1
|
Younas S, Bukhari DA, Bibi Z, Ullah A, Rehman A. Impact of multistrain probiotics on growth performance, immune response, and gut morphometry in broiler chicken Gallus gallus domesticus. Poult Sci 2025; 104:105026. [PMID: 40101512 PMCID: PMC11960641 DOI: 10.1016/j.psj.2025.105026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
The objective of this investigation was to examine the impact of four lab-isolated probiotics Enterococcus faecium (OR563785.1), Weissella confusa (OR563786.1), Weissella cibaria (OQ543569.1), Lactiplantibacillus plantarum (OQ689085.1) in 1:1:1:1 of CFU dilution as multistrain probiotics (MSP) regarding growth performance, haemato-biochemical indices and immune function in broilers. Ninety uniformly weighed broilers were divided into five groups at random with (n = 18/group). NC: negative control (basal diet); PC: commercial probiotic, G1: MSP supplemented, G2: MSP + vaccinated, G3: (vaccinated). Blood samples were collected at 42 days of age to assess immunological, haemato-biochemical parameters, and intestinal morphometry. Compared to the group of negative control, the broiler chicks' body weight was considerably (p < 0.05) higher in MSP-treated groups (G1, G2). This study found that, as compared to the NC, there was a substantial rise (p < 0.05) in RBC and hemoglobin in the probiotic-supplemented bird group. The results indicated that cholesterol and triglyceride remarkably decreased compared to control in probiotic-treated groups. There was no discernible change in the enzyme activity of ALT, AST, and ALP across the groups (p > 0.05). The findings indicated higher levels of immunoglobulin and interleukins in the MSP group than in the control (NC). The villus's height to crypt depth ratio was higher in the MSP groups (G1, G2) in contrast with the PC group (p < 0.05). The haemagglutination inhibition test (HI) revealed that the probiotic-treated groups had greater New Castle disease virus (NDV) antibodies than the other groups. The humoral response to live NDV vaccinations may be enhanced by multistrain probiotics. These results revealed MSP significantly affected growth performance, haematobiochemical parameters, and immunity through alteration in intestinal morphology which helps in nutrient uptake.
Collapse
Affiliation(s)
- Samina Younas
- Institute of Zoology, Government College University, Lahore, Pakistan
| | | | - Zuhra Bibi
- Institute of Zoology, Government College University, Lahore, Pakistan
| | - Arif Ullah
- Institute of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
2
|
El-Saadony MT, Salem HM, Attia MM, Yehia N, Abdelkader AH, Mawgod SA, Kamel NM, Alkafaas SS, Alsulami MN, Ahmed AE, Mohammed DM, Saad AM, Mosa WF, Elnesr SS, Farag MR, Alagawany M. Alternatives to antibiotics against coccidiosis for poultry production: the relationship between immunity and coccidiosis management – a comprehensive review. ANNALS OF ANIMAL SCIENCE 2025. [DOI: 10.2478/aoas-2025-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Abstract
Avian coccidiosis is a protozoan infection caused by numerous Eimeria parasitic species and mainly affects the bird’s gastrointestinal tract and results in a reduction of the bird ‘ability to absorb nutrients, slower growth, with a higher mortality rate. According to recent research, immune-based treatments, such as dietary immunomodulating feed additives and recombinant vaccines, can help the hosts protect themselves from intracellular parasites and reduce inflammatory reactions caused by parasites. Coccidiosis control in the post-antiparasitic stage requires thoroughly investigation of the intricate relationships between the parasites, host defense system, enteroendocrine system, and gut microbiome contributing to coccidian infections. To produce a vaccine, it is crucial to explore the defense mechanism of the intestine’s immune machinery and to identify many effector molecules that act against intracellular parasites. Due to the massive usage of chemical anticoccidial drugs, coccidiosis developed resistant against most commonly used anticoccidials; therefore, numerous researches focused on the usage of safe natural anticoccidials such as probiotics, prebiotics, organic acids, and essential oils to counteract such resistance problem. This review describes how host immunity responds to coccidial infection in chickens and the use of some nonantiparasitic safe natural alternative controls to counter the disease. It would throw the light on the possibility of developing effective therapies against Eimeria to alleviate the detrimental effects of avian coccidiosis.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
- Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine , Badr University in Cairo (BUC) , Badr City, Cairo, 11829 , Egypt
| | - Marwa M. Attia
- Department of Parasitology, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production , Animal Health Research Institute, Agriculture Research Center , Dokki, Giza, 12618 , Egypt
| | - Ahmed H. Abdelkader
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Sara Abdel Mawgod
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Nesma Mohamed Kamel
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry , Department of Chemistry, Faculty of Science, Tanta University , , Egypt
| | - Muslimah N. Alsulami
- Department of Biology, College of Science , University of Jeddah , Jeddah , , Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science , King Khalid University , Abha , , Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department , National Research Centre , Dokki, Giza, 12622 , Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Walid F.A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture , Saba Basha, Alexandria University , Alexandria , , Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture , Fayoum University , Fayoum , Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty , Zagazig University , Zagazig , , Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| |
Collapse
|
3
|
Dinalli VP, Costa MC, Venâncio EJ, Filho JAB, Bessegatto JA, Holkem AT, Alfieri AA, da Silva CA, Oba A. Impact of Chlorella vulgaris and probiotic supplementation on performance, immunity and intestinal microbiota of broiler chickens. PLoS One 2025; 20:e0313736. [PMID: 39869566 PMCID: PMC11771937 DOI: 10.1371/journal.pone.0313736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/31/2024] [Indexed: 01/29/2025] Open
Abstract
Chlorella vulgaris has antioxidant, antimicrobial, and anti-inflammatory properties, as well as the probiotic that is important for keeping the intestinal microbiota balanced. The objective was to test the impact of supplementation with microalgae and/or probiotics on broiler chickens' performance, immunity, and intestinal microbiota. The experimental design was in randomized blocks in a 4x2 factorial scheme, with four levels of inclusion of C. vulgaris (0; 0.25; 0.50 and 1%) associated or not with a commercial probiotic with five replications of 26 chickens per experimental unit. The results showed that probiotics improved feed conversion. Probiotics increased the productivity index only at 0.25% C. vulgaris supplementation. There was a reduction in spleen weight at 42 days of age in chickens fed with probiotics, but the different treatments did not alter serum antibodies. Sampling age had a significant impact on richness addressed by the number of observed genera and diversity addressed by the Shannon index. The most abundant phylum in the chicken intestinal tract was Firmicutes followed by Bacteroidetes and Proteobacteria. Bifidobacterium spp. was found in animals receiving 1% microalgae and probiotics on day 42, suggesting that this genus has benefited from microalgae supplementation. It is concluded that the probiotic and C. vulgaris have the potential to improve performance without causing major changes in the immunity and cecal microbiota.
Collapse
Affiliation(s)
- Verena Pereira Dinalli
- Department of Animal Science, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Marcio Carvalho Costa
- Department of Biomedical Sciences, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Emerson José Venâncio
- Department of Pathological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | | | - José Antônio Bessegatto
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Augusto Tasch Holkem
- Department of Biomedical Sciences, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Caio Abercio da Silva
- Department of Animal Science, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Alexandre Oba
- Department of Animal Science, State University of Londrina (UEL), Londrina, Paraná, Brazil
| |
Collapse
|
4
|
Qiao Y, Feng Q, Wang Q, Zhao Q, Zhu S, Zhao F, Wang Z, Zhang R, Wang J, Yu Y, Han H, Dong H. Alteration in the Gut Microbiota of Chickens Resistant to Eimeria tenella Infection. Microorganisms 2024; 12:2218. [PMID: 39597606 PMCID: PMC11596190 DOI: 10.3390/microorganisms12112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Avian coccidiosis, caused by several species of Eimeria, is a widespread and economically important poultry disease that inflicts severe losses in the poultry industry. Understanding the interplay between Eimeria and gut microbiota is critical for controlling coccidiosis and developing innovative treatments to ensure good poultry health. In the present study, chickens were immunized six times with a low dose of Eimeria tenella, resulting in complete immunity against Eimeria infection. The results of fecal microbiota transplantation showed that the gut microbiota of immunized chickens induced a certain degree of resistance to coccidial infection. To investigate the types of intestinal microbiota involved in the development of resistance to Eimeria, the intestinal contents and fecal samples from both immunized and unimmunized groups were collected for 16S rRNA gene sequencing. The results showed that, at the genus level, the abundance of the Eubacterium coprostanoligenes group, Erysipelatoclostridium, Shuttleworthia, and Colidextribacter was significantly increased in the intestinal content of immunized chickens, whereas the abundance of Eisenbergiella was significantly decreased. In fecal samples, the abundance of Clostridiaceae and Muribaculaceae significantly increased, whereas that of Bacillales significantly decreased. These findings will help to elucidate the interactions between E. tenella and the gut microbiota of chickens, providing a basis for isolating E. tenella-resistant strains from the gut microbiome and developing new vaccines against coccidiosis.
Collapse
Affiliation(s)
- Yu Qiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Qian Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Qingjie Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Fanghe Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Zhongchuang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ruiting Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinwen Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Yu Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| |
Collapse
|
5
|
Li S, Chen P, Li Q, Wang X, Peng J, Xu P, Ding H, Zhou Z, Shi D, Xiao Y. Bacillus amyloliquefaciens TL promotes gut health of broilers by the contribution of bacterial extracellular polysaccharides through its anti-inflammatory potential. Front Immunol 2024; 15:1455996. [PMID: 39376562 PMCID: PMC11456473 DOI: 10.3389/fimmu.2024.1455996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
The focal point of probiotic efficacy and a crucial factor influencing poultry cultivation lies in the level of intestinal inflammation. In conventional farming processes, the reduction of intestinal inflammation generally proves advantageous for poultry growth. This study investigated the impact of Bacillus amyloliquefaciens TL (B.A.-TL) on inflammatory factor expression at both tissue and cellular levels, alongside an exploration of main active secondary metabolites. The results demonstrated that broiler feeding with a basal diet containing 4 × 109 CFU/kg B.A.-TL markedly enhanced chicken growth performance, concomitant with a significant decrease in the expression of genes encoding inflammatory cytokines (e.g., CCL4, CCR5, XCL1, IL-1β, IL-6, IL-8, LITAF, and LYZ) in jejunum and ileum tissues. The extracellular polysaccharides of B.A.-TL (EPS-TL) exhibited notable suppression of elevated inflammatory cytokine expression induced by Escherichia coli O55 lipopolysaccharides (LPS) in chicken macrophage-like cells (HD11) and primary chicken embryonic small intestinal epithelial cells (PCIECs). Moreover, EPS-TL demonstrated inhibitory effect on NF-κB signaling pathway activation. These findings suggested that the metabolic product of B.A.-TL (i.e., EPS-TL) could partly mitigate the enhanced expression of inflammatory factors induced by LPS stimulation, indicating its potential as a key component contributing to the anti-inflammatory effects of B.A.-TL.
Collapse
Affiliation(s)
- Shijie Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Pinpin Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Qiuyuan Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jintao Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Ping Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Ding
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Deshi Shi
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Selim S, Abdel-Megeid NS, Alhotan RA, Ebrahim A, Hussein E. Nutraceuticals vs. antibiotic growth promoters: differential impacts on performance, meat quality, blood lipids, cecal microbiota, and organ histomorphology of broiler chicken. Poult Sci 2024; 103:103971. [PMID: 38941788 PMCID: PMC11260365 DOI: 10.1016/j.psj.2024.103971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/30/2024] Open
Abstract
The main goal of this study was to evaluate the effect of nutraceuticals vs. in-feed antibiotics on performance, blood lipids, antioxidant capacity, cecal microbiota, and organ histomorphology of broiler chickens. A total of 320 one-day-old male broiler chickens were distributed into 5 treatment groups with 8 replicates each. The control group was fed on a basal diet without any additives (NC); the antibiotic group was fed on a basal diet supplemented with 100 mg kg-1 avilamycin (PC); the algal group was fed on a basal diet supplemented with a mixture of Spirulina platensis and Chlorella vulgaris (1.5 g + 1.5 g/kg feed) (SP+CV); the essential oil group was fed with a basal diet containing 300 mg/kg feed rosemary oil (REO); and the probiotics group (a mixture of 1 × 1011 CFU/g Bacillus licheniformis, 1 × 1011 CFU/g Enterococcus facieum, 1 × 1010 CFU/g Lactobacillus acidophilus, and 2 × 108 CFU /g Saccharomyces cerevisiae) was fed with a basal diet supplemented with 0.05% probiotics (PRO). The experiment lasted for 35 d. A beneficial effect of SP+CV and PRO (P < 0.01) was noticed on final body weight, body weight gain, feed conversion ratio, and breast yield. The dietary supplementation with SP+CV, REO, and PRO increased (P < 0.001) broilers' cecal lactic acid bacteria count compared to the control. Lower cecal Clostridium perfringens and Coliform counts (P < 0.001) were noticed in chickens fed the PC and supplemental diets. Malondialdehyde (MDA) concentration was decreased, while glutathione peroxidase (GPx), superoxide dismutase, and catalase enzymes were increased in the breast and thigh meat (P < 0.001) of broiler chickens fed SP+CV, REO, and PRO diets. Dietary SP+CV, REO, and PRO supplementation decreased (P < 0.001) serum total lipids, cholesterol, triglycerides, low-density lipoprotein, and MDA, but increased serum high-density lipoprotein and GPx compared to PC and NC. No pathological lesions were noticed in the liver, kidney, or breast muscle among broilers. The SP+CV, REO, and PRO groups had greater (P < 0.001) intestinal villi height and crypt depth while lower goblet cell densities (P < 0.01) than the control. The present findings suggest that PRO and SP+CV, followed by REO could be suitable alternatives to in-feed antibiotics for enhancing the performance, health, and meat quality of broiler chickens.
Collapse
Affiliation(s)
- Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom 32514, Egypt.
| | - Nazema S Abdel-Megeid
- Department of Cytology and Histology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Rashed A Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alia Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Eman Hussein
- Department of Poultry and Fish Production, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| |
Collapse
|
7
|
Magalhães J, Cappellozza BI, Dos Santos TC, Inoe F, Pessoa Araújo Júnior J, Kurissio JK, Queiroz O, Joergensen JN, Cooke RF, Vasconcelos CGC, Vasconcelos JLM. Effects of supplementing direct-fed microbials on health and growth of preweaning Gyr × Holstein dairy calves. J Dairy Sci 2024; 107:6117-6130. [PMID: 38608942 DOI: 10.3168/jds.2023-24434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
This study aimed to evaluate the effects of direct-fed microbials (DFM) on health and growth responses of preweaning Bos indicus × Bos taurus (Gyr × Holstein) crossbred calves. Ninety newborn heifer calves (initial BW of 35 ± 4.0 kg) were used. At birth, calves were ranked by initial BW and parity of the dam and assigned to: (1) whole milk without DFM supplementation (CON; n = 30), (2) whole milk with the addition of 1.0 g/calf per day of a Bacillus-based DFM (BAC; n = 30), or (3) whole milk with the addition of 1.0 g/calf per day of BAC and 1.2 g/calf per day of Enterococcus faecium 669 (MIX; n = 30). Milk was fed individually during the study (77 d), and the BAC and MIX treatments were offered daily throughout the 77-d preweaning period. All calves were offered a starter supplement and corn silage starting on d 1 and 60 of age, respectively. Milk and starter supplement intake were evaluated daily, and BW was recorded on d 0 and at weaning (d 77). Diarrhea and pneumonia were assessed daily, and fecal samples were collected on d 0, 7, 14, 21, and at weaning (d 77) for assessment of the presence of bacterial and protozoal pathogens via qPCR. All data were analyzed using SAS (v. 9.4) with calf as the experimental unit and using single-df orthogonal contrasts (BAC + MIX vs. CON; BAC vs. MIX). Daily feeding of DFM, regardless of type, improved weaning BW. Odds ratio for occurrence of pneumonia was lower for DFM-supplemented calves, but its occurrence did not differ between BAC and MIX calves. No Salmonella spp. or Escherichia coli F41 were detected in any of the calves. The proportion of calves positive for E. coli F17 was greater for DFM calves on d 7 (92% and 96% vs. 81% for BAC, MIX, and CON, respectively), on d 21 (13% and 26% vs. 7% for BAC, MIX, and CON, respectively), and at weaning (48% and 35% vs. 22% for BAC, MIX, and CON, respectively). For Clostridium difficile, more DFM calves were positive on d 7 (65% and 30% vs. 35% for BAC, MIX, and CON, respectively) and 14 (20% and 28% vs. 7% for BAC, MIX, and CON, respectively), but proportion of positive calves was also greater for BAC versus MIX on d 7. More CON calves were positive for Clostridium perfringens on d 14 (14% vs. 3% and 8% for CON, BAC, and MIX, respectively) compared with DFM-fed calves. Incidence of calves positive for C. perfringens was greater in BAC than MIX on d 7 (50% vs. 18%), and greater for MIX than BAC at weaning (9% vs. 0%). For protozoa occurrence, a lower proportion of DFM calves were positive for Cryptosporidium spp. on d 7 (58% and 48% vs. 76% for BAC, MIX, and CON, respectively), but opposite results were observed on d 21 for Cryptosporidium spp. (3% and 11% vs. 0% for BAC, MIX, and CON, respectively) and Eimeria spp. on d 14 (7% and 8% vs. 0% for BAC, MIX, and CON, respectively) and 21 (50% and 59% vs. 38% for BAC, MIX, and CON, respectively). In summary, DFM feeding alleviated the occurrence of pneumonia and improved growth rates, while also modulating the prevalence of bacteria and protozoa in preweaning Gyr × Holstein calves.
Collapse
Affiliation(s)
- Julia Magalhães
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18618-000, Brazil
| | - Bruno I Cappellozza
- Commercial Development, Animal & Plant Health and Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Taynara C Dos Santos
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18618-000, Brazil
| | - Fernanda Inoe
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18618-000, Brazil
| | - João Pessoa Araújo Júnior
- Institute of Biotechnology (IBTEC), School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil
| | - Jacqueline K Kurissio
- Institute of Biotechnology (IBTEC), School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil
| | - Oscar Queiroz
- Commercial Development, Animal & Plant Health and Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Jens N Joergensen
- Commercial Development, Animal & Plant Health and Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | | | - José Luiz M Vasconcelos
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18618-000, Brazil.
| |
Collapse
|
8
|
Cao L, Sun F, Ren Q, Jiang Z, Chen J, Li Y, Wang L. Effects of Mink-Origin Enterococcus faecium on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Microbiota of Growing Male Minks. Animals (Basel) 2024; 14:2120. [PMID: 39061581 PMCID: PMC11274025 DOI: 10.3390/ani14142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The purpose of this experiment was to explore the effects of dietary Enterococcus faecium (EF) on the growth performance, antioxidant capacity, immunity, and intestinal microbiota of growing male minks. A total of 60 male Regal White minks at 12 weeks of age were randomly assigned to two groups, each with 15 replicates of two minks per replicate. The minks in two groups were fed the basal diets and the basal diets with viable Enterococcus faecium (more than 107 cfu/kg of diet), respectively. Compared with the minks in control, Enterococcus faecium minks had heavier body weight (BW) at week 4 and week 8 of the study (p < 0.05), greater average daily gain (ADG), and a lower feed/gain ratio (F/G) of male minks during the initial 4 weeks and the entire 8-week study period (p < 0.05). Furthermore, Enterococcus faecium increased the apparent digestibility of crude protein (CP) and dry matter (DM) compared to the control (p < 0.05). Moreover, Enterococcus faecium enhanced the serum superoxide dismutase (SOD) activity and decreased the malondialdehyde (MDA) contents (p < 0.05). The results also confirmed that Enterococcus faecium increased the levels of serum immunoglobulin A (IgA), immunoglobulin G (IgG), and the concentrations of secretory immunoglobulin A (SIgA) in the jejunal mucosa while decreasing the interleukin-8 (IL-8) and interleukin-1β (IL-1β) levels in the jejunal mucosa (p < 0.05). Intestinal microbiota analysis revealed that Enterococcus faecium increased the species numbers at the OUT level. Compared with the control, Enterococcus faecium had significant effects on the relative abundance of Paraclostridium, Brevinema, and Comamonas (p < 0.05). The results showed that Enterococcus faecium could improve the growth performance, increase the antioxidant capacity, improve the immunity of growing male minks, and also modulate the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lihua Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (L.C.); (F.S.); (Q.R.); (Z.J.); (J.C.); (Y.L.)
| |
Collapse
|
9
|
Zhang Y, Liu Y, Jiao S, Wang Y, Sa R, Zhao F, Xie J. Short-term supplementation with uncoated and encapsulated Enterococcus faecium affected growth performance, gut microbiome and intestinal barrier integrity in broiler chickens. Poult Sci 2024; 103:103808. [PMID: 38761463 PMCID: PMC11133978 DOI: 10.1016/j.psj.2024.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024] Open
Abstract
Enterococcus faecium (E. faecium) is an alternative to antibiotics, while the probiotic effect of short-term application in mature broiler chickens remains unclear. In the current study, 48 Arbor Acres male broilers were chosen to investigate the effects of E. faecium on growth performance, the gut microbiome and intestinal health during the finishing period. Forty-eight birds were randomly allocated to 4 treatment groups that were fed a corn-soybean meal basal diet (Con), a basal diet supplemented with 1 g/kg amoxicillin (ABX), 5×106 CFU/g encapsulated E. faecium (cEF), or 5×106 CFU/g uncoated E. faecium (EF) from d 33 to 42. The results showed that 10 d of antibiotic treatment decreased the growth performance of the broilers (P < 0.05). The feed conversion ratio of the cEF and EF groups were lower than that of the Con group by 0.13 and 0.07, respectively (P > 0.05). The abundance of viable ileal and cecal E. faecium in the cEF group was greater than that in the EF group (P < 0.05), and both groups were markedly greater than those in the Con and ABX groups (P < 0.05). The ABX treatment decreased the Shannon and Chao1 indices of the cecal microbiota, while the dietary E. faecium treatment resulted in significant differences in the β diversity of the ileal and cecal microbiota (P < 0.05). Mantel correlation revealed that the ileal microbiota at the genus level was significantly correlated with the growth performance of broilers, with Lactobacillus, Bacillus and Escherichia-Shigella showing positive and strong correlations (P < 0.05). In the ileum, the crypt depth was lower in the cEF group than in the Con group, but the villi height-to-crypt depth ratio was greater in the cEF group than in the other groups (P = 0.037). However, the expression of the ZO-2 and Occludin genes was downregulated in the E. faecium-fed birds (P < 0.05). In the cecum, the acetate, butyrate and total SCFA levels were greater in the EF group (P < 0.05), while the propionate, isobutyrate and isovalerate levels were lower in the ABX group (P < 0.05). In summary, 10 d of dietary supplementation with E. faecium markedly increased colonization in mature broilers and potentially improved growth performance by modulating the ileal microbiota. Encapsulation techniques could enable a slow release of E. faecium in the intestine, thereby reducing the negative impacts of rapid expansion of E. faecium on the intestinal epithelium.
Collapse
Affiliation(s)
- Ying Zhang
- The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Youyou Liu
- The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Songjun Jiao
- The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuming Wang
- The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Renna Sa
- The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Zhao
- The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Xie
- The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Kerek Á, Román IL, Szabó Á, Papp M, Bányai K, Kardos G, Kaszab E, Bali K, Makrai L, Jerzsele Á. Comprehensive Metagenomic Analysis of Veterinary Probiotics in Broiler Chickens. Animals (Basel) 2024; 14:1927. [PMID: 38998039 PMCID: PMC11240415 DOI: 10.3390/ani14131927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Probiotics are widely used in broiler chickens to support the gut microbiome, gut health, and to reduce the amount of antibiotics used. Despite their benefits, there is concern over their ability to carry and spread antimicrobial resistance genes (ARGs), posing a significant public health risk. This study utilized next-generation sequencing to investigate ARGs in probiotics approved for poultry, focusing on their potential to be transferred via mobile genetic elements such as plasmids and phages. We examined the gut microbiome and resistome changes in 60 broiler chickens over their rearing period, correlating these changes with different probiotic treatments. Specific resistance mechanisms against critically important antibiotics were identified, including genes related to fluoroquinolone resistance and peptide antibiotic resistance. We also found genes with significant relevance to public health (aadK, AAC(6')-Ii) and multiple drug-resistance genes (vmlR, ykkC, ykkD, msrC, clbA, eatAv). Only one phage-encoded gene (dfrA43) was detected, with no evidence of plasmid or mobile genetic element transmission. Additionally, metagenomic analysis of fecal samples showed no significant changes corresponding to time or diet across groups. Our findings highlight the potential risks associated with the use of probiotics in poultry, particularly regarding the carriage of ARGs. It is crucial to conduct further research into the molecular genetics of probiotics to develop strategies that mitigate the risk of resistance gene transfer in agriculture, ensuring the safe and effective use of probiotics in animal husbandry.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
| | - István László Román
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
| | - Márton Papp
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- Centre for Bioinformatics, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Krisztián Bányai
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Gábor Kardos
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- National Public Health Center, Albert Flórián út 2-6, H-1097 Budapest, Hungary
- Department of Gerontology, Faculty of Health Sciences, University of Debrecen, Sóstói út 2-4, H-4400 Nyíregyháza, Hungary
| | - Eszter Kaszab
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Krisztina Bali
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - László Makrai
- Autovakcina Kft., Szabadság sgrt. 57, H-1171 Budapest, Hungary;
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
| |
Collapse
|
11
|
Wang W, Dang G, Hao W, Li A, Zhang H, Guan S, Ma T. Dietary Supplementation of Compound Probiotics Improves Intestinal Health by Modulated Microbiota and Its SCFA Products as Alternatives to In-Feed Antibiotics. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10314-3. [PMID: 38904897 DOI: 10.1007/s12602-024-10314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Enterococcus faecium, Bifidobacterium, and Pediococcus acidilactici, as intestinal probiotics, have been proved to play a positive role in treating intestinal diseases, promoting growth and immune regulation in poultry. The aim of this study was to evaluate the effect of compound probiotics on growth performance, digestive enzyme activity, intestinal microbiome characteristics, as well as intestinal morphology in broiler chickens. Treatment diets with chlortetracycline and compound probiotics were used for two groups of sixty broilers each throughout the feeding process. Another group was fed the basal diet. The BW (2589.41 ± 13.10 g vs 2422.50 ± 19.08 g) and ADG (60.57 ± 0.31 g vs 56.60 ± 0.45 g) of the compound probiotics added feed treatment group were significantly increased, and the FCR was significantly decreased (P < 0.05). The supplementation of a compound probiotics enhanced the abundance of beneficial bacteria such as Lactobacillus, Faecalibacterium, and norank_f_norank_o_Clostridia_vadinBB60_group (P < 0.05), and modulated the cecal microbiota structure, thereby promoting the production of short-chain fatty acids (SCFAs) and elevating their levels (P < 0.05), particularly propionic and butyric acids. Furthermore, the administration of the compound probiotics supplements significantly enhanced the villi height, V/C ratio, and reduced the crypt depth (P < 0.05). In addition, the activity of digestive enzymes in the duodenum and jejunum was elevated (P < 0.05). Collectively, the selected compound probiotics supplemented in this experiment have demonstrated efficacy, warranting further application in practical production settings as a viable alternative to antibiotics, thereby facilitating efficient production and promoting gastrointestinal health.
Collapse
Affiliation(s)
- Wenxing Wang
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guoqi Dang
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Hao
- Department of Animal Nutrition and Health, DSM (China) Co., Ltd, Shanghai, 201203, China
| | - Anping Li
- Department of Animal Nutrition and Health, DSM (China) Co., Ltd, Shanghai, 201203, China
| | - Hongfu Zhang
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shu Guan
- Department of Animal Nutrition and Health, DSM Singapore Industrial Pte. Ltd, Singapore, 117440, Singapore
| | - Teng Ma
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
12
|
Ahmad S, Leng Q, Hou G, Liang Y, Li Y, Qu Y. Biological Traits and Comprehensive Genomic Analysis of Novel Enterococcus faecalis Bacteriophage EFP6. Microorganisms 2024; 12:1202. [PMID: 38930584 PMCID: PMC11206139 DOI: 10.3390/microorganisms12061202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Enterococcus faecalis is a prevalent opportunistic pathogen associated with chicken embryonic and neonatal chick mortality, posing a significant challenge in poultry farming. In the current study, E. faecalis strain EF6, isolated from a recent hatchery outbreak, served as the host bacterium for the isolation of a novel phage EFP6, capable of lysing E. faecalis. Transmission electron microscopy revealed a hexagonal head and a short tail, classifying EFP6 as a member of the Autographiviridae family. EFP6 showed sensitivity to ultraviolet radiation and resistance to chloroform. The lytic cycle duration of EFP6 was determined to be 50 min, highlighting its efficacy in host eradication. With an optimal multiplicity of infection of 0.001, EFP6 exhibited a narrow lysis spectrum and strong specificity towards host strains. Additionally, EFP6 demonstrated optimal growth conditions at 40 °C and pH 8.0. Whole genome sequencing unveiled a genome length of 18,147 bp, characterized by a GC concentration of 33.21% and comprising 25 open reading frames. Comparative genomic assessment underscored its collinearity with related phages, notably devoid of lysogenic genes, thus ensuring genetic stability. This in-depth characterization forms the basis for understanding the biological attributes of EFP6 and its potential utilization in phage therapy, offering promising prospects for mitigating E. faecalis-associated poultry infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Yonggang Qu
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.A.); (Q.L.); (G.H.); (Y.L.); (Y.L.)
| |
Collapse
|
13
|
Yang C, Wang S, Li Q, Zhang R, Xu Y, Feng J. Effects of Probiotic Lactiplantibacillus plantarum HJLP-1 on Growth Performance, Selected Antioxidant Capacity, Immune Function Indices in the Serum, and Cecal Microbiota in Broiler Chicken. Animals (Basel) 2024; 14:668. [PMID: 38473053 DOI: 10.3390/ani14050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 03/14/2024] Open
Abstract
This research study aimed to investigate the effects of Lactiplantibacillus plantarum (L. plantarum) on growth performance, oxidation resistance, immunity, and cecal microbiota in broilers. This work classed three hundred and sixty 1-day-old male broilers into three groups randomly, including a control group (CON, basal diet) and antibiotic (ANT, 75 mg kg-1 chlortetracycline added into basal diet) and probiotic groups (LP, 5 × 108 CFU kg-1Lactiplantibacillus plantarum HJLP-1 contained within basal diet). Animals were then fed for 42 days, and each group comprised eight replicates with 15 broilers. Compared with CON, L. plantarum supplementation significantly improved the average daily weight gain (AWDG) (p < 0.05) while reducing the feed-gain ratio over the entire supplemental period (p < 0.05). Birds fed L. plantarum had markedly lower serum ammonia and xanthine oxidase levels (p < 0.05) than those in the ANT and CON groups. Significant improvements (p < 0.05) in superoxide dismutase, catalase, and serum IgM and IgY contents in broilers fed L. plantarum were also observed when compared with those in the CON and ANT groups. Both L. plantarum and antibiotics decreased pro-inflammatory factor IL-1β levels significantly (p < 0.05), while only L. plantarum promoted anti-inflammatory factor IL-10 levels in the serum (p < 0.05) compared with CON. L. plantarum (p < 0.05) increased acetic acid and butyric acid concentrations in cecal contents when compared to those in CON and ANT. Among the differences revealed via 16S rRNA analysis, L. plantarum markedly improved the community richness of the cecal microbiota. At the genus level, the butyric acid-producing bacteria Ruminococcus and Lachnospiraceae were found in higher relative abundance in samples of L. plantarum-treated birds. In conclusion, dietary L. plantarum supplementation promoted the growth and health of broilers, likely by inducing a shift in broiler gut microbiota toward short-chain fatty acid (SCFA)-producing bacteria. Therefore, L. plantarum has potential as an alternative to antibiotics in poultry breeding.
Collapse
Affiliation(s)
- Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Shuting Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Jie Feng
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Shahbaz F, Muccee F, Shahab A, Safi SZ, Alomar SY, Qadeer A. Isolation and in vitro assessment of chicken gut microbes for probiotic potential. Front Microbiol 2024; 15:1278439. [PMID: 38348194 PMCID: PMC10860760 DOI: 10.3389/fmicb.2024.1278439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Poultry production occupies an important place in the economy of any country. High broiler production in recent years has badly affected its profitability due to bad feed quality, excessive use of chemotherapeutic agents, emergence of diverse pathogens, and the deficiencies in management practices during rearing cycle. Microbiological improvement of the meat quality using potential probiotics can be beneficial for broiler farming. Present study was initiated to isolate chicken gastrointestinal tract (GIT) bacteria with probiotic potential. To isolate probiotics from chicken gut, alimentary canal of chickens of known sizes and ages was suspended in ringers soln. Under shaking conditions for overnight followed by serial dilutions of ringers soln. Bacterial isolates were analyzed via growth curve analysis, biochemical testing using RapID™ NF Plus Panel kit, molecular characterization, antimicrobial activity assay, antibiotic sensitivity assay, GIT adherence assay, bile salt and gastric acid resistant assay, and cholesterol assimilation assay. Four bacteria isolated in present study were identified as Limosilactobacillus antri strain PUPro1, Lactobacillus delbrueckii strain PUPro2, Lacticaseibacillus casei strain PUPro3, and Ligilactobacillus salivarius strain PUPro4. L. delbrueckii strain PUPro2 grew extremely fast. All isolates exhibited exceptional resistance to increasing concentrations of NaCl and bile salts with value of p >0.5. L. delbrueckii strain PUPro2 adhered to chicken ileum epithelial cells and demonstrated the highest viable counts of 320 colony forming units (CFUs). Antagonistic action was found in all isolates against P. aeruginosa, B. subtilis, B. proteus, and S. aureus, with value of p >0.5. Antibiotic susceptibility testing showed sensitivity to all the antibiotics used. Cholesterol assimilation was detected in all bacteria, with values ranging from 216.12 to 192.2 mg/dL. All isolates exhibited γ-hemolysis. In future, these bacteria might be tested for their impact on broilers meat quality and growth and can be recommended for their use as supplements for broilers diet with positive impact on poultry production.
Collapse
Affiliation(s)
- Fatima Shahbaz
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Fatima Muccee
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Aansa Shahab
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Sher Zaman Safi
- Faculty of Medicine, MAHSA University, Kuala Lumpur, Malaysia
| | - Suliman Yousef Alomar
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
15
|
Song B, Sun P, Kong L, Xiao C, Pan X, Song Z. The improvement of immunity and activation of TLR2/NF-κB signaling pathway by Romboutsia ilealis in broilers. J Anim Sci 2024; 102:skae286. [PMID: 39305205 PMCID: PMC11544627 DOI: 10.1093/jas/skae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 11/09/2024] Open
Abstract
This study was conducted to investigate the effects of Romboutsia ilealis on the immune function of broilers and the underlying mechanisms. A total of 48 one-day-old Arbor Acres broilers were allocated to 4 groups as follows: broilers treated daily with 1 mL live R. ilealis in general anaerobic medium broth media (0, 1 × 104, 1 × 106, and 1 × 108 CFU/mL) from days 1 to 7. Samples were collected on days 8 and 14. The results showed that R. ilealis had no negative effect on the body weight of broilers (P > 0.05). R. ilealis significantly increased the levels of lysozyme, IFN-γ, IFN-γ/IL-4, and IgG in the serum (P < 0.05). R. ilealis significantly increased the levels of IL-4, IFN-γ, sIgA, lysozyme, and iNOS in the ileal mucosa (P < 0.05). R. ilealis significantly increased the mRNA levels of TLR2, TLR4, NF-κB, IL-1β, TNF-α, IFN-γ, IgA, pIgR, iNOS, and MHC-II in the ileum (P < 0.05). R. ilealis significantly increased the relative abundance of Enterococcus and Paracoccus in the jejunum and ileum, ileal Candidatus Arthromitus, and cecal Romboutsia and Intestinimonas (P < 0.05). Correlation analysis showed that Enterococcus, Paracoccus, Romboutsia, and Intestinimonas were significantly positively correlated with humoral immune function (P < 0.05). In conclusion, R. ilealis boosted the immune system, activated the intestinal TLR2/NF-κB signaling pathway, and improved the gut microbiota in broilers.
Collapse
Affiliation(s)
- Bochen Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Sun
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Linglian Kong
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining, Shandong, China
| | - Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
16
|
Daneshmand A, Kumar A, Kheravii SK, Pasquali GAM, Wu SB. Xylanase and beta-glucanase improve performance parameters and footpad dermatitis and modulate intestinal microbiota in broilers under an Eimeria challenge. Poult Sci 2023; 102:103055. [PMID: 37734358 PMCID: PMC10514458 DOI: 10.1016/j.psj.2023.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Coccidiosis is an enteric disease of poultry worldwide that compromises gut health and growth performance. The current research investigated the effects of 2 doses of a multienzyme preparation on broilers' performance, gut health, and footpad dermatitis (FPD) under an Eimeria challenge. A total of 512 mixed-sex day-old chicks (Cobb 500) were randomly allocated to 4 treatments of 8 replicates. Treatments were: 1) nonchallenged control (NC); 2) NC + Eimeria challenge (CC); 3) CC + recommended level of xylanase and glucanase (XG, 100 g/t feed [on top]); 4) CC + double XG (2XG, 200 g/t feed). Eimeria spp. vaccine strains were gavaged on d 9 to induce coccidiosis in chickens. Performance parameters were evaluated during starter, grower, and finisher phases, and 4 birds per pen were euthanized on d 16 for sampling, FPD was scored on d 35, and litter moisture was analyzed on d 17 and 35. The data were analyzed using 1-way ANOVA with Tukey's test to separate means, and Kruskal-Wallis test was used for non-normally distributed parameters. The results showed that the Eimeria challenge was successful based on reduced weight gain and feed intake during grower phase, and higher FITC-d concentration, lesion score (female), and oocyst counts (d 14) in CC group compared to N.C. group, while XG and 2XG increased (P < 0.001) weight gain and improved FCR compared to CC and NC groups during finisher phase. The addition of X.G. and 2XG decreased litter moisture (P = 0.003) and FPD (P < 0.001) in challenged broilers compared to the N.C. group (d 35). Supplementing XG and 2XG reestablished the population of Lactobacillus in the cecum of challenged birds to an intermediate level between the NC and CC groups (P > 0.05). The inclusion of XG tended to increase the expression of Junctional adhesion molecule 2 (JAM2), which was not different from CC and NC groups (P > 0.05). In conclusion, the combination of xylanase and glucanase (Natugrain TS) improved the performance and modulated jejunal microbiota of broilers under mild Eimeria challenge.
Collapse
Affiliation(s)
- Ali Daneshmand
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Alip Kumar
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Sarbast K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | | | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
17
|
Suvorov A, Zhao S, Leontieva G, Alekhina G, Yang J, Tsapieva A, Karaseva A, Smelova V, Guo D, Chen L. Evaluation of the Efficacy of Enterococcus faecium L3 as a Feed Probiotic Additive in Chicken. Probiotics Antimicrob Proteins 2023; 15:1169-1179. [PMID: 35904731 DOI: 10.1007/s12602-022-09970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
The study was devoted to the comparison of the probiotic effect of enterococcal Enterococcus faecium L3 to the antibiotic enramycin as a chicken feed additive. Two hundred and sixteen chickens were divided into three groups and tested by different parameters including weight gain, food consumption, blood biochemistry, immunology, and caecal microbiome at two checkpoints, 21 and 39 days after birth. By the end of the experiment, a group of chickens getting probiotic demonstrated weight gain of more than 100 g at the average relative to the control group with no additive in animal feed (P < 0.05). Blood serum biochemistry showed a significant increase in HDL level (P < 0.05) relative to the control group. The 16S RNA sequencing demonstrated the growth abundance of Lachnospiraceae and the decrease of Proteobacteria in probiotic fed group. On the contrary, the antibiotic fed group showed a noticeable increase in the abundance of Proteobacteria which included the genus Salmonella. Thus, probiotic E. faecium L3 being added to chicken food as a single additive may be considered as a possible replacement of antibiotic enramycin.
Collapse
Affiliation(s)
- Alexander Suvorov
- Institute of Experimental Medicine, Akademika Pavlova, 12, St. Petersburg, 197376, Russia.
- Saint Petersburg State University, University nab., 7-9, St. Petersburg, 199034, Russia.
| | - Shuangzhi Zhao
- Institute of Agro-Food Science and Technology & Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Galina Leontieva
- Institute of Experimental Medicine, Akademika Pavlova, 12, St. Petersburg, 197376, Russia
| | - Galina Alekhina
- Institute of Experimental Medicine, Akademika Pavlova, 12, St. Petersburg, 197376, Russia
| | - Jinyu Yang
- Institute of Agro-Food Science and Technology & Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Anna Tsapieva
- Institute of Experimental Medicine, Akademika Pavlova, 12, St. Petersburg, 197376, Russia
| | - Alena Karaseva
- Institute of Experimental Medicine, Akademika Pavlova, 12, St. Petersburg, 197376, Russia
| | - Valentina Smelova
- Institute of Experimental Medicine, Akademika Pavlova, 12, St. Petersburg, 197376, Russia
| | - Danyang Guo
- Institute of Agro-Food Science and Technology & Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Leilei Chen
- Institute of Agro-Food Science and Technology & Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
18
|
Zheng Y, Chen M, Zhang Y, Wang G, Zhao H. Lead exposure disrupted ileal barrier of developmental Japanese quails(Coturnix japonica): Histopathological damages, microbiota dysbiosis and immune disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115488. [PMID: 37717353 DOI: 10.1016/j.ecoenv.2023.115488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The gut barrier plays an essential role in maintaining homeostasis and is usually composed of a mechanical barrier, a chemical barrier, an immune barrier, and a biological barrier. However, the impacts of lead (Pb) exposure on avian gut barrier are still unclear. Therefore, the present study tried to determine the toxic effects of Pb on ileal barrier of a biological model-Japanese quail (Coturnix japonica). One-week old quails were exposed to 0, 50, 500 and 1000 ppm Pb in drinking water for 5 weeks. The results showed mechanic barrier in the ileum was disrupted with microstructural deformation featured by epithelial cell abscission, villi contractions and goblet cells reduction as well as ultrastructural changes characterized by swollen mitochondria, blurry tight junctions and microvilli subtraction. Meanwhile, the expression of genes associated with intestinal tight junctions was downregulated in Pb-treated groups indicating tight junction malfunction. Moreover, less mucus and downregulation of expression of mucin2 (Muc2) and Krüppel-like factor 4 (Klf4) indicated chemical barrier disturbance by Pb. In addition, the alteration of microbial diversity and emergence of pathogen bacteria suggested ileal biological barrier disruption by Pb. Furthermore, Pb caused immune dysfunction in the ileum through promoting the expression of pro-inflammatory factors including interleukin 1 beta (IL-1β), interleukin 6 (IL-6), Interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and nuclear factor kappa B (NF-κB) and inhibiting the expression of anti-inflammatory factor interleukin 10 (IL-10). The present study demonstrated that Pb may pose health risks to birds through gut barrier damages.
Collapse
Affiliation(s)
- Ying Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mingcun Chen
- AP Center, Changzhou Senior High School of Jiangsu Province, Changzhou 213000, China
| | - Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Gang Wang
- AP Center, Changzhou Senior High School of Jiangsu Province, Changzhou 213000, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
19
|
Ibrahim D, El-sayed HI, Mahmoud ER, El-Rahman GIA, Bazeed SM, Abdelwarith AA, Elgamal A, Khalil SS, Younis EM, Kishawy ATY, Davies SJ, Metwally AE. Impacts of Solid-State Fermented Barley with Fibrolytic Exogenous Enzymes on Feed Utilization, and Antioxidant Status of Broiler Chickens. Vet Sci 2023; 10:594. [PMID: 37888546 PMCID: PMC10611247 DOI: 10.3390/vetsci10100594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
The present and future high demand of common cereals as corn and wheat encourage the development of feed processing technology that allows for the dietary inclusion of other cereals of low nutritional value in poultry feeding. Barley grains contain anti-nutritional factors that limit their dietary inclusion in the poultry industry. The treatment of barley with solid-state fermentation and exogenous enzymes (FBEs) provides a good alternative to common cereals. In this study, barley grains were subjected to solid-state microbial fermentation using Lactobacillus plantarum, Bacillus subtilis and exogenous fibrolytic enzymes. This study aimed to assess the impact of FBEs on growth, feed utilization efficiency, immune modulation, antioxidant status and the expression of intestinal barrier and nutrient transporter-related genes. One-day-old broiler chicks (Ross 308, n = 400) comprised four representative groups with ten replicates (10 chicks/replicate) and were fed corn-soybean meal basal diets with inclusions of FBEs at 0, 5, 10 and 15% for 38 days. Solid-state fermentation of barley grains with fibrolytic enzymes increased protein content, lowered crude fiber and reduced sugars compared to non-fermented barley gains. In consequence, the group fed FBEs10% had the superior feed utilization efficiency and body weight gain (increased by 4.7%) with higher levels of nutrient metabolizability, pancreatic digestive enzyme activities and low digesta viscosity. Notably, the group fed FBEs10% showed an increased villi height and a decreased crypt depth with a remarkable hyperactivity of duodenal glands. In addition, higher inclusion levels of FBEs boosted serum immune-related parameters and intestinal and breast muscle antioxidants status. Intestinal nutrient transporters encoding genes (GLUT-1, CAAT-1, LAT1 and PepT-1) and intestinal barriers encoding genes (MUC-2, JAM-2, occludin, claudins-1 and β-defensin 1) were upregulated with higher dietary FBEs levels. In conclusion, feeding on FBEs10% positively enhanced broiler chickens' performance, feed efficiency and antioxidant status, and boosted intestinal barrier nutrient transporters encoding genes.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hassainen I. El-sayed
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Elsabbagh R. Mahmoud
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ghada I. Abd El-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Shefaa M. Bazeed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo P.O. Box 4942301, Egypt;
| | - Abdelwahab A. Abdelwarith
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (E.M.Y.)
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo P.O. Box 4942301, Egypt;
| | - Samah S. Khalil
- Department of biochemistry, drug information center, Zagazig University Hospitals, Zagazig University, Zagazig P.O. Box 44511, Egypt;
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (E.M.Y.)
| | - Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91 V8Y1 Galway, Ireland;
| | - Abdallah E. Metwally
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
20
|
Tong DQ, Lu ZJ, Zeng N, Wang XQ, Yan HC, Gao CQ. Dietary supplementation with probiotics increases growth performance, improves the intestinal mucosal barrier and activates the Wnt/β-catenin pathway activity in chicks. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4649-4659. [PMID: 36930725 DOI: 10.1002/jsfa.12562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/21/2022] [Accepted: 03/17/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Probiotics comprise effective feed additives that can replace antibiotics in animal livestock production. However, mono-strain probiotics appear less effective because of their instability. Therefore, the present study aimed to investigate dietary supplementation with compound probiotics (CPP) on growth performance, diarrhea rate and intestinal mucosal barrier, as well as the possible molecular mechanism, in chicks. In total, 360 1-day-old chicks of the Hy-Line Brown Chicks were randomly divided into the control group (CON, basal diet), chlortetracycline group (500 mg kg-1 CTC) and compound probiotics group (1000 mg kg-1 CPP, consisting of Bacillus subtilis, Bacillus licheniformis, Enterococcus faecium and yeast). The experiment period was 56 days. RESULTS The results showed that, in comparison with the CON group, CPP significantly increased the average daily feed intake and average daily gain of chicks and reduced diarrhea (P < 0.05). The probiotic group exhibited increased immune organ (i.e. spleen and thymus) mass and increased levels of serum immunoglobulin (Ig)A, IgM and IgG (P < 0.05) compared to the CTC group. In addition, the jejunal mass and morphology were improved in the probiotic group (P < 0.05). Moreover, CPP reinforced jejunal barrier function, as indicated by increased transepithelial electrical resistance, protein expression of occludin and claudin-1, and diamine oxidase levels in the jejunum (P < 0.05). Likewise, enhanced fluorescence signals of proliferating cell nuclear antigen-labeled mitotic cells and villin-labeled absorptive cells in the jejunum (P < 0.05) suggested that CPP promoted intestinal stem cells activity. Mechanistically, the Wnt/β-catenin signaling pathway, including β-catenin, TCF4, c-Myc, cyclin D1 and Lgr5, was amplified in the jejunum by CPP addition (P < 0.05). CONCLUSION The present study demonstrated that dietary supplementation with CPP reinforced the jejunal epithelial integrity by activating Wnt/β-catenin signaling and enhanced immune function in chicks. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Di-Qing Tong
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Zhu-Jin Lu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Nan Zeng
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| |
Collapse
|
21
|
Cappellozza BI, Copani G, Boll EJ, Queiroz O. Supplementation of direct-fed microbial Enterococcus faecium 669 affects performance of preweaning dairy calves. JDS COMMUNICATIONS 2023; 4:284-287. [PMID: 37521053 PMCID: PMC10382813 DOI: 10.3168/jdsc.2022-0344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/21/2022] [Indexed: 08/01/2023]
Abstract
Optimization and support of health and performance of preweaning dairy calves is paramount to any dairy operation, and natural solutions, such as probiotics, may help to achieve such a goal. Two experiments were designed to evaluate the effects of direct-fed microbial (DFM) Enterococcus faecium 669 on performance of preweaning dairy calves. In experiment 1, twenty 4-d-old Holstein calves [initial body weight (BW) 41 ± 2.1 kg] were randomly assigned to either (1) no probiotic supplementation (CON; n = 10) or (2) supplementation with probiotic strain E. faecium 669 during the preweaning period (DFM; n = 10) at 2.0 × 1010 cfu/kg of whole milk. Full individual BW was analyzed every 20 d for average daily gain (ADG) and feed efficiency (FE) determination. In experiment 2, thirty 4-d-old Holstein calves (initial BW 40 ± 1.9 kg) were assigned to the same treatments as in experiment 1 (CON and DFM). The DFM supplementation period was divided into period I (from d 0 to 21) and II (from d 22 to 63), with weaning occurring when animals were 67 d of age. During the entire experimental period, DFM was mixed into the whole milk at a rate of 1.5 × 1010 and 2.5 × 109 cfu/kg of whole milk/calf per day for periods I and II, respectively (6-time reduction). Full individual BW was taken every 21 d. As a routine of the experiment, calves were monitored daily, and diarrhea cases were evaluated using a daily 3-point fecal score. For both experiments, all data were analyzed using calf as the experimental unit. In experiment 1, DFM-supplemented calves were heavier on d 40 (+ 4.5 kg) and 60 (+ 6.5 kg) and had a greater ADG (+ 118 g) versus CON. In experiment 2, supplementation with DFM significantly tended to reduce diarrhea occurrence. Treatment × day and treatment × week interactions were observed for BW, ADG, and gain-to-feed ratio. Dairy calves supplemented with DFM were 1.8 and 3.5 kg heavier on d 42 and at weaning, respectively, and had a greater ADG from d 21 to 42 (+ 52 g) and 42 to 63 (+ 77 g) and gain-to-feed ratio from d 42 to 63 (+ 8.6%). In summary, supplementation of E. faecium 669 to dairy calves improved preweaning performance, even when the dose of the DFM was reduced by 6- to 8-times. Additionally, initial promising results were observed on diarrhea occurrence, but further studies are warranted.
Collapse
|
22
|
Chai C, Guo Y, Mohamed T, Bumbie GZ, Wang Y, Zeng X, Zhao J, Du H, Tang Z, Xu Y, Sun W. Dietary Lactobacillus reuteri SL001 Improves Growth Performance, Health-Related Parameters, Intestinal Morphology and Microbiota of Broiler Chickens. Animals (Basel) 2023; 13:ani13101690. [PMID: 37238120 DOI: 10.3390/ani13101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
It was assumed that dietary inclusion of Lactobacillus reuteri SL001 isolated from the gastric contents of rabbits could act as an alternative to feed antibiotics to improve the growth performance of broiler chickens. We randomly assigned 360 one-day-old AA white-feathered chicks in three treatments: basal diet (control), basal diet plus zinc bacitracin (antibiotic), and basal diet plus L. reuteri SL001 (SL001) treatment. The results showed the total BW gain and average daily gain (ADG) of broilers in SL001 treatment increased significantly (p < 0.05, respectively) compared with the control group from day 0 to 42. Moreover, we observed higher levels of immune globulins in both the SL001 group and the antibiotic group. Total antioxidant capacity and levels of antioxidant factors were also significantly increased (p ≤ 0.05, respectively) in the SL001 treatment group, while the interleukin 6, interleukin 4, creatinine, uric acid, total cholesterol, triglyceride, VLDL, LDL and malondialdehyde were remarkably decreased (p < 0.05, respectively). In the ileum of SL001 treatment broilers, the height of villi and the ratio of villi height to crypt depth were significantly increased (p < 0.05). Meanwhile, the crypt depth reduced (p < 0.01) and the ratio of villi height to crypt depth increased (p < 0.05) in the jejunum compared to the control. The abundance of microbiota increased in the gut of broilers supplemented with SL001. Dietary SL001 significantly increased the relative abundance of Actinobacteria in the cecal contents of broilers (p < 0.01) at the phylum level. In conclusion, L. reuteri SL001 supplementation promotes the growth performance of broiler chickens and exhibits the potential application value in the industry of broiler feeding.
Collapse
Affiliation(s)
- Chunli Chai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yaowen Guo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Taha Mohamed
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Gifty Z Bumbie
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yan Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaojing Zeng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jinghua Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Huamao Du
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yetong Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Weizhong Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
de Moura e Dias M, da Silva Duarte V, Mota LFM, de Cássia Ávila Alpino G, dos Reis Louzano SA, da Conceição LL, Mantovanie HC, Pereira SS, Oliveira LL, de Oliveira Mendes TA, Porcellato D, do Carmo Gouveia Peluzio M. Lactobacillus gasseri LG-G12 Restores Gut Microbiota and Intestinal Health in Obesity Mice on Ceftriaxone Therapy. Foods 2023; 12:foods12051092. [PMID: 36900609 PMCID: PMC10001121 DOI: 10.3390/foods12051092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Gut microbiota imbalance is associated with the occurrence of metabolic diseases such as obesity. Thus, its modulation is a promising strategy to restore gut microbiota and improve intestinal health in the obese. This paper examines the role of probiotics, antimicrobials, and diet in modulating gut microbiota and improving intestinal health. Accordingly, obesity was induced in C57BL/6J mice, after which they were redistributed and fed with an obesogenic diet (intervention A) or standard AIN-93 diet (intervention B). Concomitantly, all the groups underwent a treatment phase with Lactobacillus gasseri LG-G12, ceftriaxone, or ceftriaxone followed by L. gasseri LG-G12. At the end of the experimental period, the following analysis was conducted: metataxonomic analysis, functional profiling of gut microbiota, intestinal permeability, and caecal concentration of short-chain fatty acids. High-fat diet impaired bacterial diversity/richness, which was counteracted in association with L. gasseri LG-G12 and the AIN-93 diet. Additionally, SCFA-producing bacteria were negatively correlated with high intestinal permeability parameters, which was further confirmed via functional profile prediction of the gut microbiota. A novel perspective on anti-obesity probiotics is presented by these findings based on the improvement of intestinal health irrespective of undergoing antimicrobial therapy or not.
Collapse
Affiliation(s)
- Mariana de Moura e Dias
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
- Correspondence:
| | - Lúcio Flávio Macedo Mota
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Padua, Italy
| | - Gabriela de Cássia Ávila Alpino
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Sandra Aparecida dos Reis Louzano
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Lisiane Lopes da Conceição
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Hilário Cuquetto Mantovanie
- Department of Microbiology, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Solange Silveira Pereira
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Leandro Licursi Oliveira
- Department of General Biology, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Maria do Carmo Gouveia Peluzio
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
24
|
Comparison of the effects of probiotic-based formulations on growth, feed utilization, blood constituents, cecal fermentation, and duodenal morphology of rabbits reared under hot environmental conditions. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
The present study aimed to assess the effects of three probiotic-supplemented diets on growth, cecal fermentation, blood biochemical, and intestinal morphological features in growing rabbits reared under summer conditions. Rabbits were allotted into four groups: G1 rabbits were fed the basal diet (control), G2 rabbits received Enterococcus faecium (EF) and Clostridium butyricum (CB) complexes (1 × 108 and 2.5 × 106 cfu/kg diet, respectively), G3 rabbits were given CB (2.5 × 106 cfu/kg diet) and yeast complexes (1 g/kg diet), and G4 rabbits received EF (2 × 108 cfu/kg diet) and yeast (1 g/kg diet). G2 rabbits exhibited the highest performances in terms of enhanced body weight and weight gain, protein efficiency ratio and feed conversion ratio (P<0.05). Serum total protein, globulin, immunoglobulin M, and high-density lipoprotein concentrations were higher in probiotic-fed rabbits than those in controls. Additionally, lipid profile parameters were significantly reduced in the probiotic-fed rabbits, with the lowest concentrations measured in G4 rabbits (P<0.05). Rabbits given EF and CB had the highest total volatile fatty acid (VFA) and propionic acid levels and the lowest ammonia concentrations. Increased villi length and muscular layer thickness and reduced crypt depth were observed in rabbits receiving EF and CB compared with the values obtained in controls (P<0.05). In summary, supplementing fattening rabbit diets with EF and CB, as a novel formulation, might be a promising and easy method to enhance growth performance under hot climate conditions by improving the feed utilization, immune response, serum lipid profile, cecal VFA production, and duodenal morphology.
Collapse
|
25
|
Obianwuna UE, Qiu K, Wang J, Zhang HJ, Qi GH, Huang LL, Wu SG. Effects of dietary Clostridium butyricum and fructooligosaccharides, alone or in combination, on performance, egg quality, amino acid digestibility, jejunal morphology, immune function, and antioxidant capacity of laying hens. Front Microbiol 2023; 14:1125897. [PMID: 36910205 PMCID: PMC9992415 DOI: 10.3389/fmicb.2023.1125897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
The present study was conducted to evaluate the effects of Clostridium butyricum (CB) and fructooligosaccharide (FOS) singly or combined, on performance, egg quality, amino acid digestibility, jejunal morphology, immune function and antioxidant capacity in peak-phase laying hens. A total of 288 Hy-Line Brown laying hens (30 weeks of age) were randomly assigned to 4 dietary groups that included basal diet, basal diet +0.02% of CB (zlc-17: 1 × 109 CFU/g) (PRO), basal diet +0.6% FOS (PRE), and basal diet +0.02% CB + 0.6% FOS (SYN) for 12 weeks. Each treatment had 6 replicates with 12 birds each. The results demonstrated that probiotics (PRO), prebiotics (PRE) and synbiotics (SYN) (p ≤ 0.05), respectively, exerted a positive effect on the performance and physiological response of the birds. There were significant increases in egg production rate, egg weight, egg mass, daily feed intake and reduced number of damaged eggs. and zero mortality rate due to dietary PRO, PRE and SYN (p ≤ 0.05) respectively. Also, feed conversion was improved by PRO (p ≤ 0.05). In addition, egg quality assessment showed that; eggshell quality was increased by PRO (p ≤ 0.05) and albumen indices (Haugh unit, thick albumen content, and albumen height) were enhanced by PRO, PRE and SYN (p ≤ 0.05). Further analysis showed that PRO, PRE and SYN (p ≤ 0.05), reduced heterophil to lymphocyte ratio, increased antioxidant enzymes and immunoglobulin concentration. Although spleen index was higher for PRO (p ≤ 0.05) group. The significant increase in villi height, villi width, villi height to crypt depth ratio and reduced crypt depth were obvious for PRO, PRE, and SYN (p ≤ 0.05). Furthermore, improved nutrient absorption and retention evidenced by increased digestibility of crude protein and amino acids, were notable for PRO, PRE, and SYN (p ≤ 0.05) group. Collectively, our findings revealed that dietary CB and FOS alone, or combined, enhanced productive performance, egg quality, amino acid digestibility, jejunal morphology, and physiological response in peak-phase laying hens. Our results would provide direction on nutritional strategies for gut enhancers and better physiological response of peak laying hens.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Qiu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-jun Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-hai Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling-ling Huang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, Shanghai, China
| | - Shu-geng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Zhang Y, Zhang Y, Liu F, Mao Y, Zhang Y, Zeng H, Ren S, Guo L, Chen Z, Hrabchenko N, Wu J, Yu J. Mechanisms and applications of probiotics in prevention and treatment of swine diseases. Porcine Health Manag 2023; 9:5. [PMID: 36740713 PMCID: PMC9901120 DOI: 10.1186/s40813-022-00295-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 02/07/2023] Open
Abstract
Probiotics can improve animal health by regulating intestinal flora balance, improving the structure of the intestinal mucosa, and enhancing intestinal barrier function. At present, the use of probiotics has been a research hotspot in prevention and treatment of different diseases at home and abroad. This review has summarized the researchers and applications of probiotics in prevention and treatment of swine diseases, and elaborated the relevant mechanisms of probiotics, which aims to provide a reference for probiotics better applications to the prevention and treatment of swine diseases.
Collapse
Affiliation(s)
- Yue Zhang
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China ,grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Yuyu Zhang
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Fei Liu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Yanwei Mao
- grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Yimin Zhang
- grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Hao Zeng
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Sufang Ren
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Lihui Guo
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Zhi Chen
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Nataliia Hrabchenko
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Jiaqiang Wu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China ,grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China ,grid.410585.d0000 0001 0495 1805School of Life Sciences, Shandong Normal University, Jinan, 250014 China
| | - Jiang Yu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| |
Collapse
|
27
|
Oladokun S, Adewole D. The effect of Bacillus subtilis and its delivery route on hatch and growth performance, blood biochemistry, immune status, gut morphology, and microbiota of broiler chickens. Poult Sci 2023; 102:102473. [PMID: 36736137 PMCID: PMC9898455 DOI: 10.1016/j.psj.2022.102473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
This study evaluated the effect of probiotics (Bacillus subtilis fermentation extract) and its delivery route (in-feed or in ovo) on hatch and growth performance, blood biochemistry, immune status, gut morphology, and microbiota of broiler chickens. Hatching eggs were incubated for 21 d. On d 12, viable eggs were randomly allotted to 4 groups: the noninjected, in ovo saline (S), in ovo Bacillus subtilis 1 (P1), and in ovo Bacillus subtilis 2 (P2). On d 18, S, P1, and P2 groups received 0.2 mL saline diluent, 10 × 106, and 20 × 106 CFU of the bacterium via the amnion, respectively. At hatch, chicks were re-allotted to 5 new treatment groups: P1, P2, 0.005% in-feed Bacillus subtilis extract (P3), 0.05% in-feed bacitracin methylene disalicylate (BMD,), and corn-wheat-soybean diet negative control (NC) in 9 replicate pens (22 birds/pen) and raised for 35 d. Hatch parameters were assessed on d 0, and growth performance indices measured weekly. On d 25, 1 bird/cage was euthanized, and samples collected for further analysis. Data were analyzed by generalized linear model. Treatments S and P2 recorded higher (P = 0.01) chick BW/ Egg Weight values compared to the non-injected eggs. P3 and P2 reduced (P = 0.02) FI at week 5 compared to the NC treatment. However, no change in average body weight gain (ABG) and feed conversion ratio (FCR) were observed during the same period. At d 35, while BMD treatment showed a tendency (P = 0.09) to increase FI compared to the NC treatment, ABG and FCR were similar for all treatments. Blood sodium and chloride levels were increased (P < 0.05) by the BMD treatment compared to the NC treatment. Compared to other treatments, BMD and P3 treatments increased (P < 0.001) jejunal and ileal villus height to crypt depth ratios, respectively. However, P1 and P2 increased (P < 0.001) villus height to crypt depth ratio in the duodenum compared to NC treatment. Treatments did not affect gut microbial diversity; however, BMD treatment increased (P < 0.05) the proportion of bacteria in the genus Enterococcus in the ileum and reduced (P < 0.05) the proportion of bacteria in the genus Streptococcus in the ceca. All probiotics treatments (irrespective of route and dose) reduced (P < 0.001) the levels of serum IgG compared to the NC treatment. However, P1 and P2 had the lowest numerical decrease in serum IgG concentrations, suggesting that Bacillus subtilis (especially in ovo delivered) might provide broiler chickens with better immunological protection by neutralizing pathogenic organisms that could result in the production of natural antibodies.
Collapse
Affiliation(s)
- Samson Oladokun
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
28
|
Shao Y, Zhen W, Guo F, Hu Z, Zhang K, Kong L, Guo Y, Wang Z. Pretreatment with probiotics Enterococcus faecium NCIMB 11181 attenuated Salmonella Typhimurium-induced gut injury through modulating intestinal microbiome and immune responses with barrier function in broiler chickens. J Anim Sci Biotechnol 2022; 13:130. [PMID: 36221113 PMCID: PMC9555120 DOI: 10.1186/s40104-022-00765-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background Preventing Salmonella infection and colonization in young birds is key to improving poultry gut health and reducing Salmonella contamination of poultry products and decreasing salmonellosis for human consumption (poultry meat and eggs). Probiotics can improve poultry health. The present study was conducted to investigate the impact of a probiotics, Enterococcus faecium NCIMB 11181 (E. faecium NCIMB 11181) on the intestinal mucosal immune responses, microbiome and barrier function in the presence or absence of Salmonella Typhimurium (S. Typhimurium, ST) infection. Methods Two hundred and forty 1-day-old Salmonella-free male broiler chickens (Arbor Acres AA+) were randomly allocated to four groups with 6 replicate cages of 10 birds each. The four experimental groups were follows: (1) negative control (NC), (2) S. Typhimurium, challenged positive control (PC), (3) the E. faecium NCIMB 11181-treated group (EF), (4) the E. faecium NCIMB 11181-treated and S. Typhimurium-challenged group (PEF). Results Results indicated that, although continuous feeding E. faecium NCIMB 11181 did not obviously alleviate growth depression caused by S. Typhimurium challenge (P > 0.05), E. faecium NCIMB 11181 addition significantly blocked Salmonella intestinal colonization and translocation (P < 0.05). Moreover, supplemental E. faecium NCIMB 11181 to the infected chickens remarkably attenuated gut morphological structure damage and intestinal cell apoptosis induced by S. Typhimurium infection, as evidenced by increasing gut villous height and reducing intestinal TUNEL-positive cell numbers (P < 0.05). Also, E. faecium NCIMB 11181 administration notably promoting the production of anti-Salmonella antibodies in intestinal mucosa and serum of the infected birds (P < 0.05). Additionally, 16S rRNA sequencing analysis revealed that E. faecium NCIMB 11181 supplementation ameliorated S. Typhimurium infection-induced gut microbial dysbiosis by enriching Lachnospiracease and Alistipes levels, and suppressing Barnesiella abundance. Predicted function analysis indicated that the functional genes of cecal microbiome involved in C5-branched dibasic acid metabolism; valine, leucine and isoleucine biosynthesis; glycerolipid metabolism and lysine biosynthesis were enriched in the infected chickens given E. faecium NCIMB 11181. While alanine, asparate and glutamate metabolism; MAPK signal pathway-yeast; ubiquine and other terpenoid-quinore biosynthesis, protein processing in endoplasmic reticulum; as well as glutathione metabolism were suppressed by E. faecium NCIMB 11181 addition. Conclusion Collectively, our data suggested that dietary E. faecium NCIBM 11181 supplementation could ameliorate S. Typhimurium infection-induced gut injury in broiler chickens. Our findings also suggest that E. faecium NCIMB 11181 may serve as an effective non-antibiotic feed additive for improving gut health and controlling Salmonella infection in broiler chickens.
Collapse
Affiliation(s)
- Yujing Shao
- College of Biology, China Agricultural University, Beijing, China
| | - Wenrui Zhen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Henan University of Science and Technology, Province of Henan, Luoyang, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zeqiong Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kaichen Zhang
- Tengzhou Heyi Food Co. Ltd, Zaozhuang, Shandong Province, China
| | - Linhua Kong
- Tengzhou Heyi Food Co. Ltd, Zaozhuang, Shandong Province, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
29
|
Zhang LL, Liu YJ, Chen YH, Wu Z, Liu BR, Cheng QY, Zhang KQ, Niu XM. Modulating Activity Evaluation of Gut Microbiota with Versatile Toluquinol. Int J Mol Sci 2022; 23:ijms231810700. [PMID: 36142608 PMCID: PMC9505934 DOI: 10.3390/ijms231810700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
Gut microbiota have important implications for health by affecting the metabolism of diet and drugs. However, the specific microbial mediators and their mechanisms in modulating specific key intermediate metabolites from fungal origins still remain largely unclear. Toluquinol, as a key versatile precursor metabolite, is commonly distributed in many fungi, including Penicillium species and their strains for food production. The common 17 gut microbes were cultivated and fed with and without toluquinol. Metabolic analysis revealed that four strains, including the predominant Enterococcus species, could metabolize toluquinol and produce different metabolites. Chemical investigation on large-scale cultures led to isolation of four targeted metabolites and their structures were characterized with NMR, MS, and X-ray diffraction analysis, as four toluquinol derivatives (1–4) through O1/O4-acetyl and C5/C6-methylsulfonyl substitutions, respectively. The four metabolites were first synthesized in living organisms. Further experiments suggested that the rare methylsulfonyl groups in 3–4 were donated from solvent DMSO through Fenton’s reaction. Metabolite 1 displayed the strongest inhibitory effect on cancer cells A549, A2780, and G401 with IC50 values at 0.224, 0.204, and 0.597 μM, respectively, while metabolite 3 displayed no effect. Our results suggest that the dominant Enterococcus species could modulate potential precursors of fungal origin and change their biological activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xue-Mei Niu
- Correspondence: ; Tel.: +86-871-65032538; Fax: +86-871-65034838
| |
Collapse
|
30
|
Wu Y, Yang F, Jiang W, Hu A, Xiong Z, Yang S, Cao P, Cao Z, Xiong Z, Cao H. Effects of compound probiotics on intestinal barrier function and caecum microbiota composition of broilers. Avian Pathol 2022; 51:465-475. [PMID: 35815551 DOI: 10.1080/03079457.2022.2100740] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Probiotics are beneficial microorganisms existing in nature and animals and can be used in livestock and poultry breeding. Here, 240 1-day-old Arbor Acre (AA) broilers were used to study the effects of compound probiotics (CP) on antioxidant capacity, intestinal barrier function and cecum microorganisms. 2‰, 3‰ and 4‰ CP were added to the basal diet and fed to broilers for 60d. Blood, jejunum, cecum and cecum contents of broilers on day 60 were collected for jejunum histopathological observation, assessment of oxidative stress status and caecum microbiota composition. Additionally, the mRNA levels of intestinal barrier function were also analyzed. The results showed that CP significantly improved the growth performance of broilers in 1-30 days (P < 0.05 or P < 0.01). 3‰ CP could prominently enhance the ratio of villus height to crypt depth (P < 0.01). Moreover, CP supplementation resulted in a significant elevation in superoxide dismutase (SOD) activity (P < 0.01), accompanied by a significant reduction in malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents (P < 0.01) in serum. Additionally, Dietary CP supplementation increased the mRNA levels of zona occludens 1 (ZO-1), Claudin -1 and Occlodin in the jejunum of broilers (P < 0.01). 3‰ CP observably increased the abundance of the genus Rikenellaceae_RC9_gut_group and Phascolarctobacterium (P < 0.01), and significantly decreased the abundance of the genus Ruminococcaceae_UCG-014 (P < 0.05), together with regulations on several genes that are responsible for signaling pathways involved in carbohydrate metabolism, amino acid metabolism and endocrine and metabolic diseases. Taken together, the supplementation of CP could reduce oxidative stress level, increase the mRNA expression levels of tight junction (TJ) related genes, and the colonization of beneficial bacteria in the cecum, as well as improve intestinal health, which has a promoting effect on the growth performance in broilers.
Collapse
Affiliation(s)
- Yunhui Wu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjuan Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Aiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhiwei Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shuqiu Yang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Panpan Cao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhanyou Cao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhonghua Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
31
|
Mazanko MS, Popov IV, Prazdnova EV, Refeld AG, Bren AB, Zelenkova GA, Chistyakov VA, Algburi A, Weeks RM, Ermakov AM, Chikindas ML. Beneficial Effects of Spore-Forming Bacillus Probiotic Bacteria Isolated From Poultry Microbiota on Broilers' Health, Growth Performance, and Immune System. Front Vet Sci 2022; 9:877360. [PMID: 35711797 PMCID: PMC9194945 DOI: 10.3389/fvets.2022.877360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Probiotics are known for their beneficial effects on poultry health and wellbeing. One promising strategy for discovering Bacillus probiotics is selecting strains from the microbiota of healthy chickens and subsequent screening for potential biological activity. In this study, we focused on three probiotic strains isolated from the gastrointestinal tract of chickens bred in different housing types. In addition to the previously reported poultry probiotic Bacillus subtilis KATMIRA1933, three strains with antimutagenic and antioxidant properties Bacillus subtilis KB16, Bacillus subtilis KB41, and Bacillus amyloliquefaciens KB54, were investigated. Their potential effects on broiler health, growth performance, and the immune system were evaluated in vivo. Two hundred newly hatched Cobb500 broiler chickens were randomly divided into five groups (n = 40). Four groups received a standard diet supplemented with the studied bacilli for 42 days, and one group with no supplements was used as a control. Our data showed that all probiotics except Bacillus subtilis KATMIRA1933 colonized the intestines. Treatment with Bacillus subtilis KB54 showed a significant improvement in growth performance compared to other treated groups. When Bacillus subtilis KB41 and Bacillus amyloliquefaciens KB54 were applied, the most significant immune modulation was noticed through the promotion of IL-6 and IL-10. We concluded that Bacillus subtilis KB54 supplementation had the largest positive impact on broilers' health and growth performance.
Collapse
Affiliation(s)
- Maria S. Mazanko
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Igor V. Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- *Correspondence: Igor V. Popov
| | - Evgeniya V. Prazdnova
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aleksandr G. Refeld
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- ChemBio Cluster, ITMO University, Saint Petersburg, Russia
| | - Anzhelica B. Bren
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Galina A. Zelenkova
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A. Chistyakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Ammar Algburi
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | - Richard M. Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, Bridgeton, NJ, United States
| | - Alexey M. Ermakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Michael L. Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, Bridgeton, NJ, United States
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
32
|
Qiu K, Li CL, Wang J, Qi GH, Gao J, Zhang HJ, Wu SG. Effects of Dietary Supplementation With Bacillus subtilis, as an Alternative to Antibiotics, on Growth Performance, Serum Immunity, and Intestinal Health in Broiler Chickens. Front Nutr 2021; 8:786878. [PMID: 34917643 PMCID: PMC8668418 DOI: 10.3389/fnut.2021.786878] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Bacillus subtilis (B. subtilis) as in-feed probiotics is a potential alternative for antibiotic growth promoters (AGP) in the poultry industry. The current study investigated the effects of B. subtilis on the performance, immunity, gut microbiota, and intestinal barrier function of broiler chickens. A 42-day feeding trial was conducted with a total of 600 1-day-old Arbor Acres broilers with similar initial body weight, which was randomly divided into one of five dietary treatments: the basal diet (Ctrl), Ctrl + virginiamycin (AGP), Ctrl + B. subtilis A (BSA), Ctrl + B. subtilis B (BSB), and Ctrl + B. subtilis A + B (1:1, BSAB). The results showed significantly increased average daily gain in a step-wise manner from the control, B. subtilis, and to the AGP groups. The mortality rate of the B. subtilis group was significantly lower than the AGP group. The concentrations of serum immunoglobulin (Ig) G (IgG), IgA, and IgM in the B. subtilis and AGP groups were higher than the control group, and the B. subtilis groups had the highest content of serum lysozyme and relative weight of thymus. Dietary B. subtilis increased the relative length of ileum and the relative weight of jejunum compared with the AGP group. The villus height (V), crypt depth (C), V/C, and intestinal wall thickness of the jejunum in the B. subtilis and AGP groups were increased relative to the control group. Dietary B. subtilis increased the messenger RNA (mRNA) expression of ZO-1, Occludin, and Claudin-1, the same as AGP. The contents of lactic acid, succinic acid, and butyric acid in the ileum and cecum were increased by dietary B. subtilis. Dietary B. subtilis significantly increased the lactobacillus and bifidobacteria in the ileum and cecum and decreased the coliforms and Clostridium perfringens in the cecum. The improved performance and decreased mortality rate observed in the feeding trial could be accrued to the positive effects of B. subtilis on the immune response capacity, gut health, and gut microflora balance, and the combination of two strains showed additional benefits on the intestinal morphology and tight junction protein expressions. Therefore, it can be concluded that dietary B. subtilis A and B could be used as alternatives to synthetic antibiotics in the promotion of gut health and productivity index in broiler production.
Collapse
Affiliation(s)
- Kai Qiu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng-Liang Li
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Gao
- Animal Nutrition, Nutrition and Care, Evonik (China) Co., Ltd., Beijing, China
| | - Hai-Jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
The Many Faces of Enterococcus spp.-Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021; 9:microorganisms9091900. [PMID: 34576796 PMCID: PMC8470767 DOI: 10.3390/microorganisms9091900] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Enterococcus spp. are Gram-positive, facultative, anaerobic cocci, which are found in the intestinal flora and, less frequently, in the vagina or mouth. Enterococcus faecalis and Enterococcus faecium are the most common species found in humans. As commensals, enterococci colonize the digestive system and participate in the modulation of the immune system in humans and animals. For many years reference enterococcal strains have been used as probiotic food additives or have been recommended as supplements for the treatment of intestinal dysbiosis and other conditions. The use of Enterococcus strains as probiotics has recently become controversial due to the ease of acquiring different virulence factors and resistance to various classes of antibiotics. Enterococci are also seen as opportunistic pathogens. This problem is especially relevant in hospital environments, where enterococcal outbreaks often occur. Their ability to translocate from the gastro-intestinal tract to various tissues and organs as well as their virulence and antibiotic resistance are risk factors that hinder eradication. Due to numerous reports on the plasticity of the enterococcal genome and the acquisition of pathogenic microbial features, we ask ourselves, how far is this commensal genus from acquiring pathogenicity? This paper discusses both the beneficial properties of these microorganisms and the risk factors related to their evolution towards pathogenicity.
Collapse
|
34
|
He Y, Liu X, Dong Y, Lei J, Ito K, Zhang B. Enterococcus faecium PNC01 isolated from the intestinal mucosa of chicken as an alternative for antibiotics to reduce feed conversion rate in broiler chickens. Microb Cell Fact 2021; 20:122. [PMID: 34182992 PMCID: PMC8240220 DOI: 10.1186/s12934-021-01609-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022] Open
Abstract
Background The development and utilization of probiotics had many environmental benefits for replacing antibiotics in animal production. Bacteria in the intestinal mucosa have better adhesion to the host intestinal epithelial cells compared to bacteria in the intestinal contents. In this study, lactic acid bacteria were isolated from the intestinal mucosa of broiler chickens and investigated as the substitution to antibiotic in broiler production. Results In addition to acid resistance, high temperature resistance, antimicrobial sensitivity tests, and intestinal epithelial cell adhesion, Enterococcus faecium PNC01 (E. faecium PNC01) was showed to be non-cytotoxic to epithelial cells. Draft genome sequence of E. faecium PNC01 predicted that it synthesized bacteriocin to perform probiotic functions and bacteriocin activity assay showed it inhibited Salmonella typhimurium from invading intestinal epithelial cells. Diet supplemented with E. faecium PNC01 increased the ileal villus height and crypt depth in broiler chickens, reduced the relative length of the cecum at day 21, and reduced the relative length of jejunum and ileum at day 42. Diet supplemented with E. faecium PNC01 increased the relative abundance of Firmicutes and Lactobacillus, decreased the relative abundance of Bacteroides in the cecal microbiota. Conclusion E. faecium PNC01 replaced antibiotics to reduce the feed conversion rate. Furthermore, E. faecium PNC01 improved intestinal morphology and altered the composition of microbiota in the cecum to reduce feed conversion rate. Thus, it can be used as an alternative for antibiotics in broiler production to avoid the adverse impact of antibiotics by altering the gut microbiota. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01609-z.
Collapse
Affiliation(s)
- Yang He
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China.,College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Xuan Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Yuanyang Dong
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 3145 Ago, Kasama, Ibaraki, 319-0206, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China.
| |
Collapse
|
35
|
Madlala T, Okpeku M, Adeleke MA. Understanding the interactions between Eimeria infection and gut microbiota, towards the control of chicken coccidiosis: a review. ACTA ACUST UNITED AC 2021; 28:48. [PMID: 34076575 PMCID: PMC8171251 DOI: 10.1051/parasite/2021047] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 05/14/2021] [Indexed: 12/30/2022]
Abstract
The gastrointestinal tract in poultry harbours a diverse microbial community that serves a crucial role in digestion and protection. Disruption of the gut environment due to Eimeria spp. parasite infection causes an imbalance in intestinal homeostasis, driving the increment of pathogens such as Clostridium species. Coccidiosis infection affects the composition and integrity of gut microbiota, resulting in elevated susceptibility to diseases that pose a serious threat to the overall health and productivity of chickens. Anticoccidial drugs have proven effective in curbing coccidiosis but with concerning drawbacks like drug resistance and drug residues in meat. The exploration of natural alternative strategies such as probiotics and phytochemicals is significant in controlling coccidiosis through modification and restoration of gut microbiota, without inducing drug resistance. Understanding the interaction between Eimeria parasites and gut microbiota is crucial for the control and prevention of coccidiosis, and the development of novel alternative treatments.
Collapse
Affiliation(s)
- Thabile Madlala
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| |
Collapse
|
36
|
Selecká E, Levkut M, Revajová V, Levkutová M, Karaffová V, Ševčíková Z, Herich R, Levkut M. Research Note: Immunocompetent cells in blood and intestine after administration of Lacto-Immuno-Vital in drinking water of broiler chickens. Poult Sci 2021; 100:101282. [PMID: 34214747 PMCID: PMC8258679 DOI: 10.1016/j.psj.2021.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
The understanding of the synbiotics´ impact on the host is incomplete. To improve the knowledge, we study the effect of Lacto-Immuno-Vital synbiotic preparation in chickens on local and systemic immune response by evaluation of immunocompetent cells in the peripheral blood and jejunal mucosa. Hematological method was used for determination of white blood cell count, and flow cytometry for measurement the functions of phagocytes and subpopulation of lymphocytes (CD3, CD4, CD8, IgM, and IgA). Cell Qest programme (Germany) was used for analysing of data obtained from flow cytometer and GraphPad Prism version 4.0 for comparison by paired t test between control and experimental groups. The experiment was conducted in a commercial broiler chicken fattening farm, the birds were handled and sacrificed in a humane manner. A flock of 64,400 one-day-old Hybrid ROSS 308 chickens were included in the 42-d experiment. The chickens were randomly divided into 2 equal groups, experimental and control, and each group of chickens was housed in a different hall while maintaining the same conditions. The chickens in the experimental group (Lactovital) received 500 g of Lacto-Immuno-Vital (Hajduvet Kft., Hungary) in 1,000 L of drinking water. Lacto-Immuno-Vital was administered daily from the first day (D1) to D7 of the experiment. From D 7 to D 22 it was given in a pulsed manner (every third day) at a dose of 300 g in 1,000 L of drinking water. Control group received only the standard diet. For immune analyses 6 randomly chosen chickens from experimental and control group were taken from the halls. The sampling days were set at D 8 and D 22 of the experiment. Samples of peripheral blood were collected from vena subclavia. The chickens were euthanized and whole jejunum was taken during necropsy into Hanks ice solution (pH 7.2–7.3). Administration of Lacto-Immuno-Vital in drinking water of nonstressed broilers during fattening period in commercial production increased phagocytic activity and phagocytic index. The number of IgA+ and CD8+ cells in lamina propria of intestine was decreased in chickens fed diet supplemented with Lacto-Immuno-Vital in drinking water. We suggest that increased phagocytic activity and decreased number of immunocompetent cells in mucosa of intestine was caused by improved systemic and local immune system function.
Collapse
Affiliation(s)
- E Selecká
- Medivet, Školská 457/23, Dobrá Niva, Slovakia
| | - M Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - V Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia.
| | - M Levkutová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - V Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - Z Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - R Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia
| | - M Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovakia; Institute of Neuroimmunology, Slovak Academy of Science, Dúbravská cesta 9, 845 10, Bratislava, Slovakia
| |
Collapse
|
37
|
Nofouzi K, Mirzazadeh S, Khordadmehr M, Madadi MS, Amininia S, Firouzamandi M, Ranjbar VR. The effects of heat-killed Tsukamurella inchonensis on intestinal morphology and humoral immune responses of broiler chickens. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:81-90. [PMID: 33889366 PMCID: PMC8043829 DOI: 10.18502/ijm.v13i1.5496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background and Objectives: Tsukamurella species are Gram-positive rods that exist in a broad range of environments. In this study, the efficacy of heat-killed Tsukamurella inchonensis on growth performance, intestinal morphology, and humoral immune responses of broiler chicken was evaluated. Materials and Methods: Ross broiler chicks in the cage were randomly allocated to five groups. Trail diets were prepared by adding 106 cells per bird of heat-killed T. inchonensis into the basal trading diet for group 1 continuously dosed for 24 h from day 1 to day 13, and for group 2, 24 h on days 1 to 5; 8; 9, 12 and 13. Group 3 was received 106 bacteria as a subcutaneous injection on days 1, 6, and 12. Groups 4 and 5 were not received T. inchonensis during the experiment period. Results: Feed intake (FI) and feed conversion ratio (FCR) were not altered by different delivery methods of T. inchonensis supplementation. The pulsed dosed in feed tended to provide higher body weight gain (BWG) than the negative control groups. T. inchonensis treatments, never less of the ways of delivery, boosted (P<0.05) the antibody titers to Newcastle disease virus (NDV), and avian influenza (AI) (H9N2) virus, especially when broiler chickens treated with pulse dosed in the feed. The most significant intestinal development (p<0.05) was observed between groups 1 and 2. There were no significant differences in the thymus, liver, and bursa of Fabricius relative weight. Still, there were significant increases in the relative weight of spleen on day 14 in vaccinated chickens treated with T. inchonensis pulse dosed. Conclusion: It seems that the supplementation of T. inchonensis in the broiler diet can improve intestinal morphology and humoral immune response, which was represented by increased antibody response to NDV, and AI vaccines significantly, but it cannot affect FI and FCR.
Collapse
Affiliation(s)
- Katayoon Nofouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sorayya Mirzazadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Sadegh Madadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Soheila Amininia
- Department of Serology, Iran Veterinary Organization, East Azerbaijan, Iran
| | - Masoumeh Firouzamandi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Vahid Reza Ranjbar
- Department of Poultry Diseases, Veterinary System Organization, Yazd Province, Yazd, Iran
| |
Collapse
|
38
|
Luise D, Spinelli E, Correa F, Nicodemo A, Bosi P, Trevisi P. The effect of a single, early-life administration of a probiotic on piglet growth performance and faecal microbiota until weaning. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1952909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Science (DISTAL), University of Bologna, Bologna, Italy
| | - Elisa Spinelli
- Department of Agricultural and Food Science (DISTAL), University of Bologna, Bologna, Italy
| | - Federico Correa
- Department of Agricultural and Food Science (DISTAL), University of Bologna, Bologna, Italy
| | | | - Paolo Bosi
- Department of Agricultural and Food Science (DISTAL), University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Science (DISTAL), University of Bologna, Bologna, Italy
| |
Collapse
|
39
|
Bassiony SS, Al-Sagheer AA, El-Kholy MS, Elwakeel EA, Helal AA, Alagawany M. Evaluation of Enterococcus faecium NCIMB 11181 and Clostridium butyricum probiotic supplements in post-weaning rabbits reared under thermal stress conditions. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1941334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Samar S. Bassiony
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Adham A. Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed S. El-Kholy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Eman A. Elwakeel
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Amera A. Helal
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
40
|
Zheng M, Mao P, Tian X, Meng L. Effects of grazing mixed-grass pastures on growth performance, immune responses, and intestinal microbiota in free-range Beijing-you chickens. Poult Sci 2020; 100:1049-1058. [PMID: 33518063 PMCID: PMC7858154 DOI: 10.1016/j.psj.2020.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022] Open
Abstract
There is an increasing interest in free-range poultry with the increasing focus on food safety and animal welfare. This study was conducted to evaluate the effects of grazing mixed-grass pastures on growth performance, immune responses, and intestinal microbiota in free-range laying chickens. Ten-week-old female Beijing-you chickens were blocked by the BW and randomly assigned to 3 free-range systems in poplar plantations for 120 d: forage-removed paddocks with a high stocking density of 5 m2/hen (control [CK]); mixed-grass pastures with a low stocking density of 6 m2/hen ;or mixed-grass pastures with a high stocking density of 5 m2/hen. Intestinal microbial community analysis was performed by 16S rRNA gene sequencing using Illumina MiSeq. The results revealed that no differences (P > 0.05) were found between the 3 raising systems for the BW and ADG. Chickens grazing mixed-grass pastures exhibited decreased (P > 0.05) mortality and improved immune responses as evidenced by increased T-lymphocyte proliferation (P > 0.05) and immunoglobulin A (P > 0.05) and immunoglobulin M concentrations (P < 0.05) compared with those raised in forage-removed paddocks. Metagenomic analysis indicated that grazing mixed-grass pastures regulated the intestinal microbiota by increasing the prevalence of beneficial bacteria, such as Lactobacillus, Bacteroides, and Faecalibacterium, and reducing potentially pathogenic bacteria population, such as the Rikenellaceae_RC9_gut_group compared with the CK. Therefore, this study indicated that grazing mixed-grass pastures could positively influence intestinal microbiota that may contribute to the overall growth and immunity of free-range chickens and that a low stocking density of 6 m2/hen was optimal to Beijing-you chickens grazing mixed-grass pastures.
Collapse
Affiliation(s)
- Mingli Zheng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Peichun Mao
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoxia Tian
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lin Meng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
41
|
Zhen W, Shao Y, Wu Y, Li L, Pham VH, Abbas W, Wan Z, Guo Y, Wang Z. Dietary yeast β-glucan supplementation improves eggshell color and fertile eggs hatchability as well as enhances immune functions in breeder laying hens. Int J Biol Macromol 2020; 159:607-621. [DOI: 10.1016/j.ijbiomac.2020.05.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022]
|
42
|
Deng Q, Shi H, Luo Y, Zhao H, Liu N. Effect of dietary Lactobacilli mixture on Listeria monocytogenes infection and virulence property in broilers. Poult Sci 2020; 99:3655-3662. [PMID: 32616262 PMCID: PMC7597833 DOI: 10.1016/j.psj.2020.03.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to investigate the effect of probiotic Lactobacilli addition on Listeria monocytogenes load, inflammatory reaction, and virulence properties in broilers from 1 to 14 D of age. A total of 480 broiler chicks were randomly allocated to 4 treatments of 6 replicates each. All birds were infected with L. monocytogenes on the first day and supplemented an equal amount mixture of Lactobacillus acidophilus and Lactobacillus plantarum at doses of 0 (control), 106, 108, 1010 cfu/kg of diet. The results showed that on 7 and 14 D after administration, Lactobacilli addition at the 3 doses decreased (P < 0.05) L. monocytogenes loads in the cecum, skin, liver, and spleen by 0.065 to 0.933 log10 cfu, and the pathogen linearly reduced (P ≤ 0.015) with the increasing doses of probiotics in the skin. Serum cytokines including IL-1β, IL-6, tumor necrosis factor-α, and interferon-γ in probiotics treatments were decreased (P < 0.05) by 25.4 to 51.1%. Transcriptional levels of genes related to anti-inflammatory reactions including IL-10, hypoxia inducible factor 1 alpha (HIF1A), prostaglandin E receptor 2, and prostaglandin-endoperoxide synthase 2 in the intestinal mucosa were upregulated (P < 0.05) in Lactobacilli treatments, and linear and quadratic responses (P ≤ 0.019) were found on HIF1A. Furthermore, the probiotics attenuated (P < 0.05) listerial adhesion, pore-forming, and invasion properties by downregulating autolysin Ami, listeriolysin O, internalin A and B, and a linear (P = 0.006) dose response of probiotics was exhibited on flagellin. The findings indicate that dietary coadministration of L. acidophilus and L. plantarum can attenuate L. monocytogenes infection by depressing its intestinal inoculation, translocation, inflammatory reaction, and virulence property in broilers and suggest that the probiotics can be an alternative against listerial infection in broilers.
Collapse
Affiliation(s)
- Qingqing Deng
- Department of Animal Production, Henan University of Science and Technology, Luoyang 471023, China
| | - Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Yiran Luo
- Department of Animal Production, Henan University of Science and Technology, Luoyang 471023, China
| | - Heping Zhao
- Department of Animal Production, Henan University of Science and Technology, Luoyang 471023, China
| | - Ning Liu
- Department of Animal Production, Henan University of Science and Technology, Luoyang 471023, China; National Engineering Research Center of Biological Feed, Beijing 100008, China.
| |
Collapse
|
43
|
Zhu F, Zhang B, Li J, Zhu L. Effects of fermented feed on growth performance, immune response, and antioxidant capacity in laying hen chicks and the underlying molecular mechanism involving nuclear factor-κB. Poult Sci 2020; 99:2573-2580. [PMID: 32359593 PMCID: PMC7597451 DOI: 10.1016/j.psj.2019.12.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
This study investigated the effects of fermented-feed diets on growth performance, immune status, and antioxidant responses in laying hen chicks and the underlying molecular mechanism, specifically, the role of the nuclear factor-κB (NF-κB) signaling pathway. A total of 80 healthy 14-day-old laying hen chicks were randomly divided into 4 treatments: basal diet (CON); basal diet supplemented with 7.5% fermented feed (FD); FD diet plus the NF-κB inhibitor BAY 11-7082 (FD + BAY); and FD diet plus the NF-κB inhibitor JSH-23 (FD + JSH). The NF-κB inhibitors were administered by intraperitoneal injection. The experiment lasted 21 D. Fermented feed supplementation significantly increased the body weight and average body weight gain of laying hen chicks but significantly decreased the feed conversion ratio. Additionally, fermented feed supplementation significantly increased mitogen-activated T-cell and B-cell proliferation in the peripheral blood, as well as elevated the serum concentrations of interleukin (IL)-1, IL-2, IL-4, IL-6, and tumor necrosis factor (TNF-α); however, NF-κB inhibition significantly reduced T-cell proliferation and serum IL-1, IL-6, and TNF-α levels. The levels of IgA, IgG, IgM, and Newcastle disease virus antibody in the serum were significantly increased by the addition of fermented feed. Furthermore, fermented feed supplementation significantly improved antioxidant function, as indicated by the increases of total antioxidant capacity, total superoxide dismutase activity, and glutathione peroxidase activity and the decrease of malonaldehyde level. However, NF-κB inhibition reversed these changes. Western blot analysis showed that fermented feed treatment increased splenic IκB kinase β and NF-κB protein levels, whereas these increases were prevented by NF-κB inhibition. In conclusion, fermented feed improves the growth performance, immune function, and antioxidant capacity of laying hen chicks. Fermented feed-induced modulation of T-cell proliferation, T helper type 1 and T helper type 2 cytokine production, and antioxidation is associated with NF-κB activation.
Collapse
Affiliation(s)
- Fenghua Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jin Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Lianqin Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
44
|
Wu Y, Zhen W, Geng Y, Wang Z, Guo Y. Pretreatment with probiotic Enterococcus faecium NCIMB 11181 ameliorates necrotic enteritis-induced intestinal barrier injury in broiler chickens. Sci Rep 2019; 9:10256. [PMID: 31311959 PMCID: PMC6635415 DOI: 10.1038/s41598-019-46578-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023] Open
Abstract
The dysfunction of tight-junction integrity caused by necrotic enteritis (NE) is associated with decreased nutrient absorption and gut injury in broiler chickens. Although probiotic Enterococcus faecium (E. faecium) has been reported to possess immune-regulatory characteristics and can prevent diarrhea in pigs, very little information exists in relation to the specific regulatory impact of E. faecium NCIMB 11181 on NE-induced intestinal barrier injury of broiler chickens. This study was conducted to investigate the protective effects of probiotic E. faecium NCIMB 11181 on NE-induced intestinal barrier injury in broiler chickens. The study also aimed to elucidate the mechanisms that underpin these protective effects. One hundred and eighty Arbor Acres (AA) broiler chicks (one day old) were randomly assigned using a 2 × 2 factorial arrangement into two groups fed different levels of dietary E. faecium NCIMB 11181 (0 or 2 × 108 CFU/kg of diet) and two disease-challenge groups (control or NE challenged). The results showed that NE induced body weight loss, intestinal lesions, and histopathological inflammation, as well as intestinal-cell apoptosis. These symptoms were alleviated following the administration of probiotic E. faecium NCIMB 11181. Pretreatment with probiotic E. faecium NCIMB 11181 significantly upregulated the expression of the Claudin-1 gene encoding a tight-junction protein. Claudin-1 and HSP70 protein expression were also increased in the jejunum regardless of NE infection. Furthermore, NE-infected birds fed with E. faecium displayed notable increases in MyD88, NF-κB, iNOS, PI3K, GLP-2, IL-1β, IL-4, and HSP70 mRNA expression. E. faecium NCIMB 11181 administration also significantly improved the animals’ intestinal microbial composition regardless of NE treatment. These findings indicated that addition of E. faecium NCIMB 11181 to poultry feed is effective in mitigating NE-induced gut injury, possibly by strengthening intestinal mucosal barrier function, as well as modulating gut microflora and intestinal mucosal immune responses.
Collapse
Affiliation(s)
- Yuanyuan Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenrui Zhen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanqiang Geng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Dopamine production in Enterococcus faecium: A microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential. PLoS One 2018; 13:e0207038. [PMID: 30485295 PMCID: PMC6261559 DOI: 10.1371/journal.pone.0207038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
The mechanisms by which probiotics may influence host physiology are still incompletely understood. Microbial endocrinology, a field representing the union of microbiology, endocrinology and neurobiology, has theorized that microorganisms have the capacity to serve as neurochemical delivery vehicles [1]. According to microbial endocrinology, neurochemicals can serve as a common language between host and bacterium, enabling bidirectional communication. We report herein the first demonstration that Enterococcus sp. has the capacity to produce dopamine in a gastrointestinal-like environment when supplied with the dopamine precursor L-3,4 dihydroxyphenylalanine (L-dopa). The results presented herein provide a means to select probiotics based on neurochemical-producing potential and suggest the possibility that probiotics containing E. faecium may serve to influence the host through dopaminergic pathways.
Collapse
|