1
|
Madhloom IH, Othman RM, Al-Bayati HAM. Molecular detection of coronavirus in camelids and bovines using real-time quantitative polymerase chain reaction in Wasit Province, Iraq. Open Vet J 2025; 15:765-773. [PMID: 40201811 PMCID: PMC11974302 DOI: 10.5455/ovj.2025.v15.i2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/08/2025] [Indexed: 04/10/2025] Open
Abstract
Background Coronaviruses (CoVs) are a diverse group of RNA viruses that cause respiratory and gastrointestinal diseases in humans and animals. Over the past two decades, outbreaks of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and bovine coronavirus (BCoV) have affected animal populations, especially in regions with close animal-human interactions, such as the Arabian Peninsula and Iraq. Given the potential for zoonotic transmission, understanding the prevalence and spread of CoVs among livestock is essential for managing potential risks to animal and human health. Aim This study aimed to investigate the prevalence of MERS-CoV in camels and BCoV in bovines within the Wasit Governorate of Iraq to assess the infection rates and potential interspecies transmission risks. Methods One hundred and fifty nasal swab samples (75 from camels and 75 from bovines) were collected between November 2022 and April 2023. The samples were analyzed for the presence of MERS-CoV and BCoV using real- time quantitative reverse transcription PCR (qRT-PCR) targeting the nucleocapsid (N) gene for each virus. Standard procedures for RNA extraction were followed, and qRT-PCR assays were conducted using specific primers to ensure high sensitivity and specificity. Results MERS-CoV was present in (42%) of the camel samples, whereas BCoV was detected in (34%) of the bovine samples. Statistical analysis indicated a significant difference (p < 0.05) in infection rates between camels and bovines, with a higher prevalence observed in camels. The clinical signs observed in infected camels included fever, nasal discharge, and appetite loss, whereas infected bovines exhibited symptoms such as diarrhea and respiratory distress. Conclusion The high prevalence of MERS-CoV and BCoV in camels and bovines in the Wasit region indicates a substantial risk for the continued spread of these viruses within animal populations. These findings underscore the importance of surveillance and biosecurity measures to control the spread of coronavirus among livestock, potentially reducing zoonotic transmission risks. Further research is required to understand the transmission dynamics of CoVs in mixed livestock farming systems.
Collapse
Affiliation(s)
- Ibrahim Hasan Madhloom
- Department of Microbiology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Rasha Munther Othman
- Department of Microbiology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
2
|
Wang Y, Ye M, Zhang F, Freeman ZT, Yu H, Ye X, He Y. Ontology-based taxonomical analysis of experimentally verified natural and laboratory human coronavirus hosts and its implication for COVID-19 virus origination and transmission. PLoS One 2024; 19:e0295541. [PMID: 38252647 PMCID: PMC10802970 DOI: 10.1371/journal.pone.0295541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/26/2023] [Indexed: 01/24/2024] Open
Abstract
To fully understand COVID-19, it is critical to study all possible hosts of SARS-CoV-2 (the pathogen of COVID-19). In this work, we collected, annotated, and performed ontology-based taxonomical analysis of all the reported and verified hosts for all human coronaviruses including SARS-CoV, MERS-CoV, SARS-CoV-2, HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1. A total of 37 natural hosts and 19 laboratory animal hosts of human coronaviruses were identified based on experimental evidence. Our analysis found that all the verified susceptible natural and laboratory animals belong to therian mammals. Specifically, these 37 natural therian hosts include one wildlife marsupial mammal (i.e., Virginia opossum) and 36 Eutheria mammals (a.k.a. placental mammals). The 19 laboratory animal hosts are also classified as therian mammals. The mouse models with genetically modified human ACE2 or DPP4 were more susceptible to virulent human coronaviruses with clear symptoms, suggesting the critical role of ACE2 and DPP4 to coronavirus virulence. Coronaviruses became more virulent and adaptive in the mouse hosts after a series of viral passages in the mice, providing clue to the possible coronavirus origination. The Huanan Seafood Wholesale Market animals identified early in the COVID-19 outbreak were also systematically analyzed as possible COVID-19 hosts. To support knowledge standardization and query, the annotated host knowledge was modeled and represented in the Coronavirus Infectious Disease Ontology (CIDO). Based on our and others' findings, we further propose a MOVIE model (i.e., Multiple-Organism viral Variations and Immune Evasion) to address how viral variations in therian animal hosts and the host immune evasion might have led to dynamic COVID-19 pandemic outcomes.
Collapse
Affiliation(s)
- Yang Wang
- Guizhou University School of Medicine, Guiyang, Guizhou, China
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and NHC Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou University, Guiyang, Guizhou, China
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Muhui Ye
- Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, China
| | - Fengwei Zhang
- Guizhou University School of Medicine, Guiyang, Guizhou, China
| | - Zachary Thomas Freeman
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Hong Yu
- Guizhou University School of Medicine, Guiyang, Guizhou, China
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and NHC Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Xianwei Ye
- Guizhou University School of Medicine, Guiyang, Guizhou, China
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and NHC Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|
3
|
Rodon J, Te N, Segalés J, Vergara-Alert J, Bensaid A. Enhanced antiviral immunity and dampened inflammation in llama lymph nodes upon MERS-CoV sensing: bridging innate and adaptive cellular immune responses in camelid reservoirs. Front Immunol 2023; 14:1205080. [PMID: 37388723 PMCID: PMC10300347 DOI: 10.3389/fimmu.2023.1205080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infection can cause fatal pulmonary inflammatory disease in humans. Contrarily, camelids and bats are the main reservoir hosts, tolerant for MERS-CoV replication without suffering clinical disease. Here, we isolated cervical lymph node (LN) cells from MERS-CoV convalescent llamas and pulsed them with two different viral strains (clades B and C). Viral replication was not supported in LN, but a cellular immune response was mounted. Reminiscent Th1 responses (IFN-γ, IL-2, IL-12) were elicited upon MERS-CoV sensing, accompanied by a marked and transient peak of antiviral responses (type I IFNs, IFN-λ3, ISGs, PRRs and TFs). Importantly, expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8) or inflammasome components (NLRP3, CASP1, PYCARD) was dampened. The role of IFN-λ3 to counterbalance inflammatory processes and bridge innate and adaptive immune responses in camelid species is discussed. Our findings shed light into key mechanisms on how reservoir species control MERS-CoV in the absence of clinical disease.
Collapse
Affiliation(s)
- Jordi Rodon
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
| | - Nigeer Te
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
| | - Joaquim Segalés
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinaria, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
| | - Albert Bensaid
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
| |
Collapse
|
4
|
Islam MM, Khanom H, Farag E, Mim ZT, Naidoo P, Mkhize-Kwitshana ZL, Tibbo M, Islam A, Soares Magalhaes RJ, Hassan MM. Global patterns of Middle East respiratory syndrome coronavirus (MERS-CoV) prevalence and seroprevalence in camels: A systematic review and meta-analysis. One Health 2023; 16:100561. [PMID: 37200564 PMCID: PMC10166617 DOI: 10.1016/j.onehlt.2023.100561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
The Middle East respiratory syndrome Coronavirus (MERS-CoV) is one of the human coronaviruses that causes severe respiratory infection. Bats are considered to be the natural reservoir, where dromedary camels (DC) are the intermediate hosts of the virus. The current study was undertaken to provide an update on global distribution of the virus in camels, and to investigate the pooled prevalence and camel-associated risk factors of infection. After registration of the review protocol in the Open Science Framework, data searches were conducted on 18 April 2023 through Embase, PubMed, Scopus, and Web of Science. Considering only natural MERS-CoV infection in camels, 94 articles were selected for data curation through blind screening by two authors. Meta-analysis was conducted to estimate the pooled prevalence and to evaluate camel-associated risk factors. Finally, the results were presented in forest plots. The reviewed articles tested 34 countries, of which camels of 24 countries were seropositive and in 15 countries they were positive by molecular method. Viral RNA was detected in DC. Non-DC, such as bactrian camels, alpaca, llama, and hybrid camels were only seropositive. The global estimated pooled seroprevalence and viral RNA prevalence in DC were 77.53% and 23.63%, respectively, with the highest prevalence in West Asia (86.04% and 32.37% respectively). In addition, 41.08% of non-DC were seropositive. The estimated pooled prevalence of MERS-CoV RNA significantly varied by sample types with the highest in oral (45.01%) and lowest in rectal (8.42%) samples; the estimated pooled prevalence in nasal (23.10%) and milk (21.21%) samples were comparable. The estimated pooled seroprevalence in <2 years, 2-5 years, and > 5 years age groups were 56.32%, 75.31%, and 86.31%, respectively, while viral RNA prevalence was 33.40%, 15.87%, and 13.74%, respectively. Seroprevalence and viral RNA prevalence were generally higher in females (75.28% and 19.70%, respectively) than in males (69.53% and 18.99%, respectively). Local camels had lower estimated pooled seroprevalence (63.34%) and viral RNA prevalence (17.78%) than those of imported camels (89.17% and 29.41%, respectively). The estimated pooled seroprevalence was higher in camels of free-herds (71.70%) than confined herds (47.77%). Furthermore, estimated pooled seroprevalence was higher in samples from livestock markets, followed by abattoirs, quarantine, and farms but viral RNA prevalence was the highest in samples from abattoirs, followed by livestock markets, quarantine, and farms. Risk factors, such as sample type, young age, female sex, imported camels, and camel management must be considered to control and prevent the spread and emergence of MERS-CoV.
Collapse
Affiliation(s)
| | - Hamida Khanom
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | | | - Zarin Tasnim Mim
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Pragalathan Naidoo
- Discipline of Medical Microbiology, College of Health Sciences, University of KwaZulu Natal, Durban 4000, South Africa
- Division of Research Capacity Development, Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Discipline of Medical Microbiology, College of Health Sciences, University of KwaZulu Natal, Durban 4000, South Africa
- Division of Research Capacity Development, Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Markos Tibbo
- Food and Agriculture Organization of the United Nations (FAO), Subregional Office for the Gulf Cooperation Council States and Yemen, Abu Dhabi, United Arab Emirates
| | | | - Ricardo J. Soares Magalhaes
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, QLD 4343, Australia
- Children Health and Environment Program, UQ Child Health Research Centre, The University of Queensland, QLD 4343, Australia
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, QLD 4343, Australia
| |
Collapse
|
5
|
Kane Y, Wong G, Gao GF. Animal Models, Zoonotic Reservoirs, and Cross-Species Transmission of Emerging Human-Infecting Coronaviruses. Annu Rev Anim Biosci 2023; 11:1-31. [PMID: 36790890 DOI: 10.1146/annurev-animal-020420-025011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Over the past three decades, coronavirus (CoV) diseases have impacted humans more than any other emerging infectious disease. The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 (coronavirus disease 2019), has resulted in huge economic disruptions and loss of human lives. The SARS-CoV-2 genome was found to mutate more rapidly due to sustained transmission in humans and potentially animals, resulting in variants of concern (VOCs) that threaten global human health. However, the primary difficulties are filling in the current knowledge gaps in terms of the origin and modalities of emergence for these viruses. Because many CoVs threatening human health are suspected to have a zoonotic origin, identifying the animal hosts implicated in the spillover or spillback events would be beneficial for current pandemic management and to prevent future outbreaks. In this review, wesummarize the animal models, zoonotic reservoirs, and cross-species transmission of the emerging human CoVs. Finally, we comment on potential sources of SARS-CoV-2 Omicron VOCs and the new SARS-CoV-2 recombinants currently under investigation.
Collapse
Affiliation(s)
- Yakhouba Kane
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; , .,University of Chinese Academy of Sciences, Beijing, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; ,
| | - George F Gao
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; .,Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Te N, Rodon J, Creve R, Pérez M, Segalés J, Vergara-Alert J, Bensaid A. Evaluation of alpaca tracheal explants as an ex vivo model for the study of Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vet Res 2022; 53:67. [PMID: 36056449 PMCID: PMC9438371 DOI: 10.1186/s13567-022-01084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) poses a serious threat to public health. Here, we established an ex vivo alpaca tracheal explant (ATE) model using an air-liquid interface culture system to gain insights into MERS-CoV infection in the camelid lower respiratory tract. ATE can be infected by MERS-CoV, being 103 TCID50/mL the minimum viral dosage required to establish a productive infection. IFNs and antiviral ISGs were not induced in ATE cultures in response to MERS-CoV infection, strongly suggesting that ISGs expression observed in vivo is rather a consequence of the IFN induction occurring in the nasal mucosa of camelids.
Collapse
Affiliation(s)
- Nigeer Te
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,School of Public Health, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jordi Rodon
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Rhea Creve
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Mónica Pérez
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinàriaia, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, 08193, Bellaterra, Catalonia, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain. .,IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
| | - Albert Bensaid
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| |
Collapse
|
7
|
Weidinger P, Kolodziejek J, Camp JV, Loney T, Kannan DO, Ramaswamy S, Tayoun AA, Corman VM, Nowotny N. MERS-CoV in sheep, goats, and cattle, United Arab Emirates, 2019: Virological and serological investigations reveal an accidental spillover from dromedaries. Transbound Emerg Dis 2022; 69:3066-3072. [PMID: 34463031 PMCID: PMC9786612 DOI: 10.1111/tbed.14306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/14/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022]
Abstract
The recent COVID-19 pandemic has demonstrated again the global threat posed by emerging zoonotic coronaviruses. During the past two decades alone, humans have experienced the emergence of several coronaviruses, such as SARS-CoV in 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019. To date, MERS-CoV has been detected in 27 countries, with a case fatality ratio of approximately 34.5%. Similar to other coronaviruses, MERS-CoV presumably originated from bats; however, the main reservoir and primary source of human infections are dromedary camels. Other species within the Camelidae family, such as Bactrian camels, alpacas, and llamas, seem to be susceptible to the infection as well, although to a lesser extent. In contrast, susceptibility studies on sheep, goats, cattle, pigs, chickens, and horses obtained divergent results. In the present study, we tested nasal swabs and/or sera from 55 sheep, 45 goats, and 52 cattle, collected at the largest livestock market in the United Arab Emirates, where dromedaries are also traded, for the presence of MERS-CoV nucleic acid by RT-qPCR, and for specific antibodies by immunofluorescence assay. All sera were negative for MERS-CoV-reactive antibodies, but the nasal swab of one sheep (1.8%) repeatedly tested positive for MERS-CoV nucleic acid. Next generation sequencing (NGS) of the complete N gene of the sheep-derived MERS-CoV revealed >99% nucleotide identity to MERS-CoV sequences of five dromedaries in nearby pens and to three reference sequences. The NGS sequence of the sheep-derived MERS-CoV was confirmed by conventional RT-PCR of a part of the N gene and subsequent Sanger sequencing. All MERS-CoV sequences clustered within clade B, lineage 5. In conclusion, our study shows that noncamelid livestock, such as sheep, goats, and cattle do not play a major role in MERS-CoV epidemiology. The one sheep that tested positive most likely reflects an accidental viral spillover event from infected dromedaries in nearby pens.
Collapse
Affiliation(s)
- Pia Weidinger
- Viral ZoonosesEmerging and Vector‐Borne Infections GroupInstitute of VirologyUniversity of Veterinary MedicineViennaAustria
| | - Jolanta Kolodziejek
- Viral ZoonosesEmerging and Vector‐Borne Infections GroupInstitute of VirologyUniversity of Veterinary MedicineViennaAustria
| | - Jeremy V. Camp
- Viral ZoonosesEmerging and Vector‐Borne Infections GroupInstitute of VirologyUniversity of Veterinary MedicineViennaAustria,Center for VirologyMedical University of ViennaViennaAustria
| | - Tom Loney
- College of MedicineMohammed Bin Rashid University of Medicine and Health SciencesDubaiUnited Arab Emirates
| | | | - Sathishkumar Ramaswamy
- Al Jalila Genomics CenterAl Jalila Children's Specialty HospitalDubaiUnited Arab Emirates
| | - Ahmad Abou Tayoun
- College of MedicineMohammed Bin Rashid University of Medicine and Health SciencesDubaiUnited Arab Emirates,Al Jalila Genomics CenterAl Jalila Children's Specialty HospitalDubaiUnited Arab Emirates
| | - Victor M. Corman
- Institute of VirologyCharité‐Universitätsmedizin BerlinHumboldt‐Universität zu BerlinBerlin Institute of Healthand German Centre for Infection Research (DZIF)Partner Site CharitéBerlinGermany
| | - Norbert Nowotny
- Viral ZoonosesEmerging and Vector‐Borne Infections GroupInstitute of VirologyUniversity of Veterinary MedicineViennaAustria,College of MedicineMohammed Bin Rashid University of Medicine and Health SciencesDubaiUnited Arab Emirates
| |
Collapse
|
8
|
Schindell BG, Allardice M, McBride JA, Dennehy B, Kindrachuk J. SARS-CoV-2 and the Missing Link of Intermediate Hosts in Viral Emergence - What We Can Learn From Other Betacoronaviruses. FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.875213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of SARS-CoV-2 in 2019 has resulted in a global pandemic with devastating human health and economic consequences. The development of multiple vaccines, antivirals and supportive care modalities have aided in our efforts to gain control of the pandemic. However, the emergence of multiple variants of concern and spillover into numerous nonhuman animal species could protract the pandemic. Further, these events also increase the difficulty in simultaneously monitoring viral evolution across multiple species and predicting future spillback potential into the human population. Here, we provide historic context regarding the roles of reservoir and intermediate hosts in coronavirus circulation and discuss current knowledge of these for SARS-CoV-2. Increased understanding of SARS-CoV-2 zoonoses are fundamental for efforts to control the global health and economic impacts of COVID-19.
Collapse
|
9
|
Rodon J, Mykytyn AZ, Cantero G, Albulescu IC, Bosch BJ, Brix A, Audonnet JC, Bensaid A, Vergara-Alert J, Haagmans BL, Segalés J. Protective efficacy of an RBD-based Middle East respiratory syndrome coronavirus (MERS-CoV) particle vaccine in llamas. ONE HEALTH OUTLOOK 2022; 4:12. [PMID: 35739576 PMCID: PMC9225808 DOI: 10.1186/s42522-022-00068-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Ongoing outbreaks of Middle East respiratory syndrome coronavirus (MERS-CoV) continue posing a global health threat. Vaccination of livestock reservoir species is a recommended strategy to prevent spread of MERS-CoV among animals and potential spillover to humans. Using a direct-contact llama challenge model that mimics naturally occurring viral transmission, we tested the efficacy of a multimeric receptor binding domain (RBD) particle-display based vaccine candidate. While MERS-CoV was transmitted to naïve animals exposed to virus-inoculated llamas, immunization induced robust virus-neutralizing antibody responses and prevented transmission in 1/3 vaccinated, in-contact animals. Our exploratory study supports further improvement of the RBD-based vaccine to prevent zoonotic spillover of MERS-CoV.
Collapse
Affiliation(s)
- Jordi Rodon
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, 08193, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB),Bellaterra, Barcelona, Catalonia, 08193, Spain
| | - Anna Z Mykytyn
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, CA, 3000, The Netherlands
| | - Guillermo Cantero
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, 08193, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB),Bellaterra, Barcelona, Catalonia, 08193, Spain
| | - Irina C Albulescu
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL, 3584, The Netherlands
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL, 3584, The Netherlands
| | - Alexander Brix
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hanover, Germany
| | - Jean-Christophe Audonnet
- Boehringer Ingelheim Animal Health, Global Innovation, 813 Cours du 3ème millénaire, Saint-Priest, 69380, France
| | - Albert Bensaid
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, 08193, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB),Bellaterra, Barcelona, Catalonia, 08193, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, 08193, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB),Bellaterra, Barcelona, Catalonia, 08193, Spain
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, CA, 3000, The Netherlands.
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, 08193, Spain.
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, 08193, Spain.
| |
Collapse
|
10
|
Chi H, Wang Y, Li E, Wang X, Wang H, Jin H, Han Q, Wang Z, Wang X, Zhu A, Sun J, Zhuang Z, Zhang L, Ye J, Wang H, Feng N, Hu M, Gao Y, Zhao J, Zhao Y, Yang S, Xia X. Inactivated Rabies Virus Vectored MERS-Coronavirus Vaccine Induces Protective Immunity in Mice, Camels, and Alpacas. Front Immunol 2022; 13:823949. [PMID: 35173733 PMCID: PMC8842186 DOI: 10.3389/fimmu.2022.823949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is an emergent coronavirus that has caused frequent zoonotic events through camel-to-human spillover. An effective camelid vaccination strategy is probably the best way to reduce human exposure risk. Here, we constructed and evaluated an inactivated rabies virus-vectored MERS-CoV vaccine in mice, camels, and alpacas. Potent antigen-specific antibody and CD8+ T-cell responses were generated in mice; moreover, the vaccination reduced viral replication and accelerated virus clearance in MERS-CoV-infected mice. Besides, protective antibody responses against both MERS-CoV and rabies virus were induced in camels and alpacas. Satisfyingly, the immune sera showed broad cross-neutralizing activity against the three main MERS-CoV clades. For further characterization of the antibody response induced in camelids, MERS-CoV-specific variable domains of heavy-chain-only antibody (VHHs) were isolated from immunized alpacas and showed potent prophylactic and therapeutic efficacies in the Ad5-hDPP4-transduced mouse model. These results highlight the inactivated rabies virus-vectored MERS-CoV vaccine as a promising camelid candidate vaccine.
Collapse
Affiliation(s)
- Hang Chi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Entao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiwen Wang
- Food and Drug Inspection Laboratory, Administration for Drug and Instrument Supervision and Inspection, Beijing, China
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiuxue Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhenshan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xinyue Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lu Zhang
- Health and Quarantine Laboratory, Guangzhou Customs Technology Center, Guangzhou, China
| | - Jingmeiqi Ye
- Institute of Education, Tsinghua University, Beijing, China
| | - Haijun Wang
- Jilin Wild Animal Rescue Breeding Center Committee, Jilin Province Northeast Tiger Garden, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingda Hu
- Sate Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Infectious Disease, Guangzhou Eighth People’s Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
11
|
Te N, Ciurkiewicz M, van den Brand JMA, Rodon J, Haverkamp AK, Vergara-Alert J, Bensaid A, Haagmans BL, Baumgartner W, Segalés J. Middle East respiratory syndrome coronavirus infection in camelids. Vet Pathol 2022; 59:546-555. [PMID: 35001773 DOI: 10.1177/03009858211069120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is the cause of a severe respiratory disease with a high case fatality rate in humans. Since its emergence in mid-2012, 2578 laboratory-confirmed cases in 27 countries have been reported by the World Health Organization, leading to 888 known deaths due to the disease and related complications. Dromedary camels are considered the major reservoir host for this virus leading to zoonotic infection in humans. Dromedary camels, llamas, and alpacas are susceptible to MERS-CoV, developing a mild-to-moderate upper respiratory tract infection characterized by epithelial hyperplasia as well as infiltration of neutrophils, lymphocytes, and some macrophages within epithelium, lamina propria, in association with abundant viral antigen. The very mild lesions in the lower respiratory tract of these camelids correlate with absence of overt illness following MERS-CoV infection. Unfortunately, there is no approved antiviral treatment or vaccine for MERS-CoV infection in humans. Thus, there is an urgent need to develop intervention strategies in camelids, such as vaccination, to minimize virus spillover to humans. Therefore, the development of camelid models of MERS-CoV infection is key not only to assess vaccine prototypes but also to understand the biologic mechanisms by which the infection can be naturally controlled in these reservoir species. This review summarizes information on virus-induced pathological changes, pathogenesis, viral epidemiology, and control strategies in camelids, as the intermediate hosts and primary source of MERS-CoV infection in humans.
Collapse
Affiliation(s)
- Nigeer Te
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
12
|
Sriwilaijaroen N, Suzuki Y. Roles of Sialyl Glycans in HCoV-OC43, HCoV-HKU1, MERS-CoV and SARS-CoV-2 Infections. Methods Mol Biol 2022; 2556:243-271. [PMID: 36175638 DOI: 10.1007/978-1-0716-2635-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ongoing seasonal HCoV-OC43 and HCoV-HKU1 (common cold), an ongoing zoonotic infection of highly lethal MERS-CoV in humans (MERS disease), and an ongoing pandemic SARS-CoV-2 (COVID-19) with high mutability giving some variants causing severe illness and death have been reported to attach to sialyl receptors via their spike (S) glycoproteins and via additional short spikes, hemagglutinin-esterase (HE) glycoproteins, for HCoV-OC43 and HCoV-HKU1. There is lack of zoonotic viruses that are origins of HCoV-HKU1 and the first recorded pandemic CoV (SARS-CoV-2) for studies. In this chapter, we review current knowledge of the roles of sialyl glycans in infections with these viruses in distinct infection stages. Determination of the similarities and differences in roles of sialyl glycans in infections with these viruses could lead to a better understanding of the pathogenesis and transmission that is essential for combating infections with CoVs that recognize sialyl glycans.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
13
|
Te N, Rodon J, Pérez M, Segalés J, Vergara-Alert J, Bensaid A. Enhanced replication fitness of MERS-CoV clade B over clade A strains in camelids explains the dominance of clade B strains in the Arabian Peninsula. Emerg Microbes Infect 2021; 11:260-274. [PMID: 34918620 PMCID: PMC8812806 DOI: 10.1080/22221751.2021.2019559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) continues infecting humans and dromedary camels. While MERS-CoV strains from the Middle East region are subdivided into two clades (A and B), all the contemporary epidemic viruses belong to clade B. Thus, MERS-CoV clade B strains may display adaptive advantages over clade A in humans and/or reservoir hosts. To test this hypothesis in vivo, we compared an early epidemic clade A strain (EMC/2012) with a clade B strain (Jordan-1/2015) in an alpaca model monitoring virological and immunological parameters. Further, the Jordan-1/2015 strain has a partial amino acid (aa) deletion in the double-stranded (ds) RNA binding motif of the open reading frame ORF4a protein. Animals inoculated with the Jordan-1/2015 variant had higher MERS-CoV replicative capabilities in the respiratory tract and larger nasal viral shedding. In the nasal mucosa, the Jordan-1/2015 strain caused an early IFN response, suggesting a role for ORF4a as a moderate IFN antagonist in vivo. However, both strains elicited maximal transcription of antiviral interferon-stimulated genes (ISGs) at the peak of infection on 2 days post inoculation, correlating with subsequent decreases in tissular viral loads. Genome alignment analysis revealed several clade B-specific amino acid substitutions occurring in the replicase and the S proteins, which could explain a better adaptation of clade B strains in camelid hosts. Differences in replication and shedding reported herein indicate a better fitness and transmission capability of MERS-CoV clade B strains than their clade A counterparts.
Collapse
Affiliation(s)
- Nigeer Te
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Mónica Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinaria, UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
14
|
Goraichuk IV, Arefiev V, Stegniy BT, Gerilovych AP. Zoonotic and Reverse Zoonotic Transmissibility of SARS-CoV-2. Virus Res 2021; 302:198473. [PMID: 34118360 PMCID: PMC8188804 DOI: 10.1016/j.virusres.2021.198473] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) is the first known pandemic caused by a coronavirus. Its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appears to be capable of infecting different mammalian species. Recent detections of this virus in pet, zoo, wild, and farm animals have compelled inquiry regarding the zoonotic (animal-to-human) and reverse zoonotic (human-to-animal) transmissibility of SARS-CoV-2 with the potential of COVID-19 pandemic evolving into a panzootic. It is important to monitor the global spread of disease and to assess the significance of genomic changes to support prevention and control efforts during a pandemic. An understanding of the SARS-CoV-2 epidemiology provides opportunities to prevent the risk of repeated re-infection of humans and requires a robust One Health-based investigation. This review paper describes the known properties and the existing gaps in scientific knowledge about the zoonotic and reverse zoonotic transmissibility of the novel virus SARS-CoV-2 and the COVID-19 disease it causes.
Collapse
Affiliation(s)
- Iryna V Goraichuk
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Vasiliy Arefiev
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Borys T Stegniy
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Anton P Gerilovych
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| |
Collapse
|
15
|
Te N, Rodon J, Ballester M, Pérez M, Pailler-García L, Segalés J, Vergara-Alert J, Bensaid A. Type I and III IFNs produced by the nasal epithelia and dimmed inflammation are features of alpacas resolving MERS-CoV infection. PLoS Pathog 2021; 17:e1009229. [PMID: 34029358 PMCID: PMC8195365 DOI: 10.1371/journal.ppat.1009229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/11/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
While MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, while interferon stimulated genes (ISGs) were induced along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, seems central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10. Middle East respiratory syndrome coronavirus (MERS-CoV) is the etiological agent of a respiratory disease causing high mortality in humans. In camelids, the main MERS-CoV reservoir host, viral infection leads to subclinical disease. Our study describes transcriptional regulations of innate immunological pathways underlying asymptomatic clinical manifestations of alpacas in response to MERS-CoV. Concomitant to the peak of infection, these animals elicited a strong transient type I and III interferon response and induction of the anti-inflammatory cytokine IL10 in the nasal mucosa. Meanwhile, a dimmed regulation of pro-inflammatory cytokines and induction of interferon stimulated genes was observed along the whole respiratory mucosa with a rapid clearance of the virus in tissues. Thus, innate immune responses occurring in the nasal mucosa might be key in controlling MERS-CoV disease by avoiding a cytokine storm. Understanding on how asymptomatic host reservoirs counteract MERS-CoV infection will aid in the development of antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Nigeer Te
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Caldes de Montbui, Spain
| | - Mónica Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Lola Pailler-García
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinaria, UAB, Cerdanyola del Vallès, Spain
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
- * E-mail:
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| |
Collapse
|
16
|
Lado S, Elbers JP, Plasil M, Loney T, Weidinger P, Camp JV, Kolodziejek J, Futas J, Kannan DA, Orozco-terWengel P, Horin P, Nowotny N, Burger PA. Innate and Adaptive Immune Genes Associated with MERS-CoV Infection in Dromedaries. Cells 2021; 10:1291. [PMID: 34070971 PMCID: PMC8224694 DOI: 10.3390/cells10061291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans.
Collapse
Affiliation(s)
- Sara Lado
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.L.); (J.P.E.)
| | - Jean P. Elbers
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.L.); (J.P.E.)
| | - Martin Plasil
- Department of Animal Genetics, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (M.P.); (J.F.); (P.H.)
- RG Animal Immunogenomics, Ceitec Vetuni, 61242 Brno, Czech Republic
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (T.L.); (N.N.)
| | - Pia Weidinger
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (P.W.); (J.V.C.); (J.K.)
| | - Jeremy V. Camp
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (P.W.); (J.V.C.); (J.K.)
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (P.W.); (J.V.C.); (J.K.)
| | - Jan Futas
- Department of Animal Genetics, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (M.P.); (J.F.); (P.H.)
- RG Animal Immunogenomics, Ceitec Vetuni, 61242 Brno, Czech Republic
| | | | - Pablo Orozco-terWengel
- The Sir Martin Evans Building, Cardiff School of Biosciences, Cardiff University, Museum Ave, Cardiff CF10 3AX, UK;
| | - Petr Horin
- Department of Animal Genetics, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (M.P.); (J.F.); (P.H.)
- RG Animal Immunogenomics, Ceitec Vetuni, 61242 Brno, Czech Republic
| | - Norbert Nowotny
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (T.L.); (N.N.)
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (P.W.); (J.V.C.); (J.K.)
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.L.); (J.P.E.)
| |
Collapse
|
17
|
Alnaeem A, Kasem S, Qasim I, Refaat M, Alhufufi AN, Al-Doweriej A, Al-Shabebi A, Hereba AERT, Hemida MG. Scanning Electron Microscopic Findings on Respiratory Organs of Some Naturally Infected Dromedary Camels with the Lineage-B of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Saudi Arabia-2018. Pathogens 2021; 10:pathogens10040420. [PMID: 33916036 PMCID: PMC8065699 DOI: 10.3390/pathogens10040420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022] Open
Abstract
The currently known animal reservoir for MERS-CoV is the dromedary camel. The clinical pattern of the MERS-CoV field infection in dromedary camels is not yet fully studied well. Some pathological changes and the detection of the MERS-CoV antigens by immunohistochemistry have been recently reported. However, the nature of these changes by the scanning electron microscope (SEM) was not revealed. The objective of this study was to document some changes in the respiratory organs induced by the natural MERS-CoV infection using the SEM. We previously identified three positive animals naturally infected with MERS-CoV and two other negative animals. Previous pathological studies on the positive animals showed varying degrees of alterations. MERS-CoV-S and MERS-CoV-Nc proteins were detected in the organs of positive animals. In the current study, we used the same tissues and sections for the SEM examination. We established a histopathology lesion scoring system by the SEM for the nasal turbinate and trachea. Our results showed various degrees of involvement per animal. The main observed characteristic findings are massive ciliary loss, ciliary disorientation, and goblet cell hyperplasia, especially in the respiratory organs, particularly the nasal turbinate and trachea in some animals. The lungs of some affected animals showed signs of marked interstitial pneumonia with damage to the alveolar walls. The partial MERS-CoV-S gene sequencing from the nasal swabs of some dromedary camels admitted to this slaughterhouse confirms the circulating strains belong to clade-B of MERS-CoV. These results confirm the respiratory tropism of the virus and the detection of the virus in the nasal cavity. Further studies are needed to explore the pathological alterations induced by MERS-CoV infection in various body organs of the MERS-CoV naturally infected dromedary camels.
Collapse
Affiliation(s)
- Abdelmohsen Alnaeem
- Department of Clinical Studies, College of Veterinary Medicine, King Faisal University, Al-Haa 400, Saudi Arabia;
| | - Samy Kasem
- Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, Riyadh 11195, Saudi Arabia; (S.K.); (I.Q.); (M.R.); (A.N.A.); (A.A.-D.)
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Ibrahim Qasim
- Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, Riyadh 11195, Saudi Arabia; (S.K.); (I.Q.); (M.R.); (A.N.A.); (A.A.-D.)
| | - Mohamed Refaat
- Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, Riyadh 11195, Saudi Arabia; (S.K.); (I.Q.); (M.R.); (A.N.A.); (A.A.-D.)
- Department of Pathology, Animal Health Research Institute, Dokki, Cairo 12618, Egypt
| | - Ali Nasser Alhufufi
- Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, Riyadh 11195, Saudi Arabia; (S.K.); (I.Q.); (M.R.); (A.N.A.); (A.A.-D.)
| | - Ali Al-Doweriej
- Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, Riyadh 11195, Saudi Arabia; (S.K.); (I.Q.); (M.R.); (A.N.A.); (A.A.-D.)
| | - Abdulkareem Al-Shabebi
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Haa 400, Saudi Arabia;
| | - Abd-El Rahman Taha Hereba
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Maged Gomaa Hemida
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Haa 400, Saudi Arabia
- Correspondence:
| |
Collapse
|
18
|
Khamassi Khbou M, Daaloul Jedidi M, Bouaicha Zaafouri F, Benzarti M. Coronaviruses in farm animals: Epidemiology and public health implications. Vet Med Sci 2021; 7:322-347. [PMID: 32976707 PMCID: PMC7537542 DOI: 10.1002/vms3.359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses (CoVs) are documented in a wide range of animal species, including terrestrial and aquatic, domestic and wild. The geographic distribution of animal CoVs is worldwide and prevalences were reported in several countries across the five continents. The viruses are known to cause mainly gastrointestinal and respiratory diseases with different severity levels. In certain cases, CoV infections are responsible of huge economic losses associated or not to highly public health impact. Despite being enveloped, CoVs are relatively resistant pathogens in the environment. Coronaviruses are characterized by a high mutation and recombination rate, which makes host jumping and cross-species transmission easy. In fact, increasing contact between different animal species fosters cross-species transmission, while agriculture intensification, animal trade and herd management are key drivers at the human-animal interface. If contacts with wild animals are still limited, humans have much more contact with farm animals, during breeding, transport, slaughter and food process, making CoVs a persistent threat to both humans and animals. A global network should be established for the surveillance and monitoring of animal CoVs.
Collapse
Affiliation(s)
- Médiha Khamassi Khbou
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Monia Daaloul Jedidi
- Laboratory of Microbiology and ImmunologyUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Faten Bouaicha Zaafouri
- Department of Livestock Semiology and MedicineUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - M’hammed Benzarti
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| |
Collapse
|
19
|
Hedman HD, Krawczyk E, Helmy YA, Zhang L, Varga C. Host Diversity and Potential Transmission Pathways of SARS-CoV-2 at the Human-Animal Interface. Pathogens 2021; 10:180. [PMID: 33567598 PMCID: PMC7915269 DOI: 10.3390/pathogens10020180] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging infectious diseases present great risks to public health. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has become an urgent public health issue of global concern. It is speculated that the virus first emerged through a zoonotic spillover. Basic research studies have suggested that bats are likely the ancestral reservoir host. Nonetheless, the evolutionary history and host susceptibility of SARS-CoV-2 remains unclear as a multitude of animals has been proposed as potential intermediate or dead-end hosts. SARS-CoV-2 has been isolated from domestic animals, both companion and livestock, as well as in captive wildlife that were in close contact with human COVID-19 cases. Currently, domestic mink is the only known animal that is susceptible to a natural infection, develop severe illness, and can also transmit SARS-CoV-2 to other minks and humans. To improve foundational knowledge of SARS-CoV-2, we are conducting a synthesis review of its host diversity and transmission pathways. To mitigate this COVID-19 pandemic, we strongly advocate for a systems-oriented scientific approach that comprehensively evaluates the transmission of SARS-CoV-2 at the human and animal interface.
Collapse
Affiliation(s)
- Hayden D. Hedman
- Summit County Local Public Health Agency, Summit County, Frisco, CO 80443, USA;
| | - Eric Krawczyk
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Yosra A. Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA;
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA;
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
20
|
Adney DR, Clancy CS, Bowen RA, Munster VJ. Camelid Inoculation With Middle East Respiratory Syndrome Coronavirus: Experimental Models of Reservoir Host Infection. Viruses 2020; 12:v12121370. [PMID: 33266124 PMCID: PMC7759921 DOI: 10.3390/v12121370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Within the past two decades, three zoonotic betacoronaviruses have been associated with outbreaks causing severe respiratory disease in humans. Of these, Middle East respiratory s yndrome coronavirus (MERS-CoV) is the only zoonotic coronavirus that is known to consistently result in frequent zoonotic spillover events from the proximate reservoir host—the dromedary camel. A comprehensive understanding of infection in dromedaries is critical to informing public health recommendations and implementing intervention strategies to mitigate spillover events. Experimental models of reservoir disease are absolutely critical in understanding the pathogenesis and transmission, and are key to testing potential dromedary vaccines against MERS-CoV. In this review, we describe experimental infections of dromedary camels as well as additional camelid models used to further understand the camel’s role in MERS-CoV spillover to humans.
Collapse
Affiliation(s)
- Danielle R. Adney
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Chad S. Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA;
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA;
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
- Correspondence: ; Tel.: +406-375-7489
| |
Collapse
|
21
|
Mohapatra RK, Pintilie L, Kandi V, Sarangi AK, Das D, Sahu R, Perekhoda L. The recent challenges of highly contagious COVID-19, causing respiratory infections: Symptoms, diagnosis, transmission, possible vaccines, animal models, and immunotherapy. Chem Biol Drug Des 2020. [PMID: 32654267 DOI: 10.1111/cbdd.v96.510.1111/cbdd.13761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
COVID-19 is highly contagious pathogenic viral infection initiated from Wuhan seafood wholesale market of China on December 2019 and spread rapidly around the whole world due to onward transmission. This recent outbreak of novel coronavirus (CoV) was believed to be originated from bats and causing respiratory infections such as common cold, dry cough, fever, headache, dyspnea, pneumonia, and finally Severe Acute Respiratory Syndrome (SARS) in humans. For this widespread zoonotic virus, human-to-human transmission has resulted in nearly 83 lakh cases in 213 countries and territories with 4,50,686 deaths as on 19 June 2020. This review presents a report on the origin, transmission, symptoms, diagnosis, possible vaccines, animal models, and immunotherapy for this novel virus and will provide ample references for the researchers toward the ongoing development of therapeutic agents and vaccines and also preventing the spread of this disease.
Collapse
Affiliation(s)
- Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Lucia Pintilie
- Department of Synthesis of Bioactive Substances and Pharmaceutical Technologies, National Institute for Chemical and Pharmaceutical Research and Development, Bucharest, Romania
| | - Venkataramana Kandi
- Department of Microbiology, Pratima Institute of Medical Sciences, Karimnagar, Hyderabad, India
| | - Ashish K Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Debadutta Das
- Department of Chemistry, Sukanti Degree College, Subarnapur, Odisha, India
| | - Raghaba Sahu
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Lina Perekhoda
- Department of medicinal chemistry, National University of Pharmacy, Kharkiv, Ukraine
| |
Collapse
|
22
|
Mohapatra RK, Pintilie L, Kandi V, Sarangi AK, Das D, Sahu R, Perekhoda L. The recent challenges of highly contagious COVID-19, causing respiratory infections: Symptoms, diagnosis, transmission, possible vaccines, animal models, and immunotherapy. Chem Biol Drug Des 2020; 96:1187-1208. [PMID: 32654267 PMCID: PMC7405220 DOI: 10.1111/cbdd.13761] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 01/07/2023]
Abstract
COVID-19 is highly contagious pathogenic viral infection initiated from Wuhan seafood wholesale market of China on December 2019 and spread rapidly around the whole world due to onward transmission. This recent outbreak of novel coronavirus (CoV) was believed to be originated from bats and causing respiratory infections such as common cold, dry cough, fever, headache, dyspnea, pneumonia, and finally Severe Acute Respiratory Syndrome (SARS) in humans. For this widespread zoonotic virus, human-to-human transmission has resulted in nearly 83 lakh cases in 213 countries and territories with 4,50,686 deaths as on 19 June 2020. This review presents a report on the origin, transmission, symptoms, diagnosis, possible vaccines, animal models, and immunotherapy for this novel virus and will provide ample references for the researchers toward the ongoing development of therapeutic agents and vaccines and also preventing the spread of this disease.
Collapse
Affiliation(s)
| | - Lucia Pintilie
- Department of Synthesis of Bioactive Substances and Pharmaceutical TechnologiesNational Institute for Chemical and Pharmaceutical Research and DevelopmentBucharestRomania
| | - Venkataramana Kandi
- Department of MicrobiologyPratima Institute of Medical SciencesKarimnagarHyderabadIndia
| | - Ashish K. Sarangi
- Department of ChemistrySchool of Applied Sciences, Centurion University of Technology and ManagementOdishaIndia
| | - Debadutta Das
- Department of ChemistrySukanti Degree CollegeSubarnapurOdishaIndia
| | - Raghaba Sahu
- College of PharmacySeoul National UniversitySeoulSouth Korea
| | - Lina Perekhoda
- Department of medicinal chemistryNational University of PharmacyKharkivUkraine
| |
Collapse
|
23
|
Mostafa A, Kandeil A, Shehata M, El Shesheny R, Samy AM, Kayali G, Ali MA. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): State of the Science. Microorganisms 2020; 8:E991. [PMID: 32630780 PMCID: PMC7409282 DOI: 10.3390/microorganisms8070991] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Coronaviruses belong to a large family of viruses that can cause disease outbreaks ranging from the common cold to acute respiratory syndrome. Since 2003, three zoonotic members of this family evolved to cross species barriers infecting humans and resulting in relatively high case fatality rates (CFR). Compared to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV, CFR = 10%) and pandemic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, CFR = 6%), the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has scored the highest CFR (approximately 35%). In this review, we systematically summarize the current state of scientific knowledge about MERS-CoV, including virology and origin, epidemiology, zoonotic mode of transmission, and potential therapeutic or prophylactic intervention modalities.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo 12622, Egypt; (A.M.); (A.K.); (M.S.); (R.E.S.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo 12622, Egypt; (A.M.); (A.K.); (M.S.); (R.E.S.)
| | - Mahmoud Shehata
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo 12622, Egypt; (A.M.); (A.K.); (M.S.); (R.E.S.)
| | - Rabeh El Shesheny
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo 12622, Egypt; (A.M.); (A.K.); (M.S.); (R.E.S.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Abdallah M. Samy
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt;
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
- Human Link, Baabda 1109, Lebanon
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo 12622, Egypt; (A.M.); (A.K.); (M.S.); (R.E.S.)
| |
Collapse
|
24
|
Shchelkanov MY, Popova AY, Dedkov VG, Akimkin VG, Maleyev VV. History of investigation and current classification of coronaviruses ( Nidovirales: Coronaviridae). ACTA ACUST UNITED AC 2020. [DOI: 10.15789/2220-7619-hoi-1412] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- M. Yu. Shchelkanov
- International Scientific and Educational Center for Biological Security of Rospotrebnadzor; Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch of RAS; Center of Hygiene and Epidemiology in the Primorsky Territory
| | - A. Yu. Popova
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor); Russian Medical Academy of Continuing Professional Education
| | | | - V. G. Akimkin
- Central Research Institute of Epidemiology and Microbiology of Rospotrebnadzor
| | - V. V. Maleyev
- Central Research Institute of Epidemiology and Microbiology of Rospotrebnadzor
| |
Collapse
|
25
|
Wong G, Bi YH, Wang QH, Chen XW, Zhang ZG, Yao YG. Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): why is this work important? Zool Res 2020; 41:213-219. [PMID: 32314559 PMCID: PMC7231470 DOI: 10.24272/j.issn.2095-8137.2020.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by infection with human coronavirus 2019 (HCoV-19 / SARS-CoV-2 / 2019-nCoV), is a global threat to the human population. Here, we briefly summarize the available data for the zoonotic origins of HCoV-19, with reference to the other two epidemics of highly virulent coronaviruses, SARS-CoV and MERS-CoV, which cause severe pneumonia in humans. We propose to intensify future efforts for tracing the origins of HCoV-19, which is a very important scientific question for the control and prevention of the pandemic.
Collapse
Affiliation(s)
- Gary Wong
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China. E-mail:
- Department of Microbiology-Infectiology and Immunology, Laval University, Quebec G1V 4G2, Canada
| | - Yu-Hai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| | - Qi-Hui Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| | - Xin-Wen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China. E-mail:
| | - Zhi-Gang Zhang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China. E-mail:
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
26
|
Alnaeem A, Kasem S, Qasim I, Al-Doweriej A, Refaat M, Al-Shabebi A, Hemida MG. The dipeptidyl peptidase-4 expression in some MERS-CoV naturally infected dromedary camels in Saudi Arabia 2018-2019. Virusdisease 2020; 31:200-203. [PMID: 32377556 PMCID: PMC7201121 DOI: 10.1007/s13337-020-00586-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/20/2020] [Indexed: 01/22/2023] Open
Abstract
MERS-CoV usually causes respiratory and renal failure in some patients, which may be the underlying cause of death. Dromedary camels are the only known reservoir of the virus until now. They shed the virus in their body secretions thus potentiate a risk for human infection. MERS-CoV tropism and replication is mainly affected by the presence of certain receptor ligands on the target tissues. The dipeptidyl peptidase-4 (DPP-4) is believed to act as receptors for MERS-CoV. The main objective of this study was to determine the expression levels of the DPP-4 in various organs of some naturally infected camels. We conducted a surveillance study to identify some positive MERS-CoV infected camels. Three positive animals identified by the Real time PCR. Our results are clearly showing the high level of expression of the DPP-4 in various organs of these animals' particularly nasal turbinate, trachea, and lungs. The expression level may explain at least in part the pathogenesis of MERS-CoV in these organs. These findings confirm the pivotal roles of the DPP4 in the context of the MER-CoV infection in dromedary camels. Further studies are needed for a better understanding of the molecular pathogenesis of MER-CoV infection.
Collapse
Affiliation(s)
- Abdelmohsen Alnaeem
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hasa, Saudi Arabia
| | - Samy Kasem
- Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ibrahim Qasim
- Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Ali Al-Doweriej
- Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Mohamed Refaat
- Department of Pathology, Animal Health Research Institute, Dokki, Cairo, Egypt
- Department of Pathology, Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Hasa, Kingdom of Saudi Arabia
| | - Abdulkareem Al-Shabebi
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Hasa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofof, Al-Hasa, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
27
|
Ahn DG, Shin HJ, Kim MH, Lee S, Kim HS, Myoung J, Kim BT, Kim SJ. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J Microbiol Biotechnol 2020; 30:313-324. [PMID: 32238757 PMCID: PMC9728410 DOI: 10.4014/jmb.2003.03011] [Citation(s) in RCA: 551] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), which causes serious respiratory illness such as pneumonia and lung failure, was first reported in Wuhan, the capital of Hubei, China. The etiological agent of COVID-19 has been confirmed as a novel coronavirus, now known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is most likely originated from zoonotic coronaviruses, like SARS-CoV, which emerged in 2002. Within a few months of the first report, SARS-CoV-2 had spread across China and worldwide, reaching a pandemic level. As COVID-19 has triggered enormous human casualties and serious economic loss posing global threat, an understanding of the ongoing situation and the development of strategies to contain the virus's spread are urgently needed. Currently, various diagnostic kits to test for COVID-19 are available and several repurposing therapeutics for COVID-19 have shown to be clinically effective. In addition, global institutions and companies have begun to develop vaccines for the prevention of COVID-19. Here, we review the current status of epidemiology, diagnosis, treatment, and vaccine development for COVID-19.
Collapse
Affiliation(s)
- Dae-Gyun Ahn
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea
| | - Hye-Jin Shin
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea
| | - Mi-Hwa Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea,Bioenvironmental Science and Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 5834, Republic of Korea
| | - Sunhee Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea
| | - Hae-Soo Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute and Genetic Engineering Research Institute, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Bum-Tae Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea,B.T.K. Phone: +82-42-860-7023 E-mail:
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 344, Republic of Korea,Corresponding authors S.J.K. Phone: +82-42-860-7477 E-mail:
| |
Collapse
|
28
|
Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review. Epidemiol Infect 2020; 147:e84. [PMID: 30869000 PMCID: PMC6518605 DOI: 10.1017/s095026881800345x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dromedary camels have been shown to be the main reservoir for human Middle East respiratory syndrome (MERS) infections. This systematic review aims to compile and analyse all published data on MERS-coronavirus (CoV) in the global camel population to provide an overview of current knowledge on the distribution, spread and risk factors of infections in dromedary camels. We included original research articles containing laboratory evidence of MERS-CoV infections in dromedary camels in the field from 2013 to April 2018. In general, camels only show minor clinical signs of disease after being infected with MERS-CoV. Serological evidence of MERS-CoV in camels has been found in 20 countries, with molecular evidence for virus circulation in 13 countries. The seroprevalence of MERS-CoV antibodies increases with age in camels, while the prevalence of viral shedding as determined by MERS-CoV RNA detection in nasal swabs decreases. In several studies, camels that were sampled at animal markets or quarantine facilities were seropositive more often than camels at farms as well as imported camels vs. locally bred camels. Some studies show a relatively higher seroprevalence and viral detection during the cooler winter months. Knowledge of the animal reservoir of MERS-CoV is essential to develop intervention and control measures to prevent human infections.
Collapse
|
29
|
Rodon J, Okba NMA, Te N, van Dieren B, Bosch BJ, Bensaid A, Segalés J, Haagmans BL, Vergara-Alert J. Blocking transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) in llamas by vaccination with a recombinant spike protein. Emerg Microbes Infect 2020; 8:1593-1603. [PMID: 31711379 PMCID: PMC6853226 DOI: 10.1080/22221751.2019.1685912] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ongoing Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks pose a worldwide public health threat. Blocking MERS-CoV zoonotic transmission from dromedary camels, the animal reservoir, could potentially reduce the number of primary human cases. Here we report MERS-CoV transmission from experimentally infected llamas to naïve animals. Directly inoculated llamas shed virus for at least 6 days and could infect all in-contact naïve animals 4–5 days after exposure. With the aim to block virus transmission, we examined the efficacy of a recombinant spike S1-protein vaccine. In contrast to naïve animals, in-contact vaccinated llamas did not shed infectious virus upon exposure to directly inoculated llamas, consistent with the induction of strong virus neutralizing antibody responses. Our data provide further evidence that vaccination of the reservoir host may impede MERS-CoV zoonotic transmission to humans.
Collapse
Affiliation(s)
- Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain
| | - Nisreen M A Okba
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nigeer Te
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain
| | - Brenda van Dieren
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra (Cerdanyola del Vallès), Spain
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
30
|
Molecular Basis of Binding between Middle East Respiratory Syndrome Coronavirus and CD26 from Seven Bat Species. J Virol 2020; 94:JVI.01387-19. [PMID: 31776269 PMCID: PMC7022362 DOI: 10.1128/jvi.01387-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023] Open
Abstract
In this study, we found that bat CD26s (bCD26s) from different species exhibit large diversities, especially in the region responsible for binding to the receptor binding domain (RBD) of Middle East respiratory syndrome coronavirus (MERS-CoV). However, they maintain the interaction with MERS-RBD at varied affinities and support the entry of pseudotyped MERS-CoV. These bat receptors polymorphisms seem to confer evolutionary pressure for the adaptation of CD26-binding virus, such as the ancestor of MERS-CoV, and led to the generation of diversified CD26-engaging CoV strains. Thus, our data add more evidence to support that bats are the reservoir of MERS-CoV and similar viruses, as well as further emphasize the necessity to survey MERS-CoV and other CoVs among bats. Continued reports of Middle East respiratory syndrome coronavirus (MERS-CoV) infecting humans have occurred since the identification of this virus in 2012. MERS-CoV is prone to cause endemic disease in the Middle East, with several dozen spillover infections to other continents. It is hypothesized that MERS-CoV originated from bat coronaviruses and that dromedary camels are its natural reservoir. Although gene segments identical to MERS-CoV were sequenced from certain species of bats and one species experimentally shed the virus, it is still unknown whether other bats can transmit the virus. Here, at the molecular level, we found that all purified bat CD26s (bCD26s) from a diverse range of species interact with the receptor binding domain (RBD) of MERS-CoV, with equilibrium dissociation constant values ranging from several to hundreds at the micromolar level. Moreover, all bCD26s expressed in this study mediated the entry of pseudotyped MERS-CoV to receptor-expressing cells, indicating the broad potential engagement of bCD26s as MERS-CoV receptors. Further structural analysis indicated that in the bat receptor, compared to the human receptor, substitutions of key residues and their adjacent amino acids leads to decreased binding affinity to the MERS-RBD. These results add more evidence to the existing belief that bats are the original source of MERS-CoV and suggest that bCD26s in many species can mediate the entry of the virus, which has significant implications for the surveillance and control of MERS-CoV infection. IMPORTANCE In this study, we found that bat CD26s (bCD26s) from different species exhibit large diversities, especially in the region responsible for binding to the receptor binding domain (RBD) of Middle East respiratory syndrome coronavirus (MERS-CoV). However, they maintain the interaction with MERS-RBD at varied affinities and support the entry of pseudotyped MERS-CoV. These bat receptors polymorphisms seem to confer evolutionary pressure for the adaptation of CD26-binding virus, such as the ancestor of MERS-CoV, and led to the generation of diversified CD26-engaging CoV strains. Thus, our data add more evidence to support that bats are the reservoir of MERS-CoV and similar viruses, as well as further emphasize the necessity to survey MERS-CoV and other CoVs among bats.
Collapse
|
31
|
Ramshaw RE, Letourneau ID, Hong AY, Hon J, Morgan JD, Osborne JCP, Shirude S, Van Kerkhove MD, Hay SI, Pigott DM. A database of geopositioned Middle East Respiratory Syndrome Coronavirus occurrences. Sci Data 2019; 6:318. [PMID: 31836720 PMCID: PMC6911100 DOI: 10.1038/s41597-019-0330-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
As a World Health Organization Research and Development Blueprint priority pathogen, there is a need to better understand the geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and its potential to infect mammals and humans. This database documents cases of MERS-CoV globally, with specific attention paid to zoonotic transmission. An initial literature search was conducted in PubMed, Web of Science, and Scopus; after screening articles according to the inclusion/exclusion criteria, a total of 208 sources were selected for extraction and geo-positioning. Each MERS-CoV occurrence was assigned one of the following classifications based upon published contextual information: index, unspecified, secondary, mammal, environmental, or imported. In total, this database is comprised of 861 unique geo-positioned MERS-CoV occurrences. The purpose of this article is to share a collated MERS-CoV database and extraction protocol that can be utilized in future mapping efforts for both MERS-CoV and other infectious diseases. More broadly, it may also provide useful data for the development of targeted MERS-CoV surveillance, which would prove invaluable in preventing future zoonotic spillover. Measurement(s) | Middle East Respiratory Syndrome • geographic location | Technology Type(s) | digital curation | Factor Type(s) | geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) • year | Sample Characteristic - Organism | Middle East respiratory syndrome-related coronavirus | Sample Characteristic - Location | Earth (planet) |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11108801
Collapse
Affiliation(s)
- Rebecca E Ramshaw
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Ian D Letourneau
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Amy Y Hong
- Bloomberg School of Public Health, Johns Hopkins University, 615N Wolfe St, Baltimore, MD, 21205, United States
| | - Julia Hon
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Julia D Morgan
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Joshua C P Osborne
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Shreya Shirude
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Maria D Van Kerkhove
- Department of Infectious Hazards Management, Health Emergencies Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, Switzerland
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States.,Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States. .,Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States.
| |
Collapse
|
32
|
Detection of MERS-CoV antigen on formalin-fixed paraffin-embedded nasal tissue of alpacas by immunohistochemistry using human monoclonal antibodies directed against different epitopes of the spike protein. Vet Immunol Immunopathol 2019; 218:109939. [PMID: 31526954 PMCID: PMC7112921 DOI: 10.1016/j.vetimm.2019.109939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 01/27/2023]
Abstract
Middle East respiratory syndrome (MERS) represents an important respiratory disease accompanied by lethal outcome in one third of human patients. In recent years, several investigators developed protective antibodies which could be used as prophylaxis in prospective human epidemics. In the current study, eight human monoclonal antibodies (mAbs) with neutralizing and non-neutralizing capabilities, directed against different epitopes of the MERS-coronavirus (MERS-CoV) spike (MERS-S) protein, were investigated with regard to their ability to immunohistochemically detect respective epitopes on formalin-fixed paraffin-embedded (FFPE) nasal tissue sections of MERS-CoV experimentally infected alpacas. The most intense immunoreaction was detected using a neutralizing antibody directed against the receptor binding domain S1B of the MERS-S protein, which produced an immunosignal in the cytoplasm of ciliated respiratory epithelium and along the apical membranous region. A similar staining was obtained by two other mAbs which recognize the sialic acid-binding domain and the ectodomain of the membrane fusion subunit S2, respectively. Five mAbs lacked immunoreactivity for MERS-CoV antigen on FFPE tissue, even though they belong, at least in part, to the same epitope group. In summary, three tested human mAbs demonstrated capacity for detection of MERS-CoV antigen on FFPE samples and may be implemented in double or triple immunohistochemical methods.
Collapse
|
33
|
Hemida MG. Middle East Respiratory Syndrome Coronavirus and the One Health concept. PeerJ 2019; 7:e7556. [PMID: 31497405 PMCID: PMC6708572 DOI: 10.7717/peerj.7556] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is one of the major threats to the healthcare systems in some countries, especially in the Arabian Peninsula. MERS-CoV is considered an ideal example of the One Health concept. This is due to the animals, especially dromedary camels, play important roles in the transmission and sustainability of the virus, and the virus can be transmitted through aerosols of infected patients into the environment. However, there is some debate regarding the origin of MERS-CoV either from bats or other unknown reservoirs. The dromedary camel is the only identified animal reservoir to date. These animals play important roles in sustaining the virus in certain communities and may act as an amplifier of the virus by secreting it in their body fluids, especially in nasal and rectal discharges. MERS-CoV has been detected in the nasal and rectal secretions of infected camels, and MERS-CoV of this origin has full capacity to infect human airway epithelium in both in vitro and in vivo models. Other evidence confirms the direct transmission of MERS-CoV from camels to humans, though the role of camel meat and milk products has yet to be well studied. Human-to-human transmission is well documented through contact with an active infected patient or some silently infected persons. Furthermore, there are some significant risk factors of individuals in close contact with a positive MERS-CoV patient, including sleeping in the same patient room, removing patient waste (urine, stool, and sputum), and touching respiratory secretions from the index case. Outbreaks within family clusters have been reported, whereby some blood relative patients were infected through their wives in the same house were not infected. Some predisposing genetic factors favor MERS-CoV infection in some patients, which is worth investigating in the near future. The presence of other comorbidities may be another factor. Overall, there are many unknown/confirmed aspects of the virus/human/animal network. Here, the most recent advances in this context are discussed, and the possible reasons behind the emergence and sustainability of MERS-CoV in certain regions are presented. Identification of the exact mechanism of transmission of MERS-CoV from camels to humans and searching for new reservoir/s are of high priority. This will reduce the shedding of the virus into the environment, and thus the risk of human infection can be mitigated.
Collapse
Affiliation(s)
- Maged Gomaa Hemida
- Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al-Hufuf, Al-Hasa, Saudi Arabia.,Department of Virology, faculty of veterinary medicine, Kafrelsheikh University, Egypt, Kafrelsheikh University, Kafrelsheikh, Kafrelsheikh, Egypt
| |
Collapse
|
34
|
Species-Specific Colocalization of Middle East Respiratory Syndrome Coronavirus Attachment and Entry Receptors. J Virol 2019; 93:JVI.00107-19. [PMID: 31167913 PMCID: PMC6675889 DOI: 10.1128/jvi.00107-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 06/01/2019] [Indexed: 12/22/2022] Open
Abstract
MERS-CoV uses the S1B domain of its spike protein to attach to its host receptor, dipeptidyl peptidase 4 (DPP4). The tissue localization of DPP4 has been mapped in different susceptible species. On the other hand, the S1A domain, the N-terminal domain of this spike protein, preferentially binds to several glycotopes of α2,3-sialic acids, the attachment factor of MERS-CoV. Here we show, using a novel method, that the S1A domain specifically binds to the nasal epithelium of dromedary camels, alveolar epithelium of humans, and intestinal epithelium of common pipistrelle bats. In contrast, it does not bind to the nasal epithelium of pigs or rabbits, nor does it bind to the intestinal epithelium of serotine bats and frugivorous bat species. This finding supports the importance of the S1A domain in MERS-CoV infection and tropism, suggests its role in transmission, and highlights its potential use as a component of novel vaccine candidates. Middle East respiratory syndrome coronavirus (MERS-CoV) uses the S1B domain of its spike protein to bind to dipeptidyl peptidase 4 (DPP4), its functional receptor, and its S1A domain to bind to sialic acids. The tissue localization of DPP4 in humans, bats, camelids, pigs, and rabbits generally correlates with MERS-CoV tropism, highlighting the role of DPP4 in virus pathogenesis and transmission. However, MERS-CoV S1A does not indiscriminately bind to all α2,3-sialic acids, and the species-specific binding and tissue distribution of these sialic acids in different MERS-CoV-susceptible species have not been investigated. We established a novel method to detect these sialic acids on tissue sections of various organs of different susceptible species by using nanoparticles displaying multivalent MERS-CoV S1A. We found that the nanoparticles specifically bound to the nasal epithelial cells of dromedary camels, type II pneumocytes in human lungs, and the intestinal epithelial cells of common pipistrelle bats. Desialylation by neuraminidase abolished nanoparticle binding and significantly reduced MERS-CoV infection in primary susceptible cells. In contrast, S1A nanoparticles did not bind to the intestinal epithelium of serotine bats and frugivorous bat species, nor did they bind to the nasal epithelium of pigs and rabbits. Both pigs and rabbits have been shown to shed less infectious virus than dromedary camels and do not transmit the virus via either contact or airborne routes. Our results depict species-specific colocalization of MERS-CoV entry and attachment receptors, which may be relevant in the transmission and pathogenesis of MERS-CoV. IMPORTANCE MERS-CoV uses the S1B domain of its spike protein to attach to its host receptor, dipeptidyl peptidase 4 (DPP4). The tissue localization of DPP4 has been mapped in different susceptible species. On the other hand, the S1A domain, the N-terminal domain of this spike protein, preferentially binds to several glycotopes of α2,3-sialic acids, the attachment factor of MERS-CoV. Here we show, using a novel method, that the S1A domain specifically binds to the nasal epithelium of dromedary camels, alveolar epithelium of humans, and intestinal epithelium of common pipistrelle bats. In contrast, it does not bind to the nasal epithelium of pigs or rabbits, nor does it bind to the intestinal epithelium of serotine bats and frugivorous bat species. This finding supports the importance of the S1A domain in MERS-CoV infection and tropism, suggests its role in transmission, and highlights its potential use as a component of novel vaccine candidates.
Collapse
|
35
|
Widagdo W, Okba NMA, Richard M, de Meulder D, Bestebroer TM, Lexmond P, Farag EABA, Al-Hajri M, Stittelaar KJ, de Waal L, van Amerongen G, van den Brand JMA, Haagmans BL, Herfst S. Lack of Middle East Respiratory Syndrome Coronavirus Transmission in Rabbits. Viruses 2019; 11:v11040381. [PMID: 31022948 PMCID: PMC6520746 DOI: 10.3390/v11040381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) transmission from dromedaries to humans has resulted in major outbreaks in the Middle East. Although some other livestock animal species have been shown to be susceptible to MERS-CoV, it is not fully understood why the spread of the virus in these animal species has not been observed in the field. In this study, we used rabbits to further characterize the transmission potential of MERS-CoV. In line with the presence of MERS-CoV receptor in the rabbit nasal epithelium, high levels of viral RNA were shed from the nose following virus inoculation. However, unlike MERS-CoV-infected dromedaries, these rabbits did not develop clinical manifestations including nasal discharge and did shed only limited amounts of infectious virus from the nose. Consistently, no transmission by contact or airborne routes was observed in rabbits. Our data indicate that despite relatively high viral RNA levels produced, low levels of infectious virus are excreted in the upper respiratory tract of rabbits as compared to dromedary camels, thus resulting in a lack of viral transmission.
Collapse
Affiliation(s)
- W Widagdo
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | - Nisreen M A Okba
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | - Dennis de Meulder
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | - Theo M Bestebroer
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | | | | | | | - Leon de Waal
- Viroclinics Biosciences BV, Rotterdam 3029 AK, The Netherlands.
| | | | | | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| |
Collapse
|
36
|
Qatar experience on One Health approach for middle-east respiratory syndrome coronavirus, 2012-2017: A viewpoint. One Health 2019; 7:100090. [PMID: 31011617 PMCID: PMC6462540 DOI: 10.1016/j.onehlt.2019.100090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/20/2022] Open
Abstract
The emergence of the Middle East Respiratory Syndrome Corona Virus (MERS-CoV) in the Middle East in 2012 was associated with an overwhelming uncertainty about its epidemiological and clinical characteristics. Once dromedary camels (Camelus dromedarius) was found to be the natural reservoir of the virus, the public health systems across the Arabian Peninsula encountered an unprecedented pressure to control its transmission. This view point describes how the One Health approach was used in Qatar to manage the MERS-CoV outbreak during the period 2012–2017. One Health focuses on the association between the human, animals and environment sectors for total health and wellbeing of these three sectors. To manage the MERS outbreak in Qatar through a One Health approach, the Qatar National Outbreak Control Taskforce (OCT) was reactivated in November 2012. The animal health sector was invited to join the OCT. Later on, technical expertise was requested from the WHO, FAO, CDC, EMC, and PHE. Subsequently, a comprehensive One Health roadmap was delivered through leadership and coordination; surveillance and investigation; epidemiological studies and increase of local diagnostic capacity. The joint OCT, once trained had easy access to allocated resources and high risk areas to provide more evidence on the potential source of the virus and to investigate all reported cases within 24–48 h. Lack of sufficient technical guidance on veterinary surveillance and poor risk perception among the vulnerable population constituted major obstacles to maintain systematic One Health performance.
Collapse
|
37
|
Widagdo W, Sooksawasdi Na Ayudhya S, Hundie GB, Haagmans BL. Host Determinants of MERS-CoV Transmission and Pathogenesis. Viruses 2019; 11:E280. [PMID: 30893947 PMCID: PMC6466079 DOI: 10.3390/v11030280] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/01/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen that causes respiratory infection in humans, ranging from asymptomatic to severe pneumonia. In dromedary camels, the virus only causes a mild infection but it spreads efficiently between animals. Differences in the behavior of the virus observed between individuals, as well as between humans and dromedary camels, highlight the role of host factors in MERS-CoV pathogenesis and transmission. One of these host factors, the MERS-CoV receptor dipeptidyl peptidase-4 (DPP4), may be a critical determinant because it is variably expressed in MERS-CoV-susceptible species as well as in humans. This could partially explain inter- and intraspecies differences in the tropism, pathogenesis, and transmissibility of MERS-CoV. In this review, we explore the role of DPP4 and other host factors in MERS-CoV transmission and pathogenesis-such as sialic acids, host proteases, and interferons. Further characterization of these host determinants may potentially offer novel insights to develop intervention strategies to tackle ongoing outbreaks.
Collapse
Affiliation(s)
- W Widagdo
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | - Gadissa B Hundie
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
38
|
Ramadan N, Shaib H. Middle East respiratory syndrome coronavirus (MERS-CoV): A review. Germs 2019; 9:35-42. [PMID: 31119115 DOI: 10.18683/germs.2019.1155] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/08/2019] [Accepted: 01/26/2019] [Indexed: 12/31/2022]
Abstract
As a novel coronavirus first reported by Saudi Arabia in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) is responsible for an acute human respiratory syndrome. The virus, of 2C beta-CoV lineage, expresses the dipeptidyl peptidase 4 (DPP4) receptor and is densely endemic in dromedary camels of East Africa and the Arabian Peninsula. MERS-CoV is zoonotic but human-to-human transmission is also possible. Surveillance and phylogenetic researches indicate MERS-CoV to be closely associated with bats' coronaviruses, suggesting bats as reservoirs, although unconfirmed. With no vaccine currently available for MERS-CoV nor approved prophylactics, its global spread to over 25 countries with high fatalities highlights its role as ongoing public health threat. An articulated action plan ought to be taken, preferably from a One Health perspective, for appropriately advanced countermeasures against MERS-CoV.
Collapse
Affiliation(s)
- Nour Ramadan
- MSc, Department of Agriculture, Faculty of Agricultural and Food Sciences (FAFS), American University of Beirut (AUB), Riad El Solh 1107-2020, PO Box 11-0236, Beirut, Lebanon
| | - Houssam Shaib
- PhD, Department of Agriculture, Faculty of Agricultural and Food Sciences (FAFS), American University of Beirut (AUB), Riad El Solh 1107-2020, PO Box 11-0236, Beirut, Lebanon
| |
Collapse
|
39
|
Dawson P, Malik MR, Parvez F, Morse SS. What Have We Learned About Middle East Respiratory Syndrome Coronavirus Emergence in Humans? A Systematic Literature Review. Vector Borne Zoonotic Dis 2019; 19:174-192. [PMID: 30676269 PMCID: PMC6396572 DOI: 10.1089/vbz.2017.2191] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in humans in 2012. A systematic literature review was conducted to synthesize current knowledge and identify critical knowledge gaps. MATERIALS AND METHODS We conducted a systematic review on MERS-CoV using PRISMA guidelines. We identified 407 relevant, peer-reviewed publications and selected 208 of these based on their contributions to four key areas: virology; clinical characteristics, outcomes, therapeutic and preventive options; epidemiology and transmission; and animal interface and the search for natural hosts of MERS-CoV. RESULTS Dipeptidyl peptidase 4 (DPP4/CD26) was identified as the human receptor for MERS-CoV, and a variety of molecular and serological assays developed. Dromedary camels remain the only documented zoonotic source of human infection, but MERS-like CoVs have been detected in bat species globally, as well as in dromedary camels throughout the Middle East and Africa. However, despite evidence of camel-to-human MERS-CoV transmission and cases apparently related to camel contact, the source of many primary cases remains unknown. There have been sustained health care-associated human outbreaks in Saudi Arabia and South Korea, the latter originating from one traveler returning from the Middle East. Transmission mechanisms are poorly understood; for health care, this may include environmental contamination. Various potential therapeutics have been identified, but not yet evaluated in human clinical trials. At least one candidate vaccine has progressed to Phase I trials. CONCLUSIONS There has been substantial MERS-CoV research since 2012, but significant knowledge gaps persist, especially in epidemiology and natural history of the infection. There have been few rigorous studies of baseline prevalence, transmission, and spectrum of disease. Terms such as "camel exposure" and the epidemiological relationships of cases should be clearly defined and standardized. We strongly recommend a shared and accessible registry or database. Coronaviruses will likely continue to emerge, arguing for a unified "One Health" approach.
Collapse
Affiliation(s)
- Patrick Dawson
- 1 Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Mamunur Rahman Malik
- 2 Infectious Hazard Management, Department of Health Emergency, World Health Organization Eastern Mediterranean Regional Office (WHO/EMRO), Cairo, Egypt
| | - Faruque Parvez
- 3 Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Stephen S Morse
- 1 Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
40
|
Alfaries A, Mengash H, Yasar A, Shakshuki E. Shiny Framework Based Visualization and Analytics Tool for Middle East Respiratory Syndrome. COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE 2019. [PMCID: PMC7122755 DOI: 10.1007/978-3-030-36365-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
People in the Middle East have been affected by the Middle East Respiratory Syndrome CoronaVirus (MERS Co-V) since 2012. New cases are continuously reported especially in the Kingdom of Saudi Arabia, and the risk of exposure remains an issue. Data visualization plays a vital role in effective analysis of the data. In this paper, we introduce an interactive visualization application for MERS data collected from the Control and Command Centre, Ministry of Health website of Saudi Arabia. The data corresponding to the period from January 1, 2019 to February 28, 2019 was used in the present work. The attributes considered include gender, age, date of reporting, city, region, camel contact, description and status of the patient. The visualization tool has been developed using Shiny framework of R programming language. The application presents information in the form of interactive plots, maps and tables. The salient feature of the tool is that users can view and download data corresponding to the period of their choice. This tool can help decision makers in the detailed analysis of data and hence devise measures to prevent the spread of the disease.
Collapse
Affiliation(s)
- Auhood Alfaries
- Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia
| | - Hanan Mengash
- Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
41
|
MERS: Progress on the global response, remaining challenges and the way forward. Antiviral Res 2018; 159:35-44. [PMID: 30236531 PMCID: PMC7113883 DOI: 10.1016/j.antiviral.2018.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/04/2023]
Abstract
This article summarizes progress in research on Middle East Respiratory Syndrome (MERS) since a FAO-OIE-WHO Global Technical Meeting held at WHO Headquarters in Geneva on 25-27 September 2017. The meeting reviewed the latest scientific findings and identified and prioritized the global activities necessary to prevent, manage and control the disease. Critical needs for research and technical guidance identified during the meeting have been used to update the WHO R&D MERS-CoV Roadmap for diagnostics, therapeutics and vaccines and a broader public health research agenda. Since the 2017 meeting, progress has been made on several key actions in animal populations, at the animal/human interface and in human populations. This report also summarizes the latest scientific studies on MERS since 2017, including data from more than 50 research studies examining the presence of MERS-CoV infection in dromedary camels.
Collapse
|
42
|
Al-Omari A, Rabaan AA, Salih S, Al-Tawfiq JA, Memish ZA. MERS coronavirus outbreak: Implications for emerging viral infections. Diagn Microbiol Infect Dis 2018; 93:265-285. [PMID: 30413355 PMCID: PMC7127703 DOI: 10.1016/j.diagmicrobio.2018.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
In September 2012, a novel coronavirus was isolated from a patient who died in Saudi Arabia after presenting with acute respiratory distress and acute kidney injury. Analysis revealed the disease to be due to a novel virus which was named Middle East Respiratory Coronavirus (MERS-CoV). There have been several MERS-CoV hospital outbreaks in KSA, continuing to the present day, and the disease has a mortality rate in excess of 35%. Since 2012, the World Health Organization has been informed of 2220 laboratory-confirmed cases resulting in at least 790 deaths. Cases have since arisen in 27 countries, including an outbreak in the Republic of Korea in 2015 in which 36 people died, but more than 80% of cases have occurred in Saudi Arabia.. Human-to-human transmission of MERS-CoV, particularly in healthcare settings, initially caused a ‘media panic’, however human-to-human transmission appears to require close contact and thus far the virus has not achieved epidemic potential. Zoonotic transmission is of significant importance and evidence is growing implicating the dromedary camel as the major animal host in spread of disease to humans. MERS-CoV is now included on the WHO list of priority blueprint diseases for which there which is an urgent need for accelerated research and development as they have the potential to cause a public health emergency while there is an absence of efficacious drugs and/or vaccines. In this review we highlight epidemiological, clinical, and infection control aspects of MERS-CoV as informed by the Saudi experience. Attention is given to recommended treatments and progress towards vaccine development. 2220 laboratory-confirmed cases of MERS-CoV resulting in at least 790 deaths since 2012 MERS-CoV is on the WHO list of priority blueprint diseases Zoonotic and human-to-human transmission modes need further clarification. No specific therapy has yet been approved. There is a need for well-controlled clinical trials on potential direct therapies.
Collapse
Affiliation(s)
- Awad Al-Omari
- Critical Care and Infection Control Department, Dr. Sulaiman Al-Habib Medical Group, and Al-Faisal University, Riyadh, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia.
| | - Samer Salih
- Internal Medicine Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Medical Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ziad A Memish
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Experimental infection of dromedaries with Middle East respiratory syndrome-Coronavirus is accompanied by massive ciliary loss and depletion of the cell surface receptor dipeptidyl peptidase 4. Sci Rep 2018; 8:9778. [PMID: 29950581 PMCID: PMC6021449 DOI: 10.1038/s41598-018-28109-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
Middle East respiratory syndrome (MERS) represents an important respiratory disease accompanied by lethal outcome in one-third of human patients. Recent data indicate that dromedaries represent an important source of infection, although information regarding viral cell tropism and pathogenesis is sparse. In the current study, tissues of eight dromedaries receiving inoculation of MERS-Coronavirus (MERS-CoV) after recombinant Modified-Vaccinia-Virus-Ankara (MVA-S)-vaccination (n = 4), MVA-vaccination (mock vaccination, n = 2) and PBS application (mock vaccination, n = 2), respectively, were investigated. Tissues were analyzed by histology, immunohistochemistry, immunofluorescence, and scanning electron microscopy. MERS-CoV infection in mock-vaccinated dromedaries revealed high numbers of MERS-CoV-nucleocapsid positive cells, T cells, and macrophages within nasal turbinates and trachea at day four post infection. Double immunolabeling demonstrated cytokeratin (CK) 18 expressing epithelial cells to be the prevailing target cell of MERS-CoV, while CK5/6 and CK14 expressing cells did not co-localize with virus. In addition, virus was occasionally detected in macrophages. The acute disease was further accompanied by ciliary loss along with a lack of dipeptidyl peptidase 4 (DPP4), known to mediate virus entry. DPP4 was mainly expressed by human lymphocytes and dromedary monocytes, but overall the expression level was lower in dromedaries. The present study underlines significant species-specific manifestations of MERS and highlights ciliary loss as an important finding in dromedaries. The obtained results promote a better understanding of coronavirus infections, which pose major health challenges.
Collapse
|
44
|
Gong S, Bao L. The battle against SARS and MERS coronaviruses: Reservoirs and Animal Models. Animal Model Exp Med 2018; 1:125-133. [PMID: 30891557 PMCID: PMC6388065 DOI: 10.1002/ame2.12017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
In humans, infection with the coronavirus, especially the severe acute respiratory syndrome coronavirus (SARS-CoV) and the emerging Middle East respiratory syndrome coronavirus (MERS-CoV), induces acute respiratory failure, resulting in high mortality. Irregular coronavirus related epidemics indicate that the evolutionary origins of these two pathogens need to be identified urgently and there are still questions related to suitable laboratory animal models. Thus, in this review we aim to highlight key discoveries concerning the animal origin of the virus and summarize and compare current animal models.
Collapse
Affiliation(s)
- Shu‐ran Gong
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CenterPeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineMinistry of HealthKey Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijingChina
| | - Lin‐lin Bao
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CenterPeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineMinistry of HealthKey Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijingChina
| |
Collapse
|
45
|
Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels. One Health 2018; 5:65-68. [PMID: 29911167 PMCID: PMC6000904 DOI: 10.1016/j.onehlt.2018.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/11/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022] Open
Abstract
Thus far, no human MERS-CoV infections have been reported from Israel. Evidence for the circulation of MERS-CoV in dromedaries has been reported from almost all the countries of the Middle East, except Israel. Therefore, we aimed to analyze MERS-CoV infection in Israeli camelids, sampled between 2012 and 2017. A total of 411 camels, 102 alpacas and 19 llamas' sera were tested for the presence of antibodies to MERS-CoV. Our findings indicate a lower MERS-CoV seropositivity among Israeli dromedaries than in the surrounding countries, and for the first time naturally infected llamas were identified. In addition, nasal swabs of 661 camels, alpacas and lamas, obtained from January 2015 to December 2017, were tested for the presence of MERS-CoV RNA. All nasal swabs were negative, indicating no evidence for MERS-CoV active circulation in these camelids during that time period.
Collapse
|
46
|
Paden CR, Yusof MFBM, Al Hammadi ZM, Queen K, Tao Y, Eltahir YM, Elsayed EA, Marzoug BA, Bensalah OKA, Khalafalla AI, Al Mulla M, Khudhair A, Elkheir KA, Issa ZB, Pradeep K, Elsaleh FN, Imambaccus H, Sasse J, Weber S, Shi M, Zhang J, Li Y, Pham H, Kim L, Hall AJ, Gerber SI, Al Hosani FI, Tong S, Al Muhairi SSM. Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE. Zoonoses Public Health 2018; 65:322-333. [PMID: 29239118 PMCID: PMC5893383 DOI: 10.1111/zph.12435] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2017] [Indexed: 02/05/2023]
Abstract
Since the emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, there have been a number of clusters of human-to-human transmission. These cases of human-to-human transmission involve close contact and have occurred primarily in healthcare settings, and they are suspected to result from repeated zoonotic introductions. In this study, we sequenced whole MERS-CoV genomes directly from respiratory samples collected from 23 confirmed MERS cases in the United Arab Emirates (UAE). These samples included cases from three nosocomial and three household clusters. The sequences were analysed for changes and relatedness with regard to the collected epidemiological data and other available MERS-CoV genomic data. Sequence analysis supports the epidemiological data within the clusters, and further, suggests that these clusters emerged independently. To understand how and when these clusters emerged, respiratory samples were taken from dromedary camels, a known host of MERS-CoV, in the same geographic regions as the human clusters. Middle East respiratory syndrome coronavirus genomes from six virus-positive animals were sequenced, and these genomes were nearly identical to those found in human patients from corresponding regions. These data demonstrate a genetic link for each of these clusters to a camel and support the hypothesis that human MERS-CoV diversity results from multiple zoonotic introductions.
Collapse
Affiliation(s)
- C. R. Paden
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
- Oak Ridge Institute for Science EducationOak RidgeTNUSA
| | | | | | - K. Queen
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
- Oak Ridge Institute for Science EducationOak RidgeTNUSA
| | - Y. Tao
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Y. M. Eltahir
- Abu Dhabi Food Control AuthorityAbu DhabiUnited Arab Emirates
| | - E. A. Elsayed
- Abu Dhabi Food Control AuthorityAbu DhabiUnited Arab Emirates
| | - B. A. Marzoug
- Abu Dhabi Food Control AuthorityAbu DhabiUnited Arab Emirates
| | | | | | - M. Al Mulla
- Health Authority Abu DhabiAbu DhabiUnited Arab Emirates
| | - A. Khudhair
- Health Authority Abu DhabiAbu DhabiUnited Arab Emirates
| | - K. A. Elkheir
- Health Authority Abu DhabiAbu DhabiUnited Arab Emirates
| | - Z. B. Issa
- Health Authority Abu DhabiAbu DhabiUnited Arab Emirates
| | - K. Pradeep
- Health Authority Abu DhabiAbu DhabiUnited Arab Emirates
| | - F. N. Elsaleh
- Health Authority Abu DhabiAbu DhabiUnited Arab Emirates
| | - H. Imambaccus
- Sheikh Khalifa Medical CityAbu DhabiUnited Arab Emirates
| | - J. Sasse
- Sheikh Khalifa Medical CityAbu DhabiUnited Arab Emirates
| | - S. Weber
- Sheikh Khalifa Medical CityAbu DhabiUnited Arab Emirates
| | - M. Shi
- The University of SydneySydneyNSWAustralia
| | - J. Zhang
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Y. Li
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - H. Pham
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - L. Kim
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - A. J. Hall
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - S. I. Gerber
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | | | - S. Tong
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | | |
Collapse
|
47
|
Saqib M, Sieberg A, Hussain MH, Mansoor MK, Zohaib A, Lattwein E, Müller MA, Drosten C, Corman VM. Serologic Evidence for MERS-CoV Infection in Dromedary Camels, Punjab, Pakistan, 2012-2015. Emerg Infect Dis 2018; 23:550-551. [PMID: 28221127 PMCID: PMC5382745 DOI: 10.3201/eid2303.161285] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dromedary camels from Africa and Arabia are an established source for zoonotic Middle East respiratory syndrome coronavirus (MERS-CoV) infection among humans. In Pakistan, we found specific neutralizing antibodies in samples from 39.5% of 565 dromedaries, documenting significant expansion of the enzootic range of MERS-CoV to Asia.
Collapse
|
48
|
Yusof MF, Queen K, Eltahir YM, Paden CR, Al Hammadi ZMAH, Tao Y, Li Y, Khalafalla AI, Shi M, Zhang J, Mohamed MSAE, Abd Elaal Ahmed MH, Azeez IA, Bensalah OK, Eldahab ZS, Al Hosani FI, Gerber SI, Hall AJ, Tong S, Al Muhairi SS. Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates. Emerg Microbes Infect 2017; 6:e101. [PMID: 29116217 PMCID: PMC5717090 DOI: 10.1038/emi.2017.89] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 02/08/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) was identified on the Arabian Peninsula in 2012 and is still causing cases and outbreaks in the Middle East. When MERS-CoV was first identified, the closest related virus was in bats; however, it has since been recognized that dromedary camels serve as a virus reservoir and potential source for human infections. A total of 376 camels were screened for MERS-Cov at a live animal market in the Eastern Region of the Emirate of Abu Dhabi, UAE. In all, 109 MERS-CoV-positive camels were detected in week 1, and a subset of positive camels were sampled again weeks 3 through 6. A total of 126 full and 3 nearly full genomes were obtained from 139 samples. Spike gene sequences were obtained from 5 of the 10 remaining samples. The camel MERS-CoV genomes from this study represent 3 known and 2 potentially new lineages within clade B. Within lineages, diversity of camel and human MERS-CoV sequences are intermixed. We identified sequences from market camels nearly identical to the previously reported 2015 German case who visited the market during his incubation period. We described 10 recombination events in the camel samples. The most frequent recombination breakpoint was the junctions between ORF1b and S. Evidence suggests MERS-CoV infection in humans results from continued introductions of distinct MERS-CoV lineages from camels. This hypothesis is supported by the camel MERS-CoV genomes sequenced in this study. Our study expands the known repertoire of camel MERS-CoVs circulating on the Arabian Peninsula.
Collapse
Affiliation(s)
| | - Krista Queen
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Associated Universities Fellow, Oak Ridge, TN, USA
| | | | - Clinton R Paden
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Associated Universities Fellow, Oak Ridge, TN, USA
| | | | - Ying Tao
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yan Li
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Mang Shi
- University of Sydney, Sydney, NSW, Australia
| | - Jing Zhang
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- IHRC Inc., Atlanta, GA, USA
| | | | | | | | | | | | | | - Susan I Gerber
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Aron J Hall
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suxiang Tong
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
49
|
Maslow JN. Vaccines for emerging infectious diseases: Lessons from MERS coronavirus and Zika virus. Hum Vaccin Immunother 2017; 13:2918-2930. [PMID: 28846484 PMCID: PMC5718785 DOI: 10.1080/21645515.2017.1358325] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The past decade and a half has been characterized by numerous emerging infectious diseases. With each new threat, there has been a call for rapid vaccine development. Pathogens such as the Middle East Respiratory Syndrome coronavirus (MERS-CoV) and the Zika virus represent either new viral entities or viruses emergent in new geographic locales and characterized by novel complications. Both serve as paradigms for the global spread that can accompany new pathogens. In this paper, we review the epidemiology and pathogenesis of MERS-CoV and Zika virus with respect to vaccine development. The challenges in vaccine development and the approach to clinical trial design to test vaccine candidates for disease entities with a changing epidemiology are discussed.
Collapse
|
50
|
Abstract
INTRODUCTION In the past five years, there have been 1,936 laboratory-confirmed cases of Middle East Respiratory Syndrome coronavirus (MERS-CoV) in 27 countries, with a mortality rate of 35.6%. Most cases have arisen in the Middle East, particularly the Kingdom of Saudi Arabia, however there was a large hospital-associated outbreak in the Republic of Korea in 2015. Exposure to dromedary camels has been recognized by the World Health Organization (WHO) as a risk factor in primary cases, but the exact mechanisms of transmission are not clear. Rigorous application of nationally defined infection prevention and control measures has reduced the levels of healthcare facility-associated outbreaks. There is currently no approved specific therapy or vaccine available. Areas covered: This review presents an overview of MERS-CoV within the last five years, with a particular emphasis on the key areas of transmission, infection control and prevention, and therapies and vaccines. Expert commentary: MERS-CoV remains a significant threat to public health as transmission mechanisms are still not completely understood. There is the potential for mutations that could increase viral transmission and/or virulence, and zoonotic host range. The high mortality rate highlights the need to expedite well-designed randomized clinical trials for direct, effective therapies and vaccines.
Collapse
Affiliation(s)
- Ali A Rabaan
- a Molecular Diagnostic Laboratory , Johns Hopkins Aramco Healthcare , Dhahran , Saudi Arabia
| |
Collapse
|