1
|
Schoenborn S, Yuan M, Fell CA, Liu C, Fletcher DF, Priola S, Chan HF, Woodruff M, Li Z, Toh YC, Allenby MC. Simulating big mechanically-active culture systems (BigMACS) using paired biomechanics-histology FEA modelling to derive mechanobiology design relationships. Biofabrication 2025; 17:035006. [PMID: 40239681 DOI: 10.1088/1758-5090/adcd9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
Big mechanically-active culture systems (BigMACS) are promising to stimulate, control, and pattern cell and tissue behaviours with less soluble factor requirements. However, it remains challenging to predict if and how distributed mechanical forces impact single-cell behaviours to pattern tissue. In this study, we introduce a tissue-scale finite element analysis framework able to correlate sub-cellular quantitative histology with centimetre-scale biomechanics. Our framework is relevant to diverse BigMACS, including media perfusion, tensile-stress, magnetic, and pneumatic tissue culture platforms. We apply our framework to understand how the design and operation of a multi-axial soft robotic bioreactor can spatially control mesenchymal stem cell (MSC) proliferation, orientation, differentiation to smooth muscle, and extracellular vascular matrix deposition. We find MSC proliferation and matrix deposition to positively correlate with mechanical stimulation but cannot be locally patterned by soft robot mechanical stimulation within a centimetre scale tissue. In contrast, local stress distribution was able to locally pattern MSC orientation and differentiation to smooth muscle phenotypes, where MSCs aligned perpendicular to principal stress direction and expressed increased α-SMA with increasing 3D Von Mises Stresses from 0 to 15 kPa. Altogether, our new biomechanical-histological simulation framework is a promising technique to derive the future mechanical design equations to control cell behaviours and engineer patterned tissue.
Collapse
Affiliation(s)
- Sabrina Schoenborn
- BioMimetic Systems Engineering (BMSE) Lab, School of Chemical Engineering, University of Queensland (UQ), St Lucia QLD 4072, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Mingyang Yuan
- BioMimetic Systems Engineering (BMSE) Lab, School of Chemical Engineering, University of Queensland (UQ), St Lucia QLD 4072, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Cody A Fell
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Chuanhai Liu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China, People's Republic of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China, People's Republic of China
| | - David F Fletcher
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2006, Australia
| | - Selene Priola
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Hon Fai Chan
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China, People's Republic of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Mia Woodruff
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Zhiyong Li
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Yi-Chin Toh
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Mark C Allenby
- BioMimetic Systems Engineering (BMSE) Lab, School of Chemical Engineering, University of Queensland (UQ), St Lucia QLD 4072, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
2
|
Kim S, Li S, Baek SY, Cha C, Lee SJ. Combinatorial strategy for engineering cartilage and bone microtissues using microfluidic cell-laden microgels. Biofabrication 2025; 17:035002. [PMID: 40174602 DOI: 10.1088/1758-5090/adc840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/01/2025] [Indexed: 04/04/2025]
Abstract
Osteochondral defects (OCD) refer to localized injuries affecting both the avascular cartilage and subchondral bone. Current treatments, such as transplantation or microfracture surgery, are hindered by limitations like donor availability and the formation of small, rigid fibrocartilage. Tissue engineering presents a promising alternative, yet challenges arise from limited oxygen and nutrient supply when fabricating human-scale tissue constructs. To address this, we propose assembling engineered micro-scale tissue constructs as building blocks for human-scale constructs. In this study, we aimed to develop bone and cartilage microtissues as building blocks for osteochondral tissue engineering. We fabricated placental stem cell (PSC)-laden microgels, inducing differentiation into osteogenic and chondrogenic microtissues. Utilizing a microfluidics chip platform, these microgels comprised a cell-laden core containing bone-specific and cartilage-specific growth factor-mimetic peptides, respectively, along with an acellular hydrogel shell. Additionally, we investigated the effect of culture conditions on microtissue formation, testing dynamic and static conditions. Results revealed over 85% cell viability within the microgels over 7 d of continuous growth. Under static conditions, approximately 60% of cells migrated from the core to the periphery, while dynamic conditions exhibited evenly distributed cells. Within 4 weeks of differentiation, growth factor-mimetic peptides accelerated PSC differentiation into bone and cartilage microtissues. These findings suggest the potential clinical applicability of our approach in treating OCD.
Collapse
Affiliation(s)
- Suntae Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Siyuan Li
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, NC 27157, United States of America
| | - Seung Yeop Baek
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, NC 27157, United States of America
| |
Collapse
|
3
|
Dalle Carbonare L, Cominacini M, Trabetti E, Bombieri C, Pessoa J, Romanelli MG, Valenti MT. The bone microenvironment: new insights into the role of stem cells and cell communication in bone regeneration. Stem Cell Res Ther 2025; 16:169. [PMID: 40221779 PMCID: PMC11993959 DOI: 10.1186/s13287-025-04288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in bone formation and remodeling. Intrinsic genetic factors and extrinsic environmental cues regulate their differentiation into osteoblasts. Within the bone microenvironment, a complex network of biochemical and biomechanical signals orchestrates bone homeostasis and regeneration. In addition, the crosstalk among MSCs, immune cells, and neighboring cells-mediated by extracellular vesicles and non-coding RNAs (such as circular RNAs and micro RNAs) -profoundly influences osteogenic differentiation and bone remodeling. Recent studies have explored specific signaling pathways that contribute to effective bone regeneration, highlighting the potential of manipulating the bone microenvironment to enhance MSC functionality. The integration of advanced biomaterials, gene editing techniques, and controlled delivery systems is paving the way for more targeted and efficient regenerative therapies. Furthermore, artificial intelligence could improve bone tissue engineering, optimize biomaterial design, and enable personalized treatment strategies. This review explores the latest advancements in bone regeneration, emphasizing the intricate interplay among stem cells, immune cells, and signaling molecules. By providing a comprehensive overview of these mechanisms and their clinical implications, we aim to shed light on future research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- L Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100, Verona, Italy
| | - M Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100, Verona, Italy
| | - E Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - C Bombieri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - J Pessoa
- Department of Medical Sciences and Institute of Biomedicine-Ibimed, University of Aveiro, 3810 - 193, Aveiro, Portugal
| | - M G Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - M T Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy.
| |
Collapse
|
4
|
Truchan K, Zagrajczuk B, Cholewa-Kowalska K, Osyczka AM. Rapid osteoinduction of human adipose-derived stem cells grown on bioactive surfaces and stimulated by chemically modified media flow. J Biol Eng 2025; 19:23. [PMID: 40087792 PMCID: PMC11908086 DOI: 10.1186/s13036-025-00491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Adipose-derived stem cells (ASCs) provide an ample, easily accessible source of multipotent cells, an alternative to bone marrow-derived stromal cells (BMSCs), capable of differentiating into osteoblasts. However, the osteogenic potential of ASCs is reportedly lower than that of BMSCs and protocols to effectively differentiate ASCs into osteoblasts are in high demand. Here, we present novel strategies for effective osteogenic differentiation of human ASCs by combining their culture on bioactive growth surfaces with their treatment with specific supplements in osteogenic medium and application of fluid shear stress. Human ASCs were cultured on PLGA-based composites containing 50 wt% sol-gel bioactive glasses (SBGs) from the SiO2-CaO±P2O5 system, either unmodified or modified with 5 wt% ZnO or SrO. The osteogenic medium was supplemented with recombinant human bone morphogenetic protein 2 (BMP-2), MEK1/2 kinase inhibitor (PD98059) and indirect Smurf1 inhibitor (Phenamil). Fluid shear stress was applied with a standard horizontal rocker. ASC culture on SBG-PLGA composites along with the osteogenic medium supplements enhanced the expression of both early and late osteogenic markers. Modification of SBG with either SrO or ZnO further enhanced osteogenic gene expression compared to ASCs cultured on composites containing unmodified SBGs. Notably, the application of fluid shear stress synergistically strengthened the osteogenic effects of bioactive composites and medium supplements. We also show that the presented culture strategies can drive ASCs toward osteoblastic cells in a 3-day culture period and provide mineralizing osteoblasts through a short, 7-day ASC preculture on bioactive composites. Our results also indicate that the applied osteogenic treatment leads to the phosphorylation of β-catenin and CREB or the COX-2 expression. We believe the presented strategies are feasible for rapid ASC differentiation to early osteoblasts or mineralizing osteoblastic cells for various potential cell-based bone regeneration therapies.
Collapse
Affiliation(s)
- Karolina Truchan
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa St. 9, Krakow, 30-387, Poland
| | - Barbara Zagrajczuk
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, Krakow, 30-059, Poland
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, Krakow, 30-059, Poland
| | - Anna Maria Osyczka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa St. 9, Krakow, 30-387, Poland.
| |
Collapse
|
5
|
Chen Y, Xue D, Huang D, Li X, Duan Y, Chen B. Biofabrication of Tunable 3D Hydrogel for Investigating the Matrix Stiffness Impact on Breast Cancer Chemotherapy Resistance. ACS Biomater Sci Eng 2025; 11:1417-1431. [PMID: 40013911 PMCID: PMC11900772 DOI: 10.1021/acsbiomaterials.4c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Matrix stiffness is a key factor in breast cancer progression, but its impact on cell function and response to treatment is not fully understood. Here, we developed a stiffness-tunable hydrogel-based three-dimensional system that recapitulates the extracellular matrix and physiological properties of human breast cancer in vitro. Adjusting the ratio of GelMA to PEGDA in the hydrogel formulation enabled the fine-tuning of matrix stiffness across a range of 7 to 52 kPa. Utilizing this three-dimensional (3D) hydrogel platform for a breast cancer cell culture has enabled precise functional evaluations. Variations in matrix stiffness resulted in significant changes in the morphology of breast cancer cells after 2 weeks of incubation. The analysis of transcriptomic sequencing revealed that the 3D microenvironment significantly changed the expression of a wide panel of transcriptomic profiles of breast cancer cells in various matrix stiffness. Gene Ontology analysis further suggested that specific biological functions could potentially be linked to the magnitude of the matrix stiffness. According to our findings, extracellular matrix rigidity modulates the sensitivity of breast cancer cells to paclitaxel and adriamycin. Notably, the expression of ABCB1 and YAP1 genes may be upregulated in the 3D culture environment, potentially contributing to the increased drug resistance observed in breast cancer cells. This work aims to establish facile adjustable hydrogels to deepen insights into matrix rigidity effects on breast cancer cells within 3D microenvironments, highlighting the critical role of extracellular matrix stiffness in modulating cell-matrix interactions.
Collapse
Affiliation(s)
- Yue Chen
- Department
of Laboratory Medicine, the Second Affiliated Hospital, School of
Medicine, South China University of Technology, Guangzhou 510180, China
| | - Dan Xue
- Department
of Traditional Chinese Medicine, the Second Affiliated Hospital, School
of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Di Huang
- Department
of Breast Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Xinying Li
- Dermatology
Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yuyou Duan
- Laboratory
of Stem Cells and Translational Medicine, Institute for Medical Research,
the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Laboratory
of Stem Cells and Translational Medicine, Institute for Life Science,
School of Medicine, South China University
of Technology, Guangzhou 510006, China
| | - Bin Chen
- Department
of Laboratory Medicine, the Second Affiliated Hospital, School of
Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
6
|
Liu T, Xiong B, Cui X, Zhang C. Numerical study of interstitial fluid flow behavior in osteons under dynamic loading. BMC Musculoskelet Disord 2025; 26:187. [PMID: 39994737 PMCID: PMC11854024 DOI: 10.1186/s12891-025-08425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The porous structure in bone tissue is essential for maintaining the physiological functions and overall health of intraosseous cells. The lacunar-canalicular net (LCN), a microscopic porous structure within osteons, facilitates the transport of nutrients and signaling molecules through interstitial fluid flow. However, the transient behavior of fluid flow within these micro-pores under dynamic loading conditions remains insufficiently studied. METHODS The study constructs a fluid-solid coupling model including the Haversian canal, canaliculi, lacunae, and interstitial fluid, to examine interstitial fluid flow behavior within the LCN under dynamic loading with varying frequencies and amplitudes. The relationship between changes of LCN pore volume and fluid velocity, and pressure is researched. RESULTS The results demonstrate that increasing strain amplitude leads to significant changes of LCN pore volume within osteons. In a complete loading cycle, with the increase of compressive strain, the pore volume in the osteon gradually shrinks, and the pressure gradient in the LCN increases, which promotes the increase of interstitial fluid velocity. When the compressive strain reaches the peak value, the flow velocity also reaches the maximum. In the subsequent unloading process, the pore volume began to recover, the pressure gradient gradually decreased, the flow rate decreased accordingly, and finally returned to the steady state level. At a loading amplitude of 1000 µε, the pore volume within LCN decreases by 1.1‰. At load amplitudes of 1500 µε, 2000 µε, and 2500 µε, the pore volume decreases by 1.6‰, 2.2‰ and 2.7‰ respectively, and the average flow velocity at the center of the superficial lacuna is 1.36 times, 1.77 times, and 2.14 times that at 1000 µε, respectively. Additionally, at a loading amplitude of 1000 µε under three different loading frequencies, the average flow velocities at the center of the superficial bone lacuna are 0.60 μm/s, 1.04 μm/s, and 1.54 μm/s, respectively. This indicates that high-frequency and high-amplitude dynamic loading can promote more vigorous fluid flow and pressure fluctuations with changes in LCN pore volume. CONCLUSIONS Dynamic mechanical loading can significantly enhance the interstitial fluid flow in LCN by the changes of LCN pore volume. and dynamic loading promoted fluid flow in shallow lacunae significantly higher than that in deep lacunae. The relationship between changes of LCN pore volume and interstitial fluid flow behavior has implications for drug delivery and bone tissue engineering research.
Collapse
Affiliation(s)
- Tianyu Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Baochuan Xiong
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Xin Cui
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China.
| |
Collapse
|
7
|
Zhang J, Acosta FM, Wang X, Zhao D, Zhang L, Hua R, Guo Q, Zhong L, Qin L, Riquelme MA, Jiang JX. Osteocyte connexin hemichannels and prostaglandin E 2 release dictate bone marrow mesenchymal stromal cell commitment. Proc Natl Acad Sci U S A 2025; 122:e2412144122. [PMID: 39937859 PMCID: PMC11848350 DOI: 10.1073/pnas.2412144122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025] Open
Abstract
Bone is a dynamic organ constantly undergoing remodeling with both bone formation and resorption. Bone formation is mediated by osteoblasts originating from the differentiation of bone marrow (BM) mesenchymal stem and progenitor cells (BM-MSPCs). However, how bone cells communicate with BM-MSPCs to coordinate bone formation remains largely elusive. Here, we unveil a key role of osteocyte connexin 43 (Cx43) hemichannels in regulating the lineage commitment of BM-MSPCs. Two transgenic mouse models expressing dominant negative Cx43 mutants in osteocytes were used: R76W (inhibiting gap junctions) and Δ130 to 136 (inhibiting both hemichannels and gap junctions). BM-MSPCs from Δ130 to 136 mice showed enhanced adipogenic differentiation and reduced osteogenic potential, leading to increased BM adipocytes. Flow cytometry and single-cell RNA sequencing revealed shifts in BM-MSPC subsets, less osteogenic-biased MSPCs, and more adipogenic-biased MSPCs in Δ130 to 136 mice. Conversely, R76W, with more functional hemichannels, exhibited effects similar to WT mice or even greater opposite effects than Δ130 to 136 mice. Prostaglandin E2 (PGE2), released from active Cx43 hemichannels, inhibited adipogenesis and promoted osteogenesis via the PGE2 receptor EP4 and ERK1/2 signaling. Inhibition of Cx43 hemichannels or EP4 led to increased adipogenic-biased MSPCs. Moreover, administration of a Cx43(M1) antibody, which inhibits hemichannels, substantially increased BM adipocytes, accompanied by increased adipogenic-biased MSPCs, and decreased osteogenic-biased MSPCs. Our study highlights the pivotal role of osteocyte Cx43 hemichannels in BM-MSPC fate decision through PGE2 release, providing insights into the precise and highly regulated communication between matrix-bound bone cells and BM-MSPCs, which dictates bone formation and remodeling.
Collapse
Affiliation(s)
- Jingruo Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX78229
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX78229
| | - Xuewei Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX78229
| | - Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX78229
| | - Lidan Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX78229
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX78229
| | - Qianjin Guo
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX78229
| | - Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Manuel A. Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX78229
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX78229
| |
Collapse
|
8
|
Randhawa A, Ganguly K, Dutta SD, Patil TV, Lim KT. Transcriptomic profiling of human mesenchymal stem cells using a pulsed electromagnetic-wave motion bioreactor system for enhanced osteogenic commitment and therapeutic potentials. Biomaterials 2025; 312:122713. [PMID: 39084096 DOI: 10.1016/j.biomaterials.2024.122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Traditional bioreactor systems involve the use of three-dimensional (3D) scaffolds or stem cell aggregates, limiting the accessibility to the production of cell-secreted biomolecules. Herein, we present the use a pulse electromagnetic fields (pEMFs)-assisted wave-motion bioreactor system for the dynamic and scalable culture of human bone marrow-derived mesenchymal stem cells (hBMSCs) with enhanced the secretion of various soluble factors with massive therapeutic potential. The present study investigated the influence of dynamic pEMF (D-pEMF) on the kinetic of hBMSCs. A 30-min exposure of pEMF (10V-1Hz, 5.82 G) with 35 oscillations per minute (OPM) rocking speed can induce the proliferation (1 × 105 → 4.5 × 105) of hBMSCs than static culture. Furthermore, the culture of hBMSCs in osteo-induction media revealed a greater enhancement of osteogenic transcription factors under the D-pEMF condition, suggesting that D-pEMF addition significantly boosted hBMSCs osteogenesis. Additionally, the RNA sequencing data revealed a significant shift in various osteogenic and signaling genes in the D-pEMF group, further suggesting their osteogenic capabilities. In this research, we demonstrated that the combined effect of wave and pEMF stimulation on hBMSCs allows rapid proliferation and induces osteogenic properties in the cells. Moreover, our study revealed that D-pEMF stimuli also induce ROS-scavenging properties in the cultured cells. This study also revealed a bioactive and cost-effective approach that enables the use of cells without using any expensive materials and avoids the possible risks associated with them post-implantation.
Collapse
Affiliation(s)
- Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
9
|
Jörimann T, Füllemann P, Jose A, Matthys R, Wehrle E, Stoddart MJ, Verrier S. In Vitro Induction of Hypertrophic Chondrocyte Differentiation of Naïve MSCs by Strain. Cells 2024; 14:25. [PMID: 39791725 PMCID: PMC11720650 DOI: 10.3390/cells14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone. A high-throughput uniaxial bioreactor system (StrainBot) was used to apply varying percentages of strain on naïve MSCs encapsulated in GelMa hydrogels. This research shows that cyclic uniaxial compression alone directs naïve MSCs towards a hypertrophic chondrocyte phenotype. This was demonstrated by increased cell volumes and reduced glycosaminoglycan (GAG) production, along with an elevated expression of hypertrophic markers such as MMP13 and Type X collagen. In contrast, Type II collagen, typically associated with resting chondrocytes, was poorly detected under mechanical loading alone conditions. The addition of chondrogenic factor TGFβ1 in the culture medium altered these outcomes. TGFβ1 induced chondrogenic differentiation, as indicated by higher GAG/DNA production and Type II collagen expression, overshadowing the effect of mechanical loading. This suggests that, under mechanical strain, hypertrophic differentiation is hindered by TGFβ1, while chondrogenesis is promoted. Biochemical analyses further confirmed these findings. Mechanical deformation alone led to a larger cell size and a more rounded cell morphology characteristic of hypertrophic chondrocytes, while lower GAG and proteoglycan production was observed. Immunohistology staining corroborated the gene expression data, showing increased Type X collagen with mechanical strain. Overall, this study indicates that mechanical loading alone drives naïve MSCs towards a hypertrophic chondrocyte differentiation path. These insights underscore the critical role of mechanical forces in MSC differentiation and have significant implications for bone healing, regenerative medicine strategies and rehabilitation protocols.
Collapse
Affiliation(s)
- Thomas Jörimann
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland (E.W.); (M.J.S.)
| | - Priscilla Füllemann
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland (E.W.); (M.J.S.)
| | - Anita Jose
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland (E.W.); (M.J.S.)
| | | | - Esther Wehrle
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland (E.W.); (M.J.S.)
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland (E.W.); (M.J.S.)
| | - Sophie Verrier
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland (E.W.); (M.J.S.)
| |
Collapse
|
10
|
Jeon HH, Huang X, Rojas Cortez L, Sripinun P, Lee JM, Hong JJ, Graves DT. Inflammation and mechanical force-induced bone remodeling. Periodontol 2000 2024. [PMID: 39740162 DOI: 10.1111/prd.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 01/02/2025]
Abstract
Periodontitis arises from imbalanced host-microbe interactions, leading to dysbiosis and destructive inflammation. The host's innate and adaptive immune responses produce pro-inflammatory mediators that stimulate destructive events, which cause loss of alveolar bone and connective tissue attachment. There is no consensus on the factors that lead to a conversion from gingivitis to periodontitis, but one possibility is the proximity of the inflammation to the bone, which promotes bone resorption and inhibits subsequent bone formation during coupled bone formation. Conversely, orthodontic tooth movement is triggered by the mechanical force applied to the tooth, resulting in bone resorption on the compression side and new bone formation on the tension side. However, the environment around orthodontic brackets readily retains dental plaque and may contribute to inflammation and bone remodeling. The immune, epithelial, stromal, endothelial and bone cells of the host play an important role in setting the stage for bone remodeling that occurs in both periodontitis and orthodontic tooth movement. Recent advancements in single-cell RNA sequencing have provided new insights into the roles and interactions of different cell types in response to challenges. In this review, we meticulously examine the functions of key cell types such as keratinocytes, leukocytes, stromal cells, osteocytes, osteoblasts, and osteoclasts involved in inflammation- and mechanical force-driven bone remodeling. Moreover, we explore the combined effects of these two conditions: mechanical force-induced bone remodeling combined with periodontal disease (chronic inflammation) and periodontally accelerated osteogenic orthodontics (acute transient inflammation). This comprehensive review enhances our understanding of inflammation- and mechanical force-induced bone remodeling.
Collapse
Affiliation(s)
- Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leticia Rojas Cortez
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Puttipong Sripinun
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Jung-Me Lee
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Julie J Hong
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Chaurasia R, Kaur BP, Pandian N, Pahari S, Das S, Bhattacharya U, Majood M, Mukherjee M. Leveraging the Physicochemical Attributes of Biomimetic Hydrogel Nanocomposites in Stem Cell Differentiation. Biomacromolecules 2024; 25:7543-7562. [PMID: 39277809 DOI: 10.1021/acs.biomac.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The field of tissue engineering has witnessed significant advancements with the advent of hydrogel nanocomposites (HNC), emerging as a highly promising platform for regenerative medicine. HNCs provide a versatile platform that significantly enhances the differentiation of stem cells into specific cell lineages, making them highly suitable for tissue engineering applications. By incorporating nanoparticles, the mechanical properties of hydrogels, such as elasticity, porosity, and stiffness, are improved, addressing common challenges such as short-term stability, cytotoxicity, and scalability. These nanocomposites also exhibit enhanced biocompatibility and bioavailability, which are crucial to their effectiveness in clinical applications. Furthermore, HNCs are responsive to various triggers, allowing for precise control over their chemical properties, which is beneficial in creating 3D microenvironments, promoting wound healing, and enabling controlled drug delivery systems. This review provides a comprehensive overview of the production methods of HNCs and the factors influencing their physicochemical and biological properties, particularly in relation to stem cell differentiation and tissue repair. Additionally, it discusses the challenges in developing HNCs and highlights their potential to transform the field of regenerative medicine through improved mechanotransduction and controlled release systems.
Collapse
Affiliation(s)
- Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Bani Preet Kaur
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Nikhita Pandian
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Siddhartha Pahari
- Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Susmita Das
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Uddipta Bhattacharya
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
12
|
Wang Z, Lin M, Pan Y, Liu Y, Yang C, Wu J, Wang Y, Yan B, Zhou J, Chen R, Liu C. Periostin + myeloid cells improved long bone regeneration in a mechanosensitive manner. Bone Res 2024; 12:59. [PMID: 39406726 PMCID: PMC11480347 DOI: 10.1038/s41413-024-00361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024] Open
Abstract
Myeloid cells are pivotal in the inflammatory and remodeling phases of fracture repair. Here, we investigate the effect of periostin expressed by myeloid cells on bone regeneration in a monocortical tibial defect (MTD) model. In this study, we show that periostin is expressed by periosteal myeloid cells, primarily the M2 macrophages during bone regeneration. Knockout of periostin in myeloid cells reduces cortical bone thickness, disrupts trabecular bone connectivity, impairs repair impairment, and hinders M2 macrophage polarization. Mechanical stimulation is a regulator of periostin in macrophages. By activating transforming growth factor-β (TGF-β), it increases periostin expression in macrophages and induces M2 polarization. This mechanosensitive effect also reverses the delayed bone repair induced by periostin deficiency in myeloid cells by strengthening the angiogenesis-osteogenesis coupling. In addition, transplantation of mechanically conditioned macrophages into the periosteum over a bone defect results in substantially enhanced repair, confirming the critical role of macrophage-secreted periostin in bone repair. In summary, our findings suggest that mechanical stimulation regulates periostin expression and promotes M2 macrophage polarization, highlighting the potential of mechanically conditioned macrophages as a therapeutic strategy for enhancing bone repair.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yonghao Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chengyu Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jianqun Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Bingtong Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jingjing Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Rouxi Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
13
|
Xing Y, Wang Y, Wang R, Sun X, Min Z, Tian W, Jing G. The study on 4D culture system of squamous cell carcinoma of tongue. Biomed Mater 2024; 19:065006. [PMID: 39208843 DOI: 10.1088/1748-605x/ad7555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Traditional cell culture methods often fail to accurately replicate the intricate microenvironments crucial for studying specific cell growth patterns. In our study, we developed a 4D cell culture model-a precision instrument comprising an electromagnet, a force transducer, and a cantilever bracket. The experimental setup involves placing a Petri dish above the electromagnet, where gel beads encapsulating magnetic nanoparticles and tongue cancer cells are positioned. In this model, a magnetic force is generated on the magnetic nanoparticles in the culture medium to drive the gel to move and deform when the magnet is energized, thereby exerting an external force on the cells. This setup can mimic the microenvironment of tongue squamous cell carcinoma CAL-27 cells under mechanical stress induced by tongue movements. Electron microscopy and rheological analysis were performed on the hydrogels to confirm the porosity of alginate and its favorable viscoelastic properties. Additionally, Calcein-AM/PI staining was conducted to verify the biosafety of the hydrogel culture system. It mimics the microenvironment where tongue squamous cell carcinoma CAL-27 cells are stimulated by mechanical stress during tongue movement. Electron microscopy and rheological analysis experiments were conducted on hydrogels to assess the porosity of alginate and its viscoelastic properties. Calcein-AM/PI staining was performed to evaluate the biosafety of the hydrogel culture system. We confirmed that the proliferation of CAL-27 tongue squamous cells significantly increased with increased matrix stiffness after 5 d as assessed by MTT. After 15 d of incubation, the tumor spheroid diameter of the 1%-4D group was larger than that of the hydrogel-only culture. The Transwell assay demonstrated that mechanical stress stimulation and increased matrix stiffness could enhance cell aggressiveness. Flow cytometry experiments revealed a decrease in the number of cells in the resting or growth phase (G0/G1 phase), coupled with an increase in the proportion of cells in the preparation-for-division phase (G2/M phase). RT-PCR confirmed decreased expression levels of P53 and integrinβ3 RNA in the 1%-4D group after 21 d of 4D culture, alongside significant increases in the expression levels of Kindlin-2 and integrinαv. Immunofluorescence assays confirmed that 4D culture enhances tissue oxygenation and diminishes nuclear aggregation of HIF-1α. This device mimics the microenvironment of tongue cancer cells under mechanical force and increased matrix hardness during tongue movement, faithfully reproducing cell growthin vivo, and offering a solid foundation for further research on the pathogenic matrix of tongue cancer and drug treatments.
Collapse
Affiliation(s)
- Yuhang Xing
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yuezhu Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Xiangyu Sun
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Zhang Min
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Guangping Jing
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
14
|
Hu J, Anderson W, Hayes E, Strauss EA, Lang J, Bacos J, Simacek N, Vu HH, McCarty OJ, Kim H, Kang Y(A. The development, use, and challenges of electromechanical tissue stimulation systems. Artif Organs 2024; 48:943-960. [PMID: 38887912 PMCID: PMC11321926 DOI: 10.1111/aor.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Tissue stimulations greatly affect cell growth, phenotype, and function, and they play an important role in modeling tissue physiology. With the goal of understanding the cellular mechanisms underlying the response of tissues to external stimulations, in vitro models of tissue stimulation have been developed in hopes of recapitulating in vivo tissue function. METHODS Herein we review the efforts to create and validate tissue stimulators responsive to electrical or mechanical stimulation including tensile, compression, torsion, and shear. RESULTS Engineered tissue platforms have been designed to allow tissues to be subjected to selected types of mechanical stimulation from simple uniaxial to humanoid robotic stain through equal-biaxial strain. Similarly, electrical stimulators have been developed to apply selected electrical signal shapes, amplitudes, and load cycles to tissues, lending to usage in stem cell-derived tissue development, tissue maturation, and tissue functional regeneration. Some stimulators also allow for the observation of tissue morphology in real-time while cells undergo stimulation. Discussion on the challenges and limitations of tissue simulator development is provided. CONCLUSIONS Despite advances in the development of useful tissue stimulators, opportunities for improvement remain to better reproduce physiological functions by accounting for complex loading cycles, electrical and mechanical induction coupled with biological stimuli, and changes in strain affected by applied inputs.
Collapse
Affiliation(s)
- Jie Hu
- Department of Mechanical Engineering; University of Massachusetts; Lowell, MA 01854 USA
| | - William Anderson
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Emily Hayes
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Ellie Annah Strauss
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Jordan Lang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Josh Bacos
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Noah Simacek
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Helen H. Vu
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
- Cell, Developmental and Cancer Biology; Oregon Health & Science University; Portland, OR 97201 USA
| | - Hoyeon Kim
- Department of Engineering; Loyola University Maryland; Baltimore, MD 21210 USA
| | - Youngbok (Abraham) Kang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| |
Collapse
|
15
|
Zhang B, Berilla J, Cho S, Somoza RA, Welter JF, Alexander PE, Baskaran H. Synergistic effects of biological stimuli and flexion induce microcavities promote hypertrophy and inhibit chondrogenesis during in vitro culture of human mesenchymal stem cell aggregates. Biotechnol J 2024; 19:e2400060. [PMID: 39295570 PMCID: PMC11870314 DOI: 10.1002/biot.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 09/21/2024]
Abstract
Interzone/cavitation are key steps in early stage joint formation that have not been successfully developed in vitro. Further, current models of endochondral ossification, an important step in early bone formation, lack key morphology morphological structures such as microcavities found during development in vivo. This is possibly due to the lack of appropriate strategies for incorporating chemical and mechanical stimuli that are thought to be involved in joint development. We designed a bioreactor system and investigated the synergic effect of chemical stimuli (chondrogenesis-inducing [CIM] and hypertrophy-inducing medium [HIM]) and mechanical stimuli (flexion) on the growth of human mesenchymal stem cells (hMSCs) based linear aggregates under different conditions over 4 weeks of perfusion culture. Computational studies were used to evaluate tissue stress qualitatively. After harvesting, both Safranin-O and hematoxylin & eosin (H&E) staining histology demonstrated microcavity structures and void structures in the region of higher stresses for tissue aggregates cultured only in HIM under flexion. In comparison to either HIM treatment or flexion only, increased glycosaminoglycan (GAG) content in the extracellular matrix (ECM) at this region indicates the morphological change resembles the early stage of joint cavitation; while decreased type II collagen (Col II), and increased type X collagen (Col X) and vascular endothelial growth factor (VEGF) with a clear boundary in the staining section indicates it resembles the early stage of ossification. Further, cell alignment analysis indicated that cells were mostly oriented toward the direction of flexion in high-stress region only in HIM under flexion, resembling cell morphology in both joint cavitation and hypertrophic cartilage in growth plate. Collectively, our results suggest that flexion and HIM inhibit chondrogenesis and promote hypertrophy and development of microcavities that resemble the early stage of joint cavitation and endochondral ossification. We believe the tissue model described in this work can be used to develop in vitro models of joint tissue for applications such as pathophysiology and drug discovery.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jim Berilla
- Case School of Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sungwoo Cho
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rodrigo A Somoza
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jean F Welter
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peter E Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Harihara Baskaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Endo T, Takahata M, Koike Y, Fujita R, Yoneoka D, Kanayama M, Kadoya K, Hasegawa T, Terkawi MA, Yamada K, Sudo H, Ebata T, Ishii M, Iwasaki N. Ossification of the posterior longitudinal ligament is linked to heterotopic ossification of the ankle/foot tendons. J Bone Miner Metab 2024; 42:538-550. [PMID: 38850283 DOI: 10.1007/s00774-024-01518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION Systemic osteogenesis has been speculated to be involved in the pathogenesis of ossification of the posterior longitudinal ligament (OPLL). Our purpose was to compare the radiologic prevalence and severity of heterotopic ossification in foot tendons of Japanese patients with OPLL and to determine their association with systemic heterotopic ossification. MATERIALS AND METHODS Clinical and radiographic data of 114 patients with OPLL were collected from 2020 to 2022. Control data were extracted from a medical database of 362 patients with ankle radiographs. Achilles and plantar tendon ossification were classified as grades 0-4, and the presence of osteophytes at five sites in the foot/ankle joint was assessed by radiography. Factors associated with the presence and severity of each ossification were evaluated by multivariable logistic regression and linear regression analysis. RESULTS The prevalence of Achilles and plantar tendon ossification (grade ≥ 2) was 4.0-5.5 times higher in patients with OPLL (40-56%) than in the controls (10-11%). The presence of Achilles tendon ossification was associated with OPLL, age, and coexisting plantar tendon ossification, and was most strongly associated with OPLL (standardized regression coefficient, 0.79; 95% confidence interval, 1.34-2.38). The severity of Achilles and plantar tendon ossification was associated with the severity of ossification of the entire spinal ligament. CONCLUSIONS The strong association of foot tendon ossification with OPLL suggests that patients with OPLL have a systemic osteogenesis background. These findings will provide a basis for exploring new treatment strategies for OPLL, including control of metabolic abnormalities.
Collapse
Affiliation(s)
- Tsutomu Endo
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
- Department of Orthopedics, Hakodate Central General Hospital, 33-2 Hon-cho, Hakodate, Hokkaido, 040-8585, Japan.
| | - Masahiko Takahata
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yoshinao Koike
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ryo Fujita
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Daisuke Yoneoka
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 2-7-2 Fujimi, Chiyoda-ku, Tokyo, 102-0071, Japan
| | - Masahiro Kanayama
- Department of Orthopedics, Hakodate Central General Hospital, 33-2 Hon-cho, Hakodate, Hokkaido, 040-8585, Japan
| | - Ken Kadoya
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Katsuhisa Yamada
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hideki Sudo
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Taku Ebata
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Misaki Ishii
- Department of Orthopedics, Hakodate Central General Hospital, 33-2 Hon-cho, Hakodate, Hokkaido, 040-8585, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
17
|
刘 凯, 史 凌, 王 苏, 艾 尼, 伊 木, 艾 合. [Effect of accordion technique and deferoxamine on promoting bone regeneration in distraction osteogenesis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1001-1009. [PMID: 39175324 PMCID: PMC11335587 DOI: 10.7507/1002-1892.202404073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Objective To compare the effects of hypoxia-inducible drugs using deferoxamine (DFO) and accordion technique (AT) on activating the hypoxia-inducible factor 1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway to promote bone regeneration and remodelling during consolidation phase of distraction osteogenesis (DO). Methods Forty-five specific-pathogen-free adult male Sprague-Dawley (SD) rats were randomly divided into the control group, DFO group, and AT group, with 15 rats in each group. All rats underwent osteotomy to establish a right femur DO model. Then, continuous distraction was started for 10 days after 5 days of latency in each group. During the consolidation phase after distraction, no intervention was performed in the control group; DFO was locally perfused into the distraction area in the DFO group starting at the 3rd week of consolidation phase; cyclic stress stimulation was given in the AT group starting at the 3rd week of consolidation phase. The general condition of rats in each group was observed. X-ray films were conducted at the end of the distraction phase and at the 2nd, 4th, and 6th weeks of the consolidation phase to observe the calcification in the distraction area. At the 4th and 6th weeks of the consolidation phase, peripheral blood was taken for ELISA detection (HIF-1α, VEGF, CD31, and Osterix), femoral specimens were harvested for gross observation, histological staining (HE staining), and immunohistochemical staining [HIF-1α, VEGF, osteopontin (OPN), osteocalcin (OCN)]. At the 6th week of the consolidation phase, Micro-CT was used to observe the new bone mineral density (BMD), bone volume/tissue volume (BV/TV), trabecular separation (Tb.Sp), trabecular number (Tb.N), and trabecular thickness (Tb.Th) in the distraction area, and biomechanical test (ultimate load, elastic modulus, energy to failure, and stiffness) to detect bone regeneration in the distraction area. Results The rats in all groups survived until the termination of the experiment. ELISA showed that the contents of HIF-1α, VEGF, CD31, and Osterix in the serum of the AT group were significantly higher than those of the DFO group and control group at the 4th and 6th weeks of the consolidation phase ( P<0.05). General observation, X-ray films, Micro-CT, and biomechanical test showed that bone formation in the femoral distraction area was significantly better in the DFO group and AT group than in the control group, and complete recanalization of the medullary cavity was achieved in the AT group, and BMD, BV/TV, Tb.Sp, Tb.N, and Tb.Th, as well as ultimate load, elastic modulus, energy to failure, and stiffness in the distraction area, were better in the AT group than in the DFO group and control group, and the differences were significant ( P<0.05). HE staining showed that trabecular bone formation and maturation in the distraction area were better in the AT group than in the DFO group and control group. Immunohistochemical staining showed that at the 4th week of consolidation phase, the expression levels of HIF-1α, VEGF, OCN, and OPN in the distraction area of the AT group were significantly higher than those of the DFO group and control group ( P<0.05); however, at 6th week of consolidation phase, the above indicators were lower in the AT group than in the DFO group and control group, but there was no significant difference between groups ( P>0.05). Conclusion Both continuous local perfusion of DFO in the distraction area and AT during the consolidation phase can activate the HIF-1α/VEGF signaling pathway. However, AT is more effective than local perfusion of DFO in promoting the process of angiogenesis, osteogenesis, and bone remodelling.
Collapse
Affiliation(s)
- 凯 刘
- 新疆医科大学第一附属医院骨科中心显微修复外科(乌鲁木齐 830054)Department of Trauma and Microreconstructive Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
| | - 凌云 史
- 新疆医科大学第一附属医院骨科中心显微修复外科(乌鲁木齐 830054)Department of Trauma and Microreconstructive Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
| | - 苏龙 王
- 新疆医科大学第一附属医院骨科中心显微修复外科(乌鲁木齐 830054)Department of Trauma and Microreconstructive Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
| | - 尼孜尔·亚力坤 艾
- 新疆医科大学第一附属医院骨科中心显微修复外科(乌鲁木齐 830054)Department of Trauma and Microreconstructive Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
| | - 木让·哈米提 伊
- 新疆医科大学第一附属医院骨科中心显微修复外科(乌鲁木齐 830054)Department of Trauma and Microreconstructive Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
| | - 合买提江·玉素甫 艾
- 新疆医科大学第一附属医院骨科中心显微修复外科(乌鲁木齐 830054)Department of Trauma and Microreconstructive Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
- 新疆医科大学第一附属医院骨科(乌鲁木齐 830054)Department of Orthopaedic Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
| |
Collapse
|
18
|
Krupczak B, Farruggio C, Van Vliet KJ. Manufacturing mesenchymal stromal cells in a microcarrier-microbioreactor platform can enhance cell yield and quality attributes: case study for acute respiratory distress syndrome. J Transl Med 2024; 22:614. [PMID: 38956643 PMCID: PMC11220991 DOI: 10.1186/s12967-024-05373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Mesenchymal stem and stromal cells (MSCs) hold potential to treat a broad range of clinical indications, but clinical translation has been limited to date due in part to challenges with batch-to-batch reproducibility of potential critical quality attributes (pCQAs) that can predict potency/efficacy. Here, we designed and implemented a microcarrier-microbioreactor approach to cell therapy manufacturing, specific to anchorage-dependent cells such as MSCs. We sought to assess whether increased control of the biochemical and biophysical environment had the potential to create product with consistent presentation and elevated expression of pCQAs relative to established manufacturing approaches in tissue culture polystyrene (TCPS) flasks. First, we evaluated total cell yield harvested from dissolvable, gelatin microcarriers within a microbioreactor cassette (Mobius Breez) or a flask control with matched initial cell seeding density and culture duration. Next, we identified 24 genes implicated in a therapeutic role for a specific motivating indication, acute respiratory distress syndrome (ARDS); expression of these genes served as our pCQAs for initial in vitro evaluation of product potency. We evaluated mRNA expression for three distinct donors to assess inter-donor repeatability, as well as for one donor in three distinct batches to assess within-donor, inter-batch variability. Finally, we assessed gene expression at the protein level for a subset of the panel to confirm successful translation. Our results indicated that MSCs expanded with this microcarrier-microbioreactor approach exhibited reasonable donor-to-donor repeatability and reliable batch-to-batch reproducibility of pCQAs. Interestingly, the baseline conditions of this microcarrier-microbioreactor approach also significantly improved expression of several key pCQAs at the gene and protein expression levels and reduced total media consumption relative to TCPS culture. This proof-of-concept study illustrates key benefits of this approach to therapeutic cell process development for MSCs and other anchorage-dependent cells that are candidates for cell therapies.
Collapse
Affiliation(s)
- Brandon Krupczak
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Singapore-MIT Alliance for Research and Technology, Critical Analytics for Manufacturing Personalised-medicine, 1 Create Way, Singapore, 138602, Singapore
| | - Camille Farruggio
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA
- Singapore-MIT Alliance for Research and Technology, Critical Analytics for Manufacturing Personalised-medicine, 1 Create Way, Singapore, 138602, Singapore
| | - Krystyn J Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Singapore-MIT Alliance for Research and Technology, Critical Analytics for Manufacturing Personalised-medicine, 1 Create Way, Singapore, 138602, Singapore.
- Departments of Materials Science & Engineering and Biomedical Engineering, Cornell University, 144 Feeney Way, Ithaca, NY, 14853, USA.
| |
Collapse
|
19
|
Da Silva D, Crous A, Abrahamse H. Enhancing Osteoblast Differentiation from Adipose-Derived Stem Cells Using Hydrogels and Photobiomodulation: Overcoming In Vitro Limitations for Osteoporosis Treatment. Curr Issues Mol Biol 2024; 46:6346-6365. [PMID: 39057021 PMCID: PMC11276038 DOI: 10.3390/cimb46070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis represents a widespread and debilitating chronic bone condition that is increasingly prevalent globally. Its hallmark features include reduced bone density and heightened fragility, which significantly elevate the risk of fractures due to the decreased presence of mature osteoblasts. The limitations of current pharmaceutical therapies, often accompanied by severe side effects, have spurred researchers to seek alternative strategies. Adipose-derived stem cells (ADSCs) hold considerable promise for tissue repair, albeit they encounter obstacles such as replicative senescence in laboratory conditions. In comparison, employing ADSCs within three-dimensional (3D) environments provides an innovative solution, replicating the natural extracellular matrix environment while offering a controlled and cost-effective in vitro platform. Moreover, the utilization of photobiomodulation (PBM) has emerged as a method to enhance ADSC differentiation and proliferation potential by instigating cellular stimulation and facilitating beneficial performance modifications. This literature review critically examines the shortcomings of current osteoporosis treatments and investigates the potential synergies between 3D cell culture and PBM in augmenting ADSC differentiation towards osteogenic lineages. The primary objective of this study is to assess the efficacy of combined 3D environments and PBM in enhancing ADSC performance for osteoporosis management. This research is notably distinguished by its thorough scrutiny of the existing literature, synthesis of recent advancements, identification of future research trajectories, and utilization of databases such as PubMed, Scopus, Web of Science, and Google Scholar for this literature review. Furthermore, the exploration of biomechanical and biophysical stimuli holds promise for refining treatment strategies. The future outlook suggests that integrating PBM with ADSCs housed within 3D environments holds considerable potential for advancing bone regeneration efforts. Importantly, this review aspires to catalyse further advancements in combined therapeutic strategies for osteoporosis regeneration.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (D.D.S.); (A.C.)
| |
Collapse
|
20
|
Li X, Zhu L, Che Z, Liu T, Yang C, Huang L. Progress of research on the surface functionalization of tantalum and porous tantalum in bone tissue engineering. Biomed Mater 2024; 19:042009. [PMID: 38838694 DOI: 10.1088/1748-605x/ad5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Tantalum and porous tantalum are ideal materials for making orthopedic implants due to their stable chemical properties and excellent biocompatibility. However, their utilization is still affected by loosening, infection, and peripheral inflammatory reactions, which sometimes ultimately lead to implant removal. An ideal bone implant should have exceptional biological activity, which can improve the surrounding biological microenvironment to enhance bone repair. Recent advances in surface functionalization have produced various strategies for developing compatibility between either of the two materials and their respective microenvironments. This review provides a systematic overview of state-of-the-art strategies for conferring biological functions to tantalum and porous tantalum implants. Furthermore, the review describes methods for preparing active surfaces and different bioactive substances that are used, summarizing their functions. Finally, this review discusses current challenges in the development of optimal bone implant materials.
Collapse
Affiliation(s)
- Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Zhenjia Che
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chengzhe Yang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
21
|
Li Y, Yue G, Yu S, Liu Z, Cao Y, Wang X. Extracellular Vesicles Derived from H 2O 2-Stimulated Adipose-Derived Stem Cells Alleviate Senescence in Diabetic Bone Marrow Mesenchymal Stem Cells and Restore Their Osteogenic Capacity. Drug Des Devel Ther 2024; 18:2103-2124. [PMID: 38882044 PMCID: PMC11177868 DOI: 10.2147/dddt.s454509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/02/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Autologous stem cell transplantation has emerged as a promising strategy for bone repair. However, the osteogenic potential of mesenchymal stem cells derived from diabetic patients is compromised, possibly due to hyperglycemia-induced senescence. The objective of this study was to assess the preconditioning effects of extracellular vesicles derived from H2O2-stimulated adipose-derived stem cells (ADSCs) and non-modified ADSCs on the osteogenic potential of diabetic bone marrow mesenchymal stem cells (BMSCs). Methods Sprague-Dawley (SD) rats were experimentally induced into a diabetic state through a high-fat diet followed by an injection of streptozotocin, and diabetic BMSCs were collected from the bone marrow of these rats. Extracellular vesicles (EVs) were isolated from the conditioned media of ADSCs, with or without hydrogen peroxide (H2O2) preconditioning, using density gradient centrifugation. The effects of H2O2 preconditioning on the morphology, marker expression, and particle size of the EVs were analyzed. Furthermore, the impact of EV-pretreatment on the viability, survivability, migration ability, osteogenesis, cellular senescence, and oxidative stress of diabetic BMSCs was examined. Moreover, the expression of the Nrf2/HO-1 pathway was also assessed to explore the underlying mechanism. Additionally, we transplanted EV-pretreated BMSCs into calvarial defects in diabetic rats to assess their in vivo bone formation and anti-senescence capabilities. Results Our study demonstrated that pretreatment with EVs from ADSCs significantly improved the viability, senescence, and osteogenic differentiation potential of diabetic BMSCs. Moreover, in-vitro experiments revealed that diabetic BMSCs treated with H2O2-activated EVs exhibited increased viability, reduced senescence, and enhanced osteogenic differentiation compared to those treated with non-modified EVs. Furthermore, when transplanted into rat bone defects, diabetic BMSCs treated with H2O2-activated EVs showed improved bone regeneration potential and enhanced anti-senescence function t compared to those treated with non-modified EVs. Both H2O2-activated EVs and non-modified EVs upregulated the expression of the Nrf2/HO-1 pathway in diabetic BMSCs, however, the promoting effect of H2O2-activated EVs was more pronounced than that of non-modified EVs. Conclusion Extracellular vesicles derived from H2O2-preconditioned ADSCs mitigated senescence in diabetic BMSCs and enhanced their bone regenerative functions via the activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yu Li
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Guangren Yue
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shuying Yu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zheng Liu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- National Tissue Engineering Center of China, Shanghai, People's Republic of China
| | - Ximei Wang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
22
|
Binlateh T, Leethanakul C, Thammanichanon P. Involvement of RAMP1/p38MAPK signaling pathway in osteoblast differentiation in response to mechanical stimulation: a preliminary study. J Orthop Surg Res 2024; 19:330. [PMID: 38825686 PMCID: PMC11145863 DOI: 10.1186/s13018-024-04805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
OBJECTIVE The present study aimed to investigate the underlying mechanism of mechanical stimulation in regulating osteogenic differentiation. MATERIALS AND METHODS Osteoblasts were exposed to compressive force (0-4 g/cm2) for 1-3 days or CGRP for 1 or 3 days. Expression of receptor activity modifying protein 1 (RAMP1), the transcription factor RUNX2, osteocalcin, p38 and p-p38 were analyzed by western blotting. Calcium mineralization was analyzed by alizarin red straining. RESULTS Using compressive force treatments, low magnitudes (1 and 2 g/cm2) of compressive force for 24 h promoted osteoblast differentiation and mineral deposition whereas higher magnitudes (3 and 4 g/cm2) did not produce osteogenic effect. Through western blot assay, we observed that the receptor activity-modifying protein 1 (RAMP1) expression was upregulated, and p38 mitogen-activated protein kinase (MAPK) was phosphorylated during low magnitudes compressive force-promoted osteoblast differentiation. Further investigation of a calcitonin gene-related peptide (CGRP) peptide incubation, a ligand for RAMP1, showed that CGRP at concentration of 25 and 50 ng/ml could increase expression levels of RUNX2 and osteocalcin, and percentage of mineralization, suggesting its osteogenic potential. In addition, with the same conditions, CGRP also significantly upregulated RAMP1 and phosphorylated p38 expression levels. Also, the combination of compressive forces (1 and 2 g/cm2) with 50 ng/ml CGRP trended to increase RAMP1 expression, p38 activity, and osteogenic marker RUNX2 levels, as well as percentage of mineralization compared to compressive force alone. This suggest that RAMP1 possibly acts as an upstream regulator of p38 signaling during osteogenic differentiation. CONCLUSION These findings suggest that CGRP-RAMP1/p38MAPK signaling implicates in osteoblast differentiation in response to optimal magnitude of compressive force. This study helps to define the underlying mechanism of compressive stimulation and may also enhance the application of compressive stimulation or CGRP peptide as an alternative approach for accelerating tooth movement in orthodontic treatment.
Collapse
Affiliation(s)
- Thunwa Binlateh
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Peungchaleoy Thammanichanon
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
- Oral Health Center, Suranaree University of Technology Hospital, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
23
|
Chen Z, Zhou X, Mo M, Hu X, Liu J, Chen L. Systematic review of the osteogenic effect of rare earth nanomaterials and the underlying mechanisms. J Nanobiotechnology 2024; 22:185. [PMID: 38627717 PMCID: PMC11020458 DOI: 10.1186/s12951-024-02442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaohe Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Cheng P, Zhao X, Han M, Zhuang Y, Ning F, Hu Y, Lu W, Miao S, Zhao C, Jia L, Hao X, Sun M, Wang J, Chen F, Yang L, Jie Q. Periodic static compression of micro-strain pattern regulates endochondral bone formation. Front Bioeng Biotechnol 2024; 12:1356135. [PMID: 38600948 PMCID: PMC11004279 DOI: 10.3389/fbioe.2024.1356135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction: Developmental engineering based on endochondral ossification has been proposed as a potential strategy for repairing of critical bone defects. Bone development is driven by growth plate-mediated endochondral ossification. Under physiological conditions, growth plate chondrocytes undergo compressive forces characterized by micro-mechanics, but the regulatory effect of micro-mechanical loading on endochondral bone formation has not been investigated. Methods: In this study, a periodic static compression (PSC) model characterized by micro-strain (with 0.5% strain) was designed to clarify the effects of biochemical/mechanical cues on endochondral bone formation. Hydrogel scaffolds loaded with bone marrow mesenchymal stem cells (BMSCs) were incubated in proliferation medium or chondrogenic medium, and PSC was performed continuously for 14 or 28 days. Subsequently, the scaffold pretreated for 28 days was implanted into rat femoral muscle pouches and femoral condylar defect sites. The chondrogenesis and bone defect repair were evaluated 4 or 10 weeks post-operation. Results: The results showed that PSC stimulation for 14 days significantly increased the number of COL II positive cells in proliferation medium. However, the chondrogenic efficiency of BMSCs was significantly improved in chondrogenic medium, with or without PSC application. The induced chondrocytes (ichondrocytes) spontaneously underwent hypertrophy and maturation, but long-term mechanical stimulation (loading for 28 days) significantly inhibited hypertrophy and mineralization in ichondrocytes. In the heterotopic ossification model, no chondrocytes were found and no significant difference in terms of mineral deposition in each group; However, 4 weeks after implantation into the femoral defect site, all scaffolds that were subjected to biochemical/mechanical cues, either solely or synergistically, showed typical chondrocytes and endochondral bone formation. In addition, simultaneous biochemical induction/mechanical loading significantly accelerated the bone regeneration. Discussion: Our findings suggest that microstrain mechanics, biochemical cues, and in vivo microenvironment synergistically regulate the differentiation fate of BMSCs. Meanwhile, this study shows the potential of micro-strain mechanics in the treatment of critical bone defects.
Collapse
Affiliation(s)
- Pengzhen Cheng
- College of Life Sciences, Northwest University, Xi’an, China
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Xi’an Key Laboratory of Skeletal Developmental Deformity and Injury Repair, Xi’an, China
| | - Xueyi Zhao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Meige Han
- College of Life Sciences, Northwest University, Xi’an, China
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenru Ning
- Department of Neonatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaqian Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Weiguang Lu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Sheng Miao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chengxiang Zhao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liyuan Jia
- College of Life Sciences, Northwest University, Xi’an, China
| | - Xue Hao
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Xi’an Key Laboratory of Skeletal Developmental Deformity and Injury Repair, Xi’an, China
| | - Meng Sun
- College of Life Sciences, Northwest University, Xi’an, China
| | - Junxiang Wang
- College of Life Sciences, Northwest University, Xi’an, China
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi’an, China
- Xi’an Key Laboratory of Skeletal Developmental Deformity and Injury Repair, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
| | - Liu Yang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qiang Jie
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Xi’an Key Laboratory of Skeletal Developmental Deformity and Injury Repair, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
| |
Collapse
|
25
|
Ahmad M, Haffner-Luntzer M, Schoppa A, Najafova Z, Lukic T, Yorgan TA, Amling M, Schinke T, Ignatius A. Mechanical induction of osteoanabolic Wnt1 promotes osteoblast differentiation via Plat. FASEB J 2024; 38:e23489. [PMID: 38407813 DOI: 10.1096/fj.202301424rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Physical activity-induced mechanical stimuli play a crucial role in preserving bone mass and structure by promoting bone formation. While the Wnt pathway is pivotal for mediating the osteoblast response to loading, the exact mechanisms are not fully understood. Here, we found that mechanical stimulation induces osteoblastic Wnt1 expression, resulting in an upregulation of key osteogenic marker genes, including Runx2 and Sp7, while Wnt1 knockdown using siRNA prevented these effects. RNAseq analysis identified Plat as a major target through which Wnt1 exerts its osteogenic influence. This was corroborated by Plat depletion using siRNA, confirming its positive role in osteogenic differentiation. Moreover, we demonstrated that mechanical stimulation enhances Plat expression, which, in turn leads to increased expression of osteogenic markers like Runx2 and Sp7. Notably, Plat depletion by siRNA prevented this effect. We have established that Wnt1 regulates Plat expression by activating β-Catenin. Silencing Wnt1 impairs mechanically induced β-Catenin activation, subsequently reducing Plat expression. Furthermore, our findings showed that Wnt1 is essential for osteoblasts to respond to mechanical stimulation and induce Runx2 and Sp7 expression, in part through the Wnt1/β-Catenin/Plat signaling pathway. Additionally, we observed significantly reduced Wnt1 and Plat expression in bones from ovariectomy (OVX)-induced and age-related osteoporotic mouse models compared with non-OVX and young mice, respectively. Overall, our data suggested that Wnt1 and Plat play significant roles in mechanically induced osteogenesis. Their decreased expression in bones from OVX and aged mice highlights their potential involvement in post-menopausal and age-related osteoporosis, respectively.
Collapse
Affiliation(s)
- Mubashir Ahmad
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | | | - Teodora Lukic
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
26
|
Lee G, Han SB, Kim SH, Jeong S, Kim DH. Stretching of porous poly (l-lactide-co-ε-caprolactone) membranes regulates the differentiation of mesenchymal stem cells. Front Cell Dev Biol 2024; 12:1303688. [PMID: 38333594 PMCID: PMC10850303 DOI: 10.3389/fcell.2024.1303688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Background: Among a variety of biomaterials supporting cell growth for therapeutic applications, poly (l-lactide-co-ε-caprolactone) (PLCL) has been considered as one of the most attractive scaffolds for tissue engineering owing to its superior mechanical strength, biocompatibility, and processibility. Although extensive studies have been conducted on the relationship between the microstructure of polymeric materials and their mechanical properties, the use of the fine-tuned morphology and mechanical strength of PLCL membranes in stem cell differentiation has not yet been studied. Methods: PLCL membranes were crystallized in a combination of diverse solvent-nonsolvent mixtures, including methanol (MeOH), isopropanol (IPA), chloroform (CF), and distilled water (DW), with different solvent polarities. A PLCL membrane with high mechanical strength induced by limited pore formation was placed in a custom bioreactor mimicking the reproducible physiological microenvironment of the vascular system to promote the differentiation of mesenchymal stem cells (MSCs) into smooth muscle cells (SMCs). Results: We developed a simple, cost-effective method for fabricating porosity-controlled PLCL membranes based on the crystallization of copolymer chains in a combination of solvents and non-solvents. We confirmed that an increase in the ratio of the non-solvent increased the chain aggregation of PLCL by slow evaporation, leading to improved mechanical properties of the PLCL membrane. Furthermore, we demonstrated that the cyclic stretching of PLCL membranes induced MSC differentiation into SMCs within 10 days of culture. Conclusion: The combination of solvent and non-solvent casting for PLCL solidification can be used to fabricate mechanically durable polymer membranes for use as mechanosensitive scaffolds for stem cell differentiation.
Collapse
Affiliation(s)
- Geonhui Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sangmoo Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Aleynik DY, Bokov AE, Charykova IN, Rubtsova YP, Linkova DD, Farafontova EA, Egorikhina MN. Functionalization of Osteoplastic Material with Human Placental Growth Factor and Assessment of Biocompatibility of the Resulting Material In Vitro. Pharmaceutics 2024; 16:85. [PMID: 38258096 PMCID: PMC10819287 DOI: 10.3390/pharmaceutics16010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This article provides the results of a study of the interaction of placental growth factor with adipose-derived stem cells (ASCs) of various origins, as well as the possibility of generating osteoplastic material based on xenogeneic matrix functionalization with human placental growth factor (PLGF). It is demonstrated that the greatest release of this factor from the functionalized material into the medium occurs during the first 3 h of contact with the model medium, but then the levels of the factor being released fall sharply, although release did continue throughout the 7 days of observation. The modified material was not cytotoxic, and its surface provided good cell adhesion. During 3 days of cultivation, the ASCs proliferated and migrated more actively on the surfaces of the modified material than on the surfaces of the control material. This study can serve as the basis for the development of original methods to functionalize such osteoplastic material by increasing PLGF immobilization by creating stronger bonds in order to regulate both factor dosage and the dynamics of the factor release into the environment. Further studies in experimental animals should facilitate assessment of the effectiveness of the functionalized materials. Such studies will be useful in the development of osteoplastic materials with new properties resulting from the inclusion of growth factors and in research on their biological activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Minin and Pozharsky Square, 603005 Nizhny Novgorod, Russia; (D.Y.A.); (A.E.B.); (I.N.C.); (Y.P.R.); (D.D.L.); (E.A.F.)
| |
Collapse
|
28
|
Inchingolo F, Inchingolo AM, Latini G, Ferrante L, Trilli I, Del Vecchio G, Palmieri G, Malcangi G, Inchingolo AD, Dipalma G. Oxidative Stress and Natural Products in Orthodontic Treatment: A Systematic Review. Nutrients 2023; 16:113. [PMID: 38201943 PMCID: PMC10780648 DOI: 10.3390/nu16010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, orthodontics, a specialized branch of dentistry, has evolved considerably in terms of both techniques and materials used. Aimed at correcting dental malocclusions and craniofacial anomalies, it improves the functionality and aesthetics of the face and oral cavity. However, orthodontic treatment, in its developmental stages, may induce oxidative stress (O.S.) phenomena, with an increase in the production of reactive oxygen species (ROS), damaging the dental and periodontal tissues involved, affecting the short-, medium- and long-term results. Studies on the antioxidant effects of natural products (e.g., resveratrol, green tea, turmeric, etc.) in the medical field have aroused considerable interest in recent years. A systematic literature review was conducted on the PubMed, Scopus, and Web of Science databases using natural products (N.P.s), O.S., and orthodontic as keywords. The study aims to consider the determinants of the increase in ROS occurring during orthodontic treatment and the possibility of natural products being able to control and neutralize biochemical phenomena by restoring the physiological process in which the balance between the production of ROS and the ability of the body's antioxidant system to neutralize them is in favor of the latter.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giuseppina Malcangi
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (A.M.I.); (G.L.); (L.F.); (I.T.); (G.D.V.); (G.P.); (A.D.I.); (G.D.)
| | | | | |
Collapse
|
29
|
Ghasemzadeh-Hasankolaei M, Pinto CA, Jesus D, Saraiva JA, Mano JF. Effect of high cyclic hydrostatic pressure on osteogenesis of mesenchymal stem cells cultured in liquefied micro-compartments. Mater Today Bio 2023; 23:100861. [PMID: 38058695 PMCID: PMC10696388 DOI: 10.1016/j.mtbio.2023.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Bone resident cells are constantly subjected to a range of distinct mechanical loadings, which generates a complex microenvironment. In particular, hydrostatic pressure (HP) has a key impact on modulation of cell function and fate determination. Although HP is a constant mechanical stimulus, its role in regulating the osteogenesis process within a defined 3D microenvironment has not been comprehensively elucidated. Perceiving how environmental factors regulate the differentiation of stem cells is essential for expanding their regenerative potential. Inspired by the mechanical environment of bone, this study attempted to investigate the influence of different ranges of cyclic HP on human adipose-derived mesenchymal stem cells (MSCs) encapsulated within a compartmentalized liquefied microenvironment. Taking advantage of the liquefied environment of microcapsules, MSCs were exposed to cyclic HP of 5 or 50 MPa, 3 times/week at 37 °C. Biological tests using fluorescence staining of F-actin filaments showed a noticeable improvement in cell-cell interactions and cellular network formation of MSCs. These observations were more pronounced in osteogenic (OST) condition, as confirmed by fluorescent staining of vinculin. More interestingly, there was a significant increase in alkaline phosphatase activity of MSCs exposed to 50 MPa magnitude of HP, even in the absence of osteoinductive factors. In addition, a greater staining area of both osteopontin and hydroxyapatite was detected in the 50 MPa/OST group. These findings highlight the benefit of hydrostatic pressure to regulate osteogenesis of MSCs as well as the importance of employing simultaneous biochemical and mechanical stimulation to accelerate the osteogenic potential of MSCs for biomedical purposes.
Collapse
Affiliation(s)
| | - Carlos A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diana Jesus
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
30
|
Cheng D, Wang J, Yao M, Cox CD. Joining forces: crosstalk between mechanosensitive PIEZO1 ion channels and integrin-mediated focal adhesions. Biochem Soc Trans 2023; 51:1897-1906. [PMID: 37772664 DOI: 10.1042/bst20230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Both integrin-mediated focal adhesions (FAs) and mechanosensitive ion channels such as PIEZO1 are critical in mechanotransduction processes that influence cell differentiation, development, and cancer. Ample evidence now exists for regulatory crosstalk between FAs and PIEZO1 channels with the molecular mechanisms underlying this process remaining unclear. However, an emerging picture is developing based on spatial crosstalk between FAs and PIEZO1 revealing a synergistic model involving the cytoskeleton, extracellular matrix (ECM) and calcium-dependent signaling. Already cell type, cell contractility, integrin subtypes and ECM composition have been shown to regulate this crosstalk, implying a highly fine-tuned relationship between these two major mechanosensing systems. In this review, we summarize the latest advances in this area, highlight the physiological implications of this crosstalk and identify gaps in our knowledge that will improve our understanding of cellular mechanosensing.
Collapse
Affiliation(s)
- Delfine Cheng
- The Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Junfan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Charles D Cox
- The Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
31
|
Ivanov AA, Kuznetsova AV, Popova OP, Danilova TI, Latyshev AV, Yanushevich OO. Influence of Extracellular Matrix Components on the Differentiation of Periodontal Ligament Stem Cells in Collagen I Hydrogel. Cells 2023; 12:2335. [PMID: 37830549 PMCID: PMC10571948 DOI: 10.3390/cells12192335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Regeneration of periodontal tissues requires an integrated approach to the restoration of the periodontal ligament, cementum, and alveolar bone surrounding the teeth. Current strategies in endogenous regenerative dentistry widely use biomaterials, in particular the decellularized extracellular matrix (dECM), to facilitate the recruitment of populations of resident cells into damaged tissues and stimulate their proliferation and differentiation. The purpose of our study was to evaluate the effect of the exogenous components of the extracellular matrix (hyaluronic acid, laminin, fibronectin) on the differentiation of periodontal ligament stem cells (PDLSCs) cultured with dECM (combinations of decellularized tooth matrices and periodontal ligament) in a 3D collagen I hydrogel. The immunohistochemical expression of various markers in PDLSCs was assessed quantitatively and semi-quantitatively on paraffin sections. The results showed that PDLSCs cultured under these conditions for 14 days exhibited phenotypic characteristics consistent with osteoblast-like and odontoblast-like cells. This potential has been demonstrated by the expression of osteogenic differentiation markers (OC, OPN, ALP) and odontogenic markers (DSPP). This phenomenon corresponds to the in vivo state of the periodontal ligament, in which cells at the interface between bone and cementum tend to differentiate into osteoblasts or cementoblasts. The addition of fibronectin to the dECM most effectively induces the differentiation of PDLSCs into osteoblast-like and odontoblast-like cells under 3D culture conditions. Therefore, this bioengineered construct has a high potential for future use in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.); (A.V.L.)
| | - Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.); (A.V.L.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Str., 119334 Moscow, Russia
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.); (A.V.L.)
| | - Tamara I. Danilova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.); (A.V.L.)
| | - Andrey V. Latyshev
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.); (A.V.L.)
| | - Oleg O. Yanushevich
- Department of Periodontology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia;
| |
Collapse
|
32
|
Azizi P, Drobek C, Budday S, Seitz H. Simulating the mechanical stimulation of cells on a porous hydrogel scaffold using an FSI model to predict cell differentiation. Front Bioeng Biotechnol 2023; 11:1249867. [PMID: 37799813 PMCID: PMC10549991 DOI: 10.3389/fbioe.2023.1249867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
3D-structured hydrogel scaffolds are frequently used in tissue engineering applications as they can provide a supportive and biocompatible environment for the growth and regeneration of new tissue. Hydrogel scaffolds seeded with human mesenchymal stem cells (MSCs) can be mechanically stimulated in bioreactors to promote the formation of cartilage or bone tissue. Although in vitro and in vivo experiments are necessary to understand the biological response of cells and tissues to mechanical stimulation, in silico methods are cost-effective and powerful approaches that can support these experimental investigations. In this study, we simulated the fluid-structure interaction (FSI) to predict cell differentiation on the entire surface of a 3D-structured hydrogel scaffold seeded with cells due to dynamic compressive load stimulation. The computational FSI model made it possible to simultaneously investigate the influence of both mechanical deformation and flow of the culture medium on the cells on the scaffold surface during stimulation. The transient one-way FSI model thus opens up significantly more possibilities for predicting cell differentiation in mechanically stimulated scaffolds than previous static microscale computational approaches used in mechanobiology. In a first parameter study, the impact of the amplitude of a sinusoidal compression ranging from 1% to 10% on the phenotype of cells seeded on a porous hydrogel scaffold was analyzed. The simulation results show that the number of cells differentiating into bone tissue gradually decreases with increasing compression amplitude, while differentiation into cartilage cells initially multiplied with increasing compression amplitude in the range of 2% up to 7% and then decreased. Fibrous cell differentiation was predicted from a compression of 5% and increased moderately up to a compression of 10%. At high compression amplitudes of 9% and 10%, negligible areas on the scaffold surface experienced high stimuli where no cell differentiation could occur. In summary, this study shows that simulation of the FSI system is a versatile approach in computational mechanobiology that can be used to study the effects of, for example, different scaffold designs and stimulation parameters on cell differentiation in mechanically stimulated 3D-structured scaffolds.
Collapse
Affiliation(s)
- Pedram Azizi
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Christoph Drobek
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Silvia Budday
- Department of Mechanical Engineering, Institute of Applied Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| |
Collapse
|
33
|
李 驰, 樊 瑜, 郑 丽. [Differentiation of stem cells regulated by biophysical cues]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:609-616. [PMID: 37666749 PMCID: PMC10477397 DOI: 10.7507/1001-5515.202208002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/03/2022] [Indexed: 09/06/2023]
Abstract
Stem cells have been regarded with promising application potential in tissue engineering and regenerative medicine due to their self-renewal and multidirectional differentiation abilities. However, their fate is relied on their local microenvironment, or niche. Recent studied have demonstrated that biophysical factors, defined as physical microenvironment in which stem cells located play a vital role in regulating stem cell committed differentiation. In vitro, synthetic physical microenvironments can be used to precisely control a variety of biophysical properties. On this basis, the effect of biophysical properties such as matrix stiffness, matrix topography and mechanical force on the committed differentiation of stem cells was further investigated. This paper summarizes the approach of mechanical models of artificial physical microenvironment and reviews the effects of different biophysical characteristics on stem cell differentiation, in order to provide reference for future research and development in related fields.
Collapse
Affiliation(s)
- 驰宇 李
- 北京航空航天大学 生物与医学工程学院 北京市生物医学工程高精尖创新中心 生物力学与力生物学教育部重点实验室(北京 100083)Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - 瑜波 樊
- 北京航空航天大学 生物与医学工程学院 北京市生物医学工程高精尖创新中心 生物力学与力生物学教育部重点实验室(北京 100083)Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - 丽沙 郑
- 北京航空航天大学 生物与医学工程学院 北京市生物医学工程高精尖创新中心 生物力学与力生物学教育部重点实验室(北京 100083)Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| |
Collapse
|
34
|
Woodbury SM, Swanson WB, Mishina Y. Mechanobiology-informed biomaterial and tissue engineering strategies for influencing skeletal stem and progenitor cell fate. Front Physiol 2023; 14:1220555. [PMID: 37520820 PMCID: PMC10373313 DOI: 10.3389/fphys.2023.1220555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Skeletal stem and progenitor cells (SSPCs) are the multi-potent, self-renewing cell lineages that form the hematopoietic environment and adventitial structures of the skeletal tissues. Skeletal tissues are responsible for a diverse range of physiological functions because of the extensive differentiation potential of SSPCs. The differentiation fates of SSPCs are shaped by the physical properties of their surrounding microenvironment and the mechanical loading forces exerted on them within the skeletal system. In this context, the present review first highlights important biomolecules involved with the mechanobiology of how SSPCs sense and transduce these physical signals. The review then shifts focus towards how the static and dynamic physical properties of microenvironments direct the biological fates of SSPCs, specifically within biomaterial and tissue engineering systems. Biomaterial constructs possess designable, quantifiable physical properties that enable the growth of cells in controlled physical environments both in-vitro and in-vivo. The utilization of biomaterials in tissue engineering systems provides a valuable platform for controllably directing the fates of SSPCs with physical signals as a tool for mechanobiology investigations and as a template for guiding skeletal tissue regeneration. It is paramount to study this mechanobiology and account for these mechanics-mediated behaviors to develop next-generation tissue engineering therapies that synergistically combine physical and chemical signals to direct cell fate. Ultimately, taking advantage of the evolved mechanobiology of SSPCs with customizable biomaterial constructs presents a powerful method to predictably guide bone and skeletal organ regeneration.
Collapse
Affiliation(s)
- Seth M. Woodbury
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
- University of Michigan College of Literature, Science, and Arts, Department of Chemistry, Ann Arbor, MI, United States
- University of Michigan College of Literature, Science, and Arts, Department of Physics, Ann Arbor, MI, United States
| | - W. Benton Swanson
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
| | - Yuji Mishina
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
| |
Collapse
|
35
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
36
|
Shi H, Zhou K, Wang M, Wang N, Song Y, Xiong W, Guo S, Yi Z, Wang Q, Yang S. Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs. Theranostics 2023; 13:3245-3275. [PMID: 37351163 PMCID: PMC10283054 DOI: 10.7150/thno.84759] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
Large bone defects are a major global health concern. Bone tissue engineering (BTE) is the most promising alternative to avoid the drawbacks of autograft and allograft bone. Nevertheless, how to precisely control stem cell osteogenic differentiation has been a long-standing puzzle. Compared with biochemical cues, physicomechanical stimuli have been widely studied for their biosafety and stability. The mechanical properties of various biomaterials (polymers, bioceramics, metal and alloys) become the main source of physicomechanical stimuli. By altering the stiffness, viscoelasticity, and topography of materials, mechanical stimuli with different strengths transmit into precise signals that mediate osteogenic differentiation. In addition, externally mechanical forces also play a critical role in promoting osteogenesis, such as compression stress, tensile stress, fluid shear stress and vibration, etc. When exposed to mechanical forces, mesenchymal stem cells (MSCs) differentiate into osteogenic lineages by sensing mechanical stimuli through mechanical sensors, including integrin and focal adhesions (FAs), cytoskeleton, primary cilium, ions channels, gap junction, and activating osteogenic-related mechanotransduction pathways, such as yes associated proteins (YAP)/TAZ, MAPK, Rho-GTPases, Wnt/β-catenin, TGFβ superfamily, Notch signaling. This review summarizes various biomaterials that transmit mechanical signals, physicomechanical stimuli that directly regulate MSCs differentiation, and the mechanical transduction mechanisms of MSCs. This review provides a deep and broad understanding of mechanical transduction mechanisms and discusses the challenges that remained in clinical translocation as well as the outlook for the future improvements.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kaixuan Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Mingfeng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang 832008, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
37
|
Man K, Eisenstein NM, Hoey DA, Cox SC. Bioengineering extracellular vesicles: smart nanomaterials for bone regeneration. J Nanobiotechnology 2023; 21:137. [PMID: 37106449 PMCID: PMC10134574 DOI: 10.1186/s12951-023-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In the past decade, extracellular vesicles (EVs) have emerged as key regulators of bone development, homeostasis and repair. EV-based therapies have the potential to circumnavigate key issues hindering the translation of cell-based therapies including functional tissue engraftment, uncontrolled differentiation and immunogenicity issues. Due to EVs' innate biocompatibility, low immunogenicity, and high physiochemical stability, these naturally-derived nanoparticles have garnered growing interest as potential acellular nanoscale therapeutics for a variety of diseases. Our increasing knowledge of the roles these cell-derived nanoparticles play, has made them an exciting focus in the development of novel pro-regenerative therapies for bone repair. Although these nano-sized vesicles have shown promise, their clinical translation is hindered due to several challenges in the EV supply chain, ultimately impacting therapeutic efficacy and yield. From the biochemical and biophysical stimulation of parental cells to the transition to scalable manufacture or maximising vesicles therapeutic response in vivo, a multitude of techniques have been employed to improve the clinical efficacy of EVs. This review explores state of the art bioengineering strategies to promote the therapeutic utility of vesicles beyond their native capacity, thus maximising the clinical potential of these pro-regenerative nanoscale therapeutics for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Neil M Eisenstein
- Research and Clinical Innovation, Royal Centre for Defence Medicine, ICT Centre, Vincent Drive, Birmingham, B15 2SQ, UK
- Institute of Translational Medicine, University of Birmingham, Heritage Building, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - David A Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, D02 R590, Ireland
- Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College, Dublin 2, D02 DK07, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, D02 VN51, Dublin, Ireland
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
38
|
Takemoto F, Uchida-Fukuhara Y, Kamioka H, Okamura H, Ikegame M. Mechanical stretching determines the orientation of osteoblast migration and cell division. Anat Sci Int 2023:10.1007/s12565-023-00716-8. [PMID: 37022568 PMCID: PMC10366257 DOI: 10.1007/s12565-023-00716-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/11/2023] [Indexed: 04/07/2023]
Abstract
Osteoblasts alignment and migration are involved in the directional formation of bone matrix and bone remodeling. Many studies have demonstrated that mechanical stretching controls osteoblast morphology and alignment. However, little is known about its effects on osteoblast migration. Here, we investigated changes in the morphology and migration of preosteoblastic MC3T3-E1 cells after the removal of continuous or cyclic stretching. Actin staining and time-lapse recording were performed after stretching removal. The continuous and cyclic groups showed parallel and perpendicular alignment to the stretch direction, respectively. A more elongated cell morphology was observed in the cyclic group than in the continuous group. In both stretch groups, the cells migrated in a direction roughly consistent with the cell alignment. Compared to the other groups, the cells in the cyclic group showed an increased migration velocity and were almost divided in the same direction as the alignment. To summarize, our study showed that mechanical stretching changed cell alignment and morphology in osteoblasts, which affected the direction of migration and cell division, and velocity of migration. These results suggest that mechanical stimulation may modulate the direction of bone tissue formation by inducing the directional migration and cell division of osteoblasts.
Collapse
Affiliation(s)
- Fumiko Takemoto
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yoko Uchida-Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
39
|
Takács R, Kovács P, Ebeid RA, Almássy J, Fodor J, Ducza L, Barrett-Jolley R, Lewis R, Matta C. Ca2+-Activated K+ Channels in Progenitor Cells of Musculoskeletal Tissues: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076796. [PMID: 37047767 PMCID: PMC10095002 DOI: 10.3390/ijms24076796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Musculoskeletal disorders represent one of the main causes of disability worldwide, and their prevalence is predicted to increase in the coming decades. Stem cell therapy may be a promising option for the treatment of some of the musculoskeletal diseases. Although significant progress has been made in musculoskeletal stem cell research, osteoarthritis, the most-common musculoskeletal disorder, still lacks curative treatment. To fine-tune stem-cell-based therapy, it is necessary to focus on the underlying biological mechanisms. Ion channels and the bioelectric signals they generate control the proliferation, differentiation, and migration of musculoskeletal progenitor cells. Calcium- and voltage-activated potassium (KCa) channels are key players in cell physiology in cells of the musculoskeletal system. This review article focused on the big conductance (BK) KCa channels. The regulatory function of BK channels requires interactions with diverse sets of proteins that have different functions in tissue-resident stem cells. In this narrative review article, we discuss the main ion channels of musculoskeletal stem cells, with a focus on calcium-dependent potassium channels, especially on the large conductance BK channel. We review their expression and function in progenitor cell proliferation, differentiation, and migration and highlight gaps in current knowledge on their involvement in musculoskeletal diseases.
Collapse
Affiliation(s)
- Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Rana Abdelsattar Ebeid
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, Semmelweis University, H-1428 Budapest, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
40
|
Ganguly K, Dutta SD, Randhawa A, Patel DK, Patil TV, Lim KT. Transcriptomic Changes toward Osteogenic Differentiation of Mesenchymal Stem Cells on 3D-Printed GelMA/CNC Hydrogel under Pulsatile Pressure Environment. Adv Healthc Mater 2023; 12:e2202163. [PMID: 36637340 DOI: 10.1002/adhm.202202163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/20/2022] [Indexed: 01/14/2023]
Abstract
Biomimetic soft hydrogels used in bone tissue engineering frequently produce unsatisfactory outcomes. Here, it is investigated how human bone-marrow-derived mesenchymal stem cells (hBMSCs) differentiated into early osteoblasts on remarkably soft 3D hydrogel (70 ± 0.00049 Pa). Specifically, hBMSCs seeded onto cellulose nanocrystals incorporated methacrylate gelatin hydrogels are subjected to pulsatile pressure stimulation (PPS) of 5-20 kPa for 7 days. The PPS stimulates cellular processes such as mechanotransduction, cytoskeletal distribution, prohibition of oxidative stress, calcium homeostasis, osteogenic marker gene expression, and osteo-specific cytokine secretions in hBMSCs on soft substrates. The involvement of Piezo 1 is the main ion channel involved in mechanotransduction. Additionally, RNA-sequencing results reveal differential gene expression concerning osteogenic differentiation, bone mineralization, ion channel activity, and focal adhesion. These findings suggest a practical and highly scalable method for promoting stem cell commitment to osteogenesis on soft matrices for clinical reconstruction.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dinesh K Patel
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Biomechagen Co., Ltd., Chuncheon, 24341, Republic of Korea
| |
Collapse
|
41
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
42
|
Wang S, Liu Z, Yang S, Huo N, Qiao B, Zhang T, Xu J, Shi Q. Extracellular vesicles secreted by human gingival mesenchymal stem cells promote bone regeneration in rat femoral bone defects. Front Bioeng Biotechnol 2023; 11:1098172. [PMID: 36896013 PMCID: PMC9989199 DOI: 10.3389/fbioe.2023.1098172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Extracellular vesicles (EVs), important components of paracrine secretion, are involved in various pathological and physiological processes of the body. In this study, we researched the benefits of EVs secreted by human gingival mesenchymal stem cells (hGMSC-derived EVs) in promoting bone regeneration, thereby providing new ideas for EVs-based bone regeneration therapy. Here, we successfully demonstrated that hGMSC-derived EVs could enhance the osteogenic ability of rat bone marrow mesenchymal stem cells and the angiogenic capability of human umbilical vein endothelial cells. Then, femoral defect rat models were created and treated with phosphate-buffered saline, nanohydroxyapatite/collagen (nHAC), a grouping of nHAC/hGMSCs, and a grouping of nHAC/EVs. The results of our study indicated that the combination of hGMSC-derived EVs and nHAC materials could significantly promote new bone formation and neovascularization with a similar effect to that of the nHAC/hGMSCs group. Our outcomes provide new messages on the role of hGMSC-derived EVs in tissue engineering, which exhibit great potential in bone regeneration treatment.
Collapse
Affiliation(s)
- Situo Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Orthopedic Laboratory of PLA General Hospital, Beijing, China
| | - Ziwei Liu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Orthopedic Laboratory of PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shuo Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Na Huo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Qiao
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tong Zhang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Juan Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Quan Shi
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
43
|
Collon K, Bell JA, Chang SW, Gallo MC, Sugiyama O, Marks C, Lieberman JR. Effects of cell seeding technique and cell density on BMP-2 production in transduced human mesenchymal stem cells. J Biomed Mater Res A 2022; 110:1944-1952. [PMID: 35950648 PMCID: PMC9804863 DOI: 10.1002/jbm.a.37430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023]
Abstract
Small animal models have demonstrated the efficacy of ex vivo regional gene therapy using scaffolds loaded with BMP-2-expressing mesenchymal stem cells (MSCs). Prior to clinical translation, optimization of seeding techniques of the transduced cells will be important to minimize time and resource expenditure, while maximizing cell delivery and BMP-2 production. No prior studies have investigated cell-seeding techniques in the setting of transduced cells for gene therapy applications. Using BMP-2-expressing transduced adipose-derived MSCs and a porous ceramic scaffold, this study compared previously described static and dynamic seeding techniques with respect to cell seeding efficiency, uniformity of cell distribution, and in vitro BMP-2 production. Static and negative pressure seeding techniques demonstrated the highest seeding efficiency, while orbital shaking was associated with the greatest increases in BMP-2 production per cell. Low density cell suspensions were associated with the highest seeding efficiency and uniformity of cell distribution, and the greatest increases in BMP-2 production from 2 to 7 days after seeding. Our results highlight the potential for development of an optimized cell density and seeding technique that could greatly reduce the number of MSCs needed to produce therapeutic BMP-2 levels in clinical situations. Further studies are needed to investigate in vivo effects of cell seeding techniques on bone healing.
Collapse
Affiliation(s)
- Kevin Collon
- Department of Orthopaedic SurgeryKeck School of Medicine of USCLos AngelesCaliforniaUSA
| | - Jennifer A. Bell
- Department of Orthopaedic SurgeryKeck School of Medicine of USCLos AngelesCaliforniaUSA
| | - Stephanie W. Chang
- Department of Orthopaedic SurgeryKeck School of Medicine of USCLos AngelesCaliforniaUSA
| | - Matthew C. Gallo
- Department of Orthopaedic SurgeryKeck School of Medicine of USCLos AngelesCaliforniaUSA
| | - Osamu Sugiyama
- Department of Orthopaedic SurgeryKeck School of Medicine of USCLos AngelesCaliforniaUSA
| | - Carolyn Marks
- Core Center of Excellence in Nano ImagingUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jay R. Lieberman
- Department of Orthopaedic SurgeryKeck School of Medicine of USCLos AngelesCaliforniaUSA
| |
Collapse
|
44
|
Calin BS, Paun IA. A Review on Stimuli-Actuated 3D Micro/Nanostructures for Tissue Engineering and the Potential of Laser-Direct Writing via Two-Photon Polymerization for Structure Fabrication. Int J Mol Sci 2022; 23:14270. [PMID: 36430752 PMCID: PMC9699325 DOI: 10.3390/ijms232214270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
In this review, we present the most recent and relevant research that has been done regarding the fabrication of 3D micro/nanostructures for tissue engineering applications. First, we make an overview of 3D micro/nanostructures that act as backbone constructs where the seeded cells can attach, proliferate and differentiate towards the formation of new tissue. Then, we describe the fabrication of 3D micro/nanostructures that are able to control the cellular processes leading to faster tissue regeneration, by actuation using topographical, mechanical, chemical, electric or magnetic stimuli. An in-depth analysis of the actuation of the 3D micro/nanostructures using each of the above-mentioned stimuli for controlling the behavior of the seeded cells is provided. For each type of stimulus, a particular recent application is presented and discussed, such as controlling the cell proliferation and avoiding the formation of a necrotic core (topographic stimulation), controlling the cell adhesion (nanostructuring), supporting the cell differentiation via nuclei deformation (mechanical stimulation), improving the osteogenesis (chemical and magnetic stimulation), controlled drug-delivery systems (electric stimulation) and fastening tissue formation (magnetic stimulation). The existing techniques used for the fabrication of such stimuli-actuated 3D micro/nanostructures, are briefly summarized. Special attention is dedicated to structures' fabrication using laser-assisted technologies. The performances of stimuli-actuated 3D micro/nanostructures fabricated by laser-direct writing via two-photon polymerization are particularly emphasized.
Collapse
Affiliation(s)
- Bogdan Stefanita Calin
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania
- Faculty of Applied Sciences, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Irina Alexandra Paun
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania
- Faculty of Applied Sciences, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
45
|
Bone Healing in Rat Segmental Femur Defects with Graphene-PCL-Coated Borate-Based Bioactive Glass Scaffolds. Polymers (Basel) 2022; 14:polym14183898. [PMID: 36146043 PMCID: PMC9500610 DOI: 10.3390/polym14183898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/29/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Bone is a continually regenerating tissue with the ability to heal after fractures, though healing significant damage requires intensive surgical treatment. In this study, borate-based 13-93B3 bioactive glass scaffolds were prepared though polymer foam replication and coated with a graphene-containing poly (ε-caprolactone) (PCL) layer to support bone repair and regeneration. The effects of graphene concentration (1, 3, 5, 10 wt%) on the healing of rat segmental femur defects were investigated in vivo using male Sprague−Dawley rats. Radiographic imaging, histopathological and immuno-histochemical (bone morphogenetic protein (BMP-2), smooth muscle actin (SMA), and alkaline phosphatase (ALP) examinations were performed 4 and 8 weeks after implantation. Results showed that after 8 weeks, both cartilage and bone formation were observed in all animal groups. Bone growth was significant starting from the 1 wt% graphene-coated bioactive glass-implanted group, and the highest amount of bone formation was seen in the group containing 10 wt% graphene (p < 0.001). Additionally, the presence of graphene nanoplatelets enhanced BMP-2, SMA and ALP levels compared to bare bioactive glass scaffolds. It was concluded that pristine graphene-coated bioactive glass scaffolds improve bone formation in rat femur defects.
Collapse
|
46
|
Qi H, Ke Q, Tang Q, Yin L, Yang L, Ning C, Su J, Fang L. Magnetic field regulation of mouse bone marrow mesenchymal stem cell behaviours on TiO
2
nanotubes via surface potential mediated by Terfenol‐D/P(VDF‐TrFE) film. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Haisheng Qi
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| | - Qi Ke
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou China
| | - Qiwen Tang
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| | - Lei Yin
- China‐Singapore International Joint Research Institute Guangzhou China
| | - Lixin Yang
- School of Mechanical & Automotive Engineering South China University of Technology Guangzhou China
| | - Chengyun Ning
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou China
| | - Jianyu Su
- China‐Singapore International Joint Research Institute Guangzhou China
| | - Liming Fang
- School of Materials Science and Engineering South China University of Technology Guangzhou China
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing Guangzhou China
| |
Collapse
|
47
|
Labusca L. Adipose tissue in bone regeneration - stem cell source and beyond. World J Stem Cells 2022; 14:372-392. [PMID: 35949397 PMCID: PMC9244952 DOI: 10.4252/wjsc.v14.i6.372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/30/2021] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue (AT) is recognized as a complex organ involved in major home-ostatic body functions, such as food intake, energy balance, immunomodulation, development and growth, and functioning of the reproductive organs. The role of AT in tissue and organ homeostasis, repair and regeneration is increasingly recognized. Different AT compartments (white AT, brown AT and bone marrow AT) and their interrelation with bone metabolism will be presented. AT-derived stem cell populations - adipose-derived mesenchymal stem cells and pluripotent-like stem cells. Multilineage differentiating stress-enduring and dedifferentiated fat cells can be obtained in relatively high quantities compared to other sources. Their role in different strategies of bone and fracture healing tissue engineering and cell therapy will be described. The current use of AT- or AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented, as well as major challenges in furthering bone regenerative strategies to clinical settings.
Collapse
Affiliation(s)
- Luminita Labusca
- Magnetic Materials and Sensors, National Institute of Research and Development for Technical Physics, Iasi 700050, Romania
- Orthopedics and Traumatology, County Emergency Hospital Saint Spiridon Iasi, Iasi 700050, Romania.
| |
Collapse
|
48
|
Matta A, Nader V, Lebrin M, Gross F, Prats AC, Cussac D, Galinier M, Roncalli J. Pre-Conditioning Methods and Novel Approaches with Mesenchymal Stem Cells Therapy in Cardiovascular Disease. Cells 2022; 11:1620. [PMID: 35626657 PMCID: PMC9140025 DOI: 10.3390/cells11101620] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) in the setting of cardiovascular disease, such as heart failure, cardiomyopathy and ischemic heart disease, has been associated with good clinical outcomes in several trials. A reduction in left ventricular remodeling, myocardial fibrosis and scar size, an improvement in endothelial dysfunction and prolonged cardiomyocytes survival were reported. The regenerative capacity, in addition to the pro-angiogenic, anti-apoptotic and anti-inflammatory effects represent the main target properties of these cells. Herein, we review the different preconditioning methods of MSCs (hypoxia, chemical and pharmacological agents) and the novel approaches (genetically modified MSCs, MSC-derived exosomes and engineered cardiac patches) suggested to optimize the efficacy of MSC therapy.
Collapse
Affiliation(s)
- Anthony Matta
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- Faculty of Medicine, Holy Spirit University of Kaslik, Kaslik 446, Lebanon
- Department of Cardiology, Intercommunal Hospital Centre Castres-Mazamet, 81100 Castres, France
| | - Vanessa Nader
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- Faculty of Pharmacy, Lebanese University, Beirut 6573/14, Lebanon
| | - Marine Lebrin
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- CIC-Biotherapies, University Hospital of Toulouse, 31059 Toulouse, France
| | - Fabian Gross
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- CIC-Biotherapies, University Hospital of Toulouse, 31059 Toulouse, France
| | | | - Daniel Cussac
- INSERM I2MC—UMR1297, 31432 Toulouse, France; (A.-C.P.); (D.C.)
| | - Michel Galinier
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
| | - Jerome Roncalli
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- CIC-Biotherapies, University Hospital of Toulouse, 31059 Toulouse, France
- INSERM I2MC—UMR1297, 31432 Toulouse, France; (A.-C.P.); (D.C.)
| |
Collapse
|
49
|
Raman N, Imran SAM, Ahmad Amin Noordin KB, Zaman WSWK, Nordin F. Mechanotransduction in Mesenchymal Stem Cells (MSCs) Differentiation: A Review. Int J Mol Sci 2022; 23:4580. [PMID: 35562971 PMCID: PMC9105508 DOI: 10.3390/ijms23094580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Mechanotransduction is the process by which physical force is converted into a biochemical signal that is used in development and physiology; meanwhile, it is intended for the ability of cells to sense and respond to mechanical forces by activating intracellular signals transduction pathways and the relative phenotypic adaptation. It encompasses the role of mechanical stimuli for developmental, morphological characteristics, and biological processes in different organs; the response of cells to mechanically induced force is now also emerging as a major determinant of disease. Due to fluid shear stress caused by blood flowing tangentially across the lumen surface, cells of the cardiovascular system are typically exposed to a variety of mechanotransduction. In the body, tissues are continuously exposed to physical forces ranging from compression to strain, which is caused by fluid pressure and compressive forces. Only lately, though, has the importance of how forces shape stem cell differentiation into lineage-committed cells and how mechanical forces can cause or exacerbate disease besides organizing cells into tissues been acknowledged. Mesenchymal stem cells (MSCs) are potent mediators of cardiac repair which can secret a large array of soluble factors that have been shown to play a huge role in tissue repair. Differentiation of MSCs is required to regulate mechanical factors such as fluid shear stress, mechanical strain, and the rigidity of the extracellular matrix through various signaling pathways for their use in regenerative medicine. In the present review, we highlighted mechanical influences on the differentiation of MSCs and the general factors involved in MSCs differentiation. The purpose of this study is to demonstrate the progress that has been achieved in understanding how MSCs perceive and react to their mechanical environment, as well as to highlight areas where more research has been performed in previous studies to fill in the gaps.
Collapse
Affiliation(s)
- Narmadaa Raman
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.R.); (S.A.M.I.)
- Department of Microbiology, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.R.); (S.A.M.I.)
| | | | | | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.R.); (S.A.M.I.)
| |
Collapse
|