1
|
de Melo JML, Blond MB, Jensen VH, Pedersen H, Clemmensen KKB, Jensen MM, Færch K, Quist JS, Størling J. Time-restricted eating in people at high diabetes risk does not affect mitochondrial bioenergetics in peripheral blood mononuclear cells and platelets. Sci Rep 2025; 15:10175. [PMID: 40128559 PMCID: PMC11933372 DOI: 10.1038/s41598-025-94652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
Overweight and obesity are linked to mitochondrial alterations, impaired glucose tolerance and a high risk of type 2 diabetes. Time-restricted eating (TRE) may aid in facilitating weight loss to prevent diabetes. Here, we investigated if TRE in individuals with overweight and prediabetes or obesity affects mitochondrial bioenergetics of peripheral blood mononuclear cells (PBMCs) and platelets using the Seahorse extracellular flux technology. In a 3-month randomized controlled trial, PBMCs/platelets were analyzed from 52 participants before and after a TRE intervention with a 10-h eating window or habitual living. PBMC and platelet respiratory function was evaluated through sequential addition of substrates, uncouplers, and inhibitors in living cells. After 3 months, there were no statistically significant differences in mitochondrial respiration within or between the TRE and control groups. Association analyses between PBMC/platelet respiration and clinical parameters including body mass index and fat mass showed no significant effects. In conclusion, 3 months of 10-h TRE does not alter the mitochondrial bioenergetics of PBMCs and platelets in individuals with high risk of type 2 diabetes.
Collapse
Affiliation(s)
- Joana Mendes Lopes de Melo
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark
- Novo Nordisk A/S, Måløv, Denmark
| | - Martin Bæk Blond
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark
| | - Verena Hirschberg Jensen
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark
| | - Hanne Pedersen
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark
- Novo Nordisk A/S, Søborg, Denmark
| | - Kim Katrine Bjerring Clemmensen
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark
- Novo Nordisk A/S, Søborg, Denmark
| | - Marie Møller Jensen
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark
| | - Kristine Færch
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark
- Novo Nordisk A/S, Søborg, Denmark
| | - Jonas Salling Quist
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Psychology, University of Leeds, Leeds, UK
| | - Joachim Størling
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730, Herlev, Denmark.
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Al-Kuraishy HM, Sulaiman GM, Mohammed HA, Mohammed SG, Al-Gareeb AI, Albuhadily AK, Dawood RA, Al Ali A, Abu-Alghayth MH. Amyloid-β and heart failure in Alzheimer's disease: the new vistas. Front Med (Lausanne) 2025; 12:1494101. [PMID: 39967593 PMCID: PMC11832649 DOI: 10.3389/fmed.2025.1494101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and represents 75% of all dementia types. AD neuropathology is due to the progressive deposition of extracellular amyloid-beta (Aβ) peptide and intracellular hyperphosphorylated tau protein. The accumulated Aβ forms amyloid plaques, while the hyperphosphorylated tau protein forms neurofibrillary tangles (NFTs). Both amyloid plaques and NFTs are hallmarks of AD neuropathology. The fundamental mechanism involved in the pathogenesis of AD is still elusive, although Aβ is the more conceivable theory. Aβ-induced neurodegeneration and associated neuroinflammation, oxidative stress, endoplasmic reticulum stress (ER), and mitochondrial dysfunction contribute to the development of cognitive impairment and dementia. Of note, Aβ is not only originated from the brain but also produced peripherally and, via the blood-brain barrier (BBB), can accumulate in the brain and result in the development of AD. It has been shown that cardiometabolic conditions such as obesity, type 2 diabetes (T2D), and heart failure (HF) are regarded as possible risk factors for the development of AD and other types of dementia, such as vascular dementia. HF-induced chronic cerebral hypoperfusion, oxidative stress, and inflammation can induce the development and progression of AD. Interestingly, AD is regarded as a systemic disease that causes systemic inflammation and oxidative stress, which in turn affects peripheral organs, including the heart. Aβ through deranged BBB can be transported into the systemic circulation from the brain and accumulated in the heart, leading to the development of HF. These findings suggest a close relationship between AD and HF. However, the exact mechanism of AD-induced HF is not fully elucidated. Therefore, this review aims to discuss the link between AD and the risk of HF regarding the potential role of Aβ in the pathogenesis of HF.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Sohaib G. Mohammed
- Department of Pathological Analysis, College of Applied Science, Samarra University, Saladin, Iraq
| | | | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Retaj A. Dawood
- Department of Biology, College of Science, Al-Mustaqbal University, Hilla, Iraq
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
3
|
Kozin MS, Kulakova OG, Kiselev IS, Semina EV, Kakotkin VV, Agapov MA, Favorova OO. Mitochondrial Genome Variants and Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S146-S163. [PMID: 40164157 DOI: 10.1134/s0006297924603174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD), a severe neurodegenerative disease of the central nervous system, is the most common cause of cognitive impairment in people over the age of 60. The etiology and pathogenesis of Alzheimer's disease are still unclear despite decades of active research. Numerous studies have shown that neurodegenerative processes in AD are associated with the mitochondrial dysfunction. In this review, we briefly discuss the results of these studies and present the reported evidence that mitochondrial dysfunction in AD is associated with mitochondrial DNA (mtDNA) variations. The results of association analysis of mtDNA haplogroups and individual polymorphic variants, including those whose combinations define haplogroups, with AD are described in detail. These data clearly indicate the role of variations in the mitochondrial genome in the susceptibility to AD, although the problem of significance of individual mtDNA variants is far from being resolved.
Collapse
Affiliation(s)
- Maxim S Kozin
- Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia.
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| | - Olga G Kulakova
- Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| | - Ivan S Kiselev
- Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| | | | - Viktor V Kakotkin
- Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia
| | - Mikhail A Agapov
- Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia
| | - Olga O Favorova
- Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117513, Russia
| |
Collapse
|
4
|
Shahtaghi NR, Soni B, Bakrey H, Bigdelitabar S, Jain SK. Beta-Hydroxybutyrate: A Supplemental Molecule for Various Diseases. Curr Drug Targets 2024; 25:919-933. [PMID: 39238395 DOI: 10.2174/0113894501312168240821082224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
β-hydroxybutyrate (BHB) is a ketone body that serves as an alternative energy source for various tissues, including the brain, heart, and skeletal muscle. As a metabolic intermediate and signaling molecule, BHB plays a crucial role in modulating cellular and physiological processes. Notably, BHB supplementation offers a novel and promising strategy to induce nutritional ketosis without the need for strict dietary adherence or causing nutritional deficiencies. This review article provides an overview of BHB metabolism and explores its applications in age-related diseases. This review conducted a comprehensive search of PubMed, ScienceDirect, and other relevant English-language articles. The main findings were synthesized, and discussed the challenges, limitations, and future directions of BHB supplementation. BHB supplementation holds potential benefits for various diseases and conditions, including neurodegenerative disorders, cardiovascular diseases, cancers, and inflammation. BHB acts through multiple mechanisms, including interactions with cell surface receptors, intracellular enzymes, transcription factors, signaling molecules, and epigenetic modifications. Despite its promise, BHB supplementation faces several challenges, such as determining the optimal dosage, ensuring long-term safety, identifying the most effective type and formulation, establishing biomarkers of response, and conducting cost-effectiveness analyses. BHB supplementation opens exciting avenues for research, including investigating molecular mechanisms, refining optimization strategies, exploring innovation opportunities, and assessing healthspan and lifespan benefits. BHB supplementation represents a new frontier in health research, offering a potential pathway to enhance well-being and extend lifespan.
Collapse
Affiliation(s)
- Navid Reza Shahtaghi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| | - Bindu Soni
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| | - Hossamaldeen Bakrey
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| | - Samira Bigdelitabar
- Department of Microbiology, Government Medical College, 143001, Amritsar, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
- Centre for Basic & Translational Research in Health Sciences (CBTHRS), Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| |
Collapse
|
5
|
de Veij Mestdagh CF, Smit AB, Henning RH, van Kesteren RE. Mitochondrial Targeting against Alzheimer's Disease: Lessons from Hibernation. Cells 2023; 13:12. [PMID: 38201215 PMCID: PMC10778235 DOI: 10.3390/cells13010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide and yet remains without effective therapy. Amongst the many proposed causes of AD, the mitochondrial cascade hypothesis is gaining attention. Accumulating evidence shows that mitochondrial dysfunction is a driving force behind synaptic dysfunction and cognitive decline in AD patients. However, therapies targeting the mitochondria in AD have proven unsuccessful so far, and out-of-the-box options, such as hibernation-derived mitochondrial mechanisms, may provide valuable new insights. Hibernators uniquely and rapidly alternate between suppression and re-activation of the mitochondria while maintaining a sufficient energy supply and without acquiring ROS damage. Here, we briefly give an overview of mitochondrial dysfunction in AD, how it affects synaptic function, and why mitochondrial targeting in AD has remained unsuccessful so far. We then discuss mitochondria in hibernation and daily torpor in mice, covering current advancements in hibernation-derived mitochondrial targeting strategies. We conclude with new ideas on how hibernation-derived dual mitochondrial targeting of both the ATP and ROS pathways may boost mitochondrial health and induce local synaptic protein translation to increase synaptic function and plasticity. Further exploration of these mechanisms may provide more effective treatment options for AD in the future.
Collapse
Affiliation(s)
- Christina F. de Veij Mestdagh
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
- Alzheimer Center Amsterdam, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ronald E. van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
| |
Collapse
|
6
|
Ramos AA, Galiano-Castillo N, Machado L. Cognitive Functioning of Unaffected First-degree Relatives of Individuals With Late-onset Alzheimer's Disease: A Systematic Literature Review and Meta-analysis. Neuropsychol Rev 2023; 33:659-674. [PMID: 36057684 PMCID: PMC10770217 DOI: 10.1007/s11065-022-09555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/10/2022] [Indexed: 10/14/2022]
Abstract
First-degree relatives of individuals with late-onset Alzheimer's disease (LOAD) are at increased risk for developing dementia, yet the associations between family history of LOAD and cognitive dysfunction remain unclear. In this quantitative review, we provide the first meta-analysis on the cognitive profile of unaffected first-degree blood relatives of LOAD-affected individuals compared to controls without a family history of LOAD. A systematic literature search was conducted in PsycINFO, PubMed /MEDLINE, and Scopus. We fitted a three-level structural equation modeling meta-analysis to control for non-independent effect sizes. Heterogeneity and risk of publication bias were also investigated. Thirty-four studies enabled us to estimate 218 effect sizes across several cognitive domains. Overall, first-degree relatives (n = 4,086, mean age = 57.40, SD = 4.71) showed significantly inferior cognitive performance (Hedges' g = -0.16; 95% CI, -0.25 to -0.08; p < .001) compared to controls (n = 2,388, mean age = 58.43, SD = 5.69). Specifically, controls outperformed first-degree relatives in language, visuospatial and verbal long-term memory, executive functions, verbal short-term memory, and verbal IQ. Among the first-degree relatives, APOE ɛ4 carriership was associated with more significant dysfunction in cognition (g = -0.24; 95% CI, -0.38 to -0.11; p < .001) compared to non-carriers (g = -0.14; 95% CI, -0.28 to -0.01; p = .04). Cognitive test type was significantly associated with between-group differences, accounting for 65% (R23 = .6499) of the effect size heterogeneity in the fitted regression model. No evidence of publication bias was found. The current findings provide support for mild but robust cognitive dysfunction in first-degree relatives of LOAD-affected individuals that appears to be moderated by cognitive domain, cognitive test type, and APOE ɛ4.
Collapse
Affiliation(s)
- Ari Alex Ramos
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
- Brain Research New Zealand, Auckland, New Zealand.
- Department of Psychology, Pontifical Catholic University of Paraná, Rua Imaculada Conceição, 1155, Curitiba, CEP 80.215-901, Brazil.
| | - Noelia Galiano-Castillo
- Department of Physical Therapy, Health Sciences Faculty, "Cuidate" from Biomedical Group (BIO277), Instituto de Investigación Biosanitaria (ibs.GRANADA), and Sport and Health Research Center (IMUDs), Granada, Spain, University of Granada, Granada, Spain
| | - Liana Machado
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Auckland, New Zealand
| |
Collapse
|
7
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
8
|
Yang L, Pang X, Guo W, Zhu C, Yu L, Song X, Wang K, Pang C. An Exploration of the Coherent Effects between METTL3 and NDUFA10 on Alzheimer's Disease. Int J Mol Sci 2023; 24:10111. [PMID: 37373264 DOI: 10.3390/ijms241210111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized primarily by a decline in cognitive function. However, the etiopathogenesis of AD is unclear. N6-methyladenosine (m6A) is abundant in the brain, and it is interesting to explore the relationship between m6A and AD causes. In this paper, the gene expression of METTL3 and NDUFA10 were found to correlate with the Mini-mental State Examination (MMSE), which is a clinical indicator of the degree of dementia. METTL3 is involved in post-transcriptional methylation and the formation of m6A. NDUFA10 encodes the protein with NADH dehydrogenase activity and oxidoreductase activity in the mitochondrial electron transport chain. The following three characteristics were observed in this paper: 1. The lower the expression level of NDUFA10, the smaller the MMSE, and the higher the degree of dementia. 2. If the expression level of METTL3 dropped below its threshold, the patient would have a risk of AD with a probability close to 100%, suggesting a basic necessity for m6A to protect mRNA. 3. The lower the expression levels of both METTL3 and NDUFA10, the more likely the patient would suffer from AD, implying the coherence between METTL3 and NDUFA10. Regarding the above discovery, the following hypothesis is presented: METTL3 expression level is downregulated, then the m6A modification level of NDUFA10 mRNA is also decreased, thereby reducing the expression level of NDUFA10-encoded protein. Furthermore, the abnormal expression of NDUFA10 contributes to the assembly disorder of mitochondrial complex I and affects the process of the electron respiratory chain, with the consequent development of AD. In addition, to confirm the above conclusions, the AI Ant Colony Algorithm was improved to be more suitable for discovering the characteristics of AD data, and the SVM diagnostic model was applied to mine the coherent effects on AD between METTL3 and NDUFA10. In conclusion, our findings suggest that dysregulated m6A leads to altered expression of its target genes, thereby affecting AD's development.
Collapse
Affiliation(s)
- Lin Yang
- College of Computer Science, Sichuan Normal University, Chengdu 610101, China
| | - Xinping Pang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Wenbo Guo
- College of Computer Science, Sichuan Normal University, Chengdu 610101, China
| | - Chengjiang Zhu
- College of Computer Science, Sichuan Normal University, Chengdu 610101, China
| | - Lei Yu
- College of Computer Science, Sichuan Normal University, Chengdu 610101, China
| | - Xianghu Song
- College of Computer Science, Sichuan Normal University, Chengdu 610101, China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chaoyang Pang
- College of Computer Science, Sichuan Normal University, Chengdu 610101, China
| |
Collapse
|
9
|
Cortes CJ, Thyfault JP, Wilkins HM. Editorial: Systemic implications of Alzheimer's disease. Front Aging Neurosci 2023; 15:1219987. [PMID: 37287872 PMCID: PMC10242176 DOI: 10.3389/fnagi.2023.1219987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Affiliation(s)
- Constanza J. Cortes
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - John P. Thyfault
- Department of Cell Biology and Physiology, KU Diabetes Institute and Department of Internal Medicine-Division of Endocrinology, University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, MO, United States
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, United States
- Kansas City VA Medical Center, Kansas City, MO, United States
| | - Heather M. Wilkins
- Department of Neurology, University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
10
|
Swerdlow RH. The Alzheimer's Disease Mitochondrial Cascade Hypothesis: A Current Overview. J Alzheimers Dis 2023; 92:751-768. [PMID: 36806512 DOI: 10.3233/jad-221286] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Viable Alzheimer's disease (AD) hypotheses must account for its age-dependence; commonality; association with amyloid precursor protein, tau, and apolipoprotein E biology; connection with vascular, inflammation, and insulin signaling changes; and systemic features. Mitochondria and parameters influenced by mitochondria could link these diverse characteristics. Mitochondrial biology can initiate changes in pathways tied to AD and mediate the dysfunction that produces the clinical phenotype. For these reasons, conceptualizing a mitochondrial cascade hypothesis is a straightforward process and data accumulating over decades argue the validity of its principles. Alternative AD hypotheses may yet account for its mitochondria-related phenomena, but absent this happening a primary mitochondrial cascade hypothesis will continue to evolve and attract interest.
Collapse
Affiliation(s)
- Russell H Swerdlow
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA.,Departments of Neurology, Molecular and Integrative Physiology, and Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
11
|
de Veij Mestdagh CF, Koopmans F, Breiter JC, Timmerman JA, Vogelaar PC, Krenning G, Mansvelder HD, Smit AB, Henning RH, van Kesteren RE. The hibernation-derived compound SUL-138 shifts the mitochondrial proteome towards fatty acid metabolism and prevents cognitive decline and amyloid plaque formation in an Alzheimer's disease mouse model. Alzheimers Res Ther 2022; 14:183. [PMID: 36482297 PMCID: PMC9733344 DOI: 10.1186/s13195-022-01127-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and remains without effective cure. Increasing evidence is supporting the mitochondrial cascade hypothesis, proposing that loss of mitochondrial fitness and subsequent ROS and ATP imbalance are important contributors to AD pathophysiology. METHODS Here, we tested the effects of SUL-138, a small hibernation-derived molecule that supports mitochondrial bioenergetics via complex I/IV activation, on molecular, physiological, behavioral, and pathological outcomes in APP/PS1 and wildtype mice. RESULTS SUL-138 treatment rescued long-term potentiation and hippocampal memory impairments and decreased beta-amyloid plaque load in APP/PS1 mice. This was paralleled by a partial rescue of dysregulated protein expression in APP/PS1 mice as assessed by mass spectrometry-based proteomics. In-depth analysis of protein expression revealed a prominent effect of SUL-138 in APP/PS1 mice on mitochondrial protein expression. SUL-138 increased the levels of proteins involved in fatty acid metabolism in both wildtype and APP/PS1 mice. Additionally, in APP/PS1 mice only, SUL-138 increased the levels of proteins involved in glycolysis and amino acid metabolism pathways, indicating that SUL-138 rescues mitochondrial impairments that are typically observed in AD. CONCLUSION Our study demonstrates a SUL-138-induced shift in metabolic input towards the electron transport chain in synaptic mitochondria, coinciding with increased synaptic plasticity and memory. In conclusion, targeting mitochondrial bioenergetics might provide a promising new way to treat cognitive impairments in AD and reduce disease progression.
Collapse
Affiliation(s)
- Christina F. de Veij Mestdagh
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands ,grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands ,grid.16872.3a0000 0004 0435 165XAlzheimer Center Amsterdam, Vrije Universiteit Amsterdam and Amsterdam UMC location VUmc , Amsterdam, The Netherlands
| | - Frank Koopmans
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jonathan C. Breiter
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands
| | - Jaap A. Timmerman
- grid.12380.380000 0004 1754 9227Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pieter C. Vogelaar
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands ,Sulfateq B.V., Groningen, The Netherlands
| | - Guido Krenning
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands ,Sulfateq B.V., Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Huibert D. Mansvelder
- grid.12380.380000 0004 1754 9227Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - August B. Smit
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Robert H. Henning
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands
| | - Ronald E. van Kesteren
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Hsieh CJ, Hou C, Zhu Y, Lee JY, Kohli N, Gallagher E, Xu K, Lee H, Li S, McManus MJ, Mach RH. [ 18F]ROStrace detects oxidative stress in vivo and predicts progression of Alzheimer's disease pathology in APP/PS1 mice. EJNMMI Res 2022; 12:43. [PMID: 35895177 PMCID: PMC9329498 DOI: 10.1186/s13550-022-00914-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Oxidative stress is implicated in the pathogenesis of the most common neurodegenerative diseases, such as Alzheimer's disease (AD). However, tracking oxidative stress in the brain has proven difficult and impeded its use as a biomarker. Herein, we investigate the utility of a novel positron emission tomography (PET) tracer, [18F]ROStrace, as a biomarker of oxidative stress throughout the course of AD in the well-established APP/PS1 double-mutant mouse model. PET imaging studies were conducted in wild-type (WT) and APP/PS1 mice at 3 different time points, representing early (5 mo.), middle (10 mo.), and advanced (16 mo.) life (n = 6-12, per sex). Semi-quantitation SUVRs of the plateau phase (40-60 min post-injection; SUVR40-60) of ten brain subregions were designated by the Mirrione atlas and analyzed by Pmod. Statistical parametric mapping (SPM) was used to distinguish brain regions with elevated ROS in APP/PS1 relative to WT in both sexes. The PET studies were validated by ex vivo autoradiography and immunofluorescence with the parent compound, dihydroethidium. RESULTS [18F]ROStrace retention was increased in the APP/PS1 brain compared to age-matched controls by 10 mo. of age (p < 0.0001) and preceded the accumulation of oxidative damage in APP/PS1 neurons at 16 mo. (p < 0.005). [18F]ROStrace retention and oxidative damages were higher and occurred earlier in female APP/PS1 mice as measured by PET (p < 0.001), autoradiography, and immunohistochemistry (p < 0.05). [18F]ROStrace differences emerged midlife, temporally and spatially correlating with increased Aβ burden (r2 = 0.36; p = 0.0003), which was also greatest in the female brain (p < 0.001). CONCLUSIONS [18F]ROStrace identifies increased oxidative stress and neuroinflammation in APP/PS1 female mice, concurrent with increased amyloid burden midlife. Differences in oxidative stress during this crucial time may partially explain the sexual dimorphism in AD. [18F]ROStrace may provide a long-awaited tool to stratify at-risk patients who may benefit from antioxidant therapy prior to irreparable neurodegeneration.
Collapse
Affiliation(s)
- Chia-Ju Hsieh
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Catherine Hou
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yi Zhu
- grid.239552.a0000 0001 0680 8770Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Ji Youn Lee
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Neha Kohli
- grid.239552.a0000 0001 0680 8770Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Evan Gallagher
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Kuiying Xu
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Hsiaoju Lee
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Shihong Li
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Meagan J. McManus
- grid.239552.a0000 0001 0680 8770Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Robert H. Mach
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
13
|
Martini AC, Gross TJ, Head E, Mapstone M. Beyond amyloid: Immune, cerebrovascular, and metabolic contributions to Alzheimer disease in people with Down syndrome. Neuron 2022; 110:2063-2079. [PMID: 35472307 PMCID: PMC9262826 DOI: 10.1016/j.neuron.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022]
Abstract
People with Down syndrome (DS) have increased risk of Alzheimer disease (AD), presumably conferred through genetic predispositions arising from trisomy 21. These predispositions necessarily include triplication of the amyloid precursor protein (APP), but also other Ch21 genes that confer risk directly or through interactions with genes on other chromosomes. We discuss evidence that multiple genes on chromosome 21 are associated with metabolic dysfunction in DS. The resulting dysregulated pathways involve the immune system, leading to chronic inflammation; the cerebrovascular system, leading to disruption of the blood brain barrier (BBB); and cellular energy metabolism, promoting increased oxidative stress. In combination, these disruptions may produce a precarious biological milieu that, in the presence of accumulating amyloid, drives the pathophysiological cascade of AD in people with DS. Critically, mechanistic drivers of this dysfunction may be targetable in future clinical trials of pharmaceutical and/or lifestyle interventions.
Collapse
Affiliation(s)
- Alessandra C Martini
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Thomas J Gross
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
14
|
Mitochondrial function and Aβ in Alzheimer's disease postmortem brain. Neurobiol Dis 2022; 171:105781. [PMID: 35667615 DOI: 10.1016/j.nbd.2022.105781] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/15/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Mitochondrial dysfunction is observed in Alzheimer's disease (AD). However, the relationship between functional mitochondrial deficits and AD pathologies is not well established in human subjects. METHODS Post-mortem human brain tissue from 11 non-demented (ND) and 12 AD subjects was used to examine mitochondrial electron transport chain (ETC) function. Data were analyzed by neuropathology diagnosis and Apolipoprotein E (APOE) genotype. Relationships between AD pathology and mitochondrial function were determined. RESULTS AD subjects had reductions in brain cytochrome oxidase (COX) function and complex II Vmax. APOE ε4 carriers had COX, complex II and III deficits. AD subjects had reduced expression of Complex I-III ETC proteins, no changes were observed in APOE ε4 carriers. No correlation between p-Tau Thr 181 and mitochondrial outcomes was observed, although brains from non-demented subjects demonstrated positive correlations between Aβ concentration and COX Vmax. DISCUSSION These data support a dysregulated relationship between brain mitochondrial function and Aβ pathology in AD.
Collapse
|
15
|
Gestational high fat diet protects 3xTg offspring from memory impairments, synaptic dysfunction, and brain pathology. Mol Psychiatry 2021; 26:7006-7019. [PMID: 31451749 PMCID: PMC7044032 DOI: 10.1038/s41380-019-0489-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 05/24/2019] [Indexed: 01/25/2023]
Abstract
Maternal history for sporadic Alzheimer's disease (AD) predisposes the offspring to the disease later in life. However, the mechanisms behind this phenomenon are still unknown. Lifestyle and nutrition can directly modulate susceptibility to AD. Herein we investigated whether gestational high fat diet influences the offspring susceptibility to AD later in life. Triple transgenic dams were administered high fat diet or regular chow throughout 3 weeks gestation. Offspring were fed regular chow throughout their life and tested for spatial learning and memory, brain amyloidosis, tau pathology, and synaptic function. Gestational high fat diet attenuated memory decline, synaptic dysfunction, amyloid-β and tau neuropathology in the offspring by transcriptional regulation of BACE-1, CDK5, and tau gene expression via the upregulation of FOXP2 repressor. Gestational high fat diet protects offspring against the development of the AD phenotype. In utero dietary intervention could be implemented as preventative strategy against AD.
Collapse
|
16
|
Al Shamsi M, Shahin A, Kamyan D, Alnaqbi A, Shaban S, Souid AK. Conserved spinal cord bioenergetics in experimental autoimmune encephalomyelitis in C57BL6 mice, measured using phosphorescence oxygen analyzer. Heliyon 2021; 7:e08111. [PMID: 34693048 PMCID: PMC8511844 DOI: 10.1016/j.heliyon.2021.e08111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We have previously reported that spinal cord respiration (cellular mitochondrial oxygen consumption) and ATP content are conserved in the studied model of experimental autoimmune encephalomyelitis (EAE), foreseeing a recovery of the diseased rats. This exemplary lesion of multiple sclerosis is used here to measure spinal cord bioenergetics in C57BL6 mice. Our hypothesis is that, despite the well-known focal axonal mitochondrial pathology, bioenergetics of the CNS is reasonably preserved in this disease. METHODS EAE was induced with an immunodominant myelin oligodendrocyte glycoprotein epitope in complete Freund's adjuvant, appended by injections of pertussis toxin. A low- and high-dose of the encephalitogen, administered into base of tail or hind-flank, were investigated. Control mice received only the incomplete adjuvant into tail. Oxygen measurements were based on quenching the phosphorescence of Pd(II) meso-tetra (sulfophenyl) tetrabenzoporphyrin by molecular oxygen. Cellular ATP was measured using the luciferin/luciferase system. RESULTS The kinetics of spinal cord oxygen consumption was zero-order (linear with time) and inhibited by cyanide, confirming oxygen was reduced by cytochrome oxidase. The rate of respiration (in μM O2.min-1.mg-1; measured on Days 13-28) in control mice was (mean ± SD) 0.086 ± 0.024 (n = 8) and in immunized mice was 0.079 ± 0.020 (n = 15, P = 0.265, Mann-Whitney test). Consistently, cellular ATP (in μmol mg-1 dry pellet weight; measured on Days 13-28) in control mice was 0.068 ± 0.079 (n = 11) and in immunized mice was 0.063 ± 0.061 (n = 24, P = 0.887, Mann-Whitney U test). CONCLUSIONS In vitro measurements of spinal cord bioenergetics show conservation of the mitochondrial function in mice with EAE. These results suggest the previously documented reduced mitochondrial electrochemical potential in this disease is alterable, and likely reflects the adverse events of neuroinflammation.
Collapse
Affiliation(s)
- Mariam Al Shamsi
- Department of Microbiology and Immunology, UAE University, College of Medicine and Health Sciences, Al Ain, P.O. Box 17666, Abu Dhabi, United Arab Emirates
| | - Allen Shahin
- Department of Microbiology and Immunology, UAE University, College of Medicine and Health Sciences, Al Ain, P.O. Box 17666, Abu Dhabi, United Arab Emirates
| | - Doua Kamyan
- Department of Microbiology and Immunology, UAE University, College of Medicine and Health Sciences, Al Ain, P.O. Box 17666, Abu Dhabi, United Arab Emirates
| | - Alanood Alnaqbi
- Department of Microbiology and Immunology, UAE University, College of Medicine and Health Sciences, Al Ain, P.O. Box 17666, Abu Dhabi, United Arab Emirates
| | - Sami Shaban
- Department of Medical Education, UAE University, College of Medicine and Health Sciences, Al Ain, P.O. Box 17666, Abu Dhabi, United Arab Emirates
| | - Abdul-Kader Souid
- Department of Pediatrics, UAE University, College of Medicine and Health Sciences, Al Ain, P.O. Box 17666, Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Wang L, Chen P, Xiao W. β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients 2021; 13:nu13103420. [PMID: 34684426 PMCID: PMC8540704 DOI: 10.3390/nu13103420] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
The ketone bodies, especially β-hydroxybutyrate (β-HB), derive from fatty acid oxidation and alternatively serve as a fuel source for peripheral tissues including the brain, heart, and skeletal muscle. β-HB is currently considered not solely an energy substrate for maintaining metabolic homeostasis but also acts as a signaling molecule of modulating lipolysis, oxidative stress, and neuroprotection. Besides, it serves as an epigenetic regulator in terms of histone methylation, acetylation, β-hydroxybutyrylation to delay various age-related diseases. In addition, studies support endogenous β-HB administration or exogenous supplementation as effective strategies to induce a metabolic state of nutritional ketosis. The purpose of this review article is to provide an overview of β-HB metabolism and its relationship and application in age-related diseases. Future studies are needed to reveal whether β-HB has the potential to serve as adjunctive nutritional therapy for aging.
Collapse
Affiliation(s)
| | - Peijie Chen
- Correspondence: (P.C.); (W.X.); Tel.: +86-021-65508039 (P.C.); +86-021-65507367 (W.X.)
| | - Weihua Xiao
- Correspondence: (P.C.); (W.X.); Tel.: +86-021-65508039 (P.C.); +86-021-65507367 (W.X.)
| |
Collapse
|
18
|
Wang L, Chen P, Xiao W. β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients 2021; 13:3420. [PMID: 34684426 PMCID: PMC8540704 DOI: 10.3390/nu13103420&set/a 930838900+926910489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The ketone bodies, especially β-hydroxybutyrate (β-HB), derive from fatty acid oxidation and alternatively serve as a fuel source for peripheral tissues including the brain, heart, and skeletal muscle. β-HB is currently considered not solely an energy substrate for maintaining metabolic homeostasis but also acts as a signaling molecule of modulating lipolysis, oxidative stress, and neuroprotection. Besides, it serves as an epigenetic regulator in terms of histone methylation, acetylation, β-hydroxybutyrylation to delay various age-related diseases. In addition, studies support endogenous β-HB administration or exogenous supplementation as effective strategies to induce a metabolic state of nutritional ketosis. The purpose of this review article is to provide an overview of β-HB metabolism and its relationship and application in age-related diseases. Future studies are needed to reveal whether β-HB has the potential to serve as adjunctive nutritional therapy for aging.
Collapse
Affiliation(s)
| | - Peijie Chen
- Correspondence: (P.C.); (W.X.); Tel.: +86-021-65508039 (P.C.); +86-021-65507367 (W.X.)
| | - Weihua Xiao
- Correspondence: (P.C.); (W.X.); Tel.: +86-021-65508039 (P.C.); +86-021-65507367 (W.X.)
| |
Collapse
|
19
|
β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients 2021. [DOI: 10.3390/nu13103420
expr 933295879 + 814156476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The ketone bodies, especially β-hydroxybutyrate (β-HB), derive from fatty acid oxidation and alternatively serve as a fuel source for peripheral tissues including the brain, heart, and skeletal muscle. β-HB is currently considered not solely an energy substrate for maintaining metabolic homeostasis but also acts as a signaling molecule of modulating lipolysis, oxidative stress, and neuroprotection. Besides, it serves as an epigenetic regulator in terms of histone methylation, acetylation, β-hydroxybutyrylation to delay various age-related diseases. In addition, studies support endogenous β-HB administration or exogenous supplementation as effective strategies to induce a metabolic state of nutritional ketosis. The purpose of this review article is to provide an overview of β-HB metabolism and its relationship and application in age-related diseases. Future studies are needed to reveal whether β-HB has the potential to serve as adjunctive nutritional therapy for aging.
Collapse
|
20
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
21
|
Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O. Mitochondriopathies as a Clue to Systemic Disorders-Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine. Int J Mol Sci 2021; 22:ijms22042007. [PMID: 33670490 PMCID: PMC7922866 DOI: 10.3390/ijms22042007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial respiratory chain is the main site of reactive oxygen species (ROS) production in the cell. Although mitochondria possess a powerful antioxidant system, an excess of ROS cannot be completely neutralized and cumulative oxidative damage may lead to decreasing mitochondrial efficiency in energy production, as well as an increasing ROS excess, which is known to cause a critical imbalance in antioxidant/oxidant mechanisms and a "vicious circle" in mitochondrial injury. Due to insufficient energy production, chronic exposure to ROS overproduction consequently leads to the oxidative damage of life-important biomolecules, including nucleic acids, proteins, lipids, and amino acids, among others. Different forms of mitochondrial dysfunction (mitochondriopathies) may affect the brain, heart, peripheral nervous and endocrine systems, eyes, ears, gut, and kidney, among other organs. Consequently, mitochondriopathies have been proposed as an attractive diagnostic target to be investigated in any patient with unexplained progressive multisystem disorder. This review article highlights the pathomechanisms of mitochondriopathies, details advanced analytical tools, and suggests predictive approaches, targeted prevention and personalization of medical services as instrumental for the overall management of mitochondriopathy-related cascading pathologies.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
- Correspondence: (P.K.); (O.G.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
- Correspondence: (P.K.); (O.G.)
| |
Collapse
|
22
|
Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, Bringas-Vega ML, García-del-Barco-Herrera D, Berlanga-Saez JO, García-Ojalvo A, Valdés-Sosa MJ, Valdés-Sosa PA. Insulin Resistance at the Crossroad of Alzheimer Disease Pathology: A Review. Front Endocrinol (Lausanne) 2020; 11:560375. [PMID: 33224105 PMCID: PMC7674493 DOI: 10.3389/fendo.2020.560375] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Insulin plays a major neuroprotective and trophic function for cerebral cell population, thus countering apoptosis, beta-amyloid toxicity, and oxidative stress; favoring neuronal survival; and enhancing memory and learning processes. Insulin resistance and impaired cerebral glucose metabolism are invariantly reported in Alzheimer's disease (AD) and other neurodegenerative processes. AD is a fatal neurodegenerative disorder in which progressive glucose hypometabolism parallels to cognitive impairment. Although AD may appear and progress in virtue of multifactorial nosogenic ingredients, multiple interperpetuative and interconnected vicious circles appear to drive disease pathophysiology. The disease is primarily a metabolic/energetic disorder in which amyloid accumulation may appear as a by-product of more proximal events, especially in the late-onset form. As a bridge between AD and type 2 diabetes, activation of c-Jun N-terminal kinase (JNK) pathway with the ensued serine phosphorylation of the insulin response substrate (IRS)-1/2 may be at the crossroads of insulin resistance and its subsequent dysmetabolic consequences. Central insulin axis bankruptcy translates in neuronal vulnerability and demise. As a link in the chain of pathogenic vicious circles, mitochondrial dysfunction, oxidative stress, and peripheral/central immune-inflammation are increasingly advocated as major pathology drivers. Pharmacological interventions addressed to preserve insulin axis physiology, mitochondrial biogenesis-integral functionality, and mitophagy of diseased organelles may attenuate the adjacent spillover of free radicals that further perpetuate mitochondrial damages and catalyze inflammation. Central and/or peripheral inflammation may account for a local flood of proinflammatory cytokines that along with astrogliosis amplify insulin resistance, mitochondrial dysfunction, and oxidative stress. All these elements are endogenous stressor, pro-senescent factors that contribute to JNK activation. Taken together, these evidences incite to identify novel multi-mechanistic approaches to succeed in ameliorating this pandemic affliction.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillén-Nieto
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Nadia Rodríguez-Rodríguez
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Maria Luisa Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| | | | - Jorge O. Berlanga-Saez
- Applied Mathematics Department, Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariana García-Ojalvo
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mitchell Joseph Valdés-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| | - Pedro A. Valdés-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| |
Collapse
|
23
|
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are, respectively, the most prevalent and fastest growing neurodegenerative diseases worldwide. The former is primarily characterized by memory loss and the latter by the motor symptoms of tremor and bradykinesia. Both AD and PD are progressive diseases that share several key underlying mitochondrial, inflammatory, and other metabolic pathologies. This review will detail how these pathologies intersect with ketone body metabolism and signaling, and how ketone bodies, particularly d-β-hydroxybutyrate (βHB), may serve as a potential adjunctive nutritional therapy for two of the world's most devastating conditions.
Collapse
|
24
|
Swerdlow RH, Hui D, Chalise P, Sharma P, Wang X, Andrews SJ, Pa J, Mahnken JD, Morris J, Wilkins HM, Burns JM, Michaelis ML, Michaelis EK, Alzheimer’s Disease Neuroimaging Initiative (ADNI). Exploratory analysis of mtDNA haplogroups in two Alzheimer's longitudinal cohorts. Alzheimers Dement 2020; 16:1164-1172. [PMID: 32543785 PMCID: PMC9847473 DOI: 10.1002/alz.12119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Inherited mitochondrial DNA (mtDNA) variants may influence Alzheimer's disease (AD) risk. METHODS We sequenced mtDNA from 146 AD and 265 cognitively normal (CN) subjects from the University of Kansas AD Center (KUADC) and assigned haplogroups. We further considered 244 AD and 242 CN AD Neuroimaging Initiative (ADNI) subjects with equivalent data. RESULTS Without applying multiple comparisons corrections, KUADC haplogroup J AD and CN frequencies were 16.4% versus 7.6% (P = .007), and haplogroup K AD and CN frequencies were 4.8% versus 10.2% (P = .063). ADNI haplogroup J AD and CN frequencies were 10.7% versus 7.0% (P = .20), and haplogroup K frequencies were 4.9% versus 8.7% (P = .11). For the combined 390 AD and 507 CN cases haplogroup J frequencies were 12.8% versus 7.3% (P = .006), odds ratio (OR) = 1.87, and haplogroup K frequencies were 4.9% versus 9.5% (P = .010), OR = 0.49. Associations remained significant after adjusting for apolipoprotein E, age, and sex. CONCLUSION This exploratory analysis suggests inherited mtDNA variants influence AD risk.
Collapse
Affiliation(s)
- Russell H. Swerdlow
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dongwei Hui
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Prabhakar Chalise
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Palash Sharma
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xinkun Wang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shea J. Andrews
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Judy Pa
- Alzheimer’s Disease Research Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern California, Los Angeles, California, USA
| | - Jonathan D. Mahnken
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jill Morris
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Heather M. Wilkins
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey M. Burns
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mary L. Michaelis
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Elias K. Michaelis
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | |
Collapse
|
25
|
Weidling IW, Swerdlow RH. Mitochondria in Alzheimer's disease and their potential role in Alzheimer's proteostasis. Exp Neurol 2020; 330:113321. [PMID: 32339611 PMCID: PMC7282957 DOI: 10.1016/j.expneurol.2020.113321] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive brain disorder characterized by memory loss and the accumulation of two insoluble protein aggregates, tau neurofibrillary tangles and beta-amyloid plaques. Widespread mitochondrial dysfunction also occurs and mitochondria from AD patients display changes in number, ultrastructure, and enzyme activities. Mitochondrial dysfunction in AD presumably links in some way to its other disease characteristics, either as a cause or consequence. This review characterizes AD-associated mitochondrial perturbations and considers their position in its pathologic hierarchy. It focuses on the crosstalk that occurs between mitochondria, nuclear gene expression, and cytosolic signaling pathways that serves to maintain cell homeostasis. To this point, recent evidence indicates mitochondria trigger retrograde responses that influence cell proteostasis in general and AD proteostasis specifically. Potentially pertinent retrograde responses include the mitochondrial unfolded protein response (mtUPR), integrated stress response (ISR), autophagy/mitophagy, and proteasome function. A fuller perspective of mitochondrial dysfunction in AD, and its relation to protein aggregation, could enhance our overall understanding of this disease.
Collapse
Affiliation(s)
- Ian W Weidling
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
26
|
Amburana cearensis: Pharmacological and Neuroprotective Effects of Its Compounds. Molecules 2020; 25:molecules25153394. [PMID: 32726999 PMCID: PMC7435960 DOI: 10.3390/molecules25153394] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Amburana cearensis A.C. Smith is an endemic tree from Northeastern Brazil used in folk medicine as teas, decocts and syrups for the treatment of various respiratory and inflammatory diseases, since therapeutic properties have been attributed to compounds from its stem bark and seeds. Numerous pharmacological properties of semi-purified extracts and isolated compounds from A. cearensis have been described in several biological systems, ranging from antimicrobial to anti-inflammatory effects. Some of these activities are attributed to coumarins and phenolic compounds, the major compounds present in A. cearensis seed extracts. Multiple lines of research demonstrate these compounds reduce oxidative stress, inflammation and neuronal death induced by glutamate excitotoxicity, events central to most neuropathologies, including Alzheimer’s disease (AD) and Parkinson’s Disease (PD). This review focuses on the botanical aspects, folk medicine use, biological effects and pharmacological activities of A. cearensis compounds and their potential as novel non-toxic drugs for the treatment of neurodegenerative diseases.
Collapse
|
27
|
Swerdlow RH. The mitochondrial hypothesis: Dysfunction, bioenergetic defects, and the metabolic link to Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:207-233. [PMID: 32739005 PMCID: PMC8493961 DOI: 10.1016/bs.irn.2020.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) features mitochondrial dysfunction and altered metabolism. Other pathologies could drive these changes, or alternatively these changes could drive other pathologies. In considering this question, it is worth noting that perturbed AD patient mitochondrial and metabolism dysfunction extend beyond the brain and to some extent define a systemic phenotype. It is difficult to attribute this systemic phenotype to brain beta-amyloid or tau proteins. Conversely, mitochondria increasingly appear to play a critical role in cell proteostasis, which suggests that mitochondrial dysfunction may promote protein aggregation. Mitochondrial and metabolism-related characteristics also define AD endophenotypes in cognitively normal middle-aged individuals, which suggests that mitochondrial and metabolism-related AD characteristics precede clinical decline. Genetic analyses increasingly implicate mitochondria and metabolism-relevant genes in AD risk. Collectively these factors suggest that mitochondria are more relevant to the causes of AD than its consequences, and support the view that a mitochondrial cascade features prominently in AD. This chapter reviews the case for mitochondrial and metabolism dysfunction in AD and the challenges of proving that a primary mitochondrial cascade is pertinent to the disease.
Collapse
Affiliation(s)
- Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
28
|
Rebai A, Reçber T, Nemutlu E, Chbili C, Kurbanoglu S, Kir S, Amor SB, Özkan SA, Saguem S. GC-MS Based Metabolic Profiling of Parkinson's Disease with Glutathione S-transferase M1 and T1 Polymorphism in Tunisian Patients. Comb Chem High Throughput Screen 2020; 23:1041-1048. [PMID: 32342808 DOI: 10.2174/1386207323666200428082815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/13/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Parkinson's disease (PD) is the second most common neurodegenerative disease. It is a multifactorial disorder (caused by aging, environmental, and genetic factors). Metabolomics can help explore the biomarker profiles for aging. Recent studies showed an association between the glutathione S-transferases (GSTs) polymorphisms and PD risk. The purpose of this study was to evaluate the association of this genetic polymorphism and the metabolomic profile in PD Tunisian patients, in order to identify effective biomarkers in the genetic differentiation. MATERIALS AND METHODS In this study, the metabolomic profile changes related to GSTs polymorphism were searched in 54 Tunisian PD patients treated with L-dopa, using a gas chromatography-mass spectrometry (GC-MS) technique. RESULTS The study results showed that mannose, methyl stearate, and three other unknown metabolites, increased in patients with GSTM1 positive genotype, while glycolic acid, porphine, monomethyl phosphate, fumaric acid, and three other unknown metabolites decreased in patients with GSTM1 positive genotype. Subsequently, the levels of glycolic acid, erythronic acid, lactic acid, citric acid, fructose, stearic acid, 2-amino-2-methyl-1,3-propanediol and three other unknown metabolites increased in patients with GSTM1 positive genotype, while the levels of proline, valine and two unknown metabolites decreased with GSTT1 positive genotype. CONCLUSION All these altered metabolites are related to energy metabolism and it can be concluded that GSTs polymorphism based the shifting in energy metabolism and led to oxidative stress.
Collapse
Affiliation(s)
- Amal Rebai
- Metabolic Biophysics Laboratory, Department of Biophysics, Faculty of Medicine Sousse, Sousse University, Sousse, Tunisia
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Chahra Chbili
- Metabolic Biophysics Laboratory, Department of Biophysics, Faculty of Medicine Sousse, Sousse University, Sousse, Tunisia
| | - Sevinç Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sedef Kir
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sana B Amor
- Neurology Department of "Sahloul" University Hospital Center (UHC) - Sousse University, Sousse, Tunisia
| | - Sibel A Özkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Saad Saguem
- Metabolic Biophysics Laboratory, Department of Biophysics, Faculty of Medicine Sousse, Sousse University, Sousse, Tunisia
| |
Collapse
|
29
|
Why a d-β-hydroxybutyrate monoester? Biochem Soc Trans 2020; 48:51-59. [PMID: 32096539 PMCID: PMC7065286 DOI: 10.1042/bst20190240] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Much of the world's prominent and burdensome chronic diseases, such as diabetes, Alzheimer's, and heart disease, are caused by impaired metabolism. By acting as both an efficient fuel and a powerful signalling molecule, the natural ketone body, d-β-hydroxybutyrate (βHB), may help circumvent the metabolic malfunctions that aggravate some diseases. Historically, dietary interventions that elevate βHB production by the liver, such as high-fat diets and partial starvation, have been used to treat chronic disease with varying degrees of success, owing to the potential downsides of such diets. The recent development of an ingestible βHB monoester provides a new tool to quickly and accurately raise blood ketone concentration, opening a myriad of potential health applications. The βHB monoester is a salt-free βHB precursor that yields only the biologically active d-isoform of the metabolite, the pharmacokinetics of which have been studied, as has safety for human consumption in athletes and healthy volunteers. This review describes fundamental concepts of endogenous and exogenous ketone body metabolism, the differences between the βHB monoester and other exogenous ketones and summarises the disease-specific biochemical and physiological rationales behind its clinical use in diabetes, neurodegenerative diseases, heart failure, sepsis related muscle atrophy, migraine, and epilepsy. We also address the limitations of using the βHB monoester as an adjunctive nutritional therapy and areas of uncertainty that could guide future research.
Collapse
|
30
|
McDowell RE, Aulak KS, Almoushref A, Melillo CA, Brauer BE, Newman JE, Tonelli AR, Dweik RA. Platelet glycolytic metabolism correlates with hemodynamic severity in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L562-L569. [PMID: 32022593 DOI: 10.1152/ajplung.00389.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Group 1 pulmonary hypertension (PH), i.e., pulmonary arterial hypertension (PAH), is associated with a metabolic shift favoring glycolysis in cells comprising the lung vasculature as well as skeletal muscle and right heart. We sought to determine whether this metabolic switch is also detectable in circulating platelets from PAH patients. We used Seahorse Extracellular Flux to measure bioenergetics in platelets isolated from group 1 PH (PAH), group 2 PH, patients with dyspnea and normal pulmonary artery pressures, and healthy controls. We show that platelets from group 1 PH patients exhibit enhanced basal glycolysis and lower glycolytic reserve compared with platelets from healthy controls but do not differ from platelets of group 2 PH or dyspnea patients without PH. Although we were unable to identify a glycolytic phenotype unique to platelets from PAH patients, we found that platelet glycolytic metabolism correlated with hemodynamic severity only in group 1 PH patients, supporting the known link between PAH pathology and altered glycolytic metabolism and extending this association to ex vivo platelets. Pulmonary artery pressure and pulmonary vascular resistance in patients with group 1 PH were directly associated with basal platelet glycolysis and inversely associated with maximal and reserve glycolysis, suggesting that PAH progression reduces the capacity for glycolysis even while demanding an increase in glycolytic metabolism. Therefore, platelets may provide an easy-to-harvest, real-time window into the metabolic shift occurring in the lung vasculature and represent a useful surrogate for interrogating the glycolytic shift central to PAH pathology.
Collapse
Affiliation(s)
- Ruth E McDowell
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kulwant S Aulak
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Allaa Almoushref
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Celia A Melillo
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Brittany E Brauer
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jennie E Newman
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Adriano R Tonelli
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Raed A Dweik
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
31
|
Wang T, Yao J, Chen S, Mao Z, Brinton RD. Allopregnanolone Reverses Bioenergetic Deficits in Female Triple Transgenic Alzheimer's Mouse Model. Neurotherapeutics 2020; 17:178-188. [PMID: 31664643 PMCID: PMC7053503 DOI: 10.1007/s13311-019-00793-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously, we reported that the neurosteroid allopregnanolone (Allo) promoted neural stem cell regeneration, restored cognitive function, and reduced Alzheimer's Disease (AD) pathology in the triple transgenic Alzheimer's mouse model (3xTgAD). To investigate the underlying systems biology of Allo action in AD models in vivo, we assessed the regulation of Allo on the bioenergetic system of the brain. Outcomes of these analysis indicated that Allo significantly reversed deficits in mitochondrial respiration and biogenesis and key mitochondrial enzyme activity and reduced lipid peroxidation in the 3xTgAD mice in vivo. To explore the mechanisms by which Allo regulates the brain metabolism, we conducted targeted transcriptome analysis. These data further confirmed that Allo upregulated genes involved in glucose metabolism, mitochondrial bioenergetics, and signaling pathways while simultaneously downregulating genes involved in Alzheimer's pathology, fatty acid metabolism, and mitochondrial uncoupling and dynamics. Upstream regulatory pathway analysis predicted that Allo induced peroxisome proliferator-activated receptor gamma (PPARG) and coactivator 1-alpha (PPARGC1A) pathways while simultaneously inhibiting the presenilin 1 (PSEN 1), phosphatase and tensin homolog (PTEN), and tumor necrosis factor (TNF) pathways to reduce AD pathology. Collectively, these data indicate that Allo functions as a systems biology regulator of bioenergetics, cholesterol homeostasis, and β-amyloid reduction in the brain. These systems are critical to neurological health, thus providing a plausible mechanistic rationale for Allo as a therapeutic to promote neural cell function and reduce the burden of AD pathology.
Collapse
Affiliation(s)
- Tian Wang
- Center for Innovation in Brain Science, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85721, United States
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Southern California, California, Los Angeles, USA
| | - Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85721, United States
| | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85721, United States
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85721, United States.
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA.
- Department of Neurology, College of Medicine, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
32
|
Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P, Frisoni GB, Cattaneo A, Zille M, Boltze J, Cartier N, Buee L, Johansson G, Winblad B. Current and emerging avenues for Alzheimer's disease drug targets. J Intern Med 2019; 286:398-437. [PMID: 31286586 DOI: 10.1111/joim.12959] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is escalating as a global epidemic, and so far, there is neither cure nor treatment to alter its progression. The most important feature of the disease is neuronal death and loss of cognitive functions, caused probably from several pathological processes in the brain. The main neuropathological features of AD are widely described as amyloid beta (Aβ) plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to the disease. Nevertheless, AD brains suffer from a variety of alterations in function, such as energy metabolism, inflammation and synaptic activity. The latest decades have seen an explosion of genes and molecules that can be employed as targets aiming to improve brain physiology, which can result in preventive strategies for AD. Moreover, therapeutics using these targets can help AD brains to sustain function during the development of AD pathology. Here, we review broadly recent information for potential targets that can modify AD through diverse pharmacological and nonpharmacological approaches including gene therapy. We propose that AD could be tackled not only using combination therapies including Aβ and tau, but also considering insulin and cholesterol metabolism, vascular function, synaptic plasticity, epigenetics, neurovascular junction and blood-brain barrier targets that have been studied recently. We also make a case for the role of gut microbiota in AD. Our hope is to promote the continuing research of diverse targets affecting AD and promote diverse targeting as a near-future strategy.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - A Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - G Page
- Neurovascular Unit and Cognitive impairments - EA3808, University of Poitiers, Poitiers, France
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - P Giusti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - M Zusso
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - P Robert
- CoBTeK - lab, CHU Nice University Côte d'Azur, Nice, France
| | - G B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - A Cattaneo
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - M Zille
- Institute of Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - J Boltze
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - N Cartier
- Preclinical research platform, INSERM U1169/MIRCen Commissariat à l'énergie atomique, Fontenay aux Roses, France.,Université Paris-Sud, Orsay, France
| | - L Buee
- Alzheimer & Tauopathies, LabEx DISTALZ, CHU-Lille, Inserm, Univ. Lille, Lille, France
| | - G Johansson
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
33
|
Fleck D, Phu L, Verschueren E, Hinkle T, Reichelt M, Bhangale T, Haley B, Wang Y, Graham R, Kirkpatrick DS, Sheng M, Bingol B. PTCD1 Is Required for Mitochondrial Oxidative-Phosphorylation: Possible Genetic Association with Alzheimer's Disease. J Neurosci 2019; 39:4636-4656. [PMID: 30948477 PMCID: PMC6561697 DOI: 10.1523/jneurosci.0116-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/30/2022] Open
Abstract
In addition to amyloid-β plaques and tau tangles, mitochondrial dysfunction is implicated in the pathology of Alzheimer's disease (AD). Neurons heavily rely on mitochondrial function, and deficits in brain energy metabolism are detected early in AD; however, direct human genetic evidence for mitochondrial involvement in AD pathogenesis is limited. We analyzed whole-exome sequencing data of 4549 AD cases and 3332 age-matched controls and discovered that rare protein altering variants in the gene pentatricopeptide repeat-containing protein 1 (PTCD1) show a trend for enrichment in cases compared with controls. We show here that PTCD1 is required for normal mitochondrial rRNA levels, proper assembly of the mitochondrial ribosome and hence for mitochondrial translation and assembly of the electron transport chain. Loss of PTCD1 function impairs oxidative phosphorylation and forces cells to rely on glycolysis for energy production. Cells expressing the AD-linked variant of PTCD1 fail to sustain energy production under increased metabolic stress. In neurons, reduced PTCD1 expression leads to lower ATP levels and impacts spontaneous synaptic activity. Thus, our study uncovers a possible link between a protein required for mitochondrial function and energy metabolism and AD risk.SIGNIFICANCE STATEMENT Mitochondria are the main source of cellular energy and mitochondrial dysfunction is implicated in the pathology of Alzheimer's disease (AD) and other neurodegenerative disorders. Here, we identify a variant in the gene PTCD1 that is enriched in AD patients and demonstrate that PTCD1 is required for ATP generation through oxidative phosphorylation. PTCD1 regulates the level of 16S rRNA, the backbone of the mitoribosome, and is essential for mitochondrial translation and assembly of the electron transport chain. Cells expressing the AD-associated variant fail to maintain adequate ATP production during metabolic stress, and reduced PTCD1 activity disrupts neuronal energy homeostasis and dampens spontaneous transmission. Our work provides a mechanistic link between a protein required for mitochondrial function and genetic AD risk.
Collapse
Affiliation(s)
| | - Lilian Phu
- Microchemistry, Proteomics, and Lipidomics
| | | | | | | | | | - Benjamin Haley
- Molecular Biology, Genentech Inc., South San Francisco, California 94080
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Decades of research indicate mitochondria from Alzheimer's disease (AD) patients differ from those of non-AD individuals. Initial studies revealed structural differences, and subsequent studies showed functional deficits. Observations of structure and function changes prompted investigators to consider the consequences, significance, and causes of AD-related mitochondrial dysfunction. Currently, extensive research argues mitochondria may mediate, drive, or contribute to a variety of AD pathologies. The perceived significance of these mitochondrial changes continues to grow, and many currently believe AD mitochondrial dysfunction represents a reasonable therapeutic target. Debate continues over the origin of AD mitochondrial changes. Some argue amyloid-β (Aβ) induces AD mitochondrial dysfunction, a view that does not challenge the amyloid cascade hypothesis and that may in fact help explain that hypothesis. Alternatively, data indicate mitochondrial dysfunction exists independent of Aβ, potentially lies upstream of Aβ deposition, and suggest a primary mitochondrial cascade hypothesis that assumes mitochondrial pathology hierarchically supersedes Aβ pathology. Mitochondria, therefore, appear at least to mediate or possibly even initiate pathologic molecular cascades in AD. This review considers studies and data that inform this area of AD research.
Collapse
Affiliation(s)
- Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center and Departments of Neurology, Molecular and Integrative Physiology, and Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
35
|
Abstract
BACKGROUND The integration of biological, psychological, and social factors in medicine has benefited from increasingly precise stress response biomarkers. Mitochondria, a subcellular organelle with its own genome, produce the energy required for life and generate signals that enable stress adaptation. An emerging concept proposes that mitochondria sense, integrate, and transduce psychosocial and behavioral factors into cellular and molecular modifications. Mitochondrial signaling might in turn contribute to the biological embedding of psychological states. METHODS A narrative literature review was conducted to evaluate evidence supporting this model implicating mitochondria in the stress response, and its implementation in behavioral and psychosomatic medicine. RESULTS Chronically, psychological stress induces metabolic and neuroendocrine mediators that cause structural and functional recalibrations of mitochondria, which constitutes mitochondrial allostatic load. Clinically, primary mitochondrial defects affect the brain, the endocrine system, and the immune systems that play a role in psychosomatic processes, suggesting a shared underlying mechanistic basis. Mitochondrial function and dysfunction also contribute to systemic physiological regulation through the release of mitokines and other metabolites. At the cellular level, mitochondrial signaling influences gene expression and epigenetic modifications, and modulates the rate of cellular aging. CONCLUSIONS This evidence suggests that mitochondrial allostatic load represents a potential subcellular mechanism for transducing psychosocial experiences and the resulting emotional responses-both adverse and positive-into clinically meaningful biological and physiological changes. The associated article in this issue of Psychosomatic Medicine presents a systematic review of the effects of psychological stress on mitochondria. Integrating mitochondria into biobehavioral and psychosomatic research opens new possibilities to investigate how psychosocial factors influence human health and well-being across the life-span.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY 10032, USA
- Department of Neurology, The H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032, USA
- Columbia Aging Center, Columbia University, New York, NY 10032, USA
| | - Bruce S. McEwen
- Laboratory for Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
36
|
Cortical thickness, brain metabolic activity, and in vivo amyloid deposition in asymptomatic, middle-aged offspring of patients with late-onset Alzheimer's disease. J Psychiatr Res 2018; 107:11-18. [PMID: 30308328 DOI: 10.1016/j.jpsychires.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/30/2018] [Accepted: 10/04/2018] [Indexed: 11/20/2022]
Abstract
The natural history of preclinical late-onset Alzheimer's disease (LOAD) remains obscure and has received less attention than that of early-onset AD (EOAD), in spite of accounting for more than 99% of cases of AD. With the purpose of detecting early structural and functional traits associated with the disorder, we sought to characterize cortical thickness and subcortical grey matter volume, cerebral metabolism, and amyloid deposition in persons at risk for LOAD in comparison with a similar group without family history of AD. We obtained 3T T1 images for gray matter volume, FDG-PET to evaluate regional cerebral metabolism, and PET-PiB to detect fibrillar amyloid deposition in 30 middle-aged, asymptomatic, cognitively normal individuals with one parent diagnosed with LOAD (O-LOAD), and 25 comparable controls (CS) without family history of neurodegenerative disorders (CS). We observed isocortical thinning in AD-relevant areas including posterior cingulate, precuneus, and areas of the prefrontal and temporoparietal cortex in O-LOAD. Unexpectedly, this group displayed increased cerebral metabolism, in some cases overlapping with the areas of cortical thinning, and no differences in bilateral hippocampal volume and hippocampal metabolism. Given the importance of age in this sample of individuals potentially developing early AD-related changes, we controlled results for age and observed that most differences in cortical thickness and metabolism became nonsignificant; however, greater deposition of β-amyloid was observed in the right hemisphere including temporoparietal cortex, postcentral gyrus, fusiform inferior and middle temporal and lingual gyri. If replicated, the present observations of morphological, metabolic, and amyloid changes in cognitively normal persons with family history of LOAD may bear important implications for the definition of very early phenotypes of this disorder.
Collapse
|
37
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [PMID: 29471055 DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
38
|
Wilkins HM, Morris JK. New Therapeutics to Modulate Mitochondrial Function in Neurodegenerative Disorders. Curr Pharm Des 2018; 23:731-752. [PMID: 28034353 DOI: 10.2174/1381612822666161230144517] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mitochondrial function and energy metabolism are impaired in neurodegenerative diseases. There is evidence for these functional declines both within the brain and systemically in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Due to these observations, therapeutics targeted to alter mitochondrial function and energy pathways are increasingly studied in pre-clinical and clinical settings. METHODS The goal of this article was to review therapies with specific implications on mitochondrial energy metabolism published through May 2016 that have been tested for treatment of neurodegenerative diseases. RESULTS We discuss implications for mitochondrial dysfunction in neurodegenerative diseases and how this drives new therapeutic initiatives. CONCLUSION Thus far, treatments have achieved varying degrees of success. Further investigation into the mechanisms driving mitochondrial dysfunction and bioenergetic failure in neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jill K Morris
- University of Kansas School of Medicine, University of Kansas Alzheimer's Disease Center MS 6002, 3901 Rainbow Blvd, Kansas City, KS 66160. United States
| |
Collapse
|
39
|
Maternal imprinting on cognition markers of wild type and transgenic Alzheimer's disease model mice. Sci Rep 2018; 8:6434. [PMID: 29691440 PMCID: PMC5915602 DOI: 10.1038/s41598-018-24710-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
The risk of suffering from Alzheimer’s disease (AD) is higher in individuals from AD-affected mothers. The purpose of this investigation was to study whether maternal transmission might produce AD-related alterations in progenies of mice that do not have any genotypic alteration. We used cognitively-intact mothers harbouring in heterozygosity the transgene for overexpressing the Swedish double mutant version of the human amyloid precursor protein (hAβPPswe). The phenotype of the offspring with or without the transgene resulting from crossing young Tg2576 females with wild-type males were compared with those of the offspring resulting from crossing wild-type females with Tg2576 males. The hAβPPswe-bearing offspring from Tg2576 mothers showed an aggravated AD-like phenotype. Remarkably, cognitive, immunohistochemical and some biochemical features displayed by Tg2576 heterozygous mice were also found in wild-type animals generated from Tg2576 females. This suggests the existence of a maternal imprinting in the wild-type offspring that confers a greater facility to launch an AD-like neurodegenerative cascade. Such progeny, lacking any mutant amyloid precursor protein, constitutes a novel model to study maternal transmission of AD and, even more important, to discover early risk markers that predispose to the development of AD.
Collapse
|
40
|
Wilkins HM, Mahnken JD, Welch P, Bothwell R, Koppel S, Jackson RL, Burns JM, Swerdlow RH. A Mitochondrial Biomarker-Based Study of S-Equol in Alzheimer's Disease Subjects: Results of a Single-Arm, Pilot Trial. J Alzheimers Dis 2018; 59:291-300. [PMID: 28598847 DOI: 10.3233/jad-170077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reductions in bioenergetic fluxes, mitochondrial enzyme activities, and mitochondrial number are observed in Alzheimer's disease (AD). Preclinical work indicates estrogen pathway signaling by either estrogen or selective β estrogen receptor (ERβ) agonists benefits these parameters. To assess whether an ERβ agonist could improve mitochondrial function in actual AD subjects, we administered S-equol (10 mg twice daily) to 15 women with AD and determined the platelet mitochondria cytochrome oxidase (COX) activity before initiating S-equol (lead-in), after two weeks of S-equol (active treatment), and two weeks after stopping S-equol (wash-out). Because the intra-individual variation of this enzyme across samples taken at different times was unknown we used a nonparametric, single-arm, dichotomous endpoint that classified subjects whose active treatment COX activity exceeded the average of their lead-in and wash-out measures as positive responders. Eleven positive responses were observed (p < 0.06). The implications of this finding on our null hypothesis (that S-equol does not influence platelet mitochondria COX activity) are discussed. To our knowledge, this is the first time a direct mitochondrial target engagement biomarker has been utilized in an AD clinical study.
Collapse
Affiliation(s)
- Heather M Wilkins
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paul Welch
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Rebecca Bothwell
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Scott Koppel
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
41
|
Abstract
Alzheimer's disease (AD) is characterized by brain deposition of amyloid plaques and tau neurofibrillary tangles along with steady cognitive decline. Synaptic damage, an early pathological event, correlates strongly with cognitive deficits and memory loss. Mitochondria are essential organelles for synaptic function. Neurons utilize specialized mechanisms to drive mitochondrial trafficking to synapses in which mitochondria buffer Ca2+ and serve as local energy sources by supplying ATP to sustain neurotransmitter release. Mitochondrial abnormalities are one of the earliest and prominent features in AD patient brains. Amyloid-β (Aβ) and tau both trigger mitochondrial alterations. Accumulating evidence suggests that mitochondrial perturbation acts as a key factor that is involved in synaptic failure and degeneration in AD. The importance of mitochondria in supporting synaptic function has made them a promising target of new therapeutic strategies for AD. Here, we review the molecular mechanisms regulating mitochondrial function at synapses, highlight recent findings on the disturbance of mitochondrial dynamics and transport in AD, and discuss how these alterations impact synaptic vesicle release and thus contribute to synaptic pathology associated with AD.
Collapse
|
42
|
Mosconi L, Berti V, Quinn C, McHugh P, Petrongolo G, Osorio RS, Connaughty C, Pupi A, Vallabhajosula S, Isaacson RS, de Leon MJ, Swerdlow RH, Brinton RD. Perimenopause and emergence of an Alzheimer's bioenergetic phenotype in brain and periphery. PLoS One 2017; 12:e0185926. [PMID: 29016679 PMCID: PMC5634623 DOI: 10.1371/journal.pone.0185926] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/21/2017] [Indexed: 01/07/2023] Open
Abstract
After advanced age, female sex is the major risk factor for Alzheimer’s disease (AD). The biological mechanisms underlying the increased AD risk in women remain largely undetermined. Preclinical studies identified the perimenopause to menopause transition, a neuroendocrine transition state unique to the female, as a sex-specific risk factor for AD. In animals, estrogenic regulation of cerebral glucose metabolism (CMRglc) falters during perimenopause. This is evident in glucose hypometabolism and decline in mitochondrial efficiency which is sustained thereafter. This study bridges basic to clinical science to characterize brain bioenergetics in a cohort of forty-three, 40–60 year-old clinically and cognitively normal women at different endocrine transition stages including premenopause (controls, CNT, n = 15), perimenopause (PERI, n = 14) and postmenopause (MENO, n = 14). All participants received clinical, laboratory and neuropsychological examinations, 18F-fluoro-deoxyglucose (FDG)-Positron Emission Tomography (PET) FDG-PET scans to estimate CMRglc, and platelet mitochondrial cytochrome oxidase (COX) activity measures. Statistical parametric mapping and multiple regression models were used to examine clinical, CMRglc and COX data across groups. As expected, the MENO group was older than PERI and controls. Groups were otherwise comparable for clinical measures and distribution of APOE4 genotype. Both MENO and PERI groups exhibited reduced CMRglc in AD-vulnerable regions which was correlated with decline in mitochondrial COX activity compared to CNT (p’s<0.001). A gradient in biomarker abnormalities was most pronounced in MENO, intermediate in PERI, and lowest in CNT (p<0.001). Biomarkers correlated with immediate and delayed memory scores (Pearson’s 0.26≤r≤0.32, p≤0.05). These findings validate earlier preclinical findings and indicate emergence of bioenergetic deficits in perimenopausal and postmenopausal women, suggesting that the optimal window of opportunity for therapeutic intervention in women is early in the endocrine aging process.
Collapse
Affiliation(s)
- Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States of America.,Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Valentina Berti
- Department of Clinical Pathophysiology, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Crystal Quinn
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Pauline McHugh
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Gabriella Petrongolo
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Ricardo S Osorio
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Christopher Connaughty
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Alberto Pupi
- Department of Clinical Pathophysiology, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Shankar Vallabhajosula
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States of America
| | - Richard S Isaacson
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States of America
| | - Mony J de Leon
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States of America
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas School of Medicine, Kansas City, United States of America
| | - Roberta Diaz Brinton
- Departments of Pharmacology and Neurology, University of Arizona College of Medicine, Tucson, AZ, United States of America
| |
Collapse
|
43
|
Tan EP, McGreal SR, Graw S, Tessman R, Koppel SJ, Dhakal P, Zhang Z, Machacek M, Zachara NE, Koestler DC, Peterson KR, Thyfault JP, Swerdlow RH, Krishnamurthy P, DiTacchio L, Apte U, Slawson C. Sustained O-GlcNAcylation reprograms mitochondrial function to regulate energy metabolism. J Biol Chem 2017; 292:14940-14962. [PMID: 28739801 DOI: 10.1074/jbc.m117.797944] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/20/2017] [Indexed: 01/31/2023] Open
Abstract
Dysfunctional mitochondria and generation of reactive oxygen species (ROS) promote chronic diseases, which have spurred interest in the molecular mechanisms underlying these conditions. Previously, we have demonstrated that disruption of post-translational modification of proteins with β-linked N-acetylglucosamine (O-GlcNAcylation) via overexpression of the O-GlcNAc-regulating enzymes O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) impairs mitochondrial function. Here, we report that sustained alterations in O-GlcNAcylation either by pharmacological or genetic manipulation also alter metabolic function. Sustained O-GlcNAc elevation in SH-SY5Y neuroblastoma cells increased OGA expression and reduced cellular respiration and ROS generation. Cells with elevated O-GlcNAc levels had elongated mitochondria and increased mitochondrial membrane potential, and RNA-sequencing analysis indicated transcriptome reprogramming and down-regulation of the NRF2-mediated antioxidant response. Sustained O-GlcNAcylation in mouse brain and liver validated the metabolic phenotypes observed in the cells, and OGT knockdown in the liver elevated ROS levels, impaired respiration, and increased the NRF2 antioxidant response. Moreover, elevated O-GlcNAc levels promoted weight loss and lowered respiration in mice and skewed the mice toward carbohydrate-dependent metabolism as determined by indirect calorimetry. In summary, sustained elevation in O-GlcNAcylation coupled with increased OGA expression reprograms energy metabolism, a finding that has potential implications for the etiology, development, and management of metabolic diseases.
Collapse
Affiliation(s)
- Ee Phie Tan
- From the Departments of Biochemistry and Molecular Biology
| | | | | | | | | | | | - Zhen Zhang
- From the Departments of Biochemistry and Molecular Biology
| | - Miranda Machacek
- From the Departments of Biochemistry and Molecular Biology.,Pathology and Laboratory Medicine, and
| | - Natasha E Zachara
- the Department of Biological Chemistry, The Johns Hopkins University of Medicine, Baltimore, Maryland 21205
| | | | | | | | - Russell H Swerdlow
- Neurology, University of Kansas Medical Center and.,University of Kansas Alzheimer's Disease Center, Kansas City, Kansas 64108 and
| | - Partha Krishnamurthy
- Pharmacology, Toxicology and Therapeutics.,University of Kansas Alzheimer's Disease Center, Kansas City, Kansas 64108 and
| | | | | | - Chad Slawson
- From the Departments of Biochemistry and Molecular Biology, .,University of Kansas Alzheimer's Disease Center, Kansas City, Kansas 64108 and
| |
Collapse
|
44
|
Neuroketotherapeutics: A modern review of a century-old therapy. Neurochem Int 2017; 117:114-125. [PMID: 28579059 PMCID: PMC5711637 DOI: 10.1016/j.neuint.2017.05.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/18/2023]
Abstract
Neuroketotherapeutics represent a class of bioenergetic medicine therapies that feature the induction of ketosis. These therapies include medium-chain triglyceride supplements, ketone esters, fasting, strenuous exercise, the modified Atkins diet, and the classic ketogenic diet. Extended experience reveals persons with epilepsy, especially pediatric epilepsy, benefit from ketogenic diets although the mechanisms that underlie its effects remain unclear. Data indicate ketotherapeutics enhance mitochondrial respiration, promote neuronal long-term potentiation, increase BDNF expression, increase GPR signaling, attenuate oxidative stress, reduce inflammation, and alter protein post-translational modifications via lysine acetylation and β-hydroxybutyrylation. These properties have further downstream implications involving Akt, PLCγ, CREB, Sirtuin, and mTORC pathways. Further studies of neuroketotherapeutics will enhance our understanding of ketone body molecular biology, and reveal novel central nervous system therapeutic applications.
Collapse
|
45
|
Willette AA, Webb JL, Lutz MW, Bendlin BB, Wennberg AM, Oh JM, Roses A, Koscik RL, Hermann BP, Dowling NM, Asthana S, Johnson SC. Family history and TOMM40 '523 interactive associations with memory in middle-aged and Alzheimer's disease cohorts. Alzheimers Dement 2017; 13:1217-1225. [PMID: 28549947 DOI: 10.1016/j.jalz.2017.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/24/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Family history (FH) of Alzheimer's disease (AD) affects mitochondrial function and may modulate effects of translocase of the outer mitochondrial membrane 40 kDa (TOMM40) rs10524523 ('523) poly-T length on memory decline. METHODS For 912 nonapolipoprotein ε4 middle-aged adults and 365 aged adults across the AD spectrum, linear mixed models gauged FH and TOMM40 '523 interactions on memory and global cognition between baseline and up to 10 years later. A cerebrospinal fluid mitochondrial function biomarker was also assessed. RESULTS For FH negative participants, gene-dose preservation of memory and global cognition was seen for "very long" versus "short" carriers. For FH positive, an opposite gene-dose decline was seen for very long versus short carriers. Maternal FH was a stronger predictor in aged, but not middle-aged, participants. Similar gene-dose effects were seen for the mitochondrial biomarker aspartate aminotransferase. DISCUSSION These results may clarify conflicting findings on TOMM40 poly-T length and AD-related decline.
Collapse
Affiliation(s)
- Auriel A Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA; Department of Psychology, Iowa State University, Ames, Iowa, USA; Department of Neurology, University of Iowa, Iowa City, Iowa, USA.
| | - Joseph L Webb
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Michael W Lutz
- Bryan Alzheimer's Disease Research Center, Duke University, Durham, North Carolina, USA; Zinfandel Pharmaceuticals, Chapel Hill, North Carolina, USA
| | - Barbara B Bendlin
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, Wisconsin, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Alexandra M Wennberg
- Department of Health Sciences Research, Mayo Clinic (Rochester), Rochester, Minnesota, USA
| | - Jennifer M Oh
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, Wisconsin, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Allen Roses
- Bryan Alzheimer's Disease Research Center, Duke University, Durham, North Carolina, USA; Zinfandel Pharmaceuticals, Chapel Hill, North Carolina, USA
| | - Rebecca L Koscik
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Bruce P Hermann
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - N Maritza Dowling
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Sanjay Asthana
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, Wisconsin, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, Wisconsin, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | |
Collapse
|
46
|
Mak E, Gabel S, Mirette H, Su L, Williams GB, Waldman A, Wells K, Ritchie K, Ritchie C, O’Brien J. Structural neuroimaging in preclinical dementia: From microstructural deficits and grey matter atrophy to macroscale connectomic changes. Ageing Res Rev 2017; 35:250-264. [PMID: 27777039 DOI: 10.1016/j.arr.2016.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/26/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022]
Abstract
The last decade has witnessed a proliferation of neuroimaging studies characterising brain changes associated with Alzheimer's disease (AD), where both widespread atrophy and 'signature' brain regions have been implicated. In parallel, a prolonged latency period has been established in AD, with abnormal cerebral changes beginning many years before symptom onset. This raises the possibility of early therapeutic intervention, even before symptoms, when treatments could have the greatest effect on disease-course modification. Two important prerequisites of this endeavour are (1) accurate characterisation or risk stratification and (2) monitoring of progression using neuroimaging outcomes as a surrogate biomarker in those without symptoms but who will develop AD, here referred to as preclinical AD. Structural neuroimaging modalities have been used to identify brain changes related to risk factors for AD, such as familial genetic mutations, risk genes (for example apolipoprotein epsilon-4 allele), and/or family history. In this review, we summarise structural imaging findings in preclinical AD. Overall, the literature suggests early vulnerability in characteristic regions, such as the medial temporal lobe structures and the precuneus, as well as white matter tracts in the fornix, cingulum and corpus callosum. We conclude that while structural markers are promising, more research and validation studies are needed before future secondary prevention trials can adopt structural imaging biomarkers as either stratification or surrogate biomarkers.
Collapse
|
47
|
Wilkins HM, Weidling IW, Ji Y, Swerdlow RH. Mitochondria-Derived Damage-Associated Molecular Patterns in Neurodegeneration. Front Immunol 2017; 8:508. [PMID: 28491064 PMCID: PMC5405073 DOI: 10.3389/fimmu.2017.00508] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
Inflammation is increasingly implicated in neurodegenerative disease pathology. As no acquired pathogen appears to drive this inflammation, the question of what does remains. Recent advances indicate damage-associated molecular pattern (DAMP) molecules, which are released by injured and dying cells, can cause specific inflammatory cascades. Inflammation, therefore, can be endogenously induced. Mitochondrial components induce inflammatory responses in several pathological conditions. Due to evidence such as this, a number of mitochondrial components, including mitochondrial DNA, have been labeled as DAMP molecules. In this review, we consider the contributions of mitochondrial-derived DAMPs to inflammation observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Ian W Weidling
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yan Ji
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
48
|
Wilkins HM, Koppel SJ, Bothwell R, Mahnken J, Burns JM, Swerdlow RH. Platelet cytochrome oxidase and citrate synthase activities in APOE ε4 carrier and non-carrier Alzheimer's disease patients. Redox Biol 2017; 12:828-832. [PMID: 28448944 PMCID: PMC5406545 DOI: 10.1016/j.redox.2017.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 11/12/2022] Open
Abstract
A degradation product of APOE ε4-encoded apolipoprotein E protein targets mitochondria and inhibits cytochrome oxidase (COX), and autopsy brains from young adult APOE ε4 carriers show reduced COX activity. To further explore relationships between APOE alleles and COX, we measured platelet mitochondria COX activity in AD subjects with (n=8) and without (n=7) an APOE ε4 allele and found the mean COX activity, when normalized to sample total protein, was lower in the APOE ε4 carriers (p<0.05). Normalizing COX activity to citrate synthase (CS) activity eliminated this difference, but notably the mean CS activity was itself lower in the APOE ε4 carriers (p<0.05). COX and CS protein levels did not appear to cause the lower APOE ε4 carrier COX and CS Vmax activities. If confirmed in larger studies, these data could suggest mitochondria at least partly mediate the well-recognized association between APOE alleles and AD risk. Platelet mitochondria from APOE ε4 carrier AD subjects have lower COX activity. Platelet mitochondria from APOE ε4 carrier AD subjects have lower CS activity. CS and COX protein expression were equivalent between groups.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Scott J Koppel
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Rebecca Bothwell
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Jonathan Mahnken
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Jeffrey M Burns
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
49
|
Mamelak M. Energy and the Alzheimer brain. Neurosci Biobehav Rev 2017; 75:297-313. [PMID: 28193453 DOI: 10.1016/j.neubiorev.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/01/2023]
Abstract
The high energy demands of the poorly myelinated long axon hippocampal and cortical neurons render these neurons selectively vulnerable to degeneration in Alzheimer's disease. However, pathology engages all of the major elements of the neurovascular unit of the mature Alzheimer brain, the neurons, glia and blood vessels. Neurons present with retrograde degeneration of the axodendritic tree, capillaries with string vessels and markedly reduced densities and glia with signs of inflammatory activation. The neurons, capillaries and astrocytes of the mature Alzheimer brain harbor structurally defective mitochondria. Clinically, reduced glucose utilization, decades before cognitive deterioration, betrays ongoing energy insufficiency. β-hydroxybutyrate and γ-hydroxybutyrate can both provide energy to the brain when glucose utilization is blocked. Early work in mouse models of Alzheimer's disease demonstrate their ability to reverse the pathological changes in the Alzheimer brain and initial clinical trials reveal their ability to improve cognition and every day function. Supplying the brain with energy holds great promise for delaying the onset of Alzheimer's disease and slowing its progress.
Collapse
|
50
|
Mitochondria, Cybrids, Aging, and Alzheimer's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:259-302. [PMID: 28253988 DOI: 10.1016/bs.pmbts.2016.12.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial and bioenergetic function change with advancing age and may drive aging phenotypes. Mitochondrial and bioenergetic changes are also documented in various age-related neurodegenerative diseases, including Alzheimer's disease (AD). In some instances AD mitochondrial and bioenergetic changes are reminiscent of those observed with advancing age but are greater in magnitude. Mitochondrial and bioenergetic dysfunction could, therefore, link neurodegeneration to brain aging. Interestingly, mitochondrial defects in AD patients are not brain-limited, and mitochondrial function can be linked to classic AD histologic changes including amyloid precursor protein processing to beta amyloid. Also, transferring mitochondria from AD subjects to cell lines depleted of endogenous mitochondrial DNA (mtDNA) creates cytoplasmic hybrid (cybrid) cell lines that recapitulate specific biochemical, molecular, and histologic AD features. Such findings have led to the formulation of a "mitochondrial cascade hypothesis" that places mitochondrial dysfunction at the apex of the AD pathology pyramid. Data pertinent to this premise are reviewed.
Collapse
|