1
|
Riazati N, Engle-Stone R, Stephensen CB. Association of Vitamin D Status with Immune Markers in a Cohort of Healthy Adults. J Nutr 2025; 155:621-633. [PMID: 39716659 DOI: 10.1016/j.tjnut.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Immune function is affected by vitamin D status, but the optimal serum 25-hydroxy vitamin D [25(OH)D] concentration for immune function is not known. OBJECTIVES We hypothesized that 25(OH)D would be associated with markers of inflammation and immune activation. METHODS We identified associations between 25(OH)D and immune markers from 361 healthy adults using polynomial regression. Linear regression was used to define the slope (β) of significant linear associations, and piecewise regression identified inflection points (IPs) for curvilinear associations with P < 0.05. IPs with a slope difference (SD) P < 0.05 before and after were significant. RESULTS 25(OH)D had linear, negative associations with interleukin (IL)-6 (β: -0.126; P = 0.009) and macrophage-derived chemokine (MDC) (β: -0.108; P = 0.04) and a linear, positive association with matrix metalloproteinase (MMP)-1 (β: 0.108; P = 0.04). Among the significant curvilinear associations, 2 showed negative associations below but positive associations above an IP with nearly significant SD P values, including percentage of effector-memory CD8 T cells (IP: 56.2 nmol/L; SD P = 0.067) and platelet concentration (IP: 38.9 nmol/L; SD P = 0.058). The opposite associations, positive below and negative above an IP, were seen for eotaxin (IP: 49.5 nmol/L; SD P = 0.049); interferon (IFN)-γ-induced protein-10 (IP-10) (IP: 71.8 nmol/L; SD P = 0.02); percentage of CD4 T cells expressing programmed cell death protein (PD)-1 (IP: 71.2 nmol/L; SD P = 0.01); percentage of Tregs expressing human leukocyte antigen, DR isotype (HLA-DR) (IP: 67.5 nmol/L; SD P < 0.0001); percentage of memory Tregs (IP: 68.8 nmol/L; SD P = 0.002); and percentage of memory Tregs expressing HLA-DR (IP: 68.8 nmol/L; SD P = 0.0008). CONCLUSIONS These findings are consistent with low vitamin D status allowing and higher vitamin D status dampening inflammation and immune activation. IP analysis identified possible thresholds for vitamin D effects on immune function. Two of 3 IPs at ∼50 nmol/L show higher inflammation below this concentration, suggesting 50 nmol/L as a minimum target for dampening inflammation. IPs at ∼70 nmol/L identify a threshold for CD4 T-cell activity, including Treg activation and IFN-γ-driven production of the T-cell chemokine IP-10, suggesting an optimal concentration for regulating adaptive immunity. This study was registered at clinicaltrials.gov as NCT02367287.
Collapse
Affiliation(s)
- Niknaz Riazati
- Graduate Group of Molecular, Cellular, and Integrative Physiology, University of California, Davis, Davis, CA, United States; USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States
| | - Reina Engle-Stone
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Charles B Stephensen
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States; Department of Nutrition, University of California, Davis, Davis, CA, United States.
| |
Collapse
|
2
|
Das K, Rao LVM. Coagulation protease-induced extracellular vesicles: their potential effects on coagulation and inflammation. J Thromb Haemost 2024; 22:2976-2990. [PMID: 39127325 PMCID: PMC11726980 DOI: 10.1016/j.jtha.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Coagulation proteases, in addition to playing an essential role in blood coagulation, often influence diverse cellular functions by inducing specific signaling pathways via the activation of protease-activated receptors (PARs). PAR activation-induced cellular effects are known to be cell-specific as PARs are expressed selectively in specific cell types. However, a growing body of evidence indicates that coagulation protease-induced PAR activation in a specific cell type could affect cellular responses in other cell types via communicating through extracellular vesicles (EVs) as coagulation protease-induced PAR signaling could promote the release of EVs in various cell types. EVs are membrane-enclosed nanosized vesicles that facilitate intercellular communication by transferring bioactive molecules, such as proteins, lipids, messenger RNAs, and microRNAs, etc., from donor cells to recipient cells. Our recent findings established that factor (F)VIIa promotes the release of EVs from vascular endothelium via endothelial cell protein C receptor-dependent activation of PAR1-mediated biased signaling. FVIIa-released EVs exhibit procoagulant activity and cytoprotective responses in both in vitro and in vivo model systems. This review discusses how FVIIa and other coagulation proteases trigger the release of EVs. The review specifically discusses how FVIIa-released EVs are enriched with phosphatidylserine and anti-inflammatory microRNAs and the impact of FVIIa-released EVs on hemostasis in therapeutic settings. The review also briefly highlights the therapeutic potential of FVIIa-released EVs in treating bleeding and inflammatory disorders, such as hemophilic arthropathy.
Collapse
Affiliation(s)
- Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas at Tyler School of Medicine, The University of Texas at Tyler Health Science Center, Tyler, Texas, USA.
| |
Collapse
|
3
|
Zeng B, Li Y, Khan N, Su A, Yang Y, Mi P, Jiang B, Liang Y, Duan L. Yin-Yang: two sides of extracellular vesicles in inflammatory diseases. J Nanobiotechnology 2024; 22:514. [PMID: 39192300 PMCID: PMC11351009 DOI: 10.1186/s12951-024-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of Yin-Yang, originating in ancient Chinese philosophy, symbolizes two opposing but complementary forces or principles found in all aspects of life. This concept can be quite fitting in the context of extracellular vehicles (EVs) and inflammatory diseases. Over the past decades, numerous studies have revealed that EVs can exhibit dual sides, acting as both pro- and anti-inflammatory agents, akin to the concept of Yin-Yang theory (i.e., two sides of a coin). This has enabled EVs to serve as potential indicators of pathogenesis or be manipulated for therapeutic purposes by influencing immune and inflammatory pathways. This review delves into the recent advances in understanding the Yin-Yang sides of EVs and their regulation in specific inflammatory diseases. We shed light on the current prospects of engineering EVs for treating inflammatory conditions. The Yin-Yang principle of EVs bestows upon them great potential as, therapeutic, and preventive agents for inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 53020, Guangxi, China
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Aiyuan Su
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yicheng Yang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA
| | - Peng Mi
- Department of Radiology, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Jiang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA.
| | - Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
4
|
Muttiah B, Ng SL, Lokanathan Y, Ng MH, Law JX. Beyond Blood Clotting: The Many Roles of Platelet-Derived Extracellular Vesicles. Biomedicines 2024; 12:1850. [PMID: 39200314 PMCID: PMC11351396 DOI: 10.3390/biomedicines12081850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Platelet-derived extracellular vesicles (pEVs) are emerging as pivotal players in numerous physiological and pathological processes, extending beyond their traditional roles in hemostasis and thrombosis. As one of the most abundant vesicle types in human blood, pEVs transport a diverse array of bioactive molecules, including growth factors, cytokines, and clotting factors, facilitating crucial intercellular communication, immune regulation, and tissue healing. The unique ability of pEVs to traverse tissue barriers and their biocompatibility position them as promising candidates for targeted drug delivery and regenerative medicine applications. Recent studies have underscored their involvement in cancer progression, viral infections, wound healing, osteoarthritis, sepsis, cardiovascular diseases, rheumatoid arthritis, and atherothrombosis. For instance, pEVs promote tumor progression and metastasis, enhance tissue repair, and contribute to thrombo-inflammation in diseases such as COVID-19. Despite their potential, challenges remain, including the need for standardized isolation techniques and a comprehensive understanding of their mechanisms of action. Current research efforts are focused on leveraging pEVs for innovative anti-cancer treatments, advanced drug delivery systems, regenerative therapies, and as biomarkers for disease diagnosis and monitoring. This review highlights the necessity of overcoming technical hurdles, refining isolation methods, and establishing standardized protocols to fully unlock the therapeutic potential of pEVs. By understanding the diverse functions and applications of pEVs, we can advance their use in clinical settings, ultimately revolutionizing treatment strategies across various medical fields and improving patient outcomes.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
5
|
Das D, Jothimani G, Banerjee A, Dey A, Duttaroy AK, Pathak S. A brief review on recent advances in diagnostic and therapeutic applications of extracellular vesicles in cardiovascular disease. Int J Biochem Cell Biol 2024; 173:106616. [PMID: 38992790 DOI: 10.1016/j.biocel.2024.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication within the cardiovascular system, playing essential roles in physiological homeostasis and contributing to the pathogenesis of various cardiovascular diseases (CVDs). However, their potential as diagnostic biomarkers and therapeutic agents in rare cardiovascular diseases, such as valvular heart disease (VHD) and cardiomyopathies, remains largely unexplored. This review comprehensively emphasizes recent advancements in extracellular vesicle research, explicitly highlighting their growing significance in diagnosing and potentially treating rare cardiovascular diseases, with a particular focus on valvular heart disease and cardiomyopathies. We highlight the potential of extracellular vesicle-based liquid biopsies as non-invasive tools for early disease detection and risk stratification, showcasing specific extracellular vesicle-associated biomarkers (proteins, microRNAs, lipids) with diagnostic and prognostic value. Furthermore, we discussed the therapeutic promise of extracellular vesicles derived from various sources, including stem cells and engineered extracellular vesicles, for cardiac repair and regeneration through their ability to modulate inflammation, promote angiogenesis, and reduce fibrosis. By integrating the findings and addressing critical knowledge gaps, this review aims to stimulate further research and innovation in extracellular vesicle-based diagnostics and therapeutics of cardiovascular disease.
Collapse
Affiliation(s)
- Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603103, India
| | - Ganesan Jothimani
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603103, India
| | - Amit Dey
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603103, India.
| |
Collapse
|
6
|
Esmaeilzadeh A, Yeganeh PM, Nazari M, Esmaeilzadeh K. Platelet-derived extracellular vesicles: a new-generation nanostructured tool for chronic wound healing. Nanomedicine (Lond) 2024; 19:915-941. [PMID: 38445377 DOI: 10.2217/nnm-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Chronic nonhealing wounds pose a serious challenge to regaining skin function and integrity. Platelet-derived extracellular vesicles (PEVs) are nanostructured particles with the potential to promote wound healing since they can enhance neovascularization and cell migration and reduce inflammation and scarring. This work provides an innovative overview of the technical laboratory issues in PEV production, PEVs' role in chronic wound healing and the benefits and challenges in its clinical translation. The article also explores the challenges of proper sourcing, extraction techniques and storage conditions, and discusses the necessity of further evaluations and combinational therapeutics, including dressing biomaterials, M2-derived exosomes, mesenchymal stem cells-derived extracellular vesicles and microneedle technology, to boost their therapeutic efficacy as advanced strategies for wound healing.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| |
Collapse
|
7
|
Schofield H, Rossetto A, Armstrong PC, Allan HE, Warner TD, Brohi K, Vulliamy P. Immature platelet dynamics are associated with clinical outcomes after major trauma. J Thromb Haemost 2024; 22:926-935. [PMID: 38101576 DOI: 10.1016/j.jtha.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Major trauma results in dramatic changes in platelet behavior. Newly formed platelets are more reactive than older platelets, but their contributions to hemostasis and thrombosis after severe injury have not been previously evaluated. OBJECTIVES To determine how immature platelet metrics and plasma thrombopoietin relate to clinical outcomes after major injury. METHODS A prospective observational cohort study was performed in adult trauma patients. Platelet counts and the immature platelet fraction (IPF) were measured at admission and 24 hours, 72 hours, and 7 days after injury. Thromboelastometry was performed at admission. Plasma thrombopoietin, c-Mpl, and GPIbα were quantified in a separate cohort. The primary outcome was in-hospital mortality; secondary outcomes were venous thromboembolic events and multiple organ dysfunction syndrome (MODS). RESULTS On admission, immature platelet counts (IPCs) were significantly lower in nonsurvivors (n = 40) than in survivors (n = 236; 7.3 × 109/L vs 10.6 × 109/L; P = .009), but IPF did not differ. Similarly, impaired platelet function on thromboelastometry was associated with lower admission IPC (9.1 × 109/L vs 11.9 × 109/L; P < .001). However, at later time points, we observed significantly higher IPF and IPC in patients who developed venous thromboembolism (21.0 × 109/L vs 11.1 × 109/L; P = .02) and prolonged MODS (20.9 × 109/L vs 11 × 109/L; P = .003) than in those who did not develop complications. Plasma thrombopoietin levels at admission were significantly lower in nonsurvivors (P < .001), in patients with MODS (P < .001), and in those who developed venous thromboembolism (P = .04). CONCLUSION Lower levels of immature platelets in the acute phase after major injury are associated with increased mortality, whereas higher immature platelet levels at later time points may predispose to thrombosis and MODS.
Collapse
Affiliation(s)
- Henry Schofield
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK
| | - Andrea Rossetto
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK
| | - Paul C Armstrong
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Harriet E Allan
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Timothy D Warner
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK
| | - Paul Vulliamy
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
8
|
Vulliamy P, Armstrong PC. Platelets in Hemostasis, Thrombosis, and Inflammation After Major Trauma. Arterioscler Thromb Vasc Biol 2024; 44:545-557. [PMID: 38235557 DOI: 10.1161/atvbaha.123.318801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Trauma currently accounts for 10% of the total global burden of disease and over 5 million deaths per year, making it a leading cause of morbidity and mortality worldwide. Although recent advances in early resuscitation have improved early survival from critical injury, the mortality rate in patients with major hemorrhage approaches 50% even in mature trauma systems. A major determinant of clinical outcomes from a major injury is a complex, dynamic hemostatic landscape. Critically injured patients frequently present to the emergency department with an acute traumatic coagulopathy that increases mortality from bleeding, yet, within 48 to 72 hours after injury will switch from a hypocoagulable to a hypercoagulable state with increased risk of venous thromboembolism and multiple organ dysfunction. This review will focus on the role of platelets in these processes. As effectors of hemostasis and thrombosis, they are central to each phase of recovery from injury, and our understanding of postinjury platelet biology has dramatically advanced over the past decade. This review describes our current knowledge of the changes in platelet behavior that occur following major trauma, the mechanisms by which these changes develop, and the implications for clinical outcomes. Importantly, supported by research in other disease settings, this review also reflects the emerging role of thromboinflammation in trauma including cross talk between platelets, innate immune cells, and coagulation. We also address the unresolved questions and significant knowledge gaps that remain, and finally highlight areas that with the further study will help deliver further improvements in trauma care.
Collapse
Affiliation(s)
- Paul Vulliamy
- Centre for Trauma Sciences (P.V.), Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Paul C Armstrong
- Centre for Immunobiology (P.C.A.), Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
9
|
Papareddy P, Tapken I, Kroh K, Varma Bhongir RK, Rahman M, Baumgarten M, Cim EI, Györffy L, Smeds E, Neumann A, Veerla S, Olinder J, Thorlacus H, Ryden C, Bartakova E, Holub M, Herwald H. The role of extracellular vesicle fusion with target cells in triggering systemic inflammation. Nat Commun 2024; 15:1150. [PMID: 38326335 PMCID: PMC10850166 DOI: 10.1038/s41467-024-45125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in intercellular communication by transferring bioactive molecules from donor to recipient cells. As a result, EV fusion leads to the modulation of cellular functions and has an impact on both physiological and pathological processes in the recipient cell. This study explores the impact of EV fusion on cellular responses to inflammatory signaling. Our findings reveal that fusion renders non-responsive cells susceptible to inflammatory signaling, as evidenced by increased NF-κB activation and the release of inflammatory mediators. Syntaxin-binding protein 1 is essential for the merge and activation of intracellular signaling. Subsequent analysis show that EVs transfer their functionally active receptors to target cells, making them prone to an otherwise unresponsive state. EVs in complex with their agonist, require no further stimulation of the target cells to trigger mobilization of NF-κB. While receptor antagonists were unable to inhibit NF-κB activation, blocking of the fusion between EVs and their target cells with heparin mitigated inflammation in mice challenged with EVs.
Collapse
Affiliation(s)
- Praveen Papareddy
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Ines Tapken
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Keshia Kroh
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Milladur Rahman
- Section of Surgery, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Maria Baumgarten
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Eda Irem Cim
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lilla Györffy
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emanuel Smeds
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ariane Neumann
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Srinivas Veerla
- Division of Oncology and Pathology, Lund, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jon Olinder
- Division of Infection Medicine, Helsingborg Hospital and Department of Clinical Sciences Helsingborg, Lund University, Lund, Sweden
| | - Henrik Thorlacus
- Section of Surgery, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Cecilia Ryden
- Division of Infection Medicine, Helsingborg Hospital and Department of Clinical Sciences Helsingborg, Lund University, Lund, Sweden
| | - Eva Bartakova
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Praha, Czech Republic
| | - Michal Holub
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Praha, Czech Republic
| | - Heiko Herwald
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Nash GB. The rheology of interactions between leukocytes, platelets and the vessel wall in thrombo-inflammation. Biorheology 2024; 59:63-80. [PMID: 38461497 DOI: 10.3233/bir-230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Leukocytes and platelets must adhere to the wall of blood vessels to carry out their protective functions in inflammation and haemostasis. Recruitment is critically dependent on rheological variables (wall shear rate and stress, red cell aggregation and haematocrit) which affect delivery to the vessel wall as well as velocities and forces experienced there. Leukocyte recruitment is efficient only up to wall shear rates of about 300 s-1 and usually restricted to low-shear post-capillary venules in inflammation. Being smaller, platelets experience lower velocities and shear forces adjacent to the wall and can adhere at much higher shear rates for haemostasis in arteries. In addition, we found quite different effects of variations in haematocrit or red cell aggregation on attachment of neutrophils or platelets, which also assist their separate recruitment in venules or arteries. However, it has become increasingly evident that inflammatory and thrombotic responses may occur together, with platelets promoting the adhesion and activation of neutrophils and monocytes. Indeed, it is 30 years since we demonstrated that platelets could cause neutrophils to aggregate in suspension and, when attached to a surface, could support selectin-mediated rolling of all leukocytes. Thrombin-activated platelets could further induce neutrophil activation and immobilisation. In some conditions, platelets could bind to intact endothelial monolayers and capture neutrophils or monocytes. Subsequently, we found that extracellular vesicles released by activated platelets (PEV) fulfilled similar functions when deposited on surfaces or bound to endothelial cells. In murine models, platelets or PEV could act as bridges for monocytes in inflamed vessels. Thus, leukocytes and platelets are rheologically adapted for their separate functions, while novel thrombo-inflammatory pathways using platelets or PEV may underlie pathogenic leukocyte recruitment.
Collapse
Affiliation(s)
- Gerard B Nash
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Gonzalez Suarez N, Fernandez-Marrero Y, Hébert MPA, Roy ME, Boudreau LH, Annabi B. EGCG inhibits the inflammation and senescence inducing properties of MDA-MB-231 triple-negative breast cancer (TNBC) cells-derived extracellular vesicles in human adipose-derived mesenchymal stem cells. Cancer Cell Int 2023; 23:240. [PMID: 37833751 PMCID: PMC10576371 DOI: 10.1186/s12935-023-03087-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) cells' secretome can induce a pro-inflammatory phenotype in human adipose-derived mesenchymal stem cells (hADMSC). This can be prevented by the green tea polyphenol epigallocatechin-3-gallate (EGCG). The impact of EGCG on the paracrine regulation that the extracellular vesicles (EVs) specifically exert within the TNBC secretome remains unknown. METHODS EVs were obtained from a TNBC-derived serum-starved MDA-MB-231 cell model treated or not with EGCG under normoxic or hypoxic (< 1% O2) culture conditions. RNA-Seq analysis was used to assess the EVs' genetic content. The modulation of inflammatory and senescence markers in hADMSC was evaluated by RT-qPCR using cDNA arrays and validated by immunoblotting. A protein profiler phospho-kinase array was used to explore signaling pathways. RESULTS While hypoxic culture conditions did not significantly alter the genetic content of MDA-MB-231-secreted EVs, the addition of EGCG significantly modified EVs genetic material at low oxygen tension. Gene expression of cancer-associated adipocyte pro-inflammatory markers CXCL8, CCL2 and IL-1β was increased in hADMSC treated with EVs. Concomitantly, EVs isolated from MDA-MB-231 treated with EGCG (EGCG-EVs) downregulated CCL2 and IL-1β, while inducing higher expression of CXCL8 and IL-6 levels. EVs activated CHK-2, c-Jun, AKT and GSK-3β signaling pathways in hADMSC, whereas EGCG-EVs specifically reduced the latter two as well as the serum starvation-induced senescence markers p21 and β-galactosidase. Finally, the mitochondrial content within the TNBC cells-derived EVs was found reduced upon EGCG treatment. CONCLUSION This proof of concept study demonstrates that the chemopreventive properties of diet-derived polyphenols may efficiently target the paracrine regulation that TNBC cells could exert upon their surrounding adipose tissue microenvironment.
Collapse
Affiliation(s)
- Narjara Gonzalez Suarez
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec À Montréal and CERMO-FC, C.P. 8888, Succ. Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | | | - Mathieu P A Hébert
- Department of Chemistry and Biochemistry, Université de Moncton and New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Marie-Eve Roy
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec À Montréal and CERMO-FC, C.P. 8888, Succ. Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton and New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec À Montréal and CERMO-FC, C.P. 8888, Succ. Centre-Ville, Montreal, QC, H3C 3P8, Canada.
| |
Collapse
|
12
|
Pelletier M, Breton Y, Allaeys I, Becker Y, Benson T, Boilard E. Platelet extracellular vesicles and their mitochondrial content improve the mitochondrial bioenergetics of cellular immune recipients. Transfusion 2023; 63:1983-1996. [PMID: 37642274 DOI: 10.1111/trf.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Mitochondria play a critical role in the production of cell energy and the regulation of cell death. Therefore, mitochondria orchestrate numerous cell effector functions, including fine-tuning the immune system. While mitochondria are mainly found intracellularly, they can escape the confine of the cell during the process of extracellular vesicle release. Platelets patrol blood vessels to ensure vasculature integrity and to support the immune system. In blood, platelets are the primary source of circulating mitochondria. Activated platelets produce extracellular vesicles, including a subset of mitochondria-containing vesicles. STUDY DESIGN AND METHODS We characterized mitochondrial functions in platelet-derived extracellular vesicles, and examined whether they could impact the bioenergetics of cellular immune recipients using an extracellular flux analyzer to measure real-time bioenergetics. RESULTS We validated that extracellular vesicles derived from activated platelets contain the necessary mitochondrial machinery to respirate and generate energy. Moreover, neutrophils and monocytes efficiently captured platelet-derived extracellular vesicles, enhancing their mitochondrial fitness. This process required functional mitochondria from donor platelets, as it was abolished by the inactivation of extracellular mitochondria using mitochondrial poison. DISCUSSION Together, the data suggest that extracellular mitochondria produced by platelets may support other metabolic functions through transcellular bioenergetics.
Collapse
Affiliation(s)
- Martin Pelletier
- Infectious and Immune Diseases Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Québec, Canada
- Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, Québec, Canada
| | - Yann Breton
- Infectious and Immune Diseases Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Québec, Canada
- Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, Québec, Canada
| | - Isabelle Allaeys
- Infectious and Immune Diseases Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Québec, Canada
- Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, Québec, Canada
| | - Yann Becker
- Infectious and Immune Diseases Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Québec, Canada
- Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, Québec, Canada
| | - Tom Benson
- Mitrix Bio Inc., Pleasanton, California, USA
| | - Eric Boilard
- Infectious and Immune Diseases Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Québec, Canada
- Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, Québec, Canada
| |
Collapse
|
13
|
Hindle MS, Cheah LT, Yates DM, Naseem KM. Preanalytical conditions for multiparameter platelet flow cytometry. Res Pract Thromb Haemost 2023; 7:102205. [PMID: 37854456 PMCID: PMC10579537 DOI: 10.1016/j.rpth.2023.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
Background Flow cytometry is an important technique for understanding multiple aspects of blood platelet biology. Despite the widespread use of the platform for assessing platelet function, the optimization and careful consideration of preanalytical conditions, sample processing techniques, and data analysis strategies should be regularly assessed. When set up and designed with optimal conditions, it can ensure the acquisition of robust and reproducible flow cytometry data. However, these parameters are rarely described despite their importance. Objectives We aimed to characterize the effects of several preanalytical variables on the analysis of blood platelets by multiparameter fluorescent flow cytometry. Methods We assessed anticoagulant choice, sample material, sample processing, and storage times on 4 distinct and commonly used markers of platelet activation, including fibrinogen binding, expression of CD62P and CD42b, and phosphatidylserine exposure. Results The use of suboptimal conditions led to increases in basal platelet activity and reduced sensitivities to stimulation; however, the use of optimal conditions protected the platelets from artifactual stimulation and preserved basal activity and sensitivity to activation. Conclusion The optimal preanalytical conditions identified here for the measurement of platelet phenotype by flow cytometry suggest a framework for future development of multiparameter platelet assays for high-quality data sets and advanced analysis.
Collapse
Affiliation(s)
- Matthew S. Hindle
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, UK
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, UK
| | - Lih T. Cheah
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, UK
| | - Daisie M. Yates
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, UK
| | - Khalid M. Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, UK
| |
Collapse
|
14
|
Burnouf T, Chou ML, Lundy DJ, Chuang EY, Tseng CL, Goubran H. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J Biomed Sci 2023; 30:79. [PMID: 37704991 PMCID: PMC10500824 DOI: 10.1186/s12929-023-00972-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Platelets are small anucleated blood cells primarily known for their vital hemostatic role. Allogeneic platelet concentrates (PCs) collected from healthy donors are an essential cellular product transfused by hospitals to control or prevent bleeding in patients affected by thrombocytopenia or platelet dysfunctions. Platelets fulfill additional essential functions in innate and adaptive immunity and inflammation, as well as in wound-healing and tissue-repair mechanisms. Platelets contain mitochondria, lysosomes, dense granules, and alpha-granules, which collectively are a remarkable reservoir of multiple trophic factors, enzymes, and signaling molecules. In addition, platelets are prone to release in the blood circulation a unique set of extracellular vesicles (p-EVs), which carry a rich biomolecular cargo influential in cell-cell communications. The exceptional functional roles played by platelets and p-EVs explain the recent interest in exploring the use of allogeneic PCs as source material to develop new biotherapies that could address needs in cell therapy, regenerative medicine, and targeted drug delivery. Pooled human platelet lysates (HPLs) can be produced from allogeneic PCs that have reached their expiration date and are no longer suitable for transfusion but remain valuable source materials for other applications. These HPLs can substitute for fetal bovine serum as a clinical grade xeno-free supplement of growth media used in the in vitro expansion of human cells for transplantation purposes. The use of expired allogeneic platelet concentrates has opened the way for small-pool or large-pool allogeneic HPLs and HPL-derived p-EVs as biotherapy for ocular surface disorders, wound care and, potentially, neurodegenerative diseases, osteoarthritis, and others. Additionally, allogeneic platelets are now seen as a readily available source of cells and EVs that can be exploited for targeted drug delivery vehicles. This article aims to offer an in-depth update on emerging translational applications of allogeneic platelet biotherapies while also highlighting their advantages and limitations as a clinical modality in regenerative medicine and cell therapies.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| |
Collapse
|
15
|
Abstract
Platelet-derived extracellular vesicles (PEVs) are a subset of EVs that are released from platelets, which are small nuclear cell fragments that play a critical role in hemostasis and thrombosis. PEVs have been shown to have important roles in a variety of physiological and pathological processes, including inflammation, angiogenesis, and cancer. Recently, researchers, including our group have utilized PEVs as drug delivery platforms as PEVs could target inflammatory sites both passively and actively. This review summarizes the biological function of PEVs, introduces recent applications of PEVs in targeted drug delivery, and provides an outlook for the further development of utilizing PEVs for drug delivery.
Collapse
Affiliation(s)
- Chenlu Yao
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Chao Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
16
|
Chaudhary PK, Kim S, Kim S. Shedding Light on the Cell Biology of Platelet-Derived Extracellular Vesicles and Their Biomedical Applications. Life (Basel) 2023; 13:1403. [PMID: 37374185 DOI: 10.3390/life13061403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
EVs are membranous subcellular structures originating from various cells, including platelets which consist of biomolecules that can modify the target cell's pathophysiological functions including inflammation, cell communication, coagulation, and metastasis. EVs, which are known to allow the transmission of a wide range of molecules between cells, are gaining popularity in the fields of subcellular treatment, regenerative medicine, and drug delivery. PEVs are the most abundant EVs in circulation, being produced by platelet activation, and are considered to have a significant role in coagulation. PEV cargo is extremely diverse, containing lipids, proteins, nucleic acids, and organelles depending on the condition that induced their release and can regulate a wide range of biological activities. PEVs, unlike platelets, can overcome tissue barriers, allowing platelet-derived contents to be transferred to target cells and organs that platelets cannot reach. Their isolation, characterization, and therapeutic efficacy, on the other hand, are poorly understood. This review summarizes the technical elements of PEV isolation and characterization methods as well as the pathophysiological role of PEVs, including therapeutic potential and translational possibility in diverse disciplines.
Collapse
Affiliation(s)
- Preeti Kumari Chaudhary
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sanggu Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
17
|
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovasc Med 2023; 10:1113827. [PMID: 37332592 PMCID: PMC10272466 DOI: 10.3389/fcvm.2023.1113827] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoyin Gou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - YiJin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| |
Collapse
|
18
|
Rolling CC, Barrett TJ, Berger JS. Platelet-monocyte aggregates: molecular mediators of thromboinflammation. Front Cardiovasc Med 2023; 10:960398. [PMID: 37255704 PMCID: PMC10225702 DOI: 10.3389/fcvm.2023.960398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Platelets, key facilitators of primary hemostasis and thrombosis, have emerged as crucial cellular mediators of innate immunity and inflammation. Exemplified by their ability to alter the phenotype and function of monocytes, activated platelets bind to circulating monocytes to form monocyte-platelet aggregates (MPA). The platelet-monocyte axis has emerged as a key mechanism connecting thrombosis and inflammation. MPA are elevated across the spectrum of inflammatory and autoimmune disorders, including cardiovascular disease, systemic lupus erythematosus (SLE), and COVID-19, and are positively associated with disease severity. These clinical disorders are all characterized by an increased risk of thromboembolic complications. Intriguingly, monocytes in contact with platelets become proinflammatory and procoagulant, highlighting that this interaction is a central element of thromboinflammation.
Collapse
Affiliation(s)
- Christina C. Rolling
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
19
|
Di Mambro T, Pellielo G, Agyapong ED, Carinci M, Chianese D, Giorgi C, Morciano G, Patergnani S, Pinton P, Rimessi A. The Tricky Connection between Extracellular Vesicles and Mitochondria in Inflammatory-Related Diseases. Int J Mol Sci 2023; 24:8181. [PMID: 37175888 PMCID: PMC10179665 DOI: 10.3390/ijms24098181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are organelles present in almost all eukaryotic cells, where they represent the main site of energy production. Mitochondria are involved in several important cell processes, such as calcium homeostasis, OXPHOS, autophagy, and apoptosis. Moreover, they play a pivotal role also in inflammation through the inter-organelle and inter-cellular communications, mediated by the release of mitochondrial damage-associated molecular patterns (mtDAMPs). It is currently well-documented that in addition to traditional endocrine and paracrine communication, the cells converse via extracellular vesicles (EVs). These small membrane-bound particles are released from cells in the extracellular milieu under physio-pathological conditions. Importantly, EVs have gained much attention for their crucial role in inter-cellular communication, translating inflammatory signals into recipient cells. EVs cargo includes plasma membrane and endosomal proteins, but EVs also contain material from other cellular compartments, including mitochondria. Studies have shown that EVs may transport mitochondrial portions, proteins, and/or mtDAMPs to modulate the metabolic and inflammatory responses of recipient cells. Overall, the relationship between EVs and mitochondria in inflammation is an active area of research, although further studies are needed to fully understand the mechanisms involved and how they may be targeted for therapeutic purposes. Here, we have reported and discussed the latest studies focused on this fascinating and recent area of research, discussing of tricky connection between mitochondria and EVs in inflammatory-related diseases.
Collapse
Affiliation(s)
- Tommaso Di Mambro
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giulia Pellielo
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Esther Densu Agyapong
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Diego Chianese
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giampaolo Morciano
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
20
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Deng L, Zheng P. Thrombocytosis in patients with spondyloarthritis: a case-control study. BMC Musculoskelet Disord 2023; 24:195. [PMID: 36922788 PMCID: PMC10018826 DOI: 10.1186/s12891-023-06304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the clinical and laboratory as well as radiological features of spondyloarthritis (SpA) patients with thrombocytosis and to explore risk factor for thrombocytosis in SpA patients and to assess the effect of antitumor necrosis factor-α (anti-TNF-α) therapy on platelet count in SpA patients with thrombocytosis. METHODS A total of 145 patients with SpA were included in this study, and non-thrombocytosis was identified in 76 patients while thrombocytosis was found in 69 patients, 38 out of the 69 patients received anti-TNF-α therapy. Logistic regression analysis was performed to investigate risk factors that associated with thrombocytosis. The platelet count of patients in the thrombocytosis group treated with anti-TNF-α therapy on week 0, week 6 and week 12 were collected and compared with conventional therapy group. RESULTS The proportion of hip involvement (60.86% vs 36.84%, p = 0.004), bath ankylosing spondylitis disease activity index score (4.24 ± 0.55 vs 3.69 ± 0.67, p < 0.001), erythrocyte sedimentation rate (62.22 ± 41.97 mm/hour vs 27.00 ± 25.93 mm/hour, p < 0.001), C-reactive protein (53.45 ± 47.45 mg/L vs 18.91 ± 31.09 mg/L, p < 0.001), fibrinogen (5.77 ± 1.48 g/L vs 4.01 ± 1.32 g/L, P < 0.001), white blood cells (8.15 ± 1.90 × 109/L vs 6.85 ± 2.39 × 109/L, p < 0.001) and neutrophils (5.08 ± 1.55 × 109/L vs 4.01 ± 2.04 × 109/L, p = 0.001) are higher in thrombocytosis group, but hemoglobin and albumin are lower compared to non-thrombocytosis group (122.88 ± 17.25 g/L vs 131.51 ± 16.03 g/L, p = 0.002; 37.19 ± 4.73 g/L vs 39.67 ± 3.99 g/L, p = 0.001, respectively). Multivariable logistic regression analysis indicated that higher white blood cells (OR, 1.644; 95% CI, 1.045-2.587; P = 0.032) and fibrinogen (OR, 2.169; 95% CI, 1.237-3.804; P = 0.007) were independently associated with thrombocytosis in SpA patients. The platelet count in the thrombocytosis group treated with anti-TNF-α therapy on week 6 and week 12 were statistically lower than week 0 (225.05 ± 60.58 × 109/L vs 368.26 ± 54.34 × 109/L, p < 0.001; 201.26 ± 51.48 × 109/L vs 368.26 ± 54.34 × 109/L, p < 0.001) and conventional therapy (week 6, 225.05 ± 60.58 × 109/L vs 370.00 ± 74.05 × 109/L, p < 0.001; week 12, 201.26 ± 51.48 × 109/L vs 303.13 ± 71.49 × 109/L, p < 0.001). CONCLUSION SpA patients with thrombocytosis have a higher proportion of hip involvement and disease activity compared to non-thrombocytosis SpA patients. The potential risk factors for thrombocytosis in SPA patients were higher white blood cells and fibrinogen. Anti-TNF-α therapy can reduce the increased platelets more effectively and rapidly than conventional treatments in SpA patients with thrombocytosis.
Collapse
Affiliation(s)
- Linan Deng
- Department of Rheumatology, Fuzhou Second Hospital, 47 Shangteng Road, Cangshan District, Fuzhou, 350007, China.
| | - Pingping Zheng
- Department of Burns and Wounds, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
22
|
Zhu Z, Sun S, Jiang T, Zhang L, Chen M, Chen S. A double-edged sword of platelet-derived extracellular vesicles in tissues, injury or repair: The current research overview. Tissue Cell 2023; 82:102066. [PMID: 36924675 DOI: 10.1016/j.tice.2023.102066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Extracellular vesicles (EVs) are vesicular bodies with a double-layered membrane structure that are detached from the cell membrane or secreted by the cells. EVs secreted by platelets account for the main part in the blood circulation, which account for about 30% or even more. Many types of cells are regulated by PEVs, including endothelial cells, leukocytes, smooth muscle cells, etc. Nevertheless, despite the growing interest in the study of extracellular vesicles, there are still only a few studies on the role of PEVs. Therefore, this overview mainly focuses on one method of isolation and the functions of PEVs in tissues found so far, including promoting tissue repair and mediating tissue damage, which can be used for researchers to continue to explore the role of PEVs in other fields.
Collapse
Affiliation(s)
- Zepeng Zhu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Medical School, Southeast University, Nanjing, China
| | - Si Sun
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Medical School, Southeast University, Nanjing, China
| | - Tiancheng Jiang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Medical School, Southeast University, Nanjing, China
| | - Lei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| |
Collapse
|
23
|
Brown PA, Brown PD. Extracellular vesicles and atherosclerotic peripheral arterial disease. Cardiovasc Pathol 2023; 63:107510. [PMID: 36460259 DOI: 10.1016/j.carpath.2022.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Atherogenesis involves a complex multifactorial process including chronic inflammation that requires the participation of several cell types and molecules. In addition to their role in vascular homeostasis, extracellular vesicles also appear to play an important role in atherogenesis, including monocyte transmigration and foam cell formation, SMC proliferation and migration, leukocyte transmigration, and thrombosis. Peripheral arterial disease, a major form of peripheral vascular disease, is characterized by structural or functional impairment of peripheral arterial supply, often secondary to atherosclerosis. Elevated levels of extracellular vesicles have been demonstrated in patients with peripheral arterial disease and implicated in the development of atherosclerosis within peripheral vascular beds. However, extracellular vesicles also appear capable of delivering cargo with atheroprotective effects. This capability has been exploited in vesicles engineered to carry content capable of neovascularization, suggesting potential for therapeutic angiogenesis. This dual capacity holds substantial promise for diagnosis and therapy, including possibly limb- and life-saving options for peripheral arterial disease management.
Collapse
Affiliation(s)
- Paul A Brown
- Department of Basic Medical Sciences, University of the West Indies, Mona, Jamaica.
| | - Paul D Brown
- Department of Basic Medical Sciences, University of the West Indies, Mona, Jamaica
| |
Collapse
|
24
|
Zang X, Su Y, Zhang W, Cao X, Li C, Lu S, Zhao H, Chen Y, Liang C, Wu J. Hepatocyte-derived Microparticles as Novel Biomarkers for the Diagnosis of Deep Venous Thrombosis in Trauma Patients. Clin Appl Thromb Hemost 2023; 29:10760296231153400. [PMID: 36749023 PMCID: PMC9909065 DOI: 10.1177/10760296231153400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Venous thromboembolism is a common complication following trauma. We investigated the dynamics of plasma microparticles (MPs) levels and explored their potential as biomarkers of deep vein thromboembolism (DVT) after trauma. A total of 775 patients with traumatic fractures were recruited in this nested study. About 106 trauma patients (53 DVT subjects and 53 age-, sex-, and fracture site-matched non-DVT subjects) and 53 healthy volunteers met the enrollment criteria. MPs were characterized by transmission electron microscope, nanoparticle tracking analysis, and western blotting. Circulating levels of MPs were measured using a flow cytometer. Meanwhile, routine laboratory parameters were examined in all patients. Compared to non-DVT patients, DVT patients had higher circulating phosphatidylserine (PS) + MPs, hepatocyte-derived MPs (HMPs), PS + HMPs, and platelet-derived MPs (PMPs). Notably, PS + HMPs had the best predictive value for DVT diagnosis in trauma patients (area under the curve [AUC] 0.8939, 95% CI 0.8326 to 0.9552), which was superior to d-dimer (AUC 0.5881). The Hepatic Procoagulant Index combined plasma levels of PS + HMPs and albumin, increasing the AUC to 0.8978 (95% CI 0.8396 to 0.9561). This is the first study that addressed circulating PS + HMPs are promising biomarkers with high performance in diagnosing DVT. The Hepatic Procoagulant Index is a potential predictor of DVT in trauma patients.
Collapse
Affiliation(s)
- Xinwei Zang
- Department of Clinical Laboratory, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Yu Su
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, China
| | - Wenjie Zhang
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, China
| | - Xiangyu Cao
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, China
| | - Chunyan Li
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, China
| | - Shan Lu
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, China
| | - Huiru Zhao
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, China
| | - Yuying Chen
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Cuiying Liang
- Department of Clinical Laboratory, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Jun Wu
- Department of Clinical Laboratory, Peking University Fourth School of Clinical Medicine, Beijing, China,Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, China,Jun Wu, Department of Clinical Laboratory, Peking University Fourth School of Clinical Medicine, Beijing, 100035, China.
| |
Collapse
|
25
|
Dai Z, Xia C, Zhao T, Wang H, Tian H, Xu O, Zhu X, Zhang J, Chen P. Platelet-derived extracellular vesicles ameliorate intervertebral disc degeneration by alleviating mitochondrial dysfunction. Mater Today Bio 2023; 18:100512. [PMID: 36536658 PMCID: PMC9758573 DOI: 10.1016/j.mtbio.2022.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction causes the production of reactive oxygen species (ROS) and oxidative damage, and oxidative stress and inflammation are considered key factors causing intervertebral disc degeneration (IVDD). Thus, restoring the mitochondrial dysfunction is an attractive strategy for treating IVDD. Platelet-derived extracellular vesicles (PEVs) are nanoparticles that target inflammation. Moreover, the vesicles produced by platelets (PLTs) have considerable anti-inflammatory effects. We investigate the use of PEVs as a therapeutic strategy for IVDD in this study. We extract PEVs and evaluate their properties; test their effects on H2O2-induced oxidative damage of nucleus pulposus (NP) cells; verify the role of PEVs in repairing H2O2-induced cellular mitochondrial dysfunction; and demonstrate the therapeutic effects of PEVs in a rat IVDD model. The results confirm that PEVs can restore impaired mitochondrial function, reduce oxidative stress, and restore cell metabolism by regulating the sirtuin 1 (SIRT1)-peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α)-mitochondrial transcription factor A (TFAM) pathway; in rat models, PEVs retard the progression of IVDD. Our results demonstrate that the injection of PEVs can be a promising strategy for treating patients with IVDD.
Collapse
Affiliation(s)
- Zhanqiu Dai
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Anhui, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China
| | - Chen Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China
| | - Tingxiao Zhao
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China
| | - Haoli Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Hongsen Tian
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Ouyuan Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xunbin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Jun Zhang
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Schiavello M, Vizio B, Bosco O, Pivetta E, Mariano F, Montrucchio G, Lupia E. Extracellular Vesicles: New Players in the Mechanisms of Sepsis- and COVID-19-Related Thromboinflammation. Int J Mol Sci 2023; 24:ijms24031920. [PMID: 36768242 PMCID: PMC9916541 DOI: 10.3390/ijms24031920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Sepsis and COVID-19 patients often manifest an imbalance in inflammation and coagulation, a complex pathological mechanism also named thromboinflammation, which strongly affects patient prognosis. Extracellular vesicles (EVs) are nanoparticles released by cells into extracellular space that have a relevant role in cell-to-cell communication. Recently, EVs have been shown to act as important players in a variety of pathologies, including cancer and cardiovascular disease. The biological properties of EVs in the mechanisms of thromboinflammation during sepsis and COVID-19 are still only partially known. Herein, we summarize the current experimental evidence on the role of EVs in thromboinflammation, both in bacterial sepsis and in COVID-19. A better understanding of EV involvement in these processes could be useful in describing novel diagnostic and therapeutic applications of EVs in these diseases.
Collapse
|
27
|
Subtype-specific plasma signatures of platelet-related protein releasate in acute pulmonary embolism. Thromb Res 2022; 220:75-87. [DOI: 10.1016/j.thromres.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
|
28
|
He Y, Wu Q. The Effect of Extracellular Vesicles on Thrombosis. J Cardiovasc Transl Res 2022:10.1007/s12265-022-10342-w. [DOI: 10.1007/s12265-022-10342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Abstract
The risk of cardiovascular events caused by acute thrombosis is high, including acute myocardial infarction, acute stroke, acute pulmonary embolism, and deep vein thrombosis. In this review, we summarize the roles of extracellular vesicles of different cellular origins in various cardiovascular events associated with acute thrombosis, as described in the current literature, to facilitate the future development of a precise therapy for thrombosis caused by such vesicles. We hope that our review will indicate a new horizon in the field of cardiovascular research with regard to the treatment of acute thrombosis, especially targeting thrombosis caused by extracellular vesicles secreted by individual cells. As more emerging technologies are being developed, new diagnostic and therapeutic strategies related to EVs are expected to be identified for related diseases in the future.
Collapse
|
29
|
Ye SL, Li WD, Li WX, Xiao L, Ran F, Chen MM, Li XQ, Sun LL. The regulatory role of exosomes in venous thromboembolism. Front Cell Dev Biol 2022; 10:956880. [PMID: 36092737 PMCID: PMC9449368 DOI: 10.3389/fcell.2022.956880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Exosomes are nanoscale endocytic vesicles, 30-150 nm in diameter, secreted by most cells. They mainly originate from multivesicular bodies formed by intracellular invagination of lysosomal microparticles, and released into the extracellular matrix after fusion of multivesicular bodies with cell membrane. Studies have shown that exosomes contain a variety of active molecules, such as proteins, lipids and RNAs (such as mRNA, miRNA, lncRNA, circRNA, etc.), which regulate the behavior of recipient cells and serve as circulating biomarkers of diseases, including thrombosis. Therefore, exosome research is important for the diagnosis, treatment, therapeutic monitoring, and prognosis of thrombosis in that it can reveal the counts, surface marker expression, protein, and miRNA cargo involved. Recent studies have shown that exosomes can be used as therapeutic vectors for tissue regeneration and as alternative vectors for drug delivery. In this review, we summarize the physiological and biochemical characteristics, isolation, and identification of exosomes. Moreover, we focus on the role of exosomes in thrombosis, specifically venous thromboembolism, and their potential clinical applications, including as biomarkers and therapeutic vectors for thrombosis.
Collapse
Affiliation(s)
- Sheng-Lin Ye
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen-Dong Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei-Xiao Li
- Department of Vascular Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lun Xiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Feng Ran
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Meng-Meng Chen
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Li-Li Sun
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
30
|
Ebeyer-Masotta M, Eichhorn T, Weiss R, Lauková L, Weber V. Activated Platelets and Platelet-Derived Extracellular Vesicles Mediate COVID-19-Associated Immunothrombosis. Front Cell Dev Biol 2022; 10:914891. [PMID: 35874830 PMCID: PMC9299085 DOI: 10.3389/fcell.2022.914891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Activated platelets and platelet-derived extracellular vesicles (EVs) have emerged as central players in thromboembolic complications associated with severe coronavirus disease 2019 (COVID-19). Platelets bridge hemostatic, inflammatory, and immune responses by their ability to sense pathogens via various pattern recognition receptors, and they respond to infection through a diverse repertoire of mechanisms. Dysregulated platelet activation, however, can lead to immunothrombosis, a simultaneous overactivation of blood coagulation and the innate immune response. Mediators released by activated platelets in response to infection, such as antimicrobial peptides, high mobility group box 1 protein, platelet factor 4 (PF4), and PF4+ extracellular vesicles promote neutrophil activation, resulting in the release of neutrophil extracellular traps and histones. Many of the factors released during platelet and neutrophil activation are positively charged and interact with endogenous heparan sulfate or exogenously administered heparin via electrostatic interactions or via specific binding sites. Here, we review the current state of knowledge regarding the involvement of platelets and platelet-derived EVs in the pathogenesis of immunothrombosis, and we discuss the potential of extracorporeal therapies using adsorbents functionalized with heparin to deplete platelet-derived and neutrophil-derived mediators of immunothrombosis.
Collapse
Affiliation(s)
- Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Lucia Lauková
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
31
|
Extracellular Vesicles, Inflammation, and Cardiovascular Disease. Cells 2022; 11:cells11142229. [PMID: 35883672 PMCID: PMC9320258 DOI: 10.3390/cells11142229] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. The underlying mechanisms of most cardiovascular disorders involve innate and adaptive immune responses, and extracellular vesicles are implicated in both. In this review, we describe the mechanistic role of extracellular vesicles at the intersection of inflammatory processes and cardiovascular disease. Our discussion focuses on atherosclerosis, myocardial ischemia and ischemic heart disease, heart failure, aortic aneurysms, and valvular pathology.
Collapse
|
32
|
Eustes AS, Dayal S. The Role of Platelet-Derived Extracellular Vesicles in Immune-Mediated Thrombosis. Int J Mol Sci 2022; 23:7837. [PMID: 35887184 PMCID: PMC9320310 DOI: 10.3390/ijms23147837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived extracellular vesicles (PEVs) play important roles in hemostasis and thrombosis. There are three major types of PEVs described based on their size and characteristics, but newer types may continue to emerge owing to the ongoing improvement in the methodologies and terms used to define various types of EVs. As the literature on EVs is growing, there are continuing attempts to standardize protocols for EV isolation and reach consensus in the field. This review provides information on mechanisms of PEV production, characteristics, cellular interaction, and their pathological role, especially in autoimmune and infectious diseases. We also highlight the mechanisms through which PEVs can activate parent cells in a feedback loop.
Collapse
Affiliation(s)
- Alicia S. Eustes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
33
|
Xu C, Ju D, Zhang X. Cell Membrane-Derived Vesicle: A Novel Vehicle for Cancer Immunotherapy. Front Immunol 2022; 13:923598. [PMID: 35874757 PMCID: PMC9300949 DOI: 10.3389/fimmu.2022.923598] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 01/15/2023] Open
Abstract
As nano-sized materials prepared by isolating, disrupting and extruding cell membranes, cellular vesicles are emerging as a novel vehicle for immunotherapeutic drugs to activate antitumor immunity. Cell membrane-derived vesicles inherit the surface characteristics and functional properties of parental cells, thus having superior biocompatibility, low immunogenicity and long circulation. Moreover, the potent antitumor effect of cellular vesicles can be achieved through surface modification, genetic engineering, hybridization, drug encapsulation, and exogenous stimulation. The capacity of cellular vesicles to combine drugs of different compositions and functions in physical space provides a promising vehicle for combinational immunotherapy of cancer. In this review, the latest advances in cellular vesicles as vehicles for combinational cancer immunotherapy are systematically summarized with focuses on manufacturing processes, cell sources, therapeutic strategies and applications, providing an insight into the potential and existing challenges of using cellular vesicles for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Dianwen Ju
- *Correspondence: Dianwen Ju, ; Xuyao Zhang,
| | | |
Collapse
|
34
|
Stone AP, Nikols E, Freire D, Machlus KR. The pathobiology of platelet and megakaryocyte extracellular vesicles: A (c)lot has changed. J Thromb Haemost 2022; 20:1550-1558. [PMID: 35506218 DOI: 10.1111/jth.15750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
Platelet-derived extracellular vesicles (PEVs) were originally studied for their potential as regulators of coagulation, a function redundant with that of their parent cells. However, as the understanding of the diverse roles of platelets in hemostasis and disease has developed, so has the understanding of PEVs. In addition, the more recent revelation of constitutively released megakaryocyte-derived extracellular vesicles (MKEVs) in circulation provides an interesting counterpoint and avenue for investigation. In this review, we highlight the historical link of PEVs to thrombosis and hemostasis and provide critical updates. We also expand our discussion to encompass the roles that distinguish PEVs and MKEVs from their parent cells. Furthermore, the role of extracellular vesicles in disease pathology, both as biomarkers and as exacerbators, has been of great interest in recent years. We highlight some of the key roles that PEVs and MKEVs play in autoimmune blood cell disorders, liver pathology, and cardiovascular disease. We then look at the future of PEVs and MKEVs as candidates for novel therapeutics.
Collapse
Affiliation(s)
- Andrew P Stone
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Emma Nikols
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Daniela Freire
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kellie R Machlus
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Extracellular Vesicles as Drivers of Immunoinflammation in Atherothrombosis. Cells 2022; 11:cells11111845. [PMID: 35681540 PMCID: PMC9180657 DOI: 10.3390/cells11111845] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of morbidity and mortality all over the world. Extracellular vesicles (EVs), small lipid-bilayer membrane vesicles released by most cellular types, exert pivotal and multifaceted roles in physiology and disease. Emerging evidence emphasizes the importance of EVs in intercellular communication processes with key effects on cell survival, endothelial homeostasis, inflammation, neoangiogenesis, and thrombosis. This review focuses on EVs as effective signaling molecules able to both derail vascular homeostasis and induce vascular dysfunction, inflammation, plaque progression, and thrombus formation as well as drive anti-inflammation, vascular repair, and atheroprotection. We provide a comprehensive and updated summary of the role of EVs in the development or regression of atherosclerotic lesions, highlighting the link between thrombosis and inflammation. Importantly, we also critically describe their potential clinical use as disease biomarkers or therapeutic agents in atherothrombosis.
Collapse
|
36
|
Renna SA, Michael JV, Kong X, Ma L, Ma P, Nieman MT, Edelstein LC, McKenzie SE. Human and mouse PAR4 are functionally distinct receptors: Studies in novel humanized mice. J Thromb Haemost 2022; 20:1236-1247. [PMID: 35152546 DOI: 10.1111/jth.15669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 08/31/2023]
Abstract
BACKGROUND Human and mouse platelets both express protease-activated receptor (PAR) 4 but sequence alignment reveals differences in several functional domains. These differences may result in functional disparities between the receptors which make it difficult to translate PAR4 studies using mice to human platelet physiology. OBJECTIVES To generate transgenic mice that express human, but not mouse, PAR4 and directly compare human and mouse PAR4 function in the same platelet environment. METHODS Transgenic mice were made using a genomic clone of the F2RL3 gene (encoding PAR4) and backcrossed with Par4 KO mice. For certain experiments, mice were bred with GRK6 KO mice. Tail bleeding time and platelet function in response to PAR4-activating peptide were assessed. RESULTS Human F2RL3 was successfully integrated into the mouse genome, transgenic mice were crossed to the mPar4 KO background (PAR4 tg/KO), and PAR4 was functionally expressed on platelets. Compared to WT, PAR4 tg/KO mice exhibited shortened tail bleeding time and their platelets were more responsive to PAR4-AP as assessed by α-granule release and integrin activation. The opposite was observed with thrombin. Knocking out GRK6 had no effect on human PAR4-expressing platelets, unlike mouse Par4-expressing platelets. PAR4 tg/KO platelets exhibited greater Ca2+ area under the curve and more robust extracellular vesicle release than WT stimulated with PAR4-AP. CONCLUSION These data suggest that (1) human PAR4- and mouse Par4-mediated signaling are different and (2) the feedback regulation mechanisms of human and mouse PAR4 are different. These functional differences are important to consider when interpreting PAR4 studies done with mice.
Collapse
Affiliation(s)
- Stephanie A Renna
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James V Michael
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Xianguo Kong
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lin Ma
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Peisong Ma
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marvin T Nieman
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Leonard C Edelstein
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Steven E McKenzie
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
37
|
Bendas G, Schlesinger M. The GPIb-IX complex on platelets: insight into its novel physiological functions affecting immune surveillance, hepatic thrombopoietin generation, platelet clearance and its relevance for cancer development and metastasis. Exp Hematol Oncol 2022; 11:19. [PMID: 35366951 PMCID: PMC8976409 DOI: 10.1186/s40164-022-00273-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
The glycoprotein (GP) Ib-IX complex is a platelet receptor that mediates the initial interaction with subendothelial von Willebrand factor (VWF) causing platelet arrest at sites of vascular injury even under conditions of high shear. GPIb-IX dysfunction or deficiency is the reason for the rare but severe Bernard-Soulier syndrome (BSS), a congenital bleeding disorder. Although knowledge on GPIb-IX structure, its basic functions, ligands, and intracellular signaling cascades have been well established, several advances in GPIb-IX biology have been made in the recent years. Thus, two mechanosensitive domains and a trigger sequence in GPIb were characterized and its role as a thrombin receptor was deciphered. Furthermore, it became clear that GPIb-IX is involved in the regulation of platelet production, clearance and thrombopoietin secretion. GPIb is deemed to contribute to liver cancer development and metastasis. This review recapitulates these novel findings highlighting GPIb-IX in its multiple functions as a key for immune regulation, host defense, and liver cancer development.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany. .,Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| |
Collapse
|
38
|
Cardiorenal Disease in COVID-19 Patients. J Renin Angiotensin Aldosterone Syst 2022; 2022:4640788. [PMID: 35359461 PMCID: PMC8956393 DOI: 10.1155/2022/4640788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an illness caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Mutations in the genetic coding and the variations in the spike proteins are critical for the virus's mechanism of facilitating fusion with the human host, making the disease more severe. Recent research indicates that comorbidities including diabetes, hypertension, renal disease, heart failure, and atherosclerosis play a significant role in the severity and high mortality rates of (COVID-19), suggesting that perhaps the metabolic syndrome and its components are associated with COVID-19 morbidity. Primarily, angiotensin-converting enzyme 2 (ACE2) receptor is identified as the entrance receptor of SARS-CoV-2. Increased ACE2 expression, endothelial dysfunction plays a vital role in the progression and severity of complications developed due to COVID-19. In this review, we will discuss the association and management of cardiorenal disease and COVID-19.
Collapse
|
39
|
Beck S, Hochreiter B, Schmid JA. Extracellular Vesicles Linking Inflammation, Cancer and Thrombotic Risks. Front Cell Dev Biol 2022; 10:859863. [PMID: 35372327 PMCID: PMC8970602 DOI: 10.3389/fcell.2022.859863] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) being defined as lipid-bilayer encircled particles are released by almost all known mammalian cell types and represent a heterogenous set of cell fragments that are found in the blood circulation and all other known body fluids. The current nomenclature distinguishes mainly three forms: microvesicles, which are formed by budding from the plasma membrane; exosomes, which are released, when endosomes with intraluminal vesicles fuse with the plasma membrane; and apoptotic bodies representing fragments of apoptotic cells. Their importance for a great variety of biological processes became increasingly evident in the last decade when it was discovered that they contribute to intercellular communication by transferring nucleotides and proteins to recipient cells. In this review, we delineate several aspects of their isolation, purification, and analysis; and discuss some pitfalls that have to be considered therein. Further on, we describe various cellular sources of EVs and explain with different examples, how they link cancer and inflammatory conditions with thrombotic processes. In particular, we elaborate on the roles of EVs in cancer-associated thrombosis and COVID-19, representing two important paradigms, where local pathological processes have systemic effects in the whole organism at least in part via EVs. Finally, we also discuss possible developments of the field in the future and how EVs might be used as biomarkers for diagnosis, and as vehicles for therapeutics.
Collapse
Affiliation(s)
- Sarah Beck
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| | - Bernhard Hochreiter
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| |
Collapse
|
40
|
Ebeyer-Masotta M, Eichhorn T, Weiss R, Semak V, Lauková L, Fischer MB, Weber V. Heparin-Functionalized Adsorbents Eliminate Central Effectors of Immunothrombosis, including Platelet Factor 4, High-Mobility Group Box 1 Protein and Histones. Int J Mol Sci 2022; 23:ijms23031823. [PMID: 35163743 PMCID: PMC8836755 DOI: 10.3390/ijms23031823] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022] Open
Abstract
Inflammation and thrombosis are closely intertwined in numerous disorders, including ischemic events and sepsis, as well as coronavirus disease 2019 (COVID-19). Thrombotic complications are markers of disease severity in both sepsis and COVID-19 and are associated with multiorgan failure and increased mortality. Immunothrombosis is driven by the complement/tissue factor/neutrophil axis, as well as by activated platelets, which can trigger the release of neutrophil extracellular traps (NETs) and release further effectors of immunothrombosis, including platelet factor 4 (PF4/CXCL4) and high-mobility box 1 protein (HMGB1). Many of the central effectors of deregulated immunothrombosis, including activated platelets and platelet-derived extracellular vesicles (pEVs) expressing PF4, soluble PF4, HMGB1, histones, as well as histone-decorated NETs, are positively charged and thus bind to heparin. Here, we provide evidence that adsorbents functionalized with endpoint-attached heparin efficiently deplete activated platelets, pEVs, PF4, HMGB1 and histones/nucleosomes. We propose that this elimination of central effectors of immunothrombosis, rather than direct binding of pathogens, could be of clinical relevance for mitigating thrombotic complications in sepsis or COVID-19 using heparin-functionalized adsorbents.
Collapse
Affiliation(s)
- Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - Vladislav Semak
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - Lucia Lauková
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - Michael B. Fischer
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
- Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
- Correspondence: ; Tel.: +43-2732-893-2601
| |
Collapse
|
41
|
Macchi C, Greco MF, Favero C, Dioni L, Cantone L, Hoxha M, Vigna L, Solazzo G, Corsini A, Banach M, Pesatori AC, Bollati V, Ruscica M. Associations Among PCSK9 Levels, Atherosclerosis-Derived Extracellular Vesicles, and Their miRNA Content in Adults With Obesity. Front Cardiovasc Med 2022; 8:785250. [PMID: 35071356 PMCID: PMC8782054 DOI: 10.3389/fcvm.2021.785250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/13/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Extracellular vesicles (EV) concentration is generally increased in patients with cardiovascular diseases, although the protective role of EVs in atherosclerosis has been reported. Among the specific cargo of EVs, miRNAs contribute to different stages of atherosclerosis. Aim of the present report has been to investigate, in individuals with obesity, the interplay among EVs derived from cells relevant for the atherosclerotic process (i.e., platelets, endothelium, monocytes/macrophages, and neutrophils), their miRNA content and proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the main regulators of low-density lipoprotein receptor (LDLR). Methods and Results: EVs have been isolated from 936 individuals with obesity (body mass index = 33.6 ± 5.6 Kg/m2) and a raised cardiovascular risk (e.g., LDL-C = 131.6 ± 36.4 mg/dL, HOMA-IR = 3.1, and roughly 50% on anti-hypertensive medications). PCSK9 levels were negatively associated with EV count in the range 150–400 nm and with those derived from macrophages (CD14+), endothelium (CD105+), and neutrophils (CD66+). The association between PCSK9 and platelet-derived EVs (CD61+) was modified by platelet counts. PCSK9 was significantly associated with five EV-derived miRNAs (hsa-miRNA−362−5p,−150,−1244,−520b-3p,−638). Toll-like receptor 4 and estrogen receptor 1 were targeted by all five miRNAs and LDLR by four. The effect on LDLR expression is mainly driven by hsa-miR-150. Considering the implication of EV in atherosclerosis onset and progression, our findings show a potential role of PCSK9 to regulate EV-derived miRNAs, especially those involved in inflammation and expression of low-density lipoprotein receptor (LDLR) receptor.
Collapse
Affiliation(s)
- Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Francesca Greco
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Favero
- Epidemiology, Epigenetics and Toxicology (EPIGET) Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Dioni
- Epidemiology, Epigenetics and Toxicology (EPIGET) Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Cantone
- Epidemiology, Epigenetics and Toxicology (EPIGET) Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Mirjam Hoxha
- Epidemiology, Epigenetics and Toxicology (EPIGET) Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Luisella Vigna
- Occupational Medicine Unit, Fondazione Cà Granda, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Solazzo
- Epidemiology, Epigenetics and Toxicology (EPIGET) Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.,Istituto di Ricovero e Cura a Carattere ScientificoI (RCCS) Multimedica, Milan, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland.,Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Angela C Pesatori
- Epidemiology, Epigenetics and Toxicology (EPIGET) Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Valentina Bollati
- Epidemiology, Epigenetics and Toxicology (EPIGET) Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
42
|
Yates AG, Pink RC, Erdbrügger U, Siljander PR, Dellar ER, Pantazi P, Akbar N, Cooke WR, Vatish M, Dias‐Neto E, Anthony DC, Couch Y. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo: Part II: Pathology: Part II: Pathology. J Extracell Vesicles 2022; 11:e12190. [PMID: 35041301 PMCID: PMC8765328 DOI: 10.1002/jev2.12190] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
It is clear from Part I of this series that extracellular vesicles (EVs) play a critical role in maintaining the homeostasis of most, if not all, normal physiological systems. However, the majority of our knowledge about EV signalling has come from studying them in disease. Indeed, EVs have consistently been associated with propagating disease pathophysiology. The analysis of EVs in biofluids, obtained in the clinic, has been an essential of the work to improve our understanding of their role in disease. However, to interfere with EV signalling for therapeutic gain, a more fundamental understanding of the mechanisms by which they contribute to pathogenic processes is required. Only by discovering how the EV populations in different biofluids change-size, number, and physicochemical composition-in clinical samples, may we then begin to unravel their functional roles in translational models in vitro and in vivo, which can then feedback to the clinic. In Part II of this review series, the functional role of EVs in pathology and disease will be discussed, with a focus on in vivo evidence and their potential to be used as both biomarkers and points of therapeutic intervention.
Collapse
Affiliation(s)
- Abi G. Yates
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of Biomedical SciencesFaculty of MedicineUniversity of QueenslandSt LuciaAustralia
| | - Ryan C. Pink
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Uta Erdbrügger
- Department of Medicine, Division of NephrologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pia R‐M. Siljander
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Elizabeth R. Dellar
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Paschalia Pantazi
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - William R. Cooke
- Nuffield Department of Women's and Reproductive HealthJohn Radcliffe Hospital, HeadingtonOxfordUK
| | - Manu Vatish
- Nuffield Department of Women's and Reproductive HealthJohn Radcliffe Hospital, HeadingtonOxfordUK
| | - Emmanuel Dias‐Neto
- Laboratory of Medical Genomics. A.C. Camargo Cancer CentreSão PauloBrazil
- Laboratory of Neurosciences (LIM‐27) Institute of PsychiatrySão Paulo Medical SchoolSão PauloBrazil
| | | | - Yvonne Couch
- Acute Stroke Programme ‐ Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
43
|
Xu H, Zhang T, He L, Yuan M, Yuan X, Wang S. Exploring the mechanism of Danggui Buxue Decoction in regulating atherosclerotic disease network based on integrated pharmacological methods. Biosci Rep 2021; 41:BSR20211429. [PMID: 34528665 PMCID: PMC8521537 DOI: 10.1042/bsr20211429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To explore the mechanism of Danggui Buxue Decoction (DGBXD) in regulating Atherosclerosis (AS) network based on integrated pharmacological methods. METHODS The active ingredients and targets of DGBXD are obtained from TCMSP database and ETCM. AS-related targets were collected from the Genecards and OMIM databases. The drug-disease protein interaction (PPI) networks were constructed by Cytoscape. Meanwhile, it was used to screen out densely interacting regions, namely clusters. Finally, Gene Ontology (GO) annotations are performed on the targets and genes in the cluster to obtain biological processes, and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations are performed on the targets of the PPI network to obtain signaling pathways. RESULTS A total of 212 known targets, 265 potential targets and 229 AS genes were obtained. The 'DGBXD known-AS PPI network' and 'DGBXD-AS PPI Network' were constructed and analyzed. DGBXD can regulate inflammation, platelet activation, endothelial cell apoptosis, oxidative stress, lipid metabolism, vascular smooth muscle proliferation, angiogenesis, TNF, HIF-1, FoxO signaling pathway, etc. The experimental data showed that compared with the model group, the expressions of ICAM-1, VCAM-1, and interleukin (IL)-1β protein and mRNA in the DGBXD group decreased (P<0.05). However, plasma IL-1β, TNF-α, and MCP-1 in the DGBXD group were not significantly different from the model group (P>0.05). CONCLUSION The mechanism of DGBXD in the treatment of AS may be related to the improvement of extracellular matrix (ECM) deposition in the blood vessel wall and the anti-vascular local inflammatory response, which may provide a reference for the study of the mechanism of DGBXD.
Collapse
Affiliation(s)
- Hao Xu
- School of Integrated traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Tianqing Zhang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Ling He
- Department of Infectious Diseases, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Mengxia Yuan
- Shantou University Medical College, Shantou University, Shantou, Guangdong Province, China
| | - Xiao Yuan
- School of Integrated traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- School of Integrated traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
44
|
Xu L, Liang Y, Xu X, Xia J, Wen C, Zhang P, Duan L. Blood cell-derived extracellular vesicles: diagnostic biomarkers and smart delivery systems. Bioengineered 2021; 12:7929-7940. [PMID: 34622717 PMCID: PMC8806567 DOI: 10.1080/21655979.2021.1982320] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are released by most of the cells or tissues and act as nanocarriers to transfer nucleic acids, proteins, and lipids. The blood system is the most abundant source of extracellular vesicles for purification, and it has attracted considerable attention as a source of diagnostic biomarkers. Blood-derived extracellular vesicles, especially vesicles released from erythrocytes and platelets, are highly important in nanoplatform-based therapeutic interventions as potentially ideal drug delivery vehicles. We reviewed the latest research progress on the paracrine effects and biological functions of extracellular vesicles derived from erythrocytes, leukocytes, platelets, and plasma. From a clinical perspective, we summarize selected useful diagnostic biomarkers for therapeutic intervention and diagnosis. Especially, we describe and discuss the potential application of erythrocyte-derived extracellular vesicles as a new nano-delivery platform for the desired therapeutics. We suggest that blood-derived extracellular vesicles are an ideal nanoplatform for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Limei Xu
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yujie Liang
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong, China
| | - Xiao Xu
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jiang Xia
- Department of Chemistry, and Center for Cell & Developmental Biology, School of Life Sciences, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Caining Wen
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Peng Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Shenzhen Institute of Geriatrics, Shenzhen, Guangdong Province, China
| |
Collapse
|
45
|
Wu J, Piao Y, Liu Q, Yang X. Platelet-rich plasma-derived extracellular vesicles: A superior alternative in regenerative medicine? Cell Prolif 2021; 54:e13123. [PMID: 34609779 PMCID: PMC8666280 DOI: 10.1111/cpr.13123] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Platelet-rich plasma (PRP), due to its promising therapeutic properties, has been used in regenerative medicine for more than 30 years and numerous encouraging outcomes have been obtained. Currently, by benefiting from new insights into PRP mechanisms and the excellent performance of extracellular vesicles (EVs) in the field of tissue repair and regeneration, studies have found that a large number of EVs released from activated platelets also participate in the regulation of tissue repair. A growing number of preclinical studies are exploring the functions of PRP-derived EVs (PRP-EVs), especially in tissue regeneration. Here, we summarize the latest progress in PRP-EVs as a superior alternative cell-free therapeutic strategy in regenerative medicine, clarify their underlying molecular mechanisms, and discuss the advantages and limitations of the upcoming clinical applications. This review highlights the potential of PRP-EVs to replace the application of PRP or even become a superior alternative in regenerative medicine.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, China
| | - Yingxin Piao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Qinyi Liu
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, China
| | - Xiaoyu Yang
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
46
|
Zifkos K, Dubois C, Schäfer K. Extracellular Vesicles and Thrombosis: Update on the Clinical and Experimental Evidence. Int J Mol Sci 2021; 22:ijms22179317. [PMID: 34502228 PMCID: PMC8431093 DOI: 10.3390/ijms22179317] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) compose a heterogenous group of membrane-derived particles, including exosomes, microvesicles and apoptotic bodies, which are released into the extracellular environment in response to proinflammatory or proapoptotic stimuli. From earlier studies suggesting that EV shedding constitutes a cellular clearance mechanism, it has become evident that EV formation, secretion and uptake represent important mechanisms of intercellular communication and exchange of a wide variety of molecules, with relevance in both physiological and pathological situations. The putative role of EVs in hemostasis and thrombosis is supported by clinical and experimental studies unraveling how these cell-derived structures affect clot formation (and resolution). From those studies, it has become clear that the prothrombotic effects of EVs are not restricted to the exposure of tissue factor (TF) and phosphatidylserines (PS), but also involve multiplication of procoagulant surfaces, cross-linking of different cellular players at the site of injury and transfer of activation signals to other cell types. Here, we summarize the existing and novel clinical and experimental evidence on the role and function of EVs during arterial and venous thrombus formation and how they may be used as biomarkers as well as therapeutic vectors.
Collapse
Affiliation(s)
- Konstantinos Zifkos
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, D-55131 Mainz, Germany;
| | - Christophe Dubois
- Aix Marseille University, INSERM 1263, Institut National de la Recherche pour l’Agriculture, l’alimentation et l’Environnement (INRAE) 1260, Center for CardioVascular and Nutrition Research (C2VN), F-13380 Marseille, France;
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, D-55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
47
|
The m 6A methyltransferase METTL3 modifies PGC-1α mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes. J Biol Chem 2021; 297:101058. [PMID: 34375639 PMCID: PMC8406003 DOI: 10.1016/j.jbc.2021.101058] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/08/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial biogenesis and energy metabolism are essential for regulating the inflammatory state of monocytes. This state is partially controlled by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a coactivator that regulates mitochondrial biogenesis and energy metabolism. Disruption of these processes can also contribute to the initiation of chronic inflammatory diseases, such as pulmonary fibrosis, atherosclerosis, and rheumatoid arthritis. Methyltransferase-like 3 (METTL3)-dependent N6-methyladenosine (m6A) methylation has recently been shown to regulate a variety of inflammatory processes. However, the role of m6A mRNA methylation in affecting mitochondrial metabolism in monocytes under inflammation is unclear, nor is there an established relationship between m6A methylation and PGC-1α. In this study, we identified a novel mechanism by which METTL3 acts during oxidized low-density lipoprotein (oxLDL)-induced monocyte inflammation, where METTL3 and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) cooperatively modify PGC-1α mRNA, mediating its degradation, decreasing PGC-1α protein levels, and thereby enhancing the inflammatory response. METTL3 coordinated with YTHDF2 to suppress the expression of PGC-1α, as well as that of cytochrome c (CYCS) and NADH:ubiquinone oxidoreductase subunit C2 (NDUFC2) and reduced ATP production and oxygen consumption rate (OCR). This subsequently increased the accumulation of cellular and mitochondrial reactive oxygen species (ROS) and the levels of proinflammatory cytokines in inflammatory monocytes. These data may provide new insights into the role of METTL3-dependent m6A modification of PGC-1α mRNA in the monocyte inflammation response. These data also contribute to a more comprehensive understanding of the pathogenesis of monocyte-macrophage inflammation-associated diseases, such as pulmonary fibrosis, atherosclerosis, and rheumatoid arthritis.
Collapse
|
48
|
Giró O, Jiménez A, Pané A, Badimon L, Ortega E, Chiva-Blanch G. Extracellular vesicles in atherothrombosis and cardiovascular disease: Friends and foes. Atherosclerosis 2021; 330:61-75. [PMID: 34256307 DOI: 10.1016/j.atherosclerosis.2021.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EV, exosomes and microvesicles -MV-) are 30-1000 nm particles surrounded by a phospholipid bilayer membrane that are released from almost all cell types through several pathways. EV encapsulate bioactive molecules, and the molecular cargo is determined by the trigger stimulating its release, reflecting its cell origin and biological functions. This review is primarily focused on the latest evidence of the roles of EV, released from cells involved in the different stages of atherothrombosis. The potential translation of this information to the clinical arena is also discussed. EV can have both pro- and anti-atherothrombotic effects depending on several factors, such as the type of vesicle (MV/exosome), its molecular cargo, its cell of origin, and the context in which are generated, i.e., the stimulus triggering its release. In fact, EV actively participate in every step of atherosclerosis onset and progression, and also in thrombus formation leading to a major adverse cardiovascular event. Moreover, EV have a determinant role in fibrous cap stability, thus determining the propensity of the plaque to rupture. On the other hand, and again, conditioned by the context and stimulus instigating its secretion, some EV may have protective biological functions, perhaps as a compensatory mechanism or even with reparative or regenerative potential. Therefore, the study of the implication of EV in atherothrombosis might be of relevance to unveil new therapeutic targets, vectors and biomarkers of cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Oriol Giró
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute - IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Amanda Jiménez
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute - IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Adriana Pané
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute - IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC; Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Emilio Ortega
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute - IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Gemma Chiva-Blanch
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute - IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
49
|
Hindle MS, Spurgeon BEJ, Cheah LT, Webb BA, Naseem KM. Multidimensional flow cytometry reveals novel platelet subpopulations in response to prostacyclin. J Thromb Haemost 2021; 19:1800-1812. [PMID: 33834609 DOI: 10.1111/jth.15330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/01/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Robust platelet activation leads to the generation of subpopulations characterized by differential expression of phosphatidylserine (PS). Prostacyclin (PGI2 ) modulates many aspects of platelet function, but its influence on platelet subpopulations is unknown. OBJECTIVES AND METHODS We used fluorescent flow cytometry coupled to multidimensional fast Fourier transform-accelerated interpolation-based t-stochastic neighborhood embedding analysis to examine the influence of PGI2 on platelet subpopulations. RESULTS Platelet activation (SFLLRN/CRP-XL) in whole blood revealed three platelet subpopulations with unique combinations of fibrinogen (fb) binding and PS exposure. These subsets, PSlo /fbhi (68%), PShi /fblo (23%), and PShi /fbhi (8%), all expressed CD62P and partially shed CD42b. PGI2 significantly reduced fibrinogen binding and prevented the majority of PS exposure, but did not significantly reduce CD62P, CD154, or CD63 leading to the generation of four novel subpopulations, CD62Phi /PSlo /fblo (64%), CD62Phi /PSlo /fbhi (22%), CD62Phi /PShi /fblo (3%), and CD62Plo /PSlo /fblo (12%). Mechanistically this was linked to PGI2 -mediated inhibition of mitochondrial depolarization upstream of PS exposure. Combining phosphoflow with surface staining, we showed that PGI2 -treated platelets were characterized by both elevated vasodilator-stimulated phosphoprotein phosphorylation and CD62P. The resistance to cyclic AMP signaling was also observed for CD154 and CD63 expression. Consistent with the functional role of CD62P, exposure of blood to PGI2 failed to prevent SFLLRN/CRP-XL-induced platelet-monocyte aggregation despite reducing markers of hemostatic function. CONCLUSION The combination of multicolor flow cytometry assays with unbiased computational tools has identified novel platelet subpopulations that suggest differential regulation of platelet functions by PGI2 . Development of this approach with increased surface and intracellular markers will allow the identification of rare platelet subtypes and novel biomarkers.
Collapse
Affiliation(s)
- Matthew S Hindle
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Benjamin E J Spurgeon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lih T Cheah
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Beth A Webb
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Khalid M Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
50
|
Platelet-derived extracellular vesicles infiltrate and modify the bone marrow during inflammation. Blood Adv 2021; 4:3011-3023. [PMID: 32614966 DOI: 10.1182/bloodadvances.2020001758] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
During inflammation, steady-state hematopoiesis switches to emergency hematopoiesis to repopulate myeloid cells, with a bias toward the megakaryocytic lineage. Soluble inflammatory cues are thought to be largely responsible for these alterations. However, how these plasma factors rapidly alter the bone marrow (BM) is not understood. Inflammation also drives platelet activation, causing the release of platelet-derived extracellular vesicles (PEVs), which package diverse cargo and reprogram target cells. We hypothesized that PEVs infiltrate the BM, providing a direct mode of communication between the plasma and BM environments. We transfused fluorescent, wild-type (MPL+) platelets into recipient cMpl-/-mice before triggering systemic inflammation. Twenty hours postinfusion, we observed significant infiltration of donor platelet-derived particles in the BM, which we tracked immunophenotypically (MPL+ immunohistochemistry staining) and quantified by flow cytometry. To determine if this phenomenon relates to humans, we extensively characterized both megakaryocyte-derived and PEVs generated in vitro and in vivo, and found enrichment of extracellular vesicles in bone marrow compared with autologous peripheral blood. Last, BM from cMpl-/- mice was cultured in the presence or absence of wild-type (MPL+) PEVs. After 72 hours, flow cytometry revealed increased megakaryocytes only in cultures with added PEVs. The majority of CD41+ cells were bound to PEVs, suggesting a PEV-mediated rescue of megakaryopoiesis. In conclusion, we report for the first time that plasma-residing PEVs infiltrate the BM. Further, PEVs interact with BM cells in vivo and in vitro, causing functional reprogramming that may represent a novel model of inflammation-induced hematopoiesis.
Collapse
|