1
|
Fontoura-Gonçalves C, Llorente F, Pérez-Ramírez E, Jiménez-Clavero MÁ, Costa JB, de Mello G, Gonçalves D, Alves PC, Höfle U, Queirós J. Dynamics of Bagaza, West Nile, and Usutu Viruses in Red-Legged Partridges, Portugal, 2018-2022. Emerg Infect Dis 2025; 31:824-828. [PMID: 40133082 PMCID: PMC11950255 DOI: 10.3201/eid3104.241293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Long-term serologic surveillance of red-legged partridges suggests emergence of Bagaza virus in Portugal in 2021, associated with disease outbreaks in this species. Results also reveal sporadic circulation of Usutu virus and endemic circulation of West Nile virus, highlighting the role of red-legged partridges in the transmission and maintenance cycle and as sentinels of orthoflaviviruses.
Collapse
|
2
|
Loureiro F, Mesquita JR, Cardoso L, Matos AC, Matos M, Coelho AC. Detection of Bagaza Virus in Europe: A Scoping Review. Vet Sci 2025; 12:113. [PMID: 40005872 PMCID: PMC11860654 DOI: 10.3390/vetsci12020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
The Bagaza virus (BAGV) belongs to the genus Orthoflavivirus (Ntaya serocomplex) and emerged in Europe, Spain, in 2010. The natural transmission cycle of this virus is perpetuated by Culex spp. mosquitoes and viraemic birds. The ability of BAGV to cause infection in several game birds from the family Phasianidae has been well-studied. BAGV is antigenically similar to other orthoflaviviruses from the Japanese encephalitis serocomplex, such as the West Nile and Usutu viruses, a circumstance which can lead to cross-reactivity in less specific serological techniques (e.g., ELISA). Severe implications in animal health has already been described, but some aspects of the dynamics of transmission and the limits of zoonotic potential of BAGV still need to be clarified. Further investigation focused on epidemiological surveillance in high-risk areas would be beneficial for prevention and control of new outbreaks. The present study is a systematic review of the BAGV reports in Europe.
Collapse
Affiliation(s)
- Filipa Loureiro
- Wildlife Rehabilitation Centre (CRAS), Veterinary Teaching Hospital, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.C.C.)
| | - João R. Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, 4099-022 Porto, Portugal;
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Luís Cardoso
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.C.C.)
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana C. Matos
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Manuela Matos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Ana Cláudia Coelho
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.C.C.)
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Gonzálvez M, Cano-Terriza D, Höfle Ú, Gómez-Guillamón F, Cano-Gómez C, Zorrilla I, Agüero M, Martínez R, García-Bocanegra I. Re-emergence of Bagaza virus in wild birds from southern Spain. Vet Microbiol 2024; 298:110279. [PMID: 39442425 DOI: 10.1016/j.vetmic.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Bagaza virus (BAGV; Orthoflavivirus bagazaense) is an emerging vector-borne flavivirus affecting avian species with severe implications for animal health, and whose zoonotic potential has also been suggested. The aim of the present study was to monitor the epidemic outbreak of BAGV in wild birds from Spain in 2021. BAGV cases were confirmed in game bird species, including red-legged partridges (Alectoris rufa) and common pheasants (Phasianus colchicus) from 24 hunting areas. Suspected cases (clinical signs and/or mortality compatible with BAGV infection but without molecular confirmation) were also detected in 11 additional hunting areas. The outbreaks showed a seasonality mainly restricted to July and August. Estimated morbidity [25.8 % (95 %CI: 11.3-40.3) in partridges and 8.7 % (95 %CI: 0.0-18.0) in pheasants] and mortality rates [27.3 % (95 %CI: 12.5-42.1) in partridges and 13.0 % (95 %CI: 1.9-24.1) in pheasants] were found in the affected hunting areas. In addition, 215 non-game birds belonging to 46 different species were sampled by passive surveillance upon admittance to rehabilitation centres during 2021. BAGV infection was detected for the first time in green woodpecker (Picus viridis), spoonbill (Platalea leucorodia), white stork (Ciconia ciconia) and cynereous vulture (Aegypius monachus), expanding the host range of this emerging pathogen. In contrast to other species, game birds showed distinct BAGV related lesions, primarily myocarditis and encephalitis in addition to inflammatory infiltrates and necrosis in the liver and kidney. Molecular analyses revealed a homology of 97.4-98.0 % and 92.5-92.7 % between the BAGV sequences obtained in the present study (492 bp) and those isolated in 2010 and 2019 in southern Spain, respectively. These results allow to hypothesise about the likely silent and endemic circulation of BAGV since 2010 in this European region, although repeated virus reintroduction from neighbouring territories cannot be ruled out. Our findings evidence the sanitary, ecological and conservation implications of the re-emerged BAGV for wild birds, also emphasising the need to increase surveillance for monitoring and early detection of flavivirus dynamics in high-risk areas.
Collapse
Affiliation(s)
- Moisés Gonzálvez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba , Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba , Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Úrsula Höfle
- Grupo de Investigación en Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), 13005 Ciudad Real, Spain
| | - Félix Gómez-Guillamón
- Programa de Vigilancia Epidemiológica de la Fauna Silvestre (PVE), Consejería de Sostenibilidad, Medio Ambiente y Economía Azul, Junta de Andalucía, 29002 Málaga, Spain
| | - Cristina Cano-Gómez
- Laboratorio Central de Veterinaria (LCV), Ministerio de Agricultura, Pesca y Alimentación, 28110 Algete, Madrid, Spain
| | - Irene Zorrilla
- Centro de Análisis y Diagnóstico de la Fauna Silvestre, Agencia de Medio Ambiente y Agua de Andalucía, Consejería de Sostenibilidad, Medio Ambiente y Economía Azul de la Junta de Andalucía, 29010 Málaga, Spain
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministerio de Agricultura, Pesca y Alimentación, 28110 Algete, Madrid, Spain
| | - Remigio Martínez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba , Spain
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba , Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Aguilera-Sepúlveda P, Gómez-Martín B, Agüero M, Jiménez-Clavero MÁ, Fernández-Pinero J. Emergence of Two Different Genotypes of Bagaza Virus (BAGV) Affecting Red-Legged Partridges in Spain, in 2019 and 2021. Pathogens 2024; 13:724. [PMID: 39338916 PMCID: PMC11434994 DOI: 10.3390/pathogens13090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Bagaza virus (BAGV) is a flavivirus that affects avian species. In Europe, it was detected for the first time in Spain in 2010, exhibiting high genetic relatedness to Israel turkey meningoencephalomyelitis virus (ITMV) isolates from Israel. After a period of epidemiological silence, BAGV re-emerged, causing important outbreaks in 2019 and 2021. This study aims to characterize the newly detected strains and to elucidate if these recent outbreaks were caused by single or different virus introductions into the country. Hence, Spanish BAGV isolates from 2019 (n = 3) and 2021 (n = 1) outbreaks, obtained from red-legged partridges in Cádiz, were sequenced and further characterized. The phylogenetic analyses showed that they belong to two different genotypes: BAGV-Genotypes 1 and 2. Isolates from 2019 belong to BAGV-Genotype 1, closely related to isolates from Senegal, where BAGV has been circulating for decades. In turn, the 2021 isolates belong to BAGV-Genotype 2, closely related to those detected in Spain in 2010. Additionally, the comparison of the viral polyproteins of several BAGV isolates from both genotypes supports and confirms the phylogenetic findings. To conclude, BAGV has been introduced into Spain on at least three independent occasions, with alternating genetic clades, thus confirming that BAGV is able to sporadically reach Southern Europe.
Collapse
Affiliation(s)
- Pilar Aguilera-Sepúlveda
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130 Valdeolmos, Spain (J.F.-P.)
| | - Belén Gómez-Martín
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130 Valdeolmos, Spain (J.F.-P.)
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130 Valdeolmos, Spain (J.F.-P.)
| |
Collapse
|
5
|
Williams RAJ, Criollo Valencia HA, López Márquez I, González González F, Llorente F, Jiménez-Clavero MÁ, Busquets N, Mateo Barrientos M, Ortiz-Díez G, Ayllón Santiago T. West Nile Virus Seroprevalence in Wild Birds and Equines in Madrid Province, Spain. Vet Sci 2024; 11:259. [PMID: 38922006 PMCID: PMC11209238 DOI: 10.3390/vetsci11060259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
West Nile virus (WNV) is a re-emerging flavivirus, primarily circulating among avian hosts and mosquito vectors, causing periodic outbreaks in humans and horses, often leading to neuroinvasive disease and mortality. Spain has reported several outbreaks, most notably in 2020 with seventy-seven human cases and eight fatalities. WNV has been serologically detected in horses in the Community of Madrid, but to our knowledge, it has never been reported from wild birds in this region. To estimate the seroprevalence of WNV in wild birds and horses in the Community of Madrid, 159 wild birds at a wildlife rescue center and 25 privately owned equines were sampled. Serum from thirteen birds (8.2%) and one equine (4.0%) tested positive with a WNV competitive enzyme-linked immunosorbent assay (cELISA) designed for WNV antibody detection but sensitive to cross-reacting antibodies to other flaviviruses. Virus-neutralization test (VNT) confirmed WNV antibodies in four bird samples (2.5%), and antibodies to undetermined flavivirus in four additional samples. One equine sample (4.0%) tested positive for WNV by VNT, although this horse previously resided in a WN-endemic area. ELISA-positive birds included both migratory and resident species, juveniles and adults. Two seropositive juvenile birds suggest local flavivirus transmission within the Community of Madrid, while WNV seropositive adult birds may have been infected outside Madrid. The potential circulation of flaviviruses, including WNV, in birds in the Madrid Community raises concerns, although further surveillance of mosquitoes, wild birds, and horses in Madrid is necessary to establish the extent of transmission and the principal species involved.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Nováis, 28040 Madrid, Spain
| | | | - Irene López Márquez
- Group for the Rehabilitation of Native Fauna and their Habitat—GREFA, 28220 Madrid, Spain; (I.L.M.); (F.G.G.)
| | - Fernando González González
- Group for the Rehabilitation of Native Fauna and their Habitat—GREFA, 28220 Madrid, Spain; (I.L.M.); (F.G.G.)
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco Llorente
- Animal Health Research Center (CISA-INIA), CSIC, 28130 Valdeolmos, Spain; (F.L.)
| | | | - Núria Busquets
- IRTA, Animal Health Program, Animal Health Research Center (CReSA), Campus of the Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
- Mixed Research Unit IRTA-UAB in Animal Health, Animal Health Research Center (CReSA), Campus of the Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Marta Mateo Barrientos
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Gustavo Ortiz-Díez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Tania Ayllón Santiago
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Nováis, 28040 Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University, 28691 Madrid, Spain;
| |
Collapse
|
6
|
Varga Z, Bueno-Marí R, Risueño Iranzo J, Kurucz K, Tóth GE, Zana B, Zeghbib S, Görföl T, Jakab F, Kemenesi G. Accelerating targeted mosquito control efforts through mobile West Nile virus detection. Parasit Vectors 2024; 17:140. [PMID: 38500161 PMCID: PMC10949795 DOI: 10.1186/s13071-024-06231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Different mosquito control strategies have been implemented to mitigate or prevent mosquito-related public health situations. Modern mosquito control largely relies on multiple approaches, including targeted, specific treatments. Given this, it is becoming increasingly important to supplement these activities with rapid and mobile diagnostic capacities for mosquito-borne diseases. We aimed to create and test the applicability of a rapid diagnostic system for West Nile virus that can be used under field conditions. METHODS In this pilot study, various types of adult mosquito traps were applied within the regular mosquito monitoring activity framework for mosquito control. Then, the captured specimens were used for the detection of West Nile virus RNA under field conditions with a portable qRT-PCR approach within 3-4 h. Then, positive samples were subjected to confirmatory RT-PCR or NGS sequencing in the laboratory to obtain genome information of the virus. We implemented phylogenetic analysis to characterize circulating strains. RESULTS A total of 356 mosquito individuals representing 7 species were processed in 54 pools, each containing up to 20 individuals. These pools were tested for the presence of West Nile virus, and two pools tested positive, containing specimens from the Culex pipiens and Anopheles atroparvus mosquito species. As a result of subsequent sequencing, we present the complete genome of West Nile virus and Bagaza virus. CONCLUSIONS The rapid identification of infected mosquitoes is the most important component of quick response adulticide or larvicide treatments to prevent human cases. The conceptual framework of real-time surveillance can be optimized for other pathogens and situations not only in relation to West Nile virus. We present an early warning system for mosquito-borne diseases and demonstrate its application to aid rapid-response mosquito control actions.
Collapse
Affiliation(s)
- Zsaklin Varga
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Rubén Bueno-Marí
- Department of Research and Development, Laboratorios Lokímica, Valencia, Spain
- Parasite & Health Research Group, Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - José Risueño Iranzo
- Department of Research and Development, Laboratorios Lokímica, Valencia, Spain
| | - Kornélia Kurucz
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor Endre Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Brigitta Zana
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| |
Collapse
|
7
|
Llorente F, Gutiérrez-López R, Pérez-Ramirez E, Sánchez-Seco MP, Herrero L, Jiménez-Clavero MÁ, Vázquez A. Experimental infections in red-legged partridges reveal differences in host competence between West Nile and Usutu virus strains from Southern Spain. Front Cell Infect Microbiol 2023; 13:1163467. [PMID: 37396301 PMCID: PMC10308050 DOI: 10.3389/fcimb.2023.1163467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction West Nile virus (WNV) and Usutu virus (USUV) are emerging zoonotic arboviruses sharing the same life cycle with mosquitoes as vectors and wild birds as reservoir hosts. The main objective of this study was to characterize the pathogenicity and course of infection of two viral strains (WNV/08 and USUV/09) co-circulating in Southern Spain in a natural host, the red-legged partridge (Alectoris rufa), and to compare the results with those obtained with the reference strain WNV/NY99. Methods WNV inoculated birds were monitored for clinical and analytical parameters (viral load, viremia, and antibodies) for 15 days post-inoculation. Results and discussion Partridges inoculated with WNV/NY99 and WNV/08 strains showed clinical signs such as weight loss, ruffled feathers, and lethargy, which were not observed in USUV/09-inoculated individuals. Although statistically significant differences in mortality were not observed, partridges inoculated with WNV strains developed significantly higher viremia and viral loads in blood than those inoculated with USUV. In addition, the viral genome was detected in organs and feathers of WNV-inoculated partridges, while it was almost undetectable in USUV-inoculated ones. These experimental results indicate that red-legged partridges are susceptible to the assayed Spanish WNV with pathogenicity similar to that observed for the prototype WNV/NY99 strain. By contrast, the USUV/09 strain was not pathogenic for this bird species and elicited extremely low viremia levels, demonstrating that red-legged partridges are not a competent host for the transmission of this USUV strain.
Collapse
Affiliation(s)
- Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Rafael Gutiérrez-López
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Elisa Pérez-Ramirez
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - María Paz Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Laura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
8
|
Genome Characterization and Spaciotemporal Dispersal Analysis of Bagaza Virus Detected in Portugal, 2021. Pathogens 2023; 12:pathogens12020150. [PMID: 36839422 PMCID: PMC9962176 DOI: 10.3390/pathogens12020150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/02/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
In September 2021, Bagaza virus (BAGV), a member of the Ntaya group from the Flavivirus genus, was detected for the first time in Portugal, in the heart and the brain of a red-legged partridge found dead in a hunting ground in Serpa (Alentejo region; southern Portugal). Here we report the genomic characterization of the full-length sequence of the BAGV detected (BAGV/PT/2021), including phylogenetic reconstructions and spaciotemporal analyses. Phylogenies inferred from nucleotide sequence alignments, complemented with the analysis of amino acid alignments, indicated that the BAGV strain from Portugal is closely related to BAGV strains previously detected in Spain, suggesting a common ancestor that seems to have arrived in the Iberia Peninsula in the late 1990s to early 2000s. In addition, our findings support previous observations that BAGV and Israel turkey meningoencephalitis virus (ITV) belong to the same viral species.
Collapse
|
9
|
Figuerola J, Jiménez-Clavero MÁ, Ruíz-López MJ, Llorente F, Ruiz S, Hoefer A, Aguilera-Sepúlveda P, Peñuela JJ, García-Ruiz O, Herrero L, Soriguer RC, Delgado RF, Sánchez-Seco MP, la Puente JMD, Vázquez A. A One Health view of the West Nile virus outbreak in Andalusia (Spain) in 2020. Emerg Microbes Infect 2022; 11:2570-2578. [PMID: 36214518 PMCID: PMC9621199 DOI: 10.1080/22221751.2022.2134055] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reports of West Nile virus (WNV) associated disease in humans were scarce in Spain until summer 2020, when 77 cases were reported, eight fatal. Most cases occurred next to the Guadalquivir River in the Sevillian villages of Puebla del Río and Coria del Río. Detection of WNV disease in humans was preceded by a large increase in the abundance of Culex perexiguus in the neighbourhood of the villages where most human cases occurred. The first WNV infected mosquitoes were captured approximately one month before the detection of the first human cases. Overall, 33 positive pools of Cx. perexiguus and one pool of Culex pipiens were found. Serology of wild birds confirmed WNV circulation inside the affected villages, that transmission to humans also occurred in urban settings and suggests that virus circulation was geographically more widespread than disease cases in humans or horses may indicate. A high prevalence of antibodies was detected in blackbirds (Turdus merula) suggesting that this species played an important role in the amplification of WNV in urban areas. Culex perexiguus was the main vector of WNV among birds in natural and agricultural areas, while its role in urban areas needs to be investigated in more detail. Culex pipiens may have played some role as bridge vector of WNV between birds and humans once the enzootic transmission cycle driven by Cx. perexiguus occurred inside the villages. Surveillance of virus in mosquitoes has the potential to detect WNV well in advance of the first human cases.
Collapse
Affiliation(s)
- Jordi Figuerola
- Estación Biológica de Doñana - CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130, Valdeolmos, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - María José Ruíz-López
- Estación Biológica de Doñana - CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130, Valdeolmos, Spain
| | - Santiago Ruiz
- Servicio de Control de Mosquitos de la Diputación Provincial de Huelva, Ctra. Hospital Infanta Elena s/n, 21007 Huelva, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - Andreas Hoefer
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Majadahonda, Spain.,European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Pilar Aguilera-Sepúlveda
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130, Valdeolmos, Spain
| | | | - Olaya García-Ruiz
- Estación Biológica de Doñana - CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - Laura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Majadahonda, Spain
| | - Ramón C Soriguer
- Estación Biológica de Doñana - CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - Raúl Fernández Delgado
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130, Valdeolmos, Spain
| | - Mari Paz Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Majadahonda, Spain.,CIBER de Enfermedades Infecciosas (CIBERINFEC), Spain
| | - Josué Martínez-de la Puente
- Departamento de Parasitología, Universidad de Granada, 18071 Granada, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Majadahonda, Spain.,CIBER de Epidemiología y Salud Publica (CIBERESP), Spain
| |
Collapse
|
10
|
Höfle U, Cardona Cabrera T, Sánchez‐Cano A, Fernández de Mera IG, Risalde MA, Moraga‐Fernández A, Ortiz JA. Bagaza virus and Plasmodium spp. coinfection in red-legged partridges (Alectoris rufa), in Southern Spain 2019. Transbound Emerg Dis 2022; 69:e3393-e3399. [PMID: 35810476 PMCID: PMC9796336 DOI: 10.1111/tbed.14658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/02/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023]
Abstract
Flaviviruses such as West Nile (WNV), Usutu (USUV) and Bagaza (BAGV) virus and avian malaria parasites are vector borne pathogens that circulate naturally between avian and mosquito hosts. WNV and USUV and potentially also BAGV constitute zoonoses. Temporal and spatial cocirculation and coinfection with Plasmodium spp., and West Nile virus has been documented in birds and mosquito vectors, and fatally USUV-infected passerines coinfected with Plasmodium spp. had more severe lesions. Also, WNV, USUV and BAGV have been found to cocirculate. Yet little is known about the interaction of BAGV and malaria parasites during consecutive or coinfections of avian hosts. Here we report mortality of free-living red-legged partridges in a hunting estate in Southern Spain that were coinfected with BAGV and Plasmodium spp. The outbreak occurred in the area where BAGV first emerged in Europe in 2010 and where cocirculation of BAGV, USUV and WNV was confirmed in 2011 and 2013. Partridges were found dead in early October 2019. Birds had mottled locally pale pectoral muscles, enlarged, congestive greenish-black tinged livers and enlarged kidneys. Microscopically congestion and predominantly mononuclear inflammatory infiltrates were evident and Plasmodium phanerozoites were present in the liver, spleen, kidneys, muscle and skin. Molecular testing and sequencing detected Plasmodium spp. and BAGV in different tissues of the partridges, and immunohistochemistry confirmed the presence and colocalization of both pathogens in the liver and spleen. Due to the importance of the red-legged partridge in the ecosystem of the Iberian Peninsula and as driver of regional economy such mortalities are of concern. Such outbreaks may reflect climate change related shifts in host, vector and pathogen ecology and interactions that could emerge similarly for other pathogens.
Collapse
Affiliation(s)
- Ursula Höfle
- Health and Biotechnology (SaBio) Research GroupNational Wildlife Research InstituteInstituto de Investigación en Recursos Cinegéticos IREC (CSIC‐UCLM)Ciudad RealSpain
| | - Teresa Cardona Cabrera
- Health and Biotechnology (SaBio) Research GroupNational Wildlife Research InstituteInstituto de Investigación en Recursos Cinegéticos IREC (CSIC‐UCLM)Ciudad RealSpain
| | - Alberto Sánchez‐Cano
- Health and Biotechnology (SaBio) Research GroupNational Wildlife Research InstituteInstituto de Investigación en Recursos Cinegéticos IREC (CSIC‐UCLM)Ciudad RealSpain
| | - Isabel G. Fernández de Mera
- Health and Biotechnology (SaBio) Research GroupNational Wildlife Research InstituteInstituto de Investigación en Recursos Cinegéticos IREC (CSIC‐UCLM)Ciudad RealSpain
| | - María A. Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y ToxicologíaGrupo GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEMUniversidad de CórdobaCórdobaSpain,Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y ZoonosisInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)Hospital Reina SofíaUniversidad de Córdoba (UCO)CórdobaSpain,CIBERINFEC, ISCIII ‐ CIBER de Enfermedades InfecciosasInstituto de Salud Carlos III, MajadahondaMadridSpain
| | - Alberto Moraga‐Fernández
- Health and Biotechnology (SaBio) Research GroupNational Wildlife Research InstituteInstituto de Investigación en Recursos Cinegéticos IREC (CSIC‐UCLM)Ciudad RealSpain
| | | |
Collapse
|
11
|
Kunkel MR, Mead DG, Ruder MG, Nemeth NM. Our current understanding of West Nile virus in upland game birds. WILDLIFE SOC B 2022. [DOI: 10.1002/wsb.1269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Melanie R. Kunkel
- Southeastern Cooperative Wildlife Disease Study University of Georgia 589 D.W. Brooks Drive Athens 30602 GA USA
| | - Daniel G. Mead
- Southeastern Cooperative Wildlife Disease Study University of Georgia 589 D.W. Brooks Drive Athens 30602 GA USA
| | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study University of Georgia 589 D.W. Brooks Drive Athens 30602 GA USA
| | - Nicole M. Nemeth
- Southeastern Cooperative Wildlife Disease Study University of Georgia 589 D.W. Brooks Drive Athens 30602 GA USA
| |
Collapse
|
12
|
Napp S, Llorente F, Beck C, Jose-Cunilleras E, Soler M, Pailler-García L, Amaral R, Aguilera-Sepúlveda P, Pifarré M, Molina-López R, Obón E, Nicolás O, Lecollinet S, Jiménez-Clavero MÁ, Busquets N. Widespread Circulation of Flaviviruses in Horses and Birds in Northeastern Spain (Catalonia) between 2010 and 2019. Viruses 2021; 13:v13122404. [PMID: 34960673 PMCID: PMC8708358 DOI: 10.3390/v13122404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The surveillance for West Nile virus (WNV) in Catalonia (northeastern Spain) has consistently detected flaviviruses not identified as WNV. With the aim of characterizing the flaviviruses circulating in Catalonia, serum samples from birds and horses collected between 2010 and 2019 and positive by panflavivirus competition ELISA (cELISA) were analyzed by microneutralization test (MNT) against different flaviviruses. A third of the samples tested were inconclusive by MNT, highlighting the limitations of current diagnostic techniques. Our results evidenced the widespread circulation of flaviviruses, in particular WNV, but also Usutu virus (USUV), and suggest that chicken and horses could serve as sentinels for both viruses. In several regions, WNV and USUV overlapped, but no significant geographical aggregation was observed. Bagaza virus (BAGV) was not detected in birds, while positivity to tick-borne encephalitis virus (TBEV) was sporadically detected in horses although no endemic foci were observed. So far, no human infections by WNV, USUV, or TBEV have been reported in Catalonia. However, these zoonotic flaviviruses need to be kept under surveillance, ideally within a One Health framework.
Collapse
Affiliation(s)
- Sebastian Napp
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
- Correspondence: (S.N.); (N.B.)
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Eduard Jose-Cunilleras
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Servei Medicina Interna Equina, Fundació Hospital Clínic Veterinari (UAB), 08193 Bellaterra, Spain
| | - Mercè Soler
- Servei de Prevenció en Salut Animal, Departament d’Acció Climàtica, Alimentació i Agenda Rural (DACC), 08007 Barcelona, Spain;
| | - Lola Pailler-García
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
| | - Rayane Amaral
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Pilar Aguilera-Sepúlveda
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
| | - Maria Pifarré
- Centre de Fauna dels Aiguamolls de l’Empordà, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 17486 Castelló d’Empúries, Spain;
| | - Rafael Molina-López
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 08130 Santa Perpètua de Mogoda, Spain; (R.M.-L.); (E.O.)
| | - Elena Obón
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 08130 Santa Perpètua de Mogoda, Spain; (R.M.-L.); (E.O.)
| | - Olga Nicolás
- Centre de Fauna de Vallcalent, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 25199 Lleida, Spain;
- Parc Natural de l’Alt Pirineu, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 25595 Llavorsí, Spain
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Núria Busquets
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
- Correspondence: (S.N.); (N.B.)
| |
Collapse
|
13
|
Aguilera-Sepúlveda P, Gómez-Martín B, Agüero M, Jiménez-Clavero MÁ, Fernández-Pinero J. A new cluster of West Nile virus lineage 1 isolated from a northern goshawk in Spain. Transbound Emerg Dis 2021; 69:3121-3127. [PMID: 34812592 DOI: 10.1111/tbed.14399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022]
Abstract
West Nile Virus (WNV; family Flaviviridae, genus flavivirus) is a zoonotic arbovirus worldwide spread. Its genetic diversity has allowed the definition of at least seven lineages, being lineages 1 and 2 the most widely distributed. Western Mediterranean region has been affected by WNV since decades. In Spain, WNV is actively circulating, provoking annual outbreaks in birds, horses and lately in humans. Lineage 1 is responsible for outbreaks that occurred in central and southern regions, while lineage 2 has been recently described in wild birds in north-eastern part of the country. During 2017 season, a disease outbreak in captive raptors was reported in southern Spain and WNV was isolated from a dead northern goshawk. Full genome sequencing was followed by phylogenetic analyses and analyses of the amino acidic substitutions. This strain, named Spain/2017/NG-b, highly differs from those which have been circulating both in Spain and in the neighbouring Mediterranean countries, constituting a new distinct group, tentatively classified in a newly defined cluster 7 within the WNV clade 1a, supporting a new, independent introduction of the virus in the Western Mediterranean region from an unknown origin. Besides, circumstantial evidence indicates that this emerging WNV strain could be behind the subsequent outbreak occurred nearby in horses. Overall, the reinforcement of surveillance programs, especially in wild birds, is essential to early detect the circulation of WNV and other related flaviviruses that could cause outbreaks in wild or domestic birds, equine and human populations.
Collapse
Affiliation(s)
- Pilar Aguilera-Sepúlveda
- Departamento de enfermedades infecciosas y salud global, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain
| | | | | | - Miguel Ángel Jiménez-Clavero
- Departamento de enfermedades infecciosas y salud global, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Madrid, Spain
| | - Jovita Fernández-Pinero
- Departamento de enfermedades infecciosas y salud global, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain
| |
Collapse
|
14
|
Meurens F, Dunoyer C, Fourichon C, Gerdts V, Haddad N, Kortekaas J, Lewandowska M, Monchatre-Leroy E, Summerfield A, Wichgers Schreur PJ, van der Poel WHM, Zhu J. Animal board invited review: Risks of zoonotic disease emergence at the interface of wildlife and livestock systems. Animal 2021; 15:100241. [PMID: 34091225 PMCID: PMC8172357 DOI: 10.1016/j.animal.2021.100241] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing coronavirus disease 19s pandemic has yet again demonstrated the importance of the human-animal interface in the emergence of zoonotic diseases, and in particular the role of wildlife and livestock species as potential hosts and virus reservoirs. As most diseases emerge out of the human-animal interface, a better understanding of the specific drivers and mechanisms involved is crucial to prepare for future disease outbreaks. Interactions between wildlife and livestock systems contribute to the emergence of zoonotic diseases, especially in the face of globalization, habitat fragmentation and destruction and climate change. As several groups of viruses and bacteria are more likely to emerge, we focus on pathogenic viruses of the Bunyavirales, Coronaviridae, Flaviviridae, Orthomyxoviridae, and Paramyxoviridae, as well as bacterial species including Mycobacterium sp., Brucella sp., Bacillus anthracis and Coxiella burnetii. Noteworthy, it was difficult to predict the drivers of disease emergence in the past, even for well-known pathogens. Thus, an improved surveillance in hotspot areas and the availability of fast, effective, and adaptable control measures would definitely contribute to preparedness. We here propose strategies to mitigate the risk of emergence and/or re-emergence of prioritized pathogens to prevent future epidemics.
Collapse
Affiliation(s)
- François Meurens
- INRAE, Oniris, BIOEPAR, 44307 Nantes, France; Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon S7N5E3, Canada.
| | - Charlotte Dunoyer
- Direction de l'évaluation des risques, Anses, 94700 Maisons-Alfort, France
| | | | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Nadia Haddad
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, 94700 Maisons-Alfort, France
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Marta Lewandowska
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Artur Summerfield
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - Paul J Wichgers Schreur
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Wim H M van der Poel
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Jianzhong Zhu
- College of Veterinary Medicine, Comparative Medicine Research Institute, Yangzhou University, 225009 Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, 225009 Yangzhou, China
| |
Collapse
|
15
|
García San Miguel Rodríguez-Alarcón L, Fernández-Martínez B, Sierra Moros MJ, Vázquez A, Julián Pachés P, García Villacieros E, Gómez Martín MB, Figuerola Borras J, Lorusso N, Ramos Aceitero JM, Moro E, de Celis A, Oyonarte S, Mahillo B, Romero González LJ, Sánchez-Seco MP, Suárez Rodríguez B, Ameyugo Catalán U, Ruiz Contreras S, Pérez-Olmeda M, Simón Soria F. Unprecedented increase of West Nile virus neuroinvasive disease, Spain, summer 2020. ACTA ACUST UNITED AC 2021; 26. [PMID: 33988123 PMCID: PMC8120797 DOI: 10.2807/1560-7917.es.2021.26.19.2002010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cases of West Nile neuroinvasive disease (WNND) in Spain increased in summer 2020. Here we report on this increase and the local, regional and national public health measures taken in response. We analysed data from regional surveillance networks and the National Epidemiological Surveillance Network, both for human and animal West Nile virus (WNV) infection. During the 2020 season, a total of 77 human cases of WNV infection (median age 65 years; 60% males) were detected in the south-west of Spain; 72 (94%) of these cases developed WNND, presenting as meningoencephalitis, seven of which were fatal. In the previous two decades, only six human cases of WNND were detected in Spain. Reduced activities for vector control this season, together with other factors, might have contributed to the massive increase. Public health measures including vector control, campaigns to raise awareness among physicians and the general population, and interventions to ensure the safety of donations of blood products, organs, cells and tissues were effective to reduce transmission. Going forward, maintenance of vector control activities and an update of the vector-borne diseases response plan in Spain is needed.
Collapse
Affiliation(s)
| | - Beatriz Fernández-Martínez
- CIBER Epidemiology and Public Health, Madrid, Spain.,National Center for Epidemiology, Instituto de Salud Carlos III, Ministry of Science and Innovation, , Madrid, Spain
| | | | - Ana Vázquez
- National Microbiology Center, Instituto de Salud Carlos III, Ministry of Science and Innovation.,CIBER Epidemiology and Public Health, Madrid, Spain
| | | | - Elena García Villacieros
- Ministerio de Agricultura, Pesca y Alimentación, Dirección General de Sanidad de la Producción Agraria, Madrid, Spain
| | - María Belén Gómez Martín
- Ministerio de Agricultura, Pesca y Alimentación, Dirección General de Sanidad de la Producción Agraria, Madrid, Spain
| | - Jordi Figuerola Borras
- Consejo Superior de Investigaciones Científicas, Estación biológica de Doñana, Seville, Spain.,CIBER Epidemiology and Public Health, Madrid, Spain
| | - Nicola Lorusso
- Junta de Andalucía, Servicio de Vigilancia y Salud laboral Seville, Spain
| | | | - Elena Moro
- Ministry of Health, Scientific Committee on Transfusion Safety, Madrid, Spain
| | - Aránzazu de Celis
- Ministry of Health, Scientific Committee on Transfusion Safety, Madrid, Spain
| | - Salvador Oyonarte
- Ministry of Health, Scientific Committee on Transfusion Safety, Madrid, Spain
| | | | - Luis José Romero González
- Ministerio de Agricultura, Pesca y Alimentación, Dirección General de Sanidad de la Producción Agraria, Madrid, Spain
| | - María Paz Sánchez-Seco
- National Microbiology Center, Instituto de Salud Carlos III, Ministry of Science and Innovation
| | | | - Ulises Ameyugo Catalán
- Junta de Andalucía. Consejería de Salud y Familias. Dirección General de Salud Pública y Ordenación Farmacéutica. Subdirección de Protección de la Salud, Seville, Spain
| | | | - Mayte Pérez-Olmeda
- National Microbiology Center, Instituto de Salud Carlos III, Ministry of Science and Innovation
| | - Fernando Simón Soria
- Ministry of Health, Coordinating Center of Health Alerts and Emergencies, Madrid, Spain
| |
Collapse
|
16
|
Bravo-Barriga D, Aguilera-Sepúlveda P, Guerrero-Carvajal F, Llorente F, Reina D, Pérez-Martín JE, Jiménez-Clavero MÁ, Frontera E. West Nile and Usutu virus infections in wild birds admitted to rehabilitation centres in Extremadura, western Spain, 2017-2019. Vet Microbiol 2021; 255:109020. [PMID: 33677369 DOI: 10.1016/j.vetmic.2021.109020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) is an emerging flavivirus transmitted generally by mosquitoes of Culex genus. It is maintained in an enzootic life cycle where birds act as reservoir hosts. Humans and horses are also susceptible to infection, and occasionally, they suffer from neurological complications. However, they do not transmit the virus to other vectors, behaving as dead-end hosts. Sporadic WNV outbreaks observed in horses and wild birds from Extremadura (western Spain) during 2016 and 2017 seasons prompted to carry out this survey in wild birds, focused on specimens coming from two wildlife rehabilitation centres. Between October 2017 and December 2019, samples from 391 wild birds, belonging to 56 different species were collected and analysed in search of evidence of WNV infection. The analysis of serum samples for WNV-specific antibodies by ELISA, whose specificity was subsequently confirmed by virus-neutralisation test (VNT) showed positive results in 18.23 % birds belonging to 18 different species. Pelecaniformes (33.33 %), Accipitriformes (25.77 %) and Strigiformes (22.92 %) orders had the higher seroprevalences. Remarkably, WNV-specific antibodies were found in a black stork for the first time in Europe. Analysis by real time RT-PCR in symptomatic birds confirmed the presence of WNV lineage 1 RNA in griffon vulture and little owls. Specificity analysis of ELISA positive and doubtful sera was performed by differential VNT titration against WNV and two other cross-reacting avian flaviviruses found in Spain: Usutu virus (USUV) and Bagaza virus (BAGV). Only four samples showed USUV-specific antibodies (1.04 %) corresponding to three species: Eurasian eagle-owl, griffon vulture and great bustard (first detection in Europe) whereas no samples were found reactive to BAGV. Differential VNT yielded undetermined flavivirus result in 16 samples (4.17 %). This is the first study carried out on wild birds from Extremadura (western Spain). It highlights the widespread circulation of WNV in the region and its co-circulation with USUV.
Collapse
Affiliation(s)
- Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Pilar Aguilera-Sepúlveda
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | | | - Francisco Llorente
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | - David Reina
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - J Enrique Pérez-Martín
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Miguel Ángel Jiménez-Clavero
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.
| | - Eva Frontera
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| |
Collapse
|
17
|
Guerrero-Carvajal F, Bravo-Barriga D, Martín-Cuervo M, Aguilera-Sepúlveda P, Ferraguti M, Jiménez-Clavero MÁ, Llorente F, Alonso JM, Frontera E. Serological evidence of co-circulation of West Nile and Usutu viruses in equids from western Spain. Transbound Emerg Dis 2020; 68:1432-1444. [PMID: 32853452 DOI: 10.1111/tbed.13810] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
West Nile virus (WNV) is a mosquito-borne emerging virus in Europe with capacity to cause neurological complications such as encephalitis or meningoencephalitis in humans, birds or equids. In Spain, WNV is actively circulating in mosquitoes, birds and horses in different regions, but never has been deeply studied in Extremadura. Therefore, the aim of this study was to evaluate the seroprevalence of WNV in equids of those areas and to analyse the risk factors associated with exposure to the virus. A total of 199 out of 725 equids presented antibodies against WNV by competition ELISA (27.45%), while 22 were doubtful (3.03%). Anti-WNV IgM antibodies were detected in 16 equids (2.21%), and 3 animals were doubtful (0.41%). All ELISA-reactive positive/doubtful sera (N = 226) were further tested by micro-virus neutralization test (VNT), and a total of 143 horses were confirmed as positive for WNV, obtaining a seroprevalence of 19.72% in equids of western Spain. In addition, specific antibodies against USUV were confirmed in 11 equids. In 24 equids, a specific flavivirus species (detected by ELISA test) could not be determined. The generalized linear mixed-effects models showed that the significant risk factors associated with individual WNV infection in equids were the age (adults) and hair coat colour (light), whereas in USUV infections, it was the breed (pure). Data demonstrated that WNV and USUV are circulating in regions of western Spain. Given the high WNV seroprevalence found in equids from the studied areas, it is important to improve the surveillance programmes of public health to detect undiagnosed human cases and to establish a vaccination programme in equid herds in these regions.
Collapse
Affiliation(s)
| | - Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - María Martín-Cuervo
- Animal Medicine Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - Pilar Aguilera-Sepúlveda
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Martina Ferraguti
- Anatomy, Cellular Biology and Zoology Department, Science Faculty, University of Extremadura (UEx), Badajoz, Spain
| | - Miguel Ángel Jiménez-Clavero
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Francisco Llorente
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Juan Manuel Alonso
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - Eva Frontera
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| |
Collapse
|
18
|
Vilibic-Cavlek T, Petrovic T, Savic V, Barbic L, Tabain I, Stevanovic V, Klobucar A, Mrzljak A, Ilic M, Bogdanic M, Benvin I, Santini M, Capak K, Monaco F, Listes E, Savini G. Epidemiology of Usutu Virus: The European Scenario. Pathogens 2020; 9:699. [PMID: 32858963 PMCID: PMC7560012 DOI: 10.3390/pathogens9090699] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Usutu virus (USUV) is an emerging arbovirus isolated in 1959 (Usutu River, Swaziland). Previously restricted to sub-Saharan Africa, the virus was introduced in Europe in 1996. While the USUV has received little attention in Africa, the virus emergence has prompted numerous studies with robust epidemiological surveillance programs in Europe. The natural transmission cycle of USUV involves mosquitoes (vectors) and birds (amplifying hosts) with humans and other mammals considered incidental ("dead-end") hosts. In Africa, the virus was isolated in mosquitoes, rodents and birds and serologically detected in horses and dogs. In Europe, USUV was detected in bats, whereas antibodies were found in different animal species (horses, dogs, squirrels, wild boar, deer and lizards). While bird mortalities were not reported in Africa, in Europe USUV was shown to be highly pathogenic for several bird species, especially blackbirds (Turdus merula) and great gray owls (Strix nebulosa). Furthermore, neurotropism of USUV for humans was reported for the first time in both immunocompromised and immunocompetent patients. Epizootics and genetic diversity of USUV in different bird species as well as detection of the virus in mosquitoes suggest repeated USUV introductions into Europe with endemization in some countries. The zoonotic potential of USUV has been reported in a growing number of human cases. Clinical cases of neuroinvasive disease and USUV fever, as well as seroconversion in blood donors were reported in Europe since 2009. While most USUV strains detected in humans, birds and mosquitoes belong to European USUV lineages, several reports indicate the presence of African lineages as well. Since spreading trends of USUV are likely to continue, continuous multidisciplinary interventions ("One Health" concept) should be conducted for monitoring and prevention of this emerging arboviral infection.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Tamas Petrovic
- Department for Virology, Scientific Veterinary Institute, 21000 Novi Sad, Serbia;
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Ana Klobucar
- Department of Epidemiology, Andrija Stampar Teaching Institute of Public Health, 10000 Zagreb, Croatia;
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Maja Ilic
- Department of Epidemiology, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
| | - Iva Benvin
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Marija Santini
- Department for Intensive Care Medicine and Neuroinfectology, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, 10000 Zagreb, Croatia;
| | - Krunoslav Capak
- Environmental Health Department, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
| | - Federica Monaco
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 64100 Teramo, Italy; (F.M.); (G.S.)
| | - Eddy Listes
- Laboratory for Diagnostics, Croatian Veterinary Institute, Regional Institute Split, 21000 Split, Croatia;
| | - Giovanni Savini
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 64100 Teramo, Italy; (F.M.); (G.S.)
| |
Collapse
|
19
|
Elizalde M, Cano-Gómez C, Llorente F, Pérez-Ramírez E, Casades-Martí L, Aguilera-Sepúlveda P, Ruiz-Fons F, Jiménez-Clavero MÁ, Fernández-Pinero J. A Duplex Quantitative Real-Time Reverse Transcription-PCR for Simultaneous Detection and Differentiation of Flaviviruses of the Japanese Encephalitis and Ntaya Serocomplexes in Birds. Front Vet Sci 2020; 7:203. [PMID: 32373639 PMCID: PMC7186316 DOI: 10.3389/fvets.2020.00203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
High impact, mosquito-borne flaviviruses such as West Nile virus (WNV), Usutu virus (USUV), Japanese encephalitis virus (JEV), Tembusu virus (TMUV), and Bagaza/Israel turkey meningoencephalomyelitis virus (BAGV/ITV) are emerging in different areas of the world. These viruses belong to the Japanese encephalitis (JE) serocomplex (JEV, WNV, and USUV) and the Ntaya serocomplex (TMUV and BAGV/ITV). Notably, they share transmission route (mosquito bite) and reservoir host type (wild birds), and some of them co-circulate in the same areas, infecting overlapping mosquito and avian population. This may simplify epidemiological surveillance, since it allows the detection of different infections targeting the same population, but also represents a challenge, as the diagnostic tools applied need to detect the whole range of flaviviruses surveyed, and correctly differentiate between these closely related pathogens. To this aim, a duplex real-time RT-PCR (dRRT-PCR) method has been developed for the simultaneous and differential detection of JE and Ntaya flavivirus serocomplexes. The method has been standardized and evaluated by analyzing a panel of 49 flaviviral and non-flaviviral isolates, and clinical samples of different bird species obtained from experimental infections or from the field, proving its value for virus detection in apparently healthy or suspicious animals. This new dRRT-PCR technique is a reliable, specific and highly sensitive tool for rapid detection and differentiation of JE and Ntaya flavivirus groups in either domestic or wild animals. This novel method can be implemented in animal virology diagnostic laboratories as screening tool in routine surveillance and in the event of bird encephalitis emergence.
Collapse
Affiliation(s)
- Maia Elizalde
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain
| | - Cristina Cano-Gómez
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain
| | - Laia Casades-Martí
- Instituto de Investigación de Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), SaBio Group, Ciudad Real, Spain
| | - Pilar Aguilera-Sepúlveda
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain
| | - Francisco Ruiz-Fons
- Instituto de Investigación de Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), SaBio Group, Ciudad Real, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain.,Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos-Alalpardo, Spain
| |
Collapse
|
20
|
Folly AJ, Dorey-Robinson D, Hernández-Triana LM, Phipps LP, Johnson N. Emerging Threats to Animals in the United Kingdom by Arthropod-Borne Diseases. Front Vet Sci 2020; 7:20. [PMID: 32118054 PMCID: PMC7010938 DOI: 10.3389/fvets.2020.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 01/06/2023] Open
Abstract
Worldwide, arthropod-borne disease transmission represents one of the greatest threats to public and animal health. For the British Isles, an island group on the north-western coast of continental Europe consisting of the United Kingdom (UK) and the Republic of Ireland, physical separation offers a barrier to the introduction of many of the pathogens that affect animals on the rest of the continent. Added to this are strict biosecurity rules at ports of entry and the depauperate vector biodiversity found on the islands. Nevertheless, there are some indigenous arthropod-borne pathogens that cause sporadic outbreaks, such as the tick-borne louping ill virus, found almost exclusively in the British Isles, and a range of piroplasmid infections that are poorly characterized. These provide an ongoing source of infection whose emergence can be unpredictable. In addition, the risk remains for future introductions of both exotic vectors and the pathogens they harbor, and can transmit. Current factors that are driving the increases of both disease transmission and the risk of emergence include marked changes to the climate in the British Isles that have increased summer and winter temperatures, and extended the period over which arthropods are active. There have also been dramatic increases in the distribution of mosquito-borne diseases, such as West Nile and Usutu viruses in mainland Europe that are making the introduction of these pathogens through bird migration increasingly feasible. In addition, the establishment of midge-borne bluetongue virus in the near continent has increased the risk of wind-borne introduction of infected midges and the inadvertent importation of infected cattle. Arguably the greatest risk is associated with the continual increase in the movement of people, pets and trade into the UK. This, in particular, is driving the introduction of invasive arthropod species that either bring disease-causing pathogens, or are known competent vectors, that increase the risk of disease transmission if introduced. The following review documents the current pathogen threats to animals transmitted by mosquitoes, ticks and midges. This includes both indigenous and exotic pathogens to the UK. In the case of exotic pathogens, the pathway and risk of introduction are also discussed.
Collapse
Affiliation(s)
- Arran J. Folly
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | - Daniel Dorey-Robinson
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | | | - L. Paul Phipps
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | - Nicholas Johnson
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
- Faculty of Health and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
21
|
Bournez L, Umhang G, Faure E, Boucher JM, Boué F, Jourdain E, Sarasa M, Llorente F, Jiménez-Clavero MA, Moutailler S, Lacour SA, Lecollinet S, Beck C. Exposure of Wild Ungulates to the Usutu and Tick-Borne Encephalitis Viruses in France in 2009-2014: Evidence of Undetected Flavivirus Circulation a Decade Ago. Viruses 2019; 12:E10. [PMID: 31861683 PMCID: PMC7019733 DOI: 10.3390/v12010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Abstract: Flaviviruses have become increasingly important pathogens in Europe over the past few decades. A better understanding of the spatiotemporal distribution of flaviviruses in France is needed to better define risk areas and to gain knowledge of the dynamics of virus transmission cycles. Serum samples from 1014 wild boar and 758 roe deer from 16 departments (administrative units) in France collected from 2009 to 2014 were screened for flavivirus antibodies using a competitive ELISA (cELISA) technique. Serum samples found to be positive or doubtful by cELISA were then tested for antibodies directed against West Nile virus (WNV), Usutu virus (USUV), Bagaza virus (BAGV), and tick-borne encephalitis/Louping ill viruses (TBEV/LIV) by microsphere immunoassays (except BAGV) and micro-neutralization tests. USUV antibodies were detected only in southeastern and southwestern areas. TBEV/LIV antibodies were detected in serum samples from eastern, southwestern and northern departments. The results indicate continuous circulation of USUV in southern France from 2009 to 2014, which was unnoticed by the French monitoring system for bird mortality. The findings also confirm wider distribution of TBEV in the eastern part of the country than of human clinical cases. However, further studies are needed to determine the tick-borne flavivirus responsible for the seroconversion in southwestern and northern France.
Collapse
Affiliation(s)
- Laure Bournez
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Gérald Umhang
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Eva Faure
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
| | - Jean-Marc Boucher
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Franck Boué
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Elsa Jourdain
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité mixte de recherche Epidémiologie des maladies animales et zoonotiques (UMR EPIA), 63122 Saint-Genès-Champanelle, France;
| | - Mathieu Sarasa
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
- Biologie et Ecologie des Organismes et Populations Sauvages (BEOPS), 1 Esplanade Compans Caffarelli, 31000 Toulouse, France
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
| | - Miguel A. Jiménez-Clavero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Sara Moutailler
- Unité mixte de recherche Biologie moléculaire et Immunologie Parasitaire (UMR BIPAR), ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France;
| | - Sandrine A. Lacour
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Sylvie Lecollinet
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Cécile Beck
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| |
Collapse
|
22
|
Vilibic-Cavlek T, Savic V, Petrovic T, Toplak I, Barbic L, Petric D, Tabain I, Hrnjakovic-Cvjetkovic I, Bogdanic M, Klobucar A, Mrzljak A, Stevanovic V, Dinjar-Kujundzic P, Radmanic L, Monaco F, Listes E, Savini G. Emerging Trends in the Epidemiology of West Nile and Usutu Virus Infections in Southern Europe. Front Vet Sci 2019; 6:437. [PMID: 31867347 PMCID: PMC6908483 DOI: 10.3389/fvets.2019.00437] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/19/2019] [Indexed: 02/05/2023] Open
Abstract
The epidemiology of West Nile (WNV) and Usutu virus (USUV) has changed dramatically over the past two decades. Since 1999, there have been regular reports of WNV outbreaks and the virus has expanded its area of circulation in many Southern European countries. After emerging in Italy in 1996, USUV has spread to other countries causing mortality in several bird species. In 2009, USUV seroconversion in horses was reported in Italy. Co-circulation of both viruses was detected in humans, horses and birds. The main vector of WNV and USUV in Europe is Culex pipiens, however, both viruses were found in native Culex mosquito species (Cx. modestus, Cx. perexiguus). Experimental competence to transmit the WNV was also proven for native and invasive mosquitoes of Aedes and Culex genera (Ae. albopictus, Ae. detritus, Cx. torrentium). Recently, Ae. albopictus and Ae. japonicus naturally-infected with USUV were reported. While neuroinvasive human WNV infections are well-documented, USUV infections are sporadically detected. However, there is increasing evidence of a role of USUV in human disease. Seroepidemiological studies showed that USUV circulation is more common than WNV in some endemic regions. Recent data showed that WNV strains detected in humans, horses, birds, and mosquitoes mainly belong to lineage 2. In addition to European USUV lineages, some reports indicate the presence of African USUV lineages as well. The trends in WNV/USUV range and vector expansion are likely to continue in future years. This mini-review provides an update on the epidemiology of WNV and USUV infections in Southern Europe within a multidisciplinary "One Health" context.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, Zagreb, Croatia
| | - Tamas Petrovic
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Ivan Toplak
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dusan Petric
- Laboratory for Medical and Veterinary Entomology, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ivana Hrnjakovic-Cvjetkovic
- Center for Microbiology, Institute of Public Health Vojvodina, Novi Sad, Serbia
- Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ana Klobucar
- Division of Disinfection, Disinfestation and Pest Control, Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medicine, Merkur University Hospital, Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Luka Radmanic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Federica Monaco
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, Teramo, Italy
| | - Eddy Listes
- Laboratory for Diagnostics, Croatian Veterinary Institute, Regional Institute Split, Split, Croatia
| | - Giovanni Savini
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, Teramo, Italy
| |
Collapse
|
23
|
Llorente F, García-Irazábal A, Pérez-Ramírez E, Cano-Gómez C, Sarasa M, Vázquez A, Jiménez-Clavero MÁ. Influence of flavivirus co-circulation in serological diagnostics and surveillance: A model of study using West Nile, Usutu and Bagaza viruses. Transbound Emerg Dis 2019; 66:2100-2106. [PMID: 31150146 DOI: 10.1111/tbed.13262] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/12/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
This study aims at assessing the serological cross-reactions existing between three mosquito-borne flaviviruses with avian reservoirs co-circulating in Europe: West Nile (WNV), Usutu (USUV) and Bagaza (BAGV). The study is useful for a better interpretation of serological results in diagnostics and surveillance. Serum samples obtained from a natural host, the red-legged partridge (Alectoris rufa), experimentally infected with WNV, USUV or BAGV were analysed using two commercially available WNV competition ELISAs suitable for serological surveillance, and by the confirmatory virus neutralization test (VNT). The ELISAs examined showed different levels of specificity for WNV, as judged by cross-reaction observed with the other flaviviruses. By VNT, virus-specific antibodies were confirmed in 80%, 50% or 0% of sera from WNV-, BAGV-, or USUV-inoculated birds, respectively. The results indicate how the co-circulation of cross-reacting flaviviruses may affect the outcomes of WNV serological surveillance when applying currently available serological tools. On the one hand, the choice of the ELISA test for antibody screening should consider the differences found in specificity, since one test is more specific for WNV while the other one is more suitable for detection of a broader range of flavivirus antibodies. On the other hand, besides corroborating that cross-neutralization occurs between flaviviruses from different serocomplexes (WNV/USUV and BAGV), this study points out that cross-neutralization between WNV and USUV is not symmetric, and reveals the difficulty to identify USUV infections serologically. This finding indicates that actual USUV infections might be underestimated in the current diagnostic schemes.
Collapse
Affiliation(s)
- Francisco Llorente
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | | | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | - Cristina Cano-Gómez
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | | | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
24
|
Rebollo B, Pérez T, Camuñas A, Pérez-Ramírez E, Llorente F, Sánchez-Seco MP, Jiménez-Clavero MÁ, Venteo Á. A monoclonal antibody to DIII E protein allowing the differentiation of West Nile virus from other flaviviruses by a lateral flow assay. J Virol Methods 2018; 260:41-44. [DOI: 10.1016/j.jviromet.2018.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022]
|
25
|
Pérez-Ramírez E, Llorente F, Del Amo J, Nowotny N, Jiménez-Clavero MÁ. Susceptibility and role as competent host of the red-legged partridge after infection with lineage 1 and 2 West Nile virus isolates of Mediterranean and Central European origin. Vet Microbiol 2018; 222:39-45. [PMID: 30080671 DOI: 10.1016/j.vetmic.2018.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/08/2018] [Accepted: 06/16/2018] [Indexed: 11/15/2022]
Abstract
West Nile virus (WNV; genus Flavivirus; family Flaviviridae) is the aetiological agent of an emerging, mosquito-borne disease with great impact on human and animal health. Over the past 15 years, WNV has been responsible for large epidemics mainly in North America but also in Europe, where lineage 1 and more recently lineage 2 strains have caused an upsurge in the number of outbreaks with increased human infection and higher virulence for certain wild bird species. This study aimed to compare the course of infection of the lineage 1 WNV strains Israel/98 and Italy/08 and the lineage 2 strain Austria/08 in the red-legged partridge (Alectoris rufa), a gallinaceous bird indigenous to the Iberian Peninsula and widely distributed in Southern and Western Europe. After experimental inoculation, clinical and analytic parameters (viraemia, viral load, antibodies) were examined over a period of 15 days. All inoculated birds became viremic and showed clinical disease, with a morbidity rate of 100% and mortality rates between 22.2 and 55.5% depending on the virus strain. The red-legged partridge demonstrated to be a competent host for transmission of the three investigated WNV isolates with the highest competence index observed for the Italian strain. Likewise, this strain was the most pathogenic causing the highest viral loads in blood, organs, feathers and oral and cloacal secretions. These experimental results indicate that the red-legged partridge is highly susceptible to the infection with lineage 1 and 2 WNV strains and that this species may act as an amplifying host for both WNV lineages.
Collapse
Affiliation(s)
- Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El Casar s/n, 28130, Valdeolmos, Madrid, Spain.
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El Casar s/n, 28130, Valdeolmos, Madrid, Spain
| | - Javier Del Amo
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El Casar s/n, 28130, Valdeolmos, Madrid, Spain
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria; Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, P.O. Box 505055, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El Casar s/n, 28130, Valdeolmos, Madrid, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
26
|
Cano-Gómez C, Llorente F, Pérez-Ramírez E, Soriguer RC, Sarasa M, Jiménez-Clavero MÁ. Experimental infection of grey partridges with Bagaza virus: pathogenicity evaluation and potential role as a competent host. Vet Res 2018; 49:44. [PMID: 29739470 PMCID: PMC5941787 DOI: 10.1186/s13567-018-0536-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/05/2018] [Indexed: 11/30/2022] Open
Abstract
Bagaza virus (BAGV; synonymous to Israel turkey meningoencephalomyelitis virus, ITV) is a relevant arthropod-borne epornitic flavivirus. In its first emergence in Europe (southern Spain, 2010) BAGV caused an outbreak, severely affecting red-legged partridges and common pheasants. The effects (pathogenicity, role as reservoir host) of BAGV in other European phasianids are unknown. To fill this gap, grey partridges were experimentally infected with BAGV. The clinical course of the disease was severe, with neurological signs, significant weight loss and 40% mortality. Low viral loads in the blood and the absence of contact transmission suggest a limited—if any—role on BAGV transmission for this European phasianid.
Collapse
Affiliation(s)
- Cristina Cano-Gómez
- Centro de Investigación en Sanidad Animal (INIA-CISA), Ctra. Algete a El Casar, 28130, Valdeolmos, Spain.
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (INIA-CISA), Ctra. Algete a El Casar, 28130, Valdeolmos, Spain
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal (INIA-CISA), Ctra. Algete a El Casar, 28130, Valdeolmos, Spain
| | - Ramón C Soriguer
- Estación Biológica de Doñana (EBD-CSIC), Américo Vespucio, s/n, 41092, Seville, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mathieu Sarasa
- Fédération Nationale des Chasseurs (FNC), 13 rue du Général Leclerc, 92136, Issy-les-Moulineaux cedex, France.,BEOPS, 1 Esplanade Compans Caffarelli, 31000, Toulouse, France
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (INIA-CISA), Ctra. Algete a El Casar, 28130, Valdeolmos, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
27
|
García-Bocanegra I, Paniagua J, Gutiérrez-Guzmán AV, Lecollinet S, Boadella M, Arenas-Montes A, Cano-Terriza D, Lowenski S, Gortázar C, Höfle U. Spatio-temporal trends and risk factors affecting West Nile virus and related flavivirus exposure in Spanish wild ruminants. BMC Vet Res 2016; 12:249. [PMID: 27829427 PMCID: PMC5103426 DOI: 10.1186/s12917-016-0876-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/29/2016] [Indexed: 02/05/2023] Open
Abstract
Background During the last decade, the spread of many flaviviruses (Genus Flavivirus) has been reported, representing an emerging threat for both animal and human health. To further study utility of wild ruminant samples in West Nile virus (WNV) surveillance, we assessed spatio–temporal trends and factors associated with WNV and cross-reacting flaviviruses exposure, particularly Usutu virus (USUV) and Meaban virus (MBV), in wild ruminants in Spain. Serum samples from 4693 wild ruminants, including 3073 free-living red deer (Cervus elaphus), 201 fallow deer (Dama dama), 125 mouflon (Ovis aries musimon), 32 roe deer (Capreolus capreolus) and 1262 farmed red deer collected in 2003–2014, were screened for WNV and antigenically-related flavivirus antibodies using a blocking ELISA (bELISA). Positive samples were tested for neutralizing antibodies against WNV, USUV and MBV by virus micro-neutralization tests. Results Mean flavivirus seroprevalence according to bELISA was 3.4 ± 0.5 % in red deer, 1.0 ± 1.4 % in fallow deer, 2.4 ± 2.7 % in mouflon and 0 % in roe deer. A multivariate logistic regression model revealed as main risk factors for seropositivity in red deer; year (2011), the specific south-coastal bioregion (bioregion 5) and presence of wetlands. Red deer had neutralizing antibodies against WNV, USUV and MBV. Conclusions The results indicate endemic circulation of WNV, USUV and MBV in Spanish red deer, even in areas without known flavivirus outbreaks. WNV antibodies detected in a free-living red deer yearling sampled in 2010, confirmed circulation this year. Co-circulation of WNV and USUV was detected in bioregions 3 and 5, and of WNV and MBV in bioregion 3. Sampling of hunted and farmed wild ruminants, specifically of red deer yearlings, could be a complementary way to national surveillance programs to monitor the activity of emerging flaviviruses.
Collapse
Affiliation(s)
- Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Rabanales, 14071, Córdoba, Spain
| | - Jorge Paniagua
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Rabanales, 14071, Córdoba, Spain
| | - Ana V Gutiérrez-Guzmán
- Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Sylvie Lecollinet
- ANSES, Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 Virologie, INRA, ANSES, ENVA, Maisons-Alfort, F-94703, France
| | - Mariana Boadella
- Sabiotec, Camino de Moledores s.n., Ed. Polivalente UCLM, 13005, Ciudad Real, Spain
| | - Antonio Arenas-Montes
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Rabanales, 14071, Córdoba, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Rabanales, 14071, Córdoba, Spain
| | - Steeve Lowenski
- ANSES, Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 Virologie, INRA, ANSES, ENVA, Maisons-Alfort, F-94703, France
| | - Christian Gortázar
- Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Ursula Höfle
- Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), Ciudad Real, Spain.
| |
Collapse
|
28
|
Smith DR. Waiting in the wings: The potential of mosquito transmitted flaviviruses to emerge. Crit Rev Microbiol 2016; 43:405-422. [PMID: 27800692 DOI: 10.1080/1040841x.2016.1230974] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The sudden dramatic emergence of the mosquito transmitted flavivirus Zika virus has bought to the world's attention a relatively obscure virus that was previously only known to specialist researchers. The genus Flavivirus of the family Flaviviridae contains a number of well-known mosquito transmitted human pathogenic viruses including the dengue, yellow fever, Japanese encephalitis and West Nile viruses. However, the genus also contains a number of lesser known human pathogenic viruses transmitted by mosquitoes including Wesselsbron virus, Ilheus virus, St. Louis encephalitis virus and Usutu virus. This review summarizes our knowledge of these lesser known mosquito transmitted flaviviruses and highlights their potential to emerge.
Collapse
Affiliation(s)
- Duncan R Smith
- a Institute of Molecular Biosciences and Center for Emerging and Neglected Infectious Diseases, Mahidol University , Thailand
| |
Collapse
|
29
|
Abad-Cobo A, Llorente F, Barbero MDC, Cruz-López F, Forés P, Jiménez-Clavero MÁ. Serosurvey Reveals Exposure to West Nile Virus in Asymptomatic Horse Populations in Central Spain Prior to Recent Disease Foci. Transbound Emerg Dis 2016; 64:1387-1392. [PMID: 27156847 DOI: 10.1111/tbed.12510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 11/28/2022]
Abstract
West Nile fever/encephalitis (WNF) is an infectious disease affecting horses, birds and humans, with a cycle involving birds as natural reservoirs and mosquitoes as transmission vectors. It is a notifiable disease, re-emerging in Europe. In Spain, it first appeared in horses in the south (Andalusia) in 2010, where outbreaks occur every year since. However, in 2014, an outbreak was declared in horses in central Spain, approximately 200 km away from the closest foci in Andalusia. Before that, evidence of West Nile virus (WNV) circulation in central Spain had been obtained only from wildlife, but never in horses. The purpose of this work was to perform a serosurvey to retrospectively detect West Nile virus infections in asymptomatic horses in central Spain from 2011 to 2013, that is before the occurrence of the first outbreaks in the area. For that, serum samples from 369 horses, collected between September 2011 and November 2013 in central Spain, were analysed by ELISA (blocking and IgM) and confirmed by virus neutralization, proving its specificity using parallel titration with another flavivirus (Usutu virus). As a result, 10 of 369 horse serum samples analysed gave positive results by competitive ELISA, 5 of which were confirmed as positive to WNV by virus neutralization (seropositivity rate: 1.35%). One of these WNV seropositive samples was IgM-positive. Chronologically, the first positive samples, including the IgM-positive, corresponded to sera collected in 2012 in Madrid province. From these results, we concluded that WNV circulated in asymptomatic equine populations of central Spain at least since 2012, before the first disease outbreak reported in this area.
Collapse
Affiliation(s)
- A Abad-Cobo
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agroalimentaria (INIA-CISA), Valdeolmos, Spain
| | - F Llorente
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agroalimentaria (INIA-CISA), Valdeolmos, Spain
| | - M Del Carmen Barbero
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agroalimentaria (INIA-CISA), Valdeolmos, Spain
| | - F Cruz-López
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - P Forés
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - M Á Jiménez-Clavero
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agroalimentaria (INIA-CISA), Valdeolmos, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
30
|
West Nile virus-neutralizing antibodies in wild birds from southern Spain. Epidemiol Infect 2016; 144:1907-11. [PMID: 26846720 DOI: 10.1017/s0950268816000133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
West Nile virus (WNV) is an emerging vector-borne arbovirus with a zoonotic life-cycle whose main reservoir hosts are birds. In humans and horses, WNV infections rarely result in clinical disease but on occasions - depending on factors such as climatic conditions, insect communities and background immunity levels in local populations - they can lead to outbreaks that threaten public and animal health. We tested for the presence of WNV antibodies in 149 birds belonging to 32 different species. Samples were first tested using a bird-specific ELISA kit and then both positive and doubtful results were confirmed by neutralization tests using WNV and Usutu virus. WNV antibodies were confirmed in a resident Sylvia melanocephala juvenile, supporting the idea of local transmission of WNV in southern Spain in 2013. In addition, the serum from an adult blackbird (Turdus merula) showed neutralization of both WNV and Usutu virus. We discuss our results in light of the occurrence of WNV on horse farms in southern Spain in 2013.
Collapse
|
31
|
Cano-Terriza D, Guerra R, Lecollinet S, Cerdà-Cuéllar M, Cabezón O, Almería S, García-Bocanegra I. Epidemiological survey of zoonotic pathogens in feral pigeons (Columba livia var. domestica) and sympatric zoo species in Southern Spain. Comp Immunol Microbiol Infect Dis 2015; 43:22-7. [PMID: 26616657 DOI: 10.1016/j.cimid.2015.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/23/2015] [Accepted: 10/17/2015] [Indexed: 11/29/2022]
Abstract
A cross-sectional study was carried out to determine the prevalence of pathogenic zoonotic agents (flaviviruses, avian influenza viruses (AIVs), Salmonella spp. and Toxoplasma gondii) in feral pigeons and sympatric zoo animals from Córdoba (Southern Spain) between 2013 and 2014. Antibodies against flaviviruses were detected in 7.8% out of 142 (CI95%: 3.7-11.8) pigeons, and 8.2% of 49 (CI95%: 0.9-15.4) of zoo animals tested. Antibodies with specificity against West Nile virus (WNV) and Usutu virus (USUV) were confirmed both in pigeons and in zoo birds. Even though seropositivity to AIVs was not detected in any of the analyzed pigeons, 17.9% of 28 (CI95%: 3.7-32.0) zoo birds tested showed positive results. Salmonella spp. was not isolated in any of 152 fecal samples collected from pigeons, while 6.8% of 44 zoo animals were positive. Antibodies against T. gondii were found in 9.2% of 142 (CI95%: 4.8-13.6) feral pigeons and 26.9% of 108 (CI95%: 19.6-34.1) zoo animals. This is the first study on flaviviruses and T. gondii in feral pigeons and captive zoo species in Spain. Antibodies against WNV and USUV detected in non-migratory pigeons and captive zoo animals indicate local circulation of these emerging pathogens in the study area. T. gondii was widespread in species analyzed. This finding could be of importance for Public Health and Conservation of endangered species present in zoo parks. Pigeons and zoo animals may be included as sentinel species for monitoring zoonotic pathogens in urban areas.
Collapse
Affiliation(s)
- David Cano-Terriza
- Department de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Campus de Rabanales, 14071 Córdoba, Spain
| | - Rafael Guerra
- Parque Zoológico Municipal de Córdoba (PZMC), Avenida Linneo s/n, 14071 Córdoba, Spain
| | - Sylvie Lecollinet
- ANSES, Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 Virologie, INRA, ANSES, ENVA, Maisons-Alfort F-94703, France
| | - Marta Cerdà-Cuéllar
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Oscar Cabezón
- Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Department de Medicina i Cirugia Animals, Universitat Autònoma de Barcelona, Barcelona 08193, Bellaterra, Spain
| | - Sonia Almería
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain; Department de Sanitat i d'Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona 08193, Bellaterra, Spain
| | - Ignacio García-Bocanegra
- Department de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Campus de Rabanales, 14071 Córdoba, Spain.
| |
Collapse
|
32
|
Llorente F, Pérez-Ramírez E, Fernández-Pinero J, Elizalde M, Figuerola J, Soriguer RC, Jiménez-Clavero MÁ. Bagaza virus is pathogenic and transmitted by direct contact in experimentally infected partridges, but is not infectious in house sparrows and adult mice. Vet Res 2015; 46:93. [PMID: 26338714 PMCID: PMC4559182 DOI: 10.1186/s13567-015-0233-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/31/2015] [Indexed: 11/15/2022] Open
Abstract
Bagaza virus (BAGV) is a mosquito-borne flavivirus belonging to the Ntaya serocomplex. In 2010, a disease outbreak was reported in Cádiz (Southern Spain) affecting game birds (red-legged partridges and common pheasants). In this work, red-legged partridges were inoculated experimentally with infectious BAGV isolated from this outbreak in order to make a complete clinical and analytical assessment of the disease caused by the pathogen in this species. Viral load (by real-time RT-PCR) in blood, oral and cloacal swabs, and feathers, and neutralizing antibody titres (by VNT) were measured. In order to determine direct contact transmission, non-inoculated partridges were caged together with the inoculated ones. To assess infectiousness in other species, house sparrows and mice were also inoculated with the virus. All the inoculated partridges were clinically affected, and 30% of them died. All the infected individuals lost weight, with larger losses being recorded in females. Conversely, no mortality or disease symptoms were observed in the sparrows or mice. Remarkably, all the contact partridges acquired the infection by direct (non-vectored) transmission. This study confirms that the red-legged partridge is a susceptible host for BAGV infection, and that this pathogen is transmitted by direct contact. Long-lasting viral loads detected in calami of immature feathers demonstrate that feather sampling could be a useful strategy in active surveillance programs for early detection of BAGV.
Collapse
Affiliation(s)
- Francisco Llorente
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Ctra Algete-El Casar s/n, Valdeolmos, Spain.
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Ctra Algete-El Casar s/n, Valdeolmos, Spain.
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Ctra Algete-El Casar s/n, Valdeolmos, Spain.
| | - Maia Elizalde
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Ctra Algete-El Casar s/n, Valdeolmos, Spain.
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Avenida de Americo Vespucio s/n, Seville, Spain.
| | - Ramón C Soriguer
- Estación Biológica de Doñana (EBD-CSIC), Avenida de Americo Vespucio s/n, Seville, Spain.
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Ctra Algete-El Casar s/n, Valdeolmos, Spain.
| |
Collapse
|
33
|
Nikolay B. A review of West Nile and Usutu virus co-circulation in Europe: how much do transmission cycles overlap? Trans R Soc Trop Med Hyg 2015; 109:609-18. [PMID: 26286946 DOI: 10.1093/trstmh/trv066] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/22/2015] [Indexed: 11/14/2022] Open
Abstract
Due to the increasing global spread of arboviruses, the geographic extent of virus co-circulation is expanding. This complicates the diagnosis of febrile conditions and can have direct effects on the epidemiology. As previously demonstrated, subsequent infections by two closely related viruses, such as those belonging to the Japanese encephalitis virus (JEV) serocomplex, can lead to partial or complete cross-immunity, altering the risk of infections or the outcome of disease. Two flaviviruses that may interact at population level are West Nile virus (WNV) and Usutu virus (USUV). These pathogens have antigenic cross-reactivity and affect human and animal populations throughout Europe. This systematic review investigates the overlap of WNV and USUV transmission cycles, not only geographically but also in terms of host and vector ranges. Co-circulation of WNV and USUV was reported in 10 countries and the viruses were found to infect 34 common bird species belonging to 11 orders. Moreover, four mosquito species are potential vectors for both viruses. Taken together, these data suggest that WNV and USUV transmission overlaps substantially in Europe and highlight the importance of further studies investigating the interactions between the two viruses within host and vector populations.
Collapse
Affiliation(s)
- Birgit Nikolay
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
34
|
Straková P, Šikutová S, Jedličková P, Sitko J, Rudolf I, Hubálek Z. The common coot as sentinel species for the presence of West Nile and Usutu flaviviruses in Central Europe. Res Vet Sci 2015; 102:159-61. [PMID: 26412536 DOI: 10.1016/j.rvsc.2015.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/20/2015] [Accepted: 08/02/2015] [Indexed: 10/23/2022]
Abstract
We examined 146 common coots (Fulica atra) on fishponds in central Moravia, Czech Republic, for antibodies to West Nile (WNV) and Usutu (USUV) flaviviruses. Eighteen birds reacted in the plaque-reduction neutralization test against WNV; these WNV seropositive samples were then titrated in parallel against USUV and tick-borne encephalitis virus (TBEV) to exclude flavivirus cross-reactivity. Two birds (1.4% overall) had the highest titers against WNV while 9 birds (6.2% overall) were seropositive for USUV, and in 7 birds the infecting flavivirus could not be differentiated with certainty. Our results indicate that both WNV and USUV infections occur in common coots; these birds might serve as a 'sentinel' species indicating the presence of these viruses at fishpond and wetland habitats in Central Europe.
Collapse
Affiliation(s)
- Petra Straková
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Silvie Šikutová
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic
| | - Petra Jedličková
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic
| | - Jiljí Sitko
- Comenius Museum, Ornithological Station, Přerov, Czech Republic
| | - Ivo Rudolf
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Zdenek Hubálek
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
35
|
Rizzoli A, Jimenez-Clavero MA, Barzon L, Cordioli P, Figuerola J, Koraka P, Martina B, Moreno A, Nowotny N, Pardigon N, Sanders N, Ulbert S, Tenorio A. The challenge of West Nile virus in Europe: knowledge gaps and research priorities. ACTA ACUST UNITED AC 2015; 20. [PMID: 26027485 DOI: 10.2807/1560-7917.es2015.20.20.21135] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
West Nile virus (WNV) is continuously spreading across Europe, and other continents, i.e. North and South America and many other regions of the world. Despite the overall sporadic nature of outbreaks with cases of West Nile neuroinvasive disease (WNND) in Europe, the spillover events have increased and the virus has been introduced into new areas. The high genetic diversity of the virus, with remarkable phenotypic variation, and its endemic circulation in several countries, require an intensification of the integrated and multidisciplinary research efforts built under the 7th Framework Programme of the European Union (FP7). It is important to better clarify several aspects of WNV circulation in Europe, including its ecology, genomic diversity, pathogenicity, transmissibility, diagnosis and control options, under different environmental and socio-economic scenarios. Identifying WNV endemic as well as infection-free areas is becoming a need for the development of human vaccines and therapeutics and the application of blood and organs safety regulations. This review, produced as a joint initiative among European experts and based on analysis of 118 scientific papers published between 2004 and 2014, provides the state of knowledge on WNV and highlights the existing knowledge and research gaps that need to be addressed with high priority in Europe and neighbouring countries.
Collapse
Affiliation(s)
- A Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, San Michele all Adige (TN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Saegerman C, Alba-Casals A, García-Bocanegra I, Dal Pozzo F, van Galen G. Clinical Sentinel Surveillance of Equine West Nile Fever, Spain. Transbound Emerg Dis 2014; 63:184-93. [DOI: 10.1111/tbed.12243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 11/29/2022]
Affiliation(s)
- C. Saegerman
- Research Unit of Epidemiology and Risk Analysis applied to veterinary science (UREAR-ULg); Fundamental and Applied Research for Animals & Health (FARAH); Faculty of Veterinary Medicine; University of Liege; Liege Belgium
| | - A. Alba-Casals
- Centre de Recerca en Sanitat Animal (CReSA); UAB-IRTA; Barcelona Spain
| | - I. García-Bocanegra
- Departamento de Sanidad Animal; Facultad de Veterinaria; Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3); Córdoba Spain
| | - F. Dal Pozzo
- Research Unit of Epidemiology and Risk Analysis applied to veterinary science (UREAR-ULg); Fundamental and Applied Research for Animals & Health (FARAH); Faculty of Veterinary Medicine; University of Liege; Liege Belgium
| | - G. van Galen
- Large Animal Clinic, Internal Medicine and Surgery; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
37
|
Vilibic-Cavlek T, Kaic B, Barbic L, Pem-Novosel I, Slavic-Vrzic V, Lesnikar V, Kurecic-Filipovic S, Babic-Erceg A, Listes E, Stevanovic V, Gjenero-Margan I, Savini G. First evidence of simultaneous occurrence of West Nile virus and Usutu virus neuroinvasive disease in humans in Croatia during the 2013 outbreak. Infection 2014; 42:689-95. [PMID: 24793998 DOI: 10.1007/s15010-014-0625-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/17/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE We report on first evidence of simultaneous occurrence of West Nile virus (WNV) and Usutu virus (USUV) neuroinvasive infection in humans in Croatia during the transmission season 2013. METHODS From June to December 2013, a total of 95 patients with clinically suspected WNV infection (WNV fever and neuroinvasive disease) were tested for WNV IgM/IgG antibodies using enzyme-linked immunosorbent assay. Twenty-six reactive samples were further tested by virus neutralization test for confirmation. RESULTS WNV neuroinvasive infection was confirmed in 20 patients, while in three patients USUV neutralizing antibodies were detected. Cases occurred during the 11-week interval (from 24 July to 07 October 2013). Both WNV and USUV cases were distributed in three north-western Croatian counties. In addition to human cases, recent asymptomatic WNV infection (detection of IgM antibodies) was recorded in 9/3,460 (0.3 %) tested sentinel horses. Infected animals were recorded in two eastern and one north-western county. CONCLUSIONS Our results indicate co-circulation of WNV and USUV in Croatia. WNV infection could be misdiagnosed with other emerging infectious diseases presenting with neurological symptoms such as USUV infection.
Collapse
Affiliation(s)
- T Vilibic-Cavlek
- Department of Virology, Croatian National Institute of Public Health, School of Medicine University of Zagreb, Rockefellerova 12, 10000, Zagreb, Croatia,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Circulation of a Meaban-like virus in yellow-legged gulls and seabird ticks in the western Mediterranean basin. PLoS One 2014; 9:e89601. [PMID: 24625959 PMCID: PMC3953012 DOI: 10.1371/journal.pone.0089601] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/21/2014] [Indexed: 12/23/2022] Open
Abstract
In recent years, a number of zoonotic flaviviruses have emerged worldwide, and wild birds serve as their major reservoirs. Epidemiological surveys of bird populations at various geographical scales can clarify key aspects of the eco-epidemiology of these viruses. In this study, we aimed at exploring the presence of flaviviruses in the western Mediterranean by sampling breeding populations of the yellow-legged gull (Larus michahellis), a widely distributed, anthropophilic, and abundant seabird species. For 3 years, we sampled eggs from 19 breeding colonies in Spain, France, Algeria, and Tunisia. First, ELISAs were used to determine if the eggs contained antibodies against flaviviruses. Second, neutralization assays were used to identify the specific flaviviruses present. Finally, for colonies in which ELISA-positive eggs had been found, chick serum samples and potential vectors, culicid mosquitoes and soft ticks (Ornithodoros maritimus), were collected and analyzed using serology and PCR, respectively. The prevalence of flavivirus-specific antibodies in eggs was highly spatially heterogeneous. In northeastern Spain, on the Medes Islands and in the nearby village of L'Escala, 56% of eggs had antibodies against the flavivirus envelope protein, but were negative for neutralizing antibodies against three common flaviviruses: West Nile, Usutu, and tick-borne encephalitis viruses. Furthermore, little evidence of past flavivirus exposure was obtained for the other colonies. A subset of the Ornithodoros ticks from Medes screened for flaviviral RNA tested positive for a virus whose NS5 gene was 95% similar to that of Meaban virus, a flavivirus previously isolated from ticks of Larus argentatus in western France. All ELISA-positive samples subsequently tested positive for Meaban virus neutralizing antibodies. This study shows that gulls in the western Mediterranean Basin are exposed to a tick-borne Meaban-like virus, which underscores the need of exploring the spatial and temporal distribution of this flavivirus as well as its potential pathogenicity for animals and humans.
Collapse
|
39
|
Experimental infections of wild birds with West Nile virus. Viruses 2014; 6:752-81. [PMID: 24531334 PMCID: PMC3939481 DOI: 10.3390/v6020752] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 01/16/2023] Open
Abstract
Avian models of West Nile virus (WNV) disease have become pivotal in the study of infection pathogenesis and transmission, despite the intrinsic constraints that represents this type of experimental research that needs to be conducted in biosecurity level 3 (BSL3) facilities. This review summarizes the main achievements of WNV experimental research carried out in wild birds, highlighting advantages and limitations of this model. Viral and host factors that determine the infection outcome are analyzed in detail, as well as recent discoveries about avian immunity, viral transmission, and persistence achieved through experimental research. Studies of laboratory infections in the natural host will help to understand variations in susceptibility and reservoir competence among bird species, as well as in the epidemiological patterns found in different affected areas.
Collapse
|
40
|
Beck C, Jimenez-Clavero MA, Leblond A, Durand B, Nowotny N, Leparc-Goffart I, Zientara S, Jourdain E, Lecollinet S. Flaviviruses in Europe: complex circulation patterns and their consequences for the diagnosis and control of West Nile disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6049-83. [PMID: 24225644 PMCID: PMC3863887 DOI: 10.3390/ijerph10116049] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/24/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
In Europe, many flaviviruses are endemic (West Nile, Usutu, tick-borne encephalitis viruses) or occasionally imported (dengue, yellow fever viruses). Due to the temporal and geographical co-circulation of flaviviruses in Europe, flavivirus differentiation by diagnostic tests is crucial in the adaptation of surveillance and control efforts. Serological diagnosis of flavivirus infections is complicated by the antigenic similarities among the Flavivirus genus. Indeed, most flavivirus antibodies are directed against the highly immunogenic envelope protein, which contains both flavivirus cross-reactive and virus-specific epitopes. Serological assay results should thus be interpreted with care and confirmed by comparative neutralization tests using a panel of viruses known to circulate in Europe. However, antibody cross-reactivity could be advantageous in efforts to control emerging flaviviruses because it ensures partial cross-protection. In contrast, it might also facilitate subsequent diseases, through a phenomenon called antibody-dependent enhancement mainly described for dengue virus infections. Here, we review the serological methods commonly used in WNV diagnosis and surveillance in Europe. By examining past and current epidemiological situations in different European countries, we present the challenges involved in interpreting flavivirus serological tests and setting up appropriate surveillance programs; we also address the consequences of flavivirus circulation and vaccination for host immunity.
Collapse
Affiliation(s)
- Cécile Beck
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| | | | - Agnès Leblond
- Département Hippique, VetAgroSup, Marcy l’Etoile 69280, France; E-Mail:
- UR346, INRA, Saint Genès Champanelle 63122, France; E-Mail:
| | - Benoît Durand
- Epidemiology Unit, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mail:
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna 1210, Austria; E-Mail:
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | | | - Stéphan Zientara
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| | - Elsa Jourdain
- UR346, INRA, Saint Genès Champanelle 63122, France; E-Mail:
| | - Sylvie Lecollinet
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| |
Collapse
|