1
|
Johnston GP, Aydemir F, Byun H, de Wit E, Oxford KL, Kyle JE, McDermott JE, Deatherage Kaiser BL, Casey CP, Weitz KK, Olson HM, Stratton KG, Heller NC, Upadhye V, Monreal IA, Reyes Zamora JL, Wu L, Goodall DH, Buchholz DW, Barrow JJ, Waters KM, Collins RN, Feldmann H, Adkins JN, Aguilar HC. Multi-platform omics analysis of Nipah virus infection reveals viral glycoprotein modulation of mitochondria. Cell Rep 2025; 44:115411. [PMID: 40106432 PMCID: PMC12100452 DOI: 10.1016/j.celrep.2025.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/13/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
The recent global pandemic illustrates the importance of understanding the host cellular infection processes of emerging zoonotic viruses. Nipah virus (NiV) is a deadly zoonotic biosafety level 4 encephalitic and respiratory paramyxovirus. Our knowledge of the molecular cell biology of NiV infection is extremely limited. This study identified changes in cellular components during NiV infection of human cells using a multi-platform, high-throughput transcriptomics, proteomics, lipidomics, and metabolomics approach. Remarkably, validation via multi-disciplinary approaches implicated viral glycoproteins in enriching mitochondria-associated proteins despite an overall decrease in protein translation. Our approach also allowed the mapping of significant fluctuations in the metabolism of glucose, lipids, and several amino acids, suggesting periodic changes in glycolysis and a transition to fatty acid oxidation and glutamine anaplerosis to support mitochondrial ATP synthesis. Notably, these analyses provide an atlas of cellular changes during NiV infections, which is helpful in designing therapeutics against the rapidly growing Henipavirus genus and related viral infections.
Collapse
Affiliation(s)
- Gunner P Johnston
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Fikret Aydemir
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Haewon Byun
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Kristie L Oxford
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jennifer E Kyle
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jason E McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Cameron P Casey
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karl K Weitz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Heather M Olson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kelly G Stratton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Natalie C Heller
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - I Abrrey Monreal
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - J Lizbeth Reyes Zamora
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lei Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - D H Goodall
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Joeva J Barrow
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Katrina M Waters
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ruth N Collins
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Joshua N Adkins
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Hu S, Kim H, Yang P, Yu Z, Ludeke B, Mobilia S, Pan J, Stratton M, Bian Y, Fearns R, Abraham J. Structural and functional analysis of the Nipah virus polymerase complex. Cell 2025; 188:688-703.e18. [PMID: 39837328 PMCID: PMC11813165 DOI: 10.1016/j.cell.2024.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/01/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Nipah virus (NiV) is a bat-borne, zoonotic RNA virus that is highly pathogenic in humans. The NiV polymerase, which mediates viral genome replication and mRNA transcription, is a promising drug target. We determined the cryoelectron microscopy (cryo-EM) structure of the NiV polymerase complex, comprising the large protein (L) and phosphoprotein (P), and performed structural, biophysical, and in-depth functional analyses of the NiV polymerase. The L protein assembles with a long P tetrameric coiled-coil that is capped by a bundle of ⍺-helices that we show are likely dynamic in solution. Docking studies with a known L inhibitor clarify mechanisms of antiviral drug resistance. In addition, we identified L protein features that are required for both transcription and RNA replication and mutations that have a greater impact on RNA replication than on transcription. Our findings have the potential to aid in the rational development of drugs to combat NiV infection.
Collapse
Affiliation(s)
- Side Hu
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Heesu Kim
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Pan Yang
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zishuo Yu
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Barbara Ludeke
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Shawna Mobilia
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Junhua Pan
- Biomedical Research Institute and School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Margaret Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Yuemin Bian
- School of Medicine, Shanghai University, Shanghai, China
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Jonathan Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA, USA; Center for Integrated Solutions in Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
3
|
Tian Y, Chen T. Proposal for improving clinical care of patients in Nipah outbreaks. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2025; 33:100537. [PMID: 39949756 PMCID: PMC11821383 DOI: 10.1016/j.lansea.2025.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025]
Affiliation(s)
- Yi Tian
- Department of Clinical Medical, Sichuan Provincial People’s Hospital East Sichuan Hospital & Dazhou First People’s Hospital, Dazhou 635000, China
| | - Ting Chen
- Department of Clinical Medical, Sichuan Daxue Huaxi Yiyuan Yingshan Hospital & the Yingshan People’s Hospital, Nanchong 637000, China
| |
Collapse
|
4
|
Bhowmik A, Hasan M, Redoy MMH, Saha G. Nipah virus outbreak trends in Bangladesh during the period 2001 to 2024: a brief review. SCIENCE IN ONE HEALTH 2024; 4:100103. [PMID: 40026914 PMCID: PMC11872451 DOI: 10.1016/j.soh.2024.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025]
Abstract
Nipah virus (NiV) is a zoonotic threat that has caused recurrent outbreaks in Bangladesh since 2001, raising significant public health concerns. This study provides a descriptive analysis of NiV outbreaks from 2001 to 2024, examining trends in infection and death rates and their correlation with climatic factors such as temperature, humidity, and rainfall. The findings highlight significant spikes in NiV cases during specific years, with environmental factors, particularly temperature and precipitation, showing solid correlations with outbreak patterns. The study also explores the impact of population dynamics on transmission risks, including urbanization and density. By focusing on these factors, this research supports the development of targeted public health interventions in high-risk areas, particularly in Bangladesh's northwestern and central districts, where recurrent outbreaks have been observed. These insights improve surveillance and preventive strategies for mitigating future NiV outbreaks.
Collapse
Affiliation(s)
- Awnon Bhowmik
- Colorado State University, Global Campus, 555 17th St., Ste. 1000, Denver, CO, 80202, United States
| | | | | | - Goutam Saha
- University of Dhaka, Dhaka, 1000, Bangladesh
- Miyan Research Institute, International University of Business Agriculture and Technology, Uttara, Dhaka, 1230, Bangladesh
| |
Collapse
|
5
|
Cortes-Azuero O, Lefrancq N, Nikolay B, McKee C, Cappelle J, Hul V, Ou TP, Hoem T, Lemey P, Rahman MZ, Islam A, Gurley ES, Duong V, Salje H. The Genetic Diversity of Nipah Virus Across Spatial Scales. J Infect Dis 2024; 230:e1235-e1244. [PMID: 38682164 PMCID: PMC11646605 DOI: 10.1093/infdis/jiae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Nipah virus (NiV), a highly lethal virus in humans, circulates in Pteropus bats throughout South and Southeast Asia. Difficulty in obtaining viral genomes from bats means we have a poor understanding of NiV diversity. METHODS We develop phylogenetic approaches applied to the most comprehensive collection of genomes to date (N = 257, 175 from bats, 73 from humans) from 6 countries over 22 years (1999-2020). We divide the 4 major NiV sublineages into 15 genetic clusters. Using Approximate Bayesian Computation fit to a spatial signature of viral diversity, we estimate the presence and the average size of genetic clusters per area. RESULTS We find that, within any bat roost, there are an average of 2.4 co-circulating genetic clusters, rising to 5.5 clusters at areas of 1500-2000 km2. We estimate that each genetic cluster occupies an average area of 1.3 million km2 (95% confidence interval [CI], .6-2.3 million km2), with 14 clusters in an area of 100 000 km2 (95% CI, 6-24 km2). In the few sites in Bangladesh and Cambodia where genomic surveillance has been concentrated, we estimate that most clusters have been identified, but only approximately 15% of overall NiV diversity has been uncovered. CONCLUSIONS Our findings are consistent with entrenched co-circulation of distinct lineages, even within roosts, coupled with slow migration over larger spatial scales.
Collapse
Affiliation(s)
| | - Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Birgit Nikolay
- Department of Epidemiology and Training, Epicentre, Paris, France
| | - Clifton McKee
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Julien Cappelle
- Joint Research Unit, Animal Santé Territoires Risques Ecosystèmes, Centre de coopération internationale en recherche agronomique pour le développement, Montpellier, France
| | - Vibol Hul
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Thavry Hoem
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | | - Ausraful Islam
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Emily S Gurley
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Wang Y, Zhao L, Zhang Y, Wang Y, Tang J, Liu S, Gao H, Zhang X, Zinzula L, Kornberg RD, Zhang H. Cryo-EM structure of Nipah virus RNA polymerase complex. SCIENCE ADVANCES 2024; 10:eadr7116. [PMID: 39661676 PMCID: PMC11633731 DOI: 10.1126/sciadv.adr7116] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Nipah virus, a member of the Paramyxoviridae family, is a highly pathogenic nonsegmented, negative-sense RNA virus (nsNSV) which causes severe neurological and respiratory illnesses in humans. There are no available drugs or vaccines to combat this virus. A complex of large polymerase protein (L) and phosphoprotein (P) of Nipah virus supports replication and transcription and affords a target for antiviral drug development. Structural information required for drug development is lacking. Here we report the 2.9-angstrom cryo-electron microscopy structure of the Nipah virus polymerase-phosphoprotein complex. The structure identifies conserved amino acids likely important for recognition of template RNA by nsNSVs and reveals the locations of mutation-prone sites among Nipah virus strains, which may facilitate the development of therapeutic agents against Nipah virus by targeting regions unaffected by these mutation sites.
Collapse
Affiliation(s)
- Yiru Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Lixia Zhao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yi Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yuhan Wang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Jiao Tang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Simiao Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Huihan Gao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xiaoxiao Zhang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Luca Zinzula
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Roger D. Kornberg
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heqiao Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
7
|
Wang L, Lu D, Yang M, Chai S, Du H, Jiang H. Nipah virus: epidemiology, pathogenesis, treatment, and prevention. Front Med 2024; 18:969-987. [PMID: 39417975 DOI: 10.1007/s11684-024-1078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 10/19/2024]
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus that has recently emerged as a crucial public health issue. It can elicit severe encephalitis and respiratory diseases in animals and humans, leading to fatal outcomes, exhibiting a wide range of host species tropism, and directly transmitting from animals to humans or through an intermediate host. Human-to-human transmission associated with recurrent NiV outbreaks is a potential global health threat. Currently, the lack of effective therapeutics or licensed vaccines for NiV necessitates the primary utilization of supportive care. In this review, we summarize current knowledge of the various aspects of the NiV, including therapeutics, vaccines, and its biological characteristics, epidemiology, pathogenesis, and clinical features. The objective is to provide valuable information from scientific and clinical research and facilitate the formulation of strategies for preventing and controlling the NiV.
Collapse
Affiliation(s)
- Limei Wang
- Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Denghui Lu
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Maosen Yang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Shiqi Chai
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Du
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
8
|
Chen S, Zhang X, Yao Y, Wang S, Li K, Zhang B, Ye T, Chen L, Wu Y, Li E, Xu B, Zhang P, Chuai X, Ran Y, Gong R, Zhang H, Chiu S. Ferritin nanoparticle-based Nipah virus glycoprotein vaccines elicit potent protective immune responses in mice and hamsters. Virol Sin 2024; 39:909-916. [PMID: 39293542 PMCID: PMC11738763 DOI: 10.1016/j.virs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus in the genus Henipavirus that is prevalent in Southeast Asia. NiV leads to severe respiratory disease and encephalitis in humans and animals, with a mortality rate of up to 75%. Despite the grave threat to public health and global biosecurity, no medical countermeasures are available for humans. Here, based on self-assembled ferritin nanoparticles (FeNPs), we successfully constructed two candidate FeNP vaccines by loading mammalian cells expressing NiV sG (residues 71-602, FeNP-sG) and Ghead (residues 182-602, FeNP-Ghead) onto E. coli-expressed FeNPs (FeNP-sG and FeNP-Ghead, respectively) through Spycatcher/Spytag technology. Compared with sG and Ghead alone, FeNP-sG and FeNP-Ghead elicited significant NiV specific neutralizing antibody levels and T-cell responses in mice, whereas the immune response in the FeNP-sG immunized group was greater than that in the FeNP-Ghead group. These results further demonstrate that sG possesses greater antigenicity than Ghead and that FeNPs can dramatically enhance immunogenicity. Furthermore, FeNP-sG provided 100% protection against NiV challenge in a hamster model when it was administered twice at a dose of 5 μg/per animal. Our study provides not only a promising candidate vaccine against NiV, but also a theoretical foundation for the design of a NiV immunogen for the development of novel strategies against NiV infection.
Collapse
Affiliation(s)
- Shaohong Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinghai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shengdong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangyin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoyue Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxi Ye
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230027, China
| | - Bichao Xu
- Institutional Center for Shared Technologies and Facilities of Wuhan Institute of Virology, CAS, Center for Instrumental Analysis and Metrology, Wuhan 430062, China
| | - Pei Zhang
- Institutional Center for Shared Technologies and Facilities of Wuhan Institute of Virology, CAS, Center for Instrumental Analysis and Metrology, Wuhan 430062, China
| | - Xia Chuai
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yong Ran
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China.
| | - Huajun Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230027, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
9
|
Baranowski K, Bharti N. Native and non-native winter foraging resources do not explain Pteropus alecto winter roost occupancy in Queensland, Australia. Front Ecol Evol 2024; 12:1483865. [PMID: 39697612 PMCID: PMC11654838 DOI: 10.3389/fevo.2024.1483865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Anthropogenic land use change concurrent with introductions of non-native species alters the abundance and distribution of foraging resources for wildlife. This is particularly concerning when resource bottlenecks for wildlife are linked to spillover of infectious diseases to humans. Hendra virus is a bat-borne pathogen in eastern Australia. Spillovers align with winter food shortages for flying foxes and flying foxes foraging in agriculture or peri-urban lands, as opposed to native forests. It is believed the increased abundance and spatiotemporal reliability of non-native species planted in anthropogenically modified areas compared to native, ephemeral diet species may be a key draw for flying foxes into urban and peri-urban areas. We investigate the explanatory power of environmental factors on the winter roost occupancy of the reservoir for Hendra virus, the black flying fox Pteropus alecto, from 2007-2020 in Queensland, Australia. We measured the extent, spatial aggregation, and annual reliability of typical (i.e. native) and atypical (i.e. non-native) winter habitat species in 20km foraging areas around roosts surveyed by the National Flying Fox Monitoring Program. We find that neither the extent nor the spatial distribution of winter habitats explained black flying fox winter roost presence. Although the establishment of roosts was associated with high reliability for typical winter diet species, the reliability of frequently listed winter diet species surrounding surveyed roosts was not different between roosts that were occupied versus unoccupied in the winter. Significant interactions between lagged weather conditions and winter habitats identified by the best model did not reflect observable differences in patterns of occupancy upon scrutiny. Static measures of winter habitat and weather conditions poorly explained the winter roost occupancy of black flying foxes. Understanding the drivers of flying fox movement and presence requires further investigation before they can be thoughtfully integrated into Hendra spillover prevention efforts and flying fox management.
Collapse
Affiliation(s)
- Kelsee Baranowski
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, United States
| | - Nita Bharti
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
10
|
Carlson CJ, Garnier R, Tiu A, Luby SP, Bansal S. Strategic vaccine stockpiles for regional epidemics of emerging viruses: A geospatial modeling framework. Vaccine 2024; 42:126051. [PMID: 38902187 DOI: 10.1016/j.vaccine.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Multinational epidemics of emerging infectious diseases are increasingly common, due to anthropogenic pressure on ecosystems and the growing connectivity of human populations. Early and efficient vaccination can contain outbreaks and prevent mass mortality, but optimal vaccine stockpiling strategies are dependent on pathogen characteristics, reservoir ecology, and epidemic dynamics. Here, we model major regional outbreaks of Nipah virus and Middle East respiratory syndrome, and use these to develop a generalized framework for estimating vaccine stockpile needs based on spillover geography, spatially-heterogeneous healthcare capacity and spatially-distributed human mobility networks. Because outbreak sizes were highly skewed, we found that most outbreaks were readily contained (median stockpile estimate for MERS-CoV: 2,089 doses; Nipah: 1,882 doses), but the maximum estimated stockpile need in a highly unlikely large outbreak scenario was 2-3 orders of magnitude higher (MERS-CoV: ∼87,000 doses; Nipah ∼ 1.1 million doses). Sensitivity analysis revealed that stockpile needs were more dependent on basic epidemiological parameters (i.e., death and recovery rate) and healthcare availability than any uncertainty related to vaccine efficacy or deployment strategy. Our results highlight the value of descriptive epidemiology for real-world modeling applications, and suggest that stockpile allocation should consider ecological, epidemiological, and social dimensions of risk.
Collapse
Affiliation(s)
- Colin J Carlson
- Department of Biology, Georgetown University; Department of Epidemiology of Microbial Diseases, Yale University School of Public Health
| | | | - Andrew Tiu
- Department of Biology, Georgetown University
| | | | | |
Collapse
|
11
|
Wickenhagen A, van Tol S, Munster V. Molecular determinants of cross-species transmission in emerging viral infections. Microbiol Mol Biol Rev 2024; 88:e0000123. [PMID: 38912755 PMCID: PMC11426021 DOI: 10.1128/mmbr.00001-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
12
|
Johnson T, Jamrozik E, Hurst T, Cheah PY, Parker MJ. Ethical issues in Nipah virus control and research: addressing a neglected disease. JOURNAL OF MEDICAL ETHICS 2024; 50:612-617. [PMID: 38071589 PMCID: PMC11347257 DOI: 10.1136/jme-2023-109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/12/2023] [Indexed: 08/23/2024]
Abstract
Nipah virus is a priority pathogen that is receiving increasing attention among scientists and in work on epidemic preparedness. Despite this trend, there has been almost no bioethical work examining ethical considerations surrounding the epidemiology, prevention, and treatment of Nipah virus or research that has already begun into animal and human vaccines. In this paper, we advance the case for further work on Nipah virus disease in public health ethics due to the distinct issues it raises concerning communication about the modes of transmission, the burdens of public health surveillance, the recent use of stringent public health measures during epidemics, and social or religious norms intersecting with preventive measures. We also advance the case for further work on Nipah virus disease in research ethics, given ethical issues surrounding potential vaccine trials for a high-fatality disease with sporadic spillover events, the different local contexts where trials may occur, and the potential use of unproven therapeutics during outbreaks. Further bioethics work may help to ensure that research and public health interventions for Nipah virus disease are ethically acceptable and more likely to be effective.
Collapse
Affiliation(s)
- Tess Johnson
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Euzebiusz Jamrozik
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Royal Melbourne Hospital Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Tara Hurst
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Phaik Yeong Cheah
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research, Mahidol University, Bangkok, Thailand
| | - Michael J Parker
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Tan FH, Sukri A, Idris N, Ong KC, Schee JP, Tan CT, Tan SH, Wong KT, Wong LP, Tee KK, Chang LY. A systematic review on Nipah virus: global molecular epidemiology and medical countermeasures development. Virus Evol 2024; 10:veae048. [PMID: 39119137 PMCID: PMC11306115 DOI: 10.1093/ve/veae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that causes encephalitis and a high mortality rate in infected subjects. This systematic review aimed to comprehensively analyze the global epidemiology and research advancements of NiV to identify the key knowledge gaps in the literature. Articles searched using literature databases, namely PubMed, Scopus, Web of Science, and Science Direct yielded 5,596 articles. After article screening, 97 articles were included in this systematic review, comprising 41 epidemiological studies and 56 research developments on NiV. The majority of the NiV epidemiological studies were conducted in Bangladesh, reflecting the country's significant burden of NiV outbreaks. The initial NiV outbreak was identified in Malaysia in 1998, with subsequent outbreaks reported in Bangladesh, India, and the Philippines. Transmission routes vary by country, primarily through pigs in Malaysia, consumption of date palm juice in Bangladesh, and human-to-human in India. However, the availability of NiV genome sequences remains limited, particularly from Malaysia and India. Mortality rates also vary according to the country, exceeding 70% in Bangladesh, India, and the Philippines, and less than 40% in Malaysia. Understanding these differences in mortality rate among countries is crucial for informing NiV epidemiology and enhancing outbreak prevention and management strategies. In terms of research developments, the majority of studies focused on vaccine development, followed by phylogenetic analysis and antiviral research. While many vaccines and antivirals have demonstrated complete protection in animal models, only two vaccines have progressed to clinical trials. Phylogenetic analyses have revealed distinct clades between NiV Malaysia, NiV Bangladesh, and NiV India, with proposals to classify NiV India as a separate strain from NiV Bangladesh. Taken together, comprehensive OneHealth approaches integrating disease surveillance and research are imperative for future NiV studies. Expanding the dataset of NiV genome sequences, particularly from Malaysia, Bangladesh, and India will be pivotal. These research efforts are essential for advancing our understanding of NiV pathogenicity and for developing robust diagnostic assays, vaccines and therapeutics necessary for effective preparedness and response to future NiV outbreaks.
Collapse
Affiliation(s)
- Foo Hou Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Jie Ping Schee
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Chong Tin Tan
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kum Thong Wong
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li Ping Wong
- Department of Social Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| |
Collapse
|
14
|
Sun YQ, Zhang YY, Liu MC, Chen JJ, Li TT, Liu YN, Zhang LY, Wang T, Yu LJ, Che TL, Tang T, Xu Q, Lv CL, Jiang BG, Golding N, Mehlman ML, Hay SI, Fang LQ, Liu W. Mapping the distribution of Nipah virus infections: a geospatial modelling analysis. Lancet Planet Health 2024; 8:e463-e475. [PMID: 38969474 DOI: 10.1016/s2542-5196(24)00119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Nipah virus is a zoonotic paramyxovirus responsible for disease outbreaks with high fatality rates in south and southeast Asia. However, knowledge of the potential geographical extent and risk patterns of the virus is poor. We aimed to establish an integrated spatiotemporal and phylogenetic database of Nipah virus infections in humans and animals across south and southeast Asia. METHODS In this geospatial modelling analysis, we developed an integrated database containing information on the distribution of Nipah virus infections in humans and animals from 1998 to 2021. We conducted phylodynamic analysis to examine the evolution and migration pathways of the virus and meta-analyses to estimate the adjusted case-fatality rate. We used two boosted regression tree models to identify the potential ecological drivers of Nipah virus occurrences in spillover events and endemic areas, and mapped potential risk areas for Nipah virus endemicity. FINDINGS 749 people and eight bat species across nine countries were documented as being infected with Nipah virus. On the basis of 66 complete genomes of the virus, we identified two clades-the Bangladesh clade and the Malaysia clade-with the time of the most recent common ancestor estimated to be 1863. Adjusted case-fatality rates varied widely between countries and were higher for the Bangladesh clade than for the Malaysia clade. Multivariable meta-regression analysis revealed significant relationships between case-fatality rate estimates and viral clade (p=0·0021), source country (p=0·016), proportion of male patients (p=0·036), and travel time to health-care facilities (p=0·036). Temperature-related bioclimate variables and the probability of occurrence of Pteropus medius were important contributors to both the spillover and the endemic infection models. INTERPRETATION The suitable niches for Nipah virus are more extensive than previously reported. Future surveillance efforts should focus on high-risk areas informed by updated projections. Specifically, intensifying zoonotic surveillance efforts, enhancing laboratory testing capacity, and implementing public health education in projected high-risk areas where no human cases have been reported to date will be crucial. Additionally, strengthening wildlife surveillance and investigating potential modes of transmission in regions with documented human cases is needed. FUNDING The Key Research and Development Program of China.
Collapse
Affiliation(s)
- Yan-Qun Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Nanjing Municipal Center for Disease Control and Prevention, Affiliated Nanjing Center for Disease Control and Prevention of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mei-Chen Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ting-Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yan-Ning Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ling-Yu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin-Jie Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tian-Le Che
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tian Tang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nick Golding
- Telethon Kids Institute, Nedlands, WA, Australia; School of Population Health, Curtin University, Bentley, WA, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Max L Mehlman
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; The First Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Apoorva, Singh SK. A tale of endurance: bats, viruses and immune dynamics. Future Microbiol 2024; 19:841-856. [PMID: 38648093 PMCID: PMC11382704 DOI: 10.2217/fmb-2023-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/09/2024] [Indexed: 04/25/2024] Open
Abstract
The emergence of highly zoonotic viral infections has propelled bat research forward. The viral outbreaks including Hendra virus, Nipah virus, Marburg virus, Ebola virus, Rabies virus, Middle East respiratory syndrome coronavirus, SARS-CoV and the latest SARS-CoV-2 have been epidemiologically linked to various bat species. Bats possess unique immunological characteristics that allow them to serve as a potential viral reservoir. Bats are also known to protect themselves against viruses and maintain their immunity. Therefore, there is a need for in-depth understanding into bat-virus biology to unravel the major factors contributing to the coexistence and spread of viruses.
Collapse
Affiliation(s)
- Apoorva
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunit Kumar Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi (North Campus), New Delhi, 110007, India
| |
Collapse
|
16
|
Duda R, Betoulet JM, Besombes C, Mbrenga F, Borzykh Y, Nakouné E, Giles-Vernick T. A time of decline: An eco-anthropological and ethnohistorical investigation of mpox in the Central African Republic. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002937. [PMID: 38517925 PMCID: PMC10959331 DOI: 10.1371/journal.pgph.0002937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/29/2024] [Indexed: 03/24/2024]
Abstract
The Central African Republic (CAR) has experienced repeated mpox outbreaks since 2001. Although several mpox epidemiological risk factors for zoonotic and interhuman transmission have been documented, the reasons for more frequent epidemic outbreaks are less well understood, relying on vague explanatory categories, including deforestation, hunting, and civil unrest. To gain insight into increasingly frequent outbreaks, we undertook an ethnohistorical, eco-anthropological analysis in two CAR regions: the Lobaye prefecture, experiencing one or more annual outbreaks in the past decade, and the Sangha-Mbaere prefecture, with a longer history of mpox but less frequent outbreaks. We comparatively examined changing political economies, forest use practices, and understandings of mpox. In 2022, we conducted 40 qualitative ethnohistorical, anthropological interviews and participant-observation of forest activities in two languages (Sango and French). We compared contemporary practices with hunting, trapping, and meet consumption practices, documented through quantitative and qualitative observation in one research site, over 6 months in 1993. We find increased rodent capture and consumption in both sites in the past 30 years and expanded practices of other potentially risky activities. Simultaneously, we also identify important differences in risky practices between our Lobaye and Sangha-Mbaere participants. In addition, Lobaye and Sangha participants underscored historical processes of decline producing mpox among other emergences, but they framed these declension processes diversely as economic, political, nutritional, and moral. Our findings are important because they mobilize new types of evidence to shed light on the processual dynamics of mpox outbreaks in the CAR. This study also reveals variability across two sites within the same country, highlighting the importance of comparative, fine-grained anthropological and historical research to identify underlying dynamics of mpox outbreaks. Finally, our study points to the need for mpox interventions and risk communication accounting for these regional differences, even within a single country.
Collapse
Affiliation(s)
- Romain Duda
- Anthropology & Ecology of Disease Emergence Unit, Department of Global Health, Institut Pasteur, Université Paris Cité, Paris, France
| | - José Martial Betoulet
- Ndima Kali, Baaka and Sangha-Sangha Youth Association, Bayanga, Central African Republic
- Dzanga-Sangha Protected Areas (DSPA-WWF), Bayanga, Central African Republic
| | - Camille Besombes
- Epidemiology of Emerging Diseases Unit, Department of Global Health, Institut Pasteur, Université Paris Cité, Paris, France
| | - Festus Mbrenga
- Department of Virology, Institut Pasteur de Bangui, Bangui, Central African Republic
| | - Yanina Borzykh
- Anthropology & Ecology of Disease Emergence Unit, Department of Global Health, Institut Pasteur, Université Paris Cité, Paris, France
| | - Emmanuel Nakouné
- Department of Virology, Institut Pasteur de Bangui, Bangui, Central African Republic
| | - Tamara Giles-Vernick
- Anthropology & Ecology of Disease Emergence Unit, Department of Global Health, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
17
|
Byrne PO, Blade EG, Fisher BE, Ambrozak DR, Ramamohan AR, Graham BS, Loomis RJ, McLellan JS. Prefusion stabilization of the Hendra and Langya virus F proteins. J Virol 2024; 98:e0137223. [PMID: 38214525 PMCID: PMC10878279 DOI: 10.1128/jvi.01372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are pathogenic paramyxoviruses that cause mild-to-severe disease in humans. As members of the Henipavirus genus, NiV and HeV use an attachment (G) glycoprotein and a class I fusion (F) glycoprotein to invade host cells. The F protein rearranges from a metastable prefusion form to an extended postfusion form to facilitate host cell entry. Prefusion NiV F elicits higher neutralizing antibody titers than postfusion NiV F, indicating that stabilization of prefusion F may aid vaccine development. A combination of amino acid substitutions (L104C/I114C, L172F, and S191P) is known to stabilize NiV F in its prefusion conformation, although the extent to which substitutions transfer to other henipavirus F proteins is not known. Here, we perform biophysical and structural studies to investigate the mechanism of prefusion stabilization in F proteins from three henipaviruses: NiV, HeV, and Langya virus (LayV). Three known stabilizing substitutions from NiV F transfer to HeV F and exert similar structural and functional effects. One engineered disulfide bond, located near the fusion peptide, is sufficient to stabilize the prefusion conformations of both HeV F and LayV F. Although LayV F shares low overall sequence identity with NiV F and HeV F, the region around the fusion peptide exhibits high sequence conservation across all henipaviruses. Our findings indicate that substitutions targeting this site of conformational change might be applicable to prefusion stabilization of other henipavirus F proteins and support the use of NiV as a prototypical pathogen for henipavirus vaccine antigen design.IMPORTANCEPathogenic henipaviruses such as Nipah virus (NiV) and Hendra virus (HeV) cause respiratory symptoms, with severe cases resulting in encephalitis, seizures, and coma. The work described here shows that the NiV and HeV fusion (F) proteins share common structural features with the F protein from an emerging henipavirus, Langya virus (LayV). Sequence alignment alone was sufficient to predict which known prefusion-stabilizing amino acid substitutions from NiV F would stabilize the prefusion conformations of HeV F and LayV F. This work also reveals an unexpected oligomeric interface shared by prefusion HeV F and NiV F. Together, these advances lay a foundation for future antigen design targeting henipavirus F proteins. In this way, Nipah virus can serve as a prototypical pathogen for the development of protective vaccines and monoclonal antibodies to prepare for potential henipavirus outbreaks.
Collapse
Affiliation(s)
- Patrick O. Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth G. Blade
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Brian E. Fisher
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David R. Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ajit R. Ramamohan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
18
|
Faus-Cotino J, Reina G, Pueyo J. Nipah Virus: A Multidimensional Update. Viruses 2024; 16:179. [PMID: 38399954 PMCID: PMC10891541 DOI: 10.3390/v16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic paramyxovirus to which is attributed numerous high mortality outbreaks in South and South-East Asia; Bangladesh's Nipah belt accounts for the vast majority of human outbreaks, reporting regular viral emergency events. The natural reservoir of NiV is the Pteropus bat species, which covers a wide geographical distribution extending over Asia, Oceania, and Africa. Occasionally, human outbreaks have required the presence of an intermediate amplification mammal host between bat and humans. However, in Bangladesh, the viral transmission occurs directly from bat to human mainly by ingestion of contaminated fresh date palm sap. Human infection manifests as a rapidly progressive encephalitis accounting for extremely high mortality rates. Despite that, no therapeutic agents or vaccines have been approved for human use. An updated review of the main NiV infection determinants and current potential therapeutic and preventive strategies is exposed.
Collapse
Affiliation(s)
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Javier Pueyo
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Department of Anesthesia and Intensive Care, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
19
|
Azuero OC, Lefrancq N, Nikolay B, McKee C, Cappelle J, Hul V, Ou TP, Hoem T, Lemey P, Rahman MZ, Islam A, Gurley ES, Duong V, Salje H. The genetic diversity of Nipah virus across spatial scales. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.14.23292668. [PMID: 37502973 PMCID: PMC10370237 DOI: 10.1101/2023.07.14.23292668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nipah virus (NiV), a highly lethal virus in humans, circulates silently in Pteropus bats throughout South and Southeast Asia. Difficulty in obtaining genomes from bats means we have a poor understanding of NiV diversity, including how many lineages circulate within a roost and the spread of NiV over increasing spatial scales. Here we develop phylogenetic approaches applied to the most comprehensive collection of genomes to date (N=257, 175 from bats, 73 from humans) from six countries over 22 years (1999-2020). In Bangladesh, where most human infections occur, we find evidence of increased spillover risk from one of the two co-circulating sublineages. We divide the four major NiV sublineages into 15 genetic clusters (emerged 20-44 years ago). Within any bat roost, there are an average of 2.4 co-circulating genetic clusters, rising to 5.5 clusters at areas of 1,500-2,000 km2. Using Approximate Bayesian Computation fit to a spatial signature of viral diversity, we estimate that each genetic cluster occupies an average area of 1.3 million km2 (95%CI: 0.6-2.3 million), with 14 clusters in an area of 100,000 km2 (95%CI: 6-24). In the few sites in Bangladesh and Cambodia where genomic surveillance has been concentrated, we estimate that most of the genetic clusters have been identified, but only ~15% of overall NiV diversity has been uncovered. Our findings are consistent with entrenched co-circulation of distinct lineages, even within individual roosts, coupled with slow migration over larger spatial scales.
Collapse
Affiliation(s)
| | - Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Clifton McKee
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Vibol Hul
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Thavry Hoem
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | | | - Ausraful Islam
- Infectious Diseases Division, icddr,b, Dhaka 1000, Bangladesh
| | - Emily S. Gurley
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
20
|
Wood MR, de Vries JL, Epstein JH, Markotter W. Variations in small-scale movements of, Rousettus aegyptiacus, a Marburg virus reservoir across a seasonal gradient. Front Zool 2023; 20:23. [PMID: 37464371 DOI: 10.1186/s12983-023-00502-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Bats are increasingly being recognized as important hosts for viruses, some of which are zoonotic and carry the potential for spillover within human and livestock populations. Biosurveillance studies focused on assessing the risk of pathogen transmission, however, have largely focused on the virological component and have not always considered the ecological implications of different species as viral hosts. The movements of known viral hosts are an important component for disease risk assessments as they can potentially identify regions of higher risk of contact and spillover. As such, this study aimed to synthesize data from both virological and ecological fields to provide a more holistic assessment of the risk of pathogen transmission from bats to people. RESULTS Using radiotelemetry, we tracked the small-scale movements of Rousettus aegyptiacus, a species of bat known to host Marburg virus and other viruses with zoonotic potential, in a rural settlement in Limpopo Province, South Africa. The tracked bats exhibited seasonal variations in their movement patterns including variable usage of residential areas which could translate to contact between bats and humans and may facilitate spillover. We identified a trend for increased usage of residential areas during the winter months with July specifically experiencing the highest levels of bat activity within residential areas. July has previously been identified as a key period for increased spillover risk for viruses associated with R. aegyptiacus from this colony and paired with the increased activity levels, illustrates the risk for spillover to human populations. CONCLUSION This study emphasizes the importance of incorporating ecological data such as movement patterns with virological data to provide a better understanding of the risk of pathogen spillover and transmission.
Collapse
Affiliation(s)
- Matthew R Wood
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - J Low de Vries
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Jonathan H Epstein
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
- EcoHealth Alliance, New York, NY, USA
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
21
|
Li H, Kim JYV, Pickering BS. Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence. Front Microbiol 2023; 14:1167085. [PMID: 37529329 PMCID: PMC10387552 DOI: 10.3389/fmicb.2023.1167085] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998-1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions.
Collapse
Affiliation(s)
- Hongzhao Li
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Ji-Young V. Kim
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Bradley S. Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
22
|
Orf GS, Olivo A, Harris B, Weiss SL, Achari A, Yu G, Federman S, Mbanya D, James L, Mampunza S, Chiu CY, Rodgers MA, Cloherty GA, Berg MG. Metagenomic Detection of Divergent Insect- and Bat-Associated Viruses in Plasma from Two African Individuals Enrolled in Blood-Borne Surveillance. Viruses 2023; 15:v15041022. [PMID: 37113001 PMCID: PMC10145552 DOI: 10.3390/v15041022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Metagenomic next-generation sequencing (mNGS) has enabled the high-throughput multiplexed identification of sequences from microbes of potential medical relevance. This approach has become indispensable for viral pathogen discovery and broad-based surveillance of emerging or re-emerging pathogens. From 2015 to 2019, plasma was collected from 9586 individuals in Cameroon and the Democratic Republic of the Congo enrolled in a combined hepatitis virus and retrovirus surveillance program. A subset (n = 726) of the patient specimens was analyzed by mNGS to identify viral co-infections. While co-infections from known blood-borne viruses were detected, divergent sequences from nine poorly characterized or previously uncharacterized viruses were also identified in two individuals. These were assigned to the following groups by genomic and phylogenetic analyses: densovirus, nodavirus, jingmenvirus, bastrovirus, dicistrovirus, picornavirus, and cyclovirus. Although of unclear pathogenicity, these viruses were found circulating at high enough concentrations in plasma for genomes to be assembled and were most closely related to those previously associated with bird or bat excrement. Phylogenetic analyses and in silico host predictions suggested that these are invertebrate viruses likely transmitted through feces containing consumed insects or through contaminated shellfish. This study highlights the power of metagenomics and in silico host prediction in characterizing novel viral infections in susceptible individuals, including those who are immunocompromised from hepatitis viruses and retroviruses, or potentially exposed to zoonotic viruses from animal reservoir species.
Collapse
Affiliation(s)
- Gregory S Orf
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Ana Olivo
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Barbara Harris
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Sonja L Weiss
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Asmeeta Achari
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Guixia Yu
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Scot Federman
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Dora Mbanya
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé P.O. Box 1364, Cameroon
| | - Linda James
- School of Medicine, Université Protestante au Congo, Kinshasa P.O. Box 4745, Democratic Republic of the Congo
| | - Samuel Mampunza
- School of Medicine, Université Protestante au Congo, Kinshasa P.O. Box 4745, Democratic Republic of the Congo
| | - Charles Y Chiu
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Mary A Rodgers
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Gavin A Cloherty
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Michael G Berg
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| |
Collapse
|
23
|
Byrne PO, Fisher BE, Ambrozak DR, Blade EG, Tsybovsky Y, Graham BS, McLellan JS, Loomis RJ. Structural basis for antibody recognition of vulnerable epitopes on Nipah virus F protein. Nat Commun 2023; 14:1494. [PMID: 36932063 PMCID: PMC10021056 DOI: 10.1038/s41467-023-36995-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Nipah virus (NiV) is a pathogenic paramyxovirus that causes fatal encephalitis in humans. Two envelope glycoproteins, the attachment protein (G/RBP) and fusion protein (F), facilitate entry into host cells. Due to its vital role, NiV F presents an attractive target for developing vaccines and therapeutics. Several neutralization-sensitive epitopes on the NiV F apex have been described, however the antigenicity of most of the F protein's surface remains uncharacterized. Here, we immunize mice with prefusion-stabilized NiV F and isolate ten monoclonal antibodies that neutralize pseudotyped virus. Cryo-electron microscopy reveals eight neutralization-sensitive epitopes on NiV F, four of which have not previously been described. Novel sites span the lateral and basal faces of NiV F, expanding the known library of vulnerable epitopes. Seven of ten antibodies bind the Hendra virus (HeV) F protein. Multiple sequence alignment suggests that some of these newly identified neutralizing antibodies may also bind F proteins across the Henipavirus genus. This work identifies new epitopes as targets for therapeutics, provides a molecular basis for NiV neutralization, and lays a foundation for development of new cross-reactive antibodies targeting Henipavirus F proteins.
Collapse
Affiliation(s)
- Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Brian E Fisher
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
| | - Elizabeth G Blade
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, 21701, Frederick, MD, USA
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
- Morehouse School of Medicine, 30310, Atlanta, GA, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, 78712, Austin, TX, USA.
| | - Rebecca J Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20892, Bethesda, MD, USA.
- GSK Global Health R&D Vaccines (GVGH), 53100, Siena, Italy.
| |
Collapse
|
24
|
Shanta IS, Luby SP, Hossain K, Heffelfinger JD, Kilpatrick AM, Haider N, Rahman T, Chakma S, Ahmed SSU, Sharker Y, Pulliam JRC, Kennedy ED, Gurley ES. Human Exposure to Bats, Rodents and Monkeys in Bangladesh. ECOHEALTH 2023; 20:53-64. [PMID: 37099204 PMCID: PMC10131556 DOI: 10.1007/s10393-023-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 06/11/2023]
Abstract
Bats, rodents and monkeys are reservoirs for emerging zoonotic infections. We sought to describe the frequency of human exposure to these animals and the seasonal and geographic variation of these exposures in Bangladesh. During 2013-2016, we conducted a cross-sectional survey in a nationally representative sample of 10,002 households from 1001 randomly selected communities. We interviewed household members about exposures to bats, rodents and monkeys, including a key human-bat interface-raw date palm sap consumption. Respondents reported observing rodents (90%), bats (52%) and monkeys (2%) in or around their households, although fewer reported direct contact. The presence of monkeys around the household was reported more often in Sylhet division (7%) compared to other divisions. Households in Khulna (17%) and Rajshahi (13%) were more likely to report drinking date palm sap than in other divisions (1.5-5.6%). Date palm sap was mostly consumed during winter with higher frequencies in January (16%) and February (12%) than in other months (0-5.6%). There was a decreasing trend in drinking sap over the three years. Overall, we observed substantial geographic and seasonal patterns in human exposure to animals that could be sources of zoonotic disease. These findings could facilitate targeting emerging zoonoses surveillance, research and prevention efforts to areas and seasons with the highest levels of exposure.
Collapse
Affiliation(s)
- Ireen Sultana Shanta
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | | | - Kamal Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | | | - Najmul Haider
- The Royal Veterinary College, University of London, London, UK
| | - Taifur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Shovon Chakma
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Yushuf Sharker
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- University of Florida, Gainesville, USA
| | - Juliet R C Pulliam
- South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Erin D Kennedy
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emily S Gurley
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|
25
|
Escudero-Pérez B, Lalande A, Mathieu C, Lawrence P. Host–Pathogen Interactions Influencing Zoonotic Spillover Potential and Transmission in Humans. Viruses 2023; 15:v15030599. [PMID: 36992308 PMCID: PMC10060007 DOI: 10.3390/v15030599] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Emerging infectious diseases of zoonotic origin are an ever-increasing public health risk and economic burden. The factors that determine if and when an animal virus is able to spill over into the human population with sufficient success to achieve ongoing transmission in humans are complex and dynamic. We are currently unable to fully predict which pathogens may appear in humans, where and with what impact. In this review, we highlight current knowledge of the key host–pathogen interactions known to influence zoonotic spillover potential and transmission in humans, with a particular focus on two important human viruses of zoonotic origin, the Nipah virus and the Ebola virus. Namely, key factors determining spillover potential include cellular and tissue tropism, as well as the virulence and pathogenic characteristics of the pathogen and the capacity of the pathogen to adapt and evolve within a novel host environment. We also detail our emerging understanding of the importance of steric hindrance of host cell factors by viral proteins using a “flytrap”-type mechanism of protein amyloidogenesis that could be crucial in developing future antiviral therapies against emerging pathogens. Finally, we discuss strategies to prepare for and to reduce the frequency of zoonotic spillover occurrences in order to minimize the risk of new outbreaks.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Alexandre Lalande
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Cyrille Mathieu
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), 69002 Lyon, France
- Correspondence:
| |
Collapse
|
26
|
Pollak NM, Olsson M, Marsh GA, Macdonald J, McMillan D. Evaluation of three rapid low-resource molecular tests for Nipah virus. Front Microbiol 2023; 13:1101914. [PMID: 36845977 PMCID: PMC9949527 DOI: 10.3389/fmicb.2022.1101914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/13/2022] [Indexed: 02/11/2023] Open
Abstract
Accurate and timely diagnosis of Nipah virus (NiV) requires rapid, inexpensive, and robust diagnostic tests to control spread of disease. Current state of the art technologies are slow and require laboratory infrastructure that may not be available in all endemic settings. Here we report the development and comparison of three rapid NiV molecular diagnostic tests based on reverse transcription recombinase-based isothermal amplification coupled with lateral flow detection. These tests include a simple and fast one-step sample processing step that inactivates the BSL-4 pathogen, enabling safe testing without the need for multi-step RNA purification. The rapid NiV tests targeted the Nucleocapsid protein (N) gene with analytical sensitivity down to 1,000 copies/μL for synthetic NiV RNA and did not cross-react with RNA of other flaviviruses or Chikungunya virus, which can clinically present with similar febrile symptoms. Two tests detected 50,000-100,000 TCID50/mL (100-200 RNA copies/reaction) of the two distinct strains of NiV, Bangladesh (NiVB) and Malaysia (NiVM), and took 30 min from sample to result, suggesting these tests are well suited for rapid diagnosis under resource-limited conditions due to rapidity, simplicity, and low equipment requirements. These Nipah tests represent a first step toward development of near-patient NiV diagnostics that are appropriately sensitive for first-line screening, sufficiently robust for a range of peripheral settings, with potential to be safely performed outside of biohazard containment facilities.
Collapse
Affiliation(s)
- Nina M. Pollak
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia,DMTC Limited, Kew, VIC, Australia,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia,*Correspondence: Nina M. Pollak,
| | - Malin Olsson
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia,DMTC Limited, Kew, VIC, Australia,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Glenn A. Marsh
- Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Joanne Macdonald
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia,DMTC Limited, Kew, VIC, Australia,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia,BioCifer Pty Ltd., Brisbane, QLD, Australia,Joanne Macdonald,
| | - David McMillan
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia,DMTC Limited, Kew, VIC, Australia,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia,David McMillan,
| |
Collapse
|
27
|
Elvert M, Sauerhering L, Heiner A, Maisner A. Isolation of Primary Porcine Bronchial Epithelial Cells for Nipah Virus Infections. Methods Mol Biol 2023; 2682:103-120. [PMID: 37610577 DOI: 10.1007/978-1-0716-3283-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The Malaysian strain of Nipah virus (NiV) first emerged in 1998/99 and caused a major disease outbreak in pigs and humans. While humans developed fatal encephalitis due to a prominent infection of brain microvessels, NiV-infected pigs mostly suffered from an acute respiratory disease and efficiently spread the infection via airway secretions. To elucidate the molecular basis of the highly productive NiV replication in porcine airways in vitro, physiologically relevant cell models that have maintained functional characteristics of airway epithelia in vivo are needed. Here, we describe in detail the method of isolating bronchial epithelial cells (PBEpC) from pig lungs that can be used for NiV infection studies. After the dissection of primary bronchia and removal of the mucus and protease digestion, bronchi segments are cut open and epithelial cells are scraped off and seeded on collagen-coated cell culture flasks. With this method, it is possible to isolate about 2 × 106 primary cells from the primary bronchi of one pig lung which can be cryopreserved or further subcultured. PBEpC form polarized monolayers on Transwell membrane inserts as controlled by immunostainings of epithelial marker proteins. NiV infection causes rapid formation of syncytia, allowing productive NiV infections in living PBEpC cultures to be monitored by phase-contrast microscopy.
Collapse
Affiliation(s)
- Mareike Elvert
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | | | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
28
|
Cable J, Fauci A, Dowling WE, Günther S, Bente DA, Yadav PD, Madoff LC, Wang L, Arora RK, Van Kerkhove M, Chu MC, Jaenisch T, Epstein JH, Frost SDW, Bausch DG, Hensley LE, Bergeron É, Sitaras I, Gunn MD, Geisbert TW, Muñoz‐Fontela C, Krammer F, de Wit E, Nordenfelt P, Saphire EO, Gilbert SC, Corbett KS, Branco LM, Baize S, van Doremalen N, Krieger MA, Clemens SAC, Hesselink R, Hartman D. Lessons from the pandemic: Responding to emerging zoonotic viral diseases-a Keystone Symposia report. Ann N Y Acad Sci 2022; 1518:209-225. [PMID: 36183296 PMCID: PMC9538336 DOI: 10.1111/nyas.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The COVID-19 pandemic caught the world largely unprepared, including scientific and policy communities. On April 10-13, 2022, researchers across academia, industry, government, and nonprofit organizations met at the Keystone symposium "Lessons from the Pandemic: Responding to Emerging Zoonotic Viral Diseases" to discuss the successes and challenges of the COVID-19 pandemic and what lessons can be applied moving forward. Speakers focused on experiences not only from the COVID-19 pandemic but also from outbreaks of other pathogens, including the Ebola virus, Lassa virus, and Nipah virus. A general consensus was that investments made during the COVID-19 pandemic in infrastructure, collaborations, laboratory and manufacturing capacity, diagnostics, clinical trial networks, and regulatory enhancements-notably, in low-to-middle income countries-must be maintained and strengthened to enable quick, concerted responses to future threats, especially to zoonotic pathogens.
Collapse
Affiliation(s)
| | - Anthony Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)National Institutes of Health (NIH)BethesdaMarylandUSA
| | | | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine and German Center for Infection ResearchHamburgGermany
| | - Dennis A. Bente
- University of Texas Medical BranchGalveston National LaboratoryGalvestonTexasUSA
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Pragya Dhruv Yadav
- Indian Council of Medical Research‐National Institute of VirologyPuneIndia
| | - Lawrence C. Madoff
- Department of MedicineUniversity of Massachusetts Chan School of MedicineWorcesterMassachusettsUSA
| | | | - Rahul K. Arora
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| | | | - May C. Chu
- Colorado School of Public HealthAnschutz Medical CampusAuroraColoradoUSA
| | - Thomas Jaenisch
- Colorado School of Public HealthAnschutz Medical CampusAuroraColoradoUSA
| | | | | | | | - Lisa E. Hensley
- Partnership for Research on Vaccines and Infectious Diseases in Liberia (PREVAIL)MonroviaLiberia
- Division of Clinical ResearchNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High‐Consequence Pathogens and PathologyCenters for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Ioannis Sitaras
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Michael D. Gunn
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Thomas W. Geisbert
- University of ManitobaWinnipegManitobaCanada
- Galveston National Laboratory and Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - César Muñoz‐Fontela
- Bernhard Nocht Institute for Tropical Medicine and German Center for Infection ResearchHamburgGermany
| | - Florian Krammer
- Department of Microbiology and Department of PathologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonMontanaUSA
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of MedicineLund UniversityLundSweden
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Sarah C. Gilbert
- Pandemic Sciences Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Kizzmekia S. Corbett
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | | | - Sylvain Baize
- Unité de Biologie des Infections Virales EmergentesInstitut PasteurLyonFrance
- Centre International de Recherche en Infectiologie (CIRI)LyonFrance
- INSERM, Ecole Normale Supérieure de LyonUniversité de LyonLyonFrance
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonMontanaUSA
| | - Marco A. Krieger
- Laboratory for Applied Science and Technology in Health, Carlos Chagas InstituteOswaldo Cruz Foundation ‐ ParanáCuritibaBrazil
- Integrated Translational Program in Chagas Disease from Fiocruz (Fio‐Chagas)Oswaldo Cruz Foundation ‐ Rio de JaneiroRio de JaneiroBrazil
| | - Sue Ann Costa Clemens
- Oxford Vaccine GroupOxford UniversityOxfordUK
- Institute for Global HealthUniversity of SienaSienaItaly
| | - Renske Hesselink
- Coalition for Epidemic Preparedness Innovations (CEPI)OsloNorway
| | - Dan Hartman
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| |
Collapse
|
29
|
Gazal S, Sharma N, Gazal S, Tikoo M, Shikha D, Badroo GA, Rashid M, Lee SJ. Nipah and Hendra Viruses: Deadly Zoonotic Paramyxoviruses with the Potential to Cause the Next Pandemic. Pathogens 2022; 11:pathogens11121419. [PMID: 36558753 PMCID: PMC9784551 DOI: 10.3390/pathogens11121419] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Nipah and Hendra viruses are deadly zoonotic paramyxoviruses with a case fatality rate of upto 75%. The viruses belong to the genus henipavirus in the family Paramyxoviridae, a family of negative-sense single-stranded RNA viruses. The natural reservoirs of NiV and HeV are bats (flying foxes) in which the virus infection is asymptomatic. The intermediate hosts for NiV and HeV are swine and equine, respectively. In humans, NiV infections result in severe and often fatal respiratory and neurological manifestations. The Nipah virus was first identified in Malaysia and Singapore following an outbreak of encephalitis in pig farmers and subsequent outbreaks have been reported in Bangladesh and India almost every year. Due to its extreme pathogenicity, pandemic potential, and lack of established antiviral therapeutics and vaccines, research on henipaviruses is highly warranted so as to develop antivirals or vaccines that could aid in the prevention and control of future outbreaks.
Collapse
Affiliation(s)
- Sabahat Gazal
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
- Correspondence: (N.S.); (S.-J.L.)
| | - Sundus Gazal
- Division of Veterinary Microbiology, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, Punjab, India
| | - Mehak Tikoo
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Deep Shikha
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Gulzar Ahmed Badroo
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Mohd Rashid
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Correspondence: (N.S.); (S.-J.L.)
| |
Collapse
|
30
|
Tazerji SS, Nardini R, Safdar M, Shehata AA, Duarte PM. An Overview of Anthropogenic Actions as Drivers for Emerging and Re-Emerging Zoonotic Diseases. Pathogens 2022; 11:1376. [PMID: 36422627 PMCID: PMC9692567 DOI: 10.3390/pathogens11111376] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 08/05/2023] Open
Abstract
Population growth and industrialization have led to a race for greater food and supply productivity. As a result, the occupation and population of forest areas, contact with wildlife and their respective parasites and vectors, the trafficking and consumption of wildlife, the pollution of water sources, and the accumulation of waste occur more frequently. Concurrently, the agricultural and livestock production for human consumption has accelerated, often in a disorderly way, leading to the deforestation of areas that are essential for the planet's climatic and ecological balance. The effects of human actions on other ecosystems such as the marine ecosystem cause equally serious damage, such as the pollution of this habitat, and the reduction of the supply of fish and other animals, causing the coastal population to move to the continent. The sum of these factors leads to an increase in the demands such as housing, basic sanitation, and medical assistance, making these populations underserved and vulnerable to the effects of global warming and to the emergence of emerging and re-emerging diseases. In this article, we discuss the anthropic actions such as climate changes, urbanization, deforestation, the trafficking and eating of wild animals, as well as unsustainable agricultural intensification which are drivers for emerging and re-emerging of zoonotic pathogens such as viral (Ebola virus, hantaviruses, Hendravirus, Nipah virus, rabies, and severe acute respiratory syndrome coronavirus disease-2), bacterial (leptospirosis, Lyme borreliosis, and tuberculosis), parasitic (leishmaniasis) and fungal pathogens, which pose a substantial threat to the global community. Finally, we shed light on the urgent demand for the implementation of the One Health concept as a collaborative global approach to raise awareness and educate people about the science behind and the battle against zoonotic pathogens to mitigate the threat for both humans and animals.
Collapse
Affiliation(s)
- Sina Salajegheh Tazerji
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran P.O. Box. 1477893855, Iran
- Young Researchers and Elites Club Science and Research Branch, Islamic Azad University; Tehran P.O. Box. 1477893855, Iran
| | - Roberto Nardini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur 63100, Pakistan
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
- Prophy-Institute for Applied Prophylaxis, 59159 Bönen, Germany
| | - Phelipe Magalhães Duarte
- Postgraduate Program in Animal Bioscience, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco 52171-900, Brazil
| |
Collapse
|
31
|
Agusi ER, Allendorf V, Eze EA, Asala O, Shittu I, Dietze K, Busch F, Globig A, Meseko CA. SARS-CoV-2 at the Human-Animal Interface: Implication for Global Public Health from an African Perspective. Viruses 2022; 14:2473. [PMID: 36366571 PMCID: PMC9696393 DOI: 10.3390/v14112473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the most far-reaching public health crisis of modern times. Several efforts are underway to unravel its root cause as well as to proffer adequate preventive or inhibitive measures. Zoonotic spillover of the causative virus from an animal reservoir to the human population is being studied as the most likely event leading to the pandemic. Consequently, it is important to consider viral evolution and the process of spread within zoonotic anthropogenic transmission cycles as a global public health impact. The diverse routes of interspecies transmission of SARS-CoV-2 offer great potential for a future reservoir of pandemic viruses evolving from the current SARS-CoV-2 pandemic circulation. To mitigate possible future infectious disease outbreaks in Africa and elsewhere, there is an urgent need for adequate global surveillance, prevention, and control measures that must include a focus on known and novel emerging zoonotic pathogens through a one health approach. Human immunization efforts should be approached equally through the transfer of cutting-edge technology for vaccine manufacturing throughout the world to ensure global public health and one health.
Collapse
Affiliation(s)
- Ebere Roseann Agusi
- National Veterinary Research Institute, Vom 930001, Nigeria
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Department of Microbiology, University of Nigeria Nsukka, Enugu 410001, Nigeria
| | - Valerie Allendorf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | - Olayinka Asala
- National Veterinary Research Institute, Vom 930001, Nigeria
| | - Ismaila Shittu
- National Veterinary Research Institute, Vom 930001, Nigeria
| | - Klaas Dietze
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Frank Busch
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Anja Globig
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Clement Adebajo Meseko
- National Veterinary Research Institute, Vom 930001, Nigeria
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
32
|
McKee CD, Islam A, Rahman MZ, Khan SU, Rahman M, Satter SM, Islam A, Yinda CK, Epstein JH, Daszak P, Munster VJ, Hudson PJ, Plowright RK, Luby SP, Gurley ES. Nipah Virus Detection at Bat Roosts after Spillover Events, Bangladesh, 2012-2019. Emerg Infect Dis 2022; 28:1384-1392. [PMID: 35731130 PMCID: PMC9239894 DOI: 10.3201/eid2807.212614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Knowledge of the dynamics and genetic diversity of Nipah virus circulating in bats and at the human-animal interface is limited by current sampling efforts, which produce few detections of viral RNA. We report a series of investigations at Pteropus medius bat roosts identified near the locations of human Nipah cases in Bangladesh during 2012–2019. Pooled bat urine was collected from 23 roosts; 7 roosts (30%) had >1 sample in which Nipah RNA was detected from the first visit. In subsequent visits to these 7 roosts, RNA was detected in bat urine up to 52 days after the presumed exposure of the human case-patient, although the probability of detection declined rapidly with time. These results suggest that rapidly deployed investigations of Nipah virus shedding from bat roosts near human cases could increase the success of viral sequencing compared with background surveillance and could enhance understanding of Nipah virus ecology and evolution.
Collapse
|
33
|
Ali S, Javid A, Imran M, Khan TM, Phelps K, Olival KJ. Knowledge, perceptions, and attitudes by residents in Punjab and Khyber Pakhtunkhwa, Pakistan in connection with bats. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2022; 18:43. [PMID: 35659249 PMCID: PMC9166349 DOI: 10.1186/s13002-022-00541-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Fruit bats play an important role in pollination and seed dispersal, and their conservation is important to maintain the productivity of some crops and natural ecosystems. The objective of this study was to investigate the knowledge, attitudes, and perception of fruit bats by orchard farmers and agricultural communities in Pakistan. METHODS The present survey was conducted in two districts (i.e. Sheikhupura and Malakand districts) within Punjab and Khyber Pakhtunkhwa provinces based on the higher number of fruit growing areas and bat roosting sites. A total of 200 (100 per district) close-ended questionnaires with 53 questions were administered to randomly selected respondents within the selected communities associated with fruit orchards, including orchard owners, laborers, and members of the surrounding community. Each questionnaire was divided into seven sections (i.e., demographic information, environmental and public health effects of bats, knowledge about bats, perception and control of bats, non-lethal methods adopted to control bats, and different myths about bats). RESULTS A majority of respondents (59%, n = 118) mis-classified bats as birds instead of mammals despite more than 84% reporting that they have observed bats. Nearly 71.5% of orchard farmers perceived that their fruits are contaminated by bats during consumption, and a majority believe that bats destroy orchards (62.5%) and are responsible for spreading disease. Mythology about bats was ambiguous, as 49% of those surveyed did not perceived bats to bring good luck (49%), and 50% did not perceived them to be bad omens either. Most respondents have never killed a bat (68%) nor would they kill a bat if given the opportunity (95%). Regarding the control of bats, the greatest percentage of respondents strongly disagree with shooting bats (36%) and strongly agree with leaving bats alone (42.5%). CONCLUSIONS This study provides a better understanding of the sociodemographic factors associated with knowledge, attitude and perception of bats from fruit orchard owners, labourers and local people. We recommend educational interventions for targeted groups in the community, highlighting the ecosystem services and importance of bat conservation to improve people's current knowledge regarding the role of bats and reduce direct persecution against bats.
Collapse
Affiliation(s)
- Shahzad Ali
- Wildlife Epidemiology and Molecular Microbiology Laboratory (One Health Research Group), Discipline of Zoology, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Ravi Campus, Pattoki, Pakistan.
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Ravi Campus, Pattoki, Pakistan.
| | - Arshad Javid
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Ravi Campus, Pattoki, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tahir Mehmood Khan
- Institute of Pharmaceutical Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | | |
Collapse
|
34
|
Monath TP, Nichols R, Tussey L, Scappaticci K, Pullano TG, Whiteman MD, Vasilakis N, Rossi SL, Campos RK, Azar SR, Spratt HM, Seaton BL, Archambault WT, Costecalde YV, Moore EH, Hawks RJ, Fusco J. Recombinant vesicular stomatitis vaccine against Nipah virus has a favorable safety profile: Model for assessment of live vaccines with neurotropic potential. PLoS Pathog 2022; 18:e1010658. [PMID: 35759511 PMCID: PMC9269911 DOI: 10.1371/journal.ppat.1010658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/08/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality and is a priority for vaccine development. With funding from the Coalition of Epidemic Preparedness Innovations (CEPI), we are developing a chimeric vaccine (PHV02) composed of recombinant vesicular stomatitis virus (VSV) expressing the envelope glycoproteins of both Ebola virus (EBOV) and NiV. The EBOV glycoprotein (GP) mediates fusion and viral entry and the NiV attachment glycoprotein (G) is a ligand for cell receptors, and stimulates neutralizing antibody, the putative mediator of protection against NiV. PHV02 is identical in construction to the registered Ebola vaccine (Ervebo) with the addition of the NiV G gene. NiV ephrin B2 and B3 receptors are expressed on neural cells and the wild-type NiV is neurotropic and causes encephalitis in affected patients. It was therefore important to assess whether the NiV G alters tropism of the rVSV vector and serves as a virulence factor. PHV02 was fully attenuated in adult hamsters inoculated by the intramuscular (IM) route, whereas parental wild-type VSV was 100% lethal. Two rodent models (mice, hamsters) were infected by the intracerebral (IC) route with graded doses of PHV02. Comparator active controls in various experiments included rVSV-EBOV (representative of Ebola vaccine) and yellow fever (YF) 17DD commercial vaccine. These studies showed PHV02 to be more neurovirulent than both rVSV-EBOV and YF 17DD in infant animals. PHV02 was lethal for adult hamsters inoculated IC but not for adult mice. In contrast YF 17DD retained virulence for adult mice inoculated IC but was not virulent for adult hamsters. Because of the inconsistency of neurovirulence patterns in the rodent models, a monkey neurovirulence test (MNVT) was performed, using YF 17DD as the active comparator because it has a well-established profile of quantifiable microscopic changes in brain centers and a known reporting rate of neurotropic adverse events in humans. In the MNVT PHV02 was significantly less neurovirulent than the YF 17DD vaccine reference control, indicating that the vaccine will have an acceptable safety profile for humans. The findings are important because they illustrate the complexities of phenotypic assessment of novel viral vectors with tissue tropisms determined by transgenic proteins, and because it is unprecedented to use a heterologous comparator virus (YF vaccine) in a regulatory-enabling study. This approach may have value in future studies of other novel viral vectors.
Collapse
Affiliation(s)
- Thomas P. Monath
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| | - Richard Nichols
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| | - Lynda Tussey
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| | - Kelly Scappaticci
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| | - Thaddeus G. Pullano
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
| | - Mary D. Whiteman
- BioReliance Corporation, Rockville, Maryland, United States of America
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rafael Kroon Campos
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi M. Spratt
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Brent L. Seaton
- Q2 Solutions, San Juan Capistrano, California, United States of America
| | | | - Yanina V. Costecalde
- AmplifyBio, West Jefferson, Ohio, United States of America
- Battelle Memorial Institute, West Jefferson, Ohio, United States of America
| | - Evan H. Moore
- Battelle Memorial Institute, West Jefferson, Ohio, United States of America
| | - Roger J. Hawks
- Battelle Memorial Institute, West Jefferson, Ohio, United States of America
| | - Joan Fusco
- Public Health Vaccines LLC, Cambridge, Massachusetts, United States of America
- Crozet BioPharma Inc., Lexington, Massachusetts, United States of America
| |
Collapse
|
35
|
Divergent Viruses Discovered in Swine Alter the Understanding of Evolutionary History and Genetic Diversity of the Respirovirus Genus and Related Porcine Parainfluenza Viruses. Microbiol Spectr 2022; 10:e0024222. [PMID: 35647875 PMCID: PMC9241844 DOI: 10.1128/spectrum.00242-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Paramyxoviridae is a rapidly growing family of viruses, whose potential for cross-species transmission makes it difficult to predict the harm of newly emerging viruses to humans and animals. To better understand their diversity, evolutionary history, and co-evolution with their hosts, we analyzed a collection of porcine parainfluenza virus (PPIV) genomes to reconstruct the species classification basis and evolutionary history of the Respirovirus genus. We sequenced 17 complete genomes of porcine respirovirus 1 (also known as porcine parainfluenza virus 1; PPIV-1), thereby nearly tripling the number of currently available PPIV-1 genomes. We found that PPIV-1 was widely prevalent in China with two divergent lineages, PPIV-1a and PPIV-1b. We further provided evidence that a new species, porcine parainfluenza virus 2 (PPIV-2), had recently emerged in China. Our results pointed to a need for revising the current species demarcation criteria of the Respirovirus genus. In addition, we used PPIV-1 as an example to explore recombination and diversity of the Respirovirus genus. Interestingly, we only detected heterosubtypic recombination events between PPIV-1a and PPIV-1b with no intrasubtypic recombination events. The recombination hotspots highlighted a diverse geography-dependent genome structure of paramyxovirus infecting swine in China. Furthermore, we found no evidence of co-evolution between respirovirus and its host, indicating frequent cross-species transmission. In summary, our analyses showed that swine can be infected with a broad range of respiroviruses and recombination may serve as an important evolutionary mechanism for the Respirovirus genus’ greater diversity in genome structure than previously anticipated. IMPORTANCE Livestock have emerged as critically underrecognized sources of paramyxovirus diversity, including pigs serving as the source of Nipah virus (NiV) and swine parainfluenza virus type 3, and goats and bovines harboring highly divergent viral lineages. Here, we identified a new species of Respirovirus genus named PPIV-2 in swine and proposed to revise the species demarcation criteria of the Respirovirus genus. We found heterosubtypic recombination events and high genetic diversity in PPIV-1. Further, we showed that genetic recombination may have occurred in the Respirovirus genus which may be associated with host range expansion. The continued expansion of Respirovirus genus diversity in livestock with relatively high human contact rates requires enhanced surveillance and ongoing evaluation of emerging cross-species transmission threats.
Collapse
|
36
|
Latinne A, Morand S. Climate Anomalies and Spillover of Bat-Borne Viral Diseases in the Asia-Pacific Region and the Arabian Peninsula. Viruses 2022; 14:1100. [PMID: 35632842 PMCID: PMC9145311 DOI: 10.3390/v14051100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Climate variability and anomalies are known drivers of the emergence and outbreaks of infectious diseases. In this study, we investigated the potential association between climate factors and anomalies, including El Niño Southern Oscillation (ENSO) and land surface temperature anomalies, as well as the emergence and spillover events of bat-borne viral diseases in humans and livestock in the Asia-Pacific region and the Arabian Peninsula. Our findings from time series analyses, logistic regression models, and structural equation modelling revealed that the spillover patterns of the Nipah virus in Bangladesh and the Hendra virus in Australia were differently impacted by climate variability and with different time lags. We also used event coincidence analysis to show that the emergence events of most bat-borne viral diseases in the Asia-Pacific region and the Arabian Peninsula were statistically associated with ENSO climate anomalies. Spillover patterns of the Nipah virus in Bangladesh and the Hendra virus in Australia were also significantly associated with these events, although the pattern and co-influence of other climate factors differed. Our results suggest that climate factors and anomalies may create opportunities for virus spillover from bats to livestock and humans. Ongoing climate change and the future intensification of El Niño events will therefore potentially increase the emergence and spillover of bat-borne viral diseases in the Asia-Pacific region and the Arabian Peninsula.
Collapse
Affiliation(s)
- Alice Latinne
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi 100000, Vietnam
- Wildlife Conservation Society, Global Conservation Program, Bronx, NY 10460, USA
- MIVEGEC, CNRS—IRD—Montpellier Université, 911 Avenue Agropolis, BP 6450, 34394 Montpellier, France;
- Faculty of Veterinary Technology, University of Kasetsart, Bangkok 10900, Thailand
| | - Serge Morand
- MIVEGEC, CNRS—IRD—Montpellier Université, 911 Avenue Agropolis, BP 6450, 34394 Montpellier, France;
- Faculty of Veterinary Technology, University of Kasetsart, Bangkok 10900, Thailand
- Faculty of Tropical Medicine, University of Mahidol, Bangkok 10400, Thailand
| |
Collapse
|
37
|
Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses 2022; 14:v14050936. [PMID: 35632678 PMCID: PMC9146692 DOI: 10.3390/v14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Nipah henipavirus (NiV) and Hendra henipavirus (HeV) are zoonotic emerging paramyxoviruses causing severe disease outbreaks in humans and livestock, mostly in Australia, India, Malaysia, Singapore and Bangladesh. Both are bat-borne viruses and in humans, their mortality rates can reach 60% in the case of HeV and 92% for NiV, thus being two of the deadliest viruses known for humans. Several factors, including a large cellular tropism and a wide zoonotic potential, con-tribute to their high pathogenicity. This review provides an overview of HeV and NiV pathogenicity mechanisms and provides a summary of their interactions with the immune systems of their different host species, including their natural hosts bats, spillover-hosts pigs, horses, and humans, as well as in experimental animal models. A better understanding of the interactions between henipaviruses and their hosts could facilitate the development of new therapeutic strategies and vaccine measures against these re-emerging viruses.
Collapse
Affiliation(s)
- Philip Lawrence
- Science and Humanities Confluence Research Centre (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France
- Correspondence: (P.L.); (B.E.-P.)
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 38124 Braunschweig, Germany
- Correspondence: (P.L.); (B.E.-P.)
| |
Collapse
|
38
|
Wang Z, Amaya M, Addetia A, Dang HV, Reggiano G, Yan L, Hickey AC, DiMaio F, Broder CC, Veesler D. Architecture and antigenicity of the Nipah virus attachment glycoprotein. Science 2022; 375:1373-1378. [PMID: 35239409 DOI: 10.1126/science.abm5561] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are zoonotic henipaviruses (HNVs) responsible for outbreaks of encephalitis and respiratory illness. The entry of HNVs into host cells requires the attachment (G) and fusion (F) glycoproteins, which are the main targets of antibody responses. To understand viral infection and host immunity, we determined a cryo-electron microscopy structure of the NiV G homotetrameric ectodomain in complex with the nAH1.3 broadly neutralizing antibody Fab fragment. We show that a cocktail of two nonoverlapping G-specific antibodies neutralizes NiV and HeV synergistically and limits the emergence of escape mutants. Analysis of polyclonal serum antibody responses elicited by vaccination of macaques with NiV G indicates that the receptor binding head domain is immunodominant. These results pave the way for implementing multipronged therapeutic strategies against these deadly pathogens.
Collapse
Affiliation(s)
- Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ha V Dang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Gabriella Reggiano
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Andrew C Hickey
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA.,U.S. Public Health Services Commissioned Corps, Rockville, MD 20852, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
39
|
Suwannarong K, Soonthornworasiri N, Maneekan P, Yimsamran S, Balthip K, Maneewatchararangsri S, Saisongkorh W, Saengkul C, Sangmukdanun S, Phunta N, Singhasivanon P. Rodent–Human Interface: Behavioral Risk Factors and Leptospirosis in a Province in the Central Region of Thailand. Vet Sci 2022; 9:vetsci9020085. [PMID: 35202338 PMCID: PMC8878075 DOI: 10.3390/vetsci9020085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
This sequential explanatory mixed-method study consisted of analytical, cross-sectional, and qualitative studies. The research was conducted in the Khao Nor and Khao Kaew areas of the Banphot Pisai districts of Nakhon Sawan Province in 2019. Here, we examined the rodent contact characteristics of villagers in these areas and determined the potential characteristics/risk factors associated with rodents using a semi-structured questionnaire, key informant interview (KII), and focus group discussion (FGD). Results of the quantitative study (N1 = 372) characterized participants that contacted rodents per gender, age, occupation, knowledge, attitude, and practice (KAP), including their cultural contexts, and beliefs. Ninety participants (24.2%) reported contact with rodents, and the reasons for their direct physical rodent contact were hunting (35, 9.4%), killing (41, 11.0%), preparing rodents as food (33, 8.9%), consuming cooked meats (12, 3.2%), feeding food (4, 1.1%), cleaning feces (17, 4.6%), and cleaning carcasses (33, 8.9%). Moreover, logistic regression results showed that males encountering rodents were statistically significant (Adjusted OR = 3.137, 95% CI 1.914–5.139, p < 0.001). Low monthly household income (<THB 15,000 or <USD 450) was also negatively statistically significant with encountering rodents (Adjusted OR = 0.57, 95% CI 0.33–0.99, p = 0.04). Additionally, the villagers had a low level of knowledge toward zoonotic diseases and inappropriate attitudes and practices toward contacting rodents and zoonotic diseases. Thirty-five qualitative study participants (N2) participated in the KIIs and FGDs. Various rodent contact activities were also reported among the qualitative research participants, such as hunting, consumption, and selling them to their friends and neighbors. However, these rodents also destroyed their belongings, crops, and plants. Some participants also reported that rodents accounted for leptospirosis transmission. As a result, communication intervention should be planned to provide appropriate knowledge and attitude to the villagers, especially among those who have close contact with rodents in the understudied area.
Collapse
Affiliation(s)
- Kanokwan Suwannarong
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; (K.S.); (P.M.); (S.Y.); (S.S.); (P.S.)
- SUPA71 Co., Ltd., Bangkok 10230, Thailand
| | - Ngamphol Soonthornworasiri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; (K.S.); (P.M.); (S.Y.); (S.S.); (P.S.)
- Correspondence: ; Tel./Fax: +66-2-6444436
| | - Pannamas Maneekan
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; (K.S.); (P.M.); (S.Y.); (S.S.); (P.S.)
| | - Surapon Yimsamran
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; (K.S.); (P.M.); (S.Y.); (S.S.); (P.S.)
| | | | - Santi Maneewatchararangsri
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Watcharee Saisongkorh
- Department of Medical Sciences, Ministry of Public Health, Muang District, Nonthaburi 11000, Thailand;
| | - Chutarat Saengkul
- Faculty of Public Health, Nakhon Sawan Campus, Mahidol University, Nakhon Sawan 60130, Thailand;
| | - Suntaree Sangmukdanun
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; (K.S.); (P.M.); (S.Y.); (S.S.); (P.S.)
| | - Nittaya Phunta
- Ban Dan Health Promotion Hospital (under Ministry of Public Health Thailand), Ban Phot Pisai District, Nakhon Sawan 60180, Thailand;
| | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; (K.S.); (P.M.); (S.Y.); (S.S.); (P.S.)
| |
Collapse
|
40
|
Skowron K, Bauza-Kaszewska J, Grudlewska-Buda K, Wiktorczyk-Kapischke N, Zacharski M, Bernaciak Z, Gospodarek-Komkowska E. Nipah Virus-Another Threat From the World of Zoonotic Viruses. Front Microbiol 2022; 12:811157. [PMID: 35145498 PMCID: PMC8821941 DOI: 10.3389/fmicb.2021.811157] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Among the diseases that pose a serious threat to public health, those caused by viruses are of great importance. The Nipah virus (NiV) belonging to the Paramyxoviridae family was reported in Malaysia in 1998/1999. Due to its high mortality in humans, its zoonotic nature, the possibility of human-to-human transmission, and the lack of an available vaccine, the World Health Organization (WHO) has recognized it as a global health problem. Depending on strain specificity, neurological symptoms and severe respiratory disorders are observed in NiV infection. In most confirmed cases of NiV epidemics, the appearance of the virus in humans was associated with the presence of various animal species, but generally, bats of Pteropus species are considered the most important natural animal NiV reservoir and vector. Consumption of contaminated food, contact with animals, and “human-to-human” direct contact were identified as NiV transmission routes. Due to the lack of vaccines and drugs with proven effectiveness against NiV, treatment of patients is limited to supportive and prophylactic.
Collapse
Affiliation(s)
- Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Justyna Bauza-Kaszewska
- Department of Microbiology and Food Technology, Jan and Jędrzej Śniadecki University of Technology in Bydgoszcz, Bydgoszcz, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Maciej Zacharski
- Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Zuzanna Bernaciak
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
41
|
Lewis CE, Pickering B. Livestock and Risk Group 4 Pathogens: Researching Zoonotic Threats to Public Health and Agriculture in Maximum Containment. ILAR J 2022; 61:86-102. [PMID: 34864994 PMCID: PMC8759435 DOI: 10.1093/ilar/ilab029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Maximum-containment laboratories are a unique and essential component of the bioeconomy of the United States. These facilities play a critical role in the national infrastructure, supporting research on a select set of especially dangerous pathogens, as well as novel, emerging diseases. Understanding the ecology, biology, and pathology at the human-animal interface of zoonotic spillover events is fundamental to efficient control and elimination of disease. The use of animals as human surrogate models or as target-host models in research is an integral part of unraveling the interrelated components involved in these dynamic systems. These models can prove vitally important in determining both viral- and host-factors associated with virus transmission, providing invaluable information that can be developed into better risk mitigation strategies. In this article, we focus on the use of livestock in maximum-containment, biosafety level-4 agriculture (BSL-4Ag) research involving zoonotic, risk group 4 pathogens and we provide an overview of historical associated research and contributions. Livestock are most commonly used as target-host models in high-consequence, maximum-containment research and are routinely used to establish data to assist in risk assessments. This article highlights the importance of animal use, insights gained, and how this type of research is essential for protecting animal health, food security, and the agriculture economy, as well as human public health in the face of emerging zoonotic pathogens. The utilization of animal models in high-consequence pathogen research and continued expansion to include available species of agricultural importance is essential to deciphering the ecology of emerging and re-emerging infectious diseases, as well as for emergency response and mitigation preparedness.
Collapse
Affiliation(s)
- Charles E Lewis
- Corresponding Author: Dr Charles E. Lewis, DVM, MPH, MS, National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3M4, Canada. E-mail:
| | | |
Collapse
|
42
|
Deshpande K, Vanak AT, Devy MS, Krishnaswamy J. Forbidden fruits? Ecosystem services from seed dispersal by fruit bats in the context of latent zoonotic risk. OIKOS 2022. [DOI: 10.1111/oik.08359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kadambari Deshpande
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura Bangalore Karnataka India
- Manipal Academy of Higher Education (MAHE), Madhav Nagar Manipal Karnataka India
| | - Abi T. Vanak
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura Bangalore Karnataka India
- DBT/Wellcome Trust India Alliance Hyderabad India
- School of Life Sciences, Univ. of KwaZulu‐Natal Westville Durban South Africa
| | - M. Soubadra Devy
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura Bangalore Karnataka India
| | - Jagdish Krishnaswamy
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura Bangalore Karnataka India
- School of Environment and Sustainability, Indian Inst. for Human Settlements, Sadashiv Nagar Bangalore Karnataka India
| |
Collapse
|
43
|
Loomis RJ, DiPiazza AT, Falcone S, Ruckwardt TJ, Morabito KM, Abiona OM, Chang LA, Caringal RT, Presnyak V, Narayanan E, Tsybovsky Y, Nair D, Hutchinson GB, Stewart-Jones GBE, Kueltzo LA, Himansu S, Mascola JR, Carfi A, Graham BS. Chimeric Fusion (F) and Attachment (G) Glycoprotein Antigen Delivery by mRNA as a Candidate Nipah Vaccine. Front Immunol 2021; 12:772864. [PMID: 34956199 PMCID: PMC8692728 DOI: 10.3389/fimmu.2021.772864] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Nipah virus (NiV) represents a significant pandemic threat with zoonotic transmission from bats-to-humans with almost annual regional outbreaks characterized by documented human-to-human transmission and high fatality rates. Currently, no vaccine against NiV has been approved. Structure-based design and protein engineering principles were applied to stabilize the fusion (F) protein in its prefusion trimeric conformation (pre-F) to improve expression and increase immunogenicity. We covalently linked the stabilized pre-F through trimerization domains at the C-terminus to three attachment protein (G) monomers, forming a chimeric design. These studies detailed here focus on mRNA delivery of NiV immunogens in mice, assessment of mRNA immunogen-specific design elements and their effects on humoral and cellular immunogenicity. The pre-F/G chimera elicited a strong neutralizing antibody response and a superior NiV-specific Tfh and other effector T cell response compared to G alone across both the mRNA and protein platforms. These findings enabled final candidate selection of pre-F/G Fd for clinical development.
Collapse
Affiliation(s)
- Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Barney S. Graham, ; Rebecca J. Loomis,
| | - Anthony T. DiPiazza
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Tracy J. Ruckwardt
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kaitlyn M. Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Olubukola M. Abiona
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lauren A. Chang
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ria T. Caringal
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Deepika Nair
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Geoffrey B. Hutchinson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Guillaume B. E. Stewart-Jones
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lisa A. Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Barney S. Graham, ; Rebecca J. Loomis,
| |
Collapse
|
44
|
Durrance-Bagale A, Rudge JW, Singh NB, Belmain SR, Howard N. Drivers of zoonotic disease risk in the Indian subcontinent: A scoping review. One Health 2021; 13:100310. [PMID: 34458546 PMCID: PMC8379342 DOI: 10.1016/j.onehlt.2021.100310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Literature on potential anthropogenic drivers of zoonotic disease risk in the Indian subcontinent is sparse. We conducted a scoping review to identify primary sources, published 2000-2020, to clarify what research exists and on which areas future research should focus. We summarised findings thematically by disease. Of 80 sources included, 78 (98%) were original research articles and two were conference abstracts. Study designs and methods were not always clearly described, but 74 (93%) were quantitative (including one randomised trial), five (6%) were mixed-methods, and one was qualitative. Most sources reported research from India (39%) or Bangladesh (31%), followed by Pakistan (9%), Nepal (9%), Bhutan and Sri Lanka (6% each). Topically, most focused on rabies (18; 23%), Nipah virus (16; 20%) or leptospirosis (11; 14%), while 12 (15%) did not focus on a disease but instead on knowledge in communities. People generally did not seek post-exposure prophylaxis for rabies even when vaccination programmes were available and they understood that rabies was fatal, instead often relying on traditional medicines. Similarly, people did not take precautions to protect themselves from leptospirosis infection, even when they were aware of the link with rice cultivation. Nipah was correlated with presence of bats near human habitation. Official information on diseases, modes of transmission and prevention was lacking, or shared informally between friends, relatives, and neighbours. Behaviour did not correspond to disease knowledge. This review identifies various human behaviours which may drive zoonotic disease risk in the Indian subcontinent. Increasing community knowledge and awareness alone is unlikely to be sufficient to successfully change these behaviours. Further research, using interdisciplinary and participatory methods, would improve understanding of risks and risk perceptions and thus help in co-designing context-specific, relevant interventions.
Collapse
Affiliation(s)
- Anna Durrance-Bagale
- London School of Hygiene and Tropical Medicine, Department of Global Health and Development, 15-17 Tavistock Place, London WC1H 9SH, United Kingdom
| | - James W. Rudge
- London School of Hygiene and Tropical Medicine, Department of Global Health and Development, 15-17 Tavistock Place, London WC1H 9SH, United Kingdom
- Mahidol University, Faculty of Public Health, 420/1 Rajvithi Road, Bangkok, Thailand
| | - Nanda Bahadur Singh
- Tribhuvan University, Central Department of Zoology, Kathmandu, Nepal
- Mid-Western University, Surkhet, Nepal
| | - Steven R. Belmain
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Natasha Howard
- London School of Hygiene and Tropical Medicine, Department of Global Health and Development, 15-17 Tavistock Place, London WC1H 9SH, United Kingdom
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, Singapore
| |
Collapse
|
45
|
Dang HV, Cross RW, Borisevich V, Bornholdt ZA, West BR, Chan YP, Mire CE, Da Silva SC, Dimitrov AS, Yan L, Amaya M, Navaratnarajah CK, Zeitlin L, Geisbert TW, Broder CC, Veesler D. Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins. Nat Struct Mol Biol 2021; 28:426-434. [PMID: 33927387 DOI: 10.1038/s41594-021-00584-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are henipaviruses (HNVs) causing respiratory illness and severe encephalitis in humans, with fatality rates of 50-100%. There are no licensed therapeutics or vaccines to protect humans. HeV and NiV use a receptor-binding glycoprotein (G) and a fusion glycoprotein (F) to enter host cells. HNV F and G are the main targets of the humoral immune response, and the presence of neutralizing antibodies is a correlate of protection against NiV and HeV in experimentally infected animals. We describe here two cross-reactive F-specific antibodies, 1F5 and 12B2, that neutralize NiV and HeV through inhibition of membrane fusion. Cryo-electron microscopy structures reveal that 1F5 and 12B2 recognize distinct prefusion-specific, conserved quaternary epitopes and lock F in its prefusion conformation. We provide proof-of-concept for using antibody cocktails for neutralizing NiV and HeV and define a roadmap for developing effective countermeasures against these highly pathogenic viruses.
Collapse
Affiliation(s)
- Ha V Dang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | - Yee-Peng Chan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Chad E Mire
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Antony S Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | | | | | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
46
|
Kuthyar S, Anthony CL, Fashina T, Yeh S, Shantha JG. World Health Organization High Priority Pathogens: Ophthalmic Disease Findings and Vision Health Perspectives. Pathogens 2021; 10:442. [PMID: 33917710 PMCID: PMC8068131 DOI: 10.3390/pathogens10040442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
Recent Ebola epidemics, the ongoing COVID-19 pandemic, and emerging infectious disease threats have highlighted the importance of global infectious diseases and responses to public health emergencies. Ophthalmologists are essential health care workers who provide urgent and emergent vision care services during outbreaks and address the ocular consequences of epidemic and pandemic infectious diseases. In 2017, the World Health Organization (WHO) identified high priority pathogens likely to cause a future epidemic with the goal of guiding research and development to improve diagnostic tests, vaccines, and medicines. These measures were necessary to better inform and respond to public health emergencies. Given the ocular complications associated with emerging infectious diseases, there is a need to recognize the ophthalmic sequelae for future vision health preparedness for potential future outbreaks. The WHO High Priority pathogens list provides a roadmap for ophthalmologists and subspecialty providers that will guide strategic areas of research for clinical care and preparedness for future pandemic threats. This review summarizes these key viral pathogens, summarizes major systemic disease findings, and delineates relevant ocular complications of the WHO High Priority pathogens list, including Crimean-Congo hemorrhagic fever, Filovirus diseases (Ebola virus disease and Marburg hemorrhagic fever), human Coronaviruses, Lassa Fever, Nipah virus infection, Zika, and Rift Valley fever.
Collapse
Affiliation(s)
- Sanjana Kuthyar
- Emory Eye Center, Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.K.); (C.L.A.); (T.F.)
| | - Casey L. Anthony
- Emory Eye Center, Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.K.); (C.L.A.); (T.F.)
| | - Tolulope Fashina
- Emory Eye Center, Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.K.); (C.L.A.); (T.F.)
| | - Steven Yeh
- Emory Eye Center, Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.K.); (C.L.A.); (T.F.)
- Department of Ophthalmology, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Jessica G. Shantha
- Emory Eye Center, Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.K.); (C.L.A.); (T.F.)
| |
Collapse
|
47
|
Burthe SJ, Schäfer SM, Asaaga FA, Balakrishnan N, Chanda MM, Darshan N, Hoti SL, Kiran SK, Seshadri T, Srinivas PN, Vanak AT, Purse BV. Reviewing the ecological evidence base for management of emerging tropical zoonoses: Kyasanur Forest Disease in India as a case study. PLoS Negl Trop Dis 2021; 15:e0009243. [PMID: 33793560 PMCID: PMC8016103 DOI: 10.1371/journal.pntd.0009243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Zoonoses disproportionately affect tropical communities and are associated with human modification and use of ecosystems. Effective management is hampered by poor ecological understanding of disease transmission and often focuses on human vaccination or treatment. Better ecological understanding of multi-vector and multi-host transmission, social and environmental factors altering human exposure, might enable a broader suite of management options. Options may include "ecological interventions" that target vectors or hosts and require good knowledge of underlying transmission processes, which may be more effective, economical, and long lasting than conventional approaches. New frameworks identify the hierarchical series of barriers that a pathogen needs to overcome before human spillover occurs and demonstrate how ecological interventions may strengthen these barriers and complement human-focused disease control. We extend these frameworks for vector-borne zoonoses, focusing on Kyasanur Forest Disease Virus (KFDV), a tick-borne, neglected zoonosis affecting poor forest communities in India, involving complex communities of tick and host species. We identify the hierarchical barriers to pathogen transmission targeted by existing management. We show that existing interventions mainly focus on human barriers (via personal protection and vaccination) or at barriers relating to Kyasanur Forest Disease (KFD) vectors (tick control on cattle and at the sites of host (monkey) deaths). We review the validity of existing management guidance for KFD through literature review and interviews with disease managers. Efficacy of interventions was difficult to quantify due to poor empirical understanding of KFDV-vector-host ecology, particularly the role of cattle and monkeys in the disease transmission cycle. Cattle are hypothesised to amplify tick populations. Monkeys may act as sentinels of human infection or are hypothesised to act as amplifying hosts for KFDV, but the spatial scale of risk arising from ticks infected via monkeys versus small mammal reservoirs is unclear. We identified 19 urgent research priorities for refinement of current management strategies or development of ecological interventions targeting vectors and host barriers to prevent disease spillover in the future.
Collapse
Affiliation(s)
- Sarah J. Burthe
- UK Centre for Ecology & Hydrology, Edinburgh, United Kingdom
| | | | | | - Natrajan Balakrishnan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | | | - Narayanaswamy Darshan
- Department of Health and Family Welfare Services, Government of Karnataka, Shivamogga, India
- ICMR-National Institute for Traditional Medicine, Belgavi, India
| | - Subhash L. Hoti
- ICMR-National Institute for Traditional Medicine, Belgavi, India
| | - Shivani K. Kiran
- Department of Health and Family Welfare Services, Government of Karnataka, Shivamogga, India
| | - Tanya Seshadri
- Vivekananda Gorukana Kalyana Kendra (VGKK), Chamarajanagar, India
| | - Prashanth N. Srinivas
- Ashoka Trust for Ecology and the Environment, Bengaluru, India
- DBT/Wellcome Trust India Alliance Fellow, Hyderabad, India
- Institute of Public Health, Bangalore, India
| | - Abi T. Vanak
- Ashoka Trust for Ecology and the Environment, Bengaluru, India
- DBT/Wellcome Trust India Alliance Fellow, Hyderabad, India
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bethan V. Purse
- UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
| |
Collapse
|
48
|
Hauser N, Gushiken AC, Narayanan S, Kottilil S, Chua JV. Evolution of Nipah Virus Infection: Past, Present, and Future Considerations. Trop Med Infect Dis 2021; 6:tropicalmed6010024. [PMID: 33672796 PMCID: PMC8005932 DOI: 10.3390/tropicalmed6010024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus of the Henipavirus genus first identified in Malaysia in 1998. Henipaviruses have bat reservoir hosts and have been isolated from fruit bats found across Oceania, Asia, and Africa. Bat-to-human transmission is thought to be the primary mode of human NiV infection, although multiple intermediate hosts are described. Human infections with NiV were originally described as a syndrome of fever and rapid neurological decline following contact with swine. More recent outbreaks describe a syndrome with prominent respiratory symptoms and human-to-human transmission. Nearly annual outbreaks have been described since 1998 with case fatality rates reaching greater than 90%. The ubiquitous nature of the reservoir host, increasing deforestation, multiple mode of transmission, high case fatality rate, and lack of effective therapy or vaccines make NiV’s pandemic potential increasingly significant. Here we review the epidemiology and microbiology of NiV as well as the therapeutic agents and vaccines in development.
Collapse
Affiliation(s)
- Naomi Hauser
- Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA 95817, USA;
| | - Alexis C. Gushiken
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
| | - Shivakumar Narayanan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
| | - Shyam Kottilil
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
| | - Joel V. Chua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
- Correspondence: ; Tel.: +1-410-706-5704
| |
Collapse
|
49
|
McKee CD, Islam A, Luby SP, Salje H, Hudson PJ, Plowright RK, Gurley ES. The Ecology of Nipah Virus in Bangladesh: A Nexus of Land-Use Change and Opportunistic Feeding Behavior in Bats. Viruses 2021; 13:169. [PMID: 33498685 PMCID: PMC7910977 DOI: 10.3390/v13020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nipah virus is a bat-borne paramyxovirus that produces yearly outbreaks of fatal encephalitis in Bangladesh. Understanding the ecological conditions that lead to spillover from bats to humans can assist in designing effective interventions. To investigate the current and historical processes that drive Nipah spillover in Bangladesh, we analyzed the relationship among spillover events and climatic conditions, the spatial distribution and size of Pteropus medius roosts, and patterns of land-use change in Bangladesh over the last 300 years. We found that 53% of annual variation in winter spillovers is explained by winter temperature, which may affect bat behavior, physiology, and human risk behaviors. We infer from changes in forest cover that a progressive shift in bat roosting behavior occurred over hundreds of years, producing the current system where a majority of P. medius populations are small (median of 150 bats), occupy roost sites for 10 years or more, live in areas of high human population density, and opportunistically feed on cultivated food resources-conditions that promote viral spillover. Without interventions, continuing anthropogenic pressure on bat populations similar to what has occurred in Bangladesh could result in more regular spillovers of other bat viruses, including Hendra and Ebola viruses.
Collapse
Affiliation(s)
- Clifton D. McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Ausraful Islam
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh;
| | - Stephen P. Luby
- Infectious Diseases and Geographic Medicine Division, Stanford University, Stanford, CA 94305, USA;
| | - Henrik Salje
- Department of Genetics, Cambridge University, Cambridge CB2 3EJ, UK;
| | - Peter J. Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA 16801, USA;
| | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Emily S. Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
50
|
Whitmer SLM, Lo MK, Sazzad HMS, Zufan S, Gurley ES, Sultana S, Amman B, Ladner JT, Rahman MZ, Doan S, Satter SM, Flora MS, Montgomery JM, Nichol ST, Spiropoulou CF, Klena JD. Inference of Nipah virus evolution, 1999-2015. Virus Evol 2021; 7:veaa062. [PMID: 34422315 PMCID: PMC7947586 DOI: 10.1093/ve/veaa062] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite near-annual human outbreaks of Nipah virus (NiV) disease in Bangladesh, typically due to individual spillover events from the local bat population, only twenty whole-genome NiV sequences exist from humans and ten from bats. NiV whole-genome sequences from annual outbreaks have been challenging to generate, primarily due to the low viral load in human throat swab and serum specimens. Here, we used targeted enrichment with custom NiV-specific probes and generated thirty-five additional unique full-length genomic sequences directly from human specimens and viral isolates. We inferred the temporal and geographic evolutionary history of NiV in Bangladesh and expanded a tool to visualize NiV spatio-temporal spread from a Bayesian continuous diffusion analysis. We observed that strains from Bangladesh segregated into two distinct clades that have intermingled geographically in Bangladesh over time and space. As these clades expanded geographically and temporally, we did not observe evidence for significant branch and site-specific selection, except for a single site in the Henipavirus L polymerase. However, the Bangladesh 1 and 2 clades are differentiated by mutations initially occurring in the polymerase, with additional mutations accumulating in the N, G, F, P, and L genes on external branches. Modeling the historic geographical and temporal spread demonstrates that while widespread, NiV does not exhibit significant genetic variation in Bangladesh. Thus, future public health measures should address whether NiV within in the bat population also exhibits comparable genetic variation, if zoonotic transmission results in a genetic bottleneck and if surveillance techniques are detecting only a subset of NiV.
Collapse
Affiliation(s)
- Shannon L M Whitmer
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Hossain M S Sazzad
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Sara Zufan
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Emily S Gurley
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sharmin Sultana
- Institute of Epidemiology, Disease Control and Research, Bangladesh
| | - Brian Amman
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Mohammed Ziaur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Stephanie Doan
- The Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329
| | - Syed M Satter
- Institute of Epidemiology, Disease Control and Research, Bangladesh
| | - Meerjady S Flora
- Institute of Epidemiology, Disease Control and Research, Bangladesh
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| | - John D Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329, USA
| |
Collapse
|