1
|
Phan T, Brozak S, Pell B, Ciupe SM, Ke R, Ribeiro RM, Gitter A, Mena KD, Perelson AS, Kuang Y, Wu F. Post-recovery viral shedding shapes wastewater-based epidemiological inferences. COMMUNICATIONS MEDICINE 2025; 5:193. [PMID: 40405003 DOI: 10.1038/s43856-025-00908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 05/12/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND The prolonged viral shedding from the gastrointestinal tract is well documented for numerous pathogens, including SARS-CoV-2. However, the impact of prolonged viral shedding on epidemiological inferences using wastewater data is not yet fully understood. METHODS To gain a better understanding of this phenomenon at the population level, we extended a wastewater-based modeling framework that integrates viral shedding dynamics, viral load data in wastewater, case report data, and an epidemic model. RESULTS Our results indicate that as an outbreak progresses, the viral load from recovered individuals gradually becomes predominant, surpassing that from the infectious population. This phenomenon leads to a dynamic relationship between model-inferred and reported daily incidence over the course of an outbreak. Sensitivity analyses on the duration and rate of viral shedding for recovered individuals reveal that accounting for this phenomenon can considerably advance prediction of transmission peak timing. Furthermore, extensive viral shedding from the recovered population toward the conclusion of an epidemic wave may overshadow viral signals from newly infected cases carrying emerging variants, which can delay the rapid recognition of emerging variants based on viral load. CONCLUSIONS These findings highlight the necessity of integrating post-recovery viral shedding to enhance the accuracy and utility of wastewater-based epidemiological analysis.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Samantha Brozak
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Bruce Pell
- Department of Mathematics and Computer Science, Lawrence Technological University, Southfield, MI, USA
| | - Stanca M Ciupe
- Department of Mathematics, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Center for the Mathematics of Biosystems, Blacksburg, VA, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Anna Gitter
- Department of Environmental and Occupational Health Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristina D Mena
- Department of Environmental and Occupational Health Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Fuqing Wu
- Department of Environmental and Occupational Health Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Kietsiri P, Sornsakrin S, Nou S, Oransathid W, Peerapongpaisarn D, Oransathid W, Nobthai P, Wassanarungroj P, Gonwong S, Sakpaisal P, Khemnu N, Sok S, Vannara S, Sivhour C, Krang S, Sovann L, Sovannarith E, Lurchachaiwong W, Chaudhury S, Ruamsap N, Lertsethtakarn P. Understanding the etiology of diarrheal illness in Cambodia in a case-control study from 2020 to 2023. Gut Pathog 2025; 17:32. [PMID: 40405224 DOI: 10.1186/s13099-025-00709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025] Open
Abstract
Diarrheal infection remains a major public health problem in low and middle-income countries (LMICs). Prevention and control of diarrheal diseases are considered a global health priority. This case-control study aims to describe the prevalence of diarrhea etiologic agents and antimicrobial resistance in bacterial enteropathogens for acute diarrhea among children, adult civilians, and military personnel in Cambodia, detecting over 20 bacterial species, viruses, and parasites. A total of 918 subjects with acute diarrhea (cases), 791 aged-matched subjects without diarrhea (controls), and 675 follow-up cases were enrolled from five hospitals in Battambang and Oddor Meanchey provinces from 2020 to 2023. Pathogens were identified from collected stool samples via bacteriology, molecular techniques, immunoassays, and microscopy. Bacterial isolates were tested for antibiotic resistance patterns. From enrolled diarrhea cases, 533 stool samples (58%) were positive for enteric pathogens, compared to 389 samples (49%) in controls, underscoring the high carriage rate of enteric pathogens in this population as well as the difficulties in establishing the etiology of diarrhea cases. The most common enteric pathogens in cases were enteric bacteria with Aeromonas (15%), followed by Plesiomonas (12%), and enteroaggregative E. coli (EAEC) (10%). Shigella (p < 0.05), enterotoxigenic E. coli with heat-stable toxins (ETEC-ST) (p < 0.01), and Plesiomonas (p < 0.01) had a statistically significant association with acute diarrhea cases. Rotavirus was the most common virus found (51% of cases with virus), followed by norovirus (19%), and sapovirus (16%). In terms of antimicrobial resistance, 84% of Shigella isolates were highly resistant to trimethoprim/sulfamethoxazole (SXT), almost 80% of Campylobacter jejuni isolates were resistant to ciprofloxacin (82%) and nalidixic acid (85%). Over 50% of ETEC, Shigella, and EAEC isolates were resistant to ceftriaxone, ciprofloxacin, and SXT, respectively. Overall, our study highlights the high endemicity of enteric bacterial pathogens and the significant carriage rates of these pathogens even in individuals without overt symptoms. Although the overall antimicrobial resistance was moderate, prevalent isolates harbor a significant resistance to the first-line of treatment. This highlights the importance of ongoing diarrhea etiology and antimicrobial resistance (AMR) surveillance efforts to guide the development and implementation of an effective AMR management program in diarrheal infections.
Collapse
Affiliation(s)
- Paksathorn Kietsiri
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siriporn Sornsakrin
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Samon Nou
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Wilawan Oransathid
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Dutsadee Peerapongpaisarn
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Wirote Oransathid
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panida Nobthai
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Siriphan Gonwong
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Pimmada Sakpaisal
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nuanpan Khemnu
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Somethy Sok
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Sokh Vannara
- Military Region 5 Hospital, Battambang, Cambodia
| | | | - Sidonn Krang
- Communicable Diseases Control Department, Ministry of Health, Phnom Penh, Cambodia
| | - Ly Sovann
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Em Sovannarith
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Woradee Lurchachaiwong
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sidhartha Chaudhury
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nattaya Ruamsap
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Paphavee Lertsethtakarn
- Walter Reed Army Institute of Research- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
| |
Collapse
|
3
|
Flitter BA, Gillard J, Greco SN, Apkarian MD, D'Amato NP, Nguyen LQ, Neuhaus ED, Hailey DCM, Pasetti MF, Shriver M, Quigley C, Frenck RW, Lindesmith LC, Baric RS, Wei LJ, Tucker SN, Cummings JF. An oral norovirus vaccine generates mucosal immunity and reduces viral shedding in a phase 2 placebo-controlled challenge study. Sci Transl Med 2025; 17:eadh9906. [PMID: 40367195 DOI: 10.1126/scitranslmed.adh9906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
There are currently no licensed vaccines for norovirus, a leading cause of epidemic and endemic gastroenteritis worldwide. Clinical advancement of promising vaccine candidates from phase 2 studies to phase 3 field trials has been hampered by the lack of robust immunological correlates of protection. Here, we conducted a phase 2b randomized, placebo-controlled vaccination and challenge study to assess the safety, efficacy, immunogenicity, and correlates of protection of VXA-G1.1-NN, an oral tablet norovirus vaccine. VXA-G1.1-NN was safe and well tolerated, conferred protection against norovirus GI.1 challenge, and reduced viral shedding in stool and emesis. Norovirus VP1-specific serum immunoglobulin A (IgA), IgG, and functional blocking antibody titers increased substantially after oral vaccination. Moreover, oral immunization stimulated VP1-specific IgA antibodies in nasal lining fluid, saliva, and fecal samples. Serum and mucosal antibody responses 7 days after vaccination were correlated with the induction of antibody-secreting, α4β7+ mucosal-homing B cells. Machine learning analyses of vaccine-stimulated immune components identified serum functional blocking antibody and fecal IgA as robust correlates of protection. These results demonstrate the potential of VXA-G1.1-NN as a safe and effective oral norovirus vaccine and reveal critical immunological features underpinning vaccine efficacy.
Collapse
Affiliation(s)
| | - Joshua Gillard
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | - Marcela F Pasetti
- Center for Vaccine Development, University of Maryland Baltimore School of Medicine, Baltimore, MD 21201, USA
| | - Mallory Shriver
- Center for Vaccine Development, University of Maryland Baltimore School of Medicine, Baltimore, MD 21201, USA
| | - Christina Quigley
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Robert W Frenck
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lisa C Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lee-Jen Wei
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | | | | |
Collapse
|
4
|
Davies JP, Ingunza A, Peña B, Ochoa M, Franchi LM, Gil AI, Ogden KM, Howard LM, Grijalva CG, Plate L, Lanata CF. Proteomics as a complementary approach to measure norovirus infection in clinical samples. Virology 2025; 606:110502. [PMID: 40121988 DOI: 10.1016/j.virol.2025.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Norovirus (NoV) is a leading cause of global acute gastroenteritis, particularly in young children, with no current licensed vaccine. Epidemiological studies have shown that asymptomatic cases are common, and infected patients may test positive for prolonged periods; however, the impact of these phenomena on transmission and public health measures remains unclear. A major limiting factor is our ability to measure infection, which is constrained to real-time reverse transcription polymerase chain reaction or antibody-based assays, both of which are susceptible to loss of detection by rapid NoV evolution. This review highlights the potential for proteomics to overcome current technical limitations and advance basic science discovery and clinical research. Importantly, proteomics-based protein detection can span NoV, host, and microbiome proteins and could help identify host or microbiome factors that correlate with disease outcome. Further developing proteomics tools to complement existing diagnostic technologies will improve our ability to assess NoV pathogenesis and transmission, as well as therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Bia Peña
- Instituto de Investigación Nutricional, Lima, Peru
| | - Mayra Ochoa
- Instituto de Investigación Nutricional, Lima, Peru
| | | | - Ana I Gil
- Instituto de Investigación Nutricional, Lima, Peru
| | - Kristen M Ogden
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Leigh M Howard
- Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Lars Plate
- Vanderbilt University, Nashville, TN, United States; Vanderbilt University Medical Center, Nashville, TN, United States.
| | | |
Collapse
|
5
|
Boone SA, Betts-Childress ND, Ijaz MK, McKinney J, Gerba CP. The impact of an air sanitizer spray on the risk of virus transmission by aerosols generated by toilet flushing. Am J Infect Control 2025:S0196-6553(25)00320-7. [PMID: 40311782 DOI: 10.1016/j.ajic.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Toilet flushing has been reported to result in pathogen contamination of restroom fomites and air. The goal of this study was to investigate the effectiveness of an air sanitizing spray on reducing cross-contamination of restroom fomites and air after toilet flushing. METHODS Bacteriophage MS2 was added to toilet bowl water, then flushed, and cross-contamination of restroom fomites and air was determined. Subsequently, the procedure was replicated to determine the interventional role of using either an air sanitizer spray or surface disinfectant spray after toilet flushing. RESULTS A 90 to 99.99% reduction of cross-contamination on fomites occurred with the use of the air sanitizer, depending on the fomite location and sanitizer spray duration. Use of the air sanitizer significantly reduced viral contamination only on the toilet seat after spraying for 8 seconds, but after a 30-second spray, cross-contamination was significantly reduced on 4 of 5 restroom surfaces. Air contamination was also reduced by 99% after the use of air sanitizer. In contrast, when the hard surface disinfectant spray was sprayed in the air, its impact on post-flushing cross-contamination was negligible. CONCLUSIONS The air sanitizer spraying significantly reduced potential airborne pathogen exposure from toilet flushing, including the risk of norovirus transmission in the restroom.
Collapse
Affiliation(s)
- Stephanie A Boone
- Department of Environmental Science, University of Arizona, Tucson, AZ
| | | | - M Khalid Ijaz
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ
| | - Julie McKinney
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ
| | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, AZ.
| |
Collapse
|
6
|
Kambhampati AK, Hoover ER, Landsman LA, Wittry BC, Brown LG, Mirza SA. Updated Assessment of State Food Safety Laws for Norovirus Outbreak Prevention in the United States. J Food Prot 2025; 88:100501. [PMID: 40158660 DOI: 10.1016/j.jfp.2025.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/27/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Foodborne norovirus outbreaks are often associated with food contamination during preparation by an ill employee. The US Food and Drug Administration's Food Code outlines food safety provisions to prevent illness transmission in food establishments. An updated full version of the Food Code is released every four years; adoption of specific provisions is at the discretion of state governments. Food safety laws of the 50 states and District of Columbia (51 jurisdictions) were assessed for adoption as of March 2020, of four norovirus-related provisions included in the 2017 Food Code: (1) prohibition of barehand contact with ready-to-eat (RTE) food, (2) exclusion of food employees with vomiting or diarrhea, (3) person in charge being a certified food protection manager (CFPM), and (4) written response plan for vomiting or diarrheal events. We compared the frequency of adoption of the 2017 Food Code provisions to a previous assessment of adoption of these provisions in the 2013 Food Code. Prohibition of barehand contact with RTE food was adopted by 45 jurisdictions (88%), an increase from 39 jurisdictions (76%) in the previous analysis. Forty jurisdictions (78%) required exclusion of food employees with vomiting or diarrhea for ≥24 h after symptom cessation, an increase from 30 jurisdictions (59%). Provisions requiring the person in charge to be a CFPM and written response plan for contamination events were new to the 2017 Food Code; 5 jurisdictions (10%) required the person in charge to be a CFPM and 9 (18%) required a written response plan. Adoption of provisions prohibiting barehand contact with RTE food and requiring exclusion of ill food employees increased. Newer provisions, requiring a person in charge to be a CFPM and a written contamination response plan, were not as widely adopted. Increased adoption of Food Code provisions and improved compliance may decrease norovirus transmission in food establishments.
Collapse
Affiliation(s)
- Anita K Kambhampati
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States.
| | - E Rickamer Hoover
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, United States
| | - Lisa A Landsman
- Office of Public Health Law Services, National Center for State, Tribal, Local, and Territorial Public Health Infrastructure and Workforce, Centers for Disease Control and Prevention. 4770 Buford Hwy NE, Atlanta, GA 30341, United States
| | - Beth C Wittry
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, United States
| | - Laura G Brown
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, United States
| | - Sara A Mirza
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| |
Collapse
|
7
|
Bullen JC, Mohaghegh M, Tahir F, Hammer C, Sims J, Myers F, Eisinger L, Kasmati AR, Trant CF. Near-source wastewater surveillance of SARS-CoV-2, norovirus, influenza virus and RSV across five different sites in the UK. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004397. [PMID: 40202943 PMCID: PMC11981152 DOI: 10.1371/journal.pgph.0004397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/06/2025] [Indexed: 04/11/2025]
Abstract
By tracking infectious diseases through sewage, municipal-scale wastewater surveillance has provided early warnings of future COVID-19 hospitalisations, identified biases in diagnostic testing, and is rapidly expanding to a broader array of pathogens. Despite applications in the targeted delivery of local interventions, near-source wastewater surveillance has received less attention and we know little about the near-source time series dynamics of contrasting pathogens. To address this, we conducted wastewater surveillance at five sites for SARS-CoV-2 and two sites for norovirus GI, norovirus GII, influenza A virus, influenza B virus, and human respiratory syncytial virus (RSV A and RSV B). Sites were selected for contrasting functions: an office, charity centre, museum, university, and care home. The key findings are (1) near-source wastewater detections were linked to local events (staff sickness, enhanced cleaning, changing populations); (2) wastewater detections decreased in the order norovirus GII > norovirus GI > SARS-CoV-2 ≈ influenza A ≈ RSV A > influenza B ≈ RSV B; (3) correlation between near-source wastewater data and national surveillance data increases as a function of catchment size and viral prevalence (examples include the SARS-CoV-2 BA.4/BA.5 variant peak at a museum and wastewater tracking the winter norovirus season); (4) strong weekday periodicity in near-source wastewater SARS-CoV-2 detections, with the correlation against COVID-19 case numbers increasing when modelling variable lag times between faecal shedding onset and clinical diagnosis (R2 = 0.45 increases to 0.84-0.86); (5) a log-linear relationship between the frequency of wastewater SARS-CoV-2 detection and log(catchment size⋅viral prevalence) (R2 = 0.6914-0.9066). Finally, we propose two use cases. Firstly, for rare or high-risk pathogens, near-source wastewater sentinel systems provide early warning of outbreaks, achieving high frequency community coverage without behaviour change and at low cost versus diagnostic testing. Secondly, for endemic pathogens, near-source wastewater reveals long-term patterns and trends, the effectiveness of local policies, and community vulnerabilities.
Collapse
Affiliation(s)
| | | | | | - Charlotte Hammer
- Cambridge Infectious Diseases, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Lucas Eisinger
- Untap Health, London, United Kingdom
- Lifescience Dynamics, London, United Kingdom
| | | | | |
Collapse
|
8
|
Campbell WR, Neyra J, Calderwood LE, Romero C, Soto G, Kambhampati AK, Hall AJ, Ponce D, Galván P, Tinoco YO, Vinje J, Parashar UD, Mirza SA. Incidence of Norovirus-Associated Acute Gastroenteritis across Age Groups in a Peruvian Andean Community. Am J Trop Med Hyg 2025; 112:921-927. [PMID: 39773432 PMCID: PMC11964828 DOI: 10.4269/ajtmh.24-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/22/2024] [Indexed: 01/11/2025] Open
Abstract
Norovirus is the leading cause of acute gastroenteritis (AGE) globally. Few longitudinal studies have assessed norovirus-associated AGE incidence across age groups in community settings in Latin America. During April 2015-April 2019, active surveillance for AGE among community members of all ages was conducted through household visits two to three times per week in San Jeronimo, Cusco, Peru. An asymptomatic control household was selected for every fifth AGE case. Stool specimens were collected from AGE cases, asymptomatic household members, and control household members, and they were tested for norovirus using real-time reverse transcriptase polymerase chain reaction. Data on illness characteristics were collected from AGE cases during a 15-day follow-up period. Annual means of 247 households and 1,555 participants were enrolled during each April-March surveillance year, accounting for 4,176 person-years (PY) of observation. Of 1,099 AGE events reported, 1,014 stool specimens were tested, and 186 (18%) were norovirus positive. Norovirus AGE incidence was 4.4/100 PY (95% CI: 3.9-5.1); incidence was highest among those younger than 2 years old (60.9/100 PY; 95% CI: 46.8-79.4). Among 672 stool specimens from asymptomatic controls, 56 (8%) tested positive for norovirus. Odds of norovirus detection were significantly higher among cases compared with controls (odds ratio: 2.2; 95% CI: 1.6-3.1). Age-stratified norovirus incidence in this periurban community aligns with previously published estimates and was highest among those younger than 2 years old. Establishing baseline norovirus incidence in specific communities is crucial to identify target populations and assess effectiveness of future interventions, such as vaccines.
Collapse
Affiliation(s)
- Wesley R. Campbell
- U.S. Naval Medical Research Unit SOUTH, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Joan Neyra
- U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| | - Laura E. Calderwood
- National Center for Immunization and Respiratory Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
- Cherokee Nation Operational Solutions, Tulsa, Oklahoma
| | - Candice Romero
- Facultad de Medicina Humana, Universidad Nacional de la Amazonıa Peruana, Iquitos, Peru
- Vysnova Partners, Inc., Alexandria, Virginia
| | - Giselle Soto
- U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| | - Anita K. Kambhampati
- National Center for Immunization and Respiratory Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Aron J. Hall
- National Center for Immunization and Respiratory Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Diana Ponce
- Vysnova Partners, Inc., Alexandria, Virginia
| | | | | | - Jan Vinje
- National Center for Immunization and Respiratory Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Umesh D. Parashar
- National Center for Immunization and Respiratory Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sara A. Mirza
- National Center for Immunization and Respiratory Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
9
|
Yan GJH, Hewitt J, Mercer LK, Harding EF, Croucher D, Russo AG, Huntington PG, Mackenzie JM, Rawlinson WD, White PA. Molecular epidemiology and evolution of norovirus in Australia and New Zealand, 2018 to 2020. Infect Dis (Lond) 2025:1-16. [PMID: 40100222 DOI: 10.1080/23744235.2025.2479133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Norovirus causes an estimated 699 million cases of gastroenteritis and 219,000 deaths each year. Historically, novel strains with a genogroup II genotype 4 (GII.4) capsid have emerged every 3-5 years to cause gastroenteritis pandemics. Contrary to historical trends, viruses with aGII.4 Sydney 2012 capsid have extended the timeframe of capsid circulation, well beyond the usual 3-5 years, through genetic recombination to obtain new non-structural regions, for example, a GII.P16 ORF1. OBJECTIVES AND METHODS The molecular evolution in the GII.4 capsid of strains in New South Wales (NSW), Australia and New Zealand (NZ) before and into the COVID-19 pandemic (2018-20) was investigated by sequencing noroviruses from clinical specimens and wastewater. RESULTS A continued high prevalence of GII.4 Sydney 2012 [P16] was observed (NSW: 23.0%; NZ: 24.2%), albeit co-dominant with GII.2 [P16] (NSW: 20.2%; NZ: 29.4%). Unlike the historical trends, the GII.4 Sydney 2012 capsid has been in circulation for eight years. Circulating norovirus in the community was disrupted by COVID-19 control measures; lockdowns reduced viral concentration in wastewater by >90% (1.4 × 105 genome copies (gc)/L) from May to September 2020 compared to equivalent timeframes in 2018 (1.6 × 106gc/L) and 2019 (1.9 × 106gc/L). The relaxation of lockdown measures in late-2020 coincided with a strong resurgence of GII.2[P16] prevalence both clinically and in wastewater in NSW and Melbourne, accompanied by a decline in the diversity of circulating noroviruses. Conclusion: In summary, COVID-19 disrupted the strain diversity and levels of norovirus in Australia and New Zealand.
Collapse
Affiliation(s)
- Grace J H Yan
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Joanne Hewitt
- Institute of Environmental Science and Research, Porirua, New Zealand
| | - Lewis K Mercer
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Emma F Harding
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Dawn Croucher
- Institute of Environmental Science and Research, Porirua, New Zealand
| | - Alice G Russo
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Peter G Huntington
- Department of Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - William D Rawlinson
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Department of Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
- Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, Australia
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - Peter A White
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
10
|
Chen J, Madhiyan M, Moor KJ, Chen H, Shuai D. Kinetics and Mechanisms of Solar UVB Disinfection of Vesicle-Cloaked Murine Norovirus Clusters and Free Noroviruses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2461-2472. [PMID: 39893675 DOI: 10.1021/acs.est.4c12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Human norovirus, a major global cause of gastroenteritis, forms vesicle-cloaked virus clusters (known as viral vesicles), showing increased infectivity and persistence in aquatic environments. We investigated UVB disinfection, a key mechanism of solar disinfection commonly employed in developing countries, targeting murine norovirus vesicles and free murine noroviruses as surrogates for human noroviruses. At low viral concentrations of 109 gene copies per liter, viral infectivity loss as quantified by the integrated cell culture-reverse transcription-quantitative polymerase chain reaction (ICC-RT-qPCR) indicated that vesicles were 1.51 to 1.73 times more resistant to disinfection compared to free viruses. Virus inactivation was primarily due to protein damage as quantified by bicinchoninic acid and Western blot assays, and the damage of virus binding to host cells as quantified by RT-qPCR. Molecular simulations predicted that the oxidation of a tyrosine residue in the viral protein 1 prohibited binding. UVB irradiation of viral/vesicle proteins resulted in 1O2 formation as quantified by time-resolved phosphorescence, and for the first time, endogenous 1O2 was confirmed to contribute to virus inactivation by UVB. Our study recognizes the limitation of UVB disinfection of viral vesicles particularly in solar wastewater treatment and advocates for enhanced disinfection strategies to protect public health.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Monika Madhiyan
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
| | - Kyle J Moor
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
| | - Hanning Chen
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
11
|
Ji J, Ahmed S, Wang H. A hybrid approach to study and forecast climate-sensitive norovirus infections in the USA. J Theor Biol 2025; 598:112007. [PMID: 39608748 DOI: 10.1016/j.jtbi.2024.112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Norovirus, responsible for acute gastroenteritis and foodborne diseases in the United States, is influenced significantly by environmental factors. This study employs a hybrid approach to develop a foodborne disease model that incorporates indirect incidence to examine the correlation between norovirus outbreaks and environmental conditions, specifically focusing on the impact of temperature and humidity on virus transmission. By analyzing weekly average climate data and confirmed case data from four United States regions (Southern, Northeastern, Midwestern, and Western), we assess the mortality rates and estimate transmission rates using the inverse method. Our numerical results confirm that norovirus outbreaks predominantly occur in colder months. However, higher temperatures or increased humidity during warmer months appear to mitigate the spread of the virus. Utilizing climate data, this study also forecasts transmission rates and infection cases up to eight weeks in advance using a generalized boosting machine learning model.
Collapse
Affiliation(s)
- Juping Ji
- School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, PR China; Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou, Guangdong, 510006, PR China
| | - Shohel Ahmed
- Department of Mathematical and Statistical Sciences & Interdisciplinary Lab for Mathematical Ecology and Epidemiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Hao Wang
- Department of Mathematical and Statistical Sciences & Interdisciplinary Lab for Mathematical Ecology and Epidemiology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
12
|
Song W, Toh J, Chen S, Xing R, Li D. Self-assembled eumelanin nanoparticles enhance IFN-I activation and cilia-driven intercellular communication to defend against Tulane virus, a human norovirus surrogate. Biomater Sci 2025; 13:777-794. [PMID: 39744920 DOI: 10.1039/d4bm01283f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Norovirus (NoV) infection is a leading cause of gastroenteritis and poses global health threats, with increasing incidence reported in immunocompromised individuals, which is further exacerbated by the globalization of the food industry. Eumelanin has demonstrated its potential in antiviral treatments, but its role in preventing viral infections remains underexplored. Therefore, in this study, we investigated the antiviral properties and potential mechanisms of self-assembled eumelanin nanoparticles (EmNPs) against Tulane virus (TuV), a surrogate with a similar infection mechanism to NoVs. EmNPs exhibited low cytotoxicity and strong antiviral activity in pre-incubated cells. Additionally, EmNPs stimulated the growth and endocytosis of cilia on the cell surface, exposing internal long-nanoparticle chains to interact with the cell membrane while promoting cilia growth and enhancing intercellular connections in cells. EmNPs were then transported to lysosomes via vesicles, leading to a perinuclear lysosome clustering. EmNPs activated several key intracellular signaling pathways, including Toll-like receptor (TLR) and C-type lectin receptor (CLR) pathways, along with activating NF-κB, Rap1, TNF, and Hippo pathways. This regulatory action initiated innate cellular immunity, significantly enhancing the production of type I interferons (IFN-α/β) and promoting the localization of lysosomes to the perinuclear region. Therefore, this study illustrated that EmNPs effectively stimulated immune responses, improved intercellular communication, and facilitated transport mechanisms, thereby bolstering resistance to subsequent viral infections. These findings position EmNPs as promising candidates for the prevention of norovirus infections.
Collapse
Affiliation(s)
- Wen Song
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117546, Singapore.
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
| | - Jillinda Toh
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117546, Singapore.
| | - Shurui Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575 Singapore
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117546, Singapore.
| |
Collapse
|
13
|
Rodrigues ET, Oliveira JM, Carmo A, Pardal MA, Matos AM. Municipal secondary-treated effluent data seem to be a suitable source of information for human viral trends. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117368. [PMID: 39566263 DOI: 10.1016/j.ecoenv.2024.117368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Employing a long-time series of municipal wastewater samples collected in 2020, the present study aims to confirm whether the appearance of SARS-CoV-2 influences the environmental load and behaviour of both JC Virus and Norovirus, determine the ability of the selected wastewater treatment plant (WWTP) to remove viral genomes, and assess if secondary-treated effluent data is somehow related to the incidence of the viral diseases reported by the local hospital. From the 11 raw influent and 52 secondary-treated effluent samples tested, JC Virus data present an occurrence frequency of 100 %, showing two different abundance patterns along the year, before and after the appearance of SARS-CoV-2. The constant detection of JC nucleic acids in wastewater reinforces the idea that urine is responsible for transmitting this virus. The Norovirus genogroup (G) II was detected more frequently than GI, both in influents and effluents, and their characteristic incidence peaks were not observed in late 2020. Regarding SARS-CoV-2 RNA, it appeared only in 5.8 % of the effluents, possibly due to the iron dosing used by the WWTP to reduce both phosphorus and organic matter concentrations in order to meet the requirements of European legislation, and/or the pre-filtration laboratory step which neglected the possibility of viral association with the solid fraction. The results suggest a poor performance of the WWTP, since Log removal values below 1.8 were determined. We were able to trace the development of local Norovirus outbreaks in the effluent samples to some extent, suggesting that secondary-treated effluents may be used to monitor human viruses by following viral nucleic acid levels.
Collapse
Affiliation(s)
- Elsa T Rodrigues
- Centre for Functional Ecology (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| | - Joana M Oliveira
- Centre for Functional Ecology (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal; Chemical Engineering and Renewable Resources for Sustainability (CERES), Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, Portugal.
| | - Anália Carmo
- Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Miguel A Pardal
- Centre for Functional Ecology (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| | - Ana M Matos
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, Portugal.
| |
Collapse
|
14
|
Zhang N, Zhuang L, King MF, Qian H, Zhu M. Public surface disinfection every 2 hours can reduce the infection risk of norovirus in airports up to 83. PLoS Comput Biol 2024; 20:e1012561. [PMID: 39636806 PMCID: PMC11620375 DOI: 10.1371/journal.pcbi.1012561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
Norovirus, primarily transmitted via fomite route, poses a significant threat to global public health and the economy. Airports, as critical transportation hubs connecting people from around the world, has high potential risk of norovirus transmission due to large number of public surfaces. A total of 21.3 hours of video episodes were recorded across nine functional areas at the airport, capturing 25,925 touches. A surface transmission model based on a Markov chain was developed. Using the beta-Poisson dose-response model, the infection risk of norovirus and the effectiveness of various interventions in different airports' areas were quantified. Without any preventive measures, restaurants at airports exhibited the highest risk of norovirus transmission, with an infection probability of 8.8×10-3% (95% CI, 1.5×10-3% -2.1×10-2%). This means approximately 4.6 (95% CI, 0.8-10.9) out of 51,494 passengers who entered the restaurants would be infected by an infected passenger. Comparing with no surface disinfection, disinfecting public surfaces every 2 hours can reduce the risk of norovirus infection per visit to the airport by 83.2%. In contrast, comparing with no hand washing, handwashing every 2 hours can reduce the infection risk per visit to the airport by only 2.0%, making public surface disinfection significantly more effective than handwashing. If the mask-wearing rate increases from 0% to 50%, the infection risk of norovirus would be decreased by 48.0% (95% CI, 43.5-52.3%). Furthermore, using antimicrobial copper/copper-nickel alloy coatings for most public surfaces could reduce the infection risk by 15.9%-99.2%.
Collapse
Affiliation(s)
- Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Linan Zhuang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Marco-Felipe King
- School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds, United Kingdom
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Min Zhu
- 6th Medical Center of General Hospital of PLA, Beijing, China
| |
Collapse
|
15
|
Atmar RL, Neill FH, Hayes NM, Opekun AR, Graham DY, Estes MK, Ramani S. Lack of Detection of Norwalk Virus in Saliva Samples From a Controlled Human Infection Model. Open Forum Infect Dis 2024; 11:ofae652. [PMID: 39540122 PMCID: PMC11558451 DOI: 10.1093/ofid/ofae652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Following recent reports of norovirus replication in salivary gland cells, we examined whether the prototype norovirus strain, Norwalk virus (GI.1), could be detected in the saliva of 21 experimentally infected persons. Viral RNA was not detected in saliva 2 and 7 days after challenge despite high levels being present in feces.
Collapse
Affiliation(s)
- Robert L Atmar
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Frederick H Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Nicole M Hayes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Antone R Opekun
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - David Y Graham
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K Estes
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Riller Q, Schmutz M, Fourgeaud J, Fischer A, Neven B. Protective role of antibodies in enteric virus infections: Lessons from primary and secondary immune deficiencies. Immunol Rev 2024; 328:243-264. [PMID: 39340232 PMCID: PMC11659928 DOI: 10.1111/imr.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Enteric viruses are the main cause of acute gastroenteritis worldwide with a significant morbidity and mortality, especially among children and aged adults. Some enteric viruses also cause disseminated infections and severe neurological manifestations such as poliomyelitis. Protective immunity against these viruses is not well understood in humans, with most knowledge coming from animal models, although the development of poliovirus and rotavirus vaccines has extended our knowledge. In a classical view, innate immunity involves the recognition of foreign DNA or RNA by pathogen recognition receptors leading to the production of interferons and other inflammatory cytokines. Antigen uptake and presentation to T cells and B cells then activate adaptive immunity and, in the case of the mucosal immunity, induce the secretion of dimeric IgA, the more potent immunoglobulins in viral neutralization. The study of Inborn errors of immunity (IEIs) offers a natural opportunity to study nonredundant immunity toward pathogens. In the case of enteric viruses, patients with a defective production of antibodies are at risk of developing neurological complications. Moreover, a recent description of patients with low or absent antibody production with protracted enteric viral infections associated with hepatitis reinforces the prominent role of B cells and immunoglobulins in the control of enteric virus.
Collapse
Affiliation(s)
- Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine InstituteUniversité Paris Cité, INSERM UMR 1163ParisFrance
- IHU‐ImagineParisFrance
| | - Muriel Schmutz
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine InstituteUniversité Paris Cité, INSERM UMR 1163ParisFrance
- IHU‐ImagineParisFrance
| | - Jacques Fourgeaud
- Université Paris Cité, FETUSParisFrance
- Microbiology DepartmentAP‐HP, Hôpital NeckerParisFrance
| | - Alain Fischer
- Pediatric Hematology‐Immunology and Rheumatology UnitNecker‐Children's Hospital, Assistance Publique‐Hôpitaux de ParisParisFrance
- INSERM UMRS 1163, Institut ImagineParisFrance
- Collège de FranceParisFrance
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine InstituteUniversité Paris Cité, INSERM UMR 1163ParisFrance
- IHU‐ImagineParisFrance
- Pediatric Hematology‐Immunology and Rheumatology UnitNecker‐Children's Hospital, Assistance Publique‐Hôpitaux de ParisParisFrance
| |
Collapse
|
17
|
Cheng C, Cai X, Li J, Zhang X, Xie Y, Zhang J. In Vitro Culture of Human Norovirus in the Last 20 Years. Biomedicines 2024; 12:2442. [PMID: 39595008 PMCID: PMC11592199 DOI: 10.3390/biomedicines12112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Human noroviruses (HuNoVs) are the main pathogens that cause acute gastroenteritis and lead to huge economic losses annually. Due to the lack of suitable culture systems, the pathogenesis of HuNoVs and the development of vaccines and drugs have progressed slowly. Although researchers have employed various methods to culture HuNoVs in vitro in the last century, problems relating to the irreducibility, low viral titer, and non-infectiousness of the progeny virus should not be ignored. In 2016, researchers achieved the cultivation and successive passaging of some HuNoV genotypes using human intestinal enteroids, initially demonstrating the potential use of organoids in overcoming this challenge. This paper reviews the efforts made in the last 20 years to culture HuNoVs in vitro and discusses the superiority and limitations of employing human intestinal enteroids/organoids as an in vitro culture model for HuNoVs.
Collapse
Affiliation(s)
- Chao Cheng
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (C.C.); (J.L.); (X.Z.)
| | - Xia Cai
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Jingjing Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (C.C.); (J.L.); (X.Z.)
| | - Xiaomeng Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (C.C.); (J.L.); (X.Z.)
| | - Youhua Xie
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (C.C.); (J.L.); (X.Z.)
| | - Junqi Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (C.C.); (J.L.); (X.Z.)
| |
Collapse
|
18
|
Wang F, Zhang Q, An R, Lyu C, Xu J, Wang D. Reactive species of plasma-activated water for murine norovirus 1 inactivation. Food Res Int 2024; 194:114877. [PMID: 39232515 DOI: 10.1016/j.foodres.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Human norovirus (HuNoV), the leading cause of foodborne acute gastroenteritis, poses a serious threat to public health. Traditional disinfection methods lead to destructions of food properties and functions, and/or environmental contaminations. Green and efficient approaches are urgently needed to disinfect HuNoV. Plasma-activated water (PAW) containing amounts of reactive species is an emerging nonthermal and eco-friendly disinfectant towards the pathogenic microorganisms. However, the disinfection efficacy and mechanism of PAW on HuNoV has not yet been studied. Murine norovirus 1 (MNV-1) is one of the most commonly used HuNoV surrogates to evaluate the efficacy of disinfectants. In the current study, the inactivation efficacy of MNV-1 by PAW was investigated. The results demonstrated that PAW significantly inactivated MNV-1, reducing the viral titer from approximately 6 log10 TCID50/mL to non-detectable level. The decreased pH, increased oxidation-reduction potential (ORP) and conductivity of PAW were observed compared with that of deionized water. Compositional analysis revealed that hydrogen peroxide (H2O2), nitrate (NO3-) and hydroxyl radical (OH) were the functional reactive species in MNV-1 inactivation. L-histidine could scavenge most of the inactivation effect in a concentration-dependent manner. Moreover, PAW could induce damage to viral proteins. Part of MNV-1 particles was destroyed, while others were structurally intact without infectiousness. After 45 days of storage at 4 °C, PAW generated with 80 % O2 and 100 % O2 could still reduce over 4 log10 TCID50/mL of the viral titer. In addition, PAW prepared using hard water induced approximately 6 log10 TCID50/mL reduction of MNV-1. PAW treatment of MNV-1-inoculated blueberries reduced the viral titer from 3.79 log10 TCID50/mL to non-detectable level. Together, findings of the current study uncovered the crucial reactive species in PAW inactivate MNV-1 and provided a potential disinfection strategy to combat HuNoV in foods, water, and environment.
Collapse
Affiliation(s)
- Fengqing Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Ran An
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenang Lyu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jialun Xu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Tiwari A, Radu E, Kreuzinger N, Ahmed W, Pitkänen T. Key considerations for pathogen surveillance in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173862. [PMID: 38876348 DOI: 10.1016/j.scitotenv.2024.173862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Wastewater surveillance (WWS) has received significant attention as a rapid, sensitive, and cost-effective tool for monitoring various pathogens in a community. WWS is employed to assess the spatial and temporal trends of diseases and identify their early appearances and reappearances, as well as to detect novel and mutated variants. However, the shedding rates of pathogens vary significantly depending on factors such as disease severity, the physiology of affected individuals, and the characteristics of pathogen. Furthermore, pathogens may exhibit differential fate and decay kinetics in the sewerage system. Variable shedding rates and decay kinetics may affect the detection of pathogens in wastewater. This may influence the interpretation of results and the conclusions of WWS studies. When selecting a pathogen for WWS, it is essential to consider it's specific characteristics. If data are not readily available, factors such as fate, decay, and shedding rates should be assessed before conducting surveillance. Alternatively, these factors can be compared to those of similar pathogens for which such data are available.
Collapse
Affiliation(s)
- Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| | - Elena Radu
- Institute for Water Quality and Resource Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna, Austria; Stefan S. Nicolau Institute of Virology, Department of Cellular and Molecular Pathology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania; University of Medicine and Pharmacy Carol Davila, Department of Virology, 37 Dionisie Lupu Street, 020021 Bucharest, Romania.
| | - Norbert Kreuzinger
- Institute for Water Quality and Resource Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna, Austria.
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| |
Collapse
|
20
|
Son E, Kim YH. Surge of acute gastroenteritis outbreaks due to rising norovirus GII.4 transmission in Seoul childcare centers and kindergartens in 2022 compared to 2019-2021. Arch Virol 2024; 169:209. [PMID: 39327326 DOI: 10.1007/s00705-024-06123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/21/2024] [Indexed: 09/28/2024]
Abstract
Noroviruses are the most common cause of acute gastroenteritis (AGE) outbreaks in childcare centers and kindergartens. Their high transmissibility is partly due to their genetic diversity. AGE outbreaks that occurred in Seoul childcare centers and kindergartens from 2019 to 2022 were investigated, and 68 epidemiological reports prepared by public health centers in Seoul were used for data collection. In the three quarters of 2022, there were 40 outbreaks of AGE in Seoul childcare centers and kindergartens, which exceeded the 35 total outbreaks that occurred during the previous three years. The proportion of childcare centers and kindergartens with AGE outbreaks among all facilities in Seoul increased from 12.6% in 2019 to 58.8% in 2022. Noroviruses were the most common pathogens responsible for AGE outbreaks in these cases. From 2019 to 2021, norovirus GII.2 was the predominant genotype, and GII.4 was detected in about 25% of cases. However, in 2022, GII.4 became predominant and was detected in about 79% of cases. The attack rate and infection source of AGE outbreaks from 2019 to 2021 were not significantly different from those in 2022. In conclusion, the number of AGE outbreaks in Seoul childcare centers and kindergartens increased significantly, primarily because of increased norovirus GII.4 transmission in 2022.
Collapse
Affiliation(s)
- Euncheol Son
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Biomedical Institute of Technology, University of Ulsan, Seoul, Republic of Korea
- Infectious Disease Control Division, Citizens' Health Bureau, Seoul Metropolitan Government, Seoul, Republic of Korea
| | - Young-Hoon Kim
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Biomedical Institute of Technology, University of Ulsan, Seoul, Republic of Korea.
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
21
|
Sun Y, Liang M, Wu M, Su L. Inhibition of Norovirus GII.4 binding to HBGAs by Sargassum fusiforme polysaccharide. Biosci Rep 2024; 44:BSR20240092. [PMID: 39158037 PMCID: PMC11392911 DOI: 10.1042/bsr20240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024] Open
Abstract
Norovirus (NoV) is the main pathogen that causes acute gastroenteritis and brings a heavy socio-economic burden worldwide. In this study, five polysaccharide fractions, labeled pSFP-1-5, were isolated and purified from Sargassum fusiforme (S. fusiforme). In vitro experiments demonstrated that pSFP-5 significantly prevented the binding of type A, B and H histo-blood group antigens (HBGAs) to NoV GII.4 virus-like particles (NoV GII.4 VLPs). In addition, in vivo experiments revealed that pSFP-5 was effective in reducing the accumulation of NoV in oysters, indicating that pSFP-5 could reduce the risk of NoV infection from oyster consumption. The results of transmission electron microscopy showed that the appearance of NoV GII.4 VLPs changed after pSFP-5 treatment, indicating that pSFP-5 may achieve antiviral ability by altering the morphological structure of the viral particles so that they could not bind to HBGAs. The results of the present study indicate that pSFP-5 may be an effective anti-NoV substance and can be used as a potential anti-NoV drug component.
Collapse
Affiliation(s)
- Yiqiang Sun
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
22
|
Chen Z, Zhang H, Shen Y, Ye C. A Norovirus-Related Gastroenteritis Outbreak Stemming from a Potential Source of Infection - Pudong New Area, Shanghai Municipality, China, April 2024. China CDC Wkly 2024; 6:968-971. [PMID: 39347449 PMCID: PMC11427338 DOI: 10.46234/ccdcw2024.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024] Open
Abstract
What is already known about this topic? Noroviruses are highly infectious with rapid transmission capabilities, causing illness for an average duration of 12-60 hours. In China, individuals in educational agencies may return to class 72 hours after symptom resolution. What is added by this report? This outbreak was precipitated by a potential source of infection in a child resuming class after a 72-hour quarantine post-symptom resolution, leading to a cluster of cases within the class. What are the implications for public health practice? While extending the quarantine period for children may be considered from a safety perspective, it is a challenge for educational agencies. The outbreak is deemed a low-probability event; however, further investigation into the detoxification period of asymptomatic patients is warranted.
Collapse
Affiliation(s)
- Zou Chen
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| | - Hong Zhang
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| | - Yifeng Shen
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| | - Chuchu Ye
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| |
Collapse
|
23
|
Ramani S, Javornik Cregeen SJ, Surathu A, Neill FH, Muzny DM, Doddapaneni H, Menon VK, Hoffman KL, Ross MC, Metcalf G, Opekun AR, Graham DY, Gibbs RA, Petrosino JF, Estes MK, Atmar RL. INTRA- AND INTER-HOST EVOLUTION OF HUMAN NOROVIRUS IN HEALTHY ADULTS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.30.542907. [PMID: 39282326 PMCID: PMC11398385 DOI: 10.1101/2023.05.30.542907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Background Human noroviruses are a leading cause of acute and sporadic gastroenteritis worldwide. The evolution of human noroviruses in immunocompromised persons has been evaluated in many studies. Much less is known about the evolutionary dynamics of human norovirus in healthy adults. Methods We used sequential samples collected from a controlled human infection study with GI.1/Norwalk/US/68 virus to evaluate intra- and inter-host evolution of a human norovirus in healthy adults. Up to 12 samples from day 1 to day 56 post-challenge were sequenced using a norovirus-specific capture probe method. Results Complete genomes were assembled, even in samples that were below the limit of detection of standard RT-qPCR assays, up to 28 days post-challenge. Analysis of 123 complete genomes showed changes in the GI.1 genome in all persons, but there were no conserved changes across all persons. Single nucleotide variants resulting in non-synonymous amino acid changes were observed in all proteins, with the capsid VP1 and nonstructural protein NS3 having the largest numbers of changes. Conclusions These data highlight the potential of a new capture-based sequencing approach to assemble human norovirus genomes with high sensitivity and demonstrate limited conserved immune pressure-driven evolution of GI.1 virus in healthy adults.
Collapse
Affiliation(s)
- Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sara J. Javornik Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anil Surathu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frederick H. Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Donna M. Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Harsha Doddapaneni
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Vipin K. Menon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kristi L. Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew C. Ross
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ginger Metcalf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Antone R. Opekun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - David Y. Graham
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph F. Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
24
|
Neyra J, Kambhampati AK, Calderwood LE, Romero C, Soto G, Campbell WR, Tinoco YO, Hall AJ, Ortega-Sanchez IR, Mirza SA. Household economic costs of norovirus gastroenteritis in two community cohorts in Peru, 2012-2019. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002748. [PMID: 38985718 PMCID: PMC11236139 DOI: 10.1371/journal.pgph.0002748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
While costs of norovirus acute gastroenteritis (AGE) to healthcare systems have been estimated, out-of-pocket and indirect costs incurred by households are not well documented in community settings, particularly in developing countries. We conducted active surveillance for AGE in two communities in Peru: Puerto Maldonado (October 2012-August 2015) and San Jeronimo (April 2015-April 2019). Norovirus AGE events with PCR-positive stool specimens were included. Data collected in follow-up interviews included event-related medical resource utilization, associated out-of-pocket costs, and indirect costs. There were 330 norovirus-associated AGE events among 3,438 participants from 685 households. Approximately 49% of norovirus events occurred among children <5 years of age and total cost to the household per episode was highest in this age group. Norovirus events cost a median of US $2.95 (IQR $1.04-7.85) in out-of-pocket costs and $12.58 (IQR $6.39-25.16) in indirect costs. Medication expenses accounted for 53% of out-of-pocket costs, and productivity losses accounted for 59% of the total financial burden on households. The frequency and associated costs of norovirus events to households in Peruvian communities support the need for prevention strategies including vaccines. Norovirus interventions targeting children <5 years of age and their households may have the greatest economic benefit.
Collapse
Affiliation(s)
- Joan Neyra
- U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| | - Anita K Kambhampati
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Laura E Calderwood
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Cherokee Nation Operational Solutions, Tulsa, Oklahoma, United States of America
| | - Candice Romero
- Vysnova Partners, LLC, Greater Landover, Maryland, United States of America
| | - Giselle Soto
- U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| | - Wesley R Campbell
- Division of Infectious Diseases, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | | | - Aron J Hall
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ismael R Ortega-Sanchez
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sara A Mirza
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
25
|
Chigor VN, Digwo DC, Adediji A, Chidebelu PE, Chigor CB, Ugwu KO, Ibangha IAI, Street R, Farkas K. Epidemiology of norovirus infection in Nigeria: a systematic review and meta-analysis. Arch Virol 2024; 169:138. [PMID: 38847856 DOI: 10.1007/s00705-024-06056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024]
Abstract
Human norovirus (HuNoV) is responsible for most cases of gastroenteritis worldwide, but information about the prevalence and diversity of HuNoV infections in lower-income settings is lacking. In order to provide more information about the burden and distribution of norovirus in Nigeria, we systematically reviewed original published research articles on the prevalence of HuNoV in Nigeria by accessing databases, including PubMed, Web of Science, ScienceDirect, Google Scholar, and African Journals Online (AJOL). The protocol for the review was registered on PROSPERO (registration number CRD42022308857). Thirteen relevant articles were included in the review, and 10 of them were used for meta-analysis. The pooled prevalence of HuNoV-associated gastroenteritis among children below 5 years of age in Nigeria, determined using the random-effects model, was 10.9% (95% CI, 6.7-16.7%). Among children below the age of 5 presenting with HuNoV infections, the highest prevalence was in children ≤2 years old (n = 127, 83%). The prevalence of HuNoV infections was seen to decrease with increasing age. In addition, HuNoV was detected in asymptomatic food handlers, bats, and seafoods. A total of 85 sequences of HuNoV isolates from Nigeria have been determined, and based on those sequences, the most prevalent norovirus genogroup was GII (84%). Genotypes GII.4 and GI.3 were the most frequently identified genotypes, with GII.4 constituting 46% of all of the HuNoVs identified in Nigeria. These results suggest a risk associated with cocirculation of emerging variants with known genotypes because of their recombination potential. Larger molecular epidemiological studies are still needed to fully understand the extent and pattern of circulation of HuNoVs in Nigeria.
Collapse
Affiliation(s)
- Vincent N Chigor
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria.
| | - Daniel C Digwo
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Adedapo Adediji
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Paul E Chidebelu
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Chinyere B Chigor
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Kenneth O Ugwu
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Ini-Abasi I Ibangha
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Renee Street
- South African Medical Research Council, Environment & Health Research Unit, Durban, KwaZulu-Natal, South Africa
| | - Kata Farkas
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom
| |
Collapse
|
26
|
Xiong H, Ma F, Tang D, Liu D. Measures for preventing norovirus outbreaks on campus in economically underdeveloped areas and countries: evidence from rural areas in Western China. Front Public Health 2024; 12:1406133. [PMID: 38894991 PMCID: PMC11183813 DOI: 10.3389/fpubh.2024.1406133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Background The outbreak of norovirus represents a significant public health emergency within densely populated, impoverished, and underdeveloped areas and countries. Our objective is to conduct an epidemiology study of a norovirus outbreak that occurred in a kindergarten located in rural western China. We aim to raise awareness and garner increased attention towards the prevention and control of norovirus, particularly in economically underdeveloped regions. Methods Retrospective on-site epidemiological investigation results, including data on school layout, case symptoms, onset time, disposal methods and sample testing results, questionnaire surveys, and case-control study were conducted in a kindergarten to analyze the underlying causes of the norovirus outbreak. Results A total of 15 cases were identified, with an attack rate of 44.12% (15/34). Among them, 10 cases were diagnosed through laboratory tests, and 5 cases were diagnosed clinically. Vomiting (100%, 15/15) and diarrhea (93.33%, 14/15) were the most common symptoms in the outbreak. Case control study revealed that cases who had close contact (<1 m) with the patient's vomitus (OR = 5.500) and those who had close contact with similar patients (OR = 8.000) had significantly higher ORs compared to the control participants. The current study demonstrated that improper handling of vomitus is positively associated with norovirus outbreak. The absence of standardized disinfection protocols heightens the risk of norovirus outbreaks. Conclusion To our knowledge, this study represents the first investigation into a norovirus outbreak in rural areas of western China. We aspire that amidst rapid economic development, a greater emphasis will be placed on the prevention and control of infectious diseases in economically underdeveloped areas and countries.
Collapse
Affiliation(s)
- Huali Xiong
- Department of Public Health, Health Commission of Rongchang District, Chongqing, China
- Center for Mental Health of Rongchang District, Chongqing, China
| | - Fengxun Ma
- Department of Public Health, The People's Hospital of Rongchang District, Chongqing, China
| | - Dayi Tang
- First Clinical College, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Daiqiang Liu
- Department of Hospital Information, The People's Hospital of Rongchang District, Chongqing, China
| |
Collapse
|
27
|
Summa M, Tuutti E, Al-Hello H, Huttunen LM, Rimhanen-Finne R. Norovirus GII.17 Caused Five Outbreaks Linked to Frozen Domestic Bilberries in Finland, 2019. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:180-187. [PMID: 38466479 DOI: 10.1007/s12560-024-09587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/26/2024] [Indexed: 03/13/2024]
Abstract
In March 2019, the Finnish Institute for Health and Welfare and Finnish Food Authority started an outbreak investigation after a notification of food business operators' recall of frozen bilberries due to a norovirus finding. A retrospective search was conducted in the food and waterborne outbreak notification system to identify the notifications linked to norovirus and consumption of bilberries in January-March 2019. Five outbreaks were found in which norovirus GII or GII.17 had been detected in patient samples. A pooled retrospective cohort study was performed for those four in which a questionnaire study had been done. A case was defined as a person with diarrhoea or vomiting within 2 days after consuming a meal studied at one of the outbreak locations. Of 79 participants, 45 (57%) cases were identified. Persons that had consumed foods containing unheated bilberries were three times more likely to get ill than those who had not consumed them (RR 3.1, CI 95% 1.2-8.1, p = 0.02). Norovirus GII.17 was found in 16/17 patient samples sent for further typing. Identical norovirus GII.17 was detected in frozen Finnish bilberries and patient samples. At the berry packaging premises, signs of norovirus GII contamination were found in packaging lines. A new procedure for extracting viral nucleic acid from food and environmental samples was used during the outbreak investigation. Consumption of industrially packed frozen berries as heated would be one of the means to prevent norovirus infections.
Collapse
Affiliation(s)
- Maija Summa
- Microbiology Unit, Laboratory and Research Division, Finnish Food Authority, Helsinki, Finland.
| | - Enni Tuutti
- Food Chain Division, Microbiological Food Safety Unit, Finnish Food Authority, Helsinki, Finland
| | - Haider Al-Hello
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Liisa-Maija Huttunen
- Infectious Disease Control and Vaccinations Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ruska Rimhanen-Finne
- Infectious Disease Control and Vaccinations Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
28
|
Dakouo D, Ouermi D, Ouattara AK, Simpore A, Compaore TR, Traore MAE, Gamsore Z, Zoure AA, Traore L, Zohoncon TM, Yonli AT, Ilboudo PD, Djigma FW, Simpore J. Rotavirus vaccines in Africa and Norovirus genetic diversity in children aged 0 to 5 years old: a systematic review and meta-analysis : Rotavirus vaccines in Africa and Norovirus genetic diversity. BMC Infect Dis 2024; 24:547. [PMID: 38822241 PMCID: PMC11143598 DOI: 10.1186/s12879-024-09434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Noroviruses are the second leading cause of death in children under the age of 5 years old. They are responsible for 200 million cases of diarrhoea and 50,000 deaths in children through the word, mainly in low-income countries. The objective of this review was to assess how the prevalence and genetic diversity of noroviruses have been affected by the introduction of rotavirus vaccines in Africa. PubMed, Web of Science and Science Direct databases were searched for articles. All included studies were conducted in Africa in children aged 0 to 5 years old with gastroenteritis. STATA version 16.0 software was used to perform the meta-analysis. The method of Dersimonian and Laird, based on the random effects model, was used for the statistical analyses in order to estimate the pooled prevalence's at a 95% confidence interval (CI). Heterogeneity was assessed by Cochran's Q test using the I2 index. The funnel plot was used to assess study publication bias. A total of 521 studies were retrieved from the databases, and 19 were included in the meta-analysis. The pooled norovirus prevalence's for pre- and post-vaccination rotavirus studies were 15% (95 CI, 15-18) and 13% (95 CI, 09-17) respectively. GII was the predominant genogroup, with prevalence of 87.64% and 91.20% respectively for the pre- and post-vaccination studies. GII.4 was the most frequently detected genotype, with rates of 66.84% and 51.24% respectively for the pre- and post-vaccination studies. This meta-analysis indicates that rotavirus vaccination has not resulted in a decrease in norovirus infections in Africa.
Collapse
Affiliation(s)
- Dako Dakouo
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Djénéba Ouermi
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
- Département de Biologie et Physiologie Animales, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Abdoul Karim Ouattara
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso.
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso.
| | - Abibou Simpore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Agence Nationale pour la Sécurité Sanitaire de l'Environnement, de l'Alimentation, du Travail et des Produits de Santé (ANSSEAT), Ouagadougou, Burkina Faso
| | - Tégwendé Rebecca Compaore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Département Biomédical et Santé Publique, Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Ouagadougou 03, 03 BP 7192, Burkina Faso
| | - Mah Alima Esther Traore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Zakaria Gamsore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Abdou Azaque Zoure
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Département Biomédical et Santé Publique, Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Ouagadougou 03, 03 BP 7192, Burkina Faso
| | - Lassina Traore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - Théodora Mahoukèdè Zohoncon
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
- Faculté de Médecine, Université Saint Thomas d'Aquin, Ouagadougou 01, 06 BP 10212, Burkina Faso
| | - Albert Théophane Yonli
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - P Denise Ilboudo
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Florencia Wendkuuni Djigma
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| |
Collapse
|
29
|
Carlson KB, Dilley A, O'Grady T, Johnson JA, Lopman B, Viscidi E. A narrative review of norovirus epidemiology, biology, and challenges to vaccine development. NPJ Vaccines 2024; 9:94. [PMID: 38811605 PMCID: PMC11137017 DOI: 10.1038/s41541-024-00884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Norovirus is a leading cause of acute gastroenteritis (AGE) globally. AGE resulting from norovirus causes significant morbidity and mortality in countries of all income levels, particularly among young children and older adults. Prevention of norovirus AGE represents a unique challenge as the virus is genetically diverse with multiple genogroups and genotypes cocirculating globally and causing disease in humans. Variants of the GII.4 genotype are typically the most common genotype, and other genotypes cause varying amounts of disease year-to-year, with GII.2, GII.3, and GII.6 most prevalent in recent years. Noroviruses are primarily transmitted via the fecal-oral route and only a very small number of virions are required for infection, which makes outbreaks of norovirus extremely difficult to control when they occur. Settings like long-term care facilities, daycares, and hospitals are at high risk of outbreaks and can have very high attack rates resulting in substantial costs and disease burden. Severe cases of norovirus AGE are most common in vulnerable patient populations, such as infants, the elderly, and immunocompromised individuals, with available treatments limited to rehydration therapies and supportive care. To date, there are no FDA-approved norovirus vaccines; however, several candidates are currently in development. Given the substantial human and economic burden associated with norovirus AGE, a vaccine to prevent morbidity and mortality and protect vulnerable populations could have a significant impact on global public health.
Collapse
Affiliation(s)
| | - Anne Dilley
- Epidemiologic Research & Methods, LLC, Atlanta, GA, USA
| | | | - Jordan A Johnson
- Epidemiologic Research & Methods, LLC, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ben Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
30
|
Omatola CA, Mshelbwala PP, Okolo MLO, Onoja AB, Abraham JO, Adaji DM, Samson SO, Okeme TO, Aminu RF, Akor ME, Ayeni G, Muhammed D, Akoh PQ, Ibrahim DS, Edegbo E, Yusuf L, Ocean HO, Akpala SN, Musa OA, Adamu AM. Noroviruses: Evolutionary Dynamics, Epidemiology, Pathogenesis, and Vaccine Advances-A Comprehensive Review. Vaccines (Basel) 2024; 12:590. [PMID: 38932319 PMCID: PMC11209302 DOI: 10.3390/vaccines12060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Noroviruses constitute a significant aetiology of sporadic and epidemic gastroenteritis in human hosts worldwide, especially among young children, the elderly, and immunocompromised patients. The low infectious dose of the virus, protracted shedding in faeces, and the ability to persist in the environment promote viral transmission in different socioeconomic settings. Considering the substantial disease burden across healthcare and community settings and the difficulty in controlling the disease, we review aspects related to current knowledge about norovirus biology, mechanisms driving the evolutionary trends, epidemiology and molecular diversity, pathogenic mechanism, and immunity to viral infection. Additionally, we discuss the reservoir hosts, intra-inter host dynamics, and potential eco-evolutionary significance. Finally, we review norovirus vaccines in the development pipeline and further discuss the various host and pathogen factors that may complicate vaccine development.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | | | - Anyebe Bernard Onoja
- Department of Virology, University College Hospital, Ibadan 211101, Oyo State, Nigeria
| | - Joseph Oyiguh Abraham
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - David Moses Adaji
- Department of Biotechnology Science and Engineering, University of Alabama, Huntsville, AL 35899, USA
| | - Sunday Ocholi Samson
- Department of Molecular Biology, Biotechnology, and Biochemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| | - Therisa Ojomideju Okeme
- Department of Biological Sciences, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Ruth Foluke Aminu
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Monday Eneojo Akor
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Gideon Ayeni
- Department of Biochemistry, Kogi State University, Anyigba 272102, Kogi State, Nigeria
| | - Danjuma Muhammed
- Epidemiology and Public Health Unit, Department of Biology, Universiti Putra, Seri Kembangan 43300, Malaysia
| | - Phoebe Queen Akoh
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Emmanuel Edegbo
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Lamidi Yusuf
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Sumaila Ndah Akpala
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
- Department of Biotechnology, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Oiza Aishat Musa
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Andrew Musa Adamu
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, QLD, Australia
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville 4811, QLD, Australia
- Centre for Tropical Biosecurity, James Cook University, Townsville 4811, QLD, Australia
| |
Collapse
|
31
|
Zheng X, Zhao K, Xue B, Deng Y, Xu X, Yan W, Rong C, Leung K, Wu JT, Leung GM, Peiris M, Poon LLM, Zhang T. Tracking diarrhea viruses and mpox virus using the wastewater surveillance network in Hong Kong. WATER RESEARCH 2024; 255:121513. [PMID: 38555782 DOI: 10.1016/j.watres.2024.121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The wastewater surveillance network successfully established for COVID-19 showed great potential to monitor other infectious viruses, such as norovirus, rotavirus and mpox virus. In this study, we established and validated detection methods for these viruses in wastewater. We developed a supernatant-based method to detect RNA viruses from wastewater samples and applied it to the monthly diarrhea viruses (norovirus genogroup I & II, and rotavirus) surveillance in wastewater treatment plants (WWTPs) at a city-wide level for 16 months. Significant correlations were observed between the diarrhea viruses concentrations in wastewater and detection rates in faecal specimens by clinical surveillance. The highest norovirus concentration in wastewater was obtained in winter, consistent with the seasonal pattern of norovirus outbreak in Hong Kong. Additionally, we established a pellet-based method to monitor DNA viruses in wastewater and detected weak signals for mpox virus in wastewater from a WWTP serving approximately 16,700 people, when the first mpox patient in Hong Kong was admitted to the hospital within the catchment area. Genomic sequencing provided confirmatory evidence for the validity of the results. Our findings emphasized the efficacy of the wastewater surveillance network in WWTPs as a cost-effective tool to track the transmission trend of diarrhea viruses and to provide sensitive detection of novel emerging viruses such as mpox virus in low-prevalence areas. The developed methods and surveillance results provide confidence for establishing robust wastewater surveillance programs to control infectious diseases in the post-pandemic era.
Collapse
Affiliation(s)
- Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Keyue Zhao
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bingjie Xue
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chao Rong
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kathy Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China; The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Joseph T Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China; The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; HKU-Pasteur Research Pole, The University of Hong Kong, Sassoon Road, Hong Kong, China; Centre For Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; HKU-Pasteur Research Pole, The University of Hong Kong, Sassoon Road, Hong Kong, China; Centre For Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, Hong Kong, China.
| |
Collapse
|
32
|
Trudel-Ferland M, Collard MÈ, Goulet-Beaulieu V, Jubinville E, Hamon F, Jean J. Evaluation of a new automated viral RNA extraction platform for hepatitis A virus and human norovirus in testing of berries, lettuce, and oysters. Int J Food Microbiol 2024; 416:110664. [PMID: 38492524 DOI: 10.1016/j.ijfoodmicro.2024.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Fruits, vegetables, and shellfish are often associated with outbreaks of illness caused particularly by human norovirus (HuNoV) and hepatitis A virus (HAV), the leading causative agents of foodborne illness worldwide. The aim of this study was to evaluate a new automated nucleic acid extraction platform (EGENE-UP EASYPREP) for enteric viruses in several at-risk food matrices and to test its limit of detection in comparison to a semi-automated method (EGENE-UP) using Boom methodology for nucleic acid extraction as suggested in the reference method ISO 15216-2:2019. Fresh and frozen raspberries, frozen blackberries, romaine lettuce and oyster digestive glands were artificially contaminated with HAV, HuNoV GII.4 or HuNoV GI.7 at 102, 103 or 104 genome copies/sample. Virus was then recovered from the food matrix using the ISO method. Viral RNA extracted from frozen berry samples by the automated system was purified on a column for additional removal of RT-qPCR inhibitors. For fresh raspberry, oysters, and romaine lettuce, the two extraction platforms were deemed equivalent. For frozen raspberry, the automated platform appeared to be more efficient for viral recovery, particularly for HAV and HuNoV GI at lower concentrations. With frozen blackberries, the two platforms may be considered equivalent for all targeted viruses. However, the automated method led to less sample-associated inhibition of the PCR, 56.5 % of samples versus 95.0 % for the semi-automated. We thus found that the automated extraction can be performed easily by users while obtaining equivalent or even superior results to the ISO 15216-2:2019 method, and therefore appears to be suitable for routine sanitary monitoring in food processing and for tracing outbreaks of illness.
Collapse
Affiliation(s)
- Mathilde Trudel-Ferland
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Marie-Ève Collard
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Valérie Goulet-Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Eric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | | | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
33
|
Suh SH, Lee JS, Kim SH, Vinjé J, Kim SH, Park GW. Evaluation of crAssphages as a potential marker of human viral contamination in environmental water and fresh leafy greens. Front Microbiol 2024; 15:1374568. [PMID: 38618485 PMCID: PMC11010641 DOI: 10.3389/fmicb.2024.1374568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024] Open
Abstract
CrAssphages are human gut bacteriophages with potential use as an indicator of human fecal contamination in water and other environmental systems. We determined the prevalence and abundance of crAssphages in water, food, and fecal samples and compared these estimates with the prevalence of norovirus. Samples were tested using two crAssphage-specific qPCR assays (CPQ056 and TN201-203) and for norovirus using TaqMan realtime RT-PCR. CrAssphage was detected in 40% of human fecal specimens, 61% of irrigation water samples, 58.5% of stream water samples, and 68.5% of fresh leafy greens samples. Interestingly, across all sample categories, crAssphage concentrations were 2-3 log10 higher than norovirus concentrations. The correlation of detection of crAssphage and norovirus was significant for the irrigation water samples (r = 0.74, p = 7.4e-06). Sequences obtained from crAssphage positive samples from human fecal and stream water samples phylogenetically clustered with genotype I crAssphages, whereas sequences derived from irrigation water samples clustered differently from other genotypes. Our data show that crAssphages were prevalent in norovirus-positive water samples and in fresh leafy green samples, there was a strong correlation between the presence of crAssphage and norovirus. CrAssphage genomic copies were consistently higher than norovirus copies in all sample types. Overall, our findings suggest that crAssphages could be used as reliable indicators to monitor fecal-borne virus contamination within the food safety chain.
Collapse
Affiliation(s)
- Soo Hwan Suh
- Division of Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Jeong Su Lee
- Division of Emerging Virus Vector Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Republic of Korea
| | - Seung Hwan Kim
- Division of Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Soon Han Kim
- Division of Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Geun Woo Park
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
34
|
Al-Hakim A, Kacar M, Savic S. The Scope and Impact of Viral Infections in Common Variable Immunodeficiency (CVID) and CVID-like Disorders: A Literature Review. J Clin Med 2024; 13:1717. [PMID: 38541942 PMCID: PMC10971312 DOI: 10.3390/jcm13061717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 01/05/2025] Open
Abstract
Common Variable Immunodeficiency (CVID) is a heterogeneous primary immunodeficiency disorder characterised by impaired antibody production, leading to recurrent infections and an increased susceptibility to viral pathogens. This literature review aims to provide a comprehensive overview of CVID's relationship with viral infections, encompassing disease pathogenesis, key presenting features, specific monogenic susceptibilities, the impact of COVID-19, and existing treatment options. The pathogenesis of CVID involves complex immunological dysregulation, including defects in B cell development, antibody class switching, and plasma cell differentiation. These abnormalities contribute to an impaired humoral immune response against viral agents, predisposing individuals with CVID to a broad range of viral infections. Genetic factors play a prominent role in CVID, and monogenic drivers of CVID-like disease are increasingly identified through advanced genomic studies. Some monogenic causes of the CVID-like phenotype appear to cause specific viral susceptibilities, and these are explored in the review. The emergence of the COVID-19 pandemic highlighted CVID patients' heightened predisposition to severe outcomes with viral infections. This review explores the clinical manifestations, outcomes, and potential therapeutic approaches for COVID-19 in CVID patients. It assesses the efficacy of prophylactic measures for COVID-19, including vaccination and immunoglobulin replacement therapy, as well as trialled therapies.
Collapse
Affiliation(s)
- Adam Al-Hakim
- Department of Clinical Immunology and Allergy, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (M.K.); (S.S.)
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), School of Medicine, University of Leeds, Chapel Allerton Hospital, Chapeltown Road, Leeds LS7 4SA, UK
| | - Mark Kacar
- Department of Clinical Immunology and Allergy, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (M.K.); (S.S.)
- Allergy and Clinical Immunology Unit, University Clinic Golnik, 36 Golnik, 4204 Golnik, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK; (M.K.); (S.S.)
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), School of Medicine, University of Leeds, Chapel Allerton Hospital, Chapeltown Road, Leeds LS7 4SA, UK
| |
Collapse
|
35
|
Hong X, Xue L, Cao Y, Xu R, Wang J, Gao J, Miao S, Jiang Y, Kou X. The variation of antigenic and histo-blood group binding sites synergistically drive the evolution among chronologically emerging GII.4 noroviruses. Heliyon 2024; 10:e26567. [PMID: 38463890 PMCID: PMC10920170 DOI: 10.1016/j.heliyon.2024.e26567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Norovirus, commonly found on shellfish and vegetables, is a foodborne virus with GII.4 as the dominant genotype responsible for widespread outbreaks since 1995. Continuous variation of major capsid protein VP1 can lead to changes in the immunogenicity and host receptor binding ability of norovirus, which is an important evolutionary mechanism. Therefore, analyzing the immunogenicity of VP1 and its binding ability to various HBGAs in GII.4 variants could improve our understanding of the persistent prevalence of GII.4. Here, the results suggest that GII.4 has gradually enhanced its HBGAs binding ability over time for various types of receptors. Variants exhibit significantly stronger immune response to homologous mouse antiserum than heterologous ones, highlighting the importance of variation of antigenic and histo-blood group binding sites in driving the evolution of GII.4. These synergistic forces constantly lead to antigenic drift and changes in receptor binding, resulting in continuous emergence of new variant strains and sustained prevalence.
Collapse
Affiliation(s)
- Xiaojing Hong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, China
| | - Yingwen Cao
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ruiquan Xu
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jingmin Wang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, China
| | - Shuidi Miao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, China
| | - Yueting Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaoxia Kou
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
36
|
Johne R, Scholz J, Falkenhagen A. Heat stability of foodborne viruses - Findings, methodological challenges and current developments. Int J Food Microbiol 2024; 413:110582. [PMID: 38290272 DOI: 10.1016/j.ijfoodmicro.2024.110582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
Heat treatment of food represents an important measure to prevent pathogen transmission. Thus far, evaluation of heat treatment processes is mainly based on data from bacteria. However, foodborne viruses have gained increasing attention during the last decades. Here, the published literature on heat stability and inactivation of human norovirus (NoV), hepatitis A virus (HAV) and hepatitis E virus (HEV) was reviewed. Data for surrogate viruses were not included. As stability assessment for foodborne viruses is often hampered by missing infectivity assays, an overview of applied methods is also presented. For NoV, molecular capsid integrity assays were mainly applied, but data from initial studies utilizing novel intestinal enteroid or zebrafish larvae assays are available now. However, these methods are still limited in applicability and sensitivity. For HAV, sufficient cell culture-based inactivation data are available, but almost exclusively for one single strain, thus limiting interpretation of the data for the wide range of field strains. For HEV, data are now available from studies using pig inoculation or cell culture. The results of the reviewed studies generally indicate that NoV, HAV and HEV possess a high heat stability. Heating at 70-72 °C for 2 min significantly reduces infectious titers, but often does not result in a >4 log10 decrease. However, heat stability greatly varied dependent on virus strain, matrix and heating regime. In addition, the applied method largely influenced the result, e.g. capsid integrity assays tend to result in higher measured stabilities than cell culture approaches. It can be concluded that the investigated foodborne viruses show a high heat stability, but can be inactivated by application of appropriate heating protocols. For HAV, suggestions for safe time/temperature combinations for specific foods can be derived from the published studies, with the limitation that they are mostly based on one strain only. Although significant improvement of infectivity assays for NoV and HEV have been made during the last years, further method development regarding sensitivity, robustness and broader applicability is important to generate more reliable heat inactivation data for these foodborne viruses in future.
Collapse
Affiliation(s)
- Reimar Johne
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Johannes Scholz
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Alexander Falkenhagen
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
37
|
Flynn TG, Olortegui MP, Kosek MN. Viral gastroenteritis. Lancet 2024; 403:862-876. [PMID: 38340741 DOI: 10.1016/s0140-6736(23)02037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/17/2023] [Accepted: 09/18/2023] [Indexed: 02/12/2024]
Abstract
Since the discovery of norovirus in 1972 as a cause of what was contemporarily known as acute infectious non-bacterial gastroenteritis, scientific understanding of the viral gastroenteritides has continued to evolve. It is now recognised that a small number of viruses are the predominant cause of acute gastroenteritis worldwide, in both high-income and low-income settings. Although treatment is still largely restricted to the replacement of fluid and electrolytes, improved diagnostics have allowed attribution of illness, enabling both targeted treatment of individual patients and prioritisation of interventions for populations worldwide. Questions remain regarding specific genetic and immunological factors underlying host susceptibility, and the optimal clinical management of patients who are susceptible to severe or prolonged manifestations of disease. Meanwhile, the worldwide implementation of rotavirus vaccines has led to substantial reductions in morbidity and mortality, and spurred interest in vaccine development to diminish the impact of the most prevalent viruses that are implicated in this syndrome.
Collapse
Affiliation(s)
- Thomas G Flynn
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
38
|
Li JH, Jing D, Wang Y, Xu J, Yu J, Du H, Chen Q, Tang S, Zhang XF, Dai YC. Establishment and application of a rapid assay for GII.4/GII.17 NoV detection based on the combination of CRISPR/Cas13a and isothermal amplification. Front Microbiol 2024; 15:1334387. [PMID: 38389528 PMCID: PMC10881755 DOI: 10.3389/fmicb.2024.1334387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Norovirus (NoV) is one of the most important agents responsible for viral acute gastroenteritis, among which GII.4 NoV is the predominant strain worldwide, and GII.17 NoV surpassed GII.4 in some epidemic seasons. Rapid and accurate gene recognition is essential for a timely response to NoV outbreaks. Methods In the present study, the highly conserved regions of GII.4 and GII.17 NoVs were identified in the junction of open reading frame (ORF) 1 and ORF2 and then amplified by isothermal recombinase-aided amplification (RAA), followed by the cleavage of CRISPR-Cas13a with screened CRISPR RNAs (crRNAs) and RAA primers. The entire detection procedure could be completed within 40 min using a thermostat, and the results could be read out by the naked eye under a portable blue light transilluminator. Discussion The assay showed a high sensitivity of 97.96% and a high specificity of 100.0%. It offered a low limit of detection (LOD) of 2.5×100 copies/reaction and a coincidence rate of 96.75% in 71 clinical fecal samples. Overall, rapid and inexpensive detection of GII.4/GII.17 NoVs was established, which makes it possible to be used in areas with limited resources, particularly in low-income countries. Furthermore, it will contribute to assessing transmission risks and implementing control measures for GII.4/GII.17 NoVs, making healthcare more accessible worldwide.
Collapse
Affiliation(s)
- Jia-Heng Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Duona Jing
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiayi Xu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxuan Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huisha Du
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qing Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xu-Fu Zhang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ying-Chun Dai
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Tan M, Tian Y, Zhang D, Wang Q, Gao Z. Aerosol Transmission of Norovirus. Viruses 2024; 16:151. [PMID: 38275961 PMCID: PMC10818780 DOI: 10.3390/v16010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Norovirus (NoV) is a major cause of acute gastroenteritis outbreaks worldwide. A comprehensive understanding of the transmission mode is of great significance for the prevention and control of the NoV infection. Currently, the transmission modes of NoV include contact, food-borne, water-borne and aerosol transmission. The first three modes are more common, while aerosol transmission is seldom reported. In this paper, the source, generation mechanism, infectivity, sampling and related outbreaks of NoV aerosol are summarized and discussed.
Collapse
Affiliation(s)
- Mengdi Tan
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yi Tian
- Institute for the Control of Infectious and Endemic Diseases, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Daitao Zhang
- Institute for the Control of Infectious and Endemic Diseases, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Quanyi Wang
- Institute for the Control of Infectious and Endemic Diseases, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Zhiyong Gao
- School of Public Health, China Medical University, Shenyang 110122, China
- Institute for the Control of Infectious and Endemic Diseases, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| |
Collapse
|
40
|
Mao M, Zhang Z, Zhao X, Geng H, Xue L, Liu D. Spatial Distribution and Enrichment Dynamics of Foodborne Norovirus in Oyster Tissues. Foods 2023; 13:128. [PMID: 38201156 PMCID: PMC10778453 DOI: 10.3390/foods13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The prevalence of norovirus in oysters poses a significant threat to food safety, necessitating a comprehensive understanding of contamination patterns. This study explores the temporal dynamics of norovirus distribution in various oyster tissues over a contamination period ranging from 6 to 96 h. Four tissues-the gill, palp, digestive gland, and stomach-were subjected to systematic monitoring using RT-qPCR for absolute quantification. Results revealed rapid norovirus detection in all tissues six hours post-contamination, with subsequent variations in detection rates. Gill and digestive gland tissues exhibited a peak in detection at 12-24 h, aligning with the oyster's gastrointestinal circulatory system. The digestive gland, distinguished by specific enrichment and adsorption capabilities, demonstrated the highest virus concentration at 48 h. In contrast, the stomach displayed a reemergence of norovirus. Beyond 72 h, detection remained exclusive to the digestive gland, with Ct values comparable to earlier time points. At 96 h, a limited amount of norovirus was detected in the digestive gland, emphasizing the importance for timely monitoring. In addition to providing critical insights into optimal detection strategies, these findings highlight the time-related characteristics of norovirus contamination in oysters. The study identifies the digestive gland as a key target for reliable monitoring, providing valuable data to improve protocols for reducing hazards associated with oyster consumption and foodborne norovirus infections. This research contributes to the understanding of norovirus dynamics in oyster tissues and reinforces current efforts aimed at ensuring food safety and public health.
Collapse
Affiliation(s)
- Mao Mao
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.M.); (Z.Z.)
- Shanghai International Travel Healthcare Center, Shanghai Customs District P. R. China, Shanghai 200335, China
| | - Zilei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.M.); (Z.Z.)
- Inspection and Quarantine Technology Communication Department, Shanghai Customs College, Shanghai 201204, China
| | - Xuchong Zhao
- Jinan Center for Disease Control and Prevention, Jinan 250021, China;
| | - Haoran Geng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200237, China;
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.M.); (Z.Z.)
| | - Danlei Liu
- Shanghai International Travel Healthcare Center, Shanghai Customs District P. R. China, Shanghai 200335, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200237, China;
| |
Collapse
|
41
|
Mills JT, Minogue SC, Snowden JS, Arden WKC, Rowlands DJ, Stonehouse NJ, Wobus CE, Herod MR. Amino acid substitutions in norovirus VP1 dictate host dissemination via variations in cellular attachment. J Virol 2023; 97:e0171923. [PMID: 38032199 PMCID: PMC10734460 DOI: 10.1128/jvi.01719-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE All viruses initiate infection by utilizing receptors to attach to target host cells. These virus-receptor interactions can therefore dictate viral replication and pathogenesis. Understanding the nature of virus-receptor interactions could also be important for the development of novel therapies. Noroviruses are non-enveloped icosahedral viruses of medical importance. They are a common cause of acute gastroenteritis with no approved vaccine or therapy and are a tractable model for studying fundamental virus biology. In this study, we utilized the murine norovirus model system to show that variation in a single amino acid of the major capsid protein alone can affect viral infectivity through improved attachment to suspension cells. Modulating plasma membrane mobility reduced infectivity, suggesting an importance of membrane mobility for receptor recruitment and/or receptor conformation. Furthermore, different substitutions at this site altered viral tissue distribution in a murine model, illustrating how in-host capsid evolution could influence viral infectivity and/or immune evasion.
Collapse
Affiliation(s)
- Jake T. Mills
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Susanna C. Minogue
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph S. Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Wynter K. C. Arden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David J. Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Morgan R. Herod
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
42
|
Chaimongkol N, Dábilla N, Tohma K, Matsushima Y, Yardley AB, Levenson EA, Johnson JA, Ahorrio C, Oler AJ, Kim DY, Souza M, Sosnovtsev SV, Parra GI, Green KY. Norovirus evolves as one or more distinct clonal populations in immunocompromised hosts. mBio 2023; 14:e0217723. [PMID: 37905910 PMCID: PMC10746188 DOI: 10.1128/mbio.02177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Noroviruses are an important cause of chronic diarrhea in patients with compromised immune systems. Presently, there are no effective therapies to clear the virus, which can persist for years in the intestinal tract. The goal of our study was to develop a better understanding of the norovirus strains that are associated with these long-term infections. With the remarkable diversity of norovirus strains detected in the immunocompromised patient cohort we studied, it appears that most, if not all, noroviruses circulating in nature may have the capacity to establish a chronic infection when a person is unable to mount an effective immune response. Our work is the most comprehensive genetic data set generated to date in which near full-length genomes from noroviruses associated with chronic infection were analyzed by high-resolution next-generation sequencing. Analysis of this data set led to our discovery that certain patients in our cohort were shedding noroviruses that could be subdivided into distinct haplotypes or populations of viruses that were co-evolving independently. The ability to track haplotypes of noroviruses during chronic infection will allow us to fine-tune our understanding of how the virus adapts and maintains itself in the human host, and how selective pressures such as antiviral drugs can affect these distinct populations.
Collapse
Affiliation(s)
- Natthawan Chaimongkol
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nathânia Dábilla
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Virology and Cell Culture, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Kentaro Tohma
- Division of Viral Products, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yuki Matsushima
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Allison Behrle Yardley
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric A. Levenson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jordan A. Johnson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Courtney Ahorrio
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Y. Kim
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Menira Souza
- Laboratory of Virology and Cell Culture, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Stanislav V. Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriel I. Parra
- Division of Viral Products, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kim Y. Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Pliego Zamora A, Kim J, Vajjhala PR, Thygesen SJ, Watterson D, Modhiran N, Bielefeldt-Ohmann H, Stacey KJ. Kinetics of severe dengue virus infection and development of gut pathology in mice. J Virol 2023; 97:e0125123. [PMID: 37850747 PMCID: PMC10688336 DOI: 10.1128/jvi.01251-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Dengue virus, an arbovirus, causes an estimated 100 million symptomatic infections annually and is an increasing threat as the mosquito range expands with climate change. Dengue epidemics are a substantial strain on local economies and health infrastructure, and an understanding of what drives severe disease may enable treatments to help reduce hospitalizations. Factors exacerbating dengue disease are debated, but gut-related symptoms are much more frequent in severe than mild cases. Using mouse models of dengue infection, we have shown that inflammation and damage are earlier and more severe in the gut than in other tissues. Additionally, we observed impairment of the gut mucus layer and propose that breakdown of the barrier function exacerbates inflammation and promotes severe dengue disease. This idea is supported by recent data from human patients showing elevated bacteria-derived molecules in dengue patient serum. Therapies aiming to maintain gut integrity may help to abrogate severe dengue disease.
Collapse
Affiliation(s)
- Adriana Pliego Zamora
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jaehyeon Kim
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Parimala R. Vajjhala
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Sara J. Thygesen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Katryn J. Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
44
|
Widström J, Andersson ME, Westin J, Wahllöf M, Lindh M, Rydell GE. Complex norovirus transmission dynamics at hospital wards revealed by deep sequencing. J Clin Microbiol 2023; 61:e0060823. [PMID: 37889018 PMCID: PMC10662361 DOI: 10.1128/jcm.00608-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 10/28/2023] Open
Abstract
Detailed knowledge regarding norovirus transmission within hospitals is limited. We investigated a norovirus hospital outbreak affecting 65 patients at five different wards. PCR showed that 61 (94%) of the patients were infected with genotype II.4 strains. Successful Ion Torrent deep sequencing of GII.4 positive samples from 59 patients followed by phylogenetic analysis revealed that all sequences but two clustered into four distinct clades. Two of the clades belonged to GII.4 Sydney 2012, while the other two belonged to GII.4 New Orleans 2009. One of the clades was predominant at two wards, while two clades were predominant at one ward each. The fourth clade was found in sporadic cases at several wards. Thus, at four out of five wards, variants from one clade were predominant. At one ward, a single clade accounted for all cases, while at three wards the predominant clade accounted for 60%-71% of cases. Analysis of quasispecies variation identified positions that could further discriminate between variants from separate wards. The results illustrate a complex transmission of healthcare-associated norovirus infections and show that sequencing can be used to discriminate between related and unrelated cases.
Collapse
Affiliation(s)
- Julia Widström
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria E. Andersson
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Westin
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Wahllöf
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Lindh
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gustaf E. Rydell
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
45
|
Oishi W, Sano D. Estimation of alkali dosage and contact time for treating human excreta containing viruses as an emergency response: a systematic review. Front Public Health 2023; 11:1286595. [PMID: 38026419 PMCID: PMC10667465 DOI: 10.3389/fpubh.2023.1286595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Water, sanitation, and hygiene provisions are essential during emergencies to prevent infectious disease outbreaks caused by improper human excreta management in settlements for people affected by natural disasters and conflicts. Human excreta disinfection is required when long-term containment in latrines is not feasible on-site. Alkali additives, including lime, are effective disinfectants for wastewater and faecal sludge containing large amounts of solid and dissolved organic matter. The aim of this study was to determine the minimum dose and contact time of alkali additives for treating virus-containing human excreta in emergency situations. We used literature data collected by searching Google Scholar and Web of Science. The date of the last search for each study was 31th May 2023. Only peer-reviewed articles that included disinfection practices in combination with quantitative data for the physicochemical data of a matrix and viral decay were selected for data extraction. Two reviewers independently collected data from each study. We extracted datasets from 14 studies that reported quantitative information about their disinfection tests, including viral decay over time, matrix types, and physicochemical properties. Three machine learning algorithms were applied to the collected dataset to determine the time required to achieve specified levels of virus inactivation under different environmental conditions. The best model was used to estimate the contact time to achieve a 3-log10 inactivation of RNA virus in wastewater and faeces. The most important variables for predicting the contact time were pH, temperature, and virus type. The estimated contact time for 3 log inactivation of RNA virus was <2 h at pH 12, which was achieved by adding 1.8 and 3.1% slaked lime to wastewater and faeces, respectively. The contact time decreased exponentially with the pH of the sludge and wastewater. In contrast, the pH of the sludge and wastewater increased linearly with the slaked lime dosage. Lime treatment is a promising measure where long-term containment in latrine is not feasible in densely populated areas, as 1 day is sufficient to inactivate viruses. The relationship we have identified between required contact time and lime dosage is useful for practitioners in determining appropriate treatment conditions of human waste.
Collapse
Affiliation(s)
- Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
46
|
Alex-Sanders N, Woodhall N, Farkas K, Scott G, Jones DL, Walker DI. Development and validation of a duplex RT-qPCR assay for norovirus quantification in wastewater samples. J Virol Methods 2023; 321:114804. [PMID: 37643662 DOI: 10.1016/j.jviromet.2023.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 08/31/2023]
Abstract
Norovirus (NoV) is a highly contagious enteric virus that causes widespread outbreaks and a substantial number of deaths across communities. As clinical surveillance is often insufficient, wastewater-based epidemiology (WBE) may provide novel pathways of tracking outbreaks. To utilise WBE, it is important to use accurate and sensitive methods for viral quantification. In this study, we developed a one-step duplex RT-qPCR assay to simultaneously test the two main human pathogenic NoV genogroups, GI and GII, in wastewater samples. The assay had low limits of detection (LOD), namely 0.52 genome copies (gc)/µl for NoVGI and 1.37 gc/µl for NoVGII. No significant concentration-dependent interactions were noted for both NoVGI and for NoVGII when the two targets were mixed at different concentrations in the samples. When tested on wastewater-derived RNA eluents, no significant difference between duplex and singleplex concentrations were found for either target. Low levels of inhibition (up to 32 %) were noted due to organic matter present in the wastewater extracts. From these results we argue that the duplex RT-qPCR assay developed enables the sensitive detection of both NoVGI and NoVGII in wastewater-derived RNA eluents, in a time and cost-effective way and may be used for surveillance to monitor public and environmental health.
Collapse
Affiliation(s)
| | - Nick Woodhall
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - George Scott
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| |
Collapse
|
47
|
Sun Y, Liang M, Zhao F, Su L. Research Progress on Biological Accumulation, Detection and Inactivation Technologies of Norovirus in Oysters. Foods 2023; 12:3891. [PMID: 37959010 PMCID: PMC10649127 DOI: 10.3390/foods12213891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Noroviruses (NoVs) are major foodborne pathogens that cause acute gastroenteritis. Oysters are significant carriers of this pathogen, and disease transmission from the consumption of NoVs-infected oysters occurs worldwide. The review discusses the mechanism of NoVs bioaccumulation in oysters, particularly the binding of histo-blood group antigen-like (HBGA-like) molecules to NoVs in oysters. The review explores the factors that influence NoVs bioaccumulation in oysters, including temperature, precipitation and water contamination. The review also discusses the detection methods of NoVs in live oysters and analyzes the inactivation effects of high hydrostatic pressure, irradiation treatment and plasma treatment on NoVs. These non-thermal processing treatments can remove NoVs efficiently while retaining the original flavor of oysters. However, further research is needed to reduce the cost of these technologies to achieve large-scale commercial applications. The review aims to provide novel insights to reduce the bioaccumulation of NoVs in oysters and serve as a reference for the development of new, rapid and effective methods for detecting and inactivating NoVs in live oysters.
Collapse
Affiliation(s)
- Yiqiang Sun
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
48
|
Lewis MA, Cortés-Penfield NW, Ettayebi K, Patil K, Kaur G, Neill FH, Atmar RL, Ramani S, Estes MK. Standardization of an antiviral pipeline for human norovirus in human intestinal enteroids demonstrates nitazoxanide has no to weak antiviral activity. Antimicrob Agents Chemother 2023; 67:e0063623. [PMID: 37787556 PMCID: PMC10583671 DOI: 10.1128/aac.00636-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/02/2023] [Indexed: 10/04/2023] Open
Abstract
Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis. In immunocompetent hosts, symptoms usually resolve within 3 days; however, in immunocompromised persons, HuNoV infection can become persistent, debilitating, and sometimes life-threatening. There are no licensed therapeutics for HuNoV due to a near half-century delay in its cultivation. Treatment for chronic HuNoV infection in immunosuppressed patients anecdotally includes nitazoxanide, a broad-spectrum antimicrobial licensed for treatment of parasite-induced gastroenteritis. Despite its off-label use for chronic HuNoV infection, nitazoxanide has not been clearly demonstrated to be an effective treatment. In this study, we standardized a pipeline for antiviral testing using multiple human small intestinal enteroid lines representing different intestinal segments and evaluated whether nitazoxanide inhibits replication of five HuNoV strains in vitro. Nitazoxanide did not exhibit high selective antiviral activity against any HuNoV strain tested, indicating it is not an effective antiviral for HuNoV infection. Human intestinal enteroids are further demonstrated as a model to serve as a preclinical platform to test antivirals against HuNoVs to treat gastrointestinal disease. Abstr.
Collapse
Affiliation(s)
- Miranda A. Lewis
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Nicolás W. Cortés-Penfield
- Department of Medicine, Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Gurpreet Kaur
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Frederick H. Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
49
|
Satter SM, Abdullah Z, Fariha F, Karim Y, Rahman MM, Balachandran N, Ghosh PK, Hossain ME, Mirza SA, Hall AJ, Gastañaduy PA, Rahman M, Vinjé J, Parashar UD. Epidemiology and Risk Factors of Norovirus Infections Among Diarrhea Patients Admitted to Tertiary Care Hospitals in Bangladesh. J Infect Dis 2023; 228:818-828. [PMID: 37503737 PMCID: PMC10547458 DOI: 10.1093/infdis/jiad274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/21/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Norovirus is a major cause of endemic acute gastroenteritis (AGE) worldwide. We described the epidemiology, risk factors, and genotypic distribution of noroviruses among hospitalized patients of all ages in Bangladesh. METHODS From March 2018 to October 2021, 1250 AGE case patients and controls (age, sex, season, and site matched) were enrolled at 10 hospitals. Demographic and clinical information was collected; real-time reverse-transcriptase polymerase chain reaction (RT-PCR) used to test stool specimens, and positive samples were genotyped. RESULTS Norovirus was detected in 9% of cases (111 of 1250) and 15% (182 of 1250) of controls. Eighty-two percent of norovirus-positive cases were in children <5 years old. Norovirus-positive AGE hospitalizations occurred year-round, with peaks in April and October. Risk factors for norovirus included age <5 years (adjusted odds ratio, 3.1 [95% confidence interval, 1.9-5.2]) and exposure to a patient with AGE in the 10 days before enrollment (3.8 [1.9-7.2]). GII.3[P16] and GII.4 Sydney[P16] were the predominant genotypes. CONCLUSIONS We highlight the burden of norovirus in hospital settings. Young age and recent exposure to a patient with AGE were risk factors for norovirus. A high prevalence of norovirus among controls might represent asymptomatic reinfections or prolonged shedding from a previous infection; carefully designed longitudinal studies are needed to improve our understanding of norovirus infections in Bangladesh.
Collapse
Affiliation(s)
- Syed M Satter
- International Center for Diarrheal Disease Research (ICDDR,B), Dhaka, Bangladesh
| | - Zarin Abdullah
- International Center for Diarrheal Disease Research (ICDDR,B), Dhaka, Bangladesh
| | - Farzana Fariha
- International Center for Diarrheal Disease Research (ICDDR,B), Dhaka, Bangladesh
| | - Yeasir Karim
- International Center for Diarrheal Disease Research (ICDDR,B), Dhaka, Bangladesh
| | - Md Mahfuzur Rahman
- International Center for Diarrheal Disease Research (ICDDR,B), Dhaka, Bangladesh
| | - Neha Balachandran
- Center for Disease Control and Prevention, Atlanta, Georgia, USA
- Cherokee Nation Assurance, Arlington, Virginia, USA
| | - Probir Kumar Ghosh
- International Center for Diarrheal Disease Research (ICDDR,B), Dhaka, Bangladesh
| | | | - Sara A Mirza
- Center for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Aron J Hall
- Center for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Mustafizur Rahman
- International Center for Diarrheal Disease Research (ICDDR,B), Dhaka, Bangladesh
| | - Jan Vinjé
- Center for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Umesh D Parashar
- Center for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
50
|
Juniastuti, Utsumi T, Yamani LN, Dinana Z, Gunawan E, Maharani AT, Fitria AL, Wahyuni RM, Soetjipto, Doan YH, Shimizu H, Ishii K, Matsui C, Deng L, Abe T, Katayama K, Lusida MI, Shoji I. A household survey of intrafamily norovirus transmission. J Med Virol 2023; 95:e29164. [PMID: 37830640 DOI: 10.1002/jmv.29164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
Norovirus (NoV) is a leading cause of epidemic and sporadic gastroenteritis in people of all ages. Humans are the primary source of NoV and household contact is one of the risk factors for NoV transmission. However, the mechanisms underlying person-to-person NoV transmission are poorly understood. Here we conducted a survey to profile the frequency and characteristics of intrafamily NoV transmission. Stool samples were collected every week from three households between 2016 and 2020; the total number of samples was 1105. The detection of NoV and the genotyping were performed by reverse transcription-polymerase chain reaction targeting the capsid region and direct sequencing methods. NoV was detected in 3.4% of all samples. Eight NoV genotypes were identified. The most common genotype was GII.17, followed in order by GII.6, GI.6, GII.4, GI.3, and GI.2/GI.8/GI.9. Most NoV-positive samples were obtained from asymptomatic individuals. The highest number of NoV transmissions was found in household 3 (6 infections), followed by household 2 (2 infections), while household 1 had no NoV transmission, suggesting that asymptomatic NoV carriers play a major role in infection as NoV reservoirs in the households. Further clarification of the mode of infection will contribute to improved understanding and an appropriate prevention.
Collapse
Affiliation(s)
- Juniastuti
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Medical Microbiology, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Clinical Microbiology Residency Program, Dr. Soetomo General Hospital, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Takako Utsumi
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Center for Infectious Diseases, Division of Infectious Disease Control, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Laura Navika Yamani
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Zayyin Dinana
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Emily Gunawan
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Aussie Tahta Maharani
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Anisa Lailatul Fitria
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Rury M Wahyuni
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Soetjipto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Biochemistry, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koji Ishii
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chieko Matsui
- Center for Infectious Diseases, Division of Infectious Disease Control, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lin Deng
- Center for Infectious Diseases, Division of Infectious Disease Control, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Abe
- Center for Infectious Diseases, Division of Infectious Disease Control, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Maria Inge Lusida
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Medical Microbiology, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Clinical Microbiology Residency Program, Dr. Soetomo General Hospital, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikuo Shoji
- Center for Infectious Diseases, Division of Infectious Disease Control, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|