1
|
Xiao L, Long Y, Gao B, Hu Y, Zhang T, Xiao Q, Qin X, Xia X, Wang X, Li Z, Dong Q. Evaluation of the virulence characteristics of ST11 Salmonella enterica from different sources using a 2D cell model. Int J Food Microbiol 2025; 434:111151. [PMID: 40073551 DOI: 10.1016/j.ijfoodmicro.2025.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
This study aimed to evaluate the virulence characteristics of ST11 Salmonella enterica from various sources and explore its pathogenic mechanisms and the molecular basis of antimicrobial resistance. In total, 20 Salmonella isolates collected between 2017 and 2022 from environmental, animal, clinical, and food sources were analyzed. Comprehensive investigations were conducted using whole-genome sequencing, bioinformatic analysis, broth microdilution methods, a two-dimensional (2D) cell model (Caco-2 cells), and a Galleria mellonella infection model. All tested ST11 strains carried major pathogenicity islands (PAIs) SPI-1salmonella pathogenicity island-1 (SPI-1) to SPI-5, and 90 % of the isolates harbored three or more plasmids, facilitating the horizontal transfer of virulence genes. Expression levels of sopA, ssaV, sipA/sspA, and sipB/sspB virulence genes varied significantly among strains, with sipB/sspB playing a key role in the invasion of ST11 strains. The results of invasion assays using the 2D cell model were consistent with those from the Galleria mellonella infection model, validating the 2D model's effectiveness in evaluating Salmonella's virulence. The findings suggest that Salmonella's virulence is not directly associated with the source of the isolates, and plasmid diversity may impact adaptability and transmission patterns. This study provides new insights into the pathogenic mechanisms of ST11 Salmonella and lays the groundwork for developing a novel 3D cell model to assess bacterial virulence.
Collapse
Affiliation(s)
- Linlin Xiao
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai University of Medicine and Health Sciences, Shanghai 201499, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yulin Long
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai University of Medicine and Health Sciences, Shanghai 201499, China
| | - Binru Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Hu
- Anhui University of Science and Technology School of Medicine, Anhui 232001, China
| | - Tantao Zhang
- Anhui University of Science and Technology School of Medicine, Anhui 232001, China
| | - Qian Xiao
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai University of Medicine and Health Sciences, Shanghai 201499, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
2
|
Samper-Cativiela C, Torre-Fuentes L, Diéguez-Roda B, Maex M, Ugarte-Ruiz M, Carrizo P, Hernández M, Höfle Ú, Sáez JL, de Frutos C, Agüero M, Moreno MÁ, Domínguez L, Herrera-León S, Alvarez J. Molecular epidemiology of Salmonella Enteritidis in humans and animals in Spain. Antimicrob Agents Chemother 2025; 69:e0073824. [PMID: 40029002 PMCID: PMC11963599 DOI: 10.1128/aac.00738-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/11/2025] [Indexed: 03/05/2025] Open
Abstract
Salmonella Enteritidis, the most prevalent serovar-causing human gastroenteritis, has been traditionally linked to poultry sources. Although antimicrobial resistance (AMR) is not common in this serovar, increasing levels of resistance to fluoroquinolones and ampicillin have been reported in the last few years. Here, 298 isolates retrieved from different sources (human, livestock, wildlife, food, and environment) and years (2002-2021) in Spain were analyzed to evaluate their diversity, the distribution of AMR-conferring genes (ARGs), and mutations and reconstruct the epidemiology of infection due to this serovar. Isolates were clustered in two major clades (I and II), with strains in clade I (including 61.5% of all human isolates) displaying a pan-susceptible phenotype and not carrying AMR determinants. In contrast, clade II included 80.7% of isolates from animal/food/environmental sources, with the majority (69.8%) harboring mutations in the quinolone resistance determinant regions (QRDR). ARGs, although rare, were mostly found in clade II strains that also carried plasmid replicons, among which IncX1 was the most common. Although higher levels of phenotypic resistance were found in animal isolates, extended-spectrum beta-lactamase, plasmid-mediated AmpC, and carbapenemase-encoding genes were only found among human isolates. In summary, the majority of human and animal isolates from Spanish sources in our collection were classified in different phylogenetic branches, suggesting that additional sources are contributing to the occurrence of foodborne infections in Spain. Furthermore, the different distributions of virulence factors and ARGs in isolates from different sources and their association with specific plasmids suggest the presence of different dynamics contributing to the selection of resistant strains.
Collapse
Affiliation(s)
- Clara Samper-Cativiela
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Laura Torre-Fuentes
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | | | - Margo Maex
- Division of Human Bacterial Diseases, Sciensano, Uccle, Belgium
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Paula Carrizo
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Marta Hernández
- Departamento de Anatomía Patológica, Microbiología, Medicina Preventiva y Salud Pública, Medicina Legal y Forense. Facultad de Medicina, Universidad de Valladolid Facultad de Medicina, Valladolid, Spain
| | - Úrsula Höfle
- IREC, Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain
| | - José Luis Sáez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Cristina de Frutos
- Laboratorio Central de Veterinaria, Ministerio de Agricultura, Pesca y Alimentación, Algete, Spain
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria, Ministerio de Agricultura, Pesca y Alimentación, Algete, Spain
| | - Miguel Ángel Moreno
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Silvia Herrera-León
- Laboratorio de Referencia e Investigación en Enfermedades Bacterianas Transmitidas por Alimentos, Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Zheng X, Xiang Y, Li X, Du X, Wang Y, Tian S, Xue J, Huang Y, Liu H, Wang Q, Liu H, Wang H, Wang C, Yang M, Jia H, Wang L, Xu X, Song L, Song H, Qiu S. An MDR Salmonella Enteritidis sublineage associated with gastroenteritis outbreaks and invasive disease in China. J Infect 2025; 90:106421. [PMID: 39855357 DOI: 10.1016/j.jinf.2025.106421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
OBJECTIVES Salmonella enterica serovar Enteritidis (S. Enteritidis) is a commonly reported pathogen which adapts to multiple hosts and causes critical disease burden at a global level. Here, we investigated a recently derived epidemic sublineage with multidrug resistance (MDR), which have caused extended time-period and cross-regional gastroenteritis outbreaks and even invasive nontyphoidal Salmonella disease (iNTS) in China. METHODS Whole-genome sequencing and antimicrobial resistance (AMR) testing were applied to 729 Chinese S. Enteritidis isolates in relation to gastroenteritis outbreaks, gastrointestinal-sporadic and iNTS infections, spanning 28 years (1994-2021) in China. Phylogenomic analysis was performed to explore the population structure and evolutionary history of the Chinese isolates within a global context. Molecular investigations of AMR genes, virulence factors, mobile genetic elements and pan-genomes were also performed. RESULTS The Chinese S. Enteritidis collections exhibited a high level of multidrug resistance (MDR), including high resistance to nalidixic acid (97.67%). Notably, the multidrug resistance rate of iNTS strains has significantly increased over the past decade. Phylogenomic analysis showed that the majority of the Chinese isolates (98.63%) were distributed in the global pandemic lineage L1, while the other lineages were highly continent-specific. Particularly, the Chinese isolates were predominantly distributed in sublineages L1.2 (37.45%) and L1.3 (59.26%), forming two main Chinese clades (MCC1&2). The most recent common ancestor of MCC1&2 dated back to 1944 and 2004, respectively. The lineage L1, especially MCC1&2, harbored the most amount of AMR determinants and virulence genes, which was mainly due to the presence of a hybrid virulence-resistance plasmid and coexistence of different types of AMR plasmids in S. Enteritidis. CONCLUSIONS S. Enteritidis has evolved unique clonal clusters, MCC1&2, with critical MDR in China, which phylogenetically constitute an extension of the globally epidemic lineage and were characterized by distinct genetic traits. These clades have induced extensive outbreaks of gastroenteritis and serious cases of iNTS in China, underscoring the pressing nature and severity of this public health crisis. Implementing the One-Health strategy, longstanding routine surveillance and further genomic epidemiological studies are urgently required to capture epidemics, monitor changes in bacterial populations and determine the consequent risk to global public health.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ying Xiang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xiaoying Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xinying Du
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Yule Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Sai Tian
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Jingzhuang Xue
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Ying Huang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hongbo Liu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Qi Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hongbo Liu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hui Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Chao Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Mingjuan Yang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Huiqun Jia
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Ligui Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Hongbin Song
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China.
| | - Shaofu Qiu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China.
| |
Collapse
|
4
|
Leeper MM, Tolar BM, Griswold T, Vidyaprakash E, Hise KB, Williams GM, Im SB, Chen JC, Pouseele H, Carleton HA. Evaluation of whole and core genome multilocus sequence typing allele schemes for Salmonella enterica outbreak detection in a national surveillance network, PulseNet USA. Front Microbiol 2023; 14:1254777. [PMID: 37808298 PMCID: PMC10558246 DOI: 10.3389/fmicb.2023.1254777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Salmonella enterica is a leading cause of bacterial foodborne and zoonotic illnesses in the United States. For this study, we applied four different whole genome sequencing (WGS)-based subtyping methods: high quality single-nucleotide polymorphism (hqSNP) analysis, whole genome multilocus sequence typing using either all loci [wgMLST (all loci)] and only chromosome-associated loci [wgMLST (chrom)], and core genome multilocus sequence typing (cgMLST) to a dataset of isolate sequences from 9 well-characterized Salmonella outbreaks. For each outbreak, we evaluated the genomic and epidemiologic concordance between hqSNP and allele-based methods. We first compared pairwise genomic differences using all four methods. We observed discrepancies in allele difference ranges when using wgMLST (all loci), likely caused by inflated genetic variation due to loci found on plasmids and/or other mobile genetic elements in the accessory genome. Therefore, we excluded wgMLST (all loci) results from any further comparisons in the study. Then, we created linear regression models and phylogenetic tanglegrams using the remaining three methods. K-means analysis using the silhouette method was applied to compare the ability of the three methods to partition outbreak and sporadic isolate sequences. Our results showed that pairwise hqSNP differences had high concordance with cgMLST and wgMLST (chrom) allele differences. The slopes of the regressions for hqSNP vs. allele pairwise differences were 0.58 (cgMLST) and 0.74 [wgMLST (chrom)], and the slope of the regression was 0.77 for cgMLST vs. wgMLST (chrom) pairwise differences. Tanglegrams showed high clustering concordance between methods using two statistical measures, the Baker's gamma index (BGI) and cophenetic correlation coefficient (CCC), where 9/9 (100%) of outbreaks yielded BGI values ≥ 0.60 and CCCs were ≥ 0.97 across all nine outbreaks and all three methods. K-means analysis showed separation of outbreak and sporadic isolate groups with average silhouette widths ≥ 0.87 for outbreak groups and ≥ 0.16 for sporadic groups. This study demonstrates that Salmonella isolates clustered in concordance with epidemiologic data using three WGS-based subtyping methods and supports using cgMLST as the primary method for national surveillance of Salmonella outbreak clusters.
Collapse
Affiliation(s)
- Molly M. Leeper
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Beth M. Tolar
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Taylor Griswold
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Eshaw Vidyaprakash
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Kelley B. Hise
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Grant M. Williams
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sung B. Im
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jessica C. Chen
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | - Heather A. Carleton
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
5
|
Evaluation of Genomic Typing Methods in the Salmonella Reference Laboratory in Public Health, England, 2012-2020. Pathogens 2023; 12:pathogens12020223. [PMID: 36839496 PMCID: PMC9966477 DOI: 10.3390/pathogens12020223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
We aim to provide an evidence-based evaluation of whole genome sequence (WGS) methods, employed at the Salmonella reference laboratory in England, in terms of its impact on public health and whether these methods remain a fit for purpose test under UKAS ISO 15189. The evaluation of the genomic methods were mapped against the value of detecting microbiological clusters to support the investigation of food-borne outbreaks of Salmonella in England between 2012-2020. The analysis of WGS with both SNP- and allelic-based methods provided an unprecedented level of strain discrimination and detection of additional clusters when comparing to all of the previous typing methods. The robustness of the routine genomic sequencing at the reference laboratory ensured confidence in the microbiological identifications, even in large outbreaks with complex international food distribution networks. There was evidence that the phylogeny derived from the WGS data can be used to inform the provenance of strains and support discrimination between domestic and non-domestic transmission events. Further insight on the evolutionary context of the emerging pathogenic strains was enabled with a deep dive of the phylogenetic data, including the detection of nested clusters. The public availability of the WGS data linked to the clinical, epidemiological and environmental context of the sequenced strains has improved the trace-back investigations during outbreaks. The global expansion in the use of WGS-based typing in reference laboratories has shown that the WGS methods are a fit for purpose test in public health as it has ensured the rapid implementation of interventions to protect public health, informed risk assessment and has facilitated the management of national and international food-borne outbreaks of Salmonella.
Collapse
|
6
|
Cao G, Zhao S, Kuang D, Hsu CH, Yin L, Luo Y, Chen Z, Xu X, Strain E, McDermott P, Allard M, Brown E, Meng J, Zheng J. Geography shapes the genomics and antimicrobial resistance of Salmonella enterica Serovar Enteritidis isolated from humans. Sci Rep 2023; 13:1331. [PMID: 36693882 PMCID: PMC9873609 DOI: 10.1038/s41598-022-24150-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/10/2022] [Indexed: 01/25/2023] Open
Abstract
Multidrug-resistant (MDR) Salmonella has been a long-standing challenge in public health and food safety. The prevalence of MDR S. Enteritidis, especially isolated from humans, in China is significantly higher than those from the U.S. and other countries. A dataset of 197 S. Enteritidis genomes, including 16 sequenced clinical isolates from China and 181 downloaded genomes of human isolates from the U.S., Europe, and Africa, was analyzed for genomic diversity, virulence potential, and antimicrobial resistance (AMR). Phylogenomic analyses identified four major well-supported clades (I-IV). While AMR genotype in the majority of isolates in clades I and IV displayed as pan-susceptible, 81.8% (9/11) and 22.4% (13/58) of isolates in clades III and II were MDR, respectively. It is noted that 77% (10/13) of MDR isolates in clade II were from China. The most common antimicrobial resistance genes (ARGs) carried by the Chinese isolates were aph(3')-IIa, blaCTX-M-55, and blaTEM-1B, whereas blaTEM-1B, sul1, sul2, drfA7, aph(3")-Ib/strA, and aph(6)-Id/strB were most often identified in those from Africa (clade III). Among the 14 plasmid types identified, IncX1 and IncFII(pHN7A8) were found exclusively in the Chinese MDR isolates, while IncQ1 was highly associated with the African MDR isolates. The spvRABCD virulence operon was present in 94.9% (187/197) of isolates tested and was highly associated with both the IncF (IncFII and IncFIB) plasmids. In addition, phylogenetic differences in distribution of Salmonella pathogenicity islands (SPIs), prophages and other accessory genes were also noted. Taken together, these findings provide new insights into the molecular mechanisms underpinning diversification of MDR S. Enteritidis.
Collapse
Affiliation(s)
- Guojie Cao
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA.
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Dai Kuang
- Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Lanlan Yin
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Yan Luo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety & Security Systems, Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Errol Strain
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Patrick McDermott
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Eric Brown
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety & Security Systems, Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA.
| |
Collapse
|
7
|
Liu CC, Hsiao WWL. Large-scale comparative genomics to refine the organization of the global Salmonella enterica population structure. Microb Genom 2022; 8:mgen000906. [PMID: 36748524 PMCID: PMC9837569 DOI: 10.1099/mgen.0.000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The White-Kauffmann-Le Minor (WKL) scheme is the most widely used Salmonella typing scheme for reporting the disease prevalence of the enteric pathogen. With the advent of whole-genome sequencing (WGS), in silico methods have increasingly replaced traditional serotyping due to reproducibility, speed and coverage. However, despite integrating genomic-based typing by in silico serotyping tools such as SISTR, in silico serotyping in certain contexts remains ambiguous and insufficiently informative. Specifically, in silico serotyping does not attempt to resolve polyphyly. Furthermore, in spite of the widespread acknowledgement of polyphyly from genomic studies, the prevalence of polyphyletic serovars is not well characterized. Here, we applied a genomics approach to acquire the necessary resolution to classify genetically discordant serovars and propose an alternative typing scheme that consistently reflect natural Salmonella populations. By accessing the unprecedented volume of bacterial genomic data publicly available in GenomeTrakr and PubMLST databases (>180 000 genomes representing 723 serovars), we characterized the global Salmonella population structure and systematically identified putative non-monophyletic serovars. The proportion of putative non-monophyletic serovars was estimated higher than previous reports, reinforcing the inability of antigenic determinants to depict the complexity of Salmonella evolutionary history. We explored the extent of genetic diversity masked by serotyping labels and found significant intra-serovar molecular differences across many clinically important serovars. To avoid false discovery due to incorrect in silico serotyping calls, we cross-referenced reported serovar labels and concluded a low error rate in in silico serotyping. The combined application of clustering statistics and genome-wide association methods demonstrated effective characterization of stable bacterial populations and explained functional differences. The collective methods adopted in our study have practical values in establishing genomic-based typing nomenclatures for an entire microbial species or closely related subpopulations. Ultimately, we foresee an improved typing scheme to be a hybrid that integrates both genomic and antigenic information such that the resolution from WGS is leveraged to improve the precision of subpopulation classification while preserving the common names defined by the WKL scheme.
Collapse
Affiliation(s)
- Chao Chun Liu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - William W. L. Hsiao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada,Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada,*Correspondence: William W. L. Hsiao,
| |
Collapse
|
8
|
Mattock J, Smith AM, Keddy KH, Manners EJ, Duze ST, Smouse S, Tau N, Baker D, Chattaway MA, Mather AE, Wain J, Langridge GC. Genetic characterization of Salmonella Infantis from South Africa, 2004-2016. Access Microbiol 2022; 4:acmi000371. [PMID: 36003217 PMCID: PMC9394735 DOI: 10.1099/acmi.0.000371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022] Open
Abstract
Salmonella Infantis is presenting an increasing risk to public health. Of particular concern are the reports of pESI, a multidrug resistance (MDR) encoding megaplasmid, in isolates from multiple countries, but little is known about its presence or diversity in South Africa. Whole genome sequences of 387 S. Infantis isolates from South Africa (2004-2020) were analysed for genetic phylogeny, recombination frequency, antimicrobial resistance (AMR) determinants, plasmid presence and overall gene content. The population structure of South African S. Infantis was substantially different to S. Infantis reported elsewhere; only two thirds of isolates belonged to eBG31, while the remainder were identified as eBG297, a much rarer group globally. Significantly higher levels of recombination were observed in the eBG297 isolates, which was associated with the presence of prophages. The majority of isolates were putatively susceptible to antimicrobials (335/387) and lacked any plasmids (311/387); the megaplasmid pESI was present in just one isolate. A larger proportion of eBG31 isolates, 19% (49/263), contained at least one AMR determinant, compared to eBG297 at 2% (3/124). Comparison of the pan-genomes of isolates from either eBG identified 943 genes significantly associated with eBG, with 43 found exclusively in eBG31 isolates and 34 in eBG297 isolates. This, along with the single nucleotide polymorphism distance and difference in resistance profiles, suggests that eBG31 and eBG297 isolates occupy different niches within South Africa. If antibiotic-resistant S. Infantis emerges in South Africa, probably through the spread of the pESI plasmid, treatment of this infection would be compromised.
Collapse
Affiliation(s)
- Jennifer Mattock
- Norwich Medical School, University of East Anglia, Norwich, UK
- Present address: The Roslin Institute, University of Edinburgh, UK
| | - Anthony M. Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | - Emma J. Manners
- Norwich Medical School, University of East Anglia, Norwich, UK
- Present address: European Molecular Biology Laboratory, European Bioinformatics Institute, UK
| | - Sanelisiwe T. Duze
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shannon Smouse
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Nomsa Tau
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - David Baker
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
| | - Marie Anne Chattaway
- Gastrointestinal Bacteriology Reference Unit, United Kingdom Health Security Agency, London, UK
| | - Alison E. Mather
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, UK
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
| | | |
Collapse
|
9
|
Maguire M, Khan AS, Adesiyun AA, Georges K, Gonzalez-Escalona N. Genomic Comparison of Eight Closed Genomes of Multidrug-Resistant Salmonella enterica Strains Isolated From Broiler Farms and Processing Plants in Trinidad and Tobago. Front Microbiol 2022; 13:863104. [PMID: 35620095 PMCID: PMC9127609 DOI: 10.3389/fmicb.2022.863104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Salmonella enterica is an important foodborne pathogen worldwide. We used long and short-read sequencing to close genomes of eight multidrug-resistant (MDR) S. enterica strains, belonging to serovars Infantis (2), Albany, Oranienburg, I 4,[5],12:i:-, Javiana, Schwarzengrund, and Kentucky from broiler chicken farms and processing plants in Trinidad and Tobago. They also belonged to seven different sequence types (STs- 32, 292, 1510, 19, 24, 152, and 96). Among the strains, seven had demonstrated multi-drug resistance with the presence of at least three AMR genes, whereas three isolates contained the quinolone resistance gene qnr B19 in plasmids (CFSAN103840, CFSAN103854, and CFSAN103872). The extended-spectrum β-lactamase genes bla CTX-M-65 (CFSAN103796) and bla TEM-1 (CFSAN103852) were detected in this study. The genomes closed in this study will be useful for future source tracking and outbreak investigations in Trinidad and Tobago and worldwide.
Collapse
Affiliation(s)
- Meghan Maguire
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Anisa S Khan
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Abiodun A Adesiyun
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Karla Georges
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Narjol Gonzalez-Escalona
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
10
|
Whole-Genome Analysis of Multidrug-Resistant Salmonella Enteritidis Strains Isolated from Poultry Sources in Korea. Pathogens 2021; 10:pathogens10121615. [PMID: 34959570 PMCID: PMC8707440 DOI: 10.3390/pathogens10121615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
The Salmonella Enterica subsp. Enterica serovar Enteritidis is one of main serovars isolated from human patients with food poisoning and poultry without clinical signs. Consumption of poultry products contaminated with Salmonella Enteritidis is a common source of human salmonellosis; 82 Salmonella spp. were isolated from 291 samples of retail chicken meat, 201 one-day-old chicks, 30 internal organs of chickens, 156 chicken eggs, 100 duck eggs, 38 straw bedding samples, 18 samples of retail duck meat, and 19 swab samples from slaughterhouses in 2019 and 2020. An antibiotic susceptibility test was performed for all isolates, revealing 33 multidrug-resistant (MDR) strains. The whole genome of 33 MDR strains isolated in 2019 and 2020 and 10 strains isolated in 2011, 2012, and 2017 was sequenced using the MinION sequencing protocol. Within these 43 samples, 5 serovars were identified: S. Enteritidis, S. Agona, S. Virchow, S. Albany, and S. Bareilly. The most common serovar was S. Enteritidis (26/43), which showed the highest resistance to ampicillin (100%), followed by nalidixic acid (90%) and colistin (83%). Core genome multilocus sequence typing analysis showed that the S. Enteritidis strains isolated from different sources and in different years were clustered together. In addition, the S. Enteritidis strains isolated since 2011 consistently harbored the same antibiotic resistance patterns.
Collapse
|
11
|
Haendiges J, Davidson GR, Pettengill JB, Reed E, Ramachandran P, Blessington T, Miller JD, Anderson N, Myoda S, Brown EW, Zheng J, Tikekar R, Hoffmann M. Genomic evidence of environmental and resident Salmonella Senftenberg and Montevideo contamination in the pistachio supply-chain. PLoS One 2021; 16:e0259471. [PMID: 34735518 PMCID: PMC8568146 DOI: 10.1371/journal.pone.0259471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/19/2021] [Indexed: 12/04/2022] Open
Abstract
Pistachios have been implicated in two salmonellosis outbreaks and multiple recalls in the U.S. This study performed an in-depth retrospective data analysis of Salmonella associated with pistachios as well as a storage study to evaluate the survivability of Salmonella on inoculated inshell pistachios to further understand the genetics and microbiological dynamics of this commodity-pathogen pair. The retrospective data analysis on isolates associated with pistachios was performed utilizing short-read and long-read sequencing technologies. The sequence data were analyzed using two methods: the FDA's Center for Food Safety and Applied Nutrition Single Nucleotide Polymorphism (SNP) analysis and Whole Genome Multilocus Sequence Typing (wgMLST). The year-long storage study evaluated the survival of five strains of Salmonella on pistachios stored at 25 °C at 35% and 54% relative humidity (RH). Our results demonstrate: i) evidence of persistent Salmonella Senftenberg and Salmonella Montevideo strains in pistachio environments, some of which may be due to clonal resident strains and some of which may be due to preharvest contamination; ii) presence of the Copper Homeostasis and Silver Resistance Island (CHASRI) in Salmonella Senftenberg and Montevideo strains in the pistachio supply chain; and iii) the use of metagenomic analysis is a novel tool for determining the composition of serovar survival in a cocktail inoculated storage study.
Collapse
Affiliation(s)
- Julie Haendiges
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
| | - Gordon R Davidson
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - James B Pettengill
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Elizabeth Reed
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Tyann Blessington
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Jesse D Miller
- Neogen Corporation, Lansing, Michigan, United States of America
| | - Nathan Anderson
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Bedford Park, Illinois, United States of America
| | - Sam Myoda
- IEH Incorporated, Seattle, Washington, United States of America
| | - Eric W Brown
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Rohan Tikekar
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| |
Collapse
|
12
|
Carroll LM, Pierneef R, Mathole M, Matle I. Genomic Characterization of Endemic and Ecdemic Non-typhoidal Salmonella enterica Lineages Circulating Among Animals and Animal Products in South Africa. Front Microbiol 2021; 12:748611. [PMID: 34671335 PMCID: PMC8521152 DOI: 10.3389/fmicb.2021.748611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
In Africa, the burden of illness caused by non-typhoidal Salmonella enterica is disproportionally high; however, whole-genome sequencing (WGS) efforts are overwhelmingly concentrated in world regions with lower burdens. While WGS is being increasingly employed in South Africa to characterize Salmonella enterica, the bulk of these efforts have centered on characterizing human clinical strains. Thus, very little is known about lineages circulating among animals in the country on a genomic scale. Here, we used WGS to characterize 63 Salmonella enterica strains isolated from livestock, companion animals, wildlife, and animal products in South Africa over a 60-year period. Genomes were assigned to serotypes Dublin, Hadar, Enteritidis, and Typhimurium (n = 18, 8, 13, and 24 strains, respectively) and sequence types (STs) ST10 (all S. Dublin), ST33 (all S. Hadar), ST11/ST366 (n = 12 and 1 S. Enteritidis, respectively), and ST19/ST34 (n = 23 and 1 S. Typhimurium, respectively; via seven-gene multi-locus sequence typing). Within-ST phylogenies were constructed using genomes sequenced in this study, plus publicly available genomes representative of each ST's (i) global (n = 2,802 and 1,569 S. Dublin and Hadar genomes, respectively) and (ii) African (n = 716 and 343 S. Enteritidis and Typhimurium genomes, respectively) population. For S. Dublin ST10, a largely antimicrobial-susceptible, endemic lineage circulating among humans, animals, and food in South Africa was identified, as well as a lineage that was likely recently introduced from the United States. For S. Hadar ST33, multiple South African lineages harboring streptomycin and tetracycline resistance-conferring genes were identified. African S. Enteritidis ST11 could be primarily partitioned into one largely antimicrobial-susceptible and one largely multidrug-resistant (MDR) clade, with South African isolates confined to the largely antimicrobial-susceptible clade. S. Typhimurium ST19/ST34 strains sequenced here were distributed across the African S. Typhimurium ST19/ST34 phylogeny, representing a diverse range of lineages, including numerous MDR lineages. Overall, this study provides critical insights into endemic and ecdemic non-typhoidal Salmonella enterica lineages circulating among animals, foods, and humans in South Africa and showcases the utility of WGS in characterizing animal-associated strains from a world region with a high salmonellosis burden.
Collapse
Affiliation(s)
- Laura M Carroll
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Masenyabu Mathole
- Bacteriology Division, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, South Africa
| |
Collapse
|
13
|
Li S, He Y, Mann DA, Deng X. Global spread of Salmonella Enteritidis via centralized sourcing and international trade of poultry breeding stocks. Nat Commun 2021; 12:5109. [PMID: 34433807 PMCID: PMC8387372 DOI: 10.1038/s41467-021-25319-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/03/2021] [Indexed: 11/22/2022] Open
Abstract
A pandemic of Salmonella enterica serotype Enteritidis emerged in the 1980s due to contaminated poultry products. How Salmonella Enteritidis rapidly swept through continents remains a historical puzzle as the pathogen continues to cause outbreaks and poultry supply becomes globalized. We hypothesize that international trade of infected breeding stocks causes global spread of the pathogen. By integrating over 30,000 Salmonella Enteritidis genomes from 98 countries during 1949-2020 and international trade of live poultry from the 1980s to the late 2010s, we present multifaceted evidence that converges on a high likelihood, global scale, and extended protraction of Salmonella Enteritidis dissemination via centralized sourcing and international trade of breeding stocks. We discovered recent, genetically near-identical isolates from domestically raised poultry in North and South America. We obtained phylodynamic characteristics of global Salmonella Enteritidis populations that lend spatiotemporal support for its dispersal from centralized origins during the pandemic. We identified concordant patterns of international trade of breeding stocks and quantitatively established a driving role of the trade in the geographic dispersal of Salmonella Enteritidis, suggesting that the centralized origins were infected breeding stocks. Here we demonstrate the value of integrative and hypothesis-driven data mining in unravelling otherwise difficult-to-probe pathogen dissemination from hidden origins.
Collapse
Affiliation(s)
- Shaoting Li
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| | - Yingshu He
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| | - David Ames Mann
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| | - Xiangyu Deng
- Center for Food Safety, University of Georgia, Griffin, GA, USA.
| |
Collapse
|
14
|
Luo L, Payne M, Kaur S, Hu D, Cheney L, Octavia S, Wang Q, Tanaka MM, Sintchenko V, Lan R. Elucidation of global and national genomic epidemiology of Salmonella enterica serovar Enteritidis through multilevel genome typing. Microb Genom 2021; 7. [PMID: 34292145 PMCID: PMC8477392 DOI: 10.1099/mgen.0.000605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is a major cause of foodborne Salmonella infections and outbreaks in humans. Effective surveillance and timely outbreak detection are essential for public health control. Multilevel genome typing (MGT) with multiple levels of resolution has been previously demonstrated as a promising tool for this purpose. In this study, we developed MGT with nine levels for S. Enteritidis and characterised the genomic epidemiology of S. Enteritidis in detail. We examined 26 670 publicly available S. Enteritidis genome sequences from isolates spanning 101 years from 86 countries to reveal their spatial and temporal distributions. Using the lower resolution MGT levels, globally prevalent and regionally restricted sequence types (STs) were identified; avian associated MGT4-STs were found that were common in human cases in the USA; temporal trends were observed in the UK with MGT5-STs from 2014 to 2018 revealing both long lived endemic STs and the rapid expansion of new STs. Using MGT3 to MGT6, we identified multidrug resistance (MDR) associated STs at various MGT levels, which improves precision of detection and global tracking of MDR clones. We also found that the majority of the global S. Enteritidis population fell within two predominant lineages, which had significantly different propensity of causing large scale outbreaks. An online open MGT database has been established for unified international surveillance of S. Enteritidis. We demonstrated that MGT provides a flexible and high-resolution genome typing tool for S. Enteritidis surveillance and outbreak detection.
Collapse
Affiliation(s)
- Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Liam Cheney
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, New South Wales, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
High-Resolution Genomic Comparisons within Salmonella enterica Serotypes Derived from Beef Feedlot Cattle: Parsing the Roles of Cattle Source, Pen, Animal, Sample Type, and Production Period. Appl Environ Microbiol 2021; 87:e0048521. [PMID: 33863705 DOI: 10.1128/aem.00485-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica is a major foodborne pathogen, and contaminated beef products have been identified as one of the primary sources of Salmonella-related outbreaks. Pathogenicity and antibiotic resistance of Salmonella are highly serotype and subpopulation specific, which makes it essential to understand high-resolution Salmonella population dynamics in cattle. Time of year, source of cattle, pen, and sample type (i.e., feces, hide, or lymph nodes) have previously been identified as important factors influencing the serotype distribution of Salmonella (e.g., Anatum, Lubbock, Cerro, Montevideo, Kentucky, Newport, and Norwich) that were isolated from a longitudinal sampling design in a research feedlot. In this study, we performed high-resolution genomic comparisons of Salmonella isolates within each serotype using both single-nucleotide polymorphism-based maximum-likelihood phylogeny and hierarchical clustering of core-genome multilocus sequence typing. The importance of the aforementioned features in clonal Salmonella expansion was further explored using a supervised machine learning algorithm. In addition, we identified and compared the resistance genes, plasmids, and pathogenicity island profiles of the isolates within each subpopulation. Our findings indicate that clonal expansion of Salmonella strains in cattle was mainly influenced by the randomization of block and pen, as well as the origin/source of the cattle, i.e., regardless of sampling time and sample type (i.e., feces, lymph node, or hide). Further research is needed concerning the role of the feedlot pen environment prior to cattle placement to better understand carryover contributions of existing strains of Salmonella and their bacteriophages. IMPORTANCE Salmonella serotypes isolated from outbreaks in humans can also be found in beef cattle and feedlots. Virulence factors and antibiotic resistance are among the primary defense mechanisms of Salmonella, and are often associated with clonal expansion. This makes understanding the subpopulation dynamics of Salmonella in cattle critical for effective mitigation. There remains a gap in the literature concerning subpopulation dynamics within Salmonella serotypes in feedlot cattle from the beginning of feeding up until slaughter. Here, we explore Salmonella population dynamics within each serotype using core-genome phylogeny and hierarchical classifications. We used machine learning to quantitatively parse the relative importance of both hierarchical and longitudinal clustering among cattle host samples. Our results reveal that Salmonella populations in cattle are highly clonal over a 6-month study period and that clonal dissemination of Salmonella in cattle is mainly influenced spatially by experimental block and pen, as well by the geographical origin of the cattle.
Collapse
|
16
|
Singh N, Li X, Beshearse E, Blanton JL, DeMent J, Havelaar AH. Molecular Epidemiology of Salmonellosis in Florida, USA, 2017-2018. Front Med (Lausanne) 2021; 8:656827. [PMID: 33968960 PMCID: PMC8100233 DOI: 10.3389/fmed.2021.656827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
The state of Florida reports a high burden of non-typhoidal Salmonella enterica with approximately two times higher than the national incidence. We retrospectively analyzed the population structure and molecular epidemiology of 1,709 clinical isolates from 2017 and 2018. We found 115 different serotypes. Rarefaction suggested that the serotype richness did not differ between children under 2 years of age and older children and adults and, there are ~22 well-characterized dominant serotypes. There were distinct differences in dominant serotypes between Florida and the USA as a whole, even though S. Enteritidis and S. Newport were the dominant serotypes in Florida and nationally. S. Javiana, S. Sandiego, and S. IV 50:z4, z23:- occurred more frequently in Florida than nationally. Legacy Multi Locus Sequence Typing (MLST) was of limited use for differentiating clinical Salmonella isolates beyond the serotype level. We utilized core genome MLST (cgMLST) hierarchical clusters (HC) to identify potential outbreaks and compared them to outbreaks detected by Pulse Field Gel Electrophoresis (PFGE) surveillance for five dominant serotypes (Enteritidis, Newport, Javiana, Typhimurium, and Bareilly). Single nucleotide polymorphism (SNP) phylogenetic-analysis of cgMLST HC at allelic distance 5 or less (HC5) corroborated PFGE detected outbreaks and generated well-segregated SNP distance-based clades for all studied serotypes. We propose “combination approach” comprising “HC5 clustering,” as efficient tool to trigger Salmonella outbreak investigations, and “SNP-based analysis,” for higher resolution phylogeny to confirm an outbreak. We also applied this approach to identify case clusters, more distant in time and place than traditional outbreaks but may have been infected from a common source, comparing 176 Florida clinical isolates and 1,341 non-clinical isolates across USA, of most prevalent serotype Enteritidis collected during 2017–2018. Several clusters of closely related isolates (0–4 SNP apart) within HC5 clusters were detected and some included isolates from poultry from different states in the US, spanning time periods over 1 year. Two SNP-clusters within the same HC5 cluster included isolates with the same multidrug-resistant profile from both humans and poultry, supporting the epidemiological link. These clusters likely reflect the vertical transmission of Salmonella clones from higher levels in the breeding pyramid to production flocks.
Collapse
Affiliation(s)
- Nitya Singh
- Animal Sciences Department, Emerging Pathogens Institute, Food Systems Institute, University of Florida, Gainesville, FL, United States
| | - Xiaolong Li
- Department of Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Elizabeth Beshearse
- Animal Sciences Department, Emerging Pathogens Institute, Food Systems Institute, University of Florida, Gainesville, FL, United States
| | - Jason L Blanton
- Bureau of Public Health Laboratories, Florida Department of Health, Jacksonville, FL, United States
| | - Jamie DeMent
- Independent Researcher, Orlando, FL, United States.,Food and Waterborne Disease Program, Florida Department of Health, Tallahassee, FL, United States
| | - Arie H Havelaar
- Animal Sciences Department, Emerging Pathogens Institute, Food Systems Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Baert L, Gimonet J, Barretto C, Fournier C, Jagadeesan B. Genetic changes are introduced by repeated exposure of Salmonella spiked in low water activity and high fat matrix to heat. Sci Rep 2021; 11:8144. [PMID: 33854082 PMCID: PMC8046991 DOI: 10.1038/s41598-021-87330-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
WGS is used to define if isolates are "in" or "out" of an outbreak and/or microbial root cause investigation. No threshold of genetic differences is fixed and the conclusions on similarity between isolates are mainly based on the knowledge generated from previous outbreak investigations and reported mutation rates. Mutation rates in Salmonella when exposed to food processing conditions are lacking. Thus, in this study, the ability of heat and dry stress to cause genetic changes in two Salmonella serotypes frequently isolated from low moisture foods was investigated. S. enterica serovars S. Agona ATCC 51,957 and S. Mbandaka NCTC 7892 (ATCC 51,958) were repeatedly exposed to heat (90 °C for 5 min) in a low water activity and high fat matrix. No increased fitness of the strains was observed after 10 repeated heat treatments. However, genetic changes were introduced and the number of genetic differences increased with every heat treatment cycle. The genetic changes appeared randomly in the genome and were responsible for a population of diverse isolates with 0 to 28 allelic differences (0 to 38 SNPs) between them. This knowledge is key to interpret WGS results for source tracking investigations as part of a root cause analysis in a contamination event as isolates are exposed to stress conditions.
Collapse
Affiliation(s)
- Leen Baert
- Nestlé Research, Vers-Chez-les-Blanc 26, 1000, Lausanne, Switzerland.
| | - Johan Gimonet
- Nestlé Research, Vers-Chez-les-Blanc 26, 1000, Lausanne, Switzerland
| | - Caroline Barretto
- Nestlé Research, Vers-Chez-les-Blanc 26, 1000, Lausanne, Switzerland
| | - Coralie Fournier
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | | |
Collapse
|
18
|
Uelze L, Becker N, Borowiak M, Busch U, Dangel A, Deneke C, Fischer J, Flieger A, Hepner S, Huber I, Methner U, Linde J, Pietsch M, Simon S, Sing A, Tausch SH, Szabo I, Malorny B. Toward an Integrated Genome-Based Surveillance of Salmonella enterica in Germany. Front Microbiol 2021; 12:626941. [PMID: 33643254 PMCID: PMC7902525 DOI: 10.3389/fmicb.2021.626941] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/21/2021] [Indexed: 02/03/2023] Open
Abstract
Despite extensive monitoring programs and preventative measures, Salmonella spp. continue to cause tens of thousands human infections per year, as well as many regional and international food-borne outbreaks, that are of great importance for public health and cause significant socio-economic costs. In Germany, salmonellosis is the second most common cause of bacterial diarrhea in humans and is associated with high hospitalization rates. Whole-genome sequencing (WGS) combined with data analysis is a high throughput technology with an unprecedented discriminatory power, which is particularly well suited for targeted pathogen monitoring, rapid cluster detection and assignment of possible infection sources. However, an effective implementation of WGS methods for large-scale microbial pathogen detection and surveillance has been hampered by the lack of standardized methods, uniform quality criteria and strategies for data sharing, all of which are essential for a successful interpretation of sequencing data from different sources. To overcome these challenges, the national GenoSalmSurv project aims to establish a working model for an integrated genome-based surveillance system of Salmonella spp. in Germany, based on a decentralized data analysis. Backbone of the model is the harmonization of laboratory procedures and sequencing protocols, the implementation of open-source bioinformatics tools for data analysis at each institution and the establishment of routine practices for cross-sectoral data sharing for a uniform result interpretation. With this model, we present a working solution for cross-sector interpretation of sequencing data from different sources (such as human, veterinarian, food, feed and environmental) and outline how a decentralized data analysis can contribute to a uniform cluster detection and facilitate outbreak investigations.
Collapse
Affiliation(s)
- Laura Uelze
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Natalie Becker
- Department of Food, Feed and Commodities, Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Alexandra Dangel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jennie Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Antje Flieger
- Unit of Enteropathogenic Bacteria and Legionella (FG11) – National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Hepner
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Ingrid Huber
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Michael Pietsch
- Unit of Enteropathogenic Bacteria and Legionella (FG11) – National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Sandra Simon
- Unit of Enteropathogenic Bacteria and Legionella (FG11) – National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Andreas Sing
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Simon H. Tausch
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Istvan Szabo
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Burkhard Malorny
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
19
|
Liu MA, Kidambi A, Reeves PR. The low level of O antigen in Salmonella enterica Paratyphi A is due to inefficiency of the glycosyltransferase WbaV. FEMS Microbiol Lett 2021; 368:6105216. [PMID: 33476372 DOI: 10.1093/femsle/fnab009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/18/2021] [Indexed: 11/14/2022] Open
Abstract
The group A O antigen is the major surface polysaccharide of Salmonella enterica serovar Paratyphi A (SPA), and the focal point for most current vaccine development efforts. The SPA O-antigen repeat (O unit) is structurally similar to the group D1 O unit of S. enterica serovar Typhi, differing only in the presence of a terminal side-branch paratose (Par) in place of tyvelose (Tyv), both of which are attached by the glycosyltransferase WbaV. The two O-antigen gene clusters are also highly similar, but with a loss-of-function mutation in the group A tyv gene and the tandem amplification of wbaV in most SPA strains. In this study, we show that SPA strains consistently produce less O antigen than their group D1 counterparts and use an artificial group A strain (D1 Δtyv) to show this is due to inefficient Par attachment by WbaV. We also demonstrate that group A O-antigen production can be increased by overexpression of the wbaV gene in both the D1 Δtyv strain and two multi-wbaV SPA strains. These findings should be broadly applicable in ongoing vaccine development pipelines, where efficient isolation and purification of large quantities of O antigen is of critical importance.
Collapse
Affiliation(s)
- Michael A Liu
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Aditi Kidambi
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Peter R Reeves
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
20
|
Deng Y, Jiang M, Kwan PSL, Yang C, Chen Q, Lin Y, Qiu Y, Li Y, Shi X, Li L, Cui Y, Sun Q, Hu Q. Integrated Whole-Genome Sequencing Infrastructure for Outbreak Detection and Source Tracing of Salmonella enterica Serotype Enteritidis. Foodborne Pathog Dis 2021; 18:582-589. [PMID: 33450161 DOI: 10.1089/fpd.2020.2856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As an important foodborne pathogen, Salmonella enterica serotype Enteritidis is recognized as one of the most common causes of human salmonellosis globally. Outbreak detection for this highly homogenous serotype, however, has remained challenging. Rapid advances in sequencing technologies have presented whole-genome sequencing (WGS) as a significant advancement for source tracing and molecular typing of foodborne pathogens. A retrospective analysis was conducted using Salmonella Enteritidis isolates (n = 65) from 11 epidemiologically confirmed outbreaks and a collection of contemporaneous sporadic isolates (n = 258) during 2007-2017 to evaluate the performance of WGS in delineating outbreak-associated isolates. Whole-genome single-nucleotide polymorphism (SNP)-based phylogenetic analysis revealed well-supported clades in concordance with epidemiological evidence and pairwise distances of ≤3 SNPs for all outbreaks. WGS-based framework of outbreak detection was thus proposed and applied prospectively to investigate isolates (n = 66) from nine outbreaks during 2018-2019. We further demonstrated the superior discriminatory power and accuracy of WGS to resolve and delineate outbreaks for pragmatic food source tracing. The proposed integrated WGS framework is the first in China for Salmonella Enteritidis and has the potential to serve as a paradigm for outbreak detection and source tracing of Salmonella throughout the stages of food production, as well as expanded to other foodborne pathogens.
Collapse
Affiliation(s)
- Yinhua Deng
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Patrick S L Kwan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Chao Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yiman Lin
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liqiang Li
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qun Sun
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
21
|
Whole-Genome Sequencing Analysis of Salmonella
Enterica Serotype Enteritidis Isolated from Poultry Sources in South Korea, 2010-2017. Pathogens 2021; 10:pathogens10010045. [PMID: 33430364 PMCID: PMC7825753 DOI: 10.3390/pathogens10010045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 01/17/2023] Open
Abstract
Salmonella enterica subsp. enterica serotype Enteritidis (SE) is recognized as a major cause of human salmonellosis worldwide, and most human salmonellosis is due to the consumption of contaminated poultry meats and poultry byproducts. Whole-genome sequencing (data were obtained from 96 SE isolates from poultry sources, including an integrated broiler supply chain, farms, slaughterhouses, chicken transporting trucks, and retail chicken meats in South Korea during 2010–2017. Antimicrobial resistance and virulence genes were investigated using WGS data, and the phylogenetic relationship of the isolates was analyzed using single-nucleotide polymorphism (SNP) typing and core genome multilocus sequence typing (cgMLST). All isolates carried aminoglycoside resistance genes, aac(6’)-Iaa, and 56 isolates carried multiple antimicrobial resistance genes. The most frequent virulence gene profile, pef-fim-sop-inv.-org-sip-spa-sif-fli-flg-hil-ssa-sse-prg-pag-spv, was found in 90 isolates. The SNP analysis provided a higher resolution than the cgMLST analysis, but the cgMLST analysis was highly congruent with the SNP analysis. The phylogenetic results suggested the presence of resident SE within the facility of processing plants, environments of slaughterhouses, and the integrated broiler supply chain, and the phylogenetically related isolates were found in retail meats. In addition, the SE isolates from different origins showed close genetic relationships indicating that these strains may have originated from a common source. This study could be valuable reference data for future traceback investigations in South Korea.
Collapse
|
22
|
Quino W, Caro-Castro J, Mestanza O, Hurtado CV, Zamudio ML, Gavilan RG. Phylogenetic structure of Salmonella Enteritidis provides context for a foodborne outbreak in Peru. Sci Rep 2020; 10:22080. [PMID: 33328486 PMCID: PMC7745040 DOI: 10.1038/s41598-020-78808-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 11/27/2020] [Indexed: 11/09/2022] Open
Abstract
Salmonella Enteritidis, an important foodborne zoonosis, has a dramatically increased number of cases around the world. To explore the phylogenetic structure of Peruvian Salmonella Enteritidis strains and their relationship with an outbreak occurred in 2018, we analyzed a comprehensive strains of S. Enteritidis received by the National Institute of Health during the period 2000-2018. A total of 180 strains were characterized by microbiological procedures, serotyping and whole genome sequencing. Based on genome sequences annotated, virulence factors and accessory genes were identified. Phylogenetic and population structure analysis were also analyzed based on SNPs. The phylogenetic analysis grouped the genomes into two well-supported clades that were consistent with population structure analysis. The clinical and food strains corresponding to the outbreak were included in the same cluster, which presented the sdhA gene, related to the increase of the virulence of this pathogen. The phylogenetic relationship of Peruvian S. Enteritidis suggests the presence of four S. enteritidis population with high epidemiological importance.
Collapse
Affiliation(s)
- Willi Quino
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Junior Caro-Castro
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Orson Mestanza
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Carmen V Hurtado
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Maria L Zamudio
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Ronnie G Gavilan
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru. .,Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru.
| |
Collapse
|
23
|
Comparison of conventional molecular and whole-genome sequencing methods for subtyping Salmonella enterica serovar Enteritidis strains from Tunisia. Eur J Clin Microbiol Infect Dis 2020; 40:597-606. [PMID: 33030625 DOI: 10.1007/s10096-020-04055-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
We sought to determine the relative value of conventional molecular methods and whole-genome sequencing (WGS) for subtyping Salmonella enterica serovar Enteritidis recovered from 2000 to 2015 in Tunisia and to investigate the genetic diversity of this serotype. A total of 175 Salmonella Enteritidis isolates were recovered from human, animal, and foodborne outbreak samples. Pulsed-field gel electrophoresis (PFGE), multiple locus variable-number tandem repeat analysis (MLVA), and whole-genome sequencing were performed. Eight pulsotypes were detected for all isolates with PFGE (DI = 0.518). Forty-five Salmonella Enteritidis isolates were selected for the MLVA and WGS techniques. Eighteen MLVA profiles were identified and classified into two major clusters (DI = 0.889). Core genome multilocus typing (cgMLST) analysis revealed 16 profiles (DI = 0.785). Whole-genome analysis indicated 660 single-nucleotide polymorphism (SNP) divergences dividing these isolates into 43 haplotypes (DI = 0.997). The phylogenetic tree supported the classification of Salmonella Enteritidis isolates into two distinct lineages subdivided into five clades and seven subclades. Pairwise SNP differences between the isolates ranged between 302 and 350. We observed about 311 SNP differences between the two foodborne outbreaks, while only less or equal to 4 SNP differences within each outbreak. SNP-based WGS typing showed an excellent discriminatory power comparing with the conventional methods such as PFGE and MLVA. Besides, we demonstrate the added value of WGS as a complementary subtyping method to discriminate outbreak from non-outbreak isolates belonging to common subtypes. It is important to continue the survey of Salmonella Enteritidis lineages in Tunisia using WGS.
Collapse
|
24
|
Luo Y, Huang C, Ye J, Octavia S, Wang H, Dunbar SA, Jin D, Tang YW, Lan R. Comparison of xMAP Salmonella Serotyping Assay With Traditional Serotyping and Discordance Resolution by Whole Genome Sequencing. Front Cell Infect Microbiol 2020; 10:452. [PMID: 33014887 PMCID: PMC7504902 DOI: 10.3389/fcimb.2020.00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/23/2020] [Indexed: 11/14/2022] Open
Abstract
Salmonella spp. are a major cause of foodborne illness throughout the world. Traditional serotyping by antisera agglutination has been used as a standard identification method for many years but newer nucleic acid-based tests have become available that may provide advantages in workflow and test turnaround time. In this study, we evaluated the Luminex® xMAP® Salmonella Serotyping Assay (SSA), a multiplex nucleic acid test capable of identifying 85% of the most common Salmonella serotypes, in comparison to the traditional serum agglutination test (SAT) on 4 standard strains and 255 isolates from human (224), environmental, and food (31) samples. Of the total of 259 isolates, 256 could be typed by the SSA. Of these, 197 (77.0%) were fully typed and 59 (23.0%) were partially typed. By SAT, 246 of the 259 isolates (95%) were successfully typed. Sixty isolates had discrepant results between SAT and SSA and were resolved using whole genome sequencing (WGS). By SAT, 80.0% (48/60) of the isolates were consistent with WGS while by SSA 91.7% (55/60) were partially consistent with WGS. By serovar, all 30 serovars except one tested were fully or partially typable. The workflow comparison showed that SSA provided advantages over SAT with a hands-on time (HOT) of 3.5 min and total turnaround time (TAT) of 6 h, as compared to 1 h HOT and 2–6 days TAT for SAT. Overall, this study showed that molecular serotyping is promising as a rapid method for Salmonella serotyping with good accuracy for typing most common Salmonella serovars circulating in China.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chen Huang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Julian Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Huanying Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | | | - Dazhi Jin
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, United States.,Cepheid, Danaher Diagnostic Platform, Shanghai, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Carroll LM, Huisman JS, Wiedmann M. Twentieth-century emergence of antimicrobial resistant human- and bovine-associated Salmonella enterica serotype Typhimurium lineages in New York State. Sci Rep 2020; 10:14428. [PMID: 32879348 PMCID: PMC7467927 DOI: 10.1038/s41598-020-71344-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serotype Typhimurium (S. Typhimurium) boasts a broad host range and can be transmitted between livestock and humans. While members of this serotype can acquire resistance to antimicrobials, the temporal dynamics of this acquisition is not well understood. Using New York State (NYS) and its dairy cattle farms as a model system, 87 S. Typhimurium strains isolated from 1999 to 2016 from either human clinical or bovine-associated sources in NYS were characterized using whole-genome sequencing. More than 91% of isolates were classified into one of four major lineages, two of which were largely susceptible to antimicrobials but showed sporadic antimicrobial resistance (AMR) gene acquisition, and two that were largely multidrug-resistant (MDR). All four lineages clustered by presence and absence of elements in the pan-genome. The two MDR lineages, one of which resembled S. Typhimurium DT104, were predicted to have emerged circa 1960 and 1972. The two largely susceptible lineages emerged earlier, but showcased sporadic AMR determinant acquisition largely after 1960, including acquisition of cephalosporin resistance-conferring genes after 1985. These results confine the majority of AMR acquisition events in NYS S. Typhimurium to the twentieth century, largely within the era of antibiotic usage.
Collapse
Affiliation(s)
- Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Jana S Huisman
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
26
|
Guard J, Rothrock M, Jones D, Gast R. Low Dose Infection of Hens in Lay with Salmonella enterica Serovar Enteritidis from Different Genomic Clades. Avian Dis 2020; 64:7-15. [PMID: 32267120 DOI: 10.1637/0005-2086-64.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/25/2019] [Indexed: 11/05/2022]
Abstract
Salmonella enterica serovar Enteritidis is the leading cause of salmonellosis in people, and modeling of infections in chickens is used to identify intervention strategies. A review of 80 manuscripts encompassing 119 experiments indicated that the mean dose of infection was 108 CFU per bird. Experiments of less than 106 CFU were primarily conducted in immature birds. To address a lack of information on the impact of low dosages on the hen at lay, two experiments were conducted in triplicate. Experiment A addressed issues associated with vaccination; thus, hens were infected intramuscularly at 103, 105, and 107 CFU. For Experiment B, which was focused more on colonization and invasion, hens were infected orally with 5 × 103 CFU with 4 strains from different genomic clades. Samples from liver, spleen, ovarian pedicle, and paired ceca in both experiments were cultured 5, 6, 7, and 8 days postinfection. Eggshell microbiome taxa were assessed in Experiment B. Results indicated that dosages of 103 CFU in both experiments produced enough positive samples to be used within models. The intramuscular route resulted in approximately twice as many positive samples as the oral route. The kinetics of infection appeared to differ between low and high dosages suggestive of a J-curve response. These results could impact risk assessments if the hen at lay has a nonlinear response to infectious dose.
Collapse
Affiliation(s)
- Jean Guard
- United States Department of Agriculture, United States National Poultry Research Center, Athens, GA 30605,
| | - Michael Rothrock
- United States Department of Agriculture, United States National Poultry Research Center, Athens, GA 30605
| | - Deana Jones
- United States Department of Agriculture, United States National Poultry Research Center, Athens, GA 30605
| | - Richard Gast
- United States Department of Agriculture, United States National Poultry Research Center, Athens, GA 30605
| |
Collapse
|
27
|
Highly Sensitive and Specific Detection and Serotyping of Five Prevalent Salmonella Serovars by Multiple Cross-Displacement Amplification. J Mol Diagn 2020; 22:708-719. [PMID: 32359725 DOI: 10.1016/j.jmoldx.2020.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/16/2019] [Accepted: 02/20/2020] [Indexed: 02/08/2023] Open
Abstract
Salmonella is a common cause of foodborne disease worldwide, including Australia. More than 85% of outbreaks of human salmonellosis in Australia were caused by five Salmonella serovars. Rapid, accurate, and sensitive identification of Salmonella serovars is vital for diagnosis and public health surveillance. Recently, an isothermal amplification technique, termed multiple cross-displacement amplification (MCDA), has been employed to detect Salmonella at the species level. Herein, seven MCDA assays were developed and evaluated for rapid detection and differentiation of the five most common Salmonella serovars in Australia: Typhimurium, Enteritidis, Virchow, Saintpaul, and Infantis. MCDA primer sets were designed by targeting seven serovar/lineage-specific gene markers identified through genomic comparisons. The sensitivity and specificity of the seven MCDA assays were evaluated using 79 target strains and 32 nontarget strains. The assays were all highly sensitive and specific to target serovars, with the sensitivity ranging from 92.9% to 100% and the specificity from 93.3% to 100%. The limit of detection of the seven MCDA assays was 50 fg per reaction (10 copies) from pure DNA, and positive results were detected in as little as 8 minutes. These seven MCDA assays offer a rapid, accurate, and sensitive serotyping method. With further validation in clinically relevant conditions, these assays could be used for culture-independent serotyping of common Salmonella serovars directly from clinical samples.
Collapse
|
28
|
D'Alessandro B, Pérez Escanda V, Balestrazzi L, Grattarola F, Iriarte A, Pickard D, Yim L, Chabalgoity JA, Betancor L. Comparative genomics of Salmonella enterica serovar Enteritidis ST-11 isolated in Uruguay reveals lineages associated with particular epidemiological traits. Sci Rep 2020; 10:3638. [PMID: 32109937 PMCID: PMC7046640 DOI: 10.1038/s41598-020-60502-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is a major cause of foodborne disease in Uruguay since 1995. We used a genomic approach to study a set of isolates from different sources and years. Whole genome phylogeny showed that most of the strains are distributed in two major lineages (E1 and E2), both belonging to MLST sequence type 11 the major ST among serovar Enteritidis. Strikingly, E2 isolates are over-represented in periods of outbreak abundance in Uruguay, while E1 span all epidemic periods. Both lineages circulate in neighbor countries at the same timescale as in Uruguay, and are present in minor numbers in distant countries. We identified allelic variants associated with each lineage. Three genes, ycdX, pduD and hsdM, have distinctive variants in E1 that may result in defective products. Another four genes (ybiO, yiaN, aas, aceA) present variants specific for the E2 lineage. Overall this work shows that S. enterica serovar Enteritidis strains circulating in Uruguay have the same phylogenetic profile than strains circulating in the region, as well as in more distant countries. Based on these results we hypothesize that the E2 lineage, which is more prevalent during epidemics, exhibits a combination of allelic variants that could be associated with its epidemic ability.
Collapse
Affiliation(s)
- Bruno D'Alessandro
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - Victoria Pérez Escanda
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - Lucía Balestrazzi
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - Florencia Grattarola
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - Andrés Iriarte
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - Derek Pickard
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Lucía Yim
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - José Alejandro Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - Laura Betancor
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay. .,Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay.
| |
Collapse
|
29
|
Tang Y, Davies R, Petrovska L. Identification of Genetic Features for Attenuation of Two Salmonella Enteritidis Vaccine Strains and Differentiation of These From Wildtype Isolates Using Whole Genome Sequencing. Front Vet Sci 2019; 6:447. [PMID: 31921908 PMCID: PMC6930191 DOI: 10.3389/fvets.2019.00447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/26/2019] [Indexed: 01/10/2023] Open
Abstract
Salmonella Enteritidis is a major cause of salmonellosis worldwide and more than 80% of outbreaks investigated in Europe have been associated with the consumption of poorly cooked eggs or foods containing raw eggs. Vaccination has been proven to be one of the most important measures to control Salmonella Enteritidis infections in poultry farms as it can decrease colonization of the reproductive organs and intestinal tract of laying hens, thereby reducing egg contamination. Differentiation of live vaccine from field or wild type S. Enteritidis isolates in poultry is essential for monitoring of veterinary isolates and targetting control actions. Due to decreasing costs, whole genome sequencing (WGS) is becoming a key tool for characterization of Salmonella isolates, including vaccine strains. Using WGS we described the genetic changes in the live attenuated Salmovac 440 and AviPro SALMONELLA VAC E vaccine strains and developed a method for differentiation from the wildtype S. Enteritidis strains. SNP analysis confirmed that streptomycin resistance was associated with a Lys43Arg missense mutation in the rpsL gene whilst 3 missense mutations in acrB and 1 missense mutation in acrA confer erythromycin sensitivity in AviPro SALMONELLA VAC E. Further mutations Arg242His in purK and Gly236Arg in the hisB gene were related to adenine and histidine dependencies in Salmovac 440. Unique SNPs were used to construct a database of variants for differentiation of vaccine from the wildtype isolates. Two fragments from each vaccine were represented in the database to ensure high accuracy. Each of the two selected Salmovac 440 fragments differed by 6 SNPs from the wildtype and the AviPro SALMONELLA VAC E fragments differed by 4 and 6 SNPs, respectively. CD-hit software was applied to cluster similar fragments that produced the best fit output when searched with SRST2. The developed vaccine differentiation method was tested with 1,253 genome samples including field isolates of Salmovac 440 (n = 51), field isolates of AviPro SALMONELLA VAC E (n = 13), S. Gallinarum (n = 19), S. Pullorum (n = 116), S. Enteritidis (n = 244), S. Typhimurium (n = 810) and achieved 100% sensitivity and specificity.
Collapse
Affiliation(s)
- Yue Tang
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | | | - Liljana Petrovska
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| |
Collapse
|
30
|
Zuo L, Jiang M, Jiang Y, Shi X, Li Y, Lin Y, Qiu Y, Deng Y, Li M, Lin Z, Liao Y, Xie J, Li Q, Hu Q. Multiplex ligation reaction based on probe melting curve analysis: a pragmatic approach for the identification of 30 common Salmonella serovars. Ann Clin Microbiol Antimicrob 2019; 18:39. [PMID: 31805936 PMCID: PMC6894471 DOI: 10.1186/s12941-019-0338-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/18/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND While Salmonella serotyping is of paramount importance for the disease intervention of salmonellosis, a fast and easy-to-operate molecular serotyping solution remains elusive. We have developed a multiplex ligation reaction based on probe melting curve analysis (MLMA) for the identification of 30 common Salmonella serovars. METHODS Serovar-specific primers and probes were designed based on a comparison of gene targets (wzx and wzy encoding for somatic antigen biosynthesis; fliC and fljB for flagellar antigens) from 5868 Salmonella genomes. The ssaR gene, a type III secretion system component, was included for the confirmation of Salmonella. RESULTS All gene targets were detected and gave expected Tm values during assay evaluation. Cross reactions were not demonstrated between the 30 serovars (n = 211), or with an additional 120 serovars (n = 120) and other Enterobacteriaceae (n = 3). The limit of identification for all targets ranged from using 1.2 ng/μL to 1.56 ng/μL of DNA. The intra- and inter-assay standard deviations and the coefficients of variation were no more than 0.5 °C and less than 1% respectively, indicating high reproducibility. From consecutive outpatient stool samples (n = 3590) collected over a 10-month period at 11 sentinel hospitals in Shenzhen, China, we conducted a multicenter study using the traditional Salmonella identification workflow and the MLMA assay workflow in parallel. From Salmonella isolates (n = 496, 13.8%) derived by both workflows, total agreement (kappa = 1.0) between the MLMA assay and conventional serotyping was demonstrated. CONCLUSIONS With an assay time of 2.5 h, this simple assay has shown promising potential to provide rapid and high-throughput identification of Salmonella serovars for clinical and public health laboratories to facilitate timely surveillance of salmonellosis.
Collapse
Affiliation(s)
- Le Zuo
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Yixiang Jiang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Yiman Lin
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Yinhua Deng
- College of Life Science, Sichuan University, Chengdu, China
| | - Minxu Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zeren Lin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yiqun Liao
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianbin Xie
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Qingge Li
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China.
| |
Collapse
|
31
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jenkins C, Malorny B, Ribeiro Duarte AS, Torpdahl M, da Silva Felício MT, Guerra B, Rossi M, Herman L. Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J 2019; 17:e05898. [PMID: 32626197 PMCID: PMC7008917 DOI: 10.2903/j.efsa.2019.5898] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This Opinion considers the application of whole genome sequencing (WGS) and metagenomics for outbreak investigation, source attribution and risk assessment of food‐borne pathogens. WGS offers the highest level of bacterial strain discrimination for food‐borne outbreak investigation and source‐attribution as well as potential for more precise hazard identification, thereby facilitating more targeted risk assessment and risk management. WGS improves linking of sporadic cases associated with different food products and geographical regions to a point source outbreak and can facilitate epidemiological investigations, allowing also the use of previously sequenced genomes. Source attribution may be favoured by improved identification of transmission pathways, through the integration of spatial‐temporal factors and the detection of multidirectional transmission and pathogen–host interactions. Metagenomics has potential, especially in relation to the detection and characterisation of non‐culturable, difficult‐to‐culture or slow‐growing microorganisms, for tracking of hazard‐related genetic determinants and the dynamic evaluation of the composition and functionality of complex microbial communities. A SWOT analysis is provided on the use of WGS and metagenomics for Salmonella and Shigatoxin‐producing Escherichia coli (STEC) serotyping and the identification of antimicrobial resistance determinants in bacteria. Close agreement between phenotypic and WGS‐based genotyping data has been observed. WGS provides additional information on the nature and localisation of antimicrobial resistance determinants and on their dissemination potential by horizontal gene transfer, as well as on genes relating to virulence and biological fitness. Interoperable data will play a major role in the future use of WGS and metagenomic data. Capacity building based on harmonised, quality controlled operational systems within European laboratories and worldwide is essential for the investigation of cross‐border outbreaks and for the development of international standardised risk assessments of food‐borne microorganisms.
Collapse
|
32
|
Implications of Mobile Genetic Elements for Salmonella enterica Single-Nucleotide Polymorphism Subtyping and Source Tracking Investigations. Appl Environ Microbiol 2019; 85:AEM.01985-19. [PMID: 31585993 DOI: 10.1128/aem.01985-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are widely used for whole-genome sequencing (WGS)-based subtyping of foodborne pathogens in outbreak and source tracking investigations. Mobile genetic elements (MGEs) are commonly present in bacterial genomes and may affect SNP subtyping results if their evolutionary history and dynamics differ from that of the bacterial chromosomes. Using Salmonella enterica as a model organism, we surveyed major categories of MGEs, including plasmids, phages, insertion sequences, integrons, and integrative and conjugative elements (ICEs), in 990 genomes representing 21 major serotypes of S. enterica We evaluated whether plasmids and chromosomal MGEs affect SNP subtyping with 9 outbreak clusters of different serotypes found in the United States in 2018. The median total length of chromosomal MGEs accounted for 2.5% of a typical S. enterica chromosome. Of the 990 analyzed S. enterica isolates, 68.9% contained at least one assembled plasmid sequence. The median total length of assembled plasmids in these isolates was 93,671 bp. Plasmids that carry high densities of SNPs were found to substantially affect both SNP phylogenies and SNP distances among closely related isolates if they were present in the reference genome for SNP subtyping. In comparison, chromosomal MGEs were found to have limited impact on SNP subtyping. We recommend the identification of plasmid sequences in the reference genome and the exclusion of plasmid-borne SNPs from SNP subtyping analysis.IMPORTANCE Despite increasingly routine use of WGS and SNP subtyping in outbreak and source tracking investigations, whether and how MGEs affect SNP subtyping has not been thoroughly investigated. Besides chromosomal MGEs, plasmids are frequently entangled in draft genome assemblies and yet to be assessed for their impact on SNP subtyping. This study provides evidence-based guidance on the treatment of MGEs in SNP analysis for Salmonella to infer phylogenetic relationship and SNP distance between isolates.
Collapse
|
33
|
SeqSero2: Rapid and Improved Salmonella Serotype Determination Using Whole-Genome Sequencing Data. Appl Environ Microbiol 2019; 85:AEM.01746-19. [PMID: 31540993 DOI: 10.1128/aem.01746-19] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022] Open
Abstract
SeqSero, launched in 2015, is a software tool for Salmonella serotype determination from whole-genome sequencing (WGS) data. Despite its routine use in public health and food safety laboratories in the United States and other countries, the original SeqSero pipeline is relatively slow (minutes per genome using sequencing reads), is not optimized for draft genome assemblies, and may assign multiple serotypes for a strain. Here, we present SeqSero2 (github.com/denglab/SeqSero2; denglab.info/SeqSero2), an algorithmic transformation and functional update of the original SeqSero. Major improvements include (i) additional sequence markers for identification of Salmonella species and subspecies and certain serotypes, (ii) a k-mer based algorithm for rapid serotype prediction from raw reads (seconds per genome) and improved serotype prediction from assemblies, and (iii) a targeted assembly approach for specific retrieval of serotype determinants from WGS for serotype prediction, new allele discovery, and prediction troubleshooting. Evaluated using 5,794 genomes representing 364 common U.S. serotypes, including 2,280 human isolates of 117 serotypes from the National Antimicrobial Resistance Monitoring System, SeqSero2 is up to 50 times faster than the original SeqSero while maintaining equivalent accuracy for raw reads and substantially improving accuracy for assemblies. SeqSero2 further suggested that 3% of the tested genomes contained reads from multiple serotypes, indicating a use for contamination detection. In addition to short reads, SeqSero2 demonstrated potential for accurate and rapid serotype prediction directly from long nanopore reads despite base call errors. Testing of 40 nanopore-sequenced genomes of 17 serotypes yielded a single H antigen misidentification.IMPORTANCE Serotyping is the basis of public health surveillance of Salmonella It remains a first-line subtyping method even as surveillance continues to be transformed by whole-genome sequencing. SeqSero allows the integration of Salmonella serotyping into a whole-genome-sequencing-based laboratory workflow while maintaining continuity with the classic serotyping scheme. SeqSero2, informed by extensive testing and application of SeqSero in the United States and other countries, incorporates important improvements and updates that further strengthen its application in routine and large-scale surveillance of Salmonella by whole-genome sequencing.
Collapse
|
34
|
González-Escalona N, Allard MA, Brown EW, Sharma S, Hoffmann M. Nanopore sequencing for fast determination of plasmids, phages, virulence markers, and antimicrobial resistance genes in Shiga toxin-producing Escherichia coli. PLoS One 2019; 14:e0220494. [PMID: 31361781 PMCID: PMC6667211 DOI: 10.1371/journal.pone.0220494] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/17/2019] [Indexed: 02/02/2023] Open
Abstract
Whole genome sequencing can provide essential public health information. However, it is now known that widely used short-read methods have the potential to miss some randomly-distributed segments of genomes. This can prevent phages, plasmids, and virulence factors from being detected or properly identified. Here, we compared assemblies of three complete Shiga toxin-producing Escherichia coli (STEC) O26:H11/H- genomes from two different sequence types (ST21 and 29), each acquired using the Nextera XT MiSeq, MinION nanopore-based sequencing, and Pacific Biosciences (PacBio) sequencing. Each closed genome consisted of a single chromosome, approximately 5.7 Mb for CFSAN027343, 5.6 Mb for CFSAN027346, and 5.4 MB for CFSAN027350. However, short-read whole genome sequencing (WGS) using Nextera XT MiSeq failed to identify some virulence genes in plasmids and on the chromosome, both of which were detected using the long-read platforms. Results from long-read MinION and PacBio allowed us to identify differences in plasmid content: a single 88 kb plasmid in CFSAN027343; a 157kb plasmid in CFSAN027350; and two plasmids in CFSAN027346 (one 95 Kb, one 72 Kb). These data enabled rapid characterization of the virulome, detection of antimicrobial genes, and composition/location of Stx phages. Taken together, positive correlations between the two long-read methods for determining plasmids, virulome, antimicrobial resistance genes, and phage composition support MinION sequencing as one accurate and economical option for closing STEC genomes and identifying specific virulence markers.
Collapse
Affiliation(s)
- Narjol González-Escalona
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
- * E-mail:
| | - Marc A. Allard
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| | - Eric W. Brown
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| | - Shashi Sharma
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| |
Collapse
|
35
|
Zhang S, Li S, Gu W, den Bakker H, Boxrud D, Taylor A, Roe C, Driebe E, Engelthaler DM, Allard M, Brown E, McDermott P, Zhao S, Bruce BB, Trees E, Fields PI, Deng X. Zoonotic Source Attribution of Salmonella enterica Serotype Typhimurium Using Genomic Surveillance Data, United States. Emerg Infect Dis 2019; 25:82-91. [PMID: 30561314 PMCID: PMC6302586 DOI: 10.3201/eid2501.180835] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Increasingly, routine surveillance and monitoring of foodborne pathogens using whole-genome sequencing is creating opportunities to study foodborne illness epidemiology beyond routine outbreak investigations and case–control studies. Using a global phylogeny of Salmonella enterica serotype Typhimurium, we found that major livestock sources of the pathogen in the United States can be predicted through whole-genome sequencing data. Relatively steady rates of sequence divergence in livestock lineages enabled the inference of their recent origins. Elevated accumulation of lineage-specific pseudogenes after divergence from generalist populations and possible metabolic acclimation in a representative swine isolate indicates possible emergence of host adaptation. We developed and retrospectively applied a machine learning Random Forest classifier for genomic source prediction of Salmonella Typhimurium that correctly attributed 7 of 8 major zoonotic outbreaks in the United States during 1998–2013. We further identified 50 key genetic features that were sufficient for robust livestock source prediction.
Collapse
|
36
|
Aldrich C, Hartman H, Feasey N, Chattaway MA, Dekker D, Al-Emran HM, Larkin L, McCormick J, Sarpong N, Le Hello S, Adu-Sarkodie Y, Panzner U, Park SE, Im J, Marks F, May J, Dallman TJ, Eibach D. Emergence of phylogenetically diverse and fluoroquinolone resistant Salmonella Enteritidis as a cause of invasive nontyphoidal Salmonella disease in Ghana. PLoS Negl Trop Dis 2019; 13:e0007485. [PMID: 31220112 PMCID: PMC6605661 DOI: 10.1371/journal.pntd.0007485] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 07/02/2019] [Accepted: 05/22/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis is a cause of both poultry- and egg-associated enterocolitis globally and bloodstream-invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa (sSA). Distinct, multi-drug resistant genotypes associated with iNTS disease in sSA have recently been described, often requiring treatment with fluoroquinolone antibiotics. In industrialised countries, antimicrobial use in poultry production has led to frequent fluoroquinolone resistance amongst globally prevalent enterocolitis-associated lineages. METHODOLOGY/PRINCIPAL FINDINGS Twenty seven S. Enteritidis isolates from patients with iNTS disease and two poultry isolates, collected between 2007 and 2015 in the Ashanti region of Ghana, were whole-genome sequenced. These isolates, notable for a high rate of diminished ciprofloxacin susceptibility (DCS), were placed in the phyletic context of 1,067 sequences from the Public Health England (PHE) S. Enteritidis genome database to understand whether DCS was associated with African or globally-circulating clades of S. Enteritidis. Analysis showed four of the major S. Enteritidis clades were represented, two global and two African. All thirteen DCS isolates, containing a single gyrA mutation at codon 87, belonged to a global PT4-like clade responsible for epidemics of poultry-associated enterocolitis. Apart from two DCS isolates, which clustered with PHE isolates associated with travel to Spain and Brazil, the remaining DCS isolates, including one poultry isolate, belonged to two monophyletic clusters in which gyrA 87 mutations appear to have developed within the region. CONCLUSIONS/SIGNIFICANCE Extensive phylogenetic diversity is evident amongst iNTS disease-associated S. Enteritidis in Ghana. Antimicrobial resistance profiles differed by clade, highlighting the challenges of devising empirical sepsis guidelines. The detection of fluoroquinolone resistance in phyletically-related poultry and human isolates is of major concern and surveillance and control measures within the region's burgeoning poultry industry are required to protect a human population at high risk of iNTS disease.
Collapse
Affiliation(s)
- Cassandra Aldrich
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Hassan Hartman
- National Infections Service, Public Health England, Colindale, United Kingdom
| | - Nicholas Feasey
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Denise Dekker
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Borstel-Luebeck, Germany
| | - Hassan M. Al-Emran
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Jessore University of Science and Technology, Jessore, Bangladesh
| | - Lesley Larkin
- National Infections Service, Public Health England, Colindale, United Kingdom
| | - Jacquelyn McCormick
- National Infections Service, Public Health England, Colindale, United Kingdom
| | - Nimako Sarpong
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Simon Le Hello
- Institut Pasteur, French National Reference Center for Escherichia coli, Shigella and Salmonella, Paris, France
| | - Yaw Adu-Sarkodie
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ursula Panzner
- International Vaccine Institute, Seoul, Republic of Korea
| | - Se Eun Park
- International Vaccine Institute, Seoul, Republic of Korea
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Justin Im
- International Vaccine Institute, Seoul, Republic of Korea
| | - Florian Marks
- International Vaccine Institute, Seoul, Republic of Korea
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Borstel-Luebeck, Germany
| | - Timothy J. Dallman
- National Infections Service, Public Health England, Colindale, United Kingdom
| | - Daniel Eibach
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
37
|
|
38
|
Tolar B, Joseph LA, Schroeder MN, Stroika S, Ribot EM, Hise KB, Gerner-Smidt P. An Overview of PulseNet USA Databases. Foodborne Pathog Dis 2019; 16:457-462. [PMID: 31066584 DOI: 10.1089/fpd.2019.2637] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PulseNet USA is the molecular surveillance network for foodborne disease in the United States. The network consists of state and local public health laboratories, as well as food regulatory agencies, that follow PulseNet's standardized protocols to perform pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) and analyze the results using standardized software. The raw sequences are uploaded to the GenomeTrakr or PulseNet bioprojects at the National Center for Biotechnology Information. The PFGE patterns and analyzed sequence data are uploaded in real time with associated demographic data to the PulseNet national databases managed at the Centers for Disease Control and Prevention. The PulseNet databases are organism specific and provide a central storage location for molecular and demographic data related to an isolate. Sequences are compared in the databases, thereby facilitating the rapid detection of clusters of foodborne diseases that may represent widespread outbreaks. WGS genotyping data, for example, antibiotic resistance and virulence profiles, are also uploaded in real time to the PulseNet databases to improve food safety surveillance activities.
Collapse
Affiliation(s)
- Beth Tolar
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lavin A Joseph
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Morgan N Schroeder
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Steven Stroika
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Efrain M Ribot
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kelley B Hise
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Peter Gerner-Smidt
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
39
|
Zhang X, Payne M, Lan R. In silico Identification of Serovar-Specific Genes for Salmonella Serotyping. Front Microbiol 2019; 10:835. [PMID: 31068916 PMCID: PMC6491675 DOI: 10.3389/fmicb.2019.00835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 11/23/2022] Open
Abstract
Salmonella enterica subspecies enterica is a highly diverse subspecies with more than 1500 serovars and the ability to distinguish serovars within this group is vital for surveillance. With the development of whole-genome sequencing technology, serovar prediction by traditional serotyping is being replaced by molecular serotyping. Existing in silico serovar prediction approaches utilize surface antigen encoding genes, core genome MLST and serovar-specific gene markers or DNA fragments for serotyping. However, these serovar-specific gene markers or DNA fragments only distinguished a small number of serovars. In this study, we compared 2258 Salmonella accessory genomes to identify 414 candidate serovar-specific or lineage-specific gene markers for 106 serovars which includes 24 polyphyletic serovars and the paraphyletic serovar Enteritidis. A combination of several lineage-specific gene markers can be used for the clear identification of the polyphyletic serovars and the paraphyletic serovar. We designed and evaluated an in silico serovar prediction approach by screening 1089 genomes representing 106 serovars against a set of 131 serovar-specific gene markers. The presence or absence of one or more serovar-specific gene markers was used to predict the serovar of an isolate from genomic data. We show that serovar-specific gene markers have comparable accuracy to other in silico serotyping methods with 84.8% of isolates assigned to the correct serovar with no false positives (FP) and false negatives (FN) and 10.5% of isolates assigned to a small subset of serovars containing the correct serovar with varied FP. Combined, 95.3% of genomes were correctly assigned to a serovar. This approach would be useful as diagnosis moves to culture-independent and metagenomic methods as well as providing a third alternative to confirm other genome-based analyses. The identification of a set of gene markers may also be useful in the development of more cost-effective molecular assays designed to detect specific gene markers of the all major serovars in a region. These assays would be useful in serotyping isolates where cultures are no longer obtained and traditional serotyping is therefore impossible.
Collapse
Affiliation(s)
- Xiaomei Zhang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
40
|
Abstract
Pullorum disease, an acute poultry septicemia caused by Salmonella Gallinarum biovar Pullorum, is fatal for young chickens and is a heavy burden on poultry industry. The pathogen is rare in most developed countries but still extremely difficult to eliminate in China. Efficient epidemiological surveillance necessitates clarifying the origin of the isolates from different regions and their phylogenic relationships. Genomic epidemiological analysis of 97 S. Pullorum strains was carried out to reconstruct the phylogeny and transmission history of S. Pullorum. Further analysis demonstrated that functional gene loss and acquisition occurred simultaneously throughout the evolution of S. Pullorum, both of which reflected adaptation to the changing environment. The result of our study will be helpful in surveillance and prevention of pullorum disease. Salmonella enterica subspecies enterica serovar Gallinarum biovar Pullorum (S. Pullorum) is the etiological agent of pullorum disease, causing white diarrhea with high mortality in chickens. There are many unsolved issues surrounding the epidemiology of S. Pullorum, including its origin and transmission history as well as the discordance between its phenotypic heterogeneity and genetic monomorphism. In this paper, we report the results of whole-genome sequencing of a panel of 97 S. Pullorum strains isolated between 1962 and 2014 from four countries across three continents. We utilized 6,795 core genome single nucleotide polymorphisms (SNPs) to reconstruct a phylogenetic tree within a spatiotemporal Bayesian framework, estimating that the most recent common ancestor of S. Pullorum emerged in ∼914 CE (95% confidence interval [95%CI], 565 to 1273 CE). The extant S. Pullorum strains can be divided into four distinct lineages, each of which is significantly associated with geographical distribution. The intercontinental transmissions of lineages III and IV can be traced to the mid-19th century and are probably related to the “Hen Fever” prevalent at that time. Further genomic analysis indicated that the loss or pseudogenization of functional genes involved in metabolism and virulence in S. Pullorum has been ongoing since before and after divergence from the ancestor. In contrast, multiple prophages and plasmids have been acquired by S. Pullorum, and these have endowed it with new characteristics, especially the multidrug resistance conferred by two large plasmids in lineage I. The results of this study provide insight into the evolution of S. Pullorum and prove the efficiency of whole-genome sequencing in epidemiological surveillance of pullorum disease. IMPORTANCE Pullorum disease, an acute poultry septicemia caused by Salmonella Gallinarum biovar Pullorum, is fatal for young chickens and is a heavy burden on poultry industry. The pathogen is rare in most developed countries but still extremely difficult to eliminate in China. Efficient epidemiological surveillance necessitates clarifying the origin of the isolates from different regions and their phylogenic relationships. Genomic epidemiological analysis of 97 S. Pullorum strains was carried out to reconstruct the phylogeny and transmission history of S. Pullorum. Further analysis demonstrated that functional gene loss and acquisition occurred simultaneously throughout the evolution of S. Pullorum, both of which reflected adaptation to the changing environment. The result of our study will be helpful in surveillance and prevention of pullorum disease.
Collapse
|
41
|
Gori M, Ebranati E, Scaltriti E, Huedo P, Ciceri G, Tanzi E, Pontello M, Zehender G, Pongolini S, Bolzoni L. High-resolution diffusion pattern of human infections by Salmonella enterica serovar Napoli in Northern Italy explained through phylogeography. PLoS One 2018; 13:e0202573. [PMID: 30133519 PMCID: PMC6104998 DOI: 10.1371/journal.pone.0202573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/06/2018] [Indexed: 01/31/2023] Open
Abstract
Salmonella enterica serovar Napoli (serovar Napoli) is an emerging cause of human salmonellosis in Northern Italy. No specific reservoirs of serovar Napoli have been identified in Italy, so far. However, the environment, especially surface waters, has been hypothesized as an important source of infection based on the observation that genotypically different clusters of serovar Napoli are detected in different geographical macro-areas. To further support the hypothesis of a spatially-restricted pattern of serovar Napoli diffusion, a spatial segregation of serovar Napoli lineages should be observed also at smaller geographical scale. However, classical genotyping techniques used for Salmonella, such as pulsed-field gel electrophoresis (PFGE), did not possess enough discriminatory power to highlight spatial clustering of serovar Napoli within the macro-areas. To this purpose, we performed phylogeographical analyses based on genome-wide single nucleotide polymorphisms to test whether spatio-temporal evolution patterns of serovar Napoli in Northern Italy could be recognized with high geographical resolution, i.e. at local level. Specifically, we analyzed the local spread of the main PFGE clonal group, responsible for more than 60% of human infections in the study area, that did not show any geographical differentiation by PFGE within Northern Italy, i.e. the macro-area considered in the study. Both discrete and continuous phylogeography highlighted the existence of two main geographically-restricted clades: a Southern clade corresponding to the Po Valley and a Northern clade corresponding to the Pre-Alps area. Furthermore, the phylogeographical analyses suggested that the most probable site of origin of the clone was in an area of the Po Valley at the confluence of the Po and Ticino rivers, one of the most important Italian wetlands. These findings provide further support to the hypothesis that environmental transmission may play an important role in the ecology of serovar Napoli.
Collapse
Affiliation(s)
- Maria Gori
- Department of Health Sciences, University of Milan, Milano, Italy
| | - Erika Ebranati
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milano, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Parma, Italy
| | - Pol Huedo
- Department of Health Sciences, University of Milan, Milano, Italy
| | - Giulia Ciceri
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Elisabetta Tanzi
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Mirella Pontello
- Department of Health Sciences, University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Parma, Italy
| | - Luca Bolzoni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Parma, Italy
| |
Collapse
|
42
|
Pightling AW, Pettengill JB, Luo Y, Baugher JD, Rand H, Strain E. Interpreting Whole-Genome Sequence Analyses of Foodborne Bacteria for Regulatory Applications and Outbreak Investigations. Front Microbiol 2018; 9:1482. [PMID: 30042741 PMCID: PMC6048267 DOI: 10.3389/fmicb.2018.01482] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/13/2018] [Indexed: 12/05/2022] Open
Abstract
Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Government agencies and industry stakeholders worldwide are now analyzing WGS data routinely. Although researchers have published many studies that assess the efficacy of WGS data analysis for source attribution, guidance for interpreting WGS analyses is lacking. Here, we provide the framework for interpreting WGS analyses used by the Food and Drug Administration's Center for Food Safety and Applied Nutrition (CFSAN). We based this framework on the experiences of CFSAN investigators, collaborations and interactions with government and industry partners, and evaluation of the published literature. A fundamental question for investigators is whether two or more bacteria arose from the same source of contamination. Analysts often count the numbers of nucleotide differences [single-nucleotide polymorphisms (SNPs)] between two or more genome sequences to measure genetic distances. However, using SNP thresholds alone to assess whether bacteria originated from the same source can be misleading. Bacteria that are isolated from food, environmental, or clinical samples are representatives of bacterial populations. These populations are subject to evolutionary forces that can change genome sequences. Therefore, interpreting WGS analyses of foodborne bacteria requires a more sophisticated approach. Here, we present a framework for interpreting WGS analyses that combines SNP counts with phylogenetic tree topologies and bootstrap support. We also clarify the roles of WGS, epidemiological, traceback, and other evidence in forming the conclusions of investigations. Finally, we present examples that illustrate the application of this framework to real-world situations.
Collapse
Affiliation(s)
- Arthur W. Pightling
- Biostatistics and Bioinformatics, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | | | | | | | | | | |
Collapse
|
43
|
Octavia S, Ang MLT, La MV, Zulaina S, Saat ZAAS, Tien WS, Han HK, Ooi PL, Cui L, Lin RTP. Retrospective genome-wide comparisons of Salmonella enterica serovar Enteritidis from suspected outbreaks in Singapore. INFECTION GENETICS AND EVOLUTION 2018; 61:229-233. [PMID: 29625239 DOI: 10.1016/j.meegid.2018.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/13/2018] [Accepted: 04/02/2018] [Indexed: 11/25/2022]
Abstract
The number of salmonellosis cases in Singapore has increased over the years. Salmonella enterica serovar Enteritidis has always been the most predominant serovar in the last five years. The National Public Health Laboratory assisted outbreak investigations by performing multilocus variable number tandem repeat analysis (MLVA) on isolates that were collected at the time of the investigations. Isolates were defined as belonging to a particular cluster if they had identical MLVA patterns. Whilst MLVA has been instrumental in outbreak investigations, it may not be useful when outbreaks are caused by an endemic MLVA type. In this study, we analysed 67 isolates from 12 suspected outbreaks with known epidemiological links to explore the use of next-generation sequencing (NGS) for defining outbreaks. We found that NGS can confidently group isolates into their respective outbreaks. The isolates from each suspected outbreak were closely related and differed by a maximum of 3 single nucleotide polymorphisms (SNPs). They were also clearly separated from isolates that belonged to different suspected outbreaks. This study provides an important insight and further evidence on the value of NGS for routine surveillance and outbreak detection of S. Enteritidis.
Collapse
Affiliation(s)
- Sophie Octavia
- National Public Health Laboratory, Ministry of Health, Singapore.
| | - Michelle L T Ang
- National Public Health Laboratory, Ministry of Health, Singapore
| | - My Van La
- National Public Health Laboratory, Ministry of Health, Singapore
| | - Siti Zulaina
- National Public Health Laboratory, Ministry of Health, Singapore
| | - Zul Azri As Saad Saat
- Communicable Diseases Division (Surveillance & Response), Ministry of Health, Singapore
| | - Wee Siong Tien
- Communicable Diseases Division (Surveillance & Response), Ministry of Health, Singapore
| | - Hwi Kwang Han
- Communicable Diseases Division (Surveillance & Response), Ministry of Health, Singapore
| | - Peng Lim Ooi
- Communicable Diseases Division (Surveillance & Response), Ministry of Health, Singapore
| | - Lin Cui
- National Public Health Laboratory, Ministry of Health, Singapore
| | - Raymond T P Lin
- National Public Health Laboratory, Ministry of Health, Singapore; Department of Laboratory Medicine, National University Hospital, Singapore
| |
Collapse
|
44
|
D'Alessandro B, Pérez Escanda V, Balestrazzi L, Iriarte A, Pickard D, Yim L, Chabalgoity JA, Betancor L. A novel prophage identified in strains from Salmonella enterica serovar Enteritidis is a phylogenetic signature of the lineage ST-1974. Microb Genom 2018; 4:e000161. [PMID: 29509137 PMCID: PMC5885013 DOI: 10.1099/mgen.0.000161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is a major agent of foodborne diseases worldwide. In Uruguay, this serovar was almost negligible until the mid 1990s but since then it has become the most prevalent. Previously, we characterized a collection of strains isolated from 1988 to 2005 and found that the two oldest strains were the most genetically divergent. In order to further characterize these strains, we sequenced and annotated eight genomes including those of the two oldest isolates. We report on the identification and characterization of a novel 44 kbp Salmonella prophage found exclusively in these two genomes. Sequence analysis reveals that the prophage is a mosaic, with homologous regions in different Salmonella prophages. It contains 60 coding sequences, including two genes, gogB and sseK3, involved in virulence and modulation of host immune response. Analysis of serovar Enteritidis genomes available in public databases confirmed that this prophage is absent in most of them, with the exception of a group of 154 genomes. All 154 strains carrying this prophage belong to the same sequence type (ST-1974), suggesting that its acquisition occurred in a common ancestor. We tested this by phylogenetic analysis of 203 genomes representative of the intraserovar diversity. The ST-1974 forms a distinctive monophyletic lineage, and the newly described prophage is a phylogenetic signature of this lineage that could be used as a molecular marker. The phylogenetic analysis also shows that the major ST (ST-11) is polyphyletic and might have given rise to almost all other STs, including ST-1974.
Collapse
Affiliation(s)
| | | | - Lucía Balestrazzi
- Instituto de Higiene, Facultad de Medicina, UDELAR, Montevideo, Uruguay
| | - Andrés Iriarte
- Instituto de Higiene, Facultad de Medicina, UDELAR, Montevideo, Uruguay
| | - Derek Pickard
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, UK
| | - Lucía Yim
- Instituto de Higiene, Facultad de Medicina, UDELAR, Montevideo, Uruguay
| | | | - Laura Betancor
- Instituto de Higiene, Facultad de Medicina, UDELAR, Montevideo, Uruguay
| |
Collapse
|
45
|
Hyeon JY, Li S, Mann DA, Zhang S, Li Z, Chen Y, Deng X. Quasimetagenomics-Based and Real-Time-Sequencing-Aided Detection and Subtyping of Salmonella enterica from Food Samples. Appl Environ Microbiol 2018; 84:e02340-17. [PMID: 29196295 PMCID: PMC5795075 DOI: 10.1128/aem.02340-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
Metagenomics analysis of food samples promises isolation-independent detection and subtyping of foodborne bacterial pathogens in a single workflow. The selective concentration of Salmonella genomic DNA by immunomagnetic separation (IMS) and multiple displacement amplification (MDA) shortened the time for culture enrichment of Salmonella-spiked raw chicken breast samples by over 12 h while permitting serotyping and high-fidelity single nucleotide polymorphism (SNP) typing of the pathogen using short shotgun sequencing reads. The herein-termed quasimetagenomics approach was evaluated on Salmonella-spiked lettuce and black peppercorn samples as well as retail chicken parts naturally contaminated with different serotypes of Salmonella Culture enrichment of between 8 and 24 h was required for detecting and subtyping naturally occurring Salmonella from unspiked chicken parts compared with 4- to 12-h culture enrichment when Salmonella-spiked food samples were analyzed, indicating the likely need for longer culture enrichment to revive low levels of stressed or injured Salmonella cells in food. A further acceleration of the workflow was achieved by real-time nanopore sequencing. After 1.5 h of analysis on a potable sequencer, sufficient data were generated from sequencing the IMS-MDA products of a cultured-enriched lettuce sample to enable serotyping and robust phylogenetic placement of the inoculated isolate.IMPORTANCE Both culture enrichment and next-generation sequencing remain time-consuming processes for food testing, whereas rapid methods for pathogen detection are widely available. Our study demonstrated a substantial acceleration of these processes by the use of immunomagnetic separation (IMS) with multiple displacement amplification (MDA) and real-time nanopore sequencing. In one example, the combined use of the two methods delivered a less than 24-h turnaround time from the collection of a Salmonella-contaminated lettuce sample to the phylogenetic identification of the pathogen. An improved efficiency such as this is important for further expanding the use of whole-genome and metagenomics sequencing in the microbial analysis of food. Our results suggest the potential of the quasimetagenomics approach in areas where rapid detection and subtyping of foodborne pathogens are important, such as for foodborne outbreak response and the precision tracking and monitoring of foodborne pathogens in production environments and supply chains.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, Georgia, USA
| | - Shaoting Li
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, Georgia, USA
| | - David A Mann
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, Georgia, USA
| | - Shaokang Zhang
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, Georgia, USA
| | - Zhen Li
- Washington State Department of Health, Public Health Laboratories, Shoreline, Washington, USA
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Xiangyu Deng
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
46
|
Comparative genomics identifies distinct lineages of S. Enteritidis from Queensland, Australia. PLoS One 2018; 13:e0191042. [PMID: 29338017 PMCID: PMC5770046 DOI: 10.1371/journal.pone.0191042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/27/2017] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica is a major cause of gastroenteritis and foodborne illness in Australia where notification rates in the state of Queensland are the highest in the country. S. Enteritidis is among the five most common serotypes reported in Queensland and it is a priority for epidemiological surveillance due to concerns regarding its emergence in Australia. Using whole genome sequencing, we have analysed the genomic epidemiology of 217 S. Enteritidis isolates from Queensland, and observed that they fall into three distinct clades, which we have differentiated as Clades A, B and C. Phage types and MLST sequence types differed between the clades and comparative genomic analysis has shown that each has a unique profile of prophage and genomic islands. Several of the phage regions present in the S. Enteritidis reference strain P125109 were absent in Clades A and C, and these clades also had difference in the presence of pathogenicity islands, containing complete SPI-6 and SPI-19 regions, while P125109 does not. Antimicrobial resistance markers were found in 39 isolates, all but one of which belonged to Clade B. Phylogenetic analysis of the Queensland isolates in the context of 170 international strains showed that Queensland Clade B isolates group together with the previously identified global clade, while the other two clades are distinct and appear largely restricted to Australia. Locally sourced environmental isolates included in this analysis all belonged to Clades A and C, which is consistent with the theory that these clades are a source of locally acquired infection, while Clade B isolates are mostly travel related.
Collapse
|
47
|
Detection and CRISPR subtyping of Salmonella spp. isolated from whole raw chickens in Yangzhou from China. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
De Carli S, Gräf T, Kipper D, Lehmann FKM, Zanetti N, Siqueira FM, Cibulski S, Fonseca ASK, Ikuta N, Lunge VR. Molecular and phylogenetic analyses of Salmonella Gallinarum trace the origin and diversification of recent outbreaks of fowl typhoid in poultry farms. Vet Microbiol 2017; 212:80-86. [PMID: 29173593 DOI: 10.1016/j.vetmic.2017.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 10/22/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022]
Abstract
Fowl typhoid (FT) and pullorum disease (PD) are two important poultry infections caused by Salmonella enterica subsp. enterica serotype Gallinarum (S. Gallinarum). S. Gallinarum strains are adapted to birds and classified into biovars Gallinarum (bvGA) and Pullorum (bvPU) as they are the causative agent of FT and PD, respectively. In Brazil, FT/PD outbreaks have been reported along the last 50 years, but there was a recent increase of FT field reports with the suspicion it could be due to virulence reversion of the attenuated live vaccine SG9R. In this study, we applied molecular biology assays and phylogenetic methods to detect and investigate S. Gallinarum isolates from commercial poultry flocks in order to understand the evolutionary history and origin of the recent FT outbreaks in Brazil. S. Gallinarum isolates were obtained from thirteen different poultry flocks with clinical signs of FT/PD from 2013 to 2015. These isolates were serotyped, tested with three specific PCR (for the detection of bvGA, bvPU and live vaccine strain SG9R) and submitted to sequencing of a variable genome region (ISR analysis). The complete genome of one bvGA strain (BR_RS12) was also compared to other S. Gallinarum complete genomes (including other two Brazilian ones: bvGA 287/91 and bvPU FCVA198). PCR detected all thirteen isolates as S. Gallinarum (eight bvGA and five bvPU), none positive for SG9R strain. ISR analysis revealed that all eight bvGA isolates showed exactly the same nucleotide sequences with 100% similarity to reference strains, while two patterns were observed for bvPU. Genome phylogeny demonstrated distinct clades for bvGA and bvPU, with the bvGA clade showing a clear subdivision including three genomes: SG9R vaccine, the respective SG9 parent strain and one SG9R revertant field isolate (MB4523). The evolutionary rate of the total S. Gallinarum genome was calculated at 6.15×10-7 substitutions/site/year, with 2.8 observed substitutions per year per genome (1 SNP per 4292 bases). Phylodynamics analysis estimated that at least two introductions of S. Gallinarum bvGA happened in Brazil, the first in 1885 and the second in 1950. The Brazilian bvGA genomes 287/91 and BR_RS12 analyzed here were related to the early and the late introductions, respectively. In conclusion, these results indicate the occurrence of S. Gallinarum strains associated with FT outbreaks that have been circulating for more than 50 years in Brazil and are not originated from virulence reversion of the SG9R vaccine.
Collapse
Affiliation(s)
- Silvia De Carli
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Tiago Gräf
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil; College of Health Sciences, University of KwaZulu-Natal (UKZN), Durban, South Africa
| | - Diéssy Kipper
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | | | - Nathalie Zanetti
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Franciele Maboni Siqueira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Samuel Cibulski
- Laboratório de Virologia Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Nilo Ikuta
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| | - Vagner Ricardo Lunge
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil.
| |
Collapse
|
49
|
Abstract
The 100K Pathogen Genome Project is producing draft and closed genome sequences from diverse pathogens. This project expanded globally to include a snapshot of global bacterial genome diversity. The genomes form a sequence database that has a variety of uses from systematics to public health.
Collapse
|
50
|
Hill DR, Spence JR. Gastrointestinal Organoids: Understanding the Molecular Basis of the Host-Microbe Interface. Cell Mol Gastroenterol Hepatol 2017; 3:138-149. [PMID: 28275681 PMCID: PMC5331777 DOI: 10.1016/j.jcmgh.2016.11.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023]
Abstract
In recent years, increasing attention has been devoted to the concept that microorganisms play an integral role in human physiology and pathophysiology. Despite this, the molecular basis of host-pathogen and host-symbiont interactions in the human intestine remains poorly understood owing to the limited availability of human tissue, and the biological complexity of host-microbe interactions. Over the past decade, technological advances have enabled long-term culture of organotypic intestinal tissue derived from human subjects and from human pluripotent stem cells, and these in vitro culture systems already have shown the potential to inform our understanding significantly of host-microbe interactions. Gastrointestinal organoids represent a substantial advance in structural and functional complexity over traditional in vitro cell culture models of the human gastrointestinal epithelium while retaining much of the genetic and molecular tractability that makes in vitro experimentation so appealing. The opportunity to model epithelial barrier dynamics, cellular differentiation, and proliferation more accurately in specific intestinal segments and in tissue containing a proportional representation of the diverse epithelial subtypes found in the native gut greatly enhances the translational potential of organotypic gastrointestinal culture systems. By using these tools, researchers have uncovered novel aspects of host-pathogen and host-symbiont interactions with the intestinal epithelium. Application of these tools promises to reveal new insights into the pathogenesis of infectious disease, inflammation, cancer, and the role of microorganisms in intestinal development. This review summarizes research on the use of gastrointestinal organoids as a model of the host-microbe interface.
Collapse
Key Words
- 3D, 3-dimensional
- CDI, Clostridium difficile infection
- ECM, extracellular matrix
- Enteroids
- Epithelium
- GI, gastrointestinal
- HIO, human intestinal organoids
- IFN, interferon
- IL, interleukin
- Intestine
- Model Systems
- NEC, necrotizing enterocolitis
- Pathogenesis
- SCFA, short-chain fatty acid
- Symbiosis
- TcdB, C difficile toxin B
- hPSC, human pluripotent stem cell
Collapse
Affiliation(s)
- David R. Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jason R. Spence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|