIRAD, INRA, Montpellier, France.,CIRAD, UMR ASTRE, RP-PCP, Maputo, Mozambique.,Faculdade de Veterinária, Universidade Eduardo Mondlane, Maputo, Mozambique
| | | | - Michel de Garine-Wichatitsky
- ASTRE, Univ. de Montpellier, CIRAD, INRA, Montpellier, France.,CIRAD, UMR ASTRE, Bangkok, Thailand.,Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Davies M Pfukenyi
- Faculty of Veterinary Science, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
23
|
Di Nardo F, Cavalera S, Baggiani C, Chiarello M, Pazzi M, Anfossi L. Enzyme Immunoassay for Measuring Aflatoxin B1 in Legal Cannabis. Toxins (Basel) 2020; 12:toxins12040265. [PMID: 32326118 PMCID: PMC7232199 DOI: 10.3390/toxins12040265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
The diffusion of the legalization of cannabis for recreational, medicinal and nutraceutical uses requires the development of adequate analytical methods to assure the safety and security of such products. In particular, aflatoxins are considered to pose a major risk for the health of cannabis consumers. Among analytical methods that allows for adequate monitoring of food safety, immunoassays play a major role thanks to their cost-effectiveness, high-throughput capacity, simplicity and limited requirement for equipment and skilled operators. Therefore, a rapid and sensitive enzyme immunoassay has been adapted to measure the most hazardous aflatoxin B1 in cannabis products. The assay was acceptably accurate (recovery rate: 78–136%), reproducible (intra- and inter-assay means coefficients of variation 11.8% and 13.8%, respectively), and sensitive (limit of detection and range of quantification: 0.35 ng mL−1 and 0.4–2 ng mL−1, respectively corresponding to 7 ng g−1 and 8–40 ng g−1 ng g−1 in the plant) and provided results which agreed with a HPLC-MS/MS method for the direct analysis of aflatoxin B1 in cannabis inflorescence and leaves. In addition, the carcinogenic aflatoxin B1 was detected in 50% of the cannabis products analyzed (14 samples collected from small retails) at levels exceeding those admitted by the European Union in commodities intended for direct human consumption, thus envisaging the need for effective surveillance of aflatoxin contamination in legal cannabis.
Collapse
|
24
|
Toxin-neutralizing antibodies elicited by naturally acquired cutaneous anthrax are elevated following severe disease and appear to target conformational epitopes. PLoS One 2020; 15:e0230782. [PMID: 32294093 PMCID: PMC7159215 DOI: 10.1371/journal.pone.0230782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/09/2020] [Indexed: 01/03/2023] Open
Abstract
Understanding immune responses to native antigens in response to natural infections can lead to improved approaches to vaccination. This study sought to characterize the humoral immune response to anthrax toxin components, capsule and spore antigens in individuals (n = 46) from the Kayseri and Malatya regions of Turkey who had recovered from mild or severe forms of cutaneous anthrax infection, compared to regional healthy controls (n = 20). IgG antibodies to each toxin component, the poly-γ-D-glutamic acid capsule, the Bacillus collagen-like protein of anthracis (BclA) spore antigen, and the spore carbohydrate anthrose, were detected in the cases, with anthrax toxin neutralization and responses to Protective Antigen (PA) and Lethal Factor (LF) being higher following severe forms of the disease. Significant correlative relationships among responses to PA, LF, Edema Factor (EF) and capsule were observed among the cases. Though some regional control sera exhibited binding to a subset of the tested antigens, these samples did not neutralize anthrax toxins and lacked correlative relationships among antigen binding specificities observed in the cases. Comparison of serum binding to overlapping decapeptides covering the entire length of PA, LF and EF proteins in 26 cases compared to 8 regional controls revealed that anthrax toxin-neutralizing antibody responses elicited following natural cutaneous anthrax infection are directed to conformational epitopes. These studies support the concept of vaccination approaches that preserve conformational epitopes.
Collapse
|
25
|
The use of host factors in microbial forensics. MICROBIAL FORENSICS 2020. [PMCID: PMC7153337 DOI: 10.1016/b978-0-12-815379-6.00014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Advances have been made in the forensic analysis of microbes and toxins. An underdeveloped and underutilized area in microbial forensics is how the host interacts with microorganisms in a way that provides unique signatures for forensic use. For forensic purposes, an immediate goal is to distinguish a potential victim and innocent person from a perpetrator, and to distinguish between a naturally acquired or intentional infection. Principal methods that are sufficiently developed are characterization of the humoral immune response to microbial antigens including vaccine-induced immunity and detection of antibiotics that may be present in a possible perpetrator. This chapter presents central elements of the host response in a simplified fashion and describes a representative example, which, in the appropriate context, has a high potential of providing evidence that may aid an investigation to distinguish a perpetrator from a victim. This chapter also presents information about the immune system so that the interested reader can have a fuller understanding of the immune response in general.
Collapse
|
26
|
Klisara N, Yu YM, Palaniappan A, Liedberg B. Towards on-site visual detection of proteases in food matrices. Anal Chim Acta 2019; 1078:182-188. [DOI: 10.1016/j.aca.2019.06.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
|
27
|
Caires AJ, Mansur HS, Mansur AAP, Carvalho SM, Lobato ZIP, Dos Reis JKP. Gold nanoparticle-carboxymethyl cellulose nanocolloids for detection of human immunodeficiency virus type-1 (HIV-1) using laser light scattering immunoassay. Colloids Surf B Biointerfaces 2019; 177:377-388. [PMID: 30785035 DOI: 10.1016/j.colsurfb.2019.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
It is estimated that over 100 million people have been infected with human immunodeficiency virus (HIV-1) resulting in approximately 30 million deaths globally. Herein, we designed and developed novel nano-immunoconjugates using gold nanoparticles (AuNPs) and carboxymethylcellulose (CMC) biopolymer, which performed simultaneously as an eco-friendly in situ reducing agent and surface stabilizing ligand for the aqueous colloidal process. These AuNPs-CMC nanocolloids were biofunctionalized with the gp41 glycoprotein receptor (AuNPs-CMC-gp41) or HIV monoclonal antibodies (AuNPs-CMC_PolyArg-abHIV) for detection using the laser light scattering immunoassay (LIA). These AuNPs-CMC bioengineered nanoconjugates were extensively characterized by morphological and physicochemical methods, which demonstrated the formation of spherical nanocrystalline colloidal AuNPs with the average size from 12 to 20 nm and surface plasmon resonance peak at 520 nm. Thus, stable nanocolloids were formed with core-shell nanostructures composed of AuNPs and biomacromolecules of CMC-gp41, which were cytocompatible based on in vitro cell viability results. The AuNPs-CMC-gp41 nanoconjugates were tested against HIV monoclonal antibodies conjugates (AuNPs-CMC_PolyArg-abHIV) using the light scattering immunoassay (LIA) where they behaved as active nanoprobes for the detection at nM level of HIV-1 antigenic proteins. This strategy offers a novel nanoplatform for creating bioprobes using green nanotechnology for the detection of HIV-1 and other virus-related diseases.
Collapse
Affiliation(s)
- A J Caires
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - H S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil.
| | - A A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - S M Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil; Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| | - Z I P Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| | - J K P Dos Reis
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| |
Collapse
|
28
|
Varshney A, Puranik N, Kumar M, Pal V, Padmaja J, Goel AK. An ELISA using a recombinant chimera of protective antigen and lethal factor for serodiagnosis of cutaneous anthrax in India. Biologicals 2019; 57:55-60. [PMID: 30635155 DOI: 10.1016/j.biologicals.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/12/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
In this study, an ELISA was developed for simultaneous detection of antibodies against both the important toxins of B. anthracis i.e. protective antigen (PA) and lethal factor (LF). A chimera of PA and LF was made by fusion and cloned and expressed in E. coli. The purified recombinant protein was used in plate ELISA for serodiagnosis of anthrax. The chimera could detect antibodies against both the toxins of Bacillus anthracis. The human serum samples (n = 98) collected from anthrax endemic and non-endemic areas were tested employing ELISA. The ELISA gave sensitivity of 100% (95% Confidence Interval [CI], 92.13 to 100) and specificity of 97.78% (95% Confidence Interval [CI], 88.23 to 99.94) with a J index of 0.97. The efficiency of ELISA was found to be 98.9% with the positive predictive value (PPV) and negative predictive value (NPV) of 97.8% and 100%, respectively. The chimera of PA and LF could be a better diagnostic antigen for serodiagnosis as the assay detects antibodies against both the toxins in early as well delayed infection cases of anthrax. Therefore, it can be a very useful tool for the surveillance as well as for confirmation of cutaneous anthrax cases.
Collapse
Affiliation(s)
- Anshul Varshney
- Defence Research & Development Establishment, Jhansi Road, Gwalior, 474 002, India
| | - Nidhi Puranik
- Defence Research & Development Establishment, Jhansi Road, Gwalior, 474 002, India
| | - Manoj Kumar
- Defence Research & Development Establishment, Jhansi Road, Gwalior, 474 002, India
| | - Vijai Pal
- Defence Research & Development Establishment, Jhansi Road, Gwalior, 474 002, India
| | - J Padmaja
- Department of Microbiology, Andhra Medical College, Visakhapatnam, 530 002, India
| | - A K Goel
- Defence Research & Development Establishment, Jhansi Road, Gwalior, 474 002, India.
| |
Collapse
|
29
|
Granger JH, Porter MD. The Case for Human Serum as a Highly Preferable Sample Matrix for Detection of Anthrax Toxins. ACS Sens 2018; 3:2303-2310. [PMID: 30350950 DOI: 10.1021/acssensors.8b00566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This paper describes preliminary results on the surprising impact of human serum as a sample matrix on the detectability of protective antigen (PA) and lethal factor (LF), two antigenic protein markers of Bacillus anthracis, in a heterogeneous immunometric assay. Two sample matrices were examined: human serum and physiological buffer. Human serum is used as a specimen in the diagnostic testing of potentially infected individuals. Physiological buffers are often applied to the recovery of biomarkers dispersed in suspicious white powders and other suspect specimens and as a serum diluent to combat contributions to the measured test response from nonspecific adsorption. The results of these experiments using a sandwich immunoassay read out by surface-enhanced Raman scattering yielded estimates for the limit of detection (LOD) for both markers when using spiked human serum that were remarkably lower than those of spiked physiological buffer (∼70,000× for PA and ∼25,000× for LF). The difference in LODs is attributed to a degradation in the effectiveness of the capture and/or labeling steps in the immunoassay due to the known propensity for both proteins to denature in buffer. These findings indicate that the use of physiological buffer for serum dilution or recovery from a powdered matrix is counter to the low-level detection of these two antigenic proteins. The potential implications of these results with respect to the ability to detect markers of other pathogenic agents are briefly discussed.
Collapse
|
30
|
Rajam G, Carlone G, Kim E, Choi J, Paulos S, Park S, Jeyachandran A, Gorantla Y, Wong E, Sabnis A, Browning P, Desai R, Quinn CP, Schiffer J. Development and validation of a robust multiplex serological assay to quantify antibodies specific to pertussis antigens. Biologicals 2018; 57:9-20. [PMID: 30458978 DOI: 10.1016/j.biologicals.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022] Open
Abstract
Despite wide spread vaccination, the public health burden of pertussis remains substantial. Current acellular pertussis vaccines comprise upto five Bordetella pertussis (Bp) antigens. Performing an ELISA to quantify antibody for each antigen is laborious and challenging to apply to pediatric samples where serum volume may be limited. We developed a microsphere based multiplex antibody capture assay (MMACA) to quantify antibodies to five pertussis antigens; pertussis toxin, pertactin, filamentous hemagglutinin and fimbrial antigens 2/3, and adenylate cyclase toxin in a single reaction (5-plex) with a calibrated reference standard, QC reagents and SAS® based data analysis program. The goodness of fit (R2) of the standard curves for five analytes was ≥0.99, LLOQ 0.04-0.15 IU or AU/mL, accuracy 1.9%-23.8% (%E), dilutional linearity slopes 0.93-1.02 and regression coefficients r2 = 0.91-0.99. MMACA had acceptable precision within a median CV of 16.0%-22.8%. Critical reagents, antigen conjugated microsphere and reporter antibody exhibited acceptable (<12.3%) lot-lot variation. MMACA can be completed in <3 h, requires low serum volume (5μL/multiplex assay) and has fast data turnaround time (<1 min). MMACA has been successfully developed and validated as a sensitive, specific, robust and rugged method suitable for simultaneous quantification of anti-Bp antibodies in serum, plasma and DBS.
Collapse
Affiliation(s)
- Gowrisankar Rajam
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| | - George Carlone
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Ellie Kim
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Jin Choi
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Simon Paulos
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - SoHee Park
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Amilia Jeyachandran
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Yamini Gorantla
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Emily Wong
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Amit Sabnis
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Peter Browning
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Rita Desai
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Conrad P Quinn
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Jarad Schiffer
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| |
Collapse
|
31
|
Simbotwe M, Fujikura D, Ohnuma M, Omori R, Furuta Y, Muuka GM, Hang’ombe BM, Higashi H. Development and application of a Bacillus anthracis protective antigen domain-1 in-house ELISA for the detection of anti-protective antigen antibodies in cattle in Zambia. PLoS One 2018; 13:e0205986. [PMID: 30335853 PMCID: PMC6193699 DOI: 10.1371/journal.pone.0205986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/04/2018] [Indexed: 12/30/2022] Open
Abstract
In Zambia, anthrax outbreaks among cattle are reported on nearly an annual basis. Presently, there is a lack of serological assays and information to develop an anthrax management and control strategy. In this study, an indirect enzyme-linked immunosorbent assay (ELISA) based on recombinant protective antigen domain 1 (rPA-D1) of Bacillus anthracis was developed and used to detect anti-PA antibodies in cattle in Zambia. An antigen coating of 10 ng/well and a serum dilution of 1:100 were determined to be the optimal rPA-D1 ELISA titration conditions. The intra- and inter-assay % coefficients of variation were less than 10% and 15%, respectively. The rPA-D1 ELISA could detect seroconversion in the cattle 1 month after anthrax vaccination. In a cross-sectional study conducted in the Western Province, Zambia, 187 serum samples from 8 herds of cattle were screened for anti-PA antibodies using the rPA-D1 ELISA. The seropositive rate of the serum samples was 8%, and the mean anti-PA antibody was 0.358 ELISA units. Additionally, we screened 131 cattle serum samples from Lusaka, which is a nonendemic area, and found no significant association between the antibody levels and sampling area (endemic versus nonendemic area). Conversely, significant differences were observed between the anti-PA antibody levels and herds, anti-PA antibody levels and vaccination status and anti-PA antibody levels and vaccination timing. Collectively, these findings suggest that the rPA-D1 ELISA is a useful tool for the detection of anti-PA antibodies in cattle in Zambia. The low proportion of seropositive sera indicates that there is inadequate cattle vaccination in the Western Province and, in addition to other epidemiological factors, this may precipitate the anthrax outbreak recurrence.
Collapse
Affiliation(s)
- Manyando Simbotwe
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Fujikura
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Asahikawa Medical University Education Research Promotion Center, Asahikawa, Japan
| | - Miyuki Ohnuma
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ryosuke Omori
- Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Geoffrey Munkombwe Muuka
- Bacteriology Section, Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | | | - Hideaki Higashi
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Hokudai Center for Zoonosis Control in Zambia, Lusaka, Zambia
- * E-mail:
| |
Collapse
|
32
|
Green MS, LeDuc J, Cohen D, Franz DR. Confronting the threat of bioterrorism: realities, challenges, and defensive strategies. THE LANCET. INFECTIOUS DISEASES 2018; 19:e2-e13. [PMID: 30340981 PMCID: PMC7106434 DOI: 10.1016/s1473-3099(18)30298-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 01/30/2023]
Abstract
Global terrorism is a rapidly growing threat to world security, and increases the risk of bioterrorism. In this Review, we discuss the potential threat of bioterrorism, agents that could be exploited, and recent developments in technologies and policy for detecting and controlling epidemics that have been initiated intentionally. The local and international response to infectious disease epidemics, such as the severe acute respiratory syndrome and west African Ebola virus epidemic, revealed serious shortcomings which bioterrorists might exploit when intentionally initiating an epidemic. Development of new vaccines and antimicrobial therapies remains a priority, including the need to expedite clinical trials using new methodologies. Better means to protect health-care workers operating in dangerous environments are also needed, particularly in areas with poor infrastructure. New and improved approaches should be developed for surveillance, early detection, response, effective isolation of patients, control of the movement of potentially infected people, and risk communication. Access to dangerous pathogens should be appropriately regulated, without reducing progress in the development of countermeasures. We conclude that preparedness for intentional outbreaks has the important added value of strengthening preparedness for natural epidemics, and vice versa.
Collapse
Affiliation(s)
- Manfred S Green
- School of Public Health, University of Haifa, Haifa, Israel.
| | - James LeDuc
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel Cohen
- School of Public Health, Tel Aviv University, Tel Aviv, Israel
| | - David R Franz
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
33
|
Investigation and source-tracing of an anthrax outbreak in Gansu Province, China. PLoS One 2018; 13:e0203267. [PMID: 30161194 PMCID: PMC6117022 DOI: 10.1371/journal.pone.0203267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 08/18/2018] [Indexed: 11/19/2022] Open
Abstract
Anthrax is an endemic disease in China. Cases are reported every year, especially in the northwestern areas. In August 2016, an outbreak of 21 cutaneous anthrax cases was reported in Min County, Gansu Province, China. In this study, the general characteristics of the anthrax outbreak are described. Two molecular typing methods, canonical single-nucleotide polymorphism (canSNP) and multiple-locus variable-number tandem repeat analysis with 15 markers (MLVA15), were used to investigate the possible source of transmission and to identify the genetic relationship among the strains/samples isolated in this outbreak as well as previous isolates. In this outbreak, all patients were infected through contact with diseased livestock or contaminated animal products. Livestock had been introduced into the local area shortly before the outbreak from Gannan Prefecture (in Gansu Province), Sichuan and Qinghai Provinces. In the molecular typing analysis, there were two canSNP subgroups found in Gansu, A.Br.001/002 and A.Br.Ames, and five MLVA15 genotypes were observed. The strains collected from the anthrax outbreak in Min County in 2016 belonged to the A.Br.001/002 canSNP subgroup and the MLVA15-28 and MLVA15-30 genotype. Strains previously isolated from Sichuan, Inner Mongolia and Maqu County (in Gannan Prefecture, Gansu Province) were clustered with these outbreak-related strains/samples according to the MLVA15-30 genotype. The MLVA15-28 genotype was found in strains isolated from Gansu and Xinjiang in previous studies. Combining the epidemiological investigation and molecular typing results, we conclude that the patients in this outbreak were infected by a local pathogen present in the adjoining area of Gansu, Sichuan and Qinghai Provinces.
Collapse
|
34
|
Shi Y, Zhang Q, Zhai TT, Zhou Y, Yang DR, Wang FB, Xia XH. Localized surface plasmon resonance enhanced label-free photoelectrochemical immunoassay by Au-MoS2 nanohybrid. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Nascimento EJM, George JK, Velasco M, Bonaparte MI, Zheng L, DiazGranados CA, Marques ETA, Huleatt JW. Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods 2018; 257:48-57. [PMID: 29567514 DOI: 10.1016/j.jviromet.2018.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 11/16/2022]
Abstract
Dengue virus infection elicits immune responses to multiple viral antigens including antibodies to dengue non-structural protein 1 (NS1) which are rapidly induced and detected within days of infection. The recombinant, live, attenuated, tetravalent dengue vaccine (CYD-TDV; Sanofi Pasteur) uses the yellow fever vaccine virus as a back-bone but expresses dengue virus pre-membrane and envelop proteins. Since CYD-TDV does not express dengue NS1, we evaluated the utility of dengue NS1-specific IgG antibodies as biomarkers of dengue exposure in CYD-TDV recipients and controls. We optimized and evaluated a quantitative anti-dengue NS1 IgG enzyme-linked immunosorbent assay (ELISA). Parameters assessed included: accuracy, dilutability/linearity, precision, limit of quantitation and specificity. The assay specificity was further evaluated using Japanese Encephalitis virus, West Nile virus, Yellow Fever virus or Zika virus positive sera samples collected following confirmed infection or vaccination. Receiver-operating-characteristics (ROC) curves as well as sensitivity and specificity for discriminating previous dengue exposure were assessed using 1250 reference samples. Overall, the anti-dengue NS1 IgG ELISA was able to discriminate previous dengue exposure from non-exposure before vaccination with CYD-TDV (ROC area under the curve > 0.9). Assessment of paired samples from 2511 vaccinated participants showed high overall agreement (93%) between pre-vaccination and post-vaccination dengue serostatus classification based on the anti-dengue NS1 IgG ELISA. However, misclassification of dengue serostatus was observed after vaccination likely due to a combination of asymptomatic dengue infections, assay variability and a modest effect of CYD-TDV on the anti-dengue NS1 IgG ELISA readout.
Collapse
Affiliation(s)
| | - James K George
- Sanofi Pasteur, Discovery Drive, Swiftwater, PA, 18370, USA
| | | | | | - Lingyi Zheng
- Sanofi Pasteur, Discovery Drive, Swiftwater, PA, 18370, USA
| | | | - Ernesto T A Marques
- Graduate School of Public Health and Center for Vaccine Research, University of Pittsburgh, Biomedical Science Tower 3, room 9052, 3501 5th Avenue, Pittsburgh, PA 15261, USA; Aggeu Magalhaes Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Prof. Moraes Rego, s/n - Cidade Universitária - Campus da UFPE, CEP. 50.740-465, Recife, Pernambuco, Brazil
| | - James W Huleatt
- Sanofi Pasteur, Discovery Drive, Swiftwater, PA, 18370, USA.
| |
Collapse
|
36
|
Duracova M, Klimentova J, Fucikova A, Dresler J. Proteomic Methods of Detection and Quantification of Protein Toxins. Toxins (Basel) 2018; 10:toxins10030099. [PMID: 29495560 PMCID: PMC5869387 DOI: 10.3390/toxins10030099] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022] Open
Abstract
Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins, Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis, Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album. The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents.
Collapse
Affiliation(s)
- Miloslava Duracova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jana Klimentova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Alena Fucikova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jiri Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, CZ-160 00 Prague 6, Czech Republic.
| |
Collapse
|
37
|
Sanz H, Aponte JJ, Harezlak J, Dong Y, Ayestaran A, Nhabomba A, Mpina M, Maurin OR, Díez-Padrisa N, Aguilar R, Moncunill G, Selidji Todagbe A, Daubenberger C, Dobaño C, Valim C. drLumi: An open-source package to manage data, calibrate, and conduct quality control of multiplex bead-based immunoassays data analysis. PLoS One 2017; 12:e0187901. [PMID: 29136653 PMCID: PMC5685631 DOI: 10.1371/journal.pone.0187901] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
Multiplex bead-based immunoassays are used to measure concentrations of several analytes simultaneously. These assays include control standard curves (SC) to reduce between-plate variability and normalize quantitation of analytes of biological samples. Suboptimal calibration might result in large random error and decreased number of samples with analyte concentrations within the limits of quantification. Suboptimal calibration may be a consequence of poor fitness of the functions used for the SC, the treatment of the background noise and the method used to estimate the limits of quantification. Currently assessment of fitness of curves is largely dependent on operator and that may add additional error. Moreover, there is no software to automate data managing and quality control. In this article we present a R package, drLumi, with functions for managing data, calibrating assays and performing quality control. To optimize the assay the package implements: i) three dose-response functions, ii) four approaches for treating background noise and iii) three methods for estimating limits of quantifications. Other implemented functions are focused on the quality control of the fitted standard curve: detection of outliers, estimation of the confidence or prediction interval, and estimation of summary statistics. With demonstration purpose, we apply the software to 30 cytokines, chemokines and growth factors measured in a multiplex bead-based immunoassay in a study aiming to measure correlates of risk or protection from malaria of the RTS,S malaria vaccine nested in the Phase 3 randomized controlled trial of this vaccine.
Collapse
Affiliation(s)
- Hector Sanz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - John J. Aponte
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Jaroslaw Harezlak
- Department of Biostatistics, Indiana University Fairbanks School of Public Health, Indianapolis, Indiana, United States of America
| | - Yan Dong
- Department of Biostatistics, Indiana University Fairbanks School of Public Health, Indianapolis, Indiana, United States of America
| | - Aintzane Ayestaran
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Obiang Régis Maurin
- Centre de Recherches Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, Lambaréné, Gabon
| | - Núria Díez-Padrisa
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Ruth Aguilar
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Agnandij Selidji Todagbe
- Centre de Recherches Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, Lambaréné, Gabon
- Institut für Tropenmedizin, University of Tübingen, Tübingen, Germany
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Carlota Dobaño
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Clarissa Valim
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Osteopathic Medical Specialties, Michigan State University, College of Osteopathic Medicine East Lansing, Michigan, United States of America
| |
Collapse
|
38
|
Anthrax Vaccine Precipitated Induces Edema Toxin-Neutralizing, Edema Factor-Specific Antibodies in Human Recipients. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00165-17. [PMID: 28877928 DOI: 10.1128/cvi.00165-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/28/2017] [Indexed: 01/22/2023]
Abstract
Edema toxin (ET), composed of edema factor (EF) and protective antigen (PA), is a virulence factor of Bacillus anthracis that alters host immune cell function and contributes to anthrax disease. Anthrax vaccine precipitated (AVP) contains low but detectable levels of EF and can elicit EF-specific antibodies in human recipients of AVP. Active and passive vaccination of mice with EF can contribute to protection from challenge with Bacillus anthracis spores or ET. This study compared humoral responses to ET in recipients of AVP (n = 33) versus anthrax vaccine adsorbed (AVA; n = 66), matched for number of vaccinations and time postvaccination, and further determined whether EF antibodies elicited by AVP contribute to ET neutralization. AVP induced higher incidence (77.8%) and titer (229.8 ± 58.6) of EF antibodies than AVA (4.2% and 7.8 ± 8.3, respectively), reflecting the reported low but detectable presence of EF in AVP. In contrast, PA IgG levels and ET neutralization measured using a luciferase-based cyclic AMP reporter assay were robust and did not differ between the two vaccine groups. Multiple regression analysis failed to detect an independent contribution of EF antibodies to ET neutralization in AVP recipients; however, EF antibodies purified from AVP sera neutralized ET. Serum samples from at least half of EF IgG-positive AVP recipients bound to nine decapeptides located in EF domains II and III. Although PA antibodies are primarily responsible for ET neutralization in recipients of AVP, increased amounts of an EF component should be investigated for the capacity to enhance next-generation, PA-based vaccines.
Collapse
|
39
|
Correlation between anthrax lethal toxin neutralizing antibody levels and survival in guinea pigs and nonhuman primates vaccinated with the AV7909 anthrax vaccine candidate. Vaccine 2017; 35:4952-4959. [PMID: 28774566 DOI: 10.1016/j.vaccine.2017.07.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/22/2017] [Accepted: 07/23/2017] [Indexed: 01/29/2023]
Abstract
The anthrax vaccine candidate AV7909 is being developed as a next generation vaccine for a post-exposure prophylaxis (PEP) indication against anthrax. AV7909 consists of the Anthrax Vaccine Adsorbed (AVA, BioThrax®) bulk drug substance adjuvanted with the immunostimulatory oligodeoxynucleotide (ODN) compound, CPG 7909. The addition of CPG 7909 to AVA enhances both the magnitude and the kinetics of antibody responses in animals and human subjects, making AV7909 a suitable next-generation vaccine for use in a PEP setting. The studies described here provide initial information on AV7909-induced toxin-neutralizing antibody (TNA) levels associated with the protection of animals from lethal Bacillus anthracis challenge. Guinea pigs or nonhuman primates (NHPs) were immunized on Days 0 and 28 with various dilutions of AV7909, AVA or a saline or Alhydrogel+CPG 7909 control. Animals were challenged via the inhalational route with a lethal dose of aerosolized B. anthracis (Ames strain) spores and observed for clinical signs of disease and mortality. The relationship between pre-challenge serum TNA levels and survival following challenge was determined in order to calculate a threshold TNA level associated with protection. Immunisation with AV7909 induced a rapid, highly protective TNA response in guinea pigs and NHPs. Surprisingly, the TNA threshold associated with a 70% probability of survival for AV7909 immunized animals was substantially lower than the threshold which has been established for the licensed AVA vaccine. The results of this study suggest that the TNA threshold of protection against anthrax could be modified by the addition of an immune stimulant such as CPG 7909 and that the TNA levels associated with protection may be vaccine-specific.
Collapse
|
40
|
Dumas EK, Garman L, Cuthbertson H, Charlton S, Hallis B, Engler RJM, Choudhari S, Picking WD, James JA, Farris AD. Lethal factor antibodies contribute to lethal toxin neutralization in recipients of anthrax vaccine precipitated. Vaccine 2017; 35:3416-3422. [PMID: 28504191 DOI: 10.1016/j.vaccine.2017.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/03/2017] [Indexed: 01/08/2023]
Abstract
A major difference between two currently licensed anthrax vaccines is presence (United Kingdom Anthrax Vaccine Precipitated, AVP) or absence (United States Anthrax Vaccine Adsorbed, AVA) of quantifiable amounts of the Lethal Toxin (LT) component Lethal Factor (LF). The primary immunogen in both vaccine formulations is Protective Antigen (PA), and LT-neutralizing antibodies directed to PA are an accepted correlate of vaccine efficacy; however, vaccination studies in animal models have demonstrated that LF antibodies can be protective. In this report we compared humoral immune responses in cohorts of AVP (n=39) and AVA recipients (n=78) matched 1:2 for number of vaccinations and time post-vaccination, and evaluated whether the LF response contributes to LT neutralization in human recipients of AVP. PA response rates (≥95%) and PA IgG concentrations were similar in both groups; however, AVP recipients exhibited higher LT neutralization ED50 values (AVP: 1464.0±214.7, AVA: 544.9±83.2, p<0.0001) and had higher rates of LF IgG positivity (95%) compared to matched AVA vaccinees (1%). Multiple regression analysis revealed that LF IgG makes an independent and additive contribution to the LT neutralization response in the AVP group. Affinity purified LF antibodies from two independent AVP recipients neutralized LT and bound to LF Domain 1, confirming contribution of LF antibodies to LT neutralization. This study documents the benefit of including an LF component to PA-based anthrax vaccines.
Collapse
Affiliation(s)
- Eric K Dumas
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Lori Garman
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Hannah Cuthbertson
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Sue Charlton
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Bassam Hallis
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Renata J M Engler
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20814, USA
| | - Shyamal Choudhari
- Department of Pharmaceutical Chemistry, University of Kansas, 320B Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS 66047, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, 320B Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS 66047, USA
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA; Departments of Medicine and Pathology, OUHSC, 1000 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA.
| |
Collapse
|
41
|
Gulseren D, Süzük-Yıldız S, Çelebi B, Kılıç S. Evaluation of clinical and serological findings for diagnosis of cutaneous anthrax infection after an outbreak. Cutan Ocul Toxicol 2017; 36:289-293. [PMID: 28076993 DOI: 10.1080/15569527.2017.1281288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Anthrax, caused by the bacterium Bacillus anthracis, is one of the oldest documented infectious diseases in both livestock and humans. We aimed to evaluate clinical findings and risk factors of patients with cutaneous anthrax infection and report anti-lethal factor (LF) IgG and anti-protective antigen (PA) IgG titers in the serologic diagnosis of disease. METHODS In this study, serum samples of 18 cutaneous anthrax patients were collected and anti-LF IgG and anti-PA IgG titers were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Twelve (67%) males and 6 (33%) females, with a mean age of 36.06 ± 16.58 years were included in the study. Risk factors identified in the patient population studied were slaughtering (28%), flaying (56%), chopping meat (67%), burying diseased animal corpses (17%) and milking (6%) livestock. Black eschar formation (94%), pruritus (78%) and painful lymphadenopathy (61%) were first three common clinical signs and symptoms, respectively. Fourteen (78%) patients produced a positive IgG response against PA, 11 (61%) patients produced against LF. Three (17%) patients had no response to either antigen. CONCLUSIONS A detailed history of contact with sick animals or animal products along with clinical findings should be taken at the first step for the diagnosis of cutaneous anthrax infection. Serologic detection of anti-LF IgG and anti-PA IgG with ELISA may be useful auxillary method for establishing the diagnosis.
Collapse
Affiliation(s)
- Duygu Gulseren
- a Department of Dermatology , Ankara Polatlı State Hospital , Ankara , Turkey and
| | - Serap Süzük-Yıldız
- b Department of Microbiology Reference Laboratory , Public Health Institution of Turkey , Ankara , Turkey
| | - Bekir Çelebi
- b Department of Microbiology Reference Laboratory , Public Health Institution of Turkey , Ankara , Turkey
| | - Selçuk Kılıç
- b Department of Microbiology Reference Laboratory , Public Health Institution of Turkey , Ankara , Turkey
| |
Collapse
|
42
|
Brelsford JB, Plieskatt JL, Yakovleva A, Jariwala A, Keegan BP, Peng J, Xia P, Li G, Campbell D, Periago MV, Correa-Oliveira R, Bottazzi ME, Hotez PJ, Diemert D, Bethony JM. Advances in neglected tropical disease vaccines: Developing relative potency and functional assays for the Na-GST-1/Alhydrogel hookworm vaccine. PLoS Negl Trop Dis 2017; 11:e0005385. [PMID: 28192438 PMCID: PMC5325600 DOI: 10.1371/journal.pntd.0005385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 02/24/2017] [Accepted: 02/04/2017] [Indexed: 11/19/2022] Open
Abstract
A new generation of vaccines for the neglected tropical diseases (NTDs) have now advanced into clinical development, with the Na-GST-1/Alhydrogel Hookworm Vaccine already being tested in Phase 1 studies in healthy adults. The current manuscript focuses on the often overlooked critical aspects of NTD vaccine product development, more specifically, vaccine stability testing programs. A key measure of vaccine stability testing is "relative potency" or the immunogenicity of the vaccine during storage. As with most NTD vaccines, the Na-GST-1/Alhydrogel Hookworm Vaccine was not developed by attenuation or inactivation of the pathogen (Necator americanus), so conventional methods for measuring relative potency are not relevant for this investigational product. Herein, we describe a novel relative potency testing program and report for the first time on the clinical lot of this NTD vaccine during its first 60 months of storage at 2-8°C. We also describe the development of a complementary functional assay that measures the ability of IgG from animals or humans immunized with Na-GST-1/Alhydrogel to neutralize this important hookworm enzyme. While 90% inhibition of the catalytic activity of Na-GST-1 was achieved in animals immunized with Na-GST-1/Alhydrogel, lower levels of inhibition were observed in immunized humans. Moreover, anti-Na-GST-1 antibodies from volunteers in non-hookworm endemic areas were better able to inhibit catalytic activity than anti-Na-GST-1 antibodies from volunteers resident in hookworm endemic areas. The results described herein provide the critical tools for the product development of NTD vaccines.
Collapse
Affiliation(s)
- Jill B. Brelsford
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington DC, United States of America
| | - Jordan L. Plieskatt
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington DC, United States of America
| | - Anna Yakovleva
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington DC, United States of America
| | - Amar Jariwala
- Department of Pathology, School of Medicine and Health Sciences, The George Washington University, Washington DC, United States of America
| | - Brian P. Keegan
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States of America
| | - Jin Peng
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington DC, United States of America
| | - Pengjun Xia
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington DC, United States of America
| | - Guangzhao Li
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington DC, United States of America
| | - Doreen Campbell
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington DC, United States of America
| | | | | | - Maria Elena Bottazzi
- Department of Pathology, School of Medicine and Health Sciences, The George Washington University, Washington DC, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Peter J. Hotez
- Department of Pathology, School of Medicine and Health Sciences, The George Washington University, Washington DC, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - David Diemert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington DC, United States of America
| | - Jeffrey M. Bethony
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington DC, United States of America
| |
Collapse
|
43
|
Zhang W, Mao S, Yang J, Zeng H, Nakajima H, Kato S, Uchiyama K. The use of an inkjet injection technique in immunoassays by quantitative on-line electrophoretically mediated microanalysis. J Chromatogr A 2016; 1477:127-131. [DOI: 10.1016/j.chroma.2016.11.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
|
44
|
Semenova VA, Steward-Clark E, Maniatis P, Epperson M, Sabnis A, Schiffer J. Validation of high throughput screening of human sera for detection of anti-PA IgG by Enzyme-Linked Immunosorbent Assay (ELISA) as an emergency response to an anthrax incident. Biologicals 2016; 45:61-68. [PMID: 27814939 DOI: 10.1016/j.biologicals.2016.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 11/28/2022] Open
Abstract
To improve surge testing capability for a response to a release of Bacillus anthracis, the CDC anti-Protective Antigen (PA) IgG Enzyme-Linked Immunosorbent Assay (ELISA) was re-designed into a high throughput screening format. The following assay performance parameters were evaluated: goodness of fit (measured as the mean reference standard r2), accuracy (measured as percent error), precision (measured as coefficient of variance (CV)), lower limit of detection (LLOD), lower limit of quantification (LLOQ), dilutional linearity, diagnostic sensitivity (DSN) and diagnostic specificity (DSP). The paired sets of data for each sample were evaluated by Concordance Correlation Coefficient (CCC) analysis. The goodness of fit was 0.999; percent error between the expected and observed concentration for each sample ranged from -4.6% to 14.4%. The coefficient of variance ranged from 9.0% to 21.2%. The assay LLOQ was 2.6 μg/mL. The regression analysis results for dilutional linearity data were r2 = 0.952, slope = 1.02 and intercept = -0.03. CCC between assays was 0.974 for the median concentration of serum samples. The accuracy and precision components of CCC were 0.997 and 0.977, respectively. This high throughput screening assay is precise, accurate, sensitive and specific. Anti-PA IgG concentrations determined using two different assays proved high levels of agreement. The method will improve surge testing capability 18-fold from 4 to 72 sera per assay plate.
Collapse
Affiliation(s)
- Vera A Semenova
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., Atlanta, GA 30329, USA.
| | - Evelene Steward-Clark
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., Atlanta, GA 30329, USA
| | - Panagiotis Maniatis
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., Atlanta, GA 30329, USA
| | - Monica Epperson
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., Atlanta, GA 30329, USA
| | - Amit Sabnis
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., Atlanta, GA 30329, USA
| | - Jarad Schiffer
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., Atlanta, GA 30329, USA
| |
Collapse
|
45
|
Unique Inflammatory Mediators and Specific IgE Levels Distinguish Local from Systemic Reactions after Anthrax Vaccine Adsorbed Vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:664-71. [PMID: 27280620 DOI: 10.1128/cvi.00092-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/24/2016] [Indexed: 11/20/2022]
Abstract
Although the U.S. National Academy of Sciences concluded that anthrax vaccine adsorbed (AVA) has an adverse event (AE) profile similar to those of other adult vaccines, 30 to 70% of queried AVA vaccinees report AEs. AEs appear to be correlated with certain demographic factors, but the underlying immunologic pathways are poorly understood. We evaluated a cohort of 2,421 AVA vaccinees and found 153 (6.3%) reported an AE. Females were more likely to experience AEs (odds ratio [OR] = 6.0 [95% confidence interval {CI} = 4.2 to 8.7]; P < 0.0001). Individuals 18 to 29 years of age were less likely to report an AE than individuals aged 30 years or older (OR = 0.31 [95% CI = 0.22 to 0.43]; P < 0.0001). No significant effects were observed for African, European, Hispanic, American Indian, or Asian ancestry after correcting for age and sex. Additionally, 103 AEs were large local reactions (LLRs), whereas 53 AEs were systemic reactions (SRs). In a subset of our cohort vaccinated 2 to 12 months prior to plasma sample collection (n = 75), individuals with LLRs (n = 33) had higher protective-antigen (PA)-specific IgE levels than matched, unaffected vaccinated individuals (n = 50; P < 0.01). Anti-PA IgE was not associated with total plasma IgE, hepatitis B-specific IgE, or anti-PA IgG in individuals who reported an AE or in matched, unaffected AVA-vaccinated individuals. IP-10 was also elevated in sera of individuals who developed LLRs (P < 0.05). Individuals reporting SRs had higher levels of systemic inflammation as measured from C-reactive protein (P < 0.01). Thus, LLRs and SRs are mediated by distinct pathways. LLRs are associated with a vaccine-specific IgE response and IP-10, whereas SRs demonstrate increased systemic inflammation without a skewed cytokine profile.
Collapse
|
46
|
Marston CK, Ibrahim H, Lee P, Churchwell G, Gumke M, Stanek D, Gee JE, Boyer AE, Gallegos-Candela M, Barr JR, Li H, Boulay D, Cronin L, Quinn CP, Hoffmaster AR. Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar. PLoS One 2016; 11:e0156987. [PMID: 27257909 PMCID: PMC4892579 DOI: 10.1371/journal.pone.0156987] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/23/2016] [Indexed: 11/18/2022] Open
Abstract
Bacillus cereus isolates have been described harboring Bacillus anthracis toxin genes, most notably B. cereus G9241, and capable of causing severe and fatal pneumonias. This report describes the characterization of a B. cereus isolate, BcFL2013, associated with a naturally occurring cutaneous lesion resembling an anthrax eschar. Similar to G9241, BcFL2013 is positive for the B. anthracis pXO1 toxin genes, has a multi-locus sequence type of 78, and a pagA sequence type of 9. Whole genome sequencing confirms the similarity to G9241. In addition to the chromosome having an average nucleotide identity of 99.98% when compared to G9241, BcFL2013 harbors three plasmids with varying homology to the G9241 plasmids (pBCXO1, pBC210 and pBFH_1). This is also the first report to include serologic testing of patient specimens associated with this type of B. cereus infection which resulted in the detection of anthrax lethal factor toxemia, a quantifiable serum antibody response to protective antigen (PA), and lethal toxin neutralization activity.
Collapse
Affiliation(s)
- Chung K. Marston
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail:
| | - Hisham Ibrahim
- Villages Regional Hospital, Lady Lake, FL, United States of America
| | - Philip Lee
- Bureau of Public Health Laboratories, Florida Department of Health, Jacksonville, FL, United States of America
| | - George Churchwell
- Bureau of Public Health Laboratories, Florida Department of Health, Jacksonville, FL, United States of America
| | - Megan Gumke
- Bureau of Epidemiology, Florida Department of Health, Tallahassee, FL, United States of America
| | - Danielle Stanek
- Bureau of Epidemiology, Florida Department of Health, Tallahassee, FL, United States of America
| | - Jay E. Gee
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Anne E. Boyer
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Maribel Gallegos-Candela
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - John R. Barr
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Han Li
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Darbi Boulay
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Li Cronin
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Conrad P. Quinn
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Alex R. Hoffmaster
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
47
|
Evaluation of early immune response-survival relationship in cynomolgus macaques after Anthrax Vaccine Adsorbed vaccination and Bacillus anthracis spore challenge. Vaccine 2016; 34:6518-6528. [PMID: 27155494 DOI: 10.1016/j.vaccine.2016.04.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 01/02/2023]
Abstract
Anthrax Vaccine Adsorbed (AVA, BioThrax) is approved by the US Food and Drug Administration for post-exposure prophylaxis (PEP) of anthrax in adults. The PEP schedule is 3 subcutaneous (SC) doses (0, 14 and 28 days), in conjunction with a 60 day course of antimicrobials. The objectives of this study were to understand the onset of protection from AVA PEP vaccination and to assess the potential for shortening the duration of antimicrobial treatment (http://www.phe.gov/Preparedness/mcm/phemce/Documents/2014-phemce-sip.pdf). We determined the efficacy against inhalation anthrax in nonhuman primates (NHP) of the first two doses of the PEP schedule by infectious challenge at the time scheduled for receipt of the third PEP dose (Day 28). Forty-eight cynomolgus macaques were randomized to five groups and vaccinated with serial dilutions of AVA on Days 0 and 14. NHP were exposed to Bacillus anthracis Ames spores on Day 28 (target dose 200 LD50 equivalents). Anti-protective antigen (PA) IgG and toxin neutralizing antibody (TNA) responses to vaccination and in post-challenge survivors were determined. Post-challenge blood and selected tissue samples were assessed for B. anthracis at necropsy or end of study (Day 56). Pre-challenge humoral immune responses correlated with survival, which ranged from 24 to 100% survival depending on vaccination group. Surviving, vaccinated animals had elevated anti-PA IgG and TNA levels for the duration of the study, were abacteremic, exhibited no apparent signs of infection, and had no gross or microscopic lesions. However, survivors had residual spores in lung tissues. We conclude that the first two doses of the PEP schedule provide high levels of protection by the scheduled timing of the third dose. These data may also support consideration of a shorter duration PEP antimicrobial regimen.
Collapse
|
48
|
Ghosh N, Gunti D, Lukka H, Reddy BR, Padmaja J, Goel AK. Development & validation of a quantitative anti-protective antigen IgG enzyme linked immunosorbent assay for serodiagnosis of cutaneous anthrax. Indian J Med Res 2016; 142:196-204. [PMID: 26354217 PMCID: PMC4613441 DOI: 10.4103/0971-5916.164258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background & objectives: Anthrax caused by Bacillus anthracis is primarily a disease of herbivorous animals, although several mammals are vulnerable to it. ELISA is the most widely accepted serodiagnostic assay for large scale surveillance of cutaneous anthrax. The aims of this study were to develop and evaluate a quantitative ELISA for determination of IgG antibodies against B. anthracis protective antigen (PA) in human cutaneous anthrax cases. Methods: Quantitative ELISA was developed using the recombinant PA for coating and standard reference serum AVR801 for quantification. A total of 116 human test and control serum samples were used in the study. The assay was evaluated for its precision, accuracy and linearity. Results: The minimum detection limit and lower limit of quantification of the assay for anti-PA IgG were 3.2 and 4 µg/ml, respectively. The serum samples collected from the anthrax infected patients were found to have anti-PA IgG concentrations of 5.2 to 166.3 µg/ml. The intra-assay precision per cent CV within an assay and within an operator ranged from 0.99 to 7.4 per cent and 1.7 to 3.9 per cent, respectively. The accuracy of the assay was high with a per cent error of 6.5 - 24.1 per cent. The described assay was found to be linear between the range of 4 to 80 ng/ml (R2=0.9982; slope=0.9186; intercept = 0.1108). Interpretation & conclusions: The results suggested that the developed assay could be a useful tool for quantification of anti-PA IgG response in human after anthrax infection or vaccination.
Collapse
Affiliation(s)
| | | | | | | | | | - A K Goel
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, India
| |
Collapse
|
49
|
Das R, Goel AK, Sharma MK, Upadhyay S. Electrochemical DNA sensor for anthrax toxin activator gene atxA-detection of PCR amplicons. Biosens Bioelectron 2015; 74:939-46. [DOI: 10.1016/j.bios.2015.07.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/15/2015] [Accepted: 07/28/2015] [Indexed: 02/08/2023]
|
50
|
Simon S, Worbs S, Avondet MA, Tracz DM, Dano J, Schmidt L, Volland H, Dorner BG, Corbett CR. Recommended Immunological Assays to Screen for Ricin-Containing Samples. Toxins (Basel) 2015; 7:4967-86. [PMID: 26703725 PMCID: PMC4690108 DOI: 10.3390/toxins7124858] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/20/2023] Open
Abstract
Ricin, a toxin from the plant Ricinus communis, is one of the most toxic biological agents known. Due to its availability, toxicity, ease of production and absence of curative treatments, ricin has been classified by the Centers for Disease Control and Prevention (CDC) as category B biological weapon and it is scheduled as a List 1 compound in the Chemical Weapons Convention. An international proficiency test (PT) was conducted to evaluate detection and quantification capabilities of 17 expert laboratories. In this exercise one goal was to analyse the laboratories’ capacity to detect and differentiate ricin and the less toxic, but highly homologuous protein R. communis agglutinin (RCA120). Six analytical strategies are presented in this paper based on immunological assays (four immunoenzymatic assays and two immunochromatographic tests). Using these immunological methods “dangerous” samples containing ricin and/or RCA120 were successfully identified. Based on different antibodies used the detection and quantification of ricin and RCA120 was successful. The ricin PT highlighted the performance of different immunological approaches that are exemplarily recommended for highly sensitive and precise quantification of ricin.
Collapse
Affiliation(s)
- Stéphanie Simon
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Marc-André Avondet
- Federal Department of Defence, Civil Protection and Sport-SPIEZ Laboratory, Spiez 3700, Switzerland.
| | - Dobryan M Tracz
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
| | - Julie Dano
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Lisa Schmidt
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
| | - Hervé Volland
- CEA Saclay, Institute of Biology and Technologies of Saclay, Laboratory for Immunoanalytical Researches, Gif-sur-Yvette 91191 cedex, France.
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Cindi R Corbett
- Bacteriology & Enteric Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada,Winnipeg, MB R3E 3R2, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|