1
|
Chang JS, Kim WS. Co-oxidation of arxB response by As(III), Fe(II), and Mn(II)-oxidizing bacteria in As-contaminated tap water. CHEMOSPHERE 2025; 377:144330. [PMID: 40179703 DOI: 10.1016/j.chemosphere.2025.144330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 04/05/2025]
Abstract
Iron pipe corrosion can be caused by tap water contamination with arsenic (As), heavy metals, and symbiotic microorganisms. In this study, we performed laboratory experiments on drinking water samples collected from Yanbian University of Science and Technology, Jilin Province, eastern China, to evaluate the mechanism of heavy metal oxidation by microbes. The experiments revealed corrosion of the entire water pipe, heavy metal contamination, and microbial co-oxidation of As(III), iron (Fe(II)), and manganese (Mn(II)). Pipe corrosion was observed in several university buildings, with particularly high levels of As (4.3 μg/L), Fe (143.4 μg/L), Mn (0.6 μg/L), and bacteria (1,200 CFU/100 mL) in the Engineering building. The As(III), Fe(II), and Mn(II) co-oxidation activity of As(III)-resistant and Fe(II)- and Mn(II)-oxidizing bacteria was investigated based on frvA, aioE, boxA, arsB, and arxB gene activities in Burkholderia glathei strain YUST-DW12 (NCBI accession No.: HM640291). Batch experiments revealed that YUST-DW12 completely co-oxidized 1 mM As(III) to As(V), 5 mM Fe(II) to Fe(III), and 5 mM Mn(II) to Mn(IV) within 45-50 h, 10 h, and 25 h, respectively. Co-oxidation related to arxB gene activity significantly contributed to As, Fe, and Mn bioremediation and mobility in tap water, indicating that As, Fe, and Mn oxidases in bacteria control the biogeochemical cycle of contaminated public tap water affected by iron pipe corrosion. This research provides novel insights into the role of microbial arxB in As(III), Fe(II), and Mn(II) co-oxidation in corroded iron pipes, enhancing our understanding of the co-oxidative removal of As from contaminated tap and bottled water.
Collapse
Affiliation(s)
- Jin-Soo Chang
- Molecular Biogeochemistry Laboratory, Biological & Genetic Resources Institute (BGRI), Sejong, Republic of Korea.
| | - Won-Seok Kim
- Research Institute, NCSQUARE co., Nam-gu, Pohang, Republic of Korea; Division of Advanced Nuclear Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, Republic of Korea
| |
Collapse
|
2
|
Jang K, Sharma A. A Peculiar Case of Disseminated Melioidosis with Atypical Features Likely Linked to Bong/Water Pipe Use. J Glob Infect Dis 2024; 16:183-185. [PMID: 39886090 PMCID: PMC11775393 DOI: 10.4103/jgid.jgid_5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 02/01/2025] Open
Abstract
Melioidosis, caused by Burkholderia pseudomallei, is a challenging infectious disease with global implications, primarily affecting Southeast Asia. We present the case of a 24-year-old male with a curious history of tobacco use, presenting with fevers, weight loss, and genitourinary symptoms. Diagnostic challenges arose as symptoms mimicked other diseases. Disseminated melioidosis was confirmed via Gram staining and positron emission tomography scan findings, emphasizing the disease's diverse clinical manifestations. Treatment with ceftazidime and cotrimoxazole led to prompt recovery. Notably, the patient's tobacco use linked to contaminated water highlights a unique transmission route. This case underscores the need for heightened awareness and preventive measures in endemic regions.
Collapse
Affiliation(s)
- Kisen Jang
- Medical Division, Base Hospital Delhi Cantt, New Delhi, India
| | - Anmol Sharma
- Medical Division, Base Hospital Delhi Cantt, New Delhi, India
| |
Collapse
|
3
|
Kaewrakmuk J, Chusri S, Khrongsee P, Kawila S, Saechan V, Leesahud N, Chiewchanyont B, Thananchai H, Duangsonk K, Tuanyok A. A molecular epidemiological analysis of Burkholderia pseudomallei in southern Thailand. PLoS Negl Trop Dis 2024; 18:e0012444. [PMID: 39173078 PMCID: PMC11373835 DOI: 10.1371/journal.pntd.0012444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/04/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Melioidosis, a severe bacterial illness caused by Burkholderia pseudomallei, is prevalent in most parts of Thailand, including its southern region situated within the Malay Peninsula. Despite a lower reported incidence rate of melioidosis in the South compared to the Northeast, the mortality rate remains persistently high. This study aimed to better understand the epidemiology and investigate the presence of B. pseudomallei in the natural environment of southern Thailand. Using multi-locus sequence typing (MLST), we characterized B. pseudomallei isolates derived from human cases and compared them with previously reported sequence types (STs) from the same region. A total of 263 clinical isolates retrieved from 156 melioidosis patients between 2014 and 2020 were analyzed, revealing 72 distinct STs, with 25 (35%) matching STs from Finkelstein's environmental isolates collected in southern Thailand during 1964-1967. Notably, strains bearing STs 288, 84, 54, 289, and 46 were frequently found among patients. Additionally, we observed strain diversity with multiple STs in 13 of 59 patients, indicating exposure to various B. pseudomallei genotypes in the environmental sources of the infection. Environmental surveys were conducted in Songkhla Province to detect B. pseudomallei in soil and water samples where local patients lived. Of the 2737 soil samples from 208 locations and 244 water samples from diverse sources, 52 (25%) soil sampling locations and 63 (26%) water sources were cultured positive for B. pseudomallei. Positive soil samples were predominantly found in animal farming area and non-agricultural zones like mountains and grasslands, while water samples were frequently positive in waterfalls, streams, and surface runoffs, with only 9% of rice paddies testing positive. Collectively, a significant proportion of recent melioidosis cases in Songkhla Province can be attributed to known B. pseudomallei STs persisting in the environment for at least the past six decades. Further characterization of B. pseudomallei isolates from recent environment surveys is warranted. These findings illuminate the contemporary landscape of B. pseudomallei infections and their environmental prevalence in southern Thailand, contributing to the regional threat assessment in Thailand and Southeast Asia.
Collapse
Affiliation(s)
- Jedsada Kaewrakmuk
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sarunyou Chusri
- Faculty of Medicine, Prince of Songkla University, Songkhla. Thailand
| | - Pacharapong Khrongsee
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Soontara Kawila
- Faculty of Medicine, Prince of Songkla University, Songkhla. Thailand
| | - Vannarat Saechan
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | | | | | | | | | - Apichai Tuanyok
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
4
|
Seng R, Chomkatekaew C, Tandhavanant S, Saiprom N, Phunpang R, Thaipadungpanit J, Batty EM, Day NPJ, Chantratita W, West TE, Thomson NR, Parkhill J, Chewapreecha C, Chantratita N. Genetic diversity, determinants, and dissemination of Burkholderia pseudomallei lineages implicated in melioidosis in Northeast Thailand. Nat Commun 2024; 15:5699. [PMID: 38972886 PMCID: PMC11228029 DOI: 10.1038/s41467-024-50067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
Melioidosis is an often-fatal neglected tropical disease caused by an environmental bacterium Burkholderia pseudomallei. However, our understanding of the disease-causing bacterial lineages, their dissemination, and adaptive mechanisms remains limited. To address this, we conduct a comprehensive genomic analysis of 1,391 B. pseudomallei isolates collected from nine hospitals in northeast Thailand between 2015 and 2018, and contemporaneous isolates from neighbouring countries, representing the most densely sampled collection to date. Our study identifies three dominant lineages, each with unique gene sets potentially enhancing bacterial fitness in the environment. We find that recombination drives lineage-specific gene flow. Transcriptome analyses of representative clinical isolates from each dominant lineage reveal increased expression of lineage-specific genes under environmental conditions in two out of three lineages. This underscores the potential importance of environmental persistence for these dominant lineages. The study also highlights the influence of environmental factors such as terrain slope, altitude, and river direction on the geographical dispersal of B. pseudomallei. Collectively, our findings suggest that environmental persistence may play a role in facilitating the spread of B. pseudomallei, and as a prerequisite for exposure and infection, thereby providing useful insights for informing melioidosis prevention and control strategies.
Collapse
Affiliation(s)
- Rathanin Seng
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chalita Chomkatekaew
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Janjira Thaipadungpanit
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth M Batty
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - T Eoin West
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Nicholas R Thomson
- Parasites and Microbes Wellcome Sanger Institute, Cambridge, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Claire Chewapreecha
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Parasites and Microbes Wellcome Sanger Institute, Cambridge, UK.
- Previous Affiliations: Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut University of Technology Thonburi, Bangkok, Thailand.
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Anggraini D, Siregar FM, Rosdiana D, Kemal RA, Yovi I, Triani ZD, Jasmin N, Dwijelita N, Webb JR, Mayo M, Kaestli M, Currie BJ. Epidemiology and genetic diversity of Burkholderia pseudomallei from Riau Province, Indonesia. PLoS Negl Trop Dis 2024; 18:e0012195. [PMID: 38805481 PMCID: PMC11161056 DOI: 10.1371/journal.pntd.0012195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/07/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
Melioidosis is a bacterial infection caused by Burkholderia pseudomallei, that is common in tropical and subtropical countries including Southeast Asia and Northern Australia. The magnitude of undiagnosed and untreated melioidosis across the country remains unclear. Given its proximity to regions with high infection rates, Riau Province on Sumatera Island is anticipated to have endemic melioidosis. This study reports retrospectively collected data on 68 culture-confirmed melioidosis cases from two hospitals in Riau Province between January 1, 2009, and December 31, 2021, with full clinical data available on 41 cases. We also describe whole genome sequencing and genotypic analysis of six isolates of B. pseudomallei. The mean age of the melioidosis patients was 49.1 (SD 11.5) years, 85% were male and the most common risk factor was diabetes mellitus (78%). Pulmonary infection was the most common presentation (39%), and overall mortality was 41%. Lung as a focal infection (aOR: 6.43; 95% CI: 1.13-36.59, p = 0.036) and bacteremia (aOR: 15.21; 95% CI: 2.59-89.31, p = 0.003) were significantly associated with death. Multilocus sequence typing analysis conducted on six B.pseudomallei genomes identified three sequence types (STs), namely novel ST1794 (n = 3), ST46 (n = 2), and ST289 (n = 1). A phylogenetic tree of Riau B. pseudomallei whole genome sequences with a global dataset of genomes clearly distinguished the genomes of B. pseudomallei in Indonesia from the ancestral Australian clade and classified them within the Asian clade. This study expands the known presence of B. pseudomallei within Indonesia and confirms that Indonesian B. pseudomallei are genetically linked to those in the rest of Southeast Asia. It is anticipated that melioidosis will be found in other locations across Indonesia as laboratory capacities improve and standardized protocols for detecting and confirming suspected cases of melioidosis are more widely implemented.
Collapse
Affiliation(s)
- Dewi Anggraini
- Department of Microbiology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Arifin Achmad General Hospital, Riau Province, Pekanbaru, Indonesia
- Eka Hospital Pekanbaru, Pekanbaru, Indonesia
| | - Fajri Marindra Siregar
- Arifin Achmad General Hospital, Riau Province, Pekanbaru, Indonesia
- Department of Biochemistry, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Dani Rosdiana
- Arifin Achmad General Hospital, Riau Province, Pekanbaru, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Rahmat Azhari Kemal
- Arifin Achmad General Hospital, Riau Province, Pekanbaru, Indonesia
- Department of Medical Biology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Indra Yovi
- Arifin Achmad General Hospital, Riau Province, Pekanbaru, Indonesia
- Eka Hospital Pekanbaru, Pekanbaru, Indonesia
- Department of Pulmonology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | | | - Novira Jasmin
- Department of Microbiology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Norsila Dwijelita
- Department of Microbiology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Jessica R. Webb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mirjam Kaestli
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
6
|
Tantirat P, Chantarawichian Y, Taweewigyakarn P, Kripattanapong S, Jitpeera C, Doungngern P, Phiancharoen C, Tangwangvivat R, Hinjoy S, Sujariyakul A, Amornchai P, Wongsuvan G, Hantakun V, Wuthiekanun V, Thaipadungpanit J, Thomson NR, Dance DAB, Chewapreecha C, Batty EM, Limmathurotsakul D. Melioidosis in Patients with COVID-19 Exposed to Contaminated Tap Water, Thailand, 2021. Emerg Infect Dis 2024; 30:791-794. [PMID: 38526300 PMCID: PMC10977828 DOI: 10.3201/eid3004.231476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
In September 2021, a total of 25 patients diagnosed with COVID-19 developed acute melioidosis after (median 7 days) admission to a COVID-19 field hospital in Thailand. Eight nonpotable tap water samples and 6 soil samples were culture-positive for Burkholderia pseudomallei. Genomic analysis suggested contaminated tap water as the likely cause of illness.
Collapse
|
7
|
Meumann EM, Limmathurotsakul D, Dunachie SJ, Wiersinga WJ, Currie BJ. Burkholderia pseudomallei and melioidosis. Nat Rev Microbiol 2024; 22:155-169. [PMID: 37794173 DOI: 10.1038/s41579-023-00972-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is found in soil and water of tropical and subtropical regions globally. Modelled estimates of the global burden predict that melioidosis remains vastly under-reported, and a call has been made for it to be recognized as a neglected tropical disease by the World Health Organization. Severe weather events and environmental disturbance are associated with increased case numbers, and it is anticipated that, in some regions, cases will increase in association with climate change. Genomic epidemiological investigations have confirmed B. pseudomallei endemicity in newly recognized regions, including the southern United States. Melioidosis follows environmental exposure to B. pseudomallei and is associated with comorbidities that affect the immune response, such as diabetes, and with socioeconomic disadvantage. Several vaccine candidates are ready for phase I clinical trials. In this Review, we explore the global burden, epidemiology and pathophysiology of B. pseudomallei as well as current diagnostics, treatment recommendations and preventive measures, highlighting research needs and priorities.
Collapse
Affiliation(s)
- Ella M Meumann
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia.
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Willem J Wiersinga
- Division of Infectious Diseases, Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
8
|
Seng R, Chomkatekaew C, Tandhavanant S, Saiprom N, Phunpang R, Thaipadungpanit J, Batty EM, Day NPJ, Chantratita W, West TE, Thomson NR, Parkhill J, Chewapreecha C, Chantratita N. Genetic diversity, determinants, and dissemination of Burkholderia pseudomallei lineages implicated in melioidosis in northeast Thailand. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543359. [PMID: 38106061 PMCID: PMC10723255 DOI: 10.1101/2023.06.02.543359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Melioidosis is an often-fatal neglected tropical disease caused by an environmental bacterium Burkholderia pseudomallei. However, our understanding of the disease-causing bacterial lineages, their dissemination, and adaptive mechanisms remains limited. To address this, we conducted a comprehensive genomic analysis of 1,391 B. pseudomallei isolates collected from nine hospitals in northeast Thailand between 2015 and 2018, and contemporaneous isolates from neighbouring countries, representing the most densely sampled collection to date. Our study identified three dominant lineages with unique gene sets enhancing bacterial fitness, indicating lineage-specific adaptation strategies. Crucially, recombination was found to drive lineage-specific gene flow. Transcriptome analyses of representative clinical isolates from each dominant lineage revealed heightened expression of lineage-specific genes in environmental versus infection conditions, notably under nutrient depletion, highlighting environmental persistence as a key factor in the success of dominant lineages. The study also revealed the role of environmental factors - slope of terrain, altitude, direction of rivers, and the northeast monsoons - in shaping B. pseudomallei geographical dispersal. Collectively, our findings highlight persistence in the environment as a pivotal element facilitating B. pseudomallei spread, and as a prelude to exposure and infection, thereby providing useful insights for informing melioidosis prevention and control strategies.
Collapse
Affiliation(s)
- Rathanin Seng
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chalita Chomkatekaew
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Veterinary Medicine, University of Cambridge, UK
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Janjira Thaipadungpanit
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth M Batty
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas PJ Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, UK
| | - Claire Chewapreecha
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Previous Affiliations: Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut University of Technology Thonburi, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Zhang Z, Yao Y, Yang J, Jiang H, Meng Y, Cao W, Zhou F, Wang K, Yang Z, Yang C, Sun J, Yang Y. Assessment of adaptive immune responses of dairy cows with Burkholderia contaminans-induced mastitis. Front Microbiol 2023; 14:1099623. [PMID: 36960295 PMCID: PMC10028201 DOI: 10.3389/fmicb.2023.1099623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Burkholderia contaminans, an emerging pathogen related to cystic fibrosis, is known to cause potentially fatal infections in humans and ruminants, especially in immunocompromised individuals. However, the immune responses in cows following its infection have not been fully elucidated. In this study, T- and B-lymphocytes-mediated immune responses were evaluated in 15 B. contaminans-induced mastitis cows and 15 healthy cows with multi-parameter flow cytometry. The results showed that infection with B. contaminans was associated with a significant decrease in the number and percentage of B lymphocytes but with a significant increase in the proportion of IgG+CD27+ B lymphocytes. This indicated that humoral immune response may not be adequate to fight intracellular infection, which could contribute to the persistent bacterial infection. In addition, B. contaminans infection induced significant increase of γδ T cells and double positive (DP) CD4+CD8+ T cells but not CD4+ or CD8+ (single positive) T cells in blood. Phenotypic analysis showed that the percentages of activated WC1+ γδ T cells in peripheral blood were increased in the B. contaminans infected cows. Interestingly, intracellular cytokine staining showed that cattle naturally infected with B. contaminans exhibited multifunctional TNF-α+IFN-γ+IL-2+ B. contaminans-specific DP T cells. Our results, for the first time, revealed a potential role of IgG+CD27+ B cells, CD4+CD8+ T cells and WC1+ γδ T cells in the defense of B. contaminans-induced mastitis in cows.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yiyang Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiayu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hui Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ye Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenqiang Cao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Fuzhen Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Chunhua Yang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- *Correspondence: Chunhua Yang,
| | - Jie Sun
- Shenzhen Academy of Inspection and Quarantine Sciences, Shenzhen, China
- Jie Sun,
| | - Yi Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- Yi Yang,
| |
Collapse
|
10
|
Selvam K, Ganapathy T, Najib MA, Khalid MF, Abdullah NA, Harun A, Wan Mohammad WMZ, Aziah I. Burden and Risk Factors of Melioidosis in Southeast Asia: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15475. [PMID: 36497549 PMCID: PMC9741171 DOI: 10.3390/ijerph192315475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
This scoping review aims to provide a comprehensive overview of human melioidosis in Southeast Asia as well as to highlight knowledge gaps in the prevalence and risk factors of this life-threatening disease using available evidence-based data for better diagnosis and treatment. Preferred Reporting Items for Systematic Review and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) was used as the guideline for this review. The literature search was conducted on 23 March 2022 through two electronic databases (PubMed and Scopus) using lists of keywords referring to the Medical Subject Headings (MeSH) thesaurus. A total of 38 articles related to human melioidosis were included from 645 screened articles. These studies were carried out between 1986 and 2019 in six Southeast Asian countries: Thailand, Cambodia, Malaysia, Myanmar, Singapore, and Vietnam. Melioidosis has been reported with a high disease prevalence among high-risk populations. Studies in Thailand (48.0%) and Cambodia (74.4%) revealed disease prevalence in patients with septic arthritis and children with suppurative parotitis, respectively. Other studies in Thailand (63.5%) and Malaysia (54.4% and 65.7%) showed a high seroprevalence of melioidosis among Tsunami survivors and military personnel, respectively. Additionally, this review documented soil and water exposure, diabetes mellitus, chronic renal failure, thalassemia, and children under the age of 15 as the main risk factors for melioidosis. Human melioidosis is currently under-reported in Southeast Asia and its true prevalence is unknown.
Collapse
Affiliation(s)
- Kasturi Selvam
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Thanasree Ganapathy
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nor Azlina Abdullah
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab 2, Kubang Kerian 16150, Kelantan, Malaysia
| | - Wan Mohd Zahiruddin Wan Mohammad
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
11
|
Cycle-Inhibiting Factor Is Associated with Burkholderia pseudomallei Invasion in Human Neuronal Cells. BIOLOGY 2022; 11:biology11101439. [PMID: 36290346 PMCID: PMC9598235 DOI: 10.3390/biology11101439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
Burkholderia pseudomallei is a pathogenic bacterium that causes human melioidosis, which is associated with a high mortality rate. However, the underlying mechanisms of B. pseudomallei pathogenesis are largely unknown. In this study, we examined the infection of human neuronal SH-Sy5y cells by several clinically relevant B. pseudomallei strains. We found that all tested B. pseudomallei strains can invade SH-Sy5y cells, undergo intracellular replication, cause actin-tail formation, and form multinucleated giant cells. Additionally, a deletion mutant of B. pseudomallei cycle-inhibiting factor (cif) was constructed that exhibited reduced invasion in SH-Sy5y cells. Complementation of cif restored invasion of the B. pseudomallei cif-deleted mutant. Our findings enhance understanding of B. pseudomallei pathogenicity in terms of the virulence factor Cif and demonstrate the function of Cif in neurological melioidosis. This may eventually lead to the discovery of novel targets for treatment and a strategy to control the disease.
Collapse
|
12
|
Borton D. Melioidosis: Emerging beyond endemic areas. Nursing 2022; 52:29-34. [PMID: 36129502 DOI: 10.1097/01.nurse.0000872460.50198.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT Recent cases suggest that melioidosis, an infection caused by Burkholderia pseudomallei, is an emerging infectious disease. Nurses have a key role in the care of patients with melioidosis. This article provides an overview of the epidemiology, clinical presentation, diagnosis, treatment, and prevention of melioidosis, and discusses unusual, non-travel-related cases of melioidosis.
Collapse
Affiliation(s)
- Dorothy Borton
- Dorothy Borton is an independent infection prevention consultant based in Philadelphia, Pa
| |
Collapse
|
13
|
Klimko CP, Shoe JL, Rill NO, Hunter M, Dankmeyer JL, Talyansky Y, Schmidt LK, Orne CE, Fetterer DP, Biryukov SS, Burtnick MN, Brett PJ, DeShazer D, Cote CK. Layered and integrated medical countermeasures against Burkholderia pseudomallei infections in C57BL/6 mice. Front Microbiol 2022; 13:965572. [PMID: 36060756 PMCID: PMC9432870 DOI: 10.3389/fmicb.2022.965572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei, the gram-negative bacterium that causes melioidosis, is notoriously difficult to treat with antibiotics. A significant effort has focused on identifying protective vaccine strategies to prevent melioidosis. However, when used as individual medical countermeasures both antibiotic treatments (therapeutics or post-exposure prophylaxes) and experimental vaccine strategies remain partially protective. Here we demonstrate that when used in combination, current vaccine strategies (recombinant protein subunits AhpC and/or Hcp1 plus capsular polysaccharide conjugated to CRM197 or the live attenuated vaccine strain B. pseudomallei 668 ΔilvI) and co-trimoxazole regimens can result in near uniform protection in a mouse model of melioidosis due to apparent synergy associated with distinct medical countermeasures. Our results demonstrated significant improvement when examining several suboptimal antibiotic regimens (e.g., 7-day antibiotic course started early after infection or 21-day antibiotic course with delayed initiation). Importantly, this combinatorial strategy worked similarly when either protein subunit or live attenuated vaccines were evaluated. Layered and integrated medical countermeasures will provide novel treatment options for melioidosis as well as diseases caused by other pathogens that are refractory to individual strategies, particularly in the case of engineered, emerging, or re-emerging bacterial biothreat agents.
Collapse
Affiliation(s)
- Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Nathaniel O. Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Lindsey K. Schmidt
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Caitlyn E. Orne
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - David P. Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Sergei S. Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
14
|
Tran QTL, Phan PH, Bui LNH, Bui HTV, Hoang NTB, Tran DM, Trinh TT. Child Melioidosis Deaths Caused by Burkholderia pseudomallei-Contaminated Borehole Water, Vietnam, 2019. Emerg Infect Dis 2022; 28:1689-1693. [PMID: 35697339 PMCID: PMC9328891 DOI: 10.3201/eid2808.220113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Within 8 months, 3 children from 1 family in northern Vietnam died from melioidosis. Burkholderia pseudomallei of the same sequence type, 541, was isolated from clinical samples, borehole water, and garden and rice field soil. Boreholes should be properly constructed and maintained to avoid B. pseudomallei contamination.
Collapse
|
15
|
Di Fiore A, De Luca V, Langella E, Nocentini A, Buonanno M, Maria Monti S, Supuran CT, Capasso C, De Simone G. Biochemical, structural, and computational studies of a γ-carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei. Comput Struct Biotechnol J 2022; 20:4185-4194. [PMID: 36016712 PMCID: PMC9389205 DOI: 10.1016/j.csbj.2022.07.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Melioidosis is a severe disease caused
Burkholderia pseudomallei. γ-carbonic anhydrases (γ-CAs) have been recently
introduced as novel antibacterial drug targets. A new γ-CA from B.
pseudomallei has been investigated by a
multidisciplinary approach. Obtained results provide an important starting point
for developing new anti-melioidosis drugs.
Melioidosis is a severe disease caused by the highly
pathogenic gram-negative bacterium Burkholderia
pseudomallei. Several studies have highlighted the broad
resistance of this pathogen to many antibiotics and pointed out the pivotal
importance of improving the pharmacological arsenal against it. Since γ-carbonic
anhydrases (γ-CAs) have been recently introduced as potential and novel
antibacterial drug targets, in this paper, we report a detailed characterization
of BpsγCA, a γ-CA from B.
pseudomallei by a multidisciplinary approach. In
particular, the enzyme was recombinantly produced and biochemically
characterized. Its catalytic activity at different pH values was measured, the
crystal structure was determined and theoretical pKa calculations were carried
out. Results provided a snapshot of the enzyme active site and dissected the
role of residues involved in the catalytic mechanism and ligand recognition.
These findings are an important starting point for developing new
anti-melioidosis drugs targeting BpsγCA.
Collapse
|
16
|
Trinh TT, Vu TA, Bui LNH, Nguyen HV, Nguyen DTH, Dang NX, Le Tran QT. Thermal and gastric stability of antimicrobial activity of juices and aqueous extracts prepared from common eligible herbs and traditional medicinal plants against Burkholderia pseudomallei and other enteric bacteria. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2025] Open
Abstract
Abstract
Background
Burkholderia pseudomallei is a causative agent of melioidosis, a fatal infectious disease highly prevalent in the tropics where traditional medicinal plants are widely used for the treatment of various human ailments. In this study, we aimed to evaluate the in vitro antibacterial activity of common eligible herbs and medicinal plants against B. pseudomallei. Thermal and gastric stability, antibacterial spectrum, bactericidal activity, and cell cytotoxicity were also tested to verify the possible usage of these plants in the treatment of melioidosis.
Results
Eighteen eligible herbs and twenty-one medicinal plants were collected. Herb juices and aqueous plant samples extracted at different temperatures were prepared for antibacterial testing. A higher proportion of aqueous plant extracts (17/21; 80.9%) against B. pseudomallei was observed, in comparison with that of herb juices (8/18; 44.5%). Two herb juices and twelve aqueous plant extracts were selected for further tests. The juices of A. sativum and A. tuberosum decreased their antimicrobial activity when treated at higher temperatures whereas the aqueous plant extracts increased their antimicrobial activity when prepared at 70 and 100 °C. The herb juices showed a broader spectrum of antimicrobial activity than the aqueous plant extracts. All samples showed less cytotoxicity on the HT29, HepG2, and HEK293 cell lines. At the 2× minimal inhibitory concentration (MIC), aqueous extracts of Blechnum orientale, Breynia fruticose, Psidium guajava, Rhodomyrtus tomentosa, Rosa odorata, and Schima wallichii showed similar bactericidal activity to that of amoxicillin clavulanic acid. The antimicrobial activity of Mangifera indica, Punica granatum, and R. tomentosa remained under the stimulated gastric conditions.
Conclusion
Our data indicate that traditional medicinal plants prepared by decoction could be effectively used to treat melioidosis via the oral route. Further in vivo investigations are needed to explore other alternative therapies for the prevention and treatment of tested pathogenic bacterial species.
Collapse
|
17
|
Oslan SNH, Yusoff AH, Mazlan M, Lim SJ, Khoo JJ, Oslan SN, Ismail A. Comprehensive approaches for the detection of Burkholderia pseudomallei and diagnosis of melioidosis in human and environmental samples. Microb Pathog 2022; 169:105637. [PMID: 35710088 DOI: 10.1016/j.micpath.2022.105637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Melioidosis is endemic in Southeast Asia and northern Australia. The causative agent of melioidosis is a Gram-negative bacterium, Burkholderia pseudomallei. Its invasion can be fatal if melioidosis is not treated promptly. It is intrinsically resistant to a variety of antibiotics. In this paper, we present a comprehensive overview of the current trends on melioidosis cases, treatments, B. pseudomallei virulence factors, and molecular techniques to detect the bacterium from different samples. The clinical and microbial diagnosis methods of identification and detection of B. pseudomallei are commonly used for the rapid diagnosis and typing of strains, such as polymerase chain reaction or multi-locus sequence typing. The genotyping strategies and techniques have been constantly evolving to identify genomic loci linked to or associated with this human disease. More research strategies for detecting and controlling melioidosis should be encouraged and conducted to understand the current situation. In conclusion, we review existing diagnostic methodologies for melioidosis detection and provide insights on prospective diagnostic methods for the bacterium.
Collapse
Affiliation(s)
- Siti Nur Hazwani Oslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Abdul Hafidz Yusoff
- Gold Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Kelantan, Malaysia.
| | - Mazlina Mazlan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Si Jie Lim
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jing Jing Khoo
- Tropical Infectious Diseases Research and Education Centre (TIDREC), High Impact Research Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Aziah Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
18
|
Wajanarogana S, Taylor WRJ, Kritsiriwuthinan K. Enhanced serodiagnosis of melioidosis by indirect ELISA using the chimeric protein rGroEL-FLAG300 as an antigen. BMC Infect Dis 2022; 22:387. [PMID: 35439967 PMCID: PMC9020111 DOI: 10.1186/s12879-022-07369-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background The accurate and rapid diagnosis of melioidosis is challenging. Several serological approaches have been developed using recombinant antigens to improve the diagnostic indices of serological tests for melioidosis.
Methods Fusion proteins from Burkholderia pseudomallei (rGroEL-FLAG300) were evaluated as a potential target antigen for melioidosis antibodies. A total of 220 serum samples from 38 culture proven melioidosis patients (gold standard), 126 healthy individuals from endemic (n = 37) and non-endemic (n = 89) Thai provinces and 56 patients with other proven bacterial infections as negative controls were tested using indirect enzyme-linked immunosorbent assays (ELISA). Results Using an optical density (OD) cut-off of 0.299148, our assay had 94.74% sensitivity (95% confidence interval (CI) = 82.3–99.4%), 95.05% specificity (95% CI = 90.8–97.7%), and 95% accuracy, which was better than in our previous work (90.48% sensitivity, 87.14% specificity, and 87.63% accuracy). Conclusion Our results suggest that the application of chimeric antigens in ELISA could improve the serological diagnosis of melioidosis and should be reconfirmed with greater patient numbers.
Collapse
Affiliation(s)
- Sumet Wajanarogana
- Department of Basic Medical Science, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand.
| | - Water R J Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, 10400, Thailand.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | |
Collapse
|
19
|
Thonglao N, Pakkulnan R, Paluka J, Chareonsudjai P, Kanokmedhakul S, Kanokmedhakul K, Chareonsudjai S. Chitosan biological molecule improves bactericidal competence of ceftazidime against Burkholderia pseudomallei biofilms. Int J Biol Macromol 2022; 201:676-685. [PMID: 35063492 DOI: 10.1016/j.ijbiomac.2022.01.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/05/2022]
Abstract
Biofilm-associated Burkholderia pseudomallei infections (melioidosis) are problematic because of reduced sensitivity to antibiotics and high frequency of relapse. Biofilm dispersal agents are essential to liberate the biofilm-encased cells, which then become planktonic and are more susceptible to antibiotics. This study aimed to evaluate the ability of deacetylated chitosan (dCS), an antimicrobial and antibiofilm biological macromolecule, to disrupt established biofilms, thus enabling ceftazidime (CAZ) to kill biofilm-embedded B. pseudomallei. We combined dCS with CAZ using a mechanical stirring method to generate dCS/CAZ. In combination, 1.25-2.5 mg ml-1 dCS/1-2 μg ml-1 CAZ acted synergistically to kill cells more effectively than did either dCS or CAZ alone. Notably, a combination of 5-10 mg ml-1 dCS with 256-512 μg ml-1 CAZ, prepared either by mechanical stirring (dCS/CAZ) or mixing (dCS + CAZ), drastically improved bactericidal activities against biofilm cells leading to a 3-6 log CFU reduction. Confocal laser-scanning microscope (CLSM) images revealed that 10 mg ml-1 dCS/512 μg ml-1 CAZ is by far the best formulation to diminish B. pseudomallei biofilm biomass and produces the lowest live/dead cell ratios of B. pseudomallei in biofilm matrix. Collectively, these findings emphasize the potential of novel therapeutic antibacterial and antibiofilm agents to fight against antibiotic-tolerant B. pseudomallei biofilm-associated infections.
Collapse
Affiliation(s)
- Nuttaya Thonglao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rattiyaphorn Pakkulnan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jakkapat Paluka
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Pisit Chareonsudjai
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Somdej Kanokmedhakul
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kwanjai Kanokmedhakul
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen, Thailand.
| |
Collapse
|
20
|
Wang X, Wang L, Zhu H, Wang C, Zhu X. Reliable detection of Burkholderia pseudomallei using multiple cross displacement amplification label-based biosensor. BMC Microbiol 2022; 22:72. [PMID: 35272632 PMCID: PMC8908694 DOI: 10.1186/s12866-022-02485-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Burkholderia pseudomallei (B. pseudomallei), as a highly pathogenic organism, causes melioidosis, which is a disease of public health importance in many tropical developing countries. Here, we present and validate a novel detection technique, termed multiple cross displacement amplification combined with nanoparticles-based lateral flow biosensor (MCDA-NB), for identifying B. pseudomallei and diagnosing melioidosis. Results B. pseudomallei-MCDA targets the TTS1 (Type III secretion system gene cluster 1) to specifically design ten MCDA primers. The nanoparticles-based biosensor (NB) can be combined with B. pseudomallei-MCDA for visually, objective, simply and rapidly reporting reaction results. The optimal amplification conditions of B. pseudomallei-MCDA were 66 °C for 30 min. Assay’s sensitivity was 100 fg of genomic DNA in the pure cultures, and the analytical specificity was 100% by the examination of 257 strains, including 228 B. pseudomallei and 29 non-B. pseudomallei. As a result, the whole detection procedure was completed within 50 min, including 15 min for genomic DNA preparation, 30 min for l MCDA reaction, and 2 min for the interpretation of the results visually by biosensor. Conclusions B. pseudomallei-MCDA assay is a rapid, sensitive and specific method for the detection of B. pseudomallei, and can be used as a potential tool for melioidosis diagnose in basic, field and clinical laboratories. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02485-2.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Central & Clinical Laboratory of Sanya People's Hospital, Hainan, 572000, Sanya, P. R. China
| | - Licheng Wang
- Central & Clinical Laboratory of Sanya People's Hospital, Hainan, 572000, Sanya, P. R. China
| | - Huaxiong Zhu
- Central & Clinical Laboratory of Sanya People's Hospital, Hainan, 572000, Sanya, P. R. China
| | - Chongzhen Wang
- Central & Clinical Laboratory of Sanya People's Hospital, Hainan, 572000, Sanya, P. R. China
| | - Xiong Zhu
- Central & Clinical Laboratory of Sanya People's Hospital, Hainan, 572000, Sanya, P. R. China.
| |
Collapse
|
21
|
Chieng R. Melioidosis. WIKIJOURNAL OF MEDICINE 2022. [DOI: 10.15347/wjm/2022.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Ku JWK, Marsh ST, Nai MH, Robinson KS, Teo DET, Zhong FL, Brown KA, Lim TC, Lim CT, Gan YH. Skin models for cutaneous melioidosis reveal Burkholderia infection dynamics at wound's edge with inflammasome activation, keratinocyte extrusion and epidermal detachment. Emerg Microbes Infect 2021; 10:2326-2339. [PMID: 34821529 PMCID: PMC8654412 DOI: 10.1080/22221751.2021.2011621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Melioidosis is a serious infectious disease endemic in Southeast Asia, Northern Australia and has been increasingly reported in other tropical and subtropical regions in the world. Percutaneous inoculation through cuts and wounds on the skin is one of the major modes of natural transmission. Despite cuts in skin being a major route of entry, very little is known about how the causative bacterium Burkholderia pseudomallei initiates an infection at the skin and the disease manifestation at the skin known as cutaneous melioidosis. One key issue is the lack of suitable and relevant infection models. Employing an in vitro 2D keratinocyte cell culture, a 3D skin equivalent fibroblast-keratinocyte co-culture and ex vivo organ culture from human skin, we developed infection models utilizing surrogate model organism Burkholderia thailandensis to investigate Burkholderia-skin interactions. Collectively, these models show that the bacterial infection was largely limited at the wound’s edge. Infection impedes wound closure, triggers inflammasome activation and cellular extrusion in the keratinocytes as a potential way to control bacterial infectious load at the skin. However, extensive infection over time could result in the epidermal layer being sloughed off, potentially contributing to formation of skin lesions.
Collapse
Affiliation(s)
- Joanne Wei Kay Ku
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Supatra Tharinee Marsh
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | | | - Daniel Eng Thiam Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Franklin Lei Zhong
- Skin Research Institute of Singapore (SRIS), Immunos, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Katherine A Brown
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.,Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Thiam Chye Lim
- Division of Plastic, Reconstructive &Aesthetic Surgery, National University Health System, Singapore, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Zheng H, Qin J, Chen H, Hu H, Zhang X, Yang C, Wu Y, Li Y, Li S, Kuang H, Zhou H, Shen D, Song K, Song Y, Zhao T, Yang R, Tan Y, Cui Y. Genetic diversity and transmission patterns of Burkholderia pseudomallei on Hainan island, China, revealed by a population genomics analysis. Microb Genom 2021; 7. [PMID: 34762026 PMCID: PMC8743561 DOI: 10.1099/mgen.0.000659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative soil-dwelling bacillus that causes melioidosis, a frequently fatal infectious disease, in tropical and subtropical regions. Previous studies have identified the overall genetic and evolutionary characteristics of B. pseudomallei on a global scale, including its origin and transmission routes. However, beyond its known hyperendemicity foci in northern Australia and Southeast Asia, the distribution and genetic characteristics of B. pseudomallei in most tropical regions remain poorly understood, including in southern China. Here, we sequenced the genomes of 122 B. pseudomallei strains collected from Hainan, an island in southern China, in 2002–2018, to investigate the population structure, relationships with global strains, local epidemiology, and virulence and antimicrobial-resistance factors. A phylogenetic analysis and hierarchical clustering divided the Hainan strains into nine phylogenic groups (PGs), 80 % of which were concentrated within five major groups (group 1: corresponding to minor sequence types [STs], 12.3 %; group 3: ST46 and ST50, 31.1 %; group 9: ST58, 13.1 %; group 11: ST55, 8.2 %; group 15: mainly ST658, 15.6%). A phylogenetic analysis that included global strains suggested that B. pseudomallei in Hainan originated from Southeast Asian countries, transmitted in multiple historical importation events. We also identified several mutual transmission events between Hainan and Southeast Asian countries in recent years, including three importation events from Thailand and Singapore to Hainan and three exportation events from Hainan to Singapore, Malaysia, and Taiwan island. A statistical analysis of the temporal distribution showed that the Hainan strains of groups 3, 9, and 15 have dominated the disease epidemic locally in the last 5 years. The spatial distribution of the Hainan strains demonstrated that some PGs are distributed in different cities on Hainan island, and by combining phylogenic and geographic distribution information, we detected 21 between-city transmission events, indicating its frequent local transmission. The detection of virulence factor genes showed that 56 % of the Hainan strains in group 1 encode a B. pseudomallei-specific adherence factor, boaB, confirming the specific pathogenic characteristics of the Hainan strains in group 1. An analysis of the antimicrobial-resistance potential of B. pseudomallei showed that various kinds of alterations were identified in clinically relevant antibiotic resistance factors, such as AmrR, PenA and PBP3, etc. Our results clarify the population structure, local epidemiology, and pathogenic characteristics of B. pseudomallei in Hainan, providing further insight into its regional and global transmission networks and improving our knowledge of its global phylogeography.
Collapse
Affiliation(s)
- Hongyuan Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, PR China
| | - Hai Chen
- Department of Clinical Laboratory, Sanya People's Hospital, Sanya, Hainan Province, 572000, PR China
| | - Hongyan Hu
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yuanli Li
- Department of Clinical Laboratory, Sanya People's Hospital, Sanya, Hainan Province, 572000, PR China
| | - Sha Li
- Department of Clinical Laboratory, Sanya People's Hospital, Sanya, Hainan Province, 572000, PR China
| | - Huihui Kuang
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Hanwang Zhou
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Dingxia Shen
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, PR China
| |
Collapse
|
24
|
Mohanty S, Sarkar S, Mishra B. Melioidosis of the Head and Neck: A Case Series from Eastern India. Infect Dis Rep 2020; 12:36-45. [PMID: 33138068 PMCID: PMC7768392 DOI: 10.3390/idr12030011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Melioidosis is an emerging entity in India. Though it is a potentially fatal disease, prognosis is excellent with early detection and appropriate management, especially of localized infections like abscesses of the head and neck area. We report nine cases of focal abscesses in the head and neck region due to Burkholderia pseudomallei, the causative agent of melioidosis, presenting to our hospital within a span of two-and-half years. Since melioidotic abscesses in the cervicofacial and head and neck region are likely to be confused with cold abscesses caused by Mycobacterium tuberculosis in a tuberculosis-endemic country like India, increased vigilance is necessary because of the widely divergent treatment modalities of the two disease entities.
Collapse
Affiliation(s)
- Srujana Mohanty
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India;
| | - Saurav Sarkar
- Department of ENT, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India;
| | - Baijayantimala Mishra
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India;
| |
Collapse
|
25
|
Wu H, Wang X, Zhou X, Wu Z, Wang Y, Pan M, Lu B. Mycotic aneurysm secondary to melioidosis in China: A series of eight cases and a review of literature. PLoS Negl Trop Dis 2020; 14:e0008525. [PMID: 32785225 PMCID: PMC7446808 DOI: 10.1371/journal.pntd.0008525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 08/24/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, endemic in Southeast Asia and Northern Australia, and increasingly recognized in southern China, especially in Hainan Province. Mycotic aneurysm caused by B. pseudomallei is a rare but potentially severe illness with a high mortality rate. The clinical features of the mycotic aneurysm secondary to melioidosis have not been illustrated in China. Over a seven-year period (2013 to 2019), 159 patients with bacteremic melioidosis were retrospectively analyzed in Hainan province, China, of whom eight patients were confirmed to have mycotic aneurysm through the combination of imaging examination, pathologic examination and aneurysm tissue culture. We summarized these eight patients' clinical characteristics, demographical features, treatments and outcomes. The susceptibilities to five commonly-used antibiotics for these eight B. pseudomallei isolates were also determined by E-test strips. Furthermore, the mycotic aneurysm cases secondary to melioidosis retrieved from the literature were also reviewed. Of the eight cases, six had abdominal mycotic aneurysms, one had a left iliac aneurysm, and the other one had an infectious mesenteric aneurysm. They were aged from 48 to 69 years old, and had the underlying risk factors of diabetes mellitus (2 patients), long-term smoking (4 patients), hypertension (6 patients), and soil and water contact history (6 patients), respectively. The positive arterial aneurysm imaging was observed in all patients via computed tomography (CT) or angiography. Eight B. pseudomallei isolates collected from both blood and mycotic aneurysm tissues remained 100% susceptible to imipenem and ceftazidime. After surgery combined with antibiotic administration, six patients survived, with a mortality rate of 25%. In melioidosis endemic areas, the mycotic aneurysm secondary to melioidosis might be underdiagnosed, and increased awareness of predisposing risk factors and clinical features of the mycotic aneurysm is required. Following a positive B. pseudomallei blood culture, the diagnosis of mycotic aneurysm should be under consideration in those with abdominal pain and/or hypertension. Imaging by CT or angiography is indispensable for its timely diagnosis and management.
Collapse
Affiliation(s)
- Hua Wu
- Department of Laboratory Medicine, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical College, Haikou, China
| | - Xuming Wang
- Department of Laboratory Medicine, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical College, Haikou, China
| | - Xiaojun Zhou
- Department of Laboratory Medicine, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical College, Haikou, China
| | - Zhicheng Wu
- Department of Laboratory Medicine, First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Yanyan Wang
- Department of Pathology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical College, Haikou, China
| | - Mengjie Pan
- Department of Radiology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical College, Haikou, China
| | - Binghuai Lu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital; National Clinical Research Center of Respiratory Diseases, Beijing, China
| |
Collapse
|
26
|
Wuthiekanun V, Amornchai P, Langla S, White NJ, Day NPJ, Limmathurotsakul D. Survival of Burkholderia pseudomallei and Pathogenic Leptospira in Cola, Beer, Energy Drinks, and Sports Drinks. Am J Trop Med Hyg 2020; 103:249-252. [PMID: 32274989 PMCID: PMC7356472 DOI: 10.4269/ajtmh.19-0948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Burkholderia pseudomallei and pathogenic Leptospira in contaminated drinking water can cause melioidosis and leptospirosis, respectively. Here, we evaluated their survival in beverages. We mixed six isolates (three isolates per organism) in four beverages (Coca-Cola®, Red Bull®, Singha® beer, and Gatorade®) and distilled water as the control at two final concentrations (1 × 107 colony-forming units [CFU]/mL and 1 × 103 CFU/mL). The solution was kept at two temperatures (37°C and 4°C). At 4°C and at the high concentration, pathogenic Leptospira survived in Coca-Cola® up to 3 minutes and in Singha, Red Bull®, and Gatorade up to 15 minutes, whereas B. pseudomallei survived in these beverages up to 8 hours, and 14, 14, and 28 days, respectively. The survival time of both organisms was shorter at 37°C (P = 0.01) and at the lower concentration (P = 0.001). In conclusion, Leptospira can survive in some beverages for up to 15 minutes, whereas B. pseudomallei can survive in some beverages for up to 4 weeks.
Collapse
Affiliation(s)
- Vanaporn Wuthiekanun
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Premjit Amornchai
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sayan Langla
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Direk Limmathurotsakul
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
27
|
The Impact of Age and Sex on Mouse Models of Melioidosis. Pathogens 2020; 9:pathogens9020113. [PMID: 32054106 PMCID: PMC7168040 DOI: 10.3390/pathogens9020113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Mouse models have been used to generate critical data for many infectious diseases. In the case of Burkholderia pseudomallei, mouse models have been invaluable for bacterial pathogenesis studies as well as for testing novel medical countermeasures including both vaccines and therapeutics. Mouse models of melioidosis have also provided a possible way forward to better understand the chronicity associated with this infection, as it appears that BALB/c mice develop an acute infection with B. pseudomallei, whereas the C57BL/6 model is potentially more suggestive of a chronic infection. Several unanswered questions, however, persist around this model. In particular, little attention has been paid to the effect of age or sex on the disease outcome in these animal models. In this report, we determined the LD50 of the B. pseudomallei K96243 strain in both female and male BALB/c and C57BL/6 mice in three distinct age groups. Our data demonstrated a modest increase in susceptibility associated with sex in this model, and we documented important histopathological differences associated with the reproductive systems of each sex. There was a statistically significant inverse correlation between age and susceptibility. The older mice, in most cases, were more susceptible to the infection. Additionally, our retrospective analyses suggested that the impact of animal supplier on disease outcome in mice may be minimal. These observations were consistent regardless of whether the mice were injected with bacteria intraperitoneally or if they were exposed to aerosolized bacteria. All of these factors should be considered when designing experiments using mouse models of melioidosis.
Collapse
|
28
|
Investigation of Melioidosis Outbreak in Pig Farms in Southern Thailand. Vet Sci 2020; 7:vetsci7010009. [PMID: 31947512 PMCID: PMC7157537 DOI: 10.3390/vetsci7010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/17/2022] Open
Abstract
Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a potentially life-threatening infection that can affect humans and a wide variety of animals in the tropics. In December 2017, a swine melioidosis case was discovered during a meat inspection at a privately-owned slaughterhouse in Nakhon Si Thammarat Province in southern Thailand. The infection, which continued for several months, caused a dispute about where the disease began. An environmental investigation into two farms—both involved in raising the first infected pig—ensued. Through genetic analysis, the investigation revealed that a contaminated water supply at one farm was the probable source of infection. The three local sequence types identified in the investigation were types 51, 298 and 392.
Collapse
|
29
|
Kaestli M, O’Donnell M, Rose A, Webb JR, Mayo M, Currie BJ, Gibb K. Opportunistic pathogens and large microbial diversity detected in source-to-distribution drinking water of three remote communities in Northern Australia. PLoS Negl Trop Dis 2019; 13:e0007672. [PMID: 31487283 PMCID: PMC6728021 DOI: 10.1371/journal.pntd.0007672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
In the wet-dry tropics of Northern Australia, drinking water in remote communities is mostly sourced from bores accessing groundwater. Many aquifers contain naturally high levels of iron and some are shallow with surface water intrusion in the wet season. Therefore, environmental bacteria such as iron-cycling bacteria promoting biofilm formation in pipes or opportunistic pathogens can occur in these waters. An opportunistic pathogen endemic to northern Australia and Southeast Asia and emerging worldwide is Burkholderia pseudomallei. It causes the frequently fatal disease melioidosis in humans and animals. As we know very little about the microbial composition of drinking water in remote communities, this study aimed to provide a first snapshot of the microbiota and occurrence of opportunistic pathogens in bulk water and biofilms from the source and through the distribution system of three remote water supplies with varying iron levels. Using 16s-rRNA gene sequencing, we found that the geochemistry of the groundwater had a substantial impact on the untreated microbiota. Different iron-cycling bacteria reflected differences in redox status and nutrients. We cultured and sequenced B. pseudomallei from bores with elevated iron and from a multi-species biofilm which also contained iron-oxidizing Gallionella, nitrifying Nitrospira and amoebae. Gallionella are increasingly used in iron-removal filters in water supplies and more research is needed to examine these interactions. Similar to other opportunistic pathogens, B. pseudomallei occurred in water with low organic carbon levels and with low heterotrophic microbial growth. No B. pseudomallei were detected in treated water; however, abundant DNA of another opportunistic pathogen group, non-tuberculous mycobacteria was recovered from treated parts of one supply. Results from this study will inform future studies to ultimately improve management guidelines for water supplies in the wet-dry tropics.
Collapse
Affiliation(s)
- Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | | | - Alea Rose
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jessica R. Webb
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Mark Mayo
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
30
|
Peng Y, Zheng X, Kan B, Li W, Zhang W, Jiang T, Lu J, Qin A. Rapid detection of Burkholderia pseudomallei with a lateral flow recombinase polymerase amplification assay. PLoS One 2019; 14:e0213416. [PMID: 31283772 PMCID: PMC6613700 DOI: 10.1371/journal.pone.0213416] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
Melioidosis is a severe infectious disease caused by gram-negative, facultative intracellular pathogen Burkholderia pseudomallei (B. pseudomallei). Although cases are increasing reported from other parts of the world, it is an illness of tropical and subtropical climates primarily found in southeast Asia and northern Australia. Because of a 40% mortality rate, this life-threatening disease poses a public health risk in endemic area. Early detection of B. pseudomallei infection is vital for prognosis of a melioidosis patient. In this study, a novel isothermal recombinase polymerase amplification combined with lateral flow dipstick (LF-RPA) assay was established for rapid detection of B. pseudomallei. A set of primer-probe targeting orf2 gene within the putative type III secretion system (T3SS) cluster genes was generated and parameters for the LF-RPA assay were optimized. Result can be easy visualized in 30 minutes with the limit of detection (LOD) as low as 20 femtogram (fg) (ca. 25.6 copies) of B. pseudomallei genomic DNA without a specific equipment. The assay is highly specific as no cross amplification was observed with Burkholderia mallei, members of the Burkholderia cepacia-complex and 35 non-B. pseudomallei bacteria species. Moreover, isolates from patients in Hainan (N = 19), Guangdong (N = 1), Guangxi (N = 3) province of China as well as in Australia (N = 3) and Thailand (N = 1) were retrospectively confirmed by the newly developed method. LODs for B. pseudomallei-spiked soil and blood samples were 2.1×103 CFU/g and 4.2×103 CFU/ml respectively. The sensitivity of the LF-RPA assay was comparable to TaqMan Real-Time PCR (TaqMan PCR). In addition, the LF-RPA assay exhibited a better tolerance to inhibitors in blood than TaqMan PCR. Our results showed that the LF-RPA assay is an alternative to existing PCR-based methods for detection of B. pseudomallei with a potentiality of early accurate diagnosis of melioidosis at point of care or in-field use.
Collapse
Affiliation(s)
- Yao Peng
- Department of Pestis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xiao Zheng
- Department of Pestis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Biao Kan
- Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Wei Li
- Department of Pestis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Wen Zhang
- Department of Bioinformatics, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Taozhen Jiang
- Department of Preservation Center for Standard Strain, China Institute of Veterinary Drug Control, Beijing, China
| | - Jinxing Lu
- Department of Hospital Antibiotics Resistance, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Aiping Qin
- State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| |
Collapse
|
31
|
Seng R, Saiprom N, Phunpang R, Baltazar CJ, Boontawee S, Thodthasri T, Silakun W, Chantratita N. Prevalence and genetic diversity of Burkholderia pseudomallei isolates in the environment near a patient's residence in Northeast Thailand. PLoS Negl Trop Dis 2019; 13:e0007348. [PMID: 31002718 PMCID: PMC6493765 DOI: 10.1371/journal.pntd.0007348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/01/2019] [Accepted: 03/29/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Burkholderia pseudomallei is the causative agent of melioidosis, a severe infectious disease in tropical regions. It is necessary to understand the risk of acquiring this infection from the environment. METHODOLOGY /PRINCIPAL FINDINGS The prevalence, concentration and genetic diversity of B. pseudomallei isolates collected from two sites in Buriram, Northeast Thailand were investigated. Forty-four environmental samples (18 from soil, 14 from rice rhizosphere, and 12 from water) were collected; of those 44 samples, 19 were collected from near a patient's residence and 25 from suspected exposure sites and compared with 10 clinical isolates of the patient. Quantitative culture was performed, and B. pseudomallei was identified using the latex agglutination test and matrix-laser absorption ionisation mass spectrometry. Genotyping was performed in 162 colonies from clinical (N = 10) and environmental samples (N = 152) using pulse-field gel electrophoresis (PFGE) followed by multi-locus sequence typing (MLST) of the clinical strain. B. pseudomallei was detected in 11 of the 44 environmental samples (1 from soil, 4 from rice rhizosphere, and 6 from water). The bacterial count in the positive soil sample was 115 CFU/g. The mean concentrations ± SDs of B. pseudomallei in the positive water and rhizosphere samples were 5.1 ± 5.5 CFU/ml and 80 ± 49 CFU/g, respectively. Six water samples with positive results were collected from a pond and water sources for drinking and daily use. All colonies isolated from the patient shared the same PFGE type (PT) indicating monoclonal infection of ST99. Although the 152 colonies from environmental isolates exhibited 25 PTs, none were identical to the patient's isolates. PT5 and PT7 were most common genotype among the environmental samples. CONCLUSIONS/SIGNIFICANCE Diverse genotypes of B. pseudomallei were prevalent in the environment. However, the patient may have been infected with a low-density genotype. Intervention strategies for preventing B. pseudomallei infection are required.
Collapse
Affiliation(s)
- Rathanin Seng
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Christine Joy Baltazar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States America
| | - Sarika Boontawee
- Department of Clinical Microbiology, Buriram hospital, Buriram, Thailand
| | | | | | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
32
|
Srinon V, Chaiwattanarungruengpaisan S, Korbsrisate S, Stevens JM. Burkholderia pseudomallei BimC Is Required for Actin-Based Motility, Intracellular Survival, and Virulence. Front Cell Infect Microbiol 2019; 9:63. [PMID: 30968000 PMCID: PMC6439308 DOI: 10.3389/fcimb.2019.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
The intracellular pathogen Burkholderia pseudomallei, the etiological agent of melioidosis in humans and various animals, is capable of survival and movement within the cytoplasm of host cells by a process known as actin-based motility. The bacterial factor BimA is required for actin-based motility through its direct interaction with actin, and by mediating actin polymerization at a single pole of the bacterium to promote movement both within and between cells. However, little is known about the other bacterial proteins required for this process. Here, we have investigated the role of the bimC gene (bpss1491) which lies immediately upstream of the bimA gene (bpss1492) on the B. pseudomallei chromosome 2. Conserved amongst all B. pseudomallei, B. mallei and B. thailandensis strains sequenced to date, this gene encodes an iron-binding protein with homology to a group of proteins known as the bacterial autotransporter heptosyltransferase (BAHT) family. We have constructed a B. pseudomallei bimC deletion mutant and demonstrate that it is defective in intracellular survival in HeLa cells, but not in J774.1 macrophage-like cells. The bimC mutant is defective in cell to cell spread as demonstrated by ablation of plaque formation in HeLa cells, and by the inability to form multi-nucleated giant cells in J774.1 cells. These phenotypes in intracellular survival and cell to cell spread are not due to the loss of expression and polar localization of the BimA protein on the surface of intracellular bacteria, however they do correlate with an inability of the bacteria to recruit and polymerize actin. Furthermore, we also establish a role for bimC in virulence of B. pseudomallei using a Galleria mellonella larvae model of infection. Taken together, our findings indicate that B. pseudomallei BimC plays an important role in intracellular behavior and virulence of this emerging pathogen.
Collapse
Affiliation(s)
- Varintip Srinon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Microbiology Laboratory, Faculty of Veterinary Science, Veterinary Diagnostic Center, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
33
|
Khan MM, Chattagul S, Tran BQ, Freiberg JA, Nita-Lazar A, Shirtliff ME, Sermswan RW, Ernst RK, Goodlett DR. Temporal proteomic profiling reveals changes that support Burkholderia biofilms. Pathog Dis 2019; 77:ftz005. [PMID: 30759239 PMCID: PMC6482045 DOI: 10.1093/femspd/ftz005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
Melioidosis associated with opportunistic pathogen Burkholderia pseudomallei imparts a huge medical burden in Southeast Asia and Australia. At present there is no available human vaccine that protects against B. pseudomallei infection and antibiotic treatments are limited particularly for drug-resistant strains and bacteria in biofilm forms. Biofilm forming bacteria exhibit phenotypic features drastically different to their planktonic states, often exhibiting a diminished response to antimicrobial therapies. Our earlier work on global profiling of bacterial biofilms using transcriptomics and proteomics revealed transcript-decoupled protein abundance in bacterial biofilms. Here we employed reverse phase liquid chromatography tandem mass spectrometry (LC-MS/MS) to deduce temporal proteomic differences in planktonic and biofilm forms of Burkholderia thailandensis, which is weakly surrogate model of pathogenic B. pseudomallei as sharing a key element in genomic similarity. The proteomic analysis of B. thailandensis in biofilm versus planktonic states revealed that proteome changes support biofilm survival through decreased abundance of metabolic proteins while increased abundance of stress-related proteins. Interestingly, the protein abundance including for the transcription protein TEX, outer periplasmic TolB protein, and the exopolyphosphatase reveal adaption in bacterial biofilms that facilitate antibiotic tolerance through a non-specific mechanism. The present proteomics study of B. thailandensis biofilms provides a global snapshot of protein abundance differences and antimicrobial sensitivities in planktonic and sessile bacteria.
Collapse
Affiliation(s)
- Mohd M Khan
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Supaksorn Chattagul
- Melioidosis Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Bao Q Tran
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jeffrey A Freiberg
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Rasana W Sermswan
- Melioidosis Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - David R Goodlett
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-308 Gdańsk, Poland
| |
Collapse
|
34
|
Suntornsut P, Chaowagul W, Thongklang W, Phosri T, Day NPJ, Michie S, Limmathurotsakul D. Feasibility and initial outcomes of a multifaceted prevention programme of melioidosis in diabetic patients in Ubon Ratchathani, northeast Thailand. PLoS Negl Trop Dis 2018; 12:e0006765. [PMID: 30188902 PMCID: PMC6143272 DOI: 10.1371/journal.pntd.0006765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 08/18/2018] [Indexed: 12/30/2022] Open
Abstract
Background Melioidosis is an infection caused by Burkholderia pseudomallei, a Gram-negative bacillus found in soil and water. Diabetes mellitus is the most important risk factor for melioidosis. The recommendations for disease prevention include avoiding direct contact with soil and water, and drinking only boiled or bottled water. Methods A prospective intervention study was conducted to evaluate the feasibility and behavioural outcomes of a multifaceted prevention programme for melioidosis. Participants were diabetic adults in Ubon Ratchathani, northeast Thailand. Ten behavioural support groups consisting of 6 to 10 participants per group were conducted. Twelve behaviour change techniques were used: information about health consequences, credible source, adding objects to the environment, reconstructing the physical environment, instruction on how to perform a behaviour, demonstration of the behaviour, commitment, prompts/cues, self-monitoring of behaviour, goal setting, feedback on behaviour, and social support, and their feasibilities evaluated. Results There were 70 participants, of median age 59 years and 52 (74%) were female. Participants found the intervention beneficial, interesting and engaging. Participants indicated that they liked to watch videos with information about melioidosis delivered by local doctors and patients who survived melioidosis, and videos showing use of over-the-knee boots by local farmers. Participants felt engaged in the sessions that trialed protective gear and that made calendars with individual photographs and self-pledges as a reminder tool. The proportions of participants reporting that they always wore boots while working in rice fields increased from 30% (10/33) to 77% (28/37, p = 0.04), and that they drank only boiled or bottle water increased from 43% (30/70) to 86% (59/69, p<0.001) at 6 months post intervention. Conclusion The programme is highly acceptable to participants, and can support behaviour change. Policy makers should consider implementing the programme in areas where melioidosis is endemic. Making calendars with individual photographs and self-pledges as a reminder tool could be powerful in behaviour change interventions, and further research on this component is needed. Melioidosis is a serious infectious disease caused by the Gram-negative environmental bacterium, Burkholderia pseudomallei. Infection in humans occurs following skin inoculation, inhalation or ingestion. The recommendations for melioidosis prevention include using protective gear such as rubber boots when in direct contact with soil and environmental water, and drinking only boiled or bottled water. A multifaceted prevention programme is recommended to achieve the desired behaviour changes. Here, we evaluated the feasibility and behavioural outcomes of a multifaceted prevention programme for melioidosis. Our study participants were diabetic adults in Ubon Ratchathani, northeast Thailand. We found that the multifaceted prevention programme was highly acceptable to participants, and could support behaviour change. A calendar with an individual photograph as a reminder tool engaged participants effectively. Our study also confirmed that commitment and action by the government are essential for the preventive interventions to be successful. We recommend that policy makers should consider implementing the programme in areas where melioidosis is endemic. Since cultures and barriers to adopting the recommended behaviours vary, the intervention strategies would need to be adapted to local contexts.
Collapse
Affiliation(s)
- Pornpan Suntornsut
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wipada Chaowagul
- Department of Medicine, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Wilasinee Thongklang
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thidarat Phosri
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom, United Kingdom
| | - Susan Michie
- Centre for Behaviour Change and Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom, United Kingdom
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
35
|
Teparrukkul P, Kongkasame W, Chitsaeng S, Wongsuwan G, Wuthiekanun V, Peacock SJ, Limmathurotsakul D. Gastrointestinal tract involvement in melioidosis. Trans R Soc Trop Med Hyg 2018; 111:185-187. [PMID: 28673019 PMCID: PMC6092629 DOI: 10.1093/trstmh/trx031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/01/2017] [Indexed: 11/23/2022] Open
Abstract
Background Little is known about the involvement of the human gut in carriage and disease associated with Burkholderia pseudomallei, the cause of melioidosis. Methods A hospital-based study was conducted in Northeast Thailand to culture stools or rectal swabs from patients with melioidosis, stools from controls with non-infectious diseases, and gastric biopsies from patients undergoing routine endoscopic investigation. Results and Conclusion B. pseudomallei was isolated from 9/83 (11%) stools and 9/58 (16%) rectal swabs from 141 patients with melioidosis. All stools from 244 control patients and 799 gastric biopsies from 395 patients with no evidence of melioidosis were culture negative for B. pseudomallei. It is not uncommon for melioidosis patients to shed B. pseudomallei in stool. Colonization of the gut of individuals without signs and symptoms of melioidosis may be rare.
Collapse
Affiliation(s)
- Prapit Teparrukkul
- Medical Department, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | | | - Songla Chitsaeng
- Medical Department, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Gumphol Wongsuwan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sharon J Peacock
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,London School of Hygiene and Tropical Medicine, London, UK
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK.,Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Hinjoy S, Hantrakun V, Kongyu S, Kaewrakmuk J, Wangrangsimakul T, Jitsuronk S, Saengchun W, Bhengsri S, Akarachotpong T, Thamthitiwat S, Sangwichian O, Anunnatsiri S, Sermswan RW, Lertmemongkolchai G, Sitthidet Tharinjaroen C, Preechasuth K, Udpaun R, Chuensombut P, Waranyasirikul N, Anudit C, Narenpitak S, Jutrakul Y, Teparrukkul P, Teerawattanasook N, Thanvisej K, Suphan A, Sukbut P, Ploddi K, Sirichotirat P, Chiewchanyon B, Rukseree K, Hongsuwan M, Wongsuwan G, Sunthornsut P, Wuthiekanun V, Sachaphimukh S, Wannapinij P, Chierakul W, Chewapreecha C, Thaipadungpanit J, Chantratita N, Korbsrisate S, Taunyok A, Dunachie S, Palittapongarnpim P, Sirisinha S, Kitphati R, Iamsirithaworn S, Chaowagul W, Chetchotisak P, Whistler T, Wongratanacheewin S, Limmathurotsakul D. Melioidosis in Thailand: Present and Future. Trop Med Infect Dis 2018; 3:38. [PMID: 29725623 PMCID: PMC5928800 DOI: 10.3390/tropicalmed3020038] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/21/2018] [Indexed: 12/29/2022] Open
Abstract
A recent modelling study estimated that there are 2800 deaths due to melioidosis in Thailand yearly. The Thailand Melioidosis Network (formed in 2012) has been working closely with the Ministry of Public Health (MoPH) to investigate and reduce the burden of this disease. Based on updated data, the incidence of melioidosis is still high in Northeast Thailand. More than 2000 culture-confirmed cases of melioidosis are diagnosed in general hospitals with microbiology laboratories in this region each year. The mortality rate is around 35%. Melioidosis is endemic throughout Thailand, but it is still not uncommon that microbiological facilities misidentify Burkholderia pseudomallei as a contaminant or another organism. Disease awareness is low, and people in rural areas neither wear boots nor boil water before drinking to protect themselves from acquiring B. pseudomallei. Previously, about 10 melioidosis deaths were formally reported to the National Notifiable Disease Surveillance System (Report 506) each year, thus limiting priority setting by the MoPH. In 2015, the formally reported number of melioidosis deaths rose to 112, solely because Sunpasithiprasong Hospital, Ubon Ratchathani province, reported its own data (n = 107). Melioidosis is truly an important cause of death in Thailand, and currently reported cases (Report 506) and cases diagnosed at research centers reflect the tip of the iceberg. Laboratory training and communication between clinicians and laboratory personnel are required to improve diagnosis and treatment of melioidosis countrywide. Implementation of rapid diagnostic tests, such as a lateral flow antigen detection assay, with high accuracy even in melioidosis-endemic countries such as Thailand, is critically needed. Reporting of all culture-confirmed melioidosis cases from every hospital with a microbiology laboratory, together with final outcome data, is mandated under the Communicable Diseases Act B.E.2558. By enforcing this legislation, the MoPH could raise the priority of this disease, and should consider implementing a campaign to raise awareness and melioidosis prevention countrywide.
Collapse
Affiliation(s)
- Soawapak Hinjoy
- Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand; (S.H.); (S.K.)
| | - Viriya Hantrakun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (V.H.); (T.W.); (M.H.); (G.W.); (P.S.); (V.W.); (S.S.); (P.W.); (W.C.); (C.C.); (J.T.); (N.C)
| | - Somkid Kongyu
- Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand; (S.H.); (S.K.)
| | - Jedsada Kaewrakmuk
- Faculty of Science, Prince of Songkla University, Songkla 90110, Thailand;
| | - Tri Wangrangsimakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (V.H.); (T.W.); (M.H.); (G.W.); (P.S.); (V.W.); (S.S.); (P.W.); (W.C.); (C.C.); (J.T.); (N.C)
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK;
| | - Siroj Jitsuronk
- Faculty of Medicine, Prince of Songkla University, Songkla, 90110, Thailand;
| | - Weerawut Saengchun
- Department of Clinical Pathology, Chiang Rai Prachanukroh Hospital, Chiang Rai 57000, Thailand;
| | - Saithip Bhengsri
- Division of Global Health Protection, Thailand Ministry of Public Health-US Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand; (S.B.); (T.A.); (S.T.); (O.S.); (T.W.)
| | - Thantapat Akarachotpong
- Division of Global Health Protection, Thailand Ministry of Public Health-US Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand; (S.B.); (T.A.); (S.T.); (O.S.); (T.W.)
| | - Somsak Thamthitiwat
- Division of Global Health Protection, Thailand Ministry of Public Health-US Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand; (S.B.); (T.A.); (S.T.); (O.S.); (T.W.)
| | - Ornuma Sangwichian
- Division of Global Health Protection, Thailand Ministry of Public Health-US Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand; (S.B.); (T.A.); (S.T.); (O.S.); (T.W.)
| | - Siriluck Anunnatsiri
- Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.A.); (R.W.S.); (P.C.); (S.W.)
| | - Rasana W Sermswan
- Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.A.); (R.W.S.); (P.C.); (S.W.)
| | - Ganjana Lertmemongkolchai
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Chayada Sitthidet Tharinjaroen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.T.); (K.P.); (R.U.)
| | - Kanya Preechasuth
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.T.); (K.P.); (R.U.)
| | - Ratchadaporn Udpaun
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.T.); (K.P.); (R.U.)
| | - Poomin Chuensombut
- Department of Clinical Pathology, Chiangkham Hospital, Phayao, 56110 Thailand;
| | - Nisarat Waranyasirikul
- Department of Clinical Pathology, Somdejphrajaotaksin Maharaj Hospital, Tak 63000, Thailand;
| | - Chanihcha Anudit
- Department of Clinical Pathology, Uthai Thani Hospital, Uthai Thani 61000, Thailand;
| | - Surapong Narenpitak
- Department of Internal Medicine, Udon Thani Hospital, Udon Thani 41000, Thailand;
| | - Yaowaruk Jutrakul
- Department of Clinical Pathology, Udon Thani Hospital, Udon Thani 41000, Thailand;
| | - Prapit Teparrukkul
- Department of Internal Medicine, Sunpasitthiprasong Hospital, Ubon Ratchathani 34000, Thailand; (P.T.); (W.C)
| | - Nittaya Teerawattanasook
- Department of Clinical Pathology, Sunpasitthiprasong Hospital, Ubon Ratchathani 34000, Thailand;
| | - Kittisak Thanvisej
- Department of Internal Medicine, Nakhon Panom Hospital, Nakhon Panom 48000, Thailand;
| | - Alisa Suphan
- Ubon Ratchathani Provincial Public Health Office, Ubon Ratchathani 34000, Thailand;
| | - Punchawee Sukbut
- Mukdahan Provincial Public Health Office, Mukdahan 49000, Thailand;
| | - Kritchavat Ploddi
- The Office of Disease Prevention and Control 8, Udon Thani 41000, Thailand;
| | - Poolsri Sirichotirat
- The Office of Disease Prevention and Control 10, Ubon Ratchathani 34000, Thailand;
| | | | | | - Maliwan Hongsuwan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (V.H.); (T.W.); (M.H.); (G.W.); (P.S.); (V.W.); (S.S.); (P.W.); (W.C.); (C.C.); (J.T.); (N.C)
| | - Gumphol Wongsuwan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (V.H.); (T.W.); (M.H.); (G.W.); (P.S.); (V.W.); (S.S.); (P.W.); (W.C.); (C.C.); (J.T.); (N.C)
| | - Pornpan Sunthornsut
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (V.H.); (T.W.); (M.H.); (G.W.); (P.S.); (V.W.); (S.S.); (P.W.); (W.C.); (C.C.); (J.T.); (N.C)
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (V.H.); (T.W.); (M.H.); (G.W.); (P.S.); (V.W.); (S.S.); (P.W.); (W.C.); (C.C.); (J.T.); (N.C)
| | - Sandy Sachaphimukh
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (V.H.); (T.W.); (M.H.); (G.W.); (P.S.); (V.W.); (S.S.); (P.W.); (W.C.); (C.C.); (J.T.); (N.C)
| | - Prapass Wannapinij
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (V.H.); (T.W.); (M.H.); (G.W.); (P.S.); (V.W.); (S.S.); (P.W.); (W.C.); (C.C.); (J.T.); (N.C)
| | - Wirongrong Chierakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (V.H.); (T.W.); (M.H.); (G.W.); (P.S.); (V.W.); (S.S.); (P.W.); (W.C.); (C.C.); (J.T.); (N.C)
| | - Claire Chewapreecha
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (V.H.); (T.W.); (M.H.); (G.W.); (P.S.); (V.W.); (S.S.); (P.W.); (W.C.); (C.C.); (J.T.); (N.C)
| | - Janjira Thaipadungpanit
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (V.H.); (T.W.); (M.H.); (G.W.); (P.S.); (V.W.); (S.S.); (P.W.); (W.C.); (C.C.); (J.T.); (N.C)
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (V.H.); (T.W.); (M.H.); (G.W.); (P.S.); (V.W.); (S.S.); (P.W.); (W.C.); (C.C.); (J.T.); (N.C)
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Apichai Taunyok
- Department of Infectious Diseases & Immunology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA;
| | - Susanna Dunachie
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK;
| | - Prasit Palittapongarnpim
- National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Stitaya Sirisinha
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Rungrueng Kitphati
- Institute for Urban Disease Control and Prevention, Department of Disease Control, Ministry of Public Health, Bangkok 10220, Thailand;
| | - Sopon Iamsirithaworn
- Bureau of General Communicable Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand;
| | - Wipada Chaowagul
- Department of Internal Medicine, Sunpasitthiprasong Hospital, Ubon Ratchathani 34000, Thailand; (P.T.); (W.C)
| | - Ploenchan Chetchotisak
- Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.A.); (R.W.S.); (P.C.); (S.W.)
| | - Toni Whistler
- Division of Global Health Protection, Thailand Ministry of Public Health-US Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand; (S.B.); (T.A.); (S.T.); (O.S.); (T.W.)
| | | | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (V.H.); (T.W.); (M.H.); (G.W.); (P.S.); (V.W.); (S.S.); (P.W.); (W.C.); (C.C.); (J.T.); (N.C)
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK;
| |
Collapse
|
37
|
Musa HI, Hassan L, Shamsuddin ZH, Panchadcharam C, Zakaria Z, Aziz SA. Physicochemical properties associated with the presence of Burkholderia pseudomallei in small ruminant farm water supplies in Peninsular Malaysia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:241. [PMID: 29569066 PMCID: PMC5895689 DOI: 10.1007/s10661-018-6613-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Burkholderia pseudomallei causes melioidosis, a life-threatening infection in both humans and animals. Water is an important reservoir of the bacteria and may serve as a source of environmental contamination leading to infection. B. pseudomallei has an unusual ability to survive in water for a long period. This paper investigates physicochemical properties of water associated with the presence of B. pseudomallei in water supply in small ruminant farms in Peninsular Malaysia. Physicochemical properties of water samples taken from small ruminant farms that included temperature, pH, dissolved oxygen (DO2), optical density (OD), and chemical oxygen demand (COD) were measured after which the samples were cultured for B. pseudomallei. Multivariable logistic regression model revealed that slightly acidic water pH and higher COD level were significantly associated with the likelihood of the B. pseudomallei presence in the water.
Collapse
Affiliation(s)
- Hassan Ismail Musa
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Latiffah Hassan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Zulkifli Hj Shamsuddin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Zunita Zakaria
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Saleha Abdul Aziz
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
38
|
Gauthier J, Gérôme P, Defez M, Neulat-Ripoll F, Foucher B, Vitry T, Crevon L, Valade E, Thibault FM, Biot FV. Melioidosis in Travelers Returning from Vietnam to France. Emerg Infect Dis 2018; 22:1671-3. [PMID: 27532771 PMCID: PMC4994359 DOI: 10.3201/eid2209.160169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
39
|
Production and evaluation of recombinant Burkholderia pseudomallei GroEL and OmpA proteins for serodiagnosis of melioidosis. Acta Trop 2018; 178:333-339. [PMID: 29074366 DOI: 10.1016/j.actatropica.2017.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 10/08/2017] [Accepted: 10/22/2017] [Indexed: 10/18/2022]
Abstract
Melioidosis is a bacterial infectious disease caused by Burkholderia pseudomallei (B. pseudomallei). The variable clinical manifestations of this disease make its diagnosis difficult. The gold standard strategy for diagnosis is bacterial culture and identification, which is time-consuming and often too late for early medical intervention. Therefore, a rapid and accurate diagnosis of melioidosis is needed for effective treatment. This study aimed to produce and evaluate two purified B. pseudomallei recombinant proteins (rGroEL and rOmpA) as potential antigens for melioidosis diagnosis by ELISA. A total of 218 serum samples from Thailand was analysed. The study includes melioidosis patients' serum samples confirmed by bacterial culture (n=38); sera from patients with various bacterial infections but negative for B. pseudomallei (disease control, n=55); and sera from healthy individuals from non-endemic (n=77) and endemic (n=48) regions. The rGroEL ELISA achieved a good sensitivity of 92%, which was higher than that of rOmpA ELISA (76%). The specificities of rGroEL and rOmpA ELISAs were 88% and 90%, respectively. Both antigens demonstrated good diagnostic accuracy, at 89% (rGroEL) and 88% (rOmpA). There was less reactivity of sera from healthy individuals with rGroEL than rOmpA antigens. These data highlight the usefulness of rGroEL purified protein as a potential antigen for the serodiagnosis of melioidosis by ELISA and may be useful in the development of additional methods, such as dot blot ELISA or immunochromatographic tests (ICT), for a rapid, simple, cost-effective and efficient diagnosis for use in poorly resourced regions where melioidosis is endemic.
Collapse
|
40
|
Abstract
Burkholderia pseudomallei is a Gram-negative environmental bacterium and the aetiological agent of melioidosis, a life-threatening infection that is estimated to account for ∼89,000 deaths per year worldwide. Diabetes mellitus is a major risk factor for melioidosis, and the global diabetes pandemic could increase the number of fatalities caused by melioidosis. Melioidosis is endemic across tropical areas, especially in southeast Asia and northern Australia. Disease manifestations can range from acute septicaemia to chronic infection, as the facultative intracellular lifestyle and virulence factors of B. pseudomallei promote survival and persistence of the pathogen within a broad range of cells, and the bacteria can manipulate the host's immune responses and signalling pathways to escape surveillance. The majority of patients present with sepsis, but specific clinical presentations and their severity vary depending on the route of bacterial entry (skin penetration, inhalation or ingestion), host immune function and bacterial strain and load. Diagnosis is based on clinical and epidemiological features as well as bacterial culture. Treatment requires long-term intravenous and oral antibiotic courses. Delays in treatment due to difficulties in clinical recognition and laboratory diagnosis often lead to poor outcomes and mortality can exceed 40% in some regions. Research into B. pseudomallei is increasing, owing to the biothreat potential of this pathogen and increasing awareness of the disease and its burden; however, better diagnostic tests are needed to improve early confirmation of diagnosis, which would enable better therapeutic efficacy and survival.
Collapse
Affiliation(s)
- W Joost Wiersinga
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Meibergdreef 9, Rm. G2-132, 1105 AZ Amsterdam, The Netherlands
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Harjeet S Virk
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University and Royal Darwin Hospital, Darwin, Australia
| | - Sharon J Peacock
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David A B Dance
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Direk Limmathurotsakul
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Department of Tropical Hygiene and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
41
|
Hantrakun V, Thaipadungpanit J, Rongkard P, Srilohasin P, Amornchai P, Langla S, Mukaka M, Chantratita N, Wuthiekanun V, Dance DAB, Day NPJ, Peacock SJ, Limmathurotsakul D. Presence of B. thailandensis and B. thailandensis expressing B. pseudomallei-like capsular polysaccharide in Thailand, and their associations with serological response to B. pseudomallei. PLoS Negl Trop Dis 2018; 12:e0006193. [PMID: 29364892 PMCID: PMC5809093 DOI: 10.1371/journal.pntd.0006193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/12/2018] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Burkholderia pseudomallei is an environmental Gram-negative bacillus and the cause of melioidosis. B. thailandensis, some strains of which express a B. pseudomallei-like capsular polysaccharide (BTCV), is also commonly found in the environment in Southeast Asia but is considered non-pathogenic. The aim of the study was to determine the distribution of B. thailandensis and its capsular variant in Thailand and investigate whether its presence is associated with a serological response to B. pseudomallei. METHODOLOGY/PRINCIPAL FINDINGS We evaluated the presence of B. pseudomallei and B. thailandensis in 61 rice fields in Northeast (n = 21), East (n = 19) and Central (n = 21) Thailand. We found BTCV in rice fields in East and Central but not Northeast Thailand. Fourteen fields were culture positive for B. pseudomallei alone, 8 for B. thailandensis alone, 11 for both B. pseudomallei and B. thailandensis, 6 for both B. thailandensis and BTCV, and 5 for B. pseudomallei, B. thailandensis and BTCV. Serological testing using the indirect hemagglutination assay (IHA) of 96 farmers who worked in the study fields demonstrated that farmers who worked in B. pseudomallei-positive fields had higher IHA titers than those who worked in B. pseudomallei-negative fields (median 1:40 [range: <1:10-1:640] vs. <1:10 [range: <1:10-1:320], p = 0.002). In a multivariable ordered logistic regression model, IHA titers were significantly associated with the presence of B. pseudomallei (aOR = 3.7; 95% CI 1.8-7.8, p = 0.001) but were not associated with presence of B. thailandensis (p = 0.32) or BTCV (p = 0.32). One sequence type (696) was identified for the 27 BTCV isolates tested. CONCLUSIONS/SIGNIFICANCE This is the first report of BTCV in Thailand. The presence of B. pseudomallei and B. thailandensis in the same field was not uncommon. Our findings suggest that IHA positivity of healthy rice farmers in Thailand is associated with the presence of B. pseudomallei in rice fields rather than B. thailandensis or BTCV.
Collapse
Affiliation(s)
- Viriya Hantrakun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Janjira Thaipadungpanit
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Patpong Rongkard
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prapaporn Srilohasin
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Premjit Amornchai
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sayan Langla
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - David A. B. Dance
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Sharon J. Peacock
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
42
|
|
43
|
Ong CEL, Wongsuvan G, Chew JSW, Kim TY, Teng LH, Amornchai P, Wuthiekanun V, Day NPJ, Peacock SJ, Cheng TY, Yap EPH, Limmathurotsakul D. Presence of Burkholderia pseudomallei in Soil and Paddy Rice Water in a Rice Field in Northeast Thailand, but Not in Air and Rainwater. Am J Trop Med Hyg 2017; 97:1702-1705. [PMID: 29016340 PMCID: PMC5805070 DOI: 10.4269/ajtmh.17-0515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Environmental Burkholderia pseudomallei has been postulated to be aerosolized during ploughing and heavy rain, and could result in inhalational melioidosis. Here, we determined the presence of B. pseudomallei in soil, paddy field water (PFW), air, and rainwater samples in a single rice paddy field in Ubon Ratchathani, northeast Thailand. In 2012, we collected 100 soil samples during the dry season, 10 PFW samples during the monsoon season, 77 air samples during ploughing (N = 31) and heavy rains (N = 46), and 60 rainwater samples during 12 rain events. We found that 32 soil samples (32%), six PFW samples (60%), and none of the air and rainwater samples were culture positive for B. pseudomallei. Other soil bacteria were isolated from air and rainwater samples. Mean quantitative count of B. pseudomallei estimated from two culture-positive PFW samples was 200 colony forming units/mL. Our findings suggest that the risk of melioidosis acquisition by inhalation in Thailand might be low.
Collapse
Affiliation(s)
- Catherine E L Ong
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Gumphol Wongsuvan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Janet S W Chew
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Tan Yian Kim
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Low Hwee Teng
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Premjit Amornchai
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sharon J Peacock
- Department of Medicine, Cambridge University, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tan Yoke Cheng
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Eric P H Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Chuah CJ, Tan EKH, Sermswan RW, Ziegler AD. Hydrological connectivity and Burkholderia pseudomallei prevalence in wetland environments: investigating rice-farming community's risk of exposure to melioidosis in North-East Thailand. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:287. [PMID: 28536911 DOI: 10.1007/s10661-017-5988-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
In our analysis of 136 water samples from wetland environments (rice paddies, natural wetland sites, man-made water bodies) in rural areas of North-East Thailand, Burkholderia pseudomallei was most prevalent in rice paddies (15 of the 30 positive sites). The high prevalence in the water of rice fields is indicative of the inherent vulnerability of farmers in rural agricultural areas in this area of Thailand and likely other locations in the tropics. Nearly all B. pseudomallei-positive sites were found within the vicinity of a large wetland associated with the Chi River, in the month of July 2014. Positive samples were found in water ranging in pH from 5.9 to 8.7, salinity ranging from 0.04 to 1.58 ppt, nitrate ranging from 0 to 10.8 ppm, and iron ranging from 0.003 to 1.519 ppm. Of these variables, only iron content was statistically higher in B. pseudomallei-positive versus B. pseudomallei-negative sites, suggesting that increasing concentrations of iron may encourage the growth of this bacterium, which is responsible for melioidosis. Our results, when combined with data from other published studies, support the notion that B. pseudomallei can exist in a wide range of environmental conditions. Thus, we argue that health safety education is a more appropriate means of addressing farmer vulnerability than chemical or physical alterations to fields at large scales. Further, it may be important to investigate melioidosis through transdisciplinary approaches that consider the complex social and ecological contexts in which the disease occurs.
Collapse
Affiliation(s)
- C Joon Chuah
- Institute of Water Policy, National University of Singapore, Singapore, Singapore.
- Department of Geography, National University of Singapore, Singapore, Singapore.
| | - Esther K H Tan
- Department of Geography, National University of Singapore, Singapore, Singapore
| | - Rasana W Sermswan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Alan D Ziegler
- Department of Geography, National University of Singapore, Singapore, Singapore
| |
Collapse
|
45
|
Bearss JJ, Hunter M, Dankmeyer JL, Fritts KA, Klimko CP, Weaver CH, Shoe JL, Quirk AV, Toothman RG, Webster WM, Fetterer DP, Bozue JA, Worsham PL, Welkos SL, Amemiya K, Cote CK. Characterization of pathogenesis of and immune response to Burkholderia pseudomallei K96243 using both inhalational and intraperitoneal infection models in BALB/c and C57BL/6 mice. PLoS One 2017; 12:e0172627. [PMID: 28235018 PMCID: PMC5325312 DOI: 10.1371/journal.pone.0172627] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/07/2017] [Indexed: 01/02/2023] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, is a Gram negative bacterium designated as a Tier 1 threat. This bacterium is known to be endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. Inhalational melioidosis has been associated with monsoonal rains in endemic areas and is also a significant concern in the biodefense community. There are currently no effective vaccines for B. pseudomallei and antibiotic treatment can be hampered by non-specific symptomology and also the high rate of naturally occurring antibiotic resistant strains. Well-characterized animal models will be essential when selecting novel medical countermeasures for evaluation prior to human clinical trials. Here, we further characterize differences between the responses of BALB/c and C57BL/6 mice when challenged with low doses of a low-passage and well-defined stock of B. pseudomallei K96243 via either intraperitoneal or aerosol routes of exposure. Before challenge, mice were implanted with a transponder to collect body temperature readings, and daily body weights were also recorded. Mice were euthanized on select days for pathological analyses and determination of the bacterial burden in selected tissues (blood, lungs, liver, and spleen). Additionally, spleen homogenate and sera samples were analyzed to better characterize the host immune response after infection with aerosolized bacteria. These clinical, pathological, and immunological data highlighted and confirmed important similarities and differences between these murine models and exposure routes.
Collapse
Affiliation(s)
- Jeremy J. Bearss
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Melissa Hunter
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Jennifer L. Dankmeyer
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Kristen A. Fritts
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Christopher P. Klimko
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Chris H. Weaver
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Jennifer L. Shoe
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Avery V. Quirk
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Ronald G. Toothman
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Wendy M. Webster
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - David P. Fetterer
- BioStatisitics Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Joel A. Bozue
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Patricia L. Worsham
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Susan L. Welkos
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Kei Amemiya
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Christopher K. Cote
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| |
Collapse
|
46
|
Handschuh H, Ryan MP, O’Dwyer J, Adley CC. Assessment of the Bacterial Diversity of Aircraft Water: Identification of the Frequent Fliers. PLoS One 2017; 12:e0170567. [PMID: 28114359 PMCID: PMC5256958 DOI: 10.1371/journal.pone.0170567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to determine and identify bacteria inhabiting the supply chain of an airline's drinking water using phenotypic and 16S rDNA sequence-based analysis. Water samples (n = 184) were sourced from long-haul and short-haul aircraft, the airline water source and a water service vehicle. In total, 308 isolates were characterised and their identity determined, which produced 82 identified bacterial species belonging to eight classes: γ-Proteobacteria; β-Proteobacteria; α-Proteobacteria; Bacilli; Actinobacteria; Flavobacteria; Sphingobacteria and Cytophaga. Statistical differences in bacterial diversity were found to exist across sampling locations (X2 = 39.220, p = 0.009) and furthermore, differences were observed (X2 = 15.475, p = 0.030) across aircraft type (long- or short-haul). This study demonstrates the diverse nature of microorganisms within the aircraft drinking water supply chain. To the best of our knowledge, this is the most extensive study undertaken to date of microbial diversity in aircraft drinking water.
Collapse
Affiliation(s)
- Harald Handschuh
- Microbiology Laboratory, Department of Chemical Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland
| | - Michael P. Ryan
- Industrial Biochemistry Programme, Department of Chemical Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland
- * E-mail:
| | - Jean O’Dwyer
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland
| | - Catherine C. Adley
- Microbiology Laboratory, Department of Chemical Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
47
|
Kanjanabuch T, Lumlertgul N, Pearson LJ, Chatsuwan T, Pongpirul K, Leelahavanichkul A, Thongbor N, Nuntawong G, Praderm L, Wechagama P, Narenpitak S, Wechpradit A, Punya W, Halue G, Naka P, Jeenapongsa S, Eiam-Ong S. Peritoneal Dialysis-Related Peritonitis Due to Melioidosis: A Potentially Devastating Condition. Perit Dial Int 2016; 37:183-190. [PMID: 27738086 DOI: 10.3747/pdi.2015.00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 07/25/2016] [Indexed: 12/29/2022] Open
Abstract
♦ BACKGROUND: Melioidosis, an infectious disease caused by Burkholderia pseudomallei, is endemic in Southeast Asia and Northern Australia. Although a wide range of clinical manifestations from this organism are known, peritonitis associated with peritoneal dialysis (PD) has rarely been reported. ♦ PATIENTS AND METHODS: Peritoneal dialysis patients from all regions in Thailand were eligible for the study if they had peritonitis and either peritoneal fluid or effluent culture positive for B. pseudomallei. Patient data obtained included baseline characteristics, laboratory investigations, treatments, and clinical outcomes. When possible, PD fluid and removed Tenckhoff (TK) catheters were submitted for analyses of minimal inhibitory concentration (MIC) and microbial biofilm, respectively. ♦ RESULTS: Twenty-six patients were identified who were positive for peritoneal B. pseudomallei infection. The recorded mean age was 50 ± 15 (24 - 75) years, and the majority (58%) were female. Most of the cases were farmers living in Northeastern and Northern Thailand. Almost half of the cases had diabetes. Infections were reported commonly during the monsoon season and winter. The clinical presentations of peritonitis were similar to the manifestations from other microorganisms. Nine patients (41%) died (7 from sepsis), 6 fully recovered, and 7 switched to permanent hemodialysis. The mortality was potentially associated with sepsis (p = 0.007), infection during the monsoon season (p = 0.017), high initial dialysate neutrophils (p = 0.045), and high hematocrit (p = 0.045). Although no antibiotic resistance to ceftazidime and carbapenems was detected, approximately 50% of patients died with this treatment. Microbial biofilms were identified on the luminal surface of 4 out of 5 TK catheters, but the removal of the catheter did not alter the outcomes. ♦ CONCLUSION: Peritoneal dialysis-related peritonitis due to melioidosis is uncommon but highly fatal. Increased awareness, early diagnosis, and optimal management are mandatory.
Collapse
Affiliation(s)
- Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand .,Kidney and Metabolic Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Peritoneal Dialysis Excellent Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nuttha Lumlertgul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Lachlan J Pearson
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nisa Thongbor
- Sappasit Prasong Hospital, Ubon Ratchathani, Thailand
| | | | | | | | | | | | | | | | | | | | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
48
|
Ribolzi O, Rochelle-Newall E, Dittrich S, Auda Y, Newton PN, Rattanavong S, Knappik M, Soulileuth B, Sengtaheuanghoung O, Dance DAB, Pierret A. Land use and soil type determine the presence of the pathogen Burkholderia pseudomallei in tropical rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7828-7839. [PMID: 26758304 PMCID: PMC4846699 DOI: 10.1007/s11356-015-5943-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Burkholderia pseudomallei is the bacterium that causes melioidosis in humans. While B. pseudomallei is known to be endemic in South East Asia (SEA), the occurrence of the disease in other parts of the tropics points towards a potentially large global distribution. We investigated the environmental factors that influence the presence (and absence) of B. pseudomallei in a tropical watershed in SEA. Our main objective was to determine whether there is a link between the presence of the organism in the hydrographic network and the upstream soil and land-use type. The presence of B. pseudomallei was determined using a specific quantitative real-time PCR assay following enrichment culture. Land use, soil, geomorphology, and environmental data were then analyzed using partial least squares discriminant analysis (PLSDA) to compare the B. pseudomallei positive and negative sites. Soil type in the surrounding catchment and turbidity had a strong positive influence on the presence (acrisols and luvisols) or absence (ferralsols) of B. pseudomallei. Given the strong apparent links between soil characteristics, water turbidity, and the presence/absence of B. pseudomallei, actions to raise public awareness about factors increasing the risk of exposure should be undertaken in order to reduce the incidence of melioidosis in regions of endemicity.
Collapse
Affiliation(s)
- Olivier Ribolzi
- Géosciences Environnement Toulouse (GET), UMR 5563, (IRD, CNRS, UPS), Université de Toulouse, UPS (OMP), CNRS, Toulouse, France.
| | - Emma Rochelle-Newall
- iEES-Paris (IRD-UPMC-CNRS-INRA-UDD-UPEC), Sorbonne Universités, UPMC Univ Paris 06, Institut de Recherche pour le Développement (IRD), case 23, 4 place Jussieu, Paris cedex, 75252, France
| | - Sabine Dittrich
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yves Auda
- Géosciences Environnement Toulouse (GET), UMR 5563, (IRD, CNRS, UPS), Université de Toulouse, UPS (OMP), CNRS, Toulouse, France
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sayaphet Rattanavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Michael Knappik
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bounsamai Soulileuth
- Institute of Ecology and Environmental Science-Paris, Institut de Recherche pour le Développement (IRD), Vientiane, Lao People's Democratic Republic
| | - Oloth Sengtaheuanghoung
- Department of Agricultural Land Management (DALaM), P.O. Box 4199, Ban Nogviengkham, Xaythany District, Vientiane, Lao People's Democratic Republic
| | - David A B Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alain Pierret
- Institute of Ecology and Environmental Science-Paris, Institut de Recherche pour le Développement (IRD), Vientiane, Lao People's Democratic Republic
| |
Collapse
|
49
|
Limmathurotsakul D, Golding N, Dance DA, Messina JP, Pigott DM, Moyes CL, Rolim DB, Bertherat E, Day NP, Peacock SJ, Hay SI. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol 2016; 1:15008. [PMID: 26877885 PMCID: PMC4746747 DOI: 10.1038/nmicrobiol.2015.8] [Citation(s) in RCA: 663] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022]
Abstract
Burkholderia pseudomallei, a highly pathogenic bacterium that causes melioidosis, is commonly found in soil in Southeast Asia and Northern Australia1,2. Melioidosis can be difficult to diagnose due to its diverse clinical manifestations and the inadequacy of conventional bacterial identification methods3. The bacterium is intrinsically resistant to a wide range of antimicrobials, and treatment with ineffective antimicrobials may result in case fatality rates (CFRs) exceeding 70%4,5. The importation of infected animals has, in the past, spread melioidosis to non-endemic areas6,7. The global distribution of B. pseudomallei and burden of melioidosis, however, remain poorly understood. Here, we map documented human and animal cases, and the presence of environmental B. pseudomallei, and combine this in a formal modelling framework8-10 to estimate the global burden of melioidosis. We estimate there to be 165,000 (95% credible interval 68,000-412,000) human melioidosis cases per year worldwide, of which 89,000 (36,000-227,000) die. Our estimates suggest that melioidosis is severely underreported in the 45 countries in which it is known to be endemic and that melioidosis is likely endemic in a further 34 countries which have never reported the disease. The large numbers of estimated cases and fatalities emphasise that the disease warrants renewed attention from public health officials and policy makers.
Collapse
Affiliation(s)
- Direk Limmathurotsakul
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom ; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand ; Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Nick Golding
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - David Ab Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR ; Centre for Tropical Medicine and Global Health, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, United Kingdom
| | - Jane P Messina
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - David M Pigott
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Catherine L Moyes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | | | - Eric Bertherat
- Department of Pandemic and Epidemic Diseases, World Health Organization, Geneva, 27, Switzerland
| | - Nicholas Pj Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand ; Centre for Tropical Medicine and Global Health, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, United Kingdom
| | - Sharon J Peacock
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand ; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom ; London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Simon I Hay
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom ; Institute of Health Metrics and Evaluation, University of Washington, Seattle, WA 98121, USA ; Fogarty International Center, National Institutes of Health, Bethesda, MD 20892-2220, USA
| |
Collapse
|
50
|
Benoit TJ, Blaney DD, Doker TJ, Gee JE, Elrod MG, Rolim DB, Inglis TJJ, Hoffmaster AR, Bower WA, Walke HT. A Review of Melioidosis Cases in the Americas. Am J Trop Med Hyg 2015; 93:1134-9. [PMID: 26458779 DOI: 10.4269/ajtmh.15-0405] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/25/2015] [Indexed: 11/07/2022] Open
Abstract
Melioidosis is a bacterial infection caused by Burkholderia pseudomallei, a gram-negative saprophytic bacillus. Cases occur sporadically in the Americas with an increasing number of cases observed among people with no travel history to endemic countries. To better understand the incidence of the disease in the Americas, we reviewed the literature, including unpublished cases reported to the Centers for Disease Control and Prevention. Of 120 identified human cases, occurring between 1947 and June 2015, 95 cases (79%) were likely acquired in the Americas; the mortality rate was 39%. Burkholderia pseudomallei appears to be widespread in South, Central, and North America.
Collapse
Affiliation(s)
- Tina J Benoit
- Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia; Universidade de Fortaleza (UNIFOR), Fortaleza, Brazil; School of Pathology and Laboratory Medicine, University of Western Australia, Western Australia, Australia
| | - David D Blaney
- Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia; Universidade de Fortaleza (UNIFOR), Fortaleza, Brazil; School of Pathology and Laboratory Medicine, University of Western Australia, Western Australia, Australia
| | - Thomas J Doker
- Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia; Universidade de Fortaleza (UNIFOR), Fortaleza, Brazil; School of Pathology and Laboratory Medicine, University of Western Australia, Western Australia, Australia
| | - Jay E Gee
- Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia; Universidade de Fortaleza (UNIFOR), Fortaleza, Brazil; School of Pathology and Laboratory Medicine, University of Western Australia, Western Australia, Australia
| | - Mindy G Elrod
- Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia; Universidade de Fortaleza (UNIFOR), Fortaleza, Brazil; School of Pathology and Laboratory Medicine, University of Western Australia, Western Australia, Australia
| | - Dionne B Rolim
- Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia; Universidade de Fortaleza (UNIFOR), Fortaleza, Brazil; School of Pathology and Laboratory Medicine, University of Western Australia, Western Australia, Australia
| | - Timothy J J Inglis
- Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia; Universidade de Fortaleza (UNIFOR), Fortaleza, Brazil; School of Pathology and Laboratory Medicine, University of Western Australia, Western Australia, Australia
| | - Alex R Hoffmaster
- Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia; Universidade de Fortaleza (UNIFOR), Fortaleza, Brazil; School of Pathology and Laboratory Medicine, University of Western Australia, Western Australia, Australia
| | - William A Bower
- Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia; Universidade de Fortaleza (UNIFOR), Fortaleza, Brazil; School of Pathology and Laboratory Medicine, University of Western Australia, Western Australia, Australia
| | - Henry T Walke
- Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia; Universidade de Fortaleza (UNIFOR), Fortaleza, Brazil; School of Pathology and Laboratory Medicine, University of Western Australia, Western Australia, Australia
| |
Collapse
|