1
|
Awad WA, Ruhnau D, Doupovec B, Hess C, Schatzmayr D, Hess M, Grenier B. Exposure of broiler chickens to deoxynivalenol and Campylobacter jejuni induces substantial changes in intestinal gene expression. Sci Rep 2025; 15:13531. [PMID: 40253521 PMCID: PMC12009378 DOI: 10.1038/s41598-025-97672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
The mycotoxin deoxynivalenol (DON) is of high importance among feed contaminants because of its frequent occurrence in toxicologically relevant concentrations worldwide. Cereal crops, the main component of chicken diet, are commonly contaminated with DON, resulting in frequent exposure of chickens to DON. Likewise, Campylobacter (C.), a pathogen of major public and animal health concern, is frequently found in chicken flocks and poses a threat to the One Health approach. Campylobacter colonizes the gastrointestinal (GI) tract of poultry with a high bacterial load in the caeca. However, the mechanism of C. jejuni colonization in chickens is still not understood albeit it is well known that C. jejuni resides primarily in the mucosal layer of the chicken intestine. Therefore, in the actual study we focused on the effect of exposure to DON and/or C. jejuni on expression profiles of intestinal mucins (MUC1, MUC2), β-defensins (Gallinacin (GAL) 10, 12), cytokines (Toll-like receptor 2 (TLR2), Interleukin (IL) 6, 8, Interferon-γ (IFN)-γ), inducible nitric oxide synthase 2 (iNOS2), as well as selected tight junction proteins (Claudin 5 (CLDN5), Occludin (OCLN), and zonula occludens-1 (ZO1) via RT-qPCR. For this, a total of 150 one-day-old Ross 308 broiler chickens were randomly allocated to six different groups (n = 25 with 5 replicates/group) and were fed for 5 weeks with either contaminated diets (5 or 10 mg DON/kg feed) or basal diets (control). Following oral infection of birds with C. jejuni NCTC 12744 at 14 days of age, several changes in gene expression patterns were demonstrated. A significant (P ≤ 0.05) downregulation of MUC2 mRNA expression was observed in birds fed DON5 and DON10 diet, as well as in birds co-exposed to DON5 and C. jejuni at 7 dpi. Furthermore, at 14 dpi, MUC2 mRNA expression was significantly (P ≤ 0.05) downregulated in birds fed DON (5 mg and 10 mg/kg diet) with and without C. jejuni and in birds infected solely with C. jejuni. The actual study also demonstrated that co-exposure of broiler chickens to DON and C. jejuni resulted in a decreased barrier function via downregulation of OCLD mRNA expression. In addition, Campylobacter infection induced an increased expression of the antimicrobial peptide GAL12 and the IL8 gene, indicating that C. jejuni can initiate an immune response in the chicken gut in a proinflammatory manner. Similarly, DON with and without C. jejuni induced upregulation of GAL10 and GAL12 mRNA expression at 7 dpi. Moreover, no change in iNOS2 mRNA expression was observed in both the jejunum and the cecum at either 7 dpi or 14 dpi, suggesting unchanged NO production during exposure/infection. In conclusion, we confirmed that DON contamination corresponding to the currently applicable EU guidance value of 5 mg DON/kg feed affects the intestinal gene expression profiles of broilers, mainly in a dose-independent manner. Furthermore, DON exposure interacted synergistically with C. jejuni challenge regarding mucins, innate immunity gene expression in either the jejunum or the cecum, suggesting immunomodulatory activity of both foodborne agents (DON and C. jejuni).
Collapse
Affiliation(s)
- Wageha A Awad
- Clinical Centre for Population Medicine in Fish, Pig and Poultry, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Daniel Ruhnau
- Clinical Centre for Population Medicine in Fish, Pig and Poultry, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Barbara Doupovec
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| | - Claudia Hess
- Clinical Centre for Population Medicine in Fish, Pig and Poultry, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
- Current address: LVA GmbH, Klosterneuburg, Austria
| | - Dian Schatzmayr
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| | - Michael Hess
- Clinical Centre for Population Medicine in Fish, Pig and Poultry, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Bertrand Grenier
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| |
Collapse
|
2
|
Chick HM, Williams LK, Sparks N, Khattak F, Vermeij P, Frantzen I, Peeters M, Bijlsma JJE, John D, Ogunrin T, Essex K, Cayrou C, Kanamarlapudi V, Bayliss CD, Ketley JM, Humphrey TJ, Rushton SP, Wilkinson TS. Campylobacter jejuni ST353 and ST464 cause localized gut inflammation, crypt damage, and extraintestinal spread during large- and small-scale infection in broiler chickens. Appl Environ Microbiol 2025; 91:e0161424. [PMID: 39964091 PMCID: PMC11921347 DOI: 10.1128/aem.01614-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/12/2025] [Indexed: 03/20/2025] Open
Abstract
Campylobacter infections in humans and chickens are a significant burden to health services and the poultry industry. In the UK, over 75% of chicken products are Campylobacter-positive at retail, but the knowledge of the mechanisms responsible for extraintestinal spread into edible tissues remains incomplete. This work aimed to establish if two chicken-associated lineages of Campylobacter jejuni, ST353 and ST464, have the potential for extraintestinal spread. Large- and small-scale chicken colonization trials investigated the infection biology of C. jejuni ST353 (three strains) and ST464 (four strains). Both lineages strongly colonized the ileum and ceca and were detected in liver and spleen. C. jejuni ST353 and ST464 spleen load were significantly increased compared to C. jejuni M1 controls. Immune responses in cecal tonsils exhibited early induction of IFN-γ and suppressed TGFβ at 7 days post-infection with C. jejuni ST464. Histochemistry of gut tissue demonstrated significant decreases in intestinal crypt depth in ileal tissue with increasing severity relative to Campylobacter lineage, M1
Collapse
Affiliation(s)
- Heather M. Chick
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Lisa K. Williams
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
- Department of Animal and Agriculture, Hartpury University, Gloucester, United Kingdom
| | - Nick Sparks
- Scotland’s Rural College (SRUC) Barony Campus, Dumfries, United Kingdom
| | - Farina Khattak
- Monogastric Science Research Center, Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
| | | | | | | | | | - Daniel John
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Timothy Ogunrin
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Keioni Essex
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Caroline Cayrou
- Genetics, Genomics, and Cancer Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Christopher D. Bayliss
- Genetics, Genomics, and Cancer Sciences, University of Leicester, Leicester, United Kingdom
| | - Julian M. Ketley
- Genetics, Genomics, and Cancer Sciences, University of Leicester, Leicester, United Kingdom
| | - Thomas J. Humphrey
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Steven P. Rushton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas S. Wilkinson
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
3
|
Ruiz N, Xing J, Zhulin IB, Brautigam CA, Hendrixson DR. The Campylobacter jejuni BumS sensor phosphatase detects the branched short-chain fatty acids isobutyrate and isovalerate as direct cues for signal transduction. mBio 2025; 16:e0327824. [PMID: 39670710 PMCID: PMC11796366 DOI: 10.1128/mbio.03278-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Two-component signal transduction systems (TCSs) are nearly ubiquitous across bacterial species and enable bacteria to sense and respond to specific cues for environmental adaptation. The Campylobacter jejuni BumSR TCS is unusual in that the BumS sensor exclusively functions as a phosphatase rather than a kinase to control phosphorylated levels of its cognate BumR response regulator (P-BumR). We previously found that BumSR directs a response to the short-chain fatty acid butyrate generated by resident microbiota so that C. jejuni identifies ideal lower intestinal niches in avian and human hosts for colonization. However, butyrate is an indirect cue for BumS and did not inhibit in vitro BumS phosphatase activity for P-BumR. In this work, we expanded the repertoire of lower intestinal metabolites that are cues sensed by BumS that modulate the expression of genes required for colonization to include the branched short-chain fatty acids isobutyrate and isovalerate. Unlike butyrate, isobutyrate and isovalerate inhibited in vitro BumS phosphatase activity for P-BumR, indicating that these metabolites are direct cues for BumS. Isobutyrate and isovalerate reduced the thermostability of BumS and caused a reorganization of protein structure to suggest how sensing these cues inhibits phosphatase activity. We also identified residues in the BumS sensory domain required to detect isobutyrate, isovalerate, and butyrate and for optimal colonization of hosts to reveal how gut bacteria can recognize these intestinal metabolites. Our work reveals how this unusual bacterial sensor phosphatase senses a repertoire of intestinal metabolites and how cues alter BumSR signal transduction to influence C. jejuni colonization of hosts.IMPORTANCETCSs are prevalent in many bacteria, but the cues sensed by each are not actually known for many of these systems. Microbiota-generated butyrate in human and avian hosts is detected by the Campylobacter jejuni BumS sensor phosphatase so that the bacterium identifies ideal lower intestinal niches for colonization. However, BumS only indirectly senses butyrate to inhibit dephosphorylation of its cognate BumR response regulator. Here, we expanded the repertoire of cues sensed by BumS to the branched-short chain fatty acids isobutyrate and isovalerate that are also abundant in the lower intestines. Both isobutyrate and isovalerate are potent, direct cues for BumS, whereas butyrate is an indirect cue. Leveraging isobutyrate and isovalerate as direct cues, we reveal BumS structure is altered upon cue detection to inhibit its phosphatase activity. We provide an understanding of the mechanics of an unusual mode of signal transduction executed by BumSR and other bacterial sensor phosphatase-driven TCSs.
Collapse
Affiliation(s)
- Nestor Ruiz
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jiawei Xing
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Chad A. Brautigam
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David R. Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Xie Y, Hao Y, Gui F, Li X, Huang H, Yang P, Zhong C, Cao L. Hermetia illucens Larvae Meal Enhances Immune Response by Improving Serum Immunoglobulin, Intestinal Barrier and Gut Microbiota of Sichuan White Geese After Avian Influenza Vaccination. Vet Sci 2024; 11:615. [PMID: 39728956 DOI: 10.3390/vetsci11120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Hermetia illucens Larvae Meal (HILM) has been observed to enhance growth performance and immune function, yet the effects and mechanisms in geese remain less understood. Experiment I included 64 Sichuan White Geese to investigate the optimal additive amount of HILM in diet, and experiment II included 32 Sichuan White Geese to access serum immunoglobulin, spleen immune-related genes, intestinal morphology and gut microbiota at the optimal additive amount of HILM. The results showed that the addition of 1% HILM significantly increased the ADG of Sichuan White Geese (p < 0.05), serum H5-R14 and H7-R4 strain titer at 33 d (p < 0.01) and H5-R13 strain titer (p < 0.05) at 40 d, which is the optimal dose of this trial. Experiment II revealed that the 1% HILM significantly increased serum IgG, IgG1, IgG2a, IgG3 and complement C3 (p < 0.05) and the mRNA expressions of IL-6 (p < 0.05) and CD4 (p < 0.01) in the spleen. The intestinal morphology was improved, and the secretion of SIgA and mRNA expression of Occludin in the jejunum were significantly increased (p < 0.05). Additionally, the abundance of Campilobacterota, Barnesiellaceae and Barnesiella was significantly decreased (p < 0.05), while the abundance of Lactobacillaceae was significantly increased (p < 0.05). This research provides new insights into the use of HILM in geese production.
Collapse
Affiliation(s)
- Yufei Xie
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Yongfeng Hao
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China
| | - Fuxing Gui
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Xifeng Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Huan Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Pingrui Yang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Chonghua Zhong
- Chongqing Rongchang Vocational Education Center, Chongqing 402460, China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| |
Collapse
|
5
|
Awad WA, Grenier B, Ruhnau D, Hess C, Schatzmayr D, Hess M. Diametral influence of deoxynivalenol (DON) and deepoxy-deoxynivalenol (DOM-1) on the growth of Campylobacter jejuni with consequences on the bacterial transcriptome. BMC Microbiol 2024; 24:306. [PMID: 39152378 PMCID: PMC11328440 DOI: 10.1186/s12866-024-03452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly found in cereals and grains worldwide. The presence of this fungal secondary-metabolite raises public-health concerns at both the agriculture and food industry level. Recently, we have shown that DON has a negative impact on gut integrity, a feature also noticed for Campylobacter (C.) jejuni. We further demonstrated that DON increased the load of C. jejuni in the gut and inner organs. In contrast, feeding the less toxic DON metabolite deepoxy-deoxynivalenol (DOM-1) to broilers reduced the Campylobacter load in vivo. Consequently, it can be hypothesized that DON and DOM-1 have a direct effect on the growth profile of C. jejuni. The aim of the present study was to further resolve the nature of this interaction in vitro by co-incubation and RNA-sequencing. RESULTS The co-incubation of C. jejuni with DON resulted in significantly higher bacterial growth rates from 30 h of incubation onwards. On the contrary, the co-incubation of C. jejuni with DOM-1 reduced the CFU counts, indicating that this DON metabolite might contribute to reduce the burden of C. jejuni in birds, altogether confirming in vivo data. Furthermore, the transcriptomic profile of C. jejuni following incubation with either DON or DOM-1 differed. Co-incubation of C. jejuni with DON significantly increased the expression of multiple genes which are critical for Campylobacter growth, particularly members of the Flagella gene family, frr (ribosome-recycling factor), PBP2 futA-like (Fe3+ periplasmic binding family) and PotA (ATP-binding subunit). Flagella are responsible for motility, biofilm formation and host colonization, which may explain the high Campylobacter load in the gut of DON-fed broiler chickens. On the contrary, DOM-1 downregulated the Flagella gene family and upregulated ribosomal proteins. CONCLUSION The results highlight the adaptive mechanisms involved in the transcriptional response of C. jejuni to DON and its metabolite DOM-1, based on the following effects: (a) ribosomal proteins; (b) flagellar proteins; (c) engagement of different metabolic pathways. The results provide insight into the response of an important intestinal microbial pathogen against DON and lead to a better understanding of the luminal or environmental acclimation mechanisms in chickens.
Collapse
Affiliation(s)
- Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria.
| | - Bertrand Grenier
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| | - Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Dian Schatzmayr
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria
| |
Collapse
|
6
|
Gupta S, Biswas P, Das B, Mondal S, Gupta P, Das D, Mallick AI. Selective depletion of Campylobacter jejuni via T6SS dependent functionality: an approach for improving chickens gut health. Gut Pathog 2024; 16:38. [PMID: 38997758 PMCID: PMC11245787 DOI: 10.1186/s13099-024-00628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The targeted depletion of potential gut pathogens is often challenging because of their intrinsic ability to thrive in harsh gut environments. Earlier, we showed that Campylobacter jejuni (C. jejuni) exclusively uses the Type-VI Secretion System (T6SS) to target its prey such as Escherichia coli (E. coli), and phenotypic differences between T6SS-negative and T6SS-positive C. jejuni isolates toward bile salt sensitivity. However, it remains unclear how the target-driven T6SS functionality prevails in a polymicrobial gut environment. Here, we investigated the fate of microbial competition in an altered gut environment via bacterial T6SS using a T6SS-negative and -positive C. jejuni or its isogenic mutant of the hemolysin-coregulated protein (hcp). We showed that in the presence of bile salt and prey bacteria (E. coli), T6SS-positive C. jejuni experiences enhanced intracellular stress leading to cell death. Intracellular tracking of fluorophore-conjugated bile salts confirmed that T6SS-mediated bile salt influx into C. jejuni can enhance intracellular oxidative stress, affecting C. jejuni viability. We further investigated whether the T6SS activity in the presence of prey (E. coli) perturbs the in vivo colonization of C. jejuni. Using chickens as primary hosts of C. jejuni and non-pathogenic E. coli as prey, we showed a marked reduction of C. jejuni load in chickens cecum when bile salt solution was administered orally. Analysis of local antibody responses and pro-inflammatory gene expression showed a reduced risk of tissue damage, indicating that T6SS activity in the complex gut environment can be exploited as a possible measure to clear the persistent colonization of C. jejuni in chickens.
Collapse
Affiliation(s)
- Subhadeep Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Prakash Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Dipjyoti Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
7
|
D'Alessandro AG, Desantis S, Fracchiolla G, Porrelli R, Dibenedetto RS, Di Luca A, Martemucci G. Response of laying hens fed diet supplemented with a mixture of olive, laurel, and rosemary leaf powders: Metabolic profile, oxidative status, intestinal histomorphology, and egg quality. Res Vet Sci 2024; 174:105294. [PMID: 38744020 DOI: 10.1016/j.rvsc.2024.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
This study aimed to evaluate the effects of a mixture of olive, laurel, and rosemary leaf powders, on the oxidative state, biochemical, immune, intestinal morphophysiological parameters, and egg quality of laying hens. One hundred Lohmann Brown hens (28 weeks old) were equally assigned to two groups (n. 50) corresponding to a basal control diet (CON) or the diet supplemented with 6 g/kg feed of leaf powder mixture (LPM) containing olive, laurel, and rosemary leaves (1:1:1), for 60 days. Oxidative status, biochemical indices, immune response, cecal short chain fatty acids (SCFAs), intestinal morphological characteristics, and some egg traits were evaluated at the end of the experiment. The results indicated that LPM improved (P < 0.05) the oxidative status (TOS, ROMs), the immune system (IL-6, IL-1β, and TNF-α), the total protein and HDL cholesterol content, whereas it decreased (P < 0.05) total cholesterol and LDL cholesterol. Aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine aminotransferase were significantly (P < 0.05) lower in the LPM than in the CON group. A significant increase (P < 0.05) in SCFA content in the caecum, as well as in villi height and crypt depth in both duodenum and ileum of LPM-treated hens, was observed. Egg quality parameters were not influenced (P > 0.05) by LPM. These findings indicate that LPM can be considered a candidate as an antioxidant ingredient for functional food in laying hens.
Collapse
Affiliation(s)
| | - Salvatore Desantis
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 per Casamassima Km 3, 70010 Valenzano (Bari), Italy.
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy.
| | | | | | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | | |
Collapse
|
8
|
Olson EG, Dittoe DK, Chatman CC, Majumder ELW, Ricke SC. Campylobacter jejuni and casein hydrolysate addition: Impact on poultry in vitro cecal microbiota and metabolome. PLoS One 2024; 19:e0303856. [PMID: 38787822 PMCID: PMC11125459 DOI: 10.1371/journal.pone.0303856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates the impact of casein hydrolysates on the poultry ceca inoculated with Campylobacter focusing on microbial molecular preferences for different protein sources in the presence of Campylobacter jejuni. Three casein sources (intact casein (IN), casein enzyme hydrolysate (EH), and casein acid hydrolysate (AH)) were introduced to cecal contents in combination with inoculated C. jejuni in an in vitro model system incubated for 48 h at 42°C under microaerophilic conditions. Samples were collected at 0, 24, and 48 h. Genomic DNA was extracted and amplified using custom dual-indexed primers, followed by sequencing on an Illumina MiSeq platform. The obtained sequencing data were then analyzed via QIIME2-2021.11. Metabolite extracts were analyzed with ultra-high-performance liquid orbitrap chromatography-mass spectrometry (UHPLC-MS). Statistical analysis of metabolites was conducted using MetaboAnalyst 5.0, while functional analysis was performed using Mummichog 2.0 with a significance threshold set at P < 0.00001. DNA sequencing and metabolomic analyses revealed that C. jejuni was most abundant in the EH group. Microbial diversity and richness improved in casein supplemented groups, with core microbial differences observed, compared to non-supplemented groups. Vitamin B-associated metabolites significantly increased in the supplemented groups, displaying distinct patterns in vitamin B6 and B9 metabolism between EH and AH groups (P < 0.05). Faecalibacterium and Phascolarctobacterium were associated with AH and EH groups, respectively. These findings suggest microbial interactions in the presence of C. jejuni and casein supplementation are influenced by microbial community preferences for casein hydrolysates impacting B vitamin production and shaping competitive dynamics within the cecal microbial community. These findings underscore the potential of nutritional interventions to modulate the poultry GIT microbiota for improved health outcomes.
Collapse
Affiliation(s)
- E. G. Olson
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - D. K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, United States of America
| | - C. C. Chatman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - E. L.-W. Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - S. C. Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Mantzios T, Kiousi DE, Brellou GD, Papadopoulos GA, Economou V, Vasilogianni M, Kanari E, Petridou E, Giannenas I, Tellez-Isaias G, Pappa A, Galanis A, Tsiouris V. Investigation of Potential Gut Health Biomarkers in Broiler Chicks Challenged by Campylobacter jejuni and Submitted to a Continuous Water Disinfection Program. Pathogens 2024; 13:356. [PMID: 38787208 PMCID: PMC11124259 DOI: 10.3390/pathogens13050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The exploration of novel biomarkers to assess poultry health is of paramount importance, not only to enhance our understanding of the pathogenicity of zoonotic agents but also to evaluate the efficacy of novel treatments as alternatives to antibiotics. The present study aimed to investigate potential gut health biomarkers in broiler chicks challenged by Campylobacter jejuni and subjected to a continuous water disinfection program. A total of 144 one-day-old hatched broiler chicks were randomly allocated to four treatment groups with four replicates each, according to the following experimental design: Group A received untreated drinking water; Group B received drinking water treated with 0.01-0.05% v/v Cid 2000™ (hydrogen peroxide, acetic acid and paracetic acid); Group C was challenged by C. jejuni and received untreated drinking water; and Group D was challenged by C. jejuni and received drinking water treated with 0.01-0.05% v/v Cid 2000™. The use of Cid 2000™ started on day 1 and was applied in intervals until the end of the experiment at 36 days, while the C. jejuni challenge was applied on day 18. Potential biomarkers were investigated in serum, feces, intestinal tissue, intestinal content, and liver samples of broilers. Statistical analysis revealed significant increases (p < 0.001) in serum cortisol levels in C. jejuni-challenged broilers. Serum fluorescein isothiocyanate dextran (FITC-d) increased significantly (p = 0.004) in broilers challenged by C. jejuni and treated with drinking water disinfectant, while fecal ovotransferrin concentration also increased significantly (p < 0.001) in broilers that received the drinking water disinfectant alone. The gene expression levels of occludin (p = 0.003) and mucin-2 (p < 0.001) were significantly upregulated in broilers challenged by C. jejuni, while mucin-2 significantly increased in birds that were challenged and received the drinking water disinfectant (p < 0.001). TLR-4 expression levels were significantly (p = 0.013) decreased in both groups that received the drinking water disinfectant, compared to the negative control group. Finally, the C. jejuni challenge significantly increased (p = 0.032) the crypt depth and decreased (p = 0.021) the villus height-to-crypt-depth ratio in the ileum of birds, while the tested disinfectant product increased (p = 0.033) the villus height in the jejunum of birds. Furthermore, the counts of C. jejuni in the ceca of birds (p = 0.01), as well as its translocation rate to the liver of broilers (p = 0.001), were significantly reduced by the addition of the water disinfectant. This research contributes to novel insights into the intricate interplay of water disinfection and/or C. jejuni challenge with potential intestinal biomarkers. In addition, it emphasizes the need for continued research to unveil the underlying mechanisms, expands our understanding of broiler responses to these challenges and identifies breakpoints for further investigations.
Collapse
Affiliation(s)
- Tilemachos Mantzios
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece;
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68 100 Alexandroupolis, Greece; (D.E.K.); (E.K.); (A.P.); (A.G.)
| | - Despoina E. Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68 100 Alexandroupolis, Greece; (D.E.K.); (E.K.); (A.P.); (A.G.)
| | - Georgia D. Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Georgios A. Papadopoulos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Vangelis Economou
- Laboratory of Hygiene of Animal Food Products—Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Marili Vasilogianni
- Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK;
| | - Elisavet Kanari
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68 100 Alexandroupolis, Greece; (D.E.K.); (E.K.); (A.P.); (A.G.)
| | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68 100 Alexandroupolis, Greece; (D.E.K.); (E.K.); (A.P.); (A.G.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68 100 Alexandroupolis, Greece; (D.E.K.); (E.K.); (A.P.); (A.G.)
| | - Vasilios Tsiouris
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece;
| |
Collapse
|
10
|
Li X, Xu X, Chen X, Li Y, Guo J, Gao J, Jiao X, Tang Y, Huang J. Prevalence and genetic characterization of Campylobacter from clinical poultry cases in China. Microbiol Spectr 2023; 11:e0079723. [PMID: 37847023 PMCID: PMC10714823 DOI: 10.1128/spectrum.00797-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/22/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE Campylobacter is a major cause of campylobacteriosis worldwide, and poultry is the main reservoir for its transmission. Campylobacter was generally considered to be a harmless commensal organism in poultry without pathogenic properties. However, it was proposed that a Campylobacter-like organism may be the cause of vibrionic hepatitis, which poses a significant public health risk. The occurrence and epidemiology of Campylobacter in healthy poultry have been studied systematically, but little is known about the epidemiology of Campylobacter isolates from diseased poultry in China. Therefore, this study determined the prevalence and molecular characterization of Campylobacter from diseased chickens, ducks, and geese in Yangzhou Veterinary Hospital between December 2016 and September 2017, which was critical for improving the diagnosis and prevention of Campylobacter infections.
Collapse
Affiliation(s)
- Xiaofei Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiangxiang Xu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyi Chen
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, Jiangsu, China
| | - Yunlu Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, Jiangsu, China
| | - Jiale Guo
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, Jiangsu, China
| | - Jie Gao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, Jiangsu, China
| | - Yuanyue Tang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, Jiangsu, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Guyard-Nicodème M, Anis N, Naguib D, Viscogliosi E, Chemaly M. Prevalence and Association of Campylobacter spp., Salmonella spp., and Blastocystis sp. in Poultry. Microorganisms 2023; 11:1983. [PMID: 37630543 PMCID: PMC10458391 DOI: 10.3390/microorganisms11081983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Poultry and poultry meat are considered the most important sources of human campylobacteriosis and salmonellosis. However, data about the occurrence of Campylobacter and Salmonella concomitantly with intestinal protozoa such as Blastocystis sp. in poultry remain very scarce. Therefore, this study aimed to investigate the presence and possible interactions between these three microorganisms in fecal samples from 214 chickens collected either on farms or from live bird markets in Egypt. The results obtained showed that Campylobacter spp., Salmonella spp., and Blastocystis sp. were present in 91.6% (196/214), 44.4% (95/214), and 18.2% (39/214) of tested samples, respectively, highlighting an active circulation of these microorganisms. Moreover, a significant positive correlation was reported between the occurrence of Campylobacter spp. and Blastocystis sp. together with a significant negative correlation between Blastocystis sp. and Salmonella spp. This study confirms the association reported previously between Blastocystis sp. and Campylobacter spp. while disclosing an association between Blastocystis sp. and Salmonella spp.; it also highlights the need to improve studies on the interactions between bacteria and eukaryotes in the gut microbiota of poultry.
Collapse
Affiliation(s)
- Muriel Guyard-Nicodème
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, F-22440 Ploufragan, France; (N.A.); (M.C.)
| | - Nagham Anis
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, F-22440 Ploufragan, France; (N.A.); (M.C.)
| | - Doaa Naguib
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France;
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France;
| | - Marianne Chemaly
- Unit for Hygiene and Quality of Poultry and Pork Products, Laboratory of Ploufragan-Plouzané-Niort, ANSES, F-22440 Ploufragan, France; (N.A.); (M.C.)
| |
Collapse
|
12
|
Ortega-Sanz I, García M, Bocigas C, Megías G, Melero B, Rovira J. Genomic Characterization of Campylobacter jejuni Associated with Perimyocarditis: A Family Case Report. Foodborne Pathog Dis 2023; 20:368-373. [PMID: 37366876 DOI: 10.1089/fpd.2023.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Campylobacter spp. is the leading cause of foodborne gastrointestinal infections in humans worldwide. This study reports the first case of four family members who had contact with the same source of Campylobacter jejuni contamination with different results. Only the little siblings were infected by the same C. jejuni strain, but with different symptoms. Whereas the daughter was slightly affected with mild enteritis, the son suffered a longer campylobacteriosis followed with a perimyocarditis. This is the first case of the youngest patient affected by C. jejuni-related perimyocarditis published to date. The genomes of both strains were characterized by whole-genome sequencing and compared with the C. jejuni NCTC 11168 genome to gain insights into the molecular features that may be associated with perimyocarditis. Various comparison tools were used for the comparative genomics analysis, including the identification of virulence and antimicrobial resistance genes, phase variable (PV) genes, and single nucleotide polymorphisms (SNPs) identification. Comparisons of the strains identified 16 SNPs between them, which constituted small but significant changes mainly affecting the ON/OFF state of PV genes after passing through both hosts. These results suggest that PV occurs during human colonization, which modulates bacteria virulence through human host adaptation, which ultimately is related to complications after a campylobacteriosis episode depending on the host status. The findings highlight the importance of the relation between host and pathogen in severe complications of Campylobacter infections.
Collapse
Affiliation(s)
- Irene Ortega-Sanz
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Marcial García
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Carolina Bocigas
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Gregoria Megías
- Microbiology Department of the University Hospital of Burgos (HUBU), Burgos, Spain
| | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| |
Collapse
|
13
|
Mantzios T, Tsiouris V, Papadopoulos GA, Economou V, Petridou E, Brellou GD, Giannenas I, Biliaderis CG, Kiskinis K, Fortomaris P. Investigation of the Effect of Three Commercial Water Acidifiers on the Performance, Gut Health, and Campylobacter jejuni Colonization in Experimentally Challenged Broiler Chicks. Animals (Basel) 2023; 13:2037. [PMID: 37370547 DOI: 10.3390/ani13122037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigated the effect of three commercial water acidifiers on the performance, gut health, and C. jejuni colonization in experimentally challenged broiler chicks. A total of 192 one-day-old broiler chicks (Ross 308®) were randomly allocated into 6 treatment groups with 4 replicates according to the following experimental design: group A, birds were not challenged and received tap water; group B, birds were challenged and received tap water; groups C, D, E, and F, birds were challenged and received tap water treated with 0.1% v/v SPECTRON®, with 0.1-0.2% v/v ProPhorce™ SA Exclusive, with 0.1-0.2% v/v Premium acid, and with 0.1-0.2% v/v Salgard® Liquid, respectively. The continuous water acidification evoked undesirable effects on broilers' performance and to an increased number of birds with ulcers and erosions in the oral cavity and the upper esophageal area. ProPhorce™ SA Exclusive and Premium acid significantly reduced the C. jejuni counts in the crop, whereas Salgard® Liquid significantly reduced the C. jejuni counts in the ceca of birds. At slaughter age, only Premium acid significantly reduced C. jejuni counts in the ceca of birds. All the tested products ameliorated the changes induced by C. jejuni infection in the pH in the ceca of birds. It can be concluded that besides the effectiveness of the tested products in controlling C. jejuni in broilers, their continuous application evoked undesirable effects on broilers' performance, leading to the need to modify the dosage scheme in future investigations.
Collapse
Affiliation(s)
- Tilemachos Mantzios
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Vasilios Tsiouris
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Georgios A Papadopoulos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Vangelis Economou
- Laboratory of Food Animal Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Georgia D Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Costas G Biliaderis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Konstantinos Kiskinis
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Paschalis Fortomaris
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
14
|
Günther E, Moore R, Rautenschlein S. Investigation of Spotty Liver Disease and Campylobacter hepaticus in Layer Flocks-A Field Study. Avian Dis 2023; 67:202-208. [PMID: 37556300 DOI: 10.1637/aviandiseases-d-22-00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/24/2023] [Indexed: 08/11/2023]
Abstract
Campylobacter hepaticus (C. hepaticus) was recently discovered as the causative agent of Spotty Liver Disease (SLD). SLD affects laying hens and causes significant economic losses in egg production in several countries throughout the world. Field observations reveal that cases of SLD appear with a high risk of reoccurrence, specifically in free-range and organic brown-feathered layer lines. Possible factors contributing to the development of SLD still have to be elucidated. In this field study, one free range (Flock 1) and one organic flock (Flock 2) of brown laying hens kept on farms with a history of clinical SLD were monitored for C. hepaticus colonization, clinical signs, and egg production from 16 to 79 wk of age on the first farm and from 17 to 83 wk of age on the other. The flocks showed a significant drop in egg production at 32 to 39 or 56 wk of age, respectively, which was associated with macroscopically visible liver lesions typical for SLD. Interestingly, in both cases observed clinical disease was linked to a stressful event: heat stress for Flock 1 and respiratory symptoms for Flock 2. C. hepaticus was detected by PCR during the acute phase of the disease in Flock 1. At 50 wk after the initial clinical outbreak had waned, C. hepaticus was still able to be isolated by culture in this flock. This clearly demonstrates that C. hepaticus persists either in the birds or their environment. We speculate that this long persistence may favor chronic SLD in affected flocks and the reoccurrence of SLD in subsequent flocks. Clinically less severe SLD outbreaks may be observed after re-exposure of clinically recovered flocks.
Collapse
Affiliation(s)
- Ella Günther
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Rob Moore
- School of Science, RM1T University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany,
| |
Collapse
|
15
|
Al Hakeem WG, Acevedo Villanueva KY, Selvaraj RK. The Development of Gut Microbiota and Its Changes Following C. jejuni Infection in Broilers. Vaccines (Basel) 2023; 11:595. [PMID: 36992178 PMCID: PMC10056385 DOI: 10.3390/vaccines11030595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The gut is home to more than millions of bacterial species. The gut bacteria coexist with the host in a symbiotic relationship that can influence the host's metabolism, nutrition, and physiology and even module various immune functions. The commensal gut microbiota plays a crucial role in shaping the immune response and provides a continuous stimulus to maintain an activated immune system. The recent advancements in high throughput omics technologies have improved our understanding of the role of commensal bacteria in developing the immune system in chickens. Chicken meat continues to be one of the most consumed sources of protein worldwide, with the demand expected to increase significantly by the year 2050. Yet, chickens are a significant reservoir for human foodborne pathogens such as Campylobacter jejuni. Understanding the interaction between the commensal bacteria and C. jejuni is essential in developing novel technologies to decrease C. jejuni load in broilers. This review aims to provide current knowledge of gut microbiota development and its interaction with the immune system in broilers. Additionally, the effect of C. jejuni infection on the gut microbiota is addressed.
Collapse
Affiliation(s)
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
16
|
Mezerji ZK, Boshrouyeh R, Razavi SH, Ghajari S, Hajiha H, Shafaei N, Karimi E, Oskoueian E. Encapsulation of Polygonum bistorta root phenolic compounds as a novel phytobiotic and its protective effects in the mouse model of enteropathogenic Escherichia coli infection. BMC Complement Med Ther 2023; 23:49. [PMID: 36793082 PMCID: PMC9930239 DOI: 10.1186/s12906-023-03868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Microencapsulation technology is the fundamental delivery system for encapsulating the natural bioactive compounds especially phenolic in order to developing bioavailability, stability and controlling release. This study was conducted to determine the antibacterial and health-promoting potential of the phenolic rich extract (PRE)-loaded microcapsules obtained from Polygonum bistorta root as a dietary phytobiotic in mice challenged by enteropathogenic Escherichia coli (E. coli). METHOD The PRE was obtained from Polygonum bistorta root using fractionation by different polarity solvents and the highest PRE was encapsulated by the combination of modified starch, maltodextrin, and whey protein concentrate as wall materials using a spray dryer. Then, the physicochemical characterization (particle size, zeta potential, Morphology and polydispersity index) of microcapsules have been assessed. For the invivo study, 30 mice at five treatment were designed and antibacterial properties were analyzed. Furthermore, relative fold changes in the ileum population of E. coli was investigated using Real time PCR. RESULTS The encapsulation of PRE resulted in the production of phenolic enriched extract-loaded microcapsules (PRE-LM) with a mean diameter of 330 nm and relatively high entrapment efficiency (87.2% w/v). The dietary supplementation of PRE-LM improved weight gain, liver enzymes, gene expression, morphometric characteristics of the ileum and decreased the population of E. coli present in the ileum significantly (p < 0.05). CONCLUSION Our funding suggested PRE-LM as a promising phytobiotic against E. coli infection in mice.
Collapse
Affiliation(s)
- Zahra kadkhoda Mezerji
- grid.411768.d0000 0004 1756 1744Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Boshrouyeh
- grid.411768.d0000 0004 1756 1744Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Shaghayegh Ghajari
- grid.411768.d0000 0004 1756 1744Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hasti Hajiha
- grid.411768.d0000 0004 1756 1744Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Negin Shafaei
- grid.411768.d0000 0004 1756 1744Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Oskoueian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran. .,Department of Research and Development, Arka Industrial Cluster, Mashhad, Iran.
| |
Collapse
|
17
|
Rzeznitzeck J, Breves G, Rychlik I, Hoerr FJ, von Altrock A, Rath A, Rautenschlein S. The effect of Campylobacter jejuni and Campylobacter coli colonization on the gut morphology, functional integrity, and microbiota composition of female turkeys. Gut Pathog 2022; 14:33. [PMID: 35922874 PMCID: PMC9347085 DOI: 10.1186/s13099-022-00508-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter (C.) species are the most common bacterial cause of foodborne diarrhea in humans. Despite colonization, most animals do not show clinical signs, making recognition of affected flocks and disruption of the infection chain before slaughter challenging. Turkeys are often cocolonized with C. jejuni and C. coli. To understand the pathogen-host-interaction in the context of two different Campylobacter species, we compared the colonization patterns and quantities in mono- and co-colonized female commercial turkeys. In three repeated experiments we investigated the impact on gut morphology, functional integrity, and microbiota composition as parameters of gut health at seven, 14, and 28 days post-inoculation. RESULTS Despite successful Campylobacter colonization, clinical signs or pathological lesions were not observed. C. coli persistently colonized the distal intestinal tract and at a higher load compared to C. jejuni. Both strains were isolated from livers and spleens, occurring more frequently in C. jejuni- and co-inoculated turkeys. Especially in C. jejuni-positive animals, translocation was accompanied by local heterophil infiltration, villus blunting, and shallower crypts. Increased permeability and lower electrogenic ion transport of the cecal mucosa were also observed. A lower relative abundance of Clostridia UCG-014, Lachnospiraceae, and Lactobacillaceae was noted in all inoculated groups compared to controls. CONCLUSIONS In sum, C. jejuni affects gut health and may interfere with productivity in turkeys. Despite a higher cecal load, the impact of C. coli on investigated parameters was less pronounced. Interestingly, gut morphology and functional integrity were also less affected in co-inoculated animals while the C. jejuni load decreased over time, suggesting C. coli may outcompete C. jejuni. Since a microbiota shift was observed in all inoculated groups, future Campylobacter intervention strategies may involve stabilization of the gut microbiota, making it more resilient to Campylobacter colonization in the first place.
Collapse
Affiliation(s)
- Janina Rzeznitzeck
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hannover, Germany
| | - Gerhard Breves
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Frederic J Hoerr
- Veterinary Diagnostics Pathology, LLC, 638 South Fort Valley Road, VA, 22652, Fort Valley, United States of America
| | - Alexandra von Altrock
- Clinic for Swine, Small Ruminants and Forensic Medicine, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Alexandra Rath
- Clinic for Swine, Small Ruminants and Forensic Medicine, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
18
|
Pan X, Cai Y, Kong L, Xiao C, Zhu Q, Song Z. Probiotic Effects of Bacillus licheniformis DSM5749 on Growth Performance and Intestinal Microecological Balance of Laying Hens. Front Nutr 2022; 9:868093. [PMID: 35571886 PMCID: PMC9093703 DOI: 10.3389/fnut.2022.868093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to investigate the effects of Bacillus licheniformis DSM5749 on the production performance and intestinal health in laying hens. A total of 32-week-old laying hens (Hyline Brown) were randomly assigned to two dietary groups (10 replicates of 27 laying hens), namely, basal diet and basal diet complemented with 200 g/t B. licheniformis (3.2 × 109 CFU/kg). The trial lasted for 8 weeks, and samples were collected at the last week. Results revealed that B. licheniformis DSM5749 significantly improved laying performance, including an increase in egg production rate and average daily egg yield, and a decrease in the feed-to-egg ratio during the entire 8-week experimental period (P < 0.05). B. licheniformis DSM5749 increased the levels of superoxide dismutase and glutathione peroxidase in the liver and decreased the IL-1 level in the serum (P < 0.05). In addition, the integrity of intestinal morphology (villus height, crypt depth, and villus height/crypt depth), tight junctions (ZO-1, Claudin-1, and Occludin), and lipase vitality in the intestine were potentiated by B. licheniformis DSM5749 in laying hens (P < 0.05). B. licheniformis DSM5749 decreased the Firmicutes/Bacteroidetes ratio (P < 0.05) in the cecum. Furthermore, B. licheniformis DSM5749 modulated the microbiota in the cecum of the laying hens, increased the relative abundance of beneficial bacteria (e.g., Prevotella) at the genus level and decreased the relative abundance of potential pathogens (e.g., Desulfovibrio). In conclusion, B. licheniformis DSM5749 can improve laying performance, promote intestinal health, affect the composition of cecal microorganisms, and regulate the intestinal micro-ecological balance, making B. licheniformis a good probiotic candidate for application in the laying hens industry.
Collapse
Affiliation(s)
- Xue Pan
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yuanli Cai
- College of Life Science, Qilu Normal University, Jinan, China
| | - Linglian Kong
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Chuanpi Xiao
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Qidong Zhu
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhigang Song
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
19
|
Blanco-Picazo P, Gómez-Gómez C, Aguiló-Castillo S, Fernández-Orth D, Cerdà-Cuéllar M, Muniesa M, Rodríguez-Rubio L. Chicken liver is a potential reservoir of bacteriophages and phage-derived particles containing antibiotic resistance genes. Microb Biotechnol 2022; 15:2464-2475. [PMID: 35485188 PMCID: PMC9437878 DOI: 10.1111/1751-7915.14056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
Poultry meat production is one of the most important agri‐food industries in the world. The selective pressure exerted by widespread prophylactic or therapeutic use of antibiotics in intensive chicken farming favours the development of drug resistance in bacterial populations. Chicken liver, closely connected with the intestinal tract, has been directly involved in food‐borne infections and found to be contaminated with pathogenic bacteria, including Campylobacter and Salmonella. In this study, 74 chicken livers, divided into sterile and non‐sterile groups, were analysed, not only for microbial indicators but also for the presence of phages and phage particles containing antibiotic resistance genes (ARGs). Both bacteria and phages were detected in liver tissues, including those dissected under sterile conditions. The phages were able to infect Escherichia coli and showed a Siphovirus morphology. The chicken livers contained from 103 to 106 phage particles per g, which carried a range of ARGs (blaTEM, blaCTx‐M‐1, sul1, qnrA, armA and tetW) detected by qPCR. The presence of phages in chicken liver, mostly infecting E. coli, was confirmed by metagenomic analysis, although this technique was not sufficiently sensitive to identify ARGs. In addition, ARG‐carrying phages were detected in chicken faeces by qPCR in a previous study of the group. Comparison of the viromes of faeces and liver showed a strong coincidence of species, which suggests that the phages found in the liver originate in faeces. These findings suggests that phages, like bacteria, can translocate from the gut to the liver, which may therefore constitute a potential reservoir of antibiotic resistance genes.
Collapse
Affiliation(s)
- Pedro Blanco-Picazo
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Planta 0, Barcelona, 08028, Spain
| | - Clara Gómez-Gómez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Planta 0, Barcelona, 08028, Spain
| | - Sergi Aguiló-Castillo
- Spanish National Bioinformatics Institute (INB)/ELIXIR-ES, Barcelona Supercomputing Center, Barcelona, Spain
| | - Dietmar Fernández-Orth
- Department of Bioinformatics and Molecular Biology, Cerba Internacional Pl. Ramon Llull, 7-10, Sabadell, Barcelona, 08203, Spain
| | - Marta Cerdà-Cuéllar
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Maite Muniesa
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Planta 0, Barcelona, 08028, Spain
| | - Lorena Rodríguez-Rubio
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Planta 0, Barcelona, 08028, Spain
| |
Collapse
|
20
|
The Use of Disinfectant in Barn Cleaning Alters Microbial Composition and Increases Carriage of Campylobacter jejuni in Broiler Chickens. Appl Environ Microbiol 2022; 88:e0029522. [PMID: 35475671 DOI: 10.1128/aem.00295-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To maintain food safety and flock health in broiler chicken production, biosecurity approaches to keep chicken barns free of pathogens are important. Canadian broiler chicken producers must deep clean their barns with chemical disinfectants at least once annually (full disinfection [FD]) and may wash with water (water wash [WW]) throughout the year. However, many producers use FD after each flock, assuming a greater efficacy of more stringent cleaning protocols, although little information is known regarding how these two cleaning practices affect pathogen population and gut microbiota. In the present study, a crossover experiment over four production cycles was conducted in seven commercial chicken barns to compare WW and FD. We evaluated the effects of barn cleaning methods on commercial broiler performance, cecal microbiota composition, Campylobacter and Salmonella occurrence, and Campylobacter jejuni and Clostridium perfringens abundance, as well as on short-chain fatty acid (SCFA) concentrations in the month-old broiler gut. The 30-day body weight and mortality rate were not affected by the barn cleaning methods. The WW resulted in a modest but significant effect on the structure of broiler cecal microbiota (weighted-UniFrac; adonis P = 0.05, and unweighted-UniFrac; adonis P = 0.01), with notable reductions in C. jejuni occurrence and abundance. In addition, the WW group had increased cecal acetate, butyrate, and total SCFA concentrations, which were negatively correlated with C. jejuni abundance. Our results suggest that WW may result in enhanced activity of the gut microbiota and reduced zoonotic transmission of C. jejuni in broiler production relative to FD in the absence of a disease challenge. IMPORTANCE We compared the effects of barn FD and WW methods on gut microbial community structures and pathogen prevalence of broiler chickens in a nonchallenging commercial production setting. The results revealed that barn cleaning methods had little impact on the 30-day body weight and mortality rate of broiler chickens. In addition, the FD treatment had a subtle but significant effect on the broiler cecal microbiota with increased abundances of Campylobacter and decreased SCFA concentrations, which would support the adoption of WW as a standard practice. Thus, compared to FD, WW can be beneficial to broiler chicken production by inhibiting zoonotic pathogen colonization in the chicken gut with reduced cost and labor of cleaning.
Collapse
|
21
|
Effects of micronized bamboo powder on growth performance, serum biochemical indexes, cecal chyme microflora and metabolism of broilers aged 1-22 days. Trop Anim Health Prod 2022; 54:166. [PMID: 35437649 PMCID: PMC9015971 DOI: 10.1007/s11250-022-03172-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/07/2022] [Indexed: 10/29/2022]
Abstract
Adding insoluble fiber to diet of broilers has been reported to improve intestinal health and promote growth performance. Bamboo powder is a cheap raw material with rich insoluble fiber. This study aims to explore the effects of feeding micronized bamboo powder (MBP) on growth performance, serum biochemical indexes, intestinal microflora, and metabolism of broilers. A total of 1440 1-day-old slow-growing Ephedra chickens were randomly divided into three groups considering gender and body weight: (1) Group D: feeding with basal diet without antibiotics; (2) Group E: feeding with basal diet supplemented with 5% rice bran (RB); (3) Group F: feeding with basal diet supplemented with 1% MBP. Each group involved 8 replicates feeding for 22 days, with 60 chickens per replicate. Various indexes were detected. For the growth performance, the weight gain and feed consumption ratio (G: F) of Group F supplemented with MBP is 0.57 ± 0.04, which is significantly higher than that of E group supplemented with RB (0.52 ± 0.01, P < 0.05). For the serum biochemical indexes, the glutathione peroxidase activity in Group F is significantly higher than that of Group D, while the malondialdehyde content is significantly lower than that of Group D and Group E (P < 0.05 for all). The fresh cecal chyme is taken for determination. In Group F, the α diversity index Faith_pd is significantly lower in Group F than that of Group D. The microorganism species in cecal chyme of Group F and Group E are also different. The metabolic pathways of Group F, mainly in fatty acid metabolism, amino acid metabolism and intestinal immune IgA production, were different from those of Group D and Group E. Adding 1% MBP to broiler diet can enhance the anti-oxidant capacity, improve chyme microflora, regulate the metabolism pathways responsible for intestinal fatty acids, amino acids, and immunity.
Collapse
|
22
|
Tráj P, Herrmann EM, Sebők C, Vörösházi J, Mackei M, Gálfi P, Kemény Á, Neogrády Z, Mátis G. Protective effects of chicoric acid on polyinosinic-polycytidylic acid exposed chicken hepatic cell culture mimicking viral damage and inflammation. Vet Immunol Immunopathol 2022; 250:110427. [DOI: 10.1016/j.vetimm.2022.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
23
|
Cui X, Gou Z, Jiang Z, Li L, Lin X, Fan Q, Wang Y, Jiang S. Dietary fiber modulates abdominal fat deposition associated with cecal microbiota and metabolites in yellow chickens. Poult Sci 2022; 101:101721. [PMID: 35196585 PMCID: PMC8866719 DOI: 10.1016/j.psj.2022.101721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/22/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022] Open
Abstract
Excessive deposition of abdominal fat is a public concern in the yellow chicken industry related to human nutrition. The common practice of nutritionists is to increase the fiber content in feed to control abdominal fat deposition of chickens. Corncob meal (CCM) is the cheapest ingredient widely used in animal diets. The possible effects of CCM on chicken abdominal fat deposition and the possible mechanism involving cecal microbiota remain unknown. The objectives of this study were to investigate the effects of CCM in modulating abdominal fat deposition and the role of the cecal microbiota and their metabolites. A total of 200 ninety-day-old Huxu female chickens were divided into 2 dietary treatments, each with 10 replicates of 10 birds, and were fed two finisher diets, from 90 to 135 d. The diets were a typical corn-soybean control diet (CON) and that diet with CCM partially replacing corn and corn gluten meal. Results showed that the CCM diet markedly decreased live weight and abdominal fat percentage (P < 0.05); chickens fed the CCM diet exhibited lower (P < 0.01) expression in abdominal fat of fatty acid binding protein 4 (FABP4), stearoyl-CoA desaturase (SCD), fatty acid synthase (FAS), and peroxisome proliferator-activated receptor γ (PPARγ) but higher (P < 0.05) expression of estrogen receptor alpha (ESR1). The CCM increased the abundance of Akkermansia (P < 0.05) and markedly reduced the relative cecal abundance of Phascolarctobacterium (P < 0.01), Rikenellaceae (P < 0.05), and Faecalibacterium (P < 0.01). The metabolomic and biochemical analyses demonstrated that the CCM diet increased (P < 0.05) the concentrations of butyrate in cecal contents. The majority of the metabolites in cecal digesta with differences in abundance were organic acids. The CCM diet increased (P < 0.05) contents of (R)-5-diphosphomevalote, pantothenic acid, 2-epi-5-epi-valiolone 7-phosphate, D-ribose 5-diphosphate, arbutin 6-phosphate, D-ribitol 5-phosphate, undecanoic acid, nicotinic acid, 4-methyl-2-oxovaleric acid, while decreasing (P < 0.05) those of oleic acid, glutaric acid, adipic acid, suberic acid, and L-fuculose 1-phosphate. In conclusion, these findings demonstrated that the dietary CCM treatment significantly decreased abdominal fat and altered the cecal microbiota and metabolite profiles of the yellow chickens.
Collapse
Affiliation(s)
- Xiaoyan Cui
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Long Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Xiajing Lin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Qiuli Fan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Yibing Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China.
| |
Collapse
|
24
|
Wyszyńska AK, Godlewska R. Lactic Acid Bacteria - A Promising Tool for Controlling Chicken Campylobacter Infection. Front Microbiol 2021; 12:703441. [PMID: 34650524 PMCID: PMC8506037 DOI: 10.3389/fmicb.2021.703441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Since 2005, campylobacteriosis has been the most common zoonotic disease in Europe. The main reservoir of pathogenic Campylobacter strains is broilers, which makes raw and undercooked poultry meat two major sources of disease. Infection in chicken flocks is most often asymptomatic, despite a high level of colonization reaching 106-109cfu/g in animal ceca. It is widely believed that controlling the level of colonization of the birds' digestive tract by pathogenic strains is a good way to increase food safety. Many treatments have been proposed to combat or at least reduce the level of colonization in animals reservoirs: probiotics, bacteriophages, vaccines, and anti-Campylobacter bacteriocins. This review focuses on the effects of Campylobacter infection on the chicken microbiome and colonization control strategies using probiotics (mostly lactic acid bacteria, LAB), which are live microorganisms included in the diet of animals as feed additives or supplements. Probiotics are not only an alternative to antibiotics, which were used for years as animal growth promoters, but they also constitute an effective protective barrier against excessive colonization of the digestive system by pathogenic bacteria, including Campylobacter. Moreover, one of the many beneficial functions of probiotics is the ability to manipulate the host's microbiota. Recently, there have also been some promising attempts to use lactic acid bacteria as a delivery system of oral vaccine against Campylobacter. Recombinant LAB strains induce primarily a mucosal immune response against foreign antigens, accompanied by at most a low-level immune response against carrier strains. Since the main barrier against the invasion of pathogens in the gastrointestinal tract is the intestinal mucosal membrane, the development of effective oral vaccines to protect animals against enteric infection is very reasonable.
Collapse
|
25
|
Gilani S, Chrystal PV, Barekatain R. Current experimental models, assessment and dietary modulations of intestinal permeability in broiler chickens. ACTA ACUST UNITED AC 2021; 7:801-811. [PMID: 34466684 PMCID: PMC8384772 DOI: 10.1016/j.aninu.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Maintaining and optimising the intestinal barrier (IB) function in poultry has important implications for the health and performance of the birds. As a key aspect of the IB, intestinal permeability (IP) is mainly controlled by complex junctional proteins called tight junction proteins (TJ) that link enterocytes together. The disruption of TJ is associated with increased gut leakage with possible subsequent implications for bacterial translocation, intestinal inflammation, compromised health and performance of the birds. Despite considerable data being available for other species, research on IP in broiler chickens and in general avian species is still an understudied topic. This paper reviews the available literature with a specific focus on IP in broiler chickens with consideration given to practical factors affecting the IP, current assessment methods, markers and nutritional modulation of IP. Several experimental models to induce gut leakage are discussed including pathogens, rye-based diets, feed deprivation and stress-inducing agents such as exogenous glucocorticoids and heat stress. Although various markers including fluorescein isothiocyanate dextran, expression of TJ and bacterial translocation have been widely utilized to study IP, recent studies have identified a number of excreta biomarkers to evaluate intestinal integrity, in particular non-invasive IP. Although the research on various nutrients and feed additives to potentially modulate IP is still at an early stage, the most promising outcomes are anticipated for probiotics, prebiotics, amino acids and those feed ingredients, nutrients and additives with anti-inflammatory properties. Considerable research gaps are identified for the mechanistic mode of action of various nutrients to influence IP under different experimental models. The modulation of IP through various strategies (i.e. nutritional manipulation of diet) may be regarded as a new frontier for disease prevention and improving the health and performance of poultry particularly in an antibiotic-free production system.
Collapse
Affiliation(s)
- Saad Gilani
- Danisco Animal Nutrition (IFF), Oegstgeest, the Netherlands
| | | | - Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
- Corresponding author. South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia.
| |
Collapse
|
26
|
Ruhnau D, Hess C, Doupovec B, Grenier B, Schatzmayr D, Hess M, Awad W. Deepoxy-deoxynivalenol (DOM-1), a derivate of deoxynivalenol (DON), exhibits less toxicity on intestinal barrier function, Campylobacter jejuni colonization and translocation in broiler chickens. Gut Pathog 2021; 13:44. [PMID: 34217373 PMCID: PMC8254355 DOI: 10.1186/s13099-021-00440-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background Intestinal epithelial cells are challenged by mycotoxins and many bacterial pathogens. It was previously shown that the mycotoxin deoxynivalenol (DON) as well as Campylobacter (C.) jejuni have a negative impact on gut integrity. Recently, it was demonstrated that DON increased the load of C. jejuni in the gut and inner organs. Based on this finding, it was hypothesized the DON metabolite (deepoxy-deoxynivalenol, DOM-1) should be able to reduce the negative effects of DON on colonization and translocation of C. jejuni in broilers, since it lacks the epoxide ring, which is responsible for the toxicity of DON. Methods A total of 180 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were divided into six groups (n = 30 with 5 replicates/group): 1. Control, 2. DOM-1, 3. DON, 4. DOM-1 + C. jejuni, 5. DON + C. jejuni, 6. C. jejuni. At day 14, birds of groups 4, 5 and 6 were orally inoculated via feeding tube (gavage) with 1-ml of a PBS suspension containing 1 × 108 CFU of C. jejuni NCTC 12744. The performance parameters: body weight (BW), body weight gain (BWG), and feed intake of the birds were determined. At 7, 14, and 21 days post infection, samples from liver, spleen, duodenum, jejunum and cecum were aseptically collected and processed for bacteriological investigations. Finally, at each killing time point, segments of duodenum, jejunum and cecum were harvested and prepared for Ussing chamber studies to measure the paracellular mannitol fluxes. Results A significant decrease in body weight was observed for chickens receiving the DON diet with or without C. jejuni compared to the other groups. Furthermore, it was found that the co-exposure of birds to DON and C. jejuni resulted in a higher C. jejuni load not only in the gut but also in liver and spleen due to increased paracellular permeability of the duodenum, jejunum and cecum. On the contrary, DOM-1 supplementation in the feed improved the birds’ performance and led to a better feed conversion ratio throughout the trial. Furthermore, DOM-1 did not negatively affect gut permeability and decreased the C. jejuni counts in the intestine and internal organs. Conclusion Altogether, the presence of DOM-1 in the feed as a result of the enzymatic biotransformation of DON leads to a lower C. jejuni count in the intestine and better feed conversion ratio. Moreover, this study demonstrates that the detoxification product of DON, DOM-1, does not have negative effects on the gastrointestinal tract and reduces the Campylobacter burden in chickens and also the risk for human infection.
Collapse
Affiliation(s)
- Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | | | | | | | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Wageha Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
27
|
Valeris-Chacin R, Pieters M, Hwang H, Johnson TJ, Singer RS. Association of Broiler Litter Microbiome Composition and Campylobacter Isolation. Front Vet Sci 2021; 8:654927. [PMID: 34109233 PMCID: PMC8180553 DOI: 10.3389/fvets.2021.654927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
Infection with Campylobacter species is one of the leading causes of bacterial diarrhea in humans in the US. Chickens, which become colonized on the farm, are important reservoirs of this bacterium. Campylobacter can establish itself in the broiler house via a variety of sources, can survive in the litter of the house, and possibly persist over successive flock cycles. However, the role of the broiler litter microbiome on Campylobacter persistence is not clear. A matched case-control study was conducted to determine whether the broiler litter microbiome composition was associated with Campylobacter isolation within the broiler house. Flocks were classified as cases when either Campylobacter jejuni or Campylobacter coli was isolated in boot sock samples, or as controls otherwise. Case and control flocks were matched at the broiler house level. Composite broiler litter samples were collected and used for DNA extraction and 16S rRNA gene V4 region sequencing. Reads were processed using the DADA2 pipeline to obtain a table of amplicon sequence variants. Alpha diversity and differential bacterial relative abundance were used as predictors of Campylobacter isolation status in conditional logistic regression models adjusting for flock age and sampling season. Beta diversity distances were used as regressors in stratified PERMANOVA with Campylobacter isolation status as predictor, and broiler house as stratum. When Campylobacter was isolated in boot socks, broiler litter microbiome richness and evenness were lower and higher, respectively, without reaching statistical significance. Campylobacter isolation status significantly explained a small proportion of the beta diversity (genus-level Aitchison dissimilarity distance). Clostridium and Anaerostipes were positively associated with Campylobacter isolation status, whereas Bifidobacterium, Anaerosporobacter, and Stenotrophomonas were negatively associated. Our results suggest the presence of bacterial interactions between Campylobacter and the broiler litter microbiome. The negative association of Campylobacter with Bifidobacterium, Anaerosporobacter, and Stenotrophomonas in litter could be potentially exploited as a pre-harvest control strategy.
Collapse
Affiliation(s)
- Robert Valeris-Chacin
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Haejin Hwang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
28
|
The changing microbiome of poultry meat; from farm to fridge. Food Microbiol 2021; 99:103823. [PMID: 34119108 DOI: 10.1016/j.fm.2021.103823] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022]
Abstract
Chickens play host to a diverse community of microorganisms which constitute the microflora of the live bird. Factors such as diet, genetics and immune system activity affect this complex population within the bird, while external influences including weather and exposure to other animals alter the development of the microbiome. Bacteria from these settings including Campylobacter and Salmonella play an important role in the quality and safety of end-products from these birds. Further steps, including washing and chilling, within the production cycle aim to control the proliferation of these microbes as well as those which cause product spoilage. These steps impose specific selective pressures upon the microflora of the meat product. Within the next decade, it is forecast that poultry meat, particularly chicken will become the most consumed meat globally. However, as poultry meat is a frequently cited reservoir of zoonotic disease, understanding the development of its microflora is key to controlling the proliferation of important spoilage and pathogenic bacterial groups present on the bird. Whilst several excellent reviews exist detailing the microbiome of poultry during primary production, others focus on fate of important poultry pathogens such as Campylobacter and Salmonella spp. At farm and retail level, and yet others describe the evolution of spoilage microbes during spoilage. This review seeks to provide the poultry industry and research scientists unfamiliar with food technology process with a holistic overview of the key changes to the microflora of broiler chickens at each stage of the production and retail cycle.
Collapse
|
29
|
Dauksiene A, Ruzauskas M, Gruzauskas R, Zavistanaviciute P, Starkute V, Lele V, Klupsaite D, Klementaviciute J, Bartkiene E. A Comparison Study of the Caecum Microbial Profiles, Productivity and Production Quality of Broiler Chickens Fed Supplements Based on Medium Chain Fatty and Organic Acids. Animals (Basel) 2021; 11:ani11030610. [PMID: 33652631 PMCID: PMC7996795 DOI: 10.3390/ani11030610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The ban of growth promoters in poultry farming in the European Union has resulted in the development of alternatives. Among these alternatives, medium chain fatty acids (MCFAs) or organic acids (OAs) are considered to be suitable for in-feed use. However, their effect on microbiota modulation and the meat quality of broiler chickens are still under-investigated. The aim of this study was to estimate the influence of MCFAs and OAs supplements on the caecum microbial profiles, productivity and production quality characteristics of broiler chickens. The 42-days experiment was conducted using 900-day-old broiler chickens, allocated into three groups, consisting of 300 birds per group. The results indicated that the addition of OAs results in a more appropriate environment in the caecum for beneficial microorganisms rather than diets supplemented with MCFAs. These positive changes led to a higher efficiency of poultry productivity (higher body weight and lower mortality); however, for most of the analysed broilers’, technological parameters were not considerably influenced by treatments. Abstract The aim of this study was to evaluate the influence of medium chain fatty acids (MCFAs) and organic acids (OAs) supplements on the caecum microbial profiles, productivity and production quality characteristics of broiler chickens (BCs). BC (900 chicks) were attributed to three groups: (i) control; (ii) MCFAs group (BCs fed with feed supplemented with MCFAs); (iii) OAs group (BCs fed with feed supplemented with OAs). Broilers were slaughtered at the end of the trial (42 days old), and the caecum microbial profiles, productivity and production quality characteristics were analysed. Supplementation with OAs resulted in a more appropriate environment in the caecum for beneficial microorganisms than with a diet supplemented with MCFAs. This was supported by data on the presence of higher amounts and an increased species variety of probiotic bacteria (Lactobacillus and Bifidobacterium) in the caecum of birds. The above-mentioned changes of the caecum microbiota led to significantly higher villus height (p = 0.003) of the OAs broiler group and significantly lower crypt depth (p = 0.037). Notwithstanding the significant increase of acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids that were established in caecum samples from the MCFAs group, better parameters of broiler production performance (higher body weight and lower mortality) and carcass traits (higher both thigh and shin muscles with skin and bone weight; both shin muscles without skin and bone weight; abdominal fat yield) were found in the OAs-treated group. For chemical, physical and technological characteristics of breast meat samples, increased yellowness and water holding capacity by 14.7% and 2.3%, respectively, were found in MCFAs group samples. A more appropriate environment in the caecum for beneficial microorganisms could be obtained when BCs were fed with OAs supplement, comparing to MCFAs, and these positive changes were associated with higher efficiency of poultry production.
Collapse
Affiliation(s)
- Agila Dauksiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.S.); (V.L.); (D.K.); (J.K.); (E.B.)
- Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania;
- Correspondence: ; Tel.: +370-685-25327
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania;
- Microbiology and Virology Institute, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania
| | - Romas Gruzauskas
- Department of Food Sciences and Technology, Kaunas University of Technology, Radvilenu str. 19, LT-50254 Kaunas, Lithuania;
| | - Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.S.); (V.L.); (D.K.); (J.K.); (E.B.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.S.); (V.L.); (D.K.); (J.K.); (E.B.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania
| | - Vita Lele
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.S.); (V.L.); (D.K.); (J.K.); (E.B.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.S.); (V.L.); (D.K.); (J.K.); (E.B.)
| | - Jolita Klementaviciute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.S.); (V.L.); (D.K.); (J.K.); (E.B.)
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.S.); (V.L.); (D.K.); (J.K.); (E.B.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
30
|
Quantitative trait loci and transcriptome signatures associated with avian heritable resistance to Campylobacter. Sci Rep 2021; 11:1623. [PMID: 33436657 PMCID: PMC7804197 DOI: 10.1038/s41598-020-79005-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Campylobacter is the leading cause of bacterial foodborne gastroenteritis worldwide. Handling or consumption of contaminated poultry meat is a key risk factor for human campylobacteriosis. One potential control strategy is to select poultry with increased resistance to Campylobacter. We associated high-density genome-wide genotypes (600K single nucleotide polymorphisms) of 3000 commercial broilers with Campylobacter load in their caeca. Trait heritability was modest but significant (h2 = 0.11 ± 0.03). Results confirmed quantitative trait loci (QTL) on chromosomes 14 and 16 previously identified in inbred chicken lines, and detected two additional QTLs on chromosomes 19 and 26. RNA-Seq analysis of broilers at the extremes of colonisation phenotype identified differentially transcribed genes within the QTL on chromosome 16 and proximal to the major histocompatibility complex (MHC) locus. We identified strong cis-QTLs located within MHC suggesting the presence of cis-acting variation in MHC class I and II and BG genes. Pathway and network analyses implicated cooperative functional pathways and networks in colonisation, including those related to antigen presentation, innate and adaptive immune responses, calcium, and renin–angiotensin signalling. While co-selection for enhanced resistance and other breeding goals is feasible, the frequency of resistance-associated alleles was high in the population studied and non-genetic factors significantly influenced Campylobacter colonisation.
Collapse
|
31
|
Ruhnau D, Hess C, Grenier B, Doupovec B, Schatzmayr D, Hess M, Awad WA. The Mycotoxin Deoxynivalenol (DON) Promotes Campylobacter jejuni Multiplication in the Intestine of Broiler Chickens With Consequences on Bacterial Translocation and Gut Integrity. Front Vet Sci 2020; 7:573894. [PMID: 33363229 PMCID: PMC7756001 DOI: 10.3389/fvets.2020.573894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Deoxynivalenol (DON) is one of the major health concern in poultry production as it targets epithelial cells of the gastrointestinal tract and contributes to the loss of the epithelial barrier function. It is well-documented that DON severely compromises various important intestinal functions in coincidence with aggravated clinical symptoms in livestock. In addition, a prolonged persistence of intestinal pathogens (e.g., Salmonella, Clostridium) in the gut has also been reported in pigs and chickens, respectively. Similar to DON, recent studies demonstrated that an experimental Campylobacter infection has severe consequences on gut health. Through experimental infection, it was found that Campylobacter (C.) jejuni negatively affects the integrity of the intestine and promotes the translocation of bacteria from the gut to inner organs. So far, no data are available investigating the simultaneous exposure of DON and C. jejuni in broilers albeit both are widely distributed. Thus, the aim of the present study was to explore the interaction between DON and C. jejuni which is of a significant public and animal health concern as it may affect the prevalence and the ability to control this pathogen. Following oral infection of birds at 14 days of age with C. jejuni NCTC 12744, we show that the co-exposure to DON and C. jejuni has a considerable consequence on C. jejuni loads in chicken gut as well as on gut permeability of the birds. A reduced growth performance was found for DON and/or C. jejuni exposed birds. Furthermore, it was found that the co-exposure of DON and C. jejuni aggravated the negative effect on paracellular permeability of the intestine already noticed for the bacteria or the mycotoxin alone by the Ussing chamber technique at certain times or intestinal segments. Furthermore, the increased paracellular permeability promotes the translocation of C. jejuni and E. coli to inner organs, namely liver and spleen. Interestingly, C. jejuni loads in the intestine were higher in DON-fed groups indicating a supportive growth effect of the mycotoxin. The actual study demonstrates that co-exposure of broiler chickens to DON and C. jejuni has not only considerable consequences on gut integrity but also on bacterial balance. These findings indicate that the co-exposure of broiler chickens to DON and C. jejuni could have a significant impact on gut health and bacteria translocation leading to an increased risk for public health.
Collapse
Affiliation(s)
- Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
32
|
Awad WA, Ruhnau D, Hess C, Hess M. Campylobacter jejuni increases the paracellular permeability of broiler chickens in a dose-dependent manner. Poult Sci 2020; 99:5407-5414. [PMID: 33142457 PMCID: PMC7647851 DOI: 10.1016/j.psj.2020.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, several studies emphasize the deleterious effects of Campylobacter jejuni on the chicken intestine. In this context, it was shown that C. jejuni, contrary to the general belief, has a negative influence on the gut barrier in chickens. More precisely, we demonstrated that C. jejuni affects gut physiology characterized by changes in ion transport and transepithelial ion conductance, but the underlying mechanism is yet to be investigated. In the actual study, to determine epithelial paracellular permeability, the mucosal to serosal flux of 14C-mannitol in the small and large intestine was measured applying Ussing chamber. A total of seventy-five 1-day-old Ross 308 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were randomly allocated to 3 different groups (n = 25 with 5 replicates/group) and infected at 14 d of age with a high (108 colony forming units [CFU]) or a low (104 CFU) dose of C. jejuni and a third group kept as noninfected control. Infection with the low dose of C. jejuni resulted in delayed cecal colonization but equalized at 21 d postinfection, independent of the dose. Invasion of liver and spleen with C. jejuni was only noticed in birds infected with 108 (CFU). Body weight (BW) and body weight gain of all birds infected with C. jejuni were lower than in the control group and varied with the dose of infection, confirming a negative correlation between the infection dose and birds BW. Mannitol flux in jejunum and cecum was significantly (P < 0.05) higher in all C. jejuni infected birds compared with control birds. Likewise, significant differences in mannitol flux of both jejunum and cecum were detected depending on the infection dose of C. jejuni. The correlation analyses revealed a positive relationship between Campylobacter dose and mannitol flux of both jejunum and cecum. Altogether, the actual results emphasize that the adverse effect of C. jejuni on gut permeability arises in a dose-dependent manner.
Collapse
Affiliation(s)
- Wageha A Awad
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| | - Daniel Ruhnau
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Michael Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
33
|
The relationship among gut microbiota, short-chain fatty acids, and intestinal morphology of growing and healthy broilers. Poult Sci 2020; 99:5883-5895. [PMID: 33142506 PMCID: PMC7647869 DOI: 10.1016/j.psj.2020.08.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 11/23/2022] Open
Abstract
The gut microbiota play an important role in the growth and intestinal health of broilers. The present study was to investigate the gut microbiota, short-chain fatty acids, and intestinal morphology of broilers at different ages. A total of 320 one-day-old male broilers were raised in 8 replicates and fed the same corn–soybean diets for 42 D. The duodenal, jejunal, and ileal segments and their and cecal microbiota were collected on day 1, 7, 14, 21, and 42, respectively. The villous height (VH), crypt depth (CD), and their ratio of VH:CD in the duodenum, jejunum, and ileum all increased (P < 0.05) with age. Caecal acetate, propionate, butyrate, valerate, and isovalerate increased (P < 0.01), but isobutyrate decreased (P < 0.001) with age. The cecum had the greatest (P < 0.001) alpha diversity of bacterial community in broilers at different ages. Beta diversities showed distinct differences in gut microbial compositions among different ages (R = 0.55, P < 0.002) and different intestinal segments (R = 0.53, P < 0.002). Lactobacillus was the most abundant genus in the duodenum (36∼97%), jejunum (39∼72%), and ileum (24∼96%) at all ages, and in the ileum, it was positively correlated with VH (R = 0.559, P < 0.03), VH:CD (R = 0.55, P < 0.03), and acetate contents (R = 0.541, P < 0.04) but negatively correlated (R = -0.50, P < 0.05) with isobutyrate contents. Escherichia–Shigella and Salmonella dominated in the cecum of newly hatched broilers, and then the Bacteroides dominated in the cecum on day 42. In the cecum, Escherichia–Shigella was positively correlated (R = 0.577∼0.662, P < 0.05) with isobutyrate contents and Salmonella negatively correlated (R = -0.539∼-0.843, P < 0.05) with isovalerate, butyrate, and acetate contents. These aforementioned results indicated that the most abundant Lactobacillus from the small intestine and the most diversity of microflora community and short-chain fatty acids in the cecum might contribute to the development of intestinal structure in the whole growing period of broilers.
Collapse
|
34
|
Duquenoy A, Ania M, Boucher N, Reynier F, Boucinha L, Andreoni C, Thomas V. Caecal microbiota compositions from 7-day-old chicks reared in high-performance and low-performance industrial farms and systematic culturomics to select strains with anti-Campylobacter activity. PLoS One 2020; 15:e0237541. [PMID: 32834007 PMCID: PMC7446796 DOI: 10.1371/journal.pone.0237541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
There is growing interest in exploring the chickens' intestinal microbiota and understanding its interactions with the host. The objective is to optimize this parameter in order to increase the productivity of farm animals. With the goal to isolate candidate probiotic strains, specific culturomic methods were used in our study to culture commensal bacteria from 7-days old chicks raised in two farms presenting long history of high performance. A total of 347 isolates were cultured, corresponding to at least 64 species. Among the isolates affiliated to the Firmicutes, 26 had less than 97% identity of their partial 16S sequence with that of the closest described species, while one presented less than 93% identity, thus revealing a significant potential for new species in this ecosystem. In parallel, and in order to better understand the differences between the microbiota of high-performing and low-performing animals, caecal contents of animals collected from these two farms and from a third farm with long history of low performance were collected and sequenced. This compositional analysis revealed an enrichment of Faecalibacterium-and Campylobacter-related sequences in lower-performing animals whereas there was a higher abundance of enterobacteria-related sequences in high-performing animals. We then investigated antibiosis activity against C. jejuni ATCC 700819 and C. jejuni field isolate as a first phenotypic trait to select probiotic candidates. Antibiosis was found to be limited to a few strains, including several lactic acid bacteria, a strain of Bacillus horneckiae and a strain of Escherichia coli. The antagonist activity depended on test conditions that mimicked the evolution of the intestinal environment of the chicken during its lifetime, i.e. temperature (37°C or 42°C) and oxygen levels (aerobic or anaerobic conditions). This should be taken into account according to the stage of development of the animal at which administration of the active strain is envisaged.
Collapse
|
35
|
Gong Y, Yang H, Wang X, Xia W, Lv W, Xiao Y, Zou X. Early Intervention With Cecal Fermentation Broth Regulates the Colonization and Development of Gut Microbiota in Broiler Chickens. Front Microbiol 2019; 10:1422. [PMID: 31293552 PMCID: PMC6603130 DOI: 10.3389/fmicb.2019.01422] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the effect of fermentation broth from broiler cecal content on the colonization and development of the gut microbiota in newly hatched broiler chicks. The fermentation broth was made by a chemostat system using the cecal content from a donor chicken as the source of inoculum. A total of 120 newly hatched broiler chicks were randomly divided into two groups. One group (F group) was orally inoculated with the fermentation broth, and the other (C group) was treated with an equal amount of sterile PBS solution. 16S rRNA gene sequencing was used to investigate the differences in the cecal microbiota of the broiler chickens between the two groups on days 1, 3, 7, 14, and 28. Moreover, the concentrations of short-chain fatty acids (SCFAs) in the cecal contents were analyzed by gas chromatography. The results showed that the abundances of genera Escherichia-Shigella and Enterococcus decreased sharply in the F group on days 1 and 3 by the early intervention with cecal fermentation broth. In contrast, the relative abundance of the genus Bacteroides on days 1, 3, and 7, and the family Ruminococcaceae on days 1, 3, and 28 increased in the F group, respectively. In terms of SCFAs, the concentrations of acetate on day 28, propionic acid on days 1, 3, 7, 14, and 28, butyrate on day 1, and isovalerate on day 14 were significantly higher in the F group compared with the C group. Overall, these results suggest that early intervention with cecal fermentation broth could have beneficial effects on broilers gut health, which might be attributed to the alterations in the gut microbial composition and the increased concentrations of SCFAs.
Collapse
Affiliation(s)
- Yujie Gong
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Hua Yang
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenrui Xia
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Wentao Lv
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoting Zou
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
An J, Cho J. Catalytic properties of wheat phytase that favorably degrades long-chain inorganic polyphosphate. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:127-131. [PMID: 31208182 PMCID: PMC6946983 DOI: 10.5713/ajas.19.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
Objective This study was conducted to determine catalytic properties of wheat phytase with exopolyphosphatase activity toward medium-chain and long-chain inorganic polyphosphate (polyP) substrates for comparative purpose. Methods Exopolyphosphatase assay of wheat phytase toward polyP75 (medium-chain polyP with average 75 phosphate residues) and polyP1150 (long-chain polyP with average 1150 phosphate residues) was performed at pH 5.2 and pH 7.5. Its activity toward these substrates was investigated in the presence of Mg2+, Ni2+, Co2+, Mn2+, or ethylenediaminetetraacetic acid (EDTA). Michaelis constant (Km) and maximum reaction velocity (Vmax) were determined from Lineweaver-Burk plot with polyP75 or polyP1150. Monophosphate esterase activity toward p-nitrophenyl phosphate (pNPP) was assayed in the presence of polyP75 or polyP1150. Results Wheat phytase dephosphorylated polyP75 and polyP1150 at pH 7.5 more effectively than that at pH 5.2. Its exopolyphosphatase activity toward polyP75 at pH 5.2 was 1.4-fold higher than that toward polyP1150 whereas its activity toward polyP75 at pH 7.5 was 1.4-fold lower than that toward polyP1150. Regarding enzyme kinetics, Km for polyP75 was 1.4-fold lower than that for polyP1150 while Vmax for polyP1150 was 2-fold higher than that for polyP75. The presence of Mg2+, Ni2+, Co2+, Mn2+, or EDTA (1 or 5 mM) exhibited no inhibitory effect on its activity toward polyP75. Its activity toward polyP1150 was inhibited by 1 mM of Ni2+ or Co2+ and 5 mM of Ni2+, Co2+, or Mg2+. Ni2+ inhibited its activity toward polyP1150 the most strongly among tested additives. Both polyP75 and polyP1150 inhibited the monophosphate esterase activity of wheat phytase toward pNPP in a dose-dependent manner. Conclusion Wheat phytase with an unexpected exopolyphosphatase activity has potential as a therapeutic tool and a next-generational feed additive for controlling long-chain polyP-induced inappropriate inflammation from Campylobacter jejuni and Salmonella typhimurium infection in public health and animal husbandry.
Collapse
Affiliation(s)
- Jeongmin An
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Jaiesoon Cho
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
37
|
Lourenco JM, Rothrock MJ, Sanad YM, Callaway TR. The Effects of Feeding a Soybean-Based or a Soy-Free Diet on the Gut Microbiome of Pasture-Raised Chickens Throughout Their Lifecycle. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Feeding of deoxynivalenol increases the intestinal paracellular permeability of broiler chickens. Arch Toxicol 2019; 93:2057-2064. [PMID: 31030221 DOI: 10.1007/s00204-019-02460-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022]
Abstract
In recent years, the deleterious effects attributed to mycotoxins, in particular on the intestine, faced increased attention and it was shown that deoxynivalenol (DON) causes adverse effects on gut health. In this context, it has been repeatedly reported that DON can alter the intestinal morphology, disrupt the intestinal barrier and reduce nutrient absorption. The underlying mechanism of a compromised intestinal barrier caused by DON in chickens has yet to be illustrated. Although, DON is rapidly absorbed from the upper parts of the small intestine, the effects on the large intestine cannot be excluded. Additionally, a damaging effect of DON on the gut epithelium might decrease the resistance of the gut against infectious agents. Consequently, the objectives of the present studies were: (1) to investigate the impact of DON on the epithelial paracellular permeability by demonstrating the mucosal to serosal flux of 14C-mannitol in the small and large intestine applying Ussing chambers and (2) to delineate the effects of DON on the colonization and translocation of Escherichia coli. Both parameters are well suited as potential indicators for gut barrier failure. For this, a total of 75 one-day-old Ross 308 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were randomly allocated to three different groups (n = 25 with 5 replicates/group) and were fed for 5 weeks with either contaminated diets (5 or 10 mg DON/kg feed) or basal diets (control). Body weight (BW) and BW gain of birds in the group fed with 10 mg/kg DON were significantly lower than in group with 5 mg/kg DON and the control group. Moreover, the mannitol flux in jejunum and cecum was significantly (P < 0.05) higher in DON-fed groups compared to control birds. Consistent with this, DON enhanced the translocation of E. coli with a higher number of bacteria encountered in the spleen and liver. Altogether, the actual results verified that DON can alter the intestinal paracellular permeability in broiler chickens and facilitates the translocation of enteric microorganisms such as E. coli to extra-intestinal organs. Considering that moderate levels of DON are present in feed, the consumption of DON-contaminated feed can induce an intestinal breakdown with negative consequences on broiler health.
Collapse
|
39
|
Impact of Eimeria tenella Coinfection on Campylobacter jejuni Colonization of the Chicken. Infect Immun 2019; 87:IAI.00772-18. [PMID: 30510107 DOI: 10.1128/iai.00772-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
Eimeria tenella can cause the disease coccidiosis in chickens. The direct and often detrimental impact of this parasite on chicken health, welfare, and productivity is well recognized; however, less is known about the secondary effects that infection may have on other gut pathogens. Campylobacter jejuni is the leading cause of human bacterial foodborne disease in many countries and has been demonstrated to exert negative effects on poultry welfare and production in some broiler lines. Previous studies have shown that concurrent Eimeria infection can influence the colonization and replication of bacteria, such as Clostridium perfringens and Salmonella enterica serovar Typhimurium. Through a series of in vivo coinfection experiments, this study evaluated the impact that E. tenella infection had on C. jejuni colonization of chickens, including the influence of variations in parasite dose and sampling time after bacterial challenge. Coinfection with E. tenella resulted in a significant increase in C. jejuni colonization in the cecum in a parasite dose-dependent manner but a significant decrease in C. jejuni colonization in the spleen and liver of chickens. The results were reproducible at 3 and 10 days after bacterial infection. This work highlights that E. tenella not only has a direct impact on the health and well-being of chickens but can have secondary effects on important zoonotic pathogens.
Collapse
|
40
|
Visscher C, Klingenberg L, Hankel J, Brehm R, Langeheine M, Helmbrecht A. Influence of a specific amino acid pattern in the diet on the course of an experimental Campylobacter jejuni infection in broilers. Poult Sci 2018; 97:4020-4030. [PMID: 29982672 PMCID: PMC6162363 DOI: 10.3382/ps/pey276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/08/2018] [Indexed: 01/03/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is one of the most important zoonotic pathogens worldwide. In Europe, the majority of the cases are caused by consuming contaminated poultry meat. The objective of the present study was to investigate potential effects of different crude protein levels in complete diets for broilers on infection dynamics of C. jejuni after experimental infection. In total, 300 commercial broilers line Ross 308 were divided into 4 different groups, including 5 replications of 15 chickens each. The chickens were fed a conventional diet (212 g CP/kg DM) and a protein-reduced test diet (190 g CP/kg DM) supplemented with essential amino acids. This resulted simultaneously in lower amino-acid concentrations preferentially utilized by C. jejuni, such as aspartate, glutamate, proline, and serine. One group of each feeding concept was infected artificially with C. jejuni at day 21 by applying an oral C. jejuni inoculum containing 4.17 ± 0.09 log10 cfu of C. jejuni to 3 of 15 chickens, called "seeders." Feeding the test diet resulted in a significant reduction (P < 0.001) in CP intake (31.5 ± 1.20 g CP/broiler/day and 27.7 ± 0.71 g CP/broiler/day, respectively), a significant decrease (P < 0.05) in crude mucin in excreta (55.7 ± 8.23 g/kg DM and 51.9 ± 7.62 g/kg DM, respectively), and in goblet cell number in cecal crypts (P < 0.05; 15.1 ± 5.71 vs. 13.6 ± 5.91 goblet cells/crypt). In groups receiving the test diet, the excretion of C. jejuni was significantly reduced in seeders by 1.9 log10 cfu/g excreta at day 23 (3.38a ± 2.55 vs. 1.47b ± 2.20; P = 0.033). At day 25, prevalence of C. jejuni in cloacal swabs amounted to 53.3% in the group fed the test diet and 75.7% in the control group, respectively (P < 0.05). In summary, a definite amino acid pattern in the broiler diets could contribute to a development of an effective feeding strategy to reduce the prevalence of C. jejuni infection in chickens (Patent No 17187659.2-1106).
Collapse
Affiliation(s)
- C Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hanover, Germany
| | - L Klingenberg
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hanover, Germany
| | - J Hankel
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hanover, Germany
| | - R Brehm
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hanover, Germany
| | - M Langeheine
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hanover, Germany
| | - A Helmbrecht
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, D-63457 Hanau-Wolfgang, Germany
| |
Collapse
|
41
|
Currie D, Green M, Dufailu OA, Matthaios P, Soultanas P, McCartney E, Lester H, Van Den Eede L, Apajalahti J, Mahdavi J. Dietary supplementation with ferric tyrosine improves zootechnical performance and reduces caecal Campylobacter spp. load in broilers. Br Poult Sci 2018; 59:646-653. [PMID: 30113210 DOI: 10.1080/00071668.2018.1507015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
1. The objective of this study was to evaluate the effect of ferric tyrosine on the reduction of Campylobacter spp. and zootechnical performance in broilers exposed to Campylobacter spp. using a natural challenge model to simulate commercial conditions. Additionally, the minimum inhibitory concentrations (MICs) of ferric tyrosine against common enteropathogens were evaluated. 2. At the start of the trial, 840 healthy male 1-d-old birds (Ross 308) were randomly allocated to 6 replicate pens of 35 birds each and fed diets containing different concentrations of ferric tyrosine (0, 0.02, 0.05 and 0.2 g/kg) in mash form for 42 d. 3. Broilers fed diets containing ferric tyrosine showed significantly higher body weight at d 42 and weight gain compared to the control group. However, birds fed ferric tyrosine ate significantly more than the control birds so significant improvements in feed conversion rate were not observed. 4. Microbiological analyses of caecal samples collected on d 42 of the study showed, per gram of sample, 2-3 log10 reduction in Campylobacter spp. and 1 log10 reduction in Escherichia coli in the groups fed diets containing ferric tyrosine compared to the control. 5. The MICs of ferric tyrosine was >400 mg/l for C. jejuni and >200 mg/l for E. coli and Salmonella enterica, indicating that ferric tyrosine did not exert antimicrobial activity. 6. The results showed that birds fed ferric tyrosine grew faster and consumed more feed compared to the control group, indicating potential benefits of faster time to reach slaughter weight with no significant reduction on feed efficiency. Moreover, ferric tyrosine significantly reduced caecal Campylobacter spp. and E. coli indicating potential as a non-antibiotic feed additive to lower the risk of infections transmitted through the food chain.
Collapse
Affiliation(s)
- D Currie
- a Roslin Nutrition Ltd ., East Lothian , Scotland
| | - M Green
- b School of Chemistry, Centre for Biomolecular Sciences , University of Nottingham , UK
| | - O A Dufailu
- b School of Chemistry, Centre for Biomolecular Sciences , University of Nottingham , UK
| | - P Matthaios
- b School of Chemistry, Centre for Biomolecular Sciences , University of Nottingham , UK
| | - P Soultanas
- b School of Chemistry, Centre for Biomolecular Sciences , University of Nottingham , UK
| | - E McCartney
- c Pen & Tec Consulting S.L.U ., Barcelona , Spain
| | - H Lester
- c Pen & Tec Consulting S.L.U ., Barcelona , Spain
| | | | | | - J Mahdavi
- b School of Chemistry, Centre for Biomolecular Sciences , University of Nottingham , UK
| |
Collapse
|
42
|
Abstract
Chickens are recognized as an imperative source of thermophilic Campylobacter spp., carrying this microorganism in high numbers in their intestinal tract. For a long time, Campylobacter jejuni has been considered as a commensal microorganism which colonizes its primary host rather than infecting it, in the absence of any obvious clinical signs. However, recent studies question this and argue for a deeper understanding of the host-bacteria interaction. Following oral uptake, it was demonstrated that C. jejuni interacts intimately with the gut epithelium and influences cellular functions of the host, with consequences on nutrient absorption. The immune reaction of the host which was revealed in some studies confirmed the infectious nature of C. jejuni. In agreement with this, an increased expression of pro-inflammatory cytokine genes was noticed. The ability to induce intestinal damage and to modulate the barrier function of the intestinal epithelia has further consequences on gut integrity, as it facilitates the paracellular passage of C. jejuni into the underlying tissues and it supports the translocation of luminal bacteria such as Escherichia coli to internal organs. This is associated with an alteration of the gut microbiota as infected birds have a significantly lower abundance of E. coli in different parts of the intestine. Some studies found that the gut microbiota influences the infection and translocation of C. jejuni in chickens in various ways. The effects of C. jejuni on the intestinal function of chickens already indicate a possible interference with bird performance and welfare, which was confirmed in some experimental studies. Furthermore, it could be demonstrated that a Campylobacter infection has an influence on the movement pattern of broiler flocks, supporting experimental studies. The intense interaction of C. jejuni with the chicken supports its role as an infectious agent instead of simply colonizing the gut. Most of the findings about the impact of Campylobacter on chickens are derived from studies using different Campylobacter isolates, a specific type of bird and varying experimental design. However, experimental studies demonstrate an influence of the aforementioned parameters on the outcome of a certain trial, arguing for improved standardization. This review summarizes the actual knowledge of the host-pathogen interaction of C. jejuni in chickens, emphasizing that there are still major gaps despite recently gained knowledge. Resolving the cascade from oral uptake to dissemination in the organism is crucial to fully elucidating the interaction of C. jejuni with the chicken host and to assess the clinical and economic implications with possible consequences on preventive interventions.
Collapse
Affiliation(s)
- Wageha A Awad
- a Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health , University of Veterinary Medicine , Vienna , Austria.,b Department of Animal Hygiene, Poultry and Environment, Faculty of Veterinary Medicine , South Valley University , Qena , Egypt
| | - Claudia Hess
- a Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health , University of Veterinary Medicine , Vienna , Austria
| | - Michael Hess
- a Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health , University of Veterinary Medicine , Vienna , Austria
| |
Collapse
|
43
|
Khattak F, Paschalis V, Green M, Houdijk JGM, Soultanas P, Mahdavi J. TYPLEX® Chelate, a novel feed additive, inhibits Campylobacter jejuni biofilm formation and cecal colonization in broiler chickens. Poult Sci 2018; 97:1391-1399. [PMID: 29462463 PMCID: PMC5914411 DOI: 10.3382/ps/pex413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/01/2017] [Indexed: 12/03/2022] Open
Abstract
Reducing Campylobacter spp. carriage in poultry is challenging, but essential to control this major cause of human bacterial gastroenteritis worldwide. Although much is known about the mechanisms and route of Campylobacter spp. colonization in poultry, the literature is scarce on antibiotic-free solutions to combat Campylobacter spp. colonization in poultry. In vitro and in vivo studies were conducted to investigate the role of TYPLEX® Chelate (ferric tyrosine), a novel feed additive, in inhibiting Campylobacter jejuni (C. jejuni) biofilm formation and reducing C. jejuni and Escherichia coli (E. coli) colonization in broiler chickens at market age. In an in vitro study, the inhibitory effect on C. jejuni biofilm formation using a plastic bead assay was investigated. The results demonstrated that TYPLEX® Chelate significantly reduces biofilm formation. In an in vivo study, 800 broilers (one d old) were randomly allocated to 4 dietary treatments in a randomized block design, each having 10 replicate pens with 20 birds per pen. At d 21, all birds were challenged with C. jejuni via seeded litter. At d 42, cecal samples were collected and tested for volatile fatty acid (VFA) concentrations and C. jejuni and E. coli counts. The results showed that TYPLEX® Chelate reduced the carriage of C. jejuni and E. coli in poultry by 2 and 1 log10 per gram cecal sample, respectively, and increased cecal VFA concentrations. These findings support TYPLEX® Chelate as a novel non-antibiotic feed additive that may help produce poultry with a lower public health risk of Campylobacteriosis.
Collapse
Affiliation(s)
- F Khattak
- Monogastric Science Research Center, Scotland Rural College (SRUC), Ayr, KA6 5HW, Scotland, UK
| | - V Paschalis
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK
| | - M Green
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK
| | - J G M Houdijk
- Monogastric Science Research Center, Scotland Rural College (SRUC), Ayr, KA6 5HW, Scotland, UK
| | - P Soultanas
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK
| | - J Mahdavi
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK
| |
Collapse
|
44
|
Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens. Toxins (Basel) 2017; 9:toxins9020060. [PMID: 28208612 PMCID: PMC5331439 DOI: 10.3390/toxins9020060] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens can utilize tight junction proteins as receptors for attachment and subsequent internalization, while others modify or destroy the tight junction proteins by different pathways and thereby provide a gateway to the underlying tissue. This review aims to deliver an overview of the tight junction structures and function, and its role in enteric bacterial pathogenesis with a special focus on chickens. A main conclusion will be that the molecular mechanisms used by enteric pathogens to disrupt epithelial barrier function in chickens needs a much better understanding, explicitly highlighted for Campylobacter jejuni, Salmonella enterica and Clostridium perfringens. This is a requirement in order to assist in discovering new strategies to avoid damages of the intestinal barrier or to minimize consequences from infections.
Collapse
|
45
|
Awad WA, Mann E, Dzieciol M, Hess C, Schmitz-Esser S, Wagner M, Hess M. Age-Related Differences in the Luminal and Mucosa-Associated Gut Microbiome of Broiler Chickens and Shifts Associated with Campylobacter jejuni Infection. Front Cell Infect Microbiol 2016; 6:154. [PMID: 27921008 PMCID: PMC5118433 DOI: 10.3389/fcimb.2016.00154] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/01/2016] [Indexed: 02/01/2023] Open
Abstract
Despite the importance of gut microbiota for broiler performance and health little is known about the composition of this ecosystem, its development and response towards bacterial infections. Therefore, the current study was conducted to address the composition and structure of the microbial community in broiler chickens in a longitudinal study from day 1 to day 28 of age in the gut content and on the mucosa. Additionally, the consequences of a Campylobacter (C.) jejuni infection on the microbial community were assessed. The composition of the gut microbiota was analyzed with 16S rRNA gene targeted Illumina MiSeq sequencing. Sequencing of 130 samples yielded 51,825,306 quality-controlled sequences, which clustered into 8285 operational taxonomic units (OTUs; 0.03 distance level) representing 24 phyla. Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Tenericutes were the main components of the gut microbiota, with Proteobacteria and Firmicutes being the most abundant phyla (between 95.0 and 99.7% of all sequences) at all gut sites. Microbial communities changed in an age-dependent manner. Whereas, young birds had more Proteobacteria, Firmicutes, and Tenericutes dominated in older birds (>14 days old). In addition, 28 day old birds had more diverse bacterial communities than young birds. Furthermore, numerous significant differences in microbial profiles between the mucosa and luminal content of the small and large intestine were detected, with some species being strongly associated with the mucosa whereas others remained within the luminal content of the gut. Following oral infection of 14 day old broiler chickens with 1 × 108 CFU of C. jejuni NCTC 12744, it was found that C. jejuni heavily colonized throughout the small and large intestine. Moreover, C. jejuni colonization was associated with an alteration of the gut microbiota with infected birds having a significantly lower abundance of Escherichia (E.) coli at different gut sites. On the contrary, the level of Clostridium spp. was higher in infected birds compared with birds from the negative controls. In conclusion, the obtained results demonstrate how the bacterial microbiome composition changed within the early life of broiler chickens in the gut lumen and on the mucosal surface. Furthermore, our findings confirmed that the Campylobacter carrier state in chicken is characterized by multiple changes in the intestinal ecology within the host.
Collapse
Affiliation(s)
- Wageha A Awad
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary MedicineVienna, Austria; Department of Animal Hygiene, Poultry and Environment, Faculty of Veterinary Medicine, South Valley UniversityQena, Egypt
| | - Evelyne Mann
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Austria
| | - Monika Dzieciol
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Austria
| | - Claudia Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Austria
| | - Stephan Schmitz-Esser
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Austria
| | - Martin Wagner
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Austria
| | - Michael Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|