1
|
Pandey R, Choudhary K, Prasad SR, Kumar P, Bisht P, Aishwarya D, Nikhil P, Kumar S, Peraman R, Kumar N. Mechanistic and metabolic exploration of neohesperidin against lung cancer cell lines through ROS-mediated mitochondrial apoptosis: An in-silico and in-vitro approach. Toxicol Appl Pharmacol 2025; 499:117350. [PMID: 40252982 DOI: 10.1016/j.taap.2025.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Lung cancer is a significant contributor to global mortality rates in the human population. However, the results of current treatment options are still unsatisfactory. Thus, the study explores low-toxic natural substances that release caspases and trigger apoptosis. Neohesperidin (NHP), a flavonoid, has anticancer efficacy although its molecular mechanism is unknown. In the current work, through in-silico and in-vitro screening, we discovered that NHP significantly reduces the expression of x-linked inhibitor of apoptosis protein (xIAP) and ATP on its administration, leading to apoptosis in human and mice lung (A549 and LLC-1) cancerous cells. Furthermore, NHP promoted the production of second-mitochondria-derived-activator-of-caspase (SMAC) and triggers mitochondrial dysfunction which also promotes apoptosis (51.1 %) as well as necrosis (25.8 %). This mechanism is regulated by mitochondria-mediated (Bax and Bcl-2) caspases-dependent apoptotic and ROS mediated pathway which increases SMAC expression by 21.2 % along with lowering the xIAP level (by 36.5 %). Moreover, network pharmacology was utilized to delineate the interactions of the compounds within biological networks, emphasizing their potential to target multiple pathways. In addition, we investigated the alterations in metabolites within A549 cells caused by NHP using liquid-chromatography-high-resolution-mass-spectrometry (LC-HRMS)-based metabolomics. The results revealed perturbations in metabolomes that are involved in multiple pathways. Therefore, this study indicates that NHP is a potential therapeutic agent to mitigate and control the proliferation of lung cancer and also regulates the energy metabolism.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Khushboo Choudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Pranesh Kumar
- Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Dande Aishwarya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Pallaprolu Nikhil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, , Manipal, India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India.
| |
Collapse
|
2
|
Lee J, Ustione A, Wilkerson EM, Balakrishnan R, Thurmond DC, Goldfarb D, Piston DW. Regulation of Type 1 Diabetes via Brown Adipocyte-Secreted Proteins and the Novel Glucagon Regulator Nidogen-2. Diabetes 2025; 74:907-920. [PMID: 40029688 PMCID: PMC12097461 DOI: 10.2337/db24-1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Current treatments for type 1 diabetes (T1D) focus on insulin replacement. We demonstrated the therapeutic potential of a secreted protein fraction from embryonic brown adipose tissue (BAT) that mediates insulin receptor-dependent recovery of euglycemia in a T1D, nonobese diabetic (NOD) mouse model, by suppressing glucagon secretion. This fraction promoted white adipocyte differentiation and browning, maintained healthy BAT, and enhanced glucose uptake in adipose tissue, skeletal muscle, and liver. We identified nidogen-2 as a critical BAT-secreted protein that reverses hyperglycemia in NOD mice, inhibits glucagon secretion from pancreatic α-cells, and mimics other actions of the entire secreted fraction. Secretions from a BAT cell line with siRNA knockdown of nidogen-2 failed to inhibit glucagon secretion and restore euglycemia. These findings demonstrate that BAT-secreted peptides represent a novel therapeutic approach to diabetes management. Furthermore, our research reveals a novel signaling role for nidogen-2 beyond its traditional classification as an extracellular matrix protein. ARTICLE HIGHLIGHTS Large embryonic brown adipose tissue-secreted proteins (CB-100) suppress glucagon and normalize glycemia in mice with type 1 diabetes (T1D) without changing insulin. CB-100 prevented T1D-induced whitening, promoted browning of adipose tissue, and enhanced glucose uptake via an insulin receptor-dependent pathway. Within CB-100, nidogen-2 regulated glucagon secretion and restored euglycemia in T1D. Nidogen-2 and CB-100 unveil a therapeutic strategy for diabetes management beyond insulin-centric paradigms by modulating glucagon secretion and enhancing glucose metabolism.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Emily M. Wilkerson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Rekha Balakrishnan
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - David W. Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Sridhar D, Alheswairini SS, Barasarathi J, Enshasy HAE, Lalitha S, Mir SH, Nithyapriya S, Sayyed R. Halophilic rhizobacteria promote growth, physiology and salinity tolerance in Sesamum indicum L. grown under salt stress. Front Microbiol 2025; 16:1590854. [PMID: 40438216 PMCID: PMC12116546 DOI: 10.3389/fmicb.2025.1590854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/24/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction Salt stress is a major global issue that negatively affects plant growth and physiological processes. Plant growth-promoting rhizobacteria (PGPR) are known to alleviate salt stress and promote plant growth. This study aimed to isolate and characterize salt-tolerant PGPR from salinity-affected soils in Tamil Nadu, India, and assess their potential to enhance growth and salt tolerance in sesame (Sesamum indicum L.). Methods Salt-tolerant PGPR were isolated and screened for plant growth-promoting traits. One isolate, designated PAS1, demonstrated significant capabilities, including the production of indole-3-acetic acid (IAA; 48.56 μg ml-1), siderophore production (89.20 ± 0.65%), phosphate solubilization (7.8 mm zone of clearance), ammonia, and hydrogen cyanide (HCN) production. PAS1 was identified as Bacillus flexus. Sesame plants were inoculated with B. flexus and grown under different salt concentrations (0, 100, and 200 mM NaCl) for 45 days. Results Inoculation with B. flexus significantly improved the biochemical parameters of sesame plants under salt stress, including increased chlorophyll content (4.4 mg g-1), proline (0.0017 mg g-1), soluble sugars (61.34 mg g-1), amino acids (1.10 mg g-1), and proteins (3.31 mg g-1). Additionally, antioxidant enzyme activities were enhanced, as indicated by DPPH scavenging activity (60.25%), superoxide dismutase (231.29 U mg g-1 protein), peroxidase (6.21 U mg g-1 protein), catalase (3.38 U mg g-1 protein), and a reduction in malondialdehyde (23.32 μmol g-1). Discussion The study demonstrates that inoculation with salt-tolerant B. flexus can effectively improve sesame plant growth and enhance tolerance to salt stress. These findings suggest that halo-tolerant PGPR strains like B. flexus could serve as promising biofertilizers to improve crop productivity in salt-affected agricultural soils.
Collapse
Affiliation(s)
- Dharman Sridhar
- Department of Botany, School of Life Sciences, Periyar University, Salem, India
| | - Saleh S. Alheswairini
- Department of Plant Protection, College of Agriculture and Food, Qassim University, Buraidah, Saudi Arabia
| | - Jayanthi Barasarathi
- Faculty of Health and Life Sciences (FHLS), Inti International University, Nilai, Malaysia
| | - Hesham Ali El Enshasy
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Sundaram Lalitha
- PG and Research Department of Botany, Padmavani Arts and Science College for Women, Salem, India
| | - Sajad Hussain Mir
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - S. Nithyapriya
- PG and Research Department of Botany, Padmavani Arts and Science College for Women, Salem, India
| | - Riyaz Sayyed
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| |
Collapse
|
4
|
Patriarca EJ, D’Aniello C, De Cesare D, Cobellis G, Minchiotti G. The Modulation of Cell Plasticity by Budesonide: Beyond the Metabolic and Anti-Inflammatory Actions of Glucocorticoids. Pharmaceutics 2025; 17:504. [PMID: 40284499 PMCID: PMC12030213 DOI: 10.3390/pharmaceutics17040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
The synthetic cortisol analog budesonide (BUD) is an essential drug employed to manage chronic inflammatory diseases in humans, mainly those involving gastroenteric and airway mucosa, such as rhinitis, laryngitis, bronchitis, esophagitis, gastritis, and colitis, with high levels of success. As a glucocorticoid, BUD prevents the expression of pro-inflammatory cytokines/chemokines and the recruitment of immune cells into the inflamed mucosa. However, emerging evidence indicates that BUD, unlike classical glucocorticoids, is also a potent modulator of stem and cancer cell behavior/plasticity. Certainly, BUD stabilizes cell-cell adhesions, preventing embryonic stem cell differentiation and inhibiting the development of 3D gastruloids. In addition, BUD inhibits the motile/invasive propensity of different cancer cells, including breast, lung, and pancreatic cancer. Finally, it prevents the infection of positive single-stranded human-infecting RNA viruses such as SARS-CoV-2. At a molecular level, BUD induces epigenetic changes and modifies the transcriptome of epithelial, stem, and cancer cells, providing molecular support to the immune cell-independent activity of BUD. Here, we performed an in-depth review of these unexpected activities of BUD, identified by unbiased drug screening programs, and we emphasize the molecular mechanisms modulated by this efficacious drug that deserve further research.
Collapse
Affiliation(s)
- Eduardo Jorge Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso”, National Research Council, 80131 Naples, Italy; (C.D.); (D.D.C.)
| | - Cristina D’Aniello
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso”, National Research Council, 80131 Naples, Italy; (C.D.); (D.D.C.)
| | - Dario De Cesare
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso”, National Research Council, 80131 Naples, Italy; (C.D.); (D.D.C.)
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso”, National Research Council, 80131 Naples, Italy; (C.D.); (D.D.C.)
| |
Collapse
|
5
|
Dammen-Brower K, Arbogast O, Zhu S, Qiu C, Zhang C, Khare P, Le A, Jia X, Yarema KJ. Examining structure-activity relationships of ManNAc analogs used in the metabolic glycoengineering of human neural stem cells. BIOMATERIALS ADVANCES 2025; 169:214144. [PMID: 39754871 PMCID: PMC11884250 DOI: 10.1016/j.bioadv.2024.214144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025]
Abstract
This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers. By comparison, But elicited minimal change to these endpoints, indicating dependence on the chemical properties of the thiol group of non-natural sialic acids and not the size of this sugar's N-acyl group. Conversely, But elicited distinct intracellular responses including increased nestin expression (~6-fold) and the modulation of several metabolites identified through cell-wide screening. Metabolites up-regulated by But included dopamine and norfenenfrine, suggesting that this analog may be a drug candidate for treating neural damage associated with conditions such as Parkinson's disease. The metabolomics data also provided new insights into the neuroprotective effects of TProp when used to treat brain injury by upregulation of anti-inflammatory metabolites (e.g., α- & γ-linolenic acids) valuable for dampening injury- and treatment-related inflammation. Finally, these analogs modulate compounds that control proline (e.g., 1-pyrroline-2-carboxylate), a master regulator of many cellular activities. Overall, this study presents new mechanisms and pathways to exploit metabolic glycoengineering for neural repair and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kris Dammen-Brower
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Olivia Arbogast
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stanley Zhu
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chunfang Qiu
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Cissy Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Gigantest Inc, 31 Light Street, Baltimore, MD, USA
| | - Pratik Khare
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Gigantest Inc, 31 Light Street, Baltimore, MD, USA
| | - Anne Le
- Gigantest Inc, 31 Light Street, Baltimore, MD, USA
| | - Xiaofeng Jia
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, MD, USA; Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, USA; Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| | - Kevin J Yarema
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Lan S, Gong M, Yang S. Osmoregulation is a crucial factor for methyl jasmonate to enhance chilling tolerance of Jatropha curcas L. TREE PHYSIOLOGY 2025; 45:tpaf037. [PMID: 40143413 DOI: 10.1093/treephys/tpaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/19/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025]
Abstract
Methyl jasmonate (MeJA) is a vital regulator of plant growth and plays a crucial role in chilling tolerance. However, the mechanism through which MeJA enhances chilling tolerance in plants remains unclear. Therefore, this study conducted hydroponic experiments to evaluate the effects of exogenous MeJA (0-125 μmol L-1) on osmoregulation and chilling tolerance of Jatropha curcas L. seedlings under chilling (5 °C) stress. The seedlings under chilling stress were treated with MeJA and morphological changes, physiological traits, osmoprotectants (proline, betaine and trehalose) contents, activities of key enzymes involved in osmoprotectants metabolism and expression of related genes were investigated. The results showed that treatment with 75 μmol L-1 MeJA alleviated leaf wilting and growth inhibition; significantly decreased water potential, electrolyte leakage and malondialdehyde content; and enhanced tissue vitality, water content, total chlorophyll content, net photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate in J. curcas seedlings, thereby improving chilling tolerance. Under chilling stress, 4 days of MeJA treatment remarkably increased the contents of proline, betaine and trehalose in the leaves of J. curcas seedlings by activating their biosynthesis pathways and inhibiting the degradation pathway of proline. The substantial accumulation of osmoprotectants reduced the cellular water potential, maintained the cellular water balance and stabilized the cell membrane. Furthermore, 1-4 days of MeJA treatment led to increased levels of jasmonic acid and ethylene and upregulation of JcMYC2 expression in J. curcas seedlings under chilling stress. This suggested that the JA/MeJA-MYC2 signaling pathway, along with ethylene signaling, may contribute to MeJA-induced chilling tolerance in J. curcas. Our findings suggested that exogenous MeJA treatment increases the capacity for osmoregulation and chilling tolerance in J. curcas seedlings under chilling stress and that osmoregulation is a crucial component of MeJA-induced chilling tolerance.
Collapse
Affiliation(s)
- Shanshan Lan
- School of Life Sciences, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing road, Panlong District, Kunming, Yunnan Province, 650205, China
| | - Ming Gong
- School of Life Sciences, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
| | - Shuanglong Yang
- School of Life Sciences, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, Yunnan Province, 650500, China
| |
Collapse
|
7
|
Son SH, Kim A, Jang JH, Pokharel E, Rana B, Kim TY, Lee JH, An SY, An CH, Park KK, Kwon TY, Kim JY, Sohn WJ. The facilitated osteogenic differentiation by extracellular proline treatment in in vitro cell cultivation using MC3T3E1 and hPDLF. Genes Genomics 2025; 47:157-169. [PMID: 39567419 DOI: 10.1007/s13258-024-01588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Proline is a major substrate in collagen biosynthesis and is required for collagen molecule formations. However, detailed explanations of the molecular basis through which proline functions in collagen biosynthesis have yet to be provided. Thus, genome-wide screening was employed to elucidate these in the pre-osteoblastic MC3T3-E1 and human periodontal ligament fibroblast (hPDLF) cell lines. Indeed, both cell lines represent important sources for collagen biosynthesis and tissue regeneration in the dental region, specifically treating extracellular proline during cultivations. The altered gene expression patterns were identified, and the precise expression patterns were confirmed by microarray. Cell viability and osteogenic differentiation patterns were examined using a range of experimental methods, such as the MTS assay, ALP staining, ARS staining, and collagen (COL)-type1A ELISA. Overall, we revealed a cell line-specific function of exogenous proline in collagen biosynthesis during osteogenic differentiation conditions with the candidate signaling pathways. These putative signaling networks could represent plausible answers to understanding collagen biosynthesis for regenerating connective tissues such as skin, muscle, and bone.
Collapse
Affiliation(s)
- Sung-Ho Son
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Anna Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Je-Hee Jang
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Elina Pokharel
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Bandana Rana
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jae-Hee Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Kwang-Kyun Park
- Professor Emeritus Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Korea
| | - Tae-Yub Kwon
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea.
| | - Wern-Joo Sohn
- College of K-Biohealth, Daegu Haany University, Gyeongsan, Korea.
| |
Collapse
|
8
|
Kim E, Chen C, Chu MJ, Hamstra MF, Bentley WE, Payne GF. Proline-Selective Electrochemiluminescence Detecting a Single Amino Acid Variation Between A1 and A2 β-Casein Containing Milks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411956. [PMID: 39644502 PMCID: PMC11792022 DOI: 10.1002/advs.202411956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Indexed: 12/09/2024]
Abstract
The proline amino acid and prolyl residues of peptides/proteins confer unique biological and biochemical properties that motivates the development of proline-selective analysis. The study focuses on one specific class of problem, the detection of single amino acid variants involving proline, and reports a Pro-selective electrochemiluminescence (ECL) method. To develop this method, the A1-/A2- variants of milk's β-casein protein are investigated because it is a well-established example and abundant samples are readily available. Specifically, β-casein has 209 amino acids with 34 (or 35) proline residues: the A1-variant has a Pro-to-His substitution at position 67 (relative to the A2 variant). The study shows that proline's strong luminescence allows the generic discrimination of: Pro from other amino acids; an A2-oligopeptide from an A1-oligopeptide; the A2-β-casein variant from the A1-variant; and commercially-available A2 milks from A1-containing regular milks. The evidence indicates that luminescence depends on proline content and accessibility, as well as signal quenching. Compared to conventional immunoassays, the ECL method is simple, rapid, and inexpensive. Further, the ECL-method is Pro-selective (vs molecularly-selective like typical immunoassays) which should make it broadly useful for studying the role of proline in biology and especially useful for tracking the digestion of proline-rich proteins in the diet.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege ParkMaryland20742USA
- Robert E. Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMaryland20742USA
| | - Chen‐Yu Chen
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege ParkMaryland20742USA
- Robert E. Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMaryland20742USA
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland20742USA
| | - Monica J. Chu
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland20742USA
| | - Mya F. Hamstra
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland20742USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege ParkMaryland20742USA
- Robert E. Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMaryland20742USA
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland20742USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege ParkMaryland20742USA
- Robert E. Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMaryland20742USA
| |
Collapse
|
9
|
Karadima E, Chavakis T, Alexaki VI. Arginine metabolism in myeloid cells in health and disease. Semin Immunopathol 2025; 47:11. [PMID: 39863828 PMCID: PMC11762783 DOI: 10.1007/s00281-025-01038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses. Conversely, the arginase 1 (ARG1)-dependent switch between the branch of NO production and polyamine synthesis downregulates inflammation and promotes recovery of tissue homeostasis. Creatine metabolism is key for energy supply and proline metabolism is required for collagen synthesis. Myeloid ARG1 also regulates extracellular arginine availability and T cell responses in parasitic diseases and cancer. Cancer, surgery, sepsis and persistent inflammation in chronic inflammatory diseases, such as neuroinflammatory diseases or arthritis, are associated with dysregulation of arginine metabolism in myeloid cells. Here, we review current knowledge on arginine metabolism in different myeloid cell types, such as macrophages, neutrophils, microglia, osteoclasts, tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs) and myeloid-derived suppressor cells (MDSCs). A deeper understanding of the function of arginine metabolism in myeloid cells will improve our knowledge on the pathology of several diseases and may set the platform for novel therapeutic applications.
Collapse
Affiliation(s)
- Eleftheria Karadima
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
10
|
Hu Y, Luo H, Netala VR, Li H, Zhang Z, Hou T. Comprehensive Review of Biological Functions and Therapeutic Potential of Perilla Seed Meal Proteins and Peptides. Foods 2024; 14:47. [PMID: 39796337 PMCID: PMC11719718 DOI: 10.3390/foods14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
This comprehensive review explores the biological functions of Perilla frutescens seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells. Additionally, they demonstrate antidiabetic activity by inhibiting α-amylase and α-glucosidase. The cardioprotective effects of perilla peptides are underscored by ACE-inhibitory activities and combat oxidative stress through enhanced antioxidant defenses. Further, perilla peptides contribute to improved gut health by enhancing beneficial gut flora and reinforcing intestinal barriers. In liver, kidney, and testicular health, they reduce oxidative stress and apoptotic damage while normalizing electrolyte levels and protecting against cyclophosphamide-induced reproductive and endocrine disruptions by restoring hormone synthesis. Promising anticancer potential is also demonstrated by perilla peptides through the inhibition of key cancer cell lines, alongside their anti-inflammatory and immunomodulating activities. Their anti-fatigue effects enhance exercise performance and muscle function, while perilla seed peptide nanoparticles show potential for targeted drug delivery. The diverse applications of perilla peptides support their potential as functional food additives and therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianyu Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (Y.H.); (H.L.); (V.R.N.); (H.L.); (Z.Z.)
| |
Collapse
|
11
|
Chen X, Zhan T, Wang Y, Li W, Liu B, Xu Y. Dimethyl-Sulfoxide-Free Cell Cryoprotectant Derived from Amino Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25919-25930. [PMID: 39575883 DOI: 10.1021/acs.langmuir.4c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
With the large-scale applications of cryopreservation technology in the cell therapy fields, traditional permeable cryoprotectants (CPAs) have led to serious issues, such as cell cycle arrest, inhibition of cell proliferation and differentiation, apoptosis, altered gene expression, etc. Development of green, non-toxic cryoprotectants is critically needed. Amino acids could serve as substrates for protein and cellular metabolism and as cryoprotectants with non-toxicity, balancing the intracellular water osmotic pressure. Current research on amino acids as cryoprotectants is hindered by several limitations, including unclear protection mechanisms, cryopreservation methods, and poor efficacy of individual formulations. Therefore, three specific amino acids and derivatives, including l-proline, l-carnitine, and betaine, as cryoprotectants were used for two types of cell cryopreservation. Single-factor experiments were conducted to obtain the optimal concentration range for each of the three amino acid cryoprotectants. On the basis of the key thermophysical parameters, the ability to inhibit ice crystals, and the effect after cryopreservation, multivariate orthogonal experiments were carried out to evaluate the actual effect of the three-component mixed cryoprotectant on cell cryopreservation. In comparison to the gold standard of 10% dimethyl sulfoxide (DMSO) for cell cryopreservation, the mixed cryoprotectant derived from amino acids achieves comparable preservation efficacy at lower concentrations with a convenient application method, which offers guidance for DMSO-free cryoprotectants.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Taijie Zhan
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Yuting Wang
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Weijie Li
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Baolin Liu
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Yi Xu
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
12
|
Akdas S, Yuksel D, Yazihan N. Assessment of the Relationship Between Amino Acid Status and Parkinson's Disease: A Comprehensive Review and Meta-analysis. Can J Neurol Sci 2024:1-17. [PMID: 39651578 DOI: 10.1017/cjn.2024.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the inability of dopamine production from amino acids. Therefore, changes in amino acid profile in PD patients are very critical for understanding disease development. Determination of amino acid levels in PD patients with a cumulative approach may enlighten the disease pathophysiology. METHODS A systematic search was performed until February 2023, resulting in 733 articles in PubMed, Web of Science and Scopus databases to evaluate the serum amino acid profile of PD patients. Relevant articles in English with mean/standard deviation values of serum amino acid levels of patients and their healthy controls were included in the meta-analysis. RESULTS Our results suggest that valine, proline, ornithine and homocysteine levels were increased, while aspartate, citrulline, lysine and serine levels were significantly decreased in PD patients compared to healthy controls. Homocysteine showed positive correlations with glutamate and ornithine levels. We also analyzed the disease stage parameters: Unified Parkinson's Disease Rating Scale III (UPDRS III) score, Hoehn-Yahr Stage Score, disease duration and levodopa equivalent daily dose (LEDD) of patients. It was observed that LEDD has a negative correlation with arginine levels in patients. UPDRS III score is negatively correlated with phenylalanine levels, and it also tends to show a negative correlation with tyrosine levels. Disease duration tends to be negatively correlated with citrulline levels in PD patients. CONCLUSION This cumulative analysis shows evidence of the relation between the mechanisms underlying amino acid metabolism in PD, which may have a great impact on disease development and new therapeutic strategies.
Collapse
Affiliation(s)
- Sevginur Akdas
- Interdisciplinary Food Metabolism and Clinical Nutrition Department, Ankara University, Institute of Health Sciences, Ankara, Turkey
| | - Demir Yuksel
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Baskent University, Ankara, Turkey
| | - Nuray Yazihan
- Interdisciplinary Food Metabolism and Clinical Nutrition Department, Ankara University, Institute of Health Sciences, Ankara, Turkey
- Department of Pathophysiology, Internal Medicine, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
Credidio B, Thürmer S, Stemer D, Pugini M, Trinter F, Vokrouhlický J, Slavíček P, Winter B. From Gas to Solution: The Changing Neutral Structure of Proline upon Solvation. J Phys Chem A 2024; 128:10202-10212. [PMID: 39536145 PMCID: PMC11613541 DOI: 10.1021/acs.jpca.4c05628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Liquid-jet photoelectron spectroscopy (LJ-PES) and electronic-structure theory were employed to investigate the chemical and structural properties of the amino acid l-proline in aqueous solution for its three ionized states (protonated, zwitterionic, and deprotonated). This is the first PES study of this amino acid in its biologically relevant environment. Proline's structure in the aqueous phase under neutral conditions is zwitterionic, distinctly different from the nonionic neutral form in the gas phase. By analyzing the carbon 1s and nitrogen 1s core levels as well as the valence spectra of aqueous-phase proline, we found that the electronic structure is dominated by the protonation state of each constituent molecular site (the carboxyl and amine groups) with small yet noticeable interference across the molecule. The site-specific nature of the core-level spectra enables the probing of individual molecular constituents. The valence photoelectron spectra are more difficult to interpret because of the overlapping signals of proline with the solvent and pH-adjusting agents (HCl and NaOH). Yet, we are able to reveal subtle effects of specific (hydrogen-bonding) interaction with the solvent on the electronic structure. We also demonstrate that the relevant conformational space is much smaller for aqueous-phase proline than for its gas-phase analogue. This study suggests that caution must be taken when comparing photoelectron spectra for gaseous- and aqueous-phase molecules, particularly if those molecules are readily protonated/deprotonated in solution.
Collapse
Affiliation(s)
- Bruno Credidio
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Stephan Thürmer
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho,
Sakyo-Ku, Kyoto 606-8502, Japan
| | - Dominik Stemer
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Michele Pugini
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Florian Trinter
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Jakub Vokrouhlický
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická, Prague 16628, Czech Republic
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická, Prague 16628, Czech Republic
| | - Bernd Winter
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|
14
|
Ya J, Whitby A, Bayraktutan U. Metabolites and Metabolic Functional Changes-Potential Markers for Endothelial Cell Senescence. Biomolecules 2024; 14:1476. [PMID: 39595652 PMCID: PMC11592342 DOI: 10.3390/biom14111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Accumulation of senescent endothelial cells (ECs) in vasculature represents a key step in the development of vascular aging and ensuing age-related diseases. Given that removal of senescent ECs may prevent disease and improve health and wellbeing, the discovery of novel biomarkers that effectively identify senescent cells is of particular importance. As crucial elements for biological pathways and reliable bioindicators of cellular processes, metabolites demand attention in this context. Using senescent human brain microvascular endothelial cells (HBMECs) displaying a secretory phenotype and significant morphological, nuclear, and enzymatic changes compared to their young counterparts, this study has shown that senescent HBMECs lose their endothelial characteristics as evidenced by the disappearance of CD31/PECAM-1 from interendothelial cell junctions. The metabolic profiling of young versus senescent HBMECs also indicates significant differences in glucose, glutamine, and fatty acid metabolism. The analysis of intracellular and secreted metabolites proposes L-proline, L-glutamate, NAD+, and taurine/hypotaurine pathway components as potential biomarkers. However, further studies are required to assess the value of these agents as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jingyuan Ya
- Stroke, Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Alison Whitby
- Children’s Brain Tumor Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ulvi Bayraktutan
- Stroke, Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK;
- School of Medicine, Ankara Medipol University, Hacı Bayram Mah, Talatpaşa Blv No. 4, 06050 Altındağ, Türkiye
| |
Collapse
|
15
|
Rumaisa F, Chandran A, Saraswathy M. Fabrication of l-proline enriched alginate dialdehyde-gelatin hydrogel thin films for efficient wound healing applications. J Biomater Appl 2024; 39:473-483. [PMID: 39180391 DOI: 10.1177/08853282241276716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Hydrogel-based wound management systems represent a promising avenue in tissue engineering for restoring and preserving the normal functionality of damaged tissues. Incorporating active components into hydrogel matrices enhances their suitability for biomedical applications. In this study, we investigated the integration of l-proline, a nonessential imino acid with largely unexplored roles in living systems, into alginate dialdehyde-gelatin hydrogel for wound healing purposes. Physicochemical properties of the resulting hydrogel film, termed ADAGLP, were meticulously evaluated, including wound healing efficacy in vitro and anti-biofilm activity against Gram-positive and Gram-negative microorganisms. Fourier-transform infrared spectroscopy (FTIR) analysis provided insights into the interaction between l-proline and ADAG. Films incorporating 0.5% l-proline were selected for comprehensive investigation. Comparative analysis revealed prolonged gelation time and increased water holding capacity of ADAGLP compared to ADAG films. Moreover, ADAGLP exhibited a significantly higher degradation rate (69.5 ± 3.2%) compared to ADAG (35.2 ± 1.6%). Remarkably, ADAGLP demonstrated cyto-compatibility, non-toxicity, and facilitated migration to the scratch area in vitro conditions. Notably, it exhibited potent anti-biofilm properties. Our findings suggest that ADAGLP hydrogel holds promise as a biomaterial for wound care, offering prolonged drug delivery and maintaining optimal moisture levels in wound areas. The incorporation of l-proline in the wound microenvironment may contribute to enhanced tissue remodeling, by inhibiting biofilm formation, further highlighting the potential of this hydrogel system in wound healing applications.
Collapse
Affiliation(s)
- Fathima Rumaisa
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| | - Akash Chandran
- Department of Nanoscience and Nanotechnology, University of Kerala, Thiruvananthapuram, India
| | - Mini Saraswathy
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
16
|
Zwierzchowski G, Zhang G, Tobolski D, Wójcik R, Wishart DS, Ametaj BN. Metabolomic fingerprinting of milk fever cows: Pre- and postpartum metabolite alterations. J Vet Intern Med 2024; 38:3384-3397. [PMID: 39466655 PMCID: PMC11586556 DOI: 10.1111/jvim.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Milk fever (MF), a metabolic disorder in dairy cows characterized by low blood calcium concentrations postpartum, is well-recognized clinically. However, comprehensive data on the alteration of metabolites associated with this condition remains sparse. HYPOTHESIS Delineate serum metabolite profiles and metabolic pathways preceding, coinciding with, and after the onset of MF. ANIMALS Twenty-six cows, including 20 healthy cows and 6 cows initially affected by MF. Because of culling, the number of MF-affected cows decreased to 4 at MF week, +4 weeks, and +8 weeks postpartum. METHODS A nested case-control longitudinal study was conducted, with blood samples collected at -8 and -4 weeks prepartum, MF week, and +4 and +8 weeks postpartum. Serum analysis utilized direct injection/liquid chromatography/tandem mass spectrometry (DI/LC/MS/MS) techniques. RESULTS Key findings included the identification of diverse metabolites such as hexose, amino acids, phosphatidylcholines, lysophosphatidylcholines, and sphingomyelin, which varied between studied groups (P < .05). The most marked metabolic alterations were observed 4 weeks prepartum. In total, 42, 56, 38, 29, and 24 metabolites distinguished the MF group at the respective time points (P < .05). Additionally, 33 metabolic pathways, including amino acid, antioxidant metabolism, fatty acid degradation, and carbohydrate processing, were impacted (P < .05). CONCLUSIONS AND CLINICAL IMPORTANCE Metabolic disruptions in dairy cows begin several weeks before the clinical manifestation of MF and persist up to 8 weeks postpartum. These findings emphasize the complexity of MF, extending beyond only hypocalcemia and indicate the necessity for preemptive monitoring in dairy herd management.
Collapse
Affiliation(s)
- Grzegorz Zwierzchowski
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonAlbertaCanada
- Faculty of Biology and BiotechnologyUniversity of Warmia and MazuryOlsztynPoland
| | - Guanshi Zhang
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonAlbertaCanada
- Present address:
Center for Renal Precision Medicine, Division of Nephrology, Department of MedicineThe University of Texas Health San AntonioSan AntonioTexasUSA
| | - Dawid Tobolski
- Department of Large Animal Diseases and Clinic, Institute of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
| | - Roman Wójcik
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary MedicineUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - David S. Wishart
- Department of Biological and Computer SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Burim N. Ametaj
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
17
|
Wang M, Yan Y, Liu W, Fan J, Li E, Chen L, Wang X. Proline metabolism is essential for alkaline adaptation of Nile tilapia (Oreochromis niloticus). J Anim Sci Biotechnol 2024; 15:142. [PMID: 39397002 PMCID: PMC11472467 DOI: 10.1186/s40104-024-01100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Saline-alkaline water aquaculture has become a key way to mitigate the reduction of freshwater aquaculture space and meet the increasing global demand for aquatic products. To enhance the comprehensive utilization capability of saline-alkaline water, it is necessary to understand the regulatory mechanisms of aquatic animals coping with saline-alkaline water. In this study, our objective was to elucidate the function of proline metabolism in the alkaline adaptation of Nile tilapia (Oreochromis niloticus). RESULTS Expose Nile tilapia to alkaline water of different alkalinity for 2 weeks to observe changes in its growth performance and proline metabolism. Meanwhile, to further clarify the role of proline metabolism, RNA interference experiments were conducted to disrupt the normal operation of proline metabolic axis by knocking down pycr (pyrroline-5-carboxylate reductases), the final rate-limiting enzyme in proline synthesis. The results showed that both the synthesis and degradation of proline were enhanced under carbonate alkalinity stress, and the environmental alkalinity impaired the growth performance of tilapia, and the higher the alkalinity, the greater the impairment. Moreover, environmental alkalinity caused oxidative stress in tilapia, enhanced ion transport, ammonia metabolism, and altered the intensity and form of energy metabolism in tilapia. When the expression level of the pycr gene decreased, the proline metabolism could not operate normally, and the ion transport, antioxidant defense system, and energy metabolism were severely damaged, ultimately leading to liver damage and a decreased survival rate of tilapia under alkalinity stress. CONCLUSIONS The results indicated that proline metabolism plays an important role in the alkaline adaptation of Nile tilapia and is a key regulatory process in various biochemical and physiological processes.
Collapse
Affiliation(s)
- Minxu Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuxi Yan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jinquan Fan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
18
|
De Tollenaere M, Meunier M, Durduret A, Chapuis E, Auriol P, Auriol D, Scandolera A, Reynaud R. Facial pore refining by targeting dermal and epidermal functions: Assessment across age and gender. J Cosmet Dermatol 2024; 23:3395-3408. [PMID: 39086149 DOI: 10.1111/jocd.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Conspicuous facial pores are benign but represent a cosmetic concern for men and women. Recent works described dermal and epidermal impairments as clinical causes of enlarged pores. Morphological modifications of skin at the site of pores were associated with collagen density loss, possible alteration of extracellular matrix and abnormal differentiation of keratinocytes. AIMS A composition containing mannose-6-phosphate (Active Complex) was designed to address these different aspects of pore enlargement. In vitro and ex vivo evaluations were conducted in different models mimicking disturbance of dermal and epidermal functions. The pore refining activity of Active Complex was assessed in two clinical trials studying a Caucasian women cohort and an Asian men cohort. RESULTS At the dermal level, Active Complex upregulated collagen I and decorin synthesis, and genes encoding collagens I, III, V, VII, XVII; suggesting its ability to favor collagen fiber organization and anchorage. The downregulation of matrix metalloprotease, involved in extracellular matrix degradation, reinforced the protective effect of Active Complex in the dermis. Active Complex down modulated differentiation markers in keratinocytes as well as genes involved in cell renewal. Study of reconstructed human epidermis modeling keratinocyte hyperproliferation revealed that Active Complex mitigated two markers of this state: number of nuclei in the stratum corneum and involucrin expression. Clinical trials confirmed the pore refining activity of Active Complex on men and women of different ages and ethnicities; -24% total skin pore area after 56 days of application on women, and -30.2% on men after 7 days. CONCLUSIONS This work demonstrates the interest to target dermal and epidermal modifications described in conspicuous pore area, especially dermis fiber organization, to address this cosmetic concern.
Collapse
Affiliation(s)
- Morgane De Tollenaere
- Givaudan Active Beauty, Research and Development, Givaudan France SAS, Pomacle, France
| | - Marie Meunier
- Givaudan Active Beauty, Research and Development, Givaudan France SAS, Pomacle, France
| | - Anaïs Durduret
- Givaudan Active Beauty, Research and Development, Givaudan France SAS, Pomacle, France
| | - Emilie Chapuis
- Givaudan Active Beauty, Research and Development, Givaudan France SAS, Pomacle, France
| | - Pascale Auriol
- Givaudan Active Beauty, Research and Development, Givaudan France SAS, Toulouse, France
| | - Daniel Auriol
- Givaudan Active Beauty, Research and Development, Givaudan France SAS, Toulouse, France
| | - Amandine Scandolera
- Givaudan Active Beauty, Research and Development, Givaudan France SAS, Pomacle, France
| | - Romain Reynaud
- Givaudan Active Beauty, Research and Development, Givaudan France SAS, Toulouse, France
| |
Collapse
|
19
|
Butt SE, Kepski K, Sotiropoulos JM, Moran WJ. Hypervalent iodine-mediated cyclization of bishomoallylamides to prolinols. Beilstein J Org Chem 2024; 20:2455-2460. [PMID: 39376490 PMCID: PMC11457059 DOI: 10.3762/bjoc.20.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
A change in mechanism was observed in the hypervalent iodine-mediated cyclization of N-alkenylamides when the carbon chain between the alkene and the amide increased from two to three atoms. In the latter case, cyclization at the amide nitrogen to form the pyrrolidine ring was favored over cyclization at the amide oxygen. A DFT study was undertaken to rationalize the change in mechanism of this cyclization process. In addition, reaction conditions were developed, and the scope of this cyclization studied.
Collapse
Affiliation(s)
- Smaher E Butt
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Konrad Kepski
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Jean-Marc Sotiropoulos
- Université de Pau et des Pays de l’Adour, IPREM (CNRS-UMR 5254), Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Wesley J Moran
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire ST5 5JX, United Kingdom
| |
Collapse
|
20
|
Lee J, Ustione A, Wilkerson EM, Balakrishnan R, Thurmond DC, Goldfarb D, Piston DW. Insulin-Independent Regulation of Type 1 Diabetes via Brown Adipocyte-Secreted Proteins and the Novel Glucagon Regulator Nidogen-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610490. [PMID: 39257771 PMCID: PMC11383990 DOI: 10.1101/2024.08.30.610490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Current treatments for type 1 diabetes (T1D) focus on insulin replacement. We demonstrate the therapeutic potential of a secreted protein fraction from embryonic brown adipose tissue (BAT), independent of insulin. The large molecular weight secreted fraction mediates insulin receptor-dependent recovery of euglycemia in a T1D animal model, nonobese diabetic (NOD) mice, by suppressing glucagon secretion. This fraction also promotes white adipocyte differentiation and browning, maintains healthy BAT, and enhances glucose uptake in adipose tissue, skeletal muscle, and liver. From this fraction, we identify nidogen-2 as a critical BAT-secreted protein that reverses hyperglycemia in NOD mice, inhibits glucagon secretion from pancreatic α-cells, and mimics other actions of the entire secreted fraction. These findings confirm that BAT transplants affect physiology and demonstrate that BAT-secreted peptides represent a novel therapeutic approach to diabetes management. Furthermore, our research reveals a novel signaling role for nidogen-2, beyond its traditional classification as an extracellular matrix protein. HIGHLIGHTS The large molecular weight brown adipocyte-secreted protein fraction suppresses glucagon secretion and normalizes glycemia in mouse models of type 1 diabetes (T1D), independent of insulin, offering a novel therapeutic strategy for disease management.Nidogen-2, a critical component of this fraction, is identified as an inhibitor of glucagon secretion in pancreatic α-cells by regulating intracellular messenger activities.The large-secreted protein fraction prevents T1D-related whitening of brown adipose tissue, promotes adipocyte differentiation, and enhances browning of inguinal white adipose tissue.This fraction enhances glucose uptake in adipose tissue, skeletal muscle, and liver through an insulin receptor-dependent pathway.
Collapse
|
21
|
Gürbüz BB, Gülbakan B, Özgül RK, Yalnızoğlu D, Yılmaz DY, Göçmen R, Koşukcu C, Kandemir N, Acar NV, Salih B, Dursun A. Exploring metabolic alterations in PYCR2 deficiency: Unveiling pathways and clinical presentations of hypomyelinating leukodystrophy 10. Am J Med Genet A 2024; 194:e63645. [PMID: 38709052 DOI: 10.1002/ajmg.a.63645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Proline-5-carboxylate reductase 2, encoded by PYCR2 gene, is an enzyme that catalyzes the last step of proline synthesis from pyrroline-5-carboxylate synthetase to proline. PYCR2 gene defect causes hypomyelinating leukodystrophy 10. Up until now, to our knowledge around 38 patients with PYCR2 defect have been reported. Herein, we describe clinical, neuroradiological, biochemical findings, and metabolomic profiling of three new genetically related cases of PYCR2 defects from a large family. Cerebrospinal fluid (CSF) amino acid levels were measured and untargeted metabolomic profiling of plasma and CSF were conducted and evaluated together with the clinical findings in the patients. While plasma and CSF proline levels were found to be totally normal, untargeted metabolomic profiling revealed mild increases of glutamate, alpha-ketoglutarate, and l-glutamate semialdehyde and marked increases of inosine and xanthine. Our findings and all the previous reports suggest that proline auxotrophy is not the central disease mechanism. Untargeted metabolomics point to mild changes in proline pathway and also in purine/pyrimidine pathway.
Collapse
Affiliation(s)
| | - Basri Gülbakan
- Division of Metabolism, Hacettepe University Institute of Child Health, Ankara, Turkey
| | - Rıza Köksal Özgül
- Division of Genetics, Hacettepe University Institute of Child Health, Ankara, Turkey
| | - Dilek Yalnızoğlu
- Division of Pediatric Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Didem Yücel Yılmaz
- Division of Genetics, Hacettepe University Institute of Child Health, Ankara, Turkey
| | - Rahşan Göçmen
- Division of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Can Koşukcu
- Department of Bioinformatics, Hacettepe University Institute of Health, Ankara, Turkey
| | - Nurgün Kandemir
- Division of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Neşe Vardar Acar
- Faculty of Medicine, Hacettepe University Institute of Child Health, Ankara, Turkey
| | - Bekir Salih
- Depatment of Chemistry, Hacettepe University Faculty of Science, Ankara, Turkey
| | - Ali Dursun
- Division of Pediatric Metabolism, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
22
|
Nergiz M, Zenger O, Peşint GB. L-proline determination by molecularly imprinted nanoparticles: A potential nanoscale tool for the diagnosis of metabolic disorders. J Chromatogr A 2024; 1730:465106. [PMID: 38917678 DOI: 10.1016/j.chroma.2024.465106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Detecting and quantifying amino acids is vital in biochemical analyses, especially for diagnosing metabolic disorders. L-proline, among these amino acids, holds significant relevance for various metabolic disorders in living organisms, particularly in humans. hyperprolinemia arises when ineffective breakdown of L-proline occurs due to enzyme deficiencies, leading to its accumulation in the body and underscoring the need for precise monitoring. To address this challenge, molecular imprinting offers a reliable single-step technique for detecting target molecules like proteins, peptides, amino acids, or ions with high selectivity. Moreover, nanoparticles, with significant surface area-to-volume ratios, enable high-level mass transfer and binding kinetics, making them ideal for nano-scale sensitive applications. In this study, 2-hydroxyethyl methacrylate-based molecularly imprinted nanoparticles were synthesized via mini-emulsion polymerization, combining the advantages of molecular imprinting technique and nanoparticles for the specific recognition of L-proline, and were well-characterized by Scanning Electron Microscopy, zeta-sizer particle size analysis, and Fourier Transform Infrared Spectroscopy. Based on zeta-sizer analysis, the estimated diameters of L-proline-imprinted and non-imprinted nanoparticles (Pro-MIPs and NIPs) were determined to be approximately 27.51 nm and 20.66 nm, respectively. The adsorption of L-proline onto nanoparticles from aqueous solutions was investigated in a batch system, and the maximum L-proline adsorption capacity was determined to be 26.58 mg/g for Pro-MIPs and 4.65 mg/g for and NIPs. The selectivity of Pro-MIPs was assessed using Liquid Chromatography-Tandem Mass Spectrometry, even in human serum and in the presence of competing molecules (L-histidine and L-phenylalanine). Additionally, Pro-MIPs maintained their adsorption capacity through up to 10 adsorption-desorption cycles without significant decrease.
Collapse
Affiliation(s)
- Mustafa Nergiz
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, 01250 Sarıçam, Adana, Türkiye
| | - Okan Zenger
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, 01250 Sarıçam, Adana, Türkiye
| | - Gözde Baydemir Peşint
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, 01250 Sarıçam, Adana, Türkiye.
| |
Collapse
|
23
|
Kalisz A, Kornaś A, Gil J, Rudolphi-Szydło E, Gawrońska K, Sieprawska A, Jafari H, Mahdavinia GR, Kulak M, Gohari G, Fotopoulos V. Foliar spraying with amino acids and their chitosan nanocomposites as promising way to alleviate abiotic stress in iceberg lettuce grown at different temperatures. Sci Rep 2024; 14:17208. [PMID: 39060430 PMCID: PMC11282281 DOI: 10.1038/s41598-024-68005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
We analyzed the effects of foliar spraying with amino acids, chitosan (CHS) and nanocomposites (NCs) of chitosan with the amino acids proline, L-cysteine and glycine betaine (CHS-Pro NCs; CHS-Cys NCs, CHS-GB NCs, respectively) on the changes in the physiological and biochemical parameters of iceberg lettuce grown at the control temperature (20 °C) and under chilling conditions (4 °C). The physicochemical parameters of the phospholipid monolayers (PLs) extracted from plants showed the effects of the treatments on the properties of the monolayers, namely, the packing density and flexibility. We observed increased accumulation of proline at 4 °C, and differences in the concentrations of sugars in most of the analyzed variants were a consequence of the lowered temperature and/or the use of organic compounds. A temperature of 4 °C caused a significant increase in the L-ascorbic acid level compared with that at 20 °C. Differences were also found in glutathione (GSH) content depending on the temperature and treatment with the tested organic compounds. CHS NCs loaded with Pro and GB were effective at increasing the amount of phenols under stress temperature conditions. We noted that a significant increase in the antioxidant activity of plants at 4 °C occurred after priming with Cys, CHS-Cys NCs, Pro and CHS-Pro NCs, and the CHS nanocomposites were more effective in this respect. Both low-temperature stress and foliar spraying of lettuce with various organic compounds caused changes in the activity of antioxidant enzymes. Two forms of dismutase (SOD), iron superoxide dismutase (FeSOD) and copper/zinc superoxide dismutase (Cu/ZnSOD), were identified in extracts from the leaves of iceberg lettuce seedlings. The application of the tested organic compounds, alone or in combination with CHS, increased the amount of malondialdehyde (MDA) in plants grown under controlled temperature conditions. Chilling caused an increase in the content of MDA, but some organic compounds mitigated the impact of low temperature. Compared with that of plants subjected to 20 °C, the fresh weight of plants exposed to chilling decreased. However, the tested compounds caused a decrease in fresh weight at 4 °C compared with the corresponding control samples. An interesting exception was the use of Cys, for which the difference in the fresh weight of plants grown at 20 °C and 4 °C was not statistically significant. After Cys application, the dry weight of the chilled plants was greater than that of the chilled control plants but was also greater than that of the other treated plants in this group. To our knowledge, this is the first report demonstrating that engineered chitosan-amino acid nanocomposites could be applied as innovative protective agents to mitigate the effects of chilling stress in crop plants.
Collapse
Affiliation(s)
- Andrzej Kalisz
- Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425, Kraków, Poland.
| | - Andrzej Kornaś
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 30-084, Kraków, Poland.
| | - Joanna Gil
- Department of Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425, Kraków, Poland
| | - Elżbieta Rudolphi-Szydło
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 30-084, Kraków, Poland
| | - Katarzyna Gawrońska
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 30-084, Kraków, Poland
| | - Apolonia Sieprawska
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 30-084, Kraków, Poland
| | - Hessam Jafari
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Iğdır, Turkey
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
24
|
Li J, Lardon R, Mangelinckx S, Geelen D. A practical guide to the discovery of biomolecules with biostimulant activity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3797-3817. [PMID: 38630561 DOI: 10.1093/jxb/erae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
The growing demand for sustainable solutions in agriculture, which are critical for crop productivity and food quality in the face of climate change and the need to reduce agrochemical usage, has brought biostimulants into the spotlight as valuable tools for regenerative agriculture. With their diverse biological activities, biostimulants can contribute to crop growth, nutrient use efficiency, and abiotic stress resilience, as well as to the restoration of soil health. Biomolecules include humic substances, protein lysates, phenolics, and carbohydrates have undergone thorough investigation because of their demonstrated biostimulant activities. Here, we review the process of the discovery and development of extract-based biostimulants, and propose a practical step-by-step pipeline that starts with initial identification of biomolecules, followed by extraction and isolation, determination of bioactivity, identification of active compound(s), elucidation of mechanisms, formulation, and assessment of effectiveness. The different steps generate a roadmap that aims to expedite the transfer of interdisciplinary knowledge from laboratory-scale studies to pilot-scale production in practical scenarios that are aligned with the prevailing regulatory frameworks.
Collapse
Affiliation(s)
- Jing Li
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Robin Lardon
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
25
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
26
|
Kuzderová G, Sovová S, Rendošová M, Gyepes R, Sabolová D, Kožárová I, Balážová Ľ, Vilková M, Kello M, Liška A, Vargová Z. Influence of proline and hydroxyproline as antimicrobial and anticancer peptide components on the silver(I) ion activity: structural and biological evaluation with a new theoretical and experimental SAR approach. Dalton Trans 2024; 53:10834-10850. [PMID: 38661536 DOI: 10.1039/d4dt00389f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Silver(I) complexes with proline and hydroxyproline were synthesized and structurally characterized and crystal structure analysis shows that the formulas of the compounds are {[Ag2(Pro)2(NO3)]NO3}n (AgPro) (Pro = L-proline) and {[Ag2(Hyp)2(NO3)]NO3}n (AgHyp) (Hyp = trans-4-hydroxy-L-proline). Both complexes crystallize in the monoclinic lattice with space group P21 with a carboxylate bidentate-bridging coordination mode of the organic ligands Pro and Hyp (with NH2+ and COO- groups in zwitterionic form). Both complexes have a distorted seesaw (C2v) geometry around one silver(I) ion with τ4 values of 58% (AgPro) and 51% (AgHyp). Moreover, the results of spectral and thermal analyses correlate with the structural ones. 1H and 13C NMR spectra confirm the complexes species' presence in the DMSO biological testing medium and their stability in the time range of the bioassays. In addition, molar conductivity measurements indicate complexes' behaviour like 1 : 1 electrolytes. Both complexes showed higher or the same antibacterial activity against Bacillus cereus, Pseudomonas aeruginosa and Staphylococcus aureus as AgNO3 (MIC = 0.063 mM) and higher than silver(I) sulfadiazine (AgSD) (MIC > 0.5 mM) against Pseudomonas aeruginosa. In addition, complex AgPro exerted a strong cytotoxic effect against the tested MDA-MB-231 and Jurkat cancer cell lines (IC50 values equal to 3.7 and 3.0 μM, respectively) compared with AgNO3 (IC50 = 6.1 (5.7) μM) and even significantly higher selectivity than cisplatin (cisPt) against MDA-MB-231 cancer cell lines (SI = 3.05 (AgPro); 1.16 (cisPt), SI - selectivity index). The binding constants and the number of binding sites (n) of AgPro and AgHyp complexes with bovine serum albumin (BSA) were determined at four different temperatures, and the zeta potential of BSA in the presence of silver(I) complexes was also measured. The in ovo method shows the safety of the topical and intravenous application of AgPro and AgHyp. Moreover, the complexes' bioavailability was verified by lipophilicity evaluation from the experimental and theoretical points of view.
Collapse
Affiliation(s)
- Gabriela Kuzderová
- Department of Inorganic Chemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic.
| | - Simona Sovová
- Department of Biochemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Michaela Rendošová
- Department of Inorganic Chemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic.
| | - Róbert Gyepes
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00 Prague, Czech Republic
| | - Danica Sabolová
- Department of Biochemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic
| | - Ivona Kožárová
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Ľudmila Balážová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Mária Vilková
- NMR laboratory, Faculty of Science, P.J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P.J.Šafárik University, Trieda SNP 1, 040 11 Košice, Slovak Republic
| | - Alan Liška
- Department of Molecular Electrochemistry and Catalysis, J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3/2155, 182 23 Praha 8, Czech Republic
| | - Zuzana Vargová
- Department of Inorganic Chemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic.
| |
Collapse
|
27
|
Balcázar-Zumaeta CR, Fernández-Romero E, Lopes AS, Ferreira NR, Chagas-Júnior GCA, Yoplac I, López-Trigoso HA, Tuesta-Occ ML, Maldonado-Ramirez I, Maicelo-Quintana JL, Cayo-Colca IS, Castro-Alayo EM. Amino acid profile behavior during the fermentation of Criollo cocoa beans. Food Chem X 2024; 22:101486. [PMID: 38840720 PMCID: PMC11152668 DOI: 10.1016/j.fochx.2024.101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
The study investigated the behavior of seventeen amino acids during spontaneous (SF) and starter culture (SC) fermentation of Criollo cocoa beans from Copallín, Guadalupe and Tolopampa, Amazonas-Peru. For this purpose, liquid chromatography (UHPLC) was used to quantify amino acids. Multivariate analysis was used to differentiate the phases of the fermentation process. The percentage of essential amino acids during SC fermentation (63.4%) was higher than SF (61.8%); it was observed that the starter culture accelerated their presence and increased their concentration during the fermentation process. The multivariate analysis identified a first stage (day 0 to day 2), characterized by a low content of amino acids that increased due to protein hydrolysis. The study showed that adding the starter culture (Saccharomyces cerevisiae) to the fermentation mass increased the concentration of essential amino acids (63.0%) compared to the spontaneous process (61.8%). Moreover, this addition reduced the fermentation time (3-4 days less), demonstrating that the fermentation process with a starter culture allows obtaining a better profile of amino acids precursors of flavor and aroma.
Collapse
Affiliation(s)
- César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
- Programa de Doctorado en Ciencias Agrarias, Escuela de Posgrado, Universidad Nacional de Piura, Piura, Jr. Tacna 748, Piura, Peru
| | - Editha Fernández-Romero
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
- Programa de Maestría en Cambio Climático, Agricultura y Desarrollo Rural Sostenible-MACCARD, Escuela de Posgrado, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Alessandra Santos Lopes
- Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Nelson Rosa Ferreira
- Laboratory of Biotechnological Processes (LABIOTEC), Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, 66075-110, Brazil
| | | | - Ives Yoplac
- Laboratorio de Nutrición Animal y Bromatología de Alimentos, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Heydi A. López-Trigoso
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Mery L. Tuesta-Occ
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Italo Maldonado-Ramirez
- Facultad de Ingeniería Mecánica y de Sistemas, Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Jorge L. Maicelo-Quintana
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Efrain M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| |
Collapse
|
28
|
Belcher S, Flores-Iga G, Natarajan P, Crummett G, Talavera-Caro A, Gracia-Rodriguez C, Lopez-Ortiz C, Das A, Adjeroh DA, Nimmakayala P, Balagurusamy N, Reddy UK. Dietary Curcumin Intake and Its Effects on the Transcriptome and Metabolome of Drosophila melanogaster. Int J Mol Sci 2024; 25:6559. [PMID: 38928266 PMCID: PMC11203963 DOI: 10.3390/ijms25126559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin, a polyphenol derived from Curcuma longa, used as a dietary spice, has garnered attention for its therapeutic potential, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its known benefits, the precise mechanisms underlying curcumin's effects on consumers remain unclear. To address this gap, we employed the genetic model Drosophila melanogaster and leveraged two omics tools-transcriptomics and metabolomics. Our investigation revealed alterations in 1043 genes and 73 metabolites upon supplementing curcumin into the diet. Notably, we observed genetic modulation in pathways related to antioxidants, carbohydrates, and lipids, as well as genes associated with gustatory perception and reproductive processes. Metabolites implicated in carbohydrate metabolism, amino acid biosynthesis, and biomarkers linked to the prevention of neurodegenerative diseases such as schizophrenia, Alzheimer's, and aging were also identified. The study highlighted a strong correlation between the curcumin diet, antioxidant mechanisms, and amino acid metabolism. Conversely, a lower correlation was observed between carbohydrate metabolism and cholesterol biosynthesis. This research highlights the impact of curcumin on the diet, influencing perception, fertility, and molecular wellness. Furthermore, it directs future studies toward a more focused exploration of the specific effects of curcumin consumption.
Collapse
Affiliation(s)
- Samantha Belcher
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Gerardo Flores-Iga
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Garrett Crummett
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Alicia Talavera-Caro
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Amartya Das
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Donald A. Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| |
Collapse
|
29
|
Hai D, Li J, Jiang D, Cheng J, Fu Y, Xiao X, Yin H, Lin Y, Chen T, Li B, Yu X, Cai Q, Chen W, Kotta-Loizou I, Xie J. Plants interfere with non-self recognition of a phytopathogenic fungus via proline accumulation to facilitate mycovirus transmission. Nat Commun 2024; 15:4748. [PMID: 38834585 DOI: 10.1038/s41467-024-49110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Non-self recognition is a fundamental aspect of life, serving as a crucial mechanism for mitigating proliferation of molecular parasites within fungal populations. However, studies investigating the potential interference of plants with fungal non-self recognition mechanisms are limited. Here, we demonstrate a pronounced increase in the efficiency of horizontal mycovirus transmission between vegetatively incompatible Sclerotinia sclerotiorum strains in planta as compared to in vitro. This increased efficiency is associated with elevated proline concentration in plants following S. sclerotiorum infection. This surge in proline levels attenuates the non-self recognition reaction among fungi by inhibition of cell death, thereby facilitating mycovirus transmission. Furthermore, our field experiments reveal that the combined deployment of hypovirulent S. sclerotiorum strains harboring hypovirulence-associated mycoviruses (HAVs) together with exogenous proline confers substantial protection to oilseed rape plants against virulent S. sclerotiorum. This unprecedented discovery illuminates a novel pathway by which plants can counteract S. sclerotiorum infection, leveraging the weakening of fungal non-self recognition and promotion of HAVs spread. These promising insights provide an avenue to explore for developing innovative biological control strategies aimed at mitigating fungal diseases in plants by enhancing the efficacy of horizontal HAV transmission.
Collapse
Affiliation(s)
- Du Hai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jincang Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqiong Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Qing Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ioly Kotta-Loizou
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Bak-Sypien I, Pawlak T, Paluch P, Wroblewska A, Dolot R, Pawlowicz A, Szczesio M, Wielgus E, Kaźmierski S, Górecki M, Pawlowska R, Chworos A, Potrzebowski MJ. Influence of heterochirality on the structure, dynamics, biological properties of cyclic(PFPF) tetrapeptides obtained by solvent-free ball mill mechanosynthesis. Sci Rep 2024; 14:12825. [PMID: 38834643 DOI: 10.1038/s41598-024-63552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Cyclic tetrapeptides c(Pro-Phe-Pro-Phe) obtained by the mechanosynthetic method using a ball mill were isolated in a pure stereochemical form as a homochiral system (all L-amino acids, sample A) and as a heterochiral system with D configuration at one of the stereogenic centers of Phe (sample B). The structure and stereochemistry of both samples were determined by X-ray diffraction studies of single crystals. In DMSO and acetonitrile, sample A exists as an equimolar mixture of two conformers, while only one is monitored for sample B. The conformational space and energetic preferences for possible conformers were calculated using DFT methods. The distinctly different conformational flexibility of the two samples was experimentally proven by Variable Temperature (VT) and 2D EXSY NMR measurements. Both samples were docked to histone deacetylase HDAC8. Cytotoxic studies proved that none of the tested cyclic peptide is toxic.
Collapse
Affiliation(s)
- Irena Bak-Sypien
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Aneta Wroblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Rafał Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Aleksandra Pawlowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 St., 61-704, Poznan, Poland
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116 St., 90-924, Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224, Warsaw, Poland
| | - Roza Pawlowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland.
| |
Collapse
|
31
|
Boros LG, Kyriakopoulos AM, Brogna C, Piscopo M, McCullough PA, Seneff S. Long-lasting, biochemically modified mRNA, and its frameshifted recombinant spike proteins in human tissues and circulation after COVID-19 vaccination. Pharmacol Res Perspect 2024; 12:e1218. [PMID: 38867495 PMCID: PMC11169277 DOI: 10.1002/prp2.1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/20/2024] [Indexed: 06/14/2024] Open
Abstract
According to the CDC, both Pfizer and Moderna COVID-19 vaccines contain nucleoside-modified messenger RNA (mRNA) encoding the viral spike glycoprotein of severe acute respiratory syndrome caused by corona virus (SARS-CoV-2), administered via intramuscular injections. Despite their worldwide use, very little is known about how nucleoside modifications in mRNA sequences affect their breakdown, transcription and protein synthesis. It was hoped that resident and circulating immune cells attracted to the injection site make copies of the spike protein while the injected mRNA degrades within a few days. It was also originally estimated that recombinant spike proteins generated by mRNA vaccines would persist in the body for a few weeks. In reality, clinical studies now report that modified SARS-CoV-2 mRNA routinely persist up to a month from injection and can be detected in cardiac and skeletal muscle at sites of inflammation and fibrosis, while the recombinant spike protein may persist a little over half a year in blood. Vaccination with 1-methylΨ (pseudouridine enriched) mRNA can elicit cellular immunity to peptide antigens produced by +1 ribosomal frameshifting in major histocompatibility complex-diverse people. The translation of 1-methylΨ mRNA using liquid chromatography tandem mass spectrometry identified nine peptides derived from the mRNA +1 frame. These products impact on off-target host T cell immunity that include increased production of new B cell antigens with far reaching clinical consequences. As an example, a highly significant increase in heart muscle 18-flourodeoxyglucose uptake was detected in vaccinated patients up to half a year (180 days). This review article focuses on medical biochemistry, proteomics and deutenomics principles that explain the persisting spike phenomenon in circulation with organ-related functional damage even in asymptomatic individuals. Proline and hydroxyproline residues emerge as prominent deuterium (heavy hydrogen) binding sites in structural proteins with robust isotopic stability that resists not only enzymatic breakdown, but virtually all (non)-enzymatic cleavage mechanisms known in chemistry.
Collapse
Affiliation(s)
- László G. Boros
- Sub‐Molecular Medical Sciences Deutenomics CoreVrije University AmsterdamAmsterdamThe Netherlands
| | | | - Carlo Brogna
- Department of ResearchCraniomed Group Facility SrlItaly
| | - Marina Piscopo
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | | | - Stephanie Seneff
- Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
32
|
Arrari F, Jabri MA, Ayari A, Dakhli N, Ben Fayala C, Boubaker S, Sebai H. Amino acid HPLC-FLD analysis of spirulina and its protective mechanism against the combination of obesity and colitis in wistar rats. Heliyon 2024; 10:e30103. [PMID: 38694088 PMCID: PMC11061748 DOI: 10.1016/j.heliyon.2024.e30103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Objective The cafeteria diet (CD), designed as an experimental diet mimicking the obesogenic diet, may contribute to the pathogenesis of inflammatory bowel diseases (IBD). This study delves into the influence of spirulina (SP) on obesity associated with colitis in Wistar rats. Methods The amino acids composition of SP was analyzed using HPLC-FLD. Animals were equally separated into eight groups, each containing seven animals and treated daily for eight weeks as follows: Control diet (SD), cafeteria diet (CD) group, CD + SP (500 mg/kg) and SD + SP. Ulcerative colitis was provoked by rectal injection of acetic acid (AA) (3 % v/v, 5 ml/kg b.w.) on the last day of treatment in the following groups: SD + AA, SD + AA + SP, CD + AA, and CD + AA + SP. Results Findings revealed that UC and/or CD increased the abdominal fat, weights gain, and colons. Moreover, severe colonic alteration, perturbations in the serum metabolic parameters associated with an oxidative stress state in the colonic mucosa, defined by overproduction of reactive oxygen species (ROS) and increased levels of plasma scavenging activity (PSA). Additionally, obesity exacerbated the severity of AA-induced UC promoting inflammation marked by the overexpression of pro-inflammatory cytokines. Significantly, treatment with SP provided notable protection against inflammation severity, reduced histopathological alterations, attenuated lipid peroxidation (MDA), and enhanced antioxidant enzyme activities (CAT, SOD, and GPX) along with non-enzymatic antioxidants (GSH and SH-G). Conclusions Thus, the antioxidant effects and anti-inflammatory proprieties of SP could be attributed to its richness in amino acids, which could potentially mitigate inflammation severity in obese subjects suffering from ulcerative colitis. These results imply that SP hold promise as a therapeutic agent for managing of UC, particularly in individuals with concomitant obesity. Understanding SP's mechanisms of action may lead novel treatment strategies for inflammatory bowel diseases and hyperlipidemia in medical research.
Collapse
Affiliation(s)
- Fatma Arrari
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Mohamed-Amine Jabri
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Ala Ayari
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Nouha Dakhli
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Chayma Ben Fayala
- Laboratoire d'anatomie Pathologique Humaine et Expérimentale, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis, 1002, Tunisia
| | - Samir Boubaker
- Laboratoire d'anatomie Pathologique Humaine et Expérimentale, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis, 1002, Tunisia
| | - Hichem Sebai
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| |
Collapse
|
33
|
P. Gomes PW, Mannochio-Russo H, Mao J, Zhao HN, Ancira J, Tipton CD, Dorrestein PC, Li M. Co-occurrence network analysis reveals the alterations of the skin microbiome and metabolome in adults with mild to moderate atopic dermatitis. mSystems 2024; 9:e0111923. [PMID: 38319107 PMCID: PMC10949451 DOI: 10.1128/msystems.01119-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Skin microbiome can be altered in patients with atopic dermatitis (AD). An understanding of the changes from healthy to atopic skin can help develop new targets for treatment by identifying microbial and molecular biomarkers. This study investigates the skin microbiome and metabolome of healthy adult subjects and lesion (ADL) and non-lesion (ADNL) of AD patients by 16S rRNA gene sequencing and mass spectrometry, respectively. Samples from AD patients showed alterations in the diversity and composition of the skin microbiome, with ADL skin having the greatest divergence. Staphylococcus species, especially S. aureus, were significantly increased in AD patients. Metabolomic profiles were also different between the groups. Dipeptide derivatives are more abundant in ADL, which may be related to skin inflammation. Co-occurrence network analysis of the microbiome and metabolomics data revealed higher co-occurrence of metabolites and bacteria in healthy ADNL compared to ADL. S. aureus co-occurred with dipeptide derivatives in ADL, while phytosphingosine-derived compounds showed co-occurrences with commensal bacteria, for example, Paracoccus sp., Pseudomonas sp., Prevotella bivia, Lactobacillus iners, Anaerococcus sp., Micrococcus sp., Corynebacterium ureicelerivorans, Corynebacterium massiliense, Streptococcus thermophilus, and Roseomonas mucosa, in healthy and ADNL groups. Therefore, these findings provide valuable insights into how AD affects the human skin metabolome and microbiome.IMPORTANCEThis study provides valuable insight into changes in the skin microbiome and associated metabolomic profiles in an adult population with mild to moderate atopic dermatitis. It also identifies new therapeutic targets that may be useful for developing personalized treatments for individuals with atopic dermatitis based on their unique skin microbiome and metabolic profiles.
Collapse
Affiliation(s)
- Paulo Wender P. Gomes
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Helena Mannochio-Russo
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Junhong Mao
- Colgate−Palmolive Company, Piscataway, New Jersey, USA
| | - Haoqi Nina Zhao
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | | | | | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Min Li
- Colgate−Palmolive Company, Piscataway, New Jersey, USA
| |
Collapse
|
34
|
Fan Y, Xue H, Li Z, Huo M, Gao H, Guan X. Exploiting the Achilles' heel of cancer: disrupting glutamine metabolism for effective cancer treatment. Front Pharmacol 2024; 15:1345522. [PMID: 38510646 PMCID: PMC10952006 DOI: 10.3389/fphar.2024.1345522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Cancer cells have adapted to rapid tumor growth and evade immune attack by reprogramming their metabolic pathways. Glutamine is an important nitrogen resource for synthesizing amino acids and nucleotides and an important carbon source in the tricarboxylic acid (TCA) cycle and lipid biosynthesis pathway. In this review, we summarize the significant role of glutamine metabolism in tumor development and highlight the vulnerabilities of targeting glutamine metabolism for effective therapy. In particular, we review the reported drugs targeting glutaminase and glutamine uptake for efficient cancer treatment. Moreover, we discuss the current clinical test about targeting glutamine metabolism and the prospective direction of drug development.
Collapse
Affiliation(s)
- Yuxin Fan
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Han Xue
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Zhimin Li
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Mingge Huo
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Hongxia Gao
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
| | - Xingang Guan
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| |
Collapse
|
35
|
Fouda A, Alshallash KS, Atta HM, El Gamal MS, Bakry MM, Alawam AS, Salem SS. Synthesis, Optimization, and Characterization of Cellulase Enzyme Obtained from Thermotolerant Bacillus subtilis F3: An Insight into Cotton Fabric Polishing Activity. J Microbiol Biotechnol 2024; 34:207-223. [PMID: 37940165 PMCID: PMC10840485 DOI: 10.4014/jmb.2309.09023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
The efficacy of 40 bacterial isolates obtained from hot spring water samples to produce cellulase enzymes was investigated. As a result, the strain Bacillus subtilis F3, which was identified using traditional and molecular methods, was selected as the most potent for cellulase production. Optimization was carried out using one-factor-at-a-time (OFAT) and BOX-Behnken Design to detect the best conditions for the highest cellulase activity. This was accomplished after an incubation period of 24 h at 45°C and pH 8, with an inoculum size of 1% (v/v), 5 g/l of peptone as nitrogen source, and 7.5 g/l of CMC. Moreover, the best concentration of ammonium sulfate for cellulase enzyme precipitation was 60% followed by purification using a dialysis bag and Sephadex G-100 column chromatography to collect the purified enzyme. The purified cellulase enzyme was characterized by 5.39-fold enrichment, with a specific activity of 54.20 U/mg and a molecular weight of 439 kDa. There were 15 amino acids involved in the purified cellulase, with high concentrations of 160 and 100 mg/l for glycine and proline respectively. The highest stability and activity of the purified cellulase was attained at pH 7 and 50°C in the presence of 150 ppm of CaCl2, NaCl, and ZnO metal ions. Finally, the biopolishing activity of the cellulase enzyme, as indicated by weight loss percentages of the cotton fabric, was dependent on concentration and treatment time. Overall, the thermotolerant B. subtilis F3 strain has the potential to provide highly stable and highly active cellulase enzyme for use in biopolishing of cotton fabrics.
Collapse
Affiliation(s)
- Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Khalid S. Alshallash
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Hossam M. Atta
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mamdouh S. El Gamal
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed M. Bakry
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
36
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
37
|
Kolyada MN, Osipova VP, Pimenov YT. Oxidative stress and cryoresistance of sturgeon sperm: A review. Cryobiology 2023; 113:104594. [PMID: 37848167 DOI: 10.1016/j.cryobiol.2023.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Currently, the majority of sturgeons are relict fishes of high economic value yet endangered with extinction. Cryopreservation of sperm has great potential in fish farming and conservation, but the problem of low cryoresistance of sturgeon sperm has not yet been solved. The goal of this work was to review current literature data on the causes of low tolerance of sturgeon sperm to cryodamage. The influence of cryopreservation on the parameters of physiology and metabolism of sturgeon sperm (morphology and fine ultrastructure, mobility and fertilization ability, integrity of the plasma membrane, protein, lipid and metabolite profiles, antioxidant status, DNA damage), as well as on biomarkers of oxidative stress (lipids peroxidation levels and carbonyl derivatives of proteins) is discussed. Since the development of oxidative stress is an important mechanism of sperm cryodamage induction, the review presents the literature on the role of oxygen-derived species in damage of sturgeon reproductive cells caused by cryopreservation. Particular attention is paid to the system of antioxidant protection of sturgeon seminal plasma and spermatozoa, represented by antioxidant enzymes and low molecular weight antioxidants capable of utilizing various reactive forms of oxygen and nitrogen. The review discusses the results of lipidomic and proteomic studies of sturgeon sperm, which made it possible to obtain new data on the lipid composition of cell membranes, to detect proteins involved in the protection of sturgeon spermatozoa from oxidative damage during cryopreservation. This review presents the use of «omics» technology to elucidate the mechanism of cryodamage in sturgeon sperm. Additionally, the review summarizes information on the unique anatomical, morphological, biochemical, and physiological features of sturgeon sperm, which may be associated with low cryoresistance of sturgeon, in order to establish prospects for further research on improving the methods of the conservation of sperm of these threatened species.
Collapse
Affiliation(s)
- Margarita N Kolyada
- Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., 344006, Rostov-on-Don, Russia.
| | - Viсtoria P Osipova
- Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., 344006, Rostov-on-Don, Russia.
| | - Yuri T Pimenov
- Astrakhan State Technical University, 16 Tatisheva str., 414056, Astrakhan, Russia.
| |
Collapse
|
38
|
Silao FGS, Jiang T, Bereczky-Veress B, Kühbacher A, Ryman K, Uwamohoro N, Jenull S, Nogueira F, Ward M, Lion T, Urban CF, Rupp S, Kuchler K, Chen C, Peuckert C, Ljungdahl PO. Proline catabolism is a key factor facilitating Candida albicans pathogenicity. PLoS Pathog 2023; 19:e1011677. [PMID: 37917600 PMCID: PMC10621835 DOI: 10.1371/journal.ppat.1011677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
Candida albicans, the primary etiology of human mycoses, is well-adapted to catabolize proline to obtain energy to initiate morphological switching (yeast to hyphal) and for growth. We report that put1-/- and put2-/- strains, carrying defective Proline UTilization genes, display remarkable proline sensitivity with put2-/- mutants being hypersensitive due to the accumulation of the toxic intermediate pyrroline-5-carboxylate (P5C), which inhibits mitochondrial respiration. The put1-/- and put2-/- mutations attenuate virulence in Drosophila and murine candidemia models and decrease survival in human neutrophils and whole blood. Using intravital 2-photon microscopy and label-free non-linear imaging, we visualized the initial stages of C. albicans cells infecting a kidney in real-time, directly deep in the tissue of a living mouse, and observed morphological switching of wildtype but not of put2-/- cells. Multiple members of the Candida species complex, including C. auris, are capable of using proline as a sole energy source. Our results indicate that a tailored proline metabolic network tuned to the mammalian host environment is a key feature of opportunistic fungal pathogens.
Collapse
Affiliation(s)
- Fitz Gerald S. Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Tong Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Biborka Bereczky-Veress
- Intravital Microscopy Facility, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Andreas Kühbacher
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Kicki Ryman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Nathalie Uwamohoro
- Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University Umeå, Sweden
| | - Sabrina Jenull
- Medical University of Vienna, Max F. Perutz Laboratories GmbH, Department of Medical Biochemistry, Vienna, Austria
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Filomena Nogueira
- Medical University of Vienna, Max F. Perutz Laboratories GmbH, Department of Medical Biochemistry, Vienna, Austria
- St. Anna Kinderkrebsforschung e.V., Children’s Cancer Research Institute, Vienna, Austria
| | - Meliza Ward
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Thomas Lion
- St. Anna Kinderkrebsforschung e.V., Children’s Cancer Research Institute, Vienna, Austria
| | - Constantin F. Urban
- Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University Umeå, Sweden
| | - Steffen Rupp
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Karl Kuchler
- Medical University of Vienna, Max F. Perutz Laboratories GmbH, Department of Medical Biochemistry, Vienna, Austria
| | - Changbin Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Christiane Peuckert
- Intravital Microscopy Facility, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Per O. Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| |
Collapse
|
39
|
Bobori SN, Zhu Y, Saarinen A, Liuzzo AJ, Folmes CDL. Metabolic Remodeling during Early Cardiac Lineage Specification of Pluripotent Stem Cells. Metabolites 2023; 13:1086. [PMID: 37887411 PMCID: PMC10608731 DOI: 10.3390/metabo13101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Growing evidence indicates that metabolites and energy metabolism play an active rather than consequential role in regulating cellular fate. Cardiac development requires dramatic metabolic remodeling from relying primarily on glycolysis in pluripotent stem cells (PSCs) to oxidizing a wide array of energy substrates to match the high bioenergetic demands of continuous contraction in the developed heart. However, a detailed analysis of how remodeling of energy metabolism contributes to human cardiac development is lacking. Using dynamic multiple reaction monitoring metabolomics of central carbon metabolism, we evaluated temporal changes in energy metabolism during human PSC 3D cardiac lineage specification. Significant metabolic remodeling occurs during the complete differentiation, yet temporal analysis revealed that most changes occur during transitions from pluripotency to mesoderm (day 1) and mesoderm to early cardiac (day 5), with limited maturation of cardiac metabolism beyond day 5. Real-time metabolic analysis demonstrated that while hPSC cardiomyocytes (hPSC-CM) showed elevated rates of oxidative metabolism compared to PSCs, they still retained high glycolytic rates, confirming an immature metabolic phenotype. These observations support the opportunity to metabolically optimize the differentiation process to support lineage specification and maturation of hPSC-CMs.
Collapse
Affiliation(s)
| | | | | | | | - Clifford D. L. Folmes
- Departments of Biochemistry and Molecular Biology and Cardiovascular Medicine, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA; (S.N.B.)
| |
Collapse
|
40
|
Glover HJ, Holliday H, Shparberg RA, Winkler D, Day M, Morris MB. Signalling pathway crosstalk stimulated by L-proline drives mouse embryonic stem cells to primitive-ectoderm-like cells. Development 2023; 150:dev201704. [PMID: 37823343 PMCID: PMC10652046 DOI: 10.1242/dev.201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 μM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.
Collapse
Affiliation(s)
- Hannah J. Glover
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Holly Holliday
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | | | - David Winkler
- Department of Biochemistry and Chemistry, Latrobe Institute for Molecular Science, Latrobe University, Bundoora 3083, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Margot Day
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Michael B. Morris
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
41
|
Murray A, Kilbride P, Gibson MI. Proline pre-conditioning of Jurkat cells improves recovery after cryopreservation. RSC Med Chem 2023; 14:1704-1711. [PMID: 37731697 PMCID: PMC10507795 DOI: 10.1039/d3md00274h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023] Open
Abstract
Cell therapies such as allogenic CAR T-cell therapy, natural killer cell therapy and stem cell transplants must be cryopreserved for transport and storage. This is typically achieved by addition of dimethyl sulfoxide (DMSO) but the cryoprotectant does not result in 100% cell recovery. New additives or technologies to improve their cryopreservation could have major impact for these emerging therapies. l-Proline is an amino acid osmolyte produced as a cryoprotectant by several organisms such as the codling moth Cydia pomonella and the larvae of the fly Chymomyza costata, and has been found to modulate post-thaw outcomes for several cell lines but has not been studied with Jurkat cells, a T lymphocyte cell line. Here we investigate the effectiveness of l-proline compared to d-proline and l-alanine for the cryopreservation of Jurkat cells. It is shown that 24-hour pre-freezing incubation of Jurkat cells with 200 mM l-proline resulted in a modest increase in cell recovery post-thaw at high cell density, but a larger increase in recovery was observed at the lower cell densities. l-Alanine was as effective as l-proline at lower cell densities, and addition of l-proline to the cryopreservation media (without incubation) had no benefit. The pre-freeze incubation with l-proline led to significant reductions in cell proliferation supporting an intracellular, biochemical, mechanism of action which was shown to be cell-density dependent. Controls with d-proline were found to reduce post-thaw recovery attributed to osmotic stress as d-proline cannot enter the cells. Preliminary analysis of apoptosis/necrosis profiles by flow cytometry indicated that inhibition of apoptosis is not the primary mode of action. Overall, this supports the use of l-proline pre-conditioning to improve T-cell post-thaw recovery without needing any changes to cryopreservation solutions nor methods and hence is simple to implement.
Collapse
Affiliation(s)
- Alex Murray
- Department of Chemistry, University of Warwick Gibbet Hill Road CV4 7AL Coventry UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick Gibbet Hill Road CV4 7AL Coventry UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick Gibbet Hill Road CV4 7AL Coventry UK
| |
Collapse
|
42
|
Hazra MK, Gilron Y, Levy Y. Not Only Expansion: Proline Content and Density Also Induce Disordered Protein Conformation Compaction. J Mol Biol 2023; 435:168196. [PMID: 37442414 DOI: 10.1016/j.jmb.2023.168196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Intrinsically disordered proteins (IDPs) adopt a wide array of different conformations that can be constrained by the presence of proline residues, which are frequently found in IDPs. To assess the effects of proline, we designed a series of peptides that differ with respect to the number of prolines in the sequence and their organization. Using high-resolution atomistic molecular dynamics simulations, we found that accounting for whether the proline residues are clustered or isolated contributed significantly to explaining deviations in the experimentally-determined gyration radii of IDPs from the values expected based on the Flory scaling-law. By contrast, total proline content makes smaller contribution to explaining the effect of prolines on IDP conformation. Proline residues exhibit opposing effects depending on their organizational pattern in the IDP sequence. Clustered prolines (i.e., prolines with ≤2 intervening non-proline residues) result in expanded peptide conformations whereas isolated prolines (i.e., prolines with >2 intervening non-proline residues) impose compacted conformations. Clustered prolines were estimated to induce an expansion of ∼20% in IDP dimension (via formation of PPII structural elements) whereas isolated prolines were estimated to induce a compaction of ∼10% in IDP dimension (via the formation of backbone turns). This dual role of prolines provides a mechanism for conformational switching that does not rely on the kinetically much slower isomerization of cis proline to the trans form. Bioinformatic analysis demonstrates high populations of both isolated and clustered prolines and implementing them in coarse-grained molecular dynamics models illustrates that they improve the characterization of the conformational ensembles of IDPs.
Collapse
Affiliation(s)
- Milan Kumar Hazra
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Gilron
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
43
|
Lu CE, Levey RE, Ghersi G, Schueller N, Liebscher S, Layland SL, Schenke-Layland K, Duffy GP, Marzi J. Monitoring the macrophage response towards biomaterial implants using label-free imaging. Mater Today Bio 2023; 21:100696. [PMID: 37361552 PMCID: PMC10285553 DOI: 10.1016/j.mtbio.2023.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Understanding the immune system's foreign body response (FBR) is essential when developing and validating a biomaterial. Macrophage activation and proliferation are critical events in FBR that can determine the material's biocompatibility and fate in vivo. In this study, two different macro-encapsulation pouches intended for pancreatic islet transplantation were implanted into streptozotocin-induced diabetes rat models for 15 days. Post-explantation, the fibrotic capsules were analyzed by standard immunohistochemistry as well as non-invasive Raman microspectroscopy to determine the degree of FBR induced by both materials. The potential of Raman microspectroscopy to discern different processes of FBR was investigated and it was shown that Raman microspectroscopy is capable of targeting ECM components of the fibrotic capsule as well as pro and anti-inflammatory macrophage activation states, in a molecular-sensitive and marker-independent manner. In combination with multivariate analysis, spectral shifts reflecting conformational differences in Col I were identified and allowed to discriminate fibrotic and native interstitial connective tissue fibers. Moreover, spectral signatures retrieved from nuclei demonstrated changes in methylation states of nucleic acids in M1 and M2 phenotypes, relevant as indicator for fibrosis progression. This study could successfully implement Raman microspectroscopy as complementary tool to study in vivo immune-compatibility providing insightful information of FBR of biomaterials and medical devices, post-implantation.
Collapse
Affiliation(s)
- Chuan-en Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ruth E. Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Ireland
| | - Giulio Ghersi
- ABIEL Srl, C/o ARCA Incubatore di Imprese, Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy
| | - Nathan Schueller
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Simone Liebscher
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Shannon L. Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence IFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Garry P. Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Ireland
- Science Foundation Ireland Centre for Research in Medical Devices (CÚRAM), University of Galway, Ireland
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence IFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
Piper JA, Al Hammouri N, Jansen MI, Rodgers KJ, Musumeci G, Dhungana A, Ghorbanpour SM, Bradfield LA, Castorina A. L-Proline Prevents Endoplasmic Reticulum Stress in Microglial Cells Exposed to L-azetidine-2-carboxylic Acid. Molecules 2023; 28:4808. [PMID: 37375363 DOI: 10.3390/molecules28124808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
L-Azetidine-2-carboxylic acid (AZE) is a non-protein amino acid that shares structural similarities with its proteogenic L-proline amino acid counterpart. For this reason, AZE can be misincorporated in place of L-proline, contributing to AZE toxicity. In previous work, we have shown that AZE induces both polarization and apoptosis in BV2 microglial cells. However, it is still unknown if these detrimental effects involve endoplasmic reticulum (ER) stress and whether L-proline co-administration prevents AZE-induced damage to microglia. Here, we investigated the gene expression of ER stress markers in BV2 microglial cells treated with AZE alone (1000 µM), or co-treated with L-proline (50 µM), for 6 or 24 h. AZE reduced cell viability, nitric oxide (NO) secretion and caused a robust activation of the unfolded protein response (UPR) genes (ATF4, ATF6, ERN1, PERK, XBP1, DDIT3, GADD34). These results were confirmed by immunofluorescence in BV2 and primary microglial cultures. AZE also altered the expression of microglial M1 phenotypic markers (increased IL-6, decreased CD206 and TREM2 expression). These effects were almost completely prevented upon L-proline co-administration. Finally, triple/quadrupole mass spectrometry demonstrated a robust increase in AZE-bound proteins after AZE treatment, which was reduced by 84% upon L-proline co-supplementation. This study identified ER stress as a pathogenic mechanism for AZE-induced microglial activation and death, which is reversed by co-administration of L-proline.
Collapse
Affiliation(s)
- Jordan Allan Piper
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Nour Al Hammouri
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Margo Iris Jansen
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Kenneth J Rodgers
- Neurotoxin Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n°97, 95123 Catania, Italy
| | - Amolika Dhungana
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Sahar Masoumeh Ghorbanpour
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Laura A Bradfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
45
|
Li J, Song Y, Cai H, Zhou B, Ma J. Roles of circRNA dysregulation in esophageal squamous cell carcinoma tumor microenvironment. Front Oncol 2023; 13:1153207. [PMID: 37384299 PMCID: PMC10299836 DOI: 10.3389/fonc.2023.1153207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most prevalent histological esophageal cancer characterized by advanced diagnosis, metastasis, resistance to treatment, and frequent recurrence. In recent years, numerous human disorders such as ESCC, have been linked to abnormal expression of circular RNAs (circRNAs), suggesting that they are fundamental to the intricate system of gene regulation that governs ESCC formation. The tumor microenvironment (TME), referring to the area surrounding the tumor cells, is composed of multiple components, including stromal cells, immune cells, the vascular system, extracellular matrix (ECM), and numerous signaling molecules. In this review, we briefly described the biological purposes and mechanisms of aberrant circRNA expression in the TME of ESCC, including the immune microenvironment, angiogenesis, epithelial-to-mesenchymal transition, hypoxia, metabolism, and radiotherapy resistance. As in-depth research into the processes of circRNAs in the TME of ESCC continues, circRNAs are promising therapeutic targets or delivery systems for cancer therapy and diagnostic and prognostic indicators for ESCC.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huihong Cai
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Zhou
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
46
|
Svobodová K, Maitre A, Obregón D, Wu-Chuang A, Thaduri S, Locke B, de Miranda JR, Mateos-Hernández L, Krejčí AB, Cabezas-Cruz A. Gut microbiota assembly of Gotland varroa-surviving honey bees excludes major viral pathogens. Microbiol Res 2023; 274:127418. [PMID: 37315341 DOI: 10.1016/j.micres.2023.127418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
The spread of the parasite Varroa destructor and associated viruses has resulted in massive honey bee colony losses with considerable economic and ecological impact. The gut microbiota has a major role in shaping honey bees tolerance and resistance to parasite infestation and viral infection, but the contribution of viruses to the assembly of the host microbiota in the context of varroa resistance and susceptibility remains unclear. Here, we used a network approach including viral and bacterial nodes to characterize the impact of five viruses, Apis Rhabdovirus-1 (ARV-1), Black Queen Cell virus (BQCV), Lake Sinai virus (LSV), Sacbrood virus (SBV) and Deformed wing virus (DWV) on the gut microbiota assembly of varroa-susceptible and Gotland varroa-surviving honey bees. We found that microbiota assembly was different in varroa-surviving and varroa-susceptible honey bees with the network of the latter having a whole module not present in the network of the former. Four viruses, ARV-1, BQCV, LSV, and SBV, were tightly associated with bacterial nodes of the core microbiota of varroa-susceptible honey bees, while only two viruses BQCV and LSV, appeared correlated with bacterial nodes in varroa-surviving honey bees. In silico removal of viral nodes caused major re-arrangement of microbial networks with changes in nodes centrality and significant reduction of the networks' robustness in varroa-susceptible, but not in varroa-surviving honey bees. Comparison of predicted functional pathways in bacterial communities using PICRUSt2 showed the superpathway for heme b biosynthesis from uroporphyrinogen-III and a pathway for arginine, proline, and ornithine interconversion as significantly increased in varroa-surviving honey bees. Notably, heme and its reduction products biliverdin and bilirubin have been reported as antiviral agents. These findings show that viral pathogens are differentially nested in the bacterial communities of varroa-surviving and varroa-susceptible honey bees. These results suggest that Gotland honey bees are associated with minimally-assembled and reduced bacterial communities that exclude viral pathogens and are resilient to viral nodes removal, which, together with the production of antiviral compounds, may explain the resiliency of Gotland honey bees to viral infections. In contrast, the intertwined virus-bacterium interactions in varroa-susceptible networks suggest that the complex assembly of microbial communities in this honey bee strain favor viral infections, which may explain viral persistence in this honey bee strain. Further understanding of protective mechanisms mediated by the microbiota could help developing novel ways to control devastating viral infections affecting honey bees worldwide.
Collapse
Affiliation(s)
- Karolína Svobodová
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France; INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250 Corte, France; EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Srinivas Thaduri
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Alena Bruce Krejčí
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France.
| |
Collapse
|
47
|
Bianchi L, Damiani I, Castiglioni S, Carleo A, De Salvo R, Rossi C, Corsini A, Bellosta S. Smooth Muscle Cell Phenotypic Switch Induced by Traditional Cigarette Smoke Condensate: A Holistic Overview. Int J Mol Sci 2023; 24:ijms24076431. [PMID: 37047404 PMCID: PMC10094728 DOI: 10.3390/ijms24076431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis. CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells (SMCs) with CSC. We evaluated specific markers for contractile [i.e., actin, aortic smooth muscle (ACTA2), calponin-1 (CNN1), the Kruppel-like factor 4 (KLF4), and myocardin (MYOCD) genes] and inflammatory [i.e., IL-1β, and IL-6, IL-8, and galectin-3 (LGALS-3) genes] phenotypes. CSC increased the expression of inflammatory markers and reduced the contractile ones in both cell types, with KLF4 modulating the SMC phenotypic switch. Next, we performed a mass spectrometry-based differential proteomic approach on human SMCs and could show 11 proteins were significantly affected by exposition to CSC (FC ≥ 2.7, p ≤ 0.05). These proteins are active in signaling pathways related to expression of pro-inflammatory cytokines and IFN, inflammasome assembly and activation, cytoskeleton regulation and SMC contraction, mitochondrial integrity and cellular response to oxidative stress, proteostasis control via ubiquitination, and cell proliferation and epithelial-to-mesenchymal transition. Through specific bioinformatics resources, we showed their tight functional correlation in a close interaction niche mainly orchestrated by the interferon-induced double-stranded RNA-activated protein kinase (alternative name: protein kinase RNA-activated; PKR) (EIF2AK2/PKR). Finally, by combining gene expression and protein abundance data we obtained a hybrid network showing reciprocal integration of the CSC-deregulated factors and indicating KLF4 and PKR as the most relevant factors.
Collapse
|
48
|
Nutritional Attributes and Phenolic Composition of Flower and Bud of Sophora japonica L. and Robinia pseudoacacia L. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248932. [PMID: 36558062 PMCID: PMC9782067 DOI: 10.3390/molecules27248932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Sophora japonica L. (SJL) and Robinia pseudoacacia L. (RPL) are widely cultivated in China. However, the utilization of their main by-products are limited due to a lack of comprehensive nutritional attributes. Herein, the proximate composition, mineral elements, fatty acids, amino acids, monosaccharides, and phenolics were analyzed to investigate the nutritional attributes of SJL and RPL. Dietary fiber was the main ingredient in SJL and RPL, followed by protein and lipids. The content of Fe in SJL and RPL was highest, especially in flowers of SJL, reaching about 1179.51 mg/kg. The total unsaturated fatty acids accounted for 89.67% of the bud of SJL. Meanwhile, the essential amino acids contents of the flower and bud of SJL and RPL accounted for 35.95-40.59% of total amino acids. The flower of SJL (373.75 mg/g) exhibited the most abundant monosaccharides. Meanwhile, the total phenolics and flavonoid contents in the buds of SJL and RPL were significantly higher than that of the flower, implying the buds possessed better biological activity. Moreover, the bud of SJL possessed the most abundant phenolics. The results provided a reference for the development of functional food derived from SJL and RPL.
Collapse
|
49
|
Stefanelli M, Magna G, Di Natale C, Paolesse R, Monti D. Stereospecific Self-Assembly Processes of Porphyrin-Proline Conjugates: From the Effect of Structural Features and Bulk Solvent Properties to the Application in Stereoselective Sensor Systems. Int J Mol Sci 2022; 23:15587. [PMID: 36555226 PMCID: PMC9779260 DOI: 10.3390/ijms232415587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Conjugating the porphyrin ring with an amino acid via amide linkage represents a straightforward way for conferring both amphiphilicity and chirality to the macrocycle. Proline residue is a good choice in this context since its conformational rigidity allows for porphyrin assembling where molecular chirality is efficiently transferred and amplified using properly honed aqueous environments. Herein, we describe the evolution of the studies carried out by our group to achieve chiral systems from some porphyrin-proline derivatives, both in solution and in the solid state. The discussion focuses on some fundamental aspects reflecting on the final molecular architectures obtained, which are related to the nature of the appended group (stereochemistry and charge), the presence of a metal ion coordinated to the porphyrin core and the bulk solvent properties. Indeed, fine-tuning the mentioned parameters enables the achievement of stereospecific structures with distinctive chiroptical and morphological features. Solid films based on these chiral systems were also obtained and their recognition abilities in gaseous and liquid phase are here described.
Collapse
Affiliation(s)
- Manuela Stefanelli
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Gabriele Magna
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, Università di Roma Tor Vergata, Viale del Politecnico 1, 00133 Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Donato Monti
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
50
|
Yang Z, Wang X, Feng J, Zhu S. Biological Functions of Hydrogen Sulfide in Plants. Int J Mol Sci 2022; 23:ijms232315107. [PMID: 36499443 PMCID: PMC9736554 DOI: 10.3390/ijms232315107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Hydrogen sulfide (H2S), which is a gasotransmitter, can be biosynthesized and participates in various physiological and biochemical processes in plants. H2S also positively affects plants' adaptation to abiotic stresses. Here, we summarize the specific ways in which H2S is endogenously synthesized and metabolized in plants, along with the agents and methods used for H2S research, and outline the progress of research on the regulation of H2S on plant metabolism and morphogenesis, abiotic stress tolerance, and the series of different post-translational modifications (PTMs) in which H2S is involved, to provide a reference for future research on the mechanism of H2S action.
Collapse
Affiliation(s)
- Zhifeng Yang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Xiaoyu Wang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Jianrong Feng
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|