1
|
Lu J, Xu H, Wang D, Chen Y, Inoue T, Gao L, Lei K. 3D reconstruction of neuronal allometry and neuromuscular projections in asexual planarians using expansion tiling light sheet microscopy. eLife 2025; 13:RP101103. [PMID: 40152910 PMCID: PMC11957544 DOI: 10.7554/elife.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
The intricate coordination of the neural network in planarian growth and regeneration has remained largely unrevealed, partly due to the challenges of imaging the CNS in three dimensions (3D) with high resolution and within a reasonable timeframe. To address this gap in systematic imaging of the CNS in planarians, we adopted high-resolution, nanoscale imaging by combining tissue expansion and tiling light-sheet microscopy, achieving up to fourfold linear expansion. Using an automatic 3D cell segmentation pipeline, we quantitatively profiled neurons and muscle fibers at the single-cell level in over 400 wild-type planarians during homeostasis and regeneration. We validated previous observations of neuronal cell number changes and muscle fiber distribution. We found that the increase in neuron cell number tends to lag behind the rapid expansion of somatic cells during the later phase of homeostasis. By imaging the planarian with up to 120 nm resolution, we also observed distinct muscle distribution patterns at the anterior and posterior poles. Furthermore, we investigated the effects of β-catenin-1 RNAi on muscle fiber distribution at the posterior pole, consistent with changes in anterior-posterior polarity. The glial cells were observed to be close in contact with dorsal-ventral muscle fibers. Finally, we observed disruptions in neural-muscular networks in inr-1 RNAi planarians. These findings provide insights into the detailed structure and potential functions of the neural-muscular system in planarians and highlight the accessibility of our imaging tool in unraveling the biological functions underlying their diverse phenotypes and behaviors.
Collapse
Affiliation(s)
- Jing Lu
- College of Life Sciences, Zhejiang UniversityHangzhouChina
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
| | - Hao Xu
- College of Life Sciences, Zhejiang UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
| | - Dongyue Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Institute of Biology, Westlake Institute for Advanced StudyHangzhouChina
| | - Yanlu Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Institute of Biology, Westlake Institute for Advanced StudyHangzhouChina
| | - Takeshi Inoue
- Division of Adaptation Physiology, Faculty of Medicine, Tottori UniversityYonagoJapan
| | - Liang Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Biology, Westlake Institute for Advanced StudyHangzhouChina
| | - Kai Lei
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Institute of Biology, Westlake Institute for Advanced StudyHangzhouChina
| |
Collapse
|
2
|
Sun D, He S, Li X, Jin B, Wu F, Liu D, Dong Z, Chen G. Toxic effects and mechanistic insights of cadmium telluride quantum dots on the homeostasis and regeneration in planarians. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137047. [PMID: 39754879 DOI: 10.1016/j.jhazmat.2024.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels. The results showed that exposure to CdTe QDs led to tissue damage, abnormal motor behavior, delayed regeneration, morphological abnormalities, and reduced survival. Furthermore, CdTe QDs caused excessive stem cell proliferation, leading to defective differentiation of tissues such as the epidermis, cilia, protonephridia, muscle, and nerves. Neurotoxicity manifests as a reduction in the number of neurons and neurotransmitter imbalance. Further studies revealed that CdTe QDs induced cell death by promoting reactive oxygen species (ROS) accumulation, triggering oxidative stress and deoxyribonucleic acid (DNA) damage, which led to excessive mitochondrial fission and activation of the mitochondria-dependent apoptotic signaling pathway. Overall, the balance between stem cell proliferation, differentiation, and apoptosis was disrupted, ultimately leading to delayed regeneration and homeostatic imbalance. These findings offer new insights into the environmental risk assessment of QDs and provide valuable directions for further research on their toxic effects on human stem cells and regenerative processes.
Collapse
Affiliation(s)
- Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Siyuan He
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xuheng Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Fan Wu
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang 453007, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
3
|
Chen X. Stem cells (neoblasts) and positional information jointly dominate regeneration in planarians. Heliyon 2025; 11:e41833. [PMID: 39877626 PMCID: PMC11773080 DOI: 10.1016/j.heliyon.2025.e41833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Regeneration is the ability to accurately regrow missing body parts. The unparalleled regenerative capacity and incredible tissue plasticity of planarians, both resulting from the presence of abundant adult stem cells referred to as neoblasts, offer a unique opportunity to investigate the cellular and molecular principles underlying regeneration. Neoblasts are capable of self-renewal and differentiation into the desired cell types for correct replacement of lost parts after tissue damage. Positional information in muscle cells governs the polarity and patterning of the body plan during homeostasis and regeneration. For planarians, removal of neoblasts disables the regenerative feats and disruption of positional information results in the regeneration of inappropriate missing body regions, only the combination of neoblasts and positional information enables regeneration. Here, I summarize the current state of the field in neoblast lineage potential, subclasses and specification, and in the roles of positional information for proper tissue turnover and regeneration in planarians.
Collapse
Affiliation(s)
- Xuhui Chen
- Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 45000, China
| |
Collapse
|
4
|
King HO, Owusu-Boaitey KE, Fincher CT, Reddien PW. A transcription factor atlas of stem cell fate in planarians. Cell Rep 2024; 43:113843. [PMID: 38401119 PMCID: PMC11232438 DOI: 10.1016/j.celrep.2024.113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Whole-body regeneration requires the ability to produce the full repertoire of adult cell types. The planarian Schmidtea mediterranea contains over 125 cell types, which can be regenerated from a stem cell population called neoblasts. Neoblast fate choice can be regulated by the expression of fate-specific transcription factors (FSTFs). How fate choices are made and distributed across neoblasts versus their post-mitotic progeny remains unclear. We used single-cell RNA sequencing to systematically map fate choices made in S/G2/M neoblasts and, separately, in their post-mitotic progeny that serve as progenitors for all adult cell types. We defined transcription factor expression signatures associated with all detected fates, identifying numerous new progenitor classes and FSTFs that regulate them. Our work generates an atlas of stem cell fates with associated transcription factor signatures for most cell types in a complete adult organism.
Collapse
Affiliation(s)
- Hunter O King
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kwadwo E Owusu-Boaitey
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Christopher T Fincher
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Petersen CP. Wnt signaling in whole-body regeneration. Curr Top Dev Biol 2023; 153:347-380. [PMID: 36967200 DOI: 10.1016/bs.ctdb.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Regeneration abilities are widespread among animals and select species can restore any body parts removed by wounds that sever the major body axes. This capability of whole-body regeneration as exemplified in flatworm planarians, Acoels, and Cnidarians involves initial responses to injury, the assessment of wound site polarization, determination of missing tissue and programming of blastema fate, and patterned outgrowth to restore axis content and proportionality. Wnt signaling drives many shared and conserved aspects of the biology of whole-body regeneration in the planarian species Schmidtea mediterranea and Dugesia japonica, in the Acoel Hofstenia miamia, and in Cnidarians Hydra and Nematostella. These overlapping mechanisms suggest whole-body regeneration might be an ancestral property across diverse animal taxa.
Collapse
Affiliation(s)
- Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
6
|
Sarkar SR, Dubey VK, Jahagirdar A, Lakshmanan V, Haroon MM, Sowndarya S, Sowdhamini R, Palakodeti D. DDX24 is required for muscle fiber organization and the suppression of wound-induced Wnt activity necessary for pole re-establishment during planarian regeneration. Dev Biol 2022; 488:11-29. [PMID: 35523320 DOI: 10.1016/j.ydbio.2022.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
Planarians have a remarkable ability to undergo whole-body regeneration. Successful regeneration outcome is determined by processes like polarity establishment at the wound site, which is followed by pole (organizer) specification. Interestingly, these determinants are almost exclusively expressed by muscles in these animals. However, the molecular toolkit that enables the functional versatility of planarian muscles remains poorly understood. Here we report that SMED_DDX24, a D-E-A-D Box RNA helicase, is necessary for planarian survival and regeneration. We found that DDX24 is enriched in muscles and its knockdown disrupts muscle fiber organization. This leads to defective pole specification, which in turn results in misregulation of many positional control genes specifically during regeneration. ddx24 RNAi also upregulates wound-induced Wnt signalling. Suppressing this ectopic Wnt activity rescues the knockdown phenotype by enabling better anterior pole regeneration. To summarize, our work highlights the role of an RNA helicase in muscle fiber organization, and modulating amputation-induced wnt levels, both of which seem critical for pole re-organization, thereby regulating whole-body regeneration.
Collapse
Affiliation(s)
- Souradeep R Sarkar
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bengaluru, 560065, India; Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Vinay Kumar Dubey
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anusha Jahagirdar
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Vairavan Lakshmanan
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Mohamed Mohamed Haroon
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India; SASTRA University, Thanjavur, 613401, India
| | - Sai Sowndarya
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bengaluru, 560065, India
| | - Dasaradhi Palakodeti
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India.
| |
Collapse
|
7
|
Abstract
In his prominent book Regeneration (1901), T.H. Morgan's collected and synthesized theoretical and experimental findings from a diverse array of regenerating animals and plants. Through his endeavor, he introduced a new way to study regeneration and its evolution, setting a conceptual framework that still guides today's research and that embraces the contemporary evolutionary and developmental approaches.In the first part of the chapter, we summarize Morgan's major tenets and use it as a narrative thread to advocate interpreting regenerative biology through the theoretical tools provided by evolution and developmental biology, but also to highlight potential caveats resulting from the rapid proliferation of comparative studies and from the expansion of experimental laboratory models. In the second part, we review some experimental evo-devo approaches, highlighting their power and some of their interpretative dangers. Finally, in order to further understand the evolution of regenerative abilities, we portray an adaptive perspective on the evolution of regeneration and suggest a framework for investigating the adaptive nature of regeneration.
Collapse
Affiliation(s)
| | - Alexandre Alié
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France.
| |
Collapse
|
8
|
Transcription Factors Active in the Anterior Blastema of Schmidtea mediterranea. Biomolecules 2021; 11:biom11121782. [PMID: 34944426 PMCID: PMC8698962 DOI: 10.3390/biom11121782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022] Open
Abstract
Regeneration, the restoration of body parts after injury, is quite widespread in the animal kingdom. Species from virtually all Phyla possess regenerative abilities. Human beings, however, are poor regenerators. Yet, the progress of knowledge and technology in the fields of bioengineering, stem cells, and regenerative biology have fostered major advancements in regenerative medical treatments, which aim to regenerate tissues and organs and restore function. Human induced pluripotent stem cells can differentiate into any cell type of the body; however, the structural and cellular complexity of the human tissues, together with the inability of our adult body to control pluripotency, require a better mechanistic understanding. Planarians, with their capacity to regenerate lost body parts thanks to the presence of adult pluripotent stem cells could help providing such an understanding. In this paper, we used a top-down approach to shortlist blastema transcription factors (TFs) active during anterior regeneration. We found 44 TFs—31 of which are novel in planarian—that are expressed in the regenerating blastema. We analyzed the function of half of them and found that they play a role in the regeneration of anterior structures, like the anterior organizer, the positional instruction muscle cells, the brain, the photoreceptor, the intestine. Our findings revealed a glimpse of the complexity of the transcriptional network governing anterior regeneration in planarians, confirming that this animal model is the perfect playground to study in vivo how pluripotency copes with adulthood.
Collapse
|
9
|
Goel T, Ireland D, Shetty V, Rabeler C, Diamond PH, Collins EMS. Let it rip: the mechanics of self-bisection in asexual planarians determines their population reproductive strategies. Phys Biol 2021; 19. [PMID: 34638110 DOI: 10.1088/1478-3975/ac2f29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Asexual freshwater planarians reproduce by transverse bisection (binary fission) into two pieces. This process produces a head and a tail, which fully regenerate within 1-2 weeks. How planarians split into two offspring-using only their musculature and substrate traction-is a challenging biomechanics problem. We found that three different species,Dugesia japonica,Girardia tigrinaandSchmidtea mediterranea, have evolved three different mechanical solutions to self-bisect. Using time lapse imaging of the fission process, we quantitatively characterize the main steps of division in the three species and extract the distinct and shared key features. Across the three species, planarians actively alter their body shape, regulate substrate traction, and use their muscles to generate tensile stresses large enough to overcome the ultimate tensile strength of the tissue. Moreover, we show thathoweach planarian species divides dictates how resources are split among its offspring. This ultimately determines offspring survival and reproductive success. Thus, heterospecific differences in the mechanics of self-bisection of individual worms explain the observed differences in the population reproductive strategies of different planarian species.
Collapse
Affiliation(s)
- Tapan Goel
- Physics Department, UC San Diego, La Jolla, CA, United States of America
| | - Danielle Ireland
- Biology Department, Swarthmore College, Swarthmore, PA, United States of America
| | - Vir Shetty
- Physics and Astronomy Department, Swarthmore College, Swarthmore, PA, United States of America
| | - Christina Rabeler
- Biology Department, Swarthmore College, Swarthmore, PA, United States of America
| | - Patrick H Diamond
- Physics Department, UC San Diego, La Jolla, CA, United States of America
| | - Eva-Maria S Collins
- Physics Department, UC San Diego, La Jolla, CA, United States of America.,Biology Department, Swarthmore College, Swarthmore, PA, United States of America.,Physics and Astronomy Department, Swarthmore College, Swarthmore, PA, United States of America
| |
Collapse
|
10
|
Molina MD, Cebrià F. Decoding Stem Cells: An Overview on Planarian Stem Cell Heterogeneity and Lineage Progression. Biomolecules 2021; 11:1532. [PMID: 34680165 PMCID: PMC8533874 DOI: 10.3390/biom11101532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/26/2023] Open
Abstract
Planarians are flatworms capable of whole-body regeneration, able to regrow any missing body part after injury or amputation. The extraordinary regenerative capacity of planarians is based upon the presence in the adult of a large population of somatic pluripotent stem cells. These cells, called neoblasts, offer a unique system to study the process of stem cell specification and differentiation in vivo. In recent years, FACS-based isolation of neoblasts, RNAi functional analyses as well as high-throughput approaches such as single-cell sequencing have allowed a rapid progress in our understanding of many different aspects of neoblast biology. Here, we summarize our current knowledge on the molecular signatures that define planarian neoblasts heterogeneity, which includes a percentage of truly pluripotent stem cells, and guide the commitment of pluripotent neoblasts into lineage-specific progenitor cells, as well as their differentiation into specific planarian cell types.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| |
Collapse
|
11
|
Kreshchenko ND. A Study of the Mechanisms of Action of FMRF-Like Peptides in Inducing Muscle Contraction in Planarians (Platyhelminthes). Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s000635092103009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Zullo L, Bozzo M, Daya A, Di Clemente A, Mancini FP, Megighian A, Nesher N, Röttinger E, Shomrat T, Tiozzo S, Zullo A, Candiani S. The Diversity of Muscles and Their Regenerative Potential across Animals. Cells 2020; 9:cells9091925. [PMID: 32825163 PMCID: PMC7563492 DOI: 10.3390/cells9091925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, it is possible to identify conserved and divergent cellular and molecular mechanisms underlying muscle plasticity. In this review we aim at providing an overview of muscle regeneration studies in metazoans, highlighting the major regenerative strategies and molecular pathways involved. By gathering these findings, we wish to advocate a comparative and evolutionary approach to prompt a wider use of “non-canonical” animal models for molecular and even pharmacological studies in the field of muscle regeneration.
Collapse
Affiliation(s)
- Letizia Zullo
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (L.Z.); (A.Z.)
| | - Matteo Bozzo
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| | - Alon Daya
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Alessio Di Clemente
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | | | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS, INSERM, 06107 Nice, France;
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Paris, France;
| | - Alberto Zullo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy;
- Correspondence: (L.Z.); (A.Z.)
| | - Simona Candiani
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| |
Collapse
|
13
|
The Cellular and Molecular Basis for Planarian Regeneration. Cell 2019; 175:327-345. [PMID: 30290140 DOI: 10.1016/j.cell.2018.09.021] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/03/2023]
Abstract
Regeneration is one of the great mysteries of biology. Planarians are flatworms capable of dramatic feats of regeneration, which have been studied for over 2 centuries. Recent findings identify key cellular and molecular principles underlying these feats. A stem cell population (neoblasts) generates new cells and is comprised of pluripotent stem cells (cNeoblasts) and fate-specified cells (specialized neoblasts). Positional information is constitutively active and harbored primarily in muscle, where it acts to guide stem cell-mediated tissue turnover and regeneration. I describe here a model in which positional information and stem cells combine to enable regeneration.
Collapse
|
14
|
Cote LE, Simental E, Reddien PW. Muscle functions as a connective tissue and source of extracellular matrix in planarians. Nat Commun 2019; 10:1592. [PMID: 30962434 PMCID: PMC6453901 DOI: 10.1038/s41467-019-09539-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 12/24/2022] Open
Abstract
Regeneration and tissue turnover require new cell production and positional information. Planarians are flatworms capable of regenerating all body parts using a population of stem cells called neoblasts. The positional information required for tissue patterning is primarily harbored by muscle cells, which also control body contraction. Here we produce an in silico planarian matrisome and use recent whole-animal single-cell-transcriptome data to determine that muscle is a major source of extracellular matrix (ECM). No other ECM-secreting, fibroblast-like cell type was detected. Instead, muscle cells express core ECM components, including all 19 collagen-encoding genes. Inhibition of muscle-expressed hemicentin-1 (hmcn-1), which encodes a highly conserved ECM glycoprotein, results in ectopic peripheral localization of cells, including neoblasts, outside of the muscle layer. ECM secretion and hmcn-1-dependent maintenance of tissue separation indicate that muscle functions as a planarian connective tissue, raising the possibility of broad roles for connective tissue in adult positional information. How the cellular source of positional information compares across regenerative animals is unclear. Here, the authors find that planarian muscle, which harbours positional information, acts as a connective tissue by being a major site of matrisome gene expression and by maintaining tissue architecture.
Collapse
Affiliation(s)
- Lauren E Cote
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main St, Cambridge, MA, 02142, USA
| | - Eric Simental
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main St, Cambridge, MA, 02142, USA.,University of California San Francisco, 600 16th Street, San Francisco, CA, 94143, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main St, Cambridge, MA, 02142, USA.
| |
Collapse
|
15
|
Prünster MM, Ricci L, Brown FD, Tiozzo S. Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis. EvoDevo 2019; 10:3. [PMID: 30867897 PMCID: PMC6399929 DOI: 10.1186/s13227-019-0116-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
Background In chordates, cardiac and body muscles arise from different embryonic origins. In addition, myogenesis can be triggered in adult organisms, during asexual development or regeneration. In non-vertebrate chordates like ascidians, muscles originate from embryonic precursors regulated by a conserved set of genes that orchestrate cell behavior and dynamics during development. In colonial ascidians, besides embryogenesis and metamorphosis, an adult can propagate asexually via blastogenesis, skipping embryo and larval stages, and form anew the adult body, including the complete body musculature. Results To investigate the cellular origin and mechanisms that trigger non-embryonic myogenesis, we followed the expression of ascidian myogenic genes during Botryllus schlosseri blastogenesis and reconstructed the dynamics of muscle precursors. Based on the expression dynamics of Tbx1/10, Ebf, Mrf, Myh3 for body wall and of FoxF, Tbx1/10, Nk4, Myh2 for heart development, we show that the embryonic factors regulating myogenesis are only partially co-opted in blastogenesis, and that markers for muscle precursors are expressed in two separate domains: the dorsal tube and the ventral mesenchyma. Conclusions Regardless of the developmental pathway, non-embryonic myogenesis shares a similar molecular and anatomical setup as embryonic myogenesis, but implements a co-option and loss of molecular modules. We then propose that the cellular precursors contributing to heart and body muscles may have different origins and may be coordinated by different developmental pathways. Electronic supplementary material The online version of this article (10.1186/s13227-019-0116-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Mandela Prünster
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France
| | - Lorenzo Ricci
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France.,2Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138 USA
| | - Federico D Brown
- 3Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, São Paulo, SP CEP 05508-090 Brazil.,4Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Sebastião, SP CEP 11612-109 Brazil
| | - Stefano Tiozzo
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France
| |
Collapse
|
16
|
Scimone ML, Wurtzel O, Malecek K, Fincher CT, Oderberg IM, Kravarik KM, Reddien PW. foxF-1 Controls Specification of Non-body Wall Muscle and Phagocytic Cells in Planarians. Curr Biol 2018; 28:3787-3801.e6. [PMID: 30471994 DOI: 10.1016/j.cub.2018.10.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/17/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022]
Abstract
Planarians are flatworms capable of regenerating any missing body part in a process requiring stem cells and positional information. Muscle is a major source of planarian positional information and consists of several types of fibers with distinct regulatory roles in regeneration. The transcriptional regulatory programs used to specify different muscle fibers are poorly characterized. Using single-cell RNA sequencing, we define the transcriptomes of planarian dorsal-ventral muscle (DVM), intestinal muscle (IM), and pharynx muscle. This analysis identifies foxF-1, which encodes a broadly conserved Fox-family transcription factor, as a master transcriptional regulator of all non-body wall muscle. The transcription factors encoded by nk4 and gata4/5/6-2 specify two different subsets of DVM, lateral and medial, respectively, whereas gata4/5/6-3 specifies IM. These muscle types all express planarian patterning genes. Both lateral and medial DVM are required for medial-lateral patterning in regeneration, whereas medial DVM and IM have a role in maintaining and regenerating intestine morphology. In addition to the role in muscle, foxF-1 is required for the specification of multiple cell types with transcriptome similarities, including high expression levels of cathepsin genes. These cells include pigment cells, glia, and several other cells with unknown function. cathepsin+ cells phagocytose E. coli, suggesting these are phagocytic cells. In conclusion, we describe a regulatory program for planarian muscle cell subsets and phagocytic cells, both driven by foxF-1. FoxF proteins specify different mesoderm-derived tissues in other organisms, suggesting that FoxF regulates formation of an ancient and broadly conserved subset of mesoderm derivatives in the Bilateria.
Collapse
Affiliation(s)
- M Lucila Scimone
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Omri Wurtzel
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Kathryn Malecek
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Christopher T Fincher
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Isaac M Oderberg
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Kellie M Kravarik
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Olson PD, Zarowiecki M, James K, Baillie A, Bartl G, Burchell P, Chellappoo A, Jarero F, Tan LY, Holroyd N, Berriman M. Genome-wide transcriptome profiling and spatial expression analyses identify signals and switches of development in tapeworms. EvoDevo 2018; 9:21. [PMID: 30455861 PMCID: PMC6225667 DOI: 10.1186/s13227-018-0110-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tapeworms are agents of neglected tropical diseases responsible for significant health problems and economic loss. They also exhibit adaptations to a parasitic lifestyle that confound comparisons of their development with other animals. Identifying the genetic factors regulating their complex ontogeny is essential to understanding unique aspects of their biology and for advancing novel therapeutics. Here we use RNA sequencing to identify up-regulated signalling components, transcription factors and post-transcriptional/translational regulators (genes of interest, GOI) in the transcriptomes of Larvae and different regions of segmented worms in the tapeworm Hymenolepis microstoma and combine this with spatial gene expression analyses of a selection of genes. RESULTS RNA-seq reads collectively mapped to 90% of the > 12,000 gene models in the H. microstoma v.2 genome assembly, demonstrating that the transcriptome profiles captured a high percentage of predicted genes. Contrasts made between the transcriptomes of Larvae and whole, adult worms, and between the Scolex-Neck, mature strobila and gravid strobila, resulted in 4.5-30% of the genes determined to be differentially expressed. Among these, we identified 190 unique GOI up-regulated in one or more contrasts, including a large range of zinc finger, homeobox and other transcription factors, components of Wnt, Notch, Hedgehog and TGF-β/BMP signalling, and post-transcriptional regulators (e.g. Boule, Pumilio). Heatmap clusterings based on overall expression and on select groups of genes representing 'signals' and 'switches' showed that expression in the Scolex-Neck region is more similar to that of Larvae than to the mature or gravid regions of the adult worm, which was further reflected in large overlap of up-regulated GOI. CONCLUSIONS Spatial expression analyses in Larvae and adult worms corroborated inferences made from quantitative RNA-seq data and in most cases indicated consistency with canonical roles of the genes in other animals, including free-living flatworms. Recapitulation of developmental factors up-regulated during larval metamorphosis suggests that strobilar growth involves many of the same underlying gene regulatory networks despite the significant disparity in developmental outcomes. The majority of genes identified were investigated in tapeworms for the first time, setting the stage for advancing our understanding of developmental genetics in an important group of flatworm parasites.
Collapse
Affiliation(s)
- Peter D. Olson
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Magdalena Zarowiecki
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Katherine James
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Andrew Baillie
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Georgie Bartl
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Phil Burchell
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Azita Chellappoo
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Francesca Jarero
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Li Ying Tan
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Nancy Holroyd
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Matt Berriman
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| |
Collapse
|
18
|
Birkholz TR, Van Huizen AV, Beane WS. Staying in shape: Planarians as a model for understanding regenerative morphology. Semin Cell Dev Biol 2018; 87:105-115. [PMID: 29738883 DOI: 10.1016/j.semcdb.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023]
Abstract
A key requirement of tissue/organ regeneration is the ability to induce appropriate shape in situ. Regenerated structures need to be integrated with pre-existing ones, through the combined regulation of new tissue growth and the scaling of surrounding tissues. This requires a tightly coordinated control of individual cell functions such as proliferation and stem cell differentiation. While great strides have been made in elucidating cell growth and differentiation mechanisms, how overall shape is generated during regeneration remains unknown. This is because a significant gap remains in our understanding of how cell behaviors are coordinated at the level of tissues and organs. The highly regenerative planarian flatworm has emerged as an important model for defining and understanding regenerative shape mechanisms. This review provides an overview of the main processes known to regulate tissue and animal shape during planarian regeneration: adult stem cell regulation, the reestablishment of body axes, tissue remodeling in pre-existing structures, organ scaling and the maintenance of body proportion, and the bioelectrical regulation of animal morphology. In order for the field to move forward, it will be necessary to identify shape mutants as a means to uncover the molecular mechanisms that synchronize all these separate processes to produce the worm's final regenerative shape. This knowledge will also aid efforts to define the mechanisms that control the termination of regenerative processes.
Collapse
Affiliation(s)
- Taylor R Birkholz
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Avenue, Kalamazoo, MI, 49008, USA
| | - Alanna V Van Huizen
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Avenue, Kalamazoo, MI, 49008, USA
| | - Wendy S Beane
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Avenue, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
19
|
Lu HM, Lu XL, Zhai JH, Zhou RB, Liu YM, Guo WH, Zhang CY, Shang P, Yin DC. Effects of large gradient high magnetic field (LG-HMF) on the long-term culture of aquatic organisms: Planarians example. Bioelectromagnetics 2018; 39:428-440. [PMID: 29873401 DOI: 10.1002/bem.22135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/18/2018] [Indexed: 11/10/2022]
Abstract
Large gradient high magnetic field (LG-HMF) is a powerful tool to study the effects of altered gravity on organisms. In our study, a platform for the long-term culture of aquatic organisms was designed based on a special superconducting magnet with an LG-HMF, which can provide three apparent gravity levels (µ g, 1 g, and 2 g), along with a control condition on the ground. Planarians, Dugesia japonica, were head-amputated and cultured for 5 days in a platform for head reconstruction. After planarian head regeneration, all samples were taken out from the superconducting magnet for a behavioral test under geomagnetic field and normal gravity conditions. To analyze differences among the four groups, four aspects of the planarians were considered, including head regeneration rate, phototaxis response, locomotor velocity, and righting behavior. Data showed that there was no significant difference in the planarian head regeneration rate under simulated altered gravity. According to statistical analysis of the behavioral test, all of the groups had normal functioning of the phototaxis response, while the planarians that underwent head reconstruction under the microgravity environment had significantly slower locomotor velocity and spent more time in righting behavior. Furthermore, histological staining and immunohistochemistry results helped us reveal that the locomotor system of planarians was affected by the simulated microgravity environment. We further demonstrated that the circular muscle of the planarians was weakened (hematoxylin and eosin staining), and the epithelial cilia of the planarians were reduced (anti-acetylated tubulin staining) under the simulated microgravity environment. Bioelectromagnetics. 2018;39:428-440. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui-Meng Lu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Xiao-Li Lu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Jia-Hui Zhai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Ren-Bin Zhou
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Yong-Ming Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Wei-Hong Guo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Peng Shang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| |
Collapse
|
20
|
Fincher CT, Wurtzel O, de Hoog T, Kravarik KM, Reddien PW. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 2018; 360:science.aaq1736. [PMID: 29674431 DOI: 10.1126/science.aaq1736] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/05/2018] [Indexed: 12/31/2022]
Abstract
The transcriptome of a cell dictates its unique cell type biology. We used single-cell RNA sequencing to determine the transcriptomes for essentially every cell type of a complete animal: the regenerative planarian Schmidtea mediterranea. Planarians contain a diverse array of cell types, possess lineage progenitors for differentiated cells (including pluripotent stem cells), and constitutively express positional information, making them ideal for this undertaking. We generated data for 66,783 cells, defining transcriptomes for known and many previously unknown planarian cell types and for putative transition states between stem and differentiated cells. We also uncovered regionally expressed genes in muscle, which harbors positional information. Identifying the transcriptomes for potentially all cell types for many organisms should be readily attainable and represents a powerful approach to metazoan biology.
Collapse
Affiliation(s)
- Christopher T Fincher
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omri Wurtzel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thom de Hoog
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kellie M Kravarik
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. .,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Subramanian SP, Babu P, Palakodeti D, Subramanian R. Identification of multiple isomeric core chitobiose-modified high-mannose and paucimannose N-glycans in the planarian Schmidtea mediterranea. J Biol Chem 2018; 293:6707-6720. [PMID: 29475940 PMCID: PMC5936828 DOI: 10.1074/jbc.ra117.000782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/20/2018] [Indexed: 01/17/2023] Open
Abstract
Cell surface–associated glycans mediate many cellular processes, including adhesion, migration, signaling, and extracellular matrix organization. The galactosylation of core fucose (GalFuc epitope) in paucimannose and complex-type N-glycans is characteristic of protostome organisms, including flatworms (planarians). Although uninvestigated, the structures of these glycans may play a role in planarian regeneration. Whole-organism MALDI-MS analysis of N-linked oligosaccharides from the planarian Schmidtea mediterranea revealed the presence of multiple isomeric high-mannose and paucimannose structures with unusual mono-, di-, and polygalactosylated (n = 3–5) core fucose structures; the latter structures have not been reported in other systems. Di- and trigalactosylated core fucoses were the most dominant glycomers. N-Glycans showed extensive, yet selective, methylation patterns, ranging from non-methylated to polymethylated glycoforms. Although the majority of glycoforms were polymethylated, a small fraction also consisted of non-methylated glycans. Remarkably, monogalactosylated core fucose remained unmethylated, whereas its polygalactosylated forms were methylated, indicating structurally selective methylation. Using database searches, we identified two potential homologs of the Galβ1–4Fuc–synthesizing enzyme from nematodes (GALT-1) that were expressed in the prepharyngeal, pharyngeal, and mesenchymal regions in S. mediterranea. The presence of two GALT-1 homologs suggests different requirements for mono- and polygalactosylation of core fucose for the formation of multiple isomers. Furthermore, we observed variations in core fucose glycosylation patterns in different planarian strains, suggesting evolutionary adaptation in fucose glycosylation. The various core chitobiose modifications and methylations create >60 different glycoforms in S. mediterranea. These results contribute greatly to our understanding of N-glycan biosynthesis and suggest the presence of a GlcNAc-independent biosynthetic pathway in S. mediterranea.
Collapse
Affiliation(s)
- Sabarinath Peruvemba Subramanian
- From the Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore 560065, Karnataka, India and
| | - Ponnusamy Babu
- Glycomics and Glycoproteomics Facility, Centre for Cellular and Molecular Platforms (C-CAMP), GKVK Post Office, Bellary Road, Bangalore 560065, Karnataka, India
| | - Dasaradhi Palakodeti
- From the Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore 560065, Karnataka, India and
| | - Ramaswamy Subramanian
- From the Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore 560065, Karnataka, India and
| |
Collapse
|
22
|
Some details of muscles innervations by FMRF-like nerve elements in planarian Girardia tigrina. ZOOMORPHOLOGY 2017. [DOI: 10.1007/s00435-017-0392-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Scimone ML, Cote LE, Reddien PW. Orthogonal muscle fibres have different instructive roles in planarian regeneration. Nature 2017; 551:623-628. [PMID: 29168507 PMCID: PMC6263039 DOI: 10.1038/nature24660] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/20/2017] [Indexed: 11/09/2022]
Abstract
The ability to regenerate missing body parts exists throughout the animal kingdom. Positional information is crucial for regeneration, but how it is harboured and used by differentiated tissues is poorly understood. In planarians, positional information has been identified from study of phenotypes caused by RNA interference in which the wrong tissues are regenerated. For example, inhibition of the Wnt signalling pathway leads to regeneration of heads in place of tails. Characterization of these phenotypes has led to the identification of position control genes (PCGs)-genes that are expressed in a constitutive and regional manner and are associated with patterning. Most PCGs are expressed within planarian muscle; however, how muscle is specified and how different muscle subsets affect regeneration is unknown. Here we show that different muscle fibres have distinct regulatory roles during regeneration in the planarian Schmidtea mediterranea. myoD is required for formation of a specific muscle cell subset: the longitudinal fibres, oriented along the anterior-posterior axis. Loss of longitudinal fibres led to complete regeneration failure because of defects in regeneration initiation. A different transcription factor-encoding gene, nkx1-1, is required for the formation of circular fibres, oriented along the medial-lateral axis. Loss of circular fibres led to a bifurcated anterior-posterior axis with fused heads forming in single anterior blastemas. Whereas muscle is often viewed as a strictly contractile tissue, these findings reveal that different muscle types have distinct and specific regulatory roles in wound signalling and patterning to enable regeneration.
Collapse
Affiliation(s)
- M Lucila Scimone
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Lauren E Cote
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
24
|
Abstract
Asexual freshwater planarians reproduce by tearing themselves into two pieces by a process called binary fission. The resulting head and tail pieces regenerate within about a week, forming two new worms. Understanding this process of ripping oneself into two parts poses a challenging biomechanical problem. Because planarians stop "doing it" at the slightest disturbance, this remained a centuries-old puzzle. We focus on Dugesia japonica fission and show that it proceeds in three stages: a local constriction ("waist formation"), pulsation-which increases waist longitudinal stresses-and transverse rupture. We developed a linear mechanical model with a planarian represented by a thin shell. The model fully captures the pulsation dynamics leading to rupture and reproduces empirical time scales and stresses. It asserts that fission execution is a mechanical process. Furthermore, we show that the location of waist formation, and thus fission, is determined by physical constraints. Together, our results demonstrate that where and how a planarian rips itself apart during asexual reproduction can be fully explained through biomechanics.
Collapse
|
25
|
Adler CE, Sánchez Alvarado A. PHRED-1 is a divergent neurexin-1 homolog that organizes muscle fibers and patterns organs during regeneration. Dev Biol 2017; 427:165-175. [PMID: 28461239 PMCID: PMC5497596 DOI: 10.1016/j.ydbio.2017.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/05/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Abstract
Regeneration of body parts requires the replacement of multiple cell types. To dissect this complex process, we utilized planarian flatworms that are capable of regenerating any tissue after amputation. An RNAi screen for genes involved in regeneration of the pharynx identified a novel gene, Pharynx regeneration defective-1 (PHRED-1) as essential for normal pharynx regeneration. PHRED-1 is a predicted transmembrane protein containing EGF, Laminin G, and WD40 domains, is expressed in muscle, and has predicted homologs restricted to other lophotrochozoan species. Knockdown of PHRED-1 causes abnormal regeneration of muscle fibers in both the pharynx and body wall muscle. In addition to defects in muscle regeneration, knockdown of PHRED-1 or the bHLH transcription factor MyoD also causes defects in muscle and intestinal regeneration. Together, our data demonstrate that muscle plays a key role in restoring the structural integrity of closely associated organs, and in planarians it may form a scaffold that facilitates normal intestinal branching.
Collapse
Affiliation(s)
- Carolyn E Adler
- Stowers Institute for Medical Research and Howard Hughes Medical Institute, 1000 E. 50th Street, Kansas City, MO 64110, USA; Department of Molecular Medicine, Cornell University, 930 Campus Road, VMC C3-167, Ithaca, NY 14853, USA.
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research and Howard Hughes Medical Institute, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| |
Collapse
|
26
|
Ross KG, Currie KW, Pearson BJ, Zayas RM. Nervous system development and regeneration in freshwater planarians. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [DOI: 10.1002/wdev.266] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/10/2017] [Accepted: 01/20/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Kelly G. Ross
- Department of Biology San Diego State University San Diego CA USA
| | - Ko W. Currie
- Program in Developmental and Stem Cell Biology The Hospital for Sick Children Toronto Canada
- Department of Molecular Genetics University of Toronto Toronto Canada
- Ontario Institute for Cancer Research Toronto Canada
| | - Bret J. Pearson
- Program in Developmental and Stem Cell Biology The Hospital for Sick Children Toronto Canada
- Department of Molecular Genetics University of Toronto Toronto Canada
- Ontario Institute for Cancer Research Toronto Canada
| | - Ricardo M. Zayas
- Department of Biology San Diego State University San Diego CA USA
| |
Collapse
|
27
|
Seebeck F, März M, Meyer AW, Reuter H, Vogg MC, Stehling M, Mildner K, Zeuschner D, Rabert F, Bartscherer K. Integrins are required for tissue organization and restriction of neurogenesis in regenerating planarians. Development 2017; 144:795-807. [PMID: 28137894 PMCID: PMC5374344 DOI: 10.1242/dev.139774] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022]
Abstract
Tissue regeneration depends on proliferative cells and on cues that regulate cell division, differentiation, patterning and the restriction of these processes once regeneration is complete. In planarians, flatworms with high regenerative potential, muscle cells express some of these instructive cues. Here, we show that members of the integrin family of adhesion molecules are required for the integrity of regenerating tissues, including the musculature. Remarkably, in regenerating β1-integrin RNAi planarians, we detected increased numbers of mitotic cells and progenitor cell types, as well as a reduced ability of stem cells and lineage-restricted progenitor cells to accumulate at wound sites. These animals also formed ectopic spheroid structures of neural identity in regenerating heads. Interestingly, those polarized assemblies comprised a variety of neural cells and underwent continuous growth. Our study indicates that integrin-mediated cell adhesion is required for the regenerative formation of organized tissues and for restricting neurogenesis during planarian regeneration. Highlighted article: Integrin signaling acts to recruit and localize progenitor cells following injury, thereby promoting the correct organization of regenerating planarian tissue.
Collapse
Affiliation(s)
- Florian Seebeck
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany.,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Martin März
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany.,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Anna-Wiebke Meyer
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany.,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Hanna Reuter
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany.,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Matthias C Vogg
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany.,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Karina Mildner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Franziska Rabert
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany.,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Kerstin Bartscherer
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, Münster 48149, Germany .,Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
28
|
Leclère L, Röttinger E. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration. Front Cell Dev Biol 2017; 4:157. [PMID: 28168188 PMCID: PMC5253434 DOI: 10.3389/fcell.2016.00157] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
The ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2. Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process.
Collapse
Affiliation(s)
- Lucas Leclère
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) Villefranche-sur-mer, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN) Nice, France
| |
Collapse
|
29
|
Dingwall CB, King RS. Muscle-derived matrix metalloproteinase regulates stem cell proliferation in planarians. Dev Dyn 2016; 245:963-70. [PMID: 27327381 DOI: 10.1002/dvdy.24428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a large family of regulatory enzymes that function in extracellular matrix degradation and facilitate a diverse range of cellular processes. Despite the significant focus on the activities of MMPs in human disease, there is a lack of substantial knowledge regarding their normal physiological roles and their role in regulating aspects of stem cell biology. The freshwater planarian Schmidtea mediterranea (S. mediterranea) is an excellent system in which to study robust and nearly unlimited regeneration, guided by a population of mitotically active stem cells, termed neoblasts. RESULTS We characterized MMPs in the context of planarian stem cells, specifically exploring the role of S. mediterranea MT-MMPB. Using in situ hybridization and available functional genomic tools, we observed that mt-mmpB is expressed in the dorsoventral muscle cells, and its loss results in a reduction in animal size accompanied by a decrease in mitotic cells, suggesting that it plays a unique role in regulating stem cell proliferation. CONCLUSIONS The novel findings of this study bring to light the unique and critical roles that muscles play in regulating neoblast function, and more broadly, highlight the importance of MMPs in stem cell biology. Developmental Dynamics 245:963-970, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caitlin B Dingwall
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ryan S King
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Biology, St. Norbert College, De Pere, Wisconsin
| |
Collapse
|
30
|
Owlarn S, Bartscherer K. Go ahead, grow a head! A planarian's guide to anterior regeneration. ACTA ACUST UNITED AC 2016; 3:139-55. [PMID: 27606065 PMCID: PMC5011478 DOI: 10.1002/reg2.56] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022]
Abstract
The unique ability of some planarian species to regenerate a head de novo, including a functional brain, provides an experimentally accessible system in which to study the mechanisms underlying regeneration. Here, we summarize the current knowledge on the key steps of planarian head regeneration (head‐versus‐tail decision, anterior pole formation and head patterning) and their molecular and cellular basis. Moreover, instructive properties of the anterior pole as a putative organizer and in coordinating anterior midline formation are discussed. Finally, we highlight that regeneration initiation occurs in a two‐step manner and hypothesize that wound‐induced and existing positional cues interact to detect tissue loss and together determine the appropriate regenerative outcomes.
Collapse
Affiliation(s)
- Suthira Owlarn
- Max Planck Research Group Stem Cells and Regeneration Max Planck Institute for Molecular Biomedicine Von-Esmarch-Str. 5448149 Münster Germany; Medical Faculty University of Münster Albert-Schweitzer-Campus 148149 Münster Germany; CiM-IMPRS Graduate School Schlossplatz 548149 Münster Germany
| | - Kerstin Bartscherer
- Max Planck Research Group Stem Cells and Regeneration Max Planck Institute for Molecular Biomedicine Von-Esmarch-Str. 5448149 Münster Germany; Medical Faculty University of Münster Albert-Schweitzer-Campus 148149 Münster Germany
| |
Collapse
|