1
|
Karani A, Ombok C, Situma S, Breiman R, Mureithi M, Jaoko W, Njenga MK, Ngere I. Low-Level Zoonotic Transmission of Clade C MERS-CoV in Africa: Insights from Scoping Review and Cohort Studies in Hospital and Community Settings. Viruses 2025; 17:125. [PMID: 39861917 PMCID: PMC11768526 DOI: 10.3390/v17010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Human outbreaks of Middle East respiratory syndrome coronavirus (MERS-CoV) are more common in Middle Eastern and Asian human populations, associated with clades A and B. In Africa, where clade C is dominant in camels, human cases are minimal. We reviewed 16 studies (n = 6198) published across seven African countries between 2012 and 2024 to assess human MERS-CoV cases. We also analyzed data from four cohort studies conducted in camel-keeping communities between 2018 and 2024 involving camel keepers, camel slaughterhouse workers, and hospital patients with acute respiratory illness (ARI). The analysis showed a pooled MERS-CoV prevalence of 2.4% (IQR: 0.6, 11.4) from 16 publications and 1.14% from 4 cohort studies (n = 2353). Symptomatic cases were rarely reported, with most individuals reporting camel contact, and only 12% had travel history to the Middle East. There was one travel-associated reported death, resulting in a mortality rate of 0.013%. The findings suggest a low camel-to-human transmission of clade C MERS-CoV in Africa. Ongoing research focuses on genomic comparisons between clade C and the more virulent clades A and B, alongside the surveillance of viral evolution. This study highlights the need for continuous monitoring but indicates that MERS-CoV clade C currently poses a minimal public health threat in Africa.
Collapse
Affiliation(s)
- Andrew Karani
- Global Health Program, Washington State University Global Health-Kenya, Nairobi 00200, Kenya; (A.K.); (C.O.); (S.S.); (M.K.N.)
- Department of Medical Microbiology, University of Nairobi, Nairobi 00200, Kenya; (M.M.); (W.J.)
| | - Cynthia Ombok
- Global Health Program, Washington State University Global Health-Kenya, Nairobi 00200, Kenya; (A.K.); (C.O.); (S.S.); (M.K.N.)
| | - Silvia Situma
- Global Health Program, Washington State University Global Health-Kenya, Nairobi 00200, Kenya; (A.K.); (C.O.); (S.S.); (M.K.N.)
- Department of Medical Microbiology, University of Nairobi, Nairobi 00200, Kenya; (M.M.); (W.J.)
| | - Robert Breiman
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
| | - Marianne Mureithi
- Department of Medical Microbiology, University of Nairobi, Nairobi 00200, Kenya; (M.M.); (W.J.)
| | - Walter Jaoko
- Department of Medical Microbiology, University of Nairobi, Nairobi 00200, Kenya; (M.M.); (W.J.)
| | - M. Kariuki Njenga
- Global Health Program, Washington State University Global Health-Kenya, Nairobi 00200, Kenya; (A.K.); (C.O.); (S.S.); (M.K.N.)
- Paul G Allen School of Global Health, Washington State University, Pullman, WA 98165, USA
| | - Isaac Ngere
- Global Health Program, Washington State University Global Health-Kenya, Nairobi 00200, Kenya; (A.K.); (C.O.); (S.S.); (M.K.N.)
- Paul G Allen School of Global Health, Washington State University, Pullman, WA 98165, USA
| |
Collapse
|
2
|
Hassan AM, Mühlemann B, Al-Subhi TL, Rodon J, El-Kafrawy SA, Memish Z, Melchert J, Bleicker T, Mauno T, Perlman S, Zumla A, Jones TC, Müller MA, Corman VM, Drosten C, Azhar EI. Ongoing Evolution of Middle East Respiratory Syndrome Coronavirus, Saudi Arabia, 2023-2024. Emerg Infect Dis 2025; 31:57-65. [PMID: 39641462 DOI: 10.3201/eid3101.241030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) circulates in dromedary camels in the Arabian Peninsula and occasionally causes spillover infections in humans. MERS-CoV diversity is poorly understood because of the lack of sampling during the COVID-19 pandemic. We collected 558 swab samples from dromedary camels in Saudi Arabia during November 2023-January 2024. We found 39% were positive for MERS-CoV RNA by reverse transcription PCR. We sequenced 42 MERS-CoVs and 7 human 229E-related coronaviruses from camel swab samples by using high-throughput sequencing. Sequences from both viruses formed monophyletic clades apical to recently available genomes. MERS-CoV sequences were most similar to B5 lineage sequences and harbored unique genetic features, including novel amino acid polymorphisms in the spike protein. Further characterization will be required to understand their effects. MERS-CoV spillover into humans poses considerable public health concerns. Our findings indicate surveillance and phenotypic studies are needed to identify and monitor MERS-CoV pandemic potential.
Collapse
|
3
|
Ragotte RJ, Tortorici MA, Catanzaro NJ, Addetia A, Coventry B, Froggatt HM, Lee J, Stewart C, Brown JT, Goreshnik I, Sims JN, Milles LF, Wicky BI, Glögl M, Gerben S, Kang A, Bera AK, Sharkey W, Schäfer A, Baric RS, Baker D, Veesler D. Designed miniproteins potently inhibit and protect against MERS-CoV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.03.621760. [PMID: 39574666 PMCID: PMC11580849 DOI: 10.1101/2024.11.03.621760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Middle-East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen with 36% case-fatality rate in humans. No vaccines or specific therapeutics are currently approved to use in humans or the camel host reservoir. Here, we computationally designed monomeric and homo-oligomeric miniproteins binding with high affinity to the MERS-CoV spike (S) glycoprotein, the main target of neutralizing antibodies and vaccine development. We show that these miniproteins broadly neutralize a panel of MERS-CoV S variants, spanning the known antigenic diversity of this pathogen, by targeting a conserved site in the receptor-binding domain (RBD). The miniproteins directly compete with binding of the DPP4 receptor to MERS-CoV S, thereby blocking viral attachment to the host entry receptor and subsequent membrane fusion. Intranasal administration of a lead miniprotein provides prophylactic protection against stringent MERS-CoV challenge in mice motivating future clinical development as a next-generation countermeasure against this virus with pandemic potential.
Collapse
Affiliation(s)
- Robert J. Ragotte
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | | | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Heather M. Froggatt
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T. Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jeremiah N. Sims
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lukas F. Milles
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Basile I.M. Wicky
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Matthias Glögl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Stacey Gerben
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Asim K. Bera
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - William Sharkey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Ogoti BM, Riitho V, Wildemann J, Mutono N, Tesch J, Rodon J, Harichandran K, Emanuel J, Möncke-Buchner E, Kiambi S, Oyugi J, Mureithi M, Corman VM, Drosten C, Thumbi SM, Müller MA. Biphasic MERS-CoV Incidence in Nomadic Dromedaries with Putative Transmission to Humans, Kenya, 2022-2023. Emerg Infect Dis 2024; 30:581-585. [PMID: 38407189 PMCID: PMC10902546 DOI: 10.3201/eid3003.231488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in dromedaries in Africa, but camel-to-human transmission is limited. Sustained 12-month sampling of dromedaries in a Kenya abattoir hub showed biphasic MERS-CoV incidence; peak detections occurred in October 2022 and February 2023. Dromedary-exposed abattoir workers (7/48) had serologic signs of previous MERS-CoV exposure.
Collapse
Affiliation(s)
| | | | | | - Nyamai Mutono
- University of Nairobi, Nairobi, Kenya (B.M. Ogoti, V. Riitho, N. Mutono, J. Oyugi, M. Mureithi, S.M. Thumbi)
- Queen Mary University of London, London, UK (V. Riitho)
- Charité–Universitätsmedizin Berlin, Berlin, Germany (J. Wildemann, J. Tesch, J. Rodon, K. Harichandran, J. Emanuel, E. Möncke-Buchner, V.M. Corman, C. Drosten, M.A. Müller)
- Washington State University, Pullman, Washington, USA (N. Mutono, S.M. Thumbi)
- Food and Agriculture Organization, Dar es Salaam, Tanzania (S. Kiambi)
- Labor Berlin–Charité Vivantes GmbH, Berlin (V.M. Corman)
- German Center for Infection Research, Berlin (V.M. Corman, C. Drosten, M.A. Müller)
- University of Edinburgh, Edinburgh, Scotland, UK (S.M. Thumbi)
| | - Julia Tesch
- University of Nairobi, Nairobi, Kenya (B.M. Ogoti, V. Riitho, N. Mutono, J. Oyugi, M. Mureithi, S.M. Thumbi)
- Queen Mary University of London, London, UK (V. Riitho)
- Charité–Universitätsmedizin Berlin, Berlin, Germany (J. Wildemann, J. Tesch, J. Rodon, K. Harichandran, J. Emanuel, E. Möncke-Buchner, V.M. Corman, C. Drosten, M.A. Müller)
- Washington State University, Pullman, Washington, USA (N. Mutono, S.M. Thumbi)
- Food and Agriculture Organization, Dar es Salaam, Tanzania (S. Kiambi)
- Labor Berlin–Charité Vivantes GmbH, Berlin (V.M. Corman)
- German Center for Infection Research, Berlin (V.M. Corman, C. Drosten, M.A. Müller)
- University of Edinburgh, Edinburgh, Scotland, UK (S.M. Thumbi)
| | - Jordi Rodon
- University of Nairobi, Nairobi, Kenya (B.M. Ogoti, V. Riitho, N. Mutono, J. Oyugi, M. Mureithi, S.M. Thumbi)
- Queen Mary University of London, London, UK (V. Riitho)
- Charité–Universitätsmedizin Berlin, Berlin, Germany (J. Wildemann, J. Tesch, J. Rodon, K. Harichandran, J. Emanuel, E. Möncke-Buchner, V.M. Corman, C. Drosten, M.A. Müller)
- Washington State University, Pullman, Washington, USA (N. Mutono, S.M. Thumbi)
- Food and Agriculture Organization, Dar es Salaam, Tanzania (S. Kiambi)
- Labor Berlin–Charité Vivantes GmbH, Berlin (V.M. Corman)
- German Center for Infection Research, Berlin (V.M. Corman, C. Drosten, M.A. Müller)
- University of Edinburgh, Edinburgh, Scotland, UK (S.M. Thumbi)
| | - Kaneemozhe Harichandran
- University of Nairobi, Nairobi, Kenya (B.M. Ogoti, V. Riitho, N. Mutono, J. Oyugi, M. Mureithi, S.M. Thumbi)
- Queen Mary University of London, London, UK (V. Riitho)
- Charité–Universitätsmedizin Berlin, Berlin, Germany (J. Wildemann, J. Tesch, J. Rodon, K. Harichandran, J. Emanuel, E. Möncke-Buchner, V.M. Corman, C. Drosten, M.A. Müller)
- Washington State University, Pullman, Washington, USA (N. Mutono, S.M. Thumbi)
- Food and Agriculture Organization, Dar es Salaam, Tanzania (S. Kiambi)
- Labor Berlin–Charité Vivantes GmbH, Berlin (V.M. Corman)
- German Center for Infection Research, Berlin (V.M. Corman, C. Drosten, M.A. Müller)
- University of Edinburgh, Edinburgh, Scotland, UK (S.M. Thumbi)
| | - Jackson Emanuel
- University of Nairobi, Nairobi, Kenya (B.M. Ogoti, V. Riitho, N. Mutono, J. Oyugi, M. Mureithi, S.M. Thumbi)
- Queen Mary University of London, London, UK (V. Riitho)
- Charité–Universitätsmedizin Berlin, Berlin, Germany (J. Wildemann, J. Tesch, J. Rodon, K. Harichandran, J. Emanuel, E. Möncke-Buchner, V.M. Corman, C. Drosten, M.A. Müller)
- Washington State University, Pullman, Washington, USA (N. Mutono, S.M. Thumbi)
- Food and Agriculture Organization, Dar es Salaam, Tanzania (S. Kiambi)
- Labor Berlin–Charité Vivantes GmbH, Berlin (V.M. Corman)
- German Center for Infection Research, Berlin (V.M. Corman, C. Drosten, M.A. Müller)
- University of Edinburgh, Edinburgh, Scotland, UK (S.M. Thumbi)
| | - Elisabeth Möncke-Buchner
- University of Nairobi, Nairobi, Kenya (B.M. Ogoti, V. Riitho, N. Mutono, J. Oyugi, M. Mureithi, S.M. Thumbi)
- Queen Mary University of London, London, UK (V. Riitho)
- Charité–Universitätsmedizin Berlin, Berlin, Germany (J. Wildemann, J. Tesch, J. Rodon, K. Harichandran, J. Emanuel, E. Möncke-Buchner, V.M. Corman, C. Drosten, M.A. Müller)
- Washington State University, Pullman, Washington, USA (N. Mutono, S.M. Thumbi)
- Food and Agriculture Organization, Dar es Salaam, Tanzania (S. Kiambi)
- Labor Berlin–Charité Vivantes GmbH, Berlin (V.M. Corman)
- German Center for Infection Research, Berlin (V.M. Corman, C. Drosten, M.A. Müller)
- University of Edinburgh, Edinburgh, Scotland, UK (S.M. Thumbi)
| | - Stella Kiambi
- University of Nairobi, Nairobi, Kenya (B.M. Ogoti, V. Riitho, N. Mutono, J. Oyugi, M. Mureithi, S.M. Thumbi)
- Queen Mary University of London, London, UK (V. Riitho)
- Charité–Universitätsmedizin Berlin, Berlin, Germany (J. Wildemann, J. Tesch, J. Rodon, K. Harichandran, J. Emanuel, E. Möncke-Buchner, V.M. Corman, C. Drosten, M.A. Müller)
- Washington State University, Pullman, Washington, USA (N. Mutono, S.M. Thumbi)
- Food and Agriculture Organization, Dar es Salaam, Tanzania (S. Kiambi)
- Labor Berlin–Charité Vivantes GmbH, Berlin (V.M. Corman)
- German Center for Infection Research, Berlin (V.M. Corman, C. Drosten, M.A. Müller)
- University of Edinburgh, Edinburgh, Scotland, UK (S.M. Thumbi)
| | - Julius Oyugi
- University of Nairobi, Nairobi, Kenya (B.M. Ogoti, V. Riitho, N. Mutono, J. Oyugi, M. Mureithi, S.M. Thumbi)
- Queen Mary University of London, London, UK (V. Riitho)
- Charité–Universitätsmedizin Berlin, Berlin, Germany (J. Wildemann, J. Tesch, J. Rodon, K. Harichandran, J. Emanuel, E. Möncke-Buchner, V.M. Corman, C. Drosten, M.A. Müller)
- Washington State University, Pullman, Washington, USA (N. Mutono, S.M. Thumbi)
- Food and Agriculture Organization, Dar es Salaam, Tanzania (S. Kiambi)
- Labor Berlin–Charité Vivantes GmbH, Berlin (V.M. Corman)
- German Center for Infection Research, Berlin (V.M. Corman, C. Drosten, M.A. Müller)
- University of Edinburgh, Edinburgh, Scotland, UK (S.M. Thumbi)
| | - Marianne Mureithi
- University of Nairobi, Nairobi, Kenya (B.M. Ogoti, V. Riitho, N. Mutono, J. Oyugi, M. Mureithi, S.M. Thumbi)
- Queen Mary University of London, London, UK (V. Riitho)
- Charité–Universitätsmedizin Berlin, Berlin, Germany (J. Wildemann, J. Tesch, J. Rodon, K. Harichandran, J. Emanuel, E. Möncke-Buchner, V.M. Corman, C. Drosten, M.A. Müller)
- Washington State University, Pullman, Washington, USA (N. Mutono, S.M. Thumbi)
- Food and Agriculture Organization, Dar es Salaam, Tanzania (S. Kiambi)
- Labor Berlin–Charité Vivantes GmbH, Berlin (V.M. Corman)
- German Center for Infection Research, Berlin (V.M. Corman, C. Drosten, M.A. Müller)
- University of Edinburgh, Edinburgh, Scotland, UK (S.M. Thumbi)
| | - Victor M. Corman
- University of Nairobi, Nairobi, Kenya (B.M. Ogoti, V. Riitho, N. Mutono, J. Oyugi, M. Mureithi, S.M. Thumbi)
- Queen Mary University of London, London, UK (V. Riitho)
- Charité–Universitätsmedizin Berlin, Berlin, Germany (J. Wildemann, J. Tesch, J. Rodon, K. Harichandran, J. Emanuel, E. Möncke-Buchner, V.M. Corman, C. Drosten, M.A. Müller)
- Washington State University, Pullman, Washington, USA (N. Mutono, S.M. Thumbi)
- Food and Agriculture Organization, Dar es Salaam, Tanzania (S. Kiambi)
- Labor Berlin–Charité Vivantes GmbH, Berlin (V.M. Corman)
- German Center for Infection Research, Berlin (V.M. Corman, C. Drosten, M.A. Müller)
- University of Edinburgh, Edinburgh, Scotland, UK (S.M. Thumbi)
| | - Christian Drosten
- University of Nairobi, Nairobi, Kenya (B.M. Ogoti, V. Riitho, N. Mutono, J. Oyugi, M. Mureithi, S.M. Thumbi)
- Queen Mary University of London, London, UK (V. Riitho)
- Charité–Universitätsmedizin Berlin, Berlin, Germany (J. Wildemann, J. Tesch, J. Rodon, K. Harichandran, J. Emanuel, E. Möncke-Buchner, V.M. Corman, C. Drosten, M.A. Müller)
- Washington State University, Pullman, Washington, USA (N. Mutono, S.M. Thumbi)
- Food and Agriculture Organization, Dar es Salaam, Tanzania (S. Kiambi)
- Labor Berlin–Charité Vivantes GmbH, Berlin (V.M. Corman)
- German Center for Infection Research, Berlin (V.M. Corman, C. Drosten, M.A. Müller)
- University of Edinburgh, Edinburgh, Scotland, UK (S.M. Thumbi)
| | | | | |
Collapse
|
5
|
Zhou Z, Ali A, Walelign E, Demissie GF, El Masry I, Abayneh T, Getachew B, Krishnan P, Ng DY, Gardner E, Makonnen Y, Miguel E, Chevalier V, Chu DK, So RTY, Von Dobschuetz S, Mamo G, Poon LLM, Peiris M. Genetic diversity and molecular epidemiology of Middle East Respiratory Syndrome Coronavirus in dromedaries in Ethiopia, 2017-2020. Emerg Microbes Infect 2023; 12:e2164218. [PMID: 36620913 PMCID: PMC9888459 DOI: 10.1080/22221751.2022.2164218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is enzootic in dromedary camels and causes zoonotic infection and disease in humans. Although over 80% of the global population of infected dromedary camels are found in Africa, zoonotic disease had only been reported in the Arabia Peninsula and travel-associated disease has been reported elsewhere. In this study, genetic diversity and molecular epidemiology of MERS-CoV in dromedary camels in Ethiopia were investigated during 2017-2020. Of 1766 nasal swab samples collected, 61 (3.5%) were detected positive for MERS-CoV RNA. Of 484 turbinate swab samples collected, 10 (2.1%) were detected positive for MERS-CoV RNA. Twenty-five whole genome sequences were obtained from these MERS-CoV positive samples. Phylogenetically, these Ethiopian camel-originated MERS-CoV belonged to clade C2, clustering with other East African camel strains. Virus sequences from camel herds clustered geographically while in an abattoir, two distinct phylogenetic clusters of MERS-CoVs were observed in two sequential sampling collections, which indicates the greater genetic diversity of MERS-CoV in abattoirs. In contrast to clade A and B viruses from the Arabian Peninsula, clade C camel-originated MERS-CoV from Ethiopia had various nucleotide insertions and deletions in non-structural gene nsp3, accessory genes ORF3 and ORF5 and structural gene N. This study demonstrates the genetic instability of MERS-CoV in dromedaries in East Africa, which indicates that the virus is still actively adapting to its camel host. The impact of the observed nucleotide insertions and deletions on virus evolution, viral fitness, and zoonotic potential deserves further study.
Collapse
Affiliation(s)
- Ziqi Zhou
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Abraham Ali
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia,Department of Veterinary Microbiology, Immunology and Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Elias Walelign
- Food and Agriculture Organization, Emergency Centre for Transboundary Animal Diseases, Addis Ababa, Ethiopia
| | - Getnet F. Demissie
- College of Veterinary Medicine, Department of Veterinary Epidemiology, Microbiology and Public Health, Haramaya University, Haramaya, Ethiopia
| | - Ihab El Masry
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | | | - Pavithra Krishnan
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Daisy Y.M. Ng
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Emma Gardner
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Yilma Makonnen
- Food and Agriculture Organization, Subregional Office for Eastern Africa, Addis Ababa, Ethiopia
| | - Eve Miguel
- Animal, Santé, Territoires, Risques et Ecosystèmes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Université de Montpellier, Montpellier, France,Maladies Infectieuses et Vecteurs: Ecologie Genetique, Evolution et Controle, L’Institut de Recherche pour le Developpment, CNRS, Montpellier, France
| | - Véronique Chevalier
- International Center of Research in Agriculture for Development (CIRAD), UMR ASTRE, Montpellier, France,CIRAD, UMR ASTRE, Antananarivo, Madagascar,Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Daniel K. Chu
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China,UK Health Security Agency, London, UK
| | - Ray T. Y. So
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | | | - Gezahegne Mamo
- Department of Veterinary Microbiology, Immunology and Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Leo L. M. Poon
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China, Malik Peiris
| |
Collapse
|
6
|
Rodon J, Mykytyn AZ, Te N, Okba NMA, Lamers MM, Pailler-García L, Cantero G, Albulescu I, Bosch BJ, Peiris M, Bensaid A, Vergara-Alert J, Haagmans BL, Segalés J. Extended Viral Shedding of MERS-CoV Clade B Virus in Llamas Compared with African Clade C Strain. Emerg Infect Dis 2023; 29:585-589. [PMID: 36823022 PMCID: PMC9973703 DOI: 10.3201/eid2903.220986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) clade B viruses are found in camelids and humans in the Middle East, but clade C viruses are not. We provide experimental evidence for extended shedding of MERS-CoV clade B viruses in llamas, which might explain why they outcompete clade C strains in the Arabian Peninsula.
Collapse
|
7
|
Zhang A, Li X, Wang T, Liu K, Liu M, Zhang W, Zhao G, Chen J, Zhang X, Miao D, Ma W, Fang L, Yang Y, Liu W. Ecology of Middle East respiratory syndrome coronavirus, 2012-2020: A machine learning modelling analysis. Transbound Emerg Dis 2022; 69:e2122-e2131. [PMID: 35366384 PMCID: PMC9526759 DOI: 10.1111/tbed.14548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/30/2022]
Abstract
The ongoing enzootic circulation of the Middle East respiratory syndrome coronavirus (MERS-CoV) in the Middle East and North Africa is increasingly raising the concern about the possibility of its recombination with other human-adapted coronaviruses, particularly the pandemic SARS-CoV-2. We aim to provide an updated picture about ecological niches of MERS-CoV and associated socio-environmental drivers. Based on 356 confirmed MERS cases with animal contact reported to the WHO and 63 records of animal infections collected from the literature as of 30 May 2020, we assessed ecological niches of MERS-CoV using an ensemble model integrating three machine learning algorithms. With a high predictive accuracy (area under receiver operating characteristic curve = 91.66% in test data), the ensemble model estimated that ecologically suitable areas span over the Middle East, South Asia and the whole North Africa, much wider than the range of reported locally infected MERS cases and test-positive animal samples. Ecological suitability for MERS-CoV was significantly associated with high levels of bareland coverage (relative contribution = 30.06%), population density (7.28%), average temperature (6.48%) and camel density (6.20%). Future surveillance and intervention programs should target the high-risk populations and regions informed by updated quantitative analyses.
Collapse
Affiliation(s)
- An‐Ran Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of MedicineShandong UniversityJinanChina,State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina,Department of Biostatistics, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA,Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Xin‐Lou Li
- Department of Medical Research, Key Laboratory of Environmental Sense Organ Stress and Health of the Ministry of Environmental ProtectionPLA Strategic Support Force Medical CenterBeijingChina
| | - Tao Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Kun Liu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthAir Force Medical UniversityXi'anChina
| | - Ming‐Jin Liu
- Department of Biostatistics, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA,Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Wen‐Hui Zhang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Guo‐Ping Zhao
- Department of EpidemiologyLogistics College of Chinese People's Armed Police ForcesTianjinChina
| | - Jin‐Jin Chen
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Xiao‐Ai Zhang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Dong Miao
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Wei Ma
- Department of Epidemiology, School of Public Health, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Li‐Qun Fang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Yang Yang
- Department of Biostatistics, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA,Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Wei Liu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| |
Collapse
|
8
|
Ngere I, Hunsperger EA, Tong S, Oyugi J, Jaoko W, Harcourt JL, Thornburg NJ, Oyas H, Muturi M, Osoro EM, Gachohi J, Ombok C, Dawa J, Tao Y, Zhang J, Mwasi L, Ochieng C, Mwatondo A, Bodha B, Langat D, Herman-Roloff A, Njenga MK, Widdowson MA, Munyua PM. Outbreak of Middle East Respiratory Syndrome Coronavirus in Camels and Probable Spillover Infection to Humans in Kenya. Viruses 2022; 14:1743. [PMID: 36016365 PMCID: PMC9413448 DOI: 10.3390/v14081743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
The majority of Kenya’s > 3 million camels have antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV), although human infection in Africa is rare. We enrolled 243 camels aged 0−24 months from 33 homesteads in Northern Kenya and followed them between April 2018 to March 2020. We collected and tested camel nasal swabs for MERS-CoV RNA by RT-PCR followed by virus isolation and whole genome sequencing of positive samples. We also documented illnesses (respiratory or other) among the camels. Human camel handlers were also swabbed, screened for respiratory signs, and samples were tested for MERS-CoV by RT-PCR. We recorded 68 illnesses among 58 camels, of which 76.5% (52/68) were respiratory signs and the majority of illnesses (73.5% or 50/68) were recorded in 2019. Overall, 124/4692 (2.6%) camel swabs collected from 83 (34.2%) calves in 15 (45.5%) homesteads between April−September 2019 screened positive, while 22 calves (26.5%) recorded reinfections (second positive swab following ≥ 2 consecutive negative tests). Sequencing revealed a distinct Clade C2 virus that lacked the signature ORF4b deletions of other Clade C viruses. Three previously reported human PCR positive cases clustered with the camel infections in time and place, strongly suggesting sporadic transmission to humans during intense camel outbreaks in Northern Kenya.
Collapse
Affiliation(s)
- Isaac Ngere
- Washington State University Global Health Program, Washington State University, Nairobi P.O. Box 72938 00200, Kenya
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA 99164, USA
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi P.O. Box 19676 00100, Kenya
| | - Elizabeth A. Hunsperger
- Division of Global Health Protection, U.S. Centers for Disease Control and Prevention-Kenya, Nairobi P.O. Box 40241 00621, Kenya
| | - Suxiang Tong
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Julius Oyugi
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi P.O. Box 19676 00100, Kenya
| | - Walter Jaoko
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi P.O. Box 19676 00100, Kenya
| | - Jennifer L. Harcourt
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Natalie J. Thornburg
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Harry Oyas
- Kenya Ministry of Agriculture, Livestock, Fisheries and Cooperatives, Nairobi P.O. Box 30028 00100, Kenya
| | - Mathew Muturi
- Kenya Ministry of Agriculture, Livestock, Fisheries and Cooperatives, Nairobi P.O. Box 30028 00100, Kenya
- Dahlem Research School, Freie Universität Berlin, Kaiserswerther Str. 16-18, 14195 Berlin, Germany
| | - Eric M. Osoro
- Washington State University Global Health Program, Washington State University, Nairobi P.O. Box 72938 00200, Kenya
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA 99164, USA
| | - John Gachohi
- Washington State University Global Health Program, Washington State University, Nairobi P.O. Box 72938 00200, Kenya
- School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000 00200, Kenya
| | - Cynthia Ombok
- Washington State University Global Health Program, Washington State University, Nairobi P.O. Box 72938 00200, Kenya
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA 99164, USA
| | - Jeanette Dawa
- Washington State University Global Health Program, Washington State University, Nairobi P.O. Box 72938 00200, Kenya
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA 99164, USA
| | - Ying Tao
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jing Zhang
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Lydia Mwasi
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840 00200, Kenya
| | - Caroline Ochieng
- Center for Global Health Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840 00200, Kenya
| | - Athman Mwatondo
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi P.O. Box 19676 00100, Kenya
- Kenya Ministry of Health, Nairobi P.O. Box 30016 00100, Kenya
| | - Boku Bodha
- Department of Veterinary and Livestock, County Government of Marsabit, Marsabit 60500, Kenya
| | - Daniel Langat
- Kenya Ministry of Health, Nairobi P.O. Box 30016 00100, Kenya
| | - Amy Herman-Roloff
- Division of Global Health Protection, U.S. Centers for Disease Control and Prevention-Kenya, Nairobi P.O. Box 40241 00621, Kenya
| | - M. Kariuki Njenga
- Washington State University Global Health Program, Washington State University, Nairobi P.O. Box 72938 00200, Kenya
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA 99164, USA
| | - Marc-Alain Widdowson
- Division of Global Health Protection, U.S. Centers for Disease Control and Prevention-Kenya, Nairobi P.O. Box 40241 00621, Kenya
| | - Peninah M. Munyua
- Division of Global Health Protection, U.S. Centers for Disease Control and Prevention-Kenya, Nairobi P.O. Box 40241 00621, Kenya
| |
Collapse
|
9
|
Carlson CJ, Phelan AL. International law reform for One Health notifications. Lancet 2022; 400:462-468. [PMID: 35810748 DOI: 10.1016/s0140-6736(22)00942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 10/17/2022]
Abstract
Epidemic risk assessment and response relies on rapid information sharing. Using examples from the past decade, we discuss the limitations of the present system for outbreak notifications, which suffers from ambiguous obligations, fragile incentives, and an overly narrow focus on human outbreaks. We examine existing international legal frameworks, and provide clarity on what a successful One Health approach to proposed international law reforms-including a pandemic treaty and amendments to the International Health Regulations-would require. In particular, we focus on how a treaty would provide opportunities to simultaneously expand reporting obligations, accelerate the sharing of scientific discoveries, and strengthen existing legal frameworks, all while addressing the most complex issues that global health governance currently faces.
Collapse
Affiliation(s)
- Colin J Carlson
- Center for Global Health Science and Security, Medical-Dental Building, Georgetown University, Washington, DC, 20057 USA; Department of Biology, Georgetown University, Washington, DC, USA.
| | - Alexandra L Phelan
- Center for Global Health Science and Security, Medical-Dental Building, Georgetown University, Washington, DC, 20057 USA; O'Neill Institute for National and Global Health Law, Georgetown University, Washington, DC, USA
| |
Collapse
|
10
|
Establishment of well-differentiated camelid airway cultures to study Middle East respiratory syndrome coronavirus. Sci Rep 2022; 12:10340. [PMID: 35725865 PMCID: PMC9208254 DOI: 10.1038/s41598-022-13777-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/27/2022] [Indexed: 11/08/2022] Open
Abstract
In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in Saudi Arabia and was mostly associated with severe respiratory illness in humans. Dromedary camels are the zoonotic reservoir for MERS-CoV. To investigate the biology of MERS-CoV in camelids, we developed a well-differentiated airway epithelial cell (AEC) culture model for Llama glama and Camelus bactrianus. Histological characterization revealed progressive epithelial cellular differentiation with well-resemblance to autologous ex vivo tissues. We demonstrate that MERS-CoV displays a divergent cell tropism and replication kinetics profile in both AEC models. Furthermore, we observed that in the camelid AEC models MERS-CoV replication can be inhibited by both type I and III interferons (IFNs). In conclusion, we successfully established camelid AEC cultures that recapitulate the in vivo airway epithelium and reflect MERS-CoV infection in vivo. In combination with human AEC cultures, this system allows detailed characterization of the molecular basis of MERS-CoV cross-species transmission in respiratory epithelium.
Collapse
|
11
|
Peiris M, Perlman S. Unresolved questions in the zoonotic transmission of MERS. Curr Opin Virol 2022; 52:258-264. [PMID: 34999369 PMCID: PMC8734234 DOI: 10.1016/j.coviro.2021.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023]
Abstract
The Middle East Respiratory Syndrome-coronavirus (MERS-CoV) is the second of three zoonotic coronaviruses to infect humans since 2002, causing severe pneumonia. Unlike SARS-CoV-1 and SARS-CoV-2, the causes of the severe acute respiratory syndrome and Covid-19, respectively, MERS-CoV is enzootic in dromedary camels, a domestic/companion animal present across Africa, the Middle East and Central or South Asia and is sporadically transmitted to humans. However, it does not transmit readily from human to human except in hospital and household settings. Human MERS disease is reported only from the Arabian Peninsula (and only since 2012 even though the virus was detected in camels from at least the early 1990's) and in travelers from this region. Remarkably, no zoonotic MERS disease has been detected in Africa or Asia, even in areas of high density of MERS-CoV infected dromedaries. Here, we review aspects of MERS biology and epidemiology that might contribute to this lack of correlation between sites of camel infection and human zoonotic disease. Since MERS-CoV or MERS-like CoV have pandemic potential, further investigations into this disparity is critical, to forestall pandemics caused by this virus.
Collapse
Affiliation(s)
- Malik Peiris
- HKU-Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, P.R. China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Pokfulam, Hong Kong Special Administrative Region, P.R. China.
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
12
|
Borrega R, Nelson DKS, Koval AP, Bond NG, Heinrich ML, Rowland MM, Lathigra R, Bush DJ, Aimukanova I, Phinney WN, Koval SA, Hoffmann AR, Smither AR, Bell-Kareem AR, Melnik LI, Genemaras KJ, Chao K, Snarski P, Melton AB, Harrell JE, Smira AA, Elliott DH, Rouelle JA, Sabino-Santos G, Drouin AC, Momoh M, Sandi JD, Goba A, Samuels RJ, Kanneh L, Gbakie M, Branco ZL, Shaffer JG, Schieffelin JS, Robinson JE, Fusco DN, Sabeti PC, Andersen KG, Grant DS, Boisen ML, Branco LM, Garry RF. Cross-Reactive Antibodies to SARS-CoV-2 and MERS-CoV in Pre-COVID-19 Blood Samples from Sierra Leoneans. Viruses 2021; 13:2325. [PMID: 34835131 PMCID: PMC8625389 DOI: 10.3390/v13112325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Many countries in sub-Saharan Africa have experienced lower COVID-19 caseloads and fewer deaths than countries in other regions worldwide. Under-reporting of cases and a younger population could partly account for these differences, but pre-existing immunity to coronaviruses is another potential factor. Blood samples from Sierra Leonean Lassa fever and Ebola survivors and their contacts collected before the first reported COVID-19 cases were assessed using enzyme-linked immunosorbent assays for the presence of antibodies binding to proteins of coronaviruses that infect humans. Results were compared to COVID-19 subjects and healthy blood donors from the United States. Prior to the pandemic, Sierra Leoneans had more frequent exposures than Americans to coronaviruses with epitopes that cross-react with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), SARS-CoV, and Middle Eastern respiratory syndrome coronavirus (MERS-CoV). The percentage of Sierra Leoneans with antibodies reacting to seasonal coronaviruses was also higher than for American blood donors. Serological responses to coronaviruses by Sierra Leoneans did not differ by age or sex. Approximately a quarter of Sierra Leonian pre-pandemic blood samples had neutralizing antibodies against SARS-CoV-2 pseudovirus, while about a third neutralized MERS-CoV pseudovirus. Prior exposures to coronaviruses that induce cross-protective immunity may contribute to reduced COVID-19 cases and deaths in Sierra Leone.
Collapse
Affiliation(s)
- Rodrigo Borrega
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Diana K. S. Nelson
- Zalgen Labs, LCC, Broomfield, CO 80045, USA; (D.K.S.N.); (D.J.B.); (I.A.); (W.N.P.)
| | - Anatoliy P. Koval
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Nell G. Bond
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| | - Megan L. Heinrich
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Megan M. Rowland
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Raju Lathigra
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Duane J. Bush
- Zalgen Labs, LCC, Broomfield, CO 80045, USA; (D.K.S.N.); (D.J.B.); (I.A.); (W.N.P.)
| | - Irina Aimukanova
- Zalgen Labs, LCC, Broomfield, CO 80045, USA; (D.K.S.N.); (D.J.B.); (I.A.); (W.N.P.)
| | - Whitney N. Phinney
- Zalgen Labs, LCC, Broomfield, CO 80045, USA; (D.K.S.N.); (D.J.B.); (I.A.); (W.N.P.)
| | - Sophia A. Koval
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Andrew R. Hoffmann
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| | - Allison R. Smither
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| | - Antoinette R. Bell-Kareem
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| | - Lilia I. Melnik
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| | - Kaylynn J. Genemaras
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
- Bioinnovation Program, Tulane University, New Orleans, LA 70118, USA
| | - Karissa Chao
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
- Bioinnovation Program, Tulane University, New Orleans, LA 70118, USA
| | - Patricia Snarski
- Heart and Vascular Institute, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Alexandra B. Melton
- Department of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Jaikin E. Harrell
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| | - Ashley A. Smira
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.A.S.); (D.H.E.); (J.A.R.); (J.S.S.); (J.E.R.)
| | - Debra H. Elliott
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.A.S.); (D.H.E.); (J.A.R.); (J.S.S.); (J.E.R.)
| | - Julie A. Rouelle
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.A.S.); (D.H.E.); (J.A.R.); (J.S.S.); (J.E.R.)
| | - Gilberto Sabino-Santos
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
- Centre for Virology Research, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Arnaud C. Drouin
- Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.C.D.); (D.N.F.)
| | - Mambu Momoh
- Eastern Polytechnic Institute, Kenema, Sierra Leone;
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - John Demby Sandi
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
| | - Augustine Goba
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
| | - Robert J. Samuels
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
| | - Lansana Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
| | - Michael Gbakie
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
| | - Zoe L. Branco
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - John S. Schieffelin
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.A.S.); (D.H.E.); (J.A.R.); (J.S.S.); (J.E.R.)
- Department of Internal Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - James E. Robinson
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.A.S.); (D.H.E.); (J.A.R.); (J.S.S.); (J.E.R.)
| | - Dahlene N. Fusco
- Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (A.C.D.); (D.N.F.)
| | - Pardis C. Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA;
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, CA 92037, USA;
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Donald S. Grant
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (J.D.S.); (A.G.); (R.J.S.); (L.K.); (M.G.)
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Matthew L. Boisen
- Zalgen Labs, LCC, Broomfield, CO 80045, USA; (D.K.S.N.); (D.J.B.); (I.A.); (W.N.P.)
| | - Luis M. Branco
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
| | - Robert F. Garry
- Zalgen Labs, LCC, Germantown, MD 20876, USA; (R.B.); (A.P.K.); (M.L.H.); (M.M.R.); (R.L.); (S.A.K.); (Z.L.B.)
- Zalgen Labs, LCC, Broomfield, CO 80045, USA; (D.K.S.N.); (D.J.B.); (I.A.); (W.N.P.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.G.B.); (A.R.H.); (A.R.S.); (A.R.B.-K.); (L.I.M.); (K.J.G.); (K.C.); (J.E.H.)
| |
Collapse
|