1
|
Gómez-Bañuelos E, Celia AI, Trejo-Zambrano MI, Robles-De Anda JA, Paz M, Chaturvedi S, Conti F, Alessandri C, Tiniakou E, Goldman DW, Brodsky RA, Petri M, Andrade F. Anti-TFAM antibodies link mitochondrial damage with antiphospholipid syndrome and thrombosis in SLE. Ann Rheum Dis 2025:S0003-4967(25)00904-5. [PMID: 40350373 DOI: 10.1016/j.ard.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/19/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025]
Abstract
OBJECTIVES Mitochondria are a source of autoantigens and damage-associated molecular patterns (DAMPs) in systemic lupus erythematosus (SLE). Nucleoids carrying TFAM (transcription factor A, mitochondrial) and mitochondrial DNA (mtDNA) are important DAMPs in SLE. While mtDNA has been associated with anti-double-stranded (ds)DNA antibodies and type I interferon (IFN-I), the immunogenic role of TFAM in SLE pathogenesis is unknown. Here, we characterised the clinical and transcriptional phenotypes linked to anti-TFAM antibodies in SLE. METHODS Anti-TFAM antibodies were discovered in an exploratory sample of 22 SLE patients and 9 healthy controls. To define the prevalence, clinical significance, and associations with transcriptional profiles and IFN levels, anti-TFAM antibodies were detected using enzyme-linked immunosorbent assay (ELISA) in 98 healthy controls and 158 SLE patients. Sera from patients with dermatomyositis, rheumatoid arthritis, and primary antiphospholipid syndrome (PAPS) were also tested. RESULTS Anti-TFAM antibodies were discovered in patients with SLE while analysing neutrophil autoantigens and confirmed by ELISA and immunoblotting. One-third of SLE patients (48/158) were positive for anti-TFAM antibodies. Unlike anti-dsDNA antibodies, anti-TFAM antibodies were not associated with disease activity or the IFN signature. Instead, anti-TFAM antibodies were associated with thrombosis, antiphospholipid syndrome (APS) (odds ratio [OR], 2.9 and 5.4, respectively), thrombosis-associated transcriptional profiles, and elevated IFN-III. Anti-TFAM antibodies were also found in PAPS, supporting their role in APS but not SLE pathogenesis. Lupus anticoagulant increased the risk of thrombosis associated with anti-TFAM antibodies (OR, 8.71), indicating they are markers of independent prothrombotic pathways. CONCLUSIONS Anti-TFAM antibodies identify a distinct clinical and transcriptional disease subset associated with mitochondrial damage, thrombosis, and APS in SLE.
Collapse
Affiliation(s)
- Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alessandra Ida Celia
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | | | | | - Merlin Paz
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shruti Chaturvedi
- Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabrizio Conti
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristiano Alessandri
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Eleni Tiniakou
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel W Goldman
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A Brodsky
- Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Petri
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Chunikhin AY, Danylovych HV, Danylovych YV. CHTW(R)-system in Ca 2+ transport modelling. Biosystems 2025; 251:105456. [PMID: 40139341 DOI: 10.1016/j.biosystems.2025.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/05/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
In (Chunikhin, 2023; Chunikhin, 2024) the concept of CHTW-systems as a multidimensional representation of Petri nets was proposed based on the assumption of multidimensional distribution of tokens (resources) in positions (branes) and, accordingly, multidimensional representation of transitions and arcs. We consider the case when the main parameters of CHTW-system (threshold functions and rate functions) change in accordance with the values of the mark-functions (multidimensional resource) of some container branes of the same CHTW-system. The modification of the basic CHTW-system was designated as a CHTW(R) system, in which (R) means a Resource control of the system parameters. This approach was used to analyze changes in Ca2+ concentration in mitochondria.
Collapse
Affiliation(s)
- Alexander Yu Chunikhin
- Palladin Institute of Biochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Hanna V Danylovych
- Palladin Institute of Biochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Yurii V Danylovych
- Palladin Institute of Biochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| |
Collapse
|
3
|
Varughese A, Balnadupete A, Ramesh P, Prasad TSK, Nidha AB, Bhandary Y. Guardians Turned Culprits: NETosis and Its Influence on Pulmonary Fibrosis Development. Mol Biotechnol 2025; 67:1752-1764. [PMID: 38717537 DOI: 10.1007/s12033-024-01171-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating, life-threatening irreversible lung disease characterized by the excessive accumulation of fibrotic tissue in the lungs, impairing their function. The exact mechanisms underlying Pulmonary fibrosis (PF) are multifaceted and not yet fully understood. Reports show that during COVID-19 pandemic, PF was dramatically increased due to the hyperactivation of the immune system. Neutrophils and macrophages are the patrolling immune cells that keep the microenvironment balanced. Neutrophil extracellular traps (NETs) are a normal protective mechanism of neutrophils. The chief components of the NETs include DNA, citrullinated histones, and anti-microbial peptides which are released by the activated neutrophils. However, it is becoming increasingly evident that hyperactivation of immune cells can also turn into criminals when it comes to pathological state. Dysregulated NETosis may contribute to sustained inflammation, overactivation of fibroblasts, and ultimately promoting collagen deposition which is the characteristic feature of PF. The role of NETs along with inflammation is attaining greater attention. However, seldom researches are related to the relationship between NETs causing PF. This review highlights the cellular mechanism of NETs-induced pulmonary fibrosis, which could give a better understanding of molecular targets which may be helpful for treating NETs-induced PF.
Collapse
Affiliation(s)
- Aleena Varughese
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| | - Akarsha Balnadupete
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| | - Poornima Ramesh
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| | | | | | - Yashodhar Bhandary
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India.
| |
Collapse
|
4
|
Liu J, Ge P, Luo Y, Sun Z, Luo X, Li H, Pei B, Xun L, Zhang X, Jiang Y, Wen H, Liu J, Yang Q, Ma S, Chen H. Decoding TMAO in the Gut-Organ Axis: From Biomarkers and Cell Death Mechanisms to Therapeutic Horizons. Drug Des Devel Ther 2025; 19:3363-3393. [PMID: 40322030 PMCID: PMC12049683 DOI: 10.2147/dddt.s512207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The gut microbiota and its metabolites are bi-directionally associated with various human illnesses, which has received extensive attention. Trimethylamine N-oxide (TMAO) is a gut microbiota metabolite produced in the liver, which may serve the role of an "axis" connecting the gut and host organs. TMAO levels are significantly higher in the blood of individuals with cardiovascular, renal, neurological, and metabolic diseases. Endothelial cells are crucial for regulating microcirculation and maintaining tissue and organ barriers and are widely recognized as target cells for TMAO. TMAO not only induces endothelial dysfunction but also acts on various cell types, such as endothelial cells, epithelial cells, vascular smooth muscle cells, nerve cells, and pancreatic cells, triggering multiple cell death mechanisms, including necrosis and programmed cell death, thereby influencing host health. This paper thoroughly covers the origins, production, and metabolic pathways of TMAO, emphasizing its importance in the early detection and prognosis of human diseases in the "Gut-Organ" axis, as well as its mechanisms of influence on human diseases, particularly the cross-talk with cell death. Furthermore, we cover recent advances in treating human diseases by regulating gut microbiota structure and enzyme activity to influence TMAO metabolism and reduce TMAO levels, including the use of probiotics, prebiotics, antibiotics, anti-inflammatory drugs, antiplatelet drugs, hypoglycemic drugs, lipid-lowering drugs, and natural products.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhenxuan Sun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Huijuan Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Lu Xun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xuetao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yunfei Jiang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Qi Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
5
|
Kim MY, Hwangbo H, Ji SY, Kim DH, Park SH, Hong SH, Kim GY, Bang E, Choi YH. Cynaropicrin Suppresses Cell Proliferation by Inducing Mitophagy through p38 MAPK-Mediated Mitochondrial ROS Generation in Human Hepatocellular Carcinoma Cells. J Microbiol Biotechnol 2025; 35:e2501025. [PMID: 40295200 PMCID: PMC12089954 DOI: 10.4014/jmb.2501.01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 04/30/2025]
Abstract
Cynaropicrin, a sesquiterpene lactone, has diverse pharmacological activities. However, its anticancer activity against hepatocellular carcinoma (HCC) has not been fully elucidated. Here, we investigated the cytotoxic effects of cynaropicrin and examined its mechanism of action in human HCC cells. The results demonstrated that cynaropicrin significantly induced cytotoxicity and autophagy in HCC cells, but not in immortalized non-cancerous hepatocytes, which was related to the generation of mitochondrial reactive oxygen species (mtROS) and induction of mitochondrial membrane potential loss. Under cynaropicrin treatment, the expression of microtubule-associated protein light chain 3, which is involved in the elongation of the phagophore membrane, was upregulated, whereas the expression of Beclin-1 and p62, which are essential for the formation of autophagosomes, was downregulated. In addition, the expression of mitophagy regulators PTEN-induced kinase 1 (PINK1) and Parkin in the mitochondria increased, suggesting the induction of autophagic flux in the mitochondria. However, N-acetyl-l-cysteine, a ROS scavenger, counteracted cynaropicrin-induced effects. Moreover, cynaropicrin increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK), and the p38 MAPK inhibitor, SB203580, specifically attenuated cynaropicrin-induced cytotoxicity and mtROS production. Importantly, SB203580 reversed cynaropicrin-induced expression of PINK1 and Parkin in the mitochondria. Collectively, our findings demonstrate that cynaropicrin exerts cytotoxic effects against HCC cells by inducing mitochondrial autophagy through the activation of the p38 MAPK-ROS pathway, indicating that cynaropicrin could be a potential therapeutic agent for liver cancer treatment.
Collapse
Affiliation(s)
- Min Yeong Kim
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hyun Hwangbo
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Seon Yeong Ji
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Da Hye Kim
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Su Hyun Hong
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Gi Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
6
|
Hao MY, Li HJ, Han HS, Chu T, Wang YW, Si WR, Jiang QY, Wu DD. Recent advances in the role of gasotransmitters in necroptosis. Apoptosis 2025; 30:616-635. [PMID: 39833633 DOI: 10.1007/s10495-024-02057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Necroptosis is a finely regulated programmed cell death process involving complex molecular mechanisms and signal transduction networks. Among them, receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein are the key molecules regulating this process. In recent years, gasotransmitters such as nitric oxide, carbon monoxide and hydrogen sulfide have been suggested to play a regulatory role in necroptosis. This paper reviews the evidence that these gasotransmitters are involved in the regulation of necroptosis by influencing the production of reactive oxygen species, regulating the modification of S subunits of RIPK1 and RIPK3, regulating inflammatory mediators, and signal transduction. In addition, this review explores the potential therapeutic applications of these gasotransmitters in pathological conditions such as cardiovascular disease and ischemia-reperfusion injury. Although some studies have revealed the important role of gasotransmitters in necroptosis, the specific mechanism of action is still not fully understood. Future research is needed to further elucidate the molecular mechanisms of gasotransmitters in precisely regulating necroptosis, which will help develop new therapeutic strategies to prevent and treat related diseases.
Collapse
Affiliation(s)
- Meng-Yuan Hao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hong-Jie Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang-Shen Han
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Wei-Rong Si
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
7
|
Tkachenko A, Havranek O. Cell death signaling in human erythron: erythrocytes lose the complexity of cell death machinery upon maturation. Apoptosis 2025; 30:652-673. [PMID: 39924584 PMCID: PMC11947060 DOI: 10.1007/s10495-025-02081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Over the recent years, our understanding of the cell death machinery of mature erythrocytes has been greatly expanded. It resulted in the discovery of several regulated cell death (RCD) pathways in red blood cells. Apoptosis (eryptosis) and necroptosis of erythrocytes share certain features with their counterparts in nucleated cells, but they are also critically different in particular details. In this review article, we summarize the cell death subroutines in the erythroid precursors (apoptosis, necroptosis, and ferroptosis) in comparison to mature erythrocytes (eryptosis and erythronecroptosis) to highlight the consequences of organelle clearance and associated loss of multiple components of the cell death machinery upon erythrocyte maturation. Recent advances in understanding the role of erythrocyte RCDs in health and disease have expanded potential clinical applications of these lethal subroutines, emphasizing their contribution to the development of anemia, microthrombosis, and endothelial dysfunction, as well as their role as diagnostic biomarkers and markers of erythrocyte storage-induced lesions. Fas signaling and the functional caspase-8/caspase-3 system are not indispensable for eryptosis, but might be retained in mature erythrocytes to mediate the crosstalk between both erythrocyte-associated RCDs. The ability of erythrocytes to switch between eryptosis and necroptosis suggests that their cell death is not a simple unregulated mechanical disintegration, but a tightly controlled process. This allows investigation of eventual pharmacological interventions aimed at individual cell death subroutines of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- First Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| | - Ondrej Havranek
- First Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic
- First Department of Medicine - Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Zikaki K, Kiachaki E, Gaitanaki C, Aggeli IK. "Villains" Turning Good: Antimycin A and Rotenone, Mitochondrial Respiratory Chain Inhibitors, Protect H9c2 Cardiac Cells Against Insults Triggering the Intrinsic Apoptotic Pathway. Int J Mol Sci 2025; 26:2435. [PMID: 40141079 PMCID: PMC11942121 DOI: 10.3390/ijms26062435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Mitochondria are the powerhouses of cells, also involved in ROS (reactive oxygen species) generation and cellular death regulation. Thus, several diseases are associated with mitochondrial impairment, including cardiovascular disorders (CVDs). Since CVDs are currently the leading cause of death worldwide, it is very important to evaluate targeting mitochondrial effectors in clinical treatment protocols. Hence, in the present study, antimycin A and rotenone, established inhibitors of the mitochondrial electron transfer chain, were shown to halt apoptotic death induced by curcumin (50 μM) and sorbitol (0.5 M), in H9c2 cardiac cells. In particular, immunoblotting analysis revealed that they totally abolished PARP [poly(ADP-ribose) polymerase] proteolysis, under these conditions. This finding was accompanied by an enhancement of cell viability, recovery of mitochondria networks' integrity, suppression of cytochrome c release into the cytoplasm, and reversal of chromatin condensation. Chelating extracellular calcium (with EGTA) further enhanced the beneficial impact of antimycin A and rotenone on curcumin- or sorbitol-treated H9c2 cells viability. Of interest, the phosphorylation of eIF2α, indicative of the onset of the pro-survival Integrated Stress Response (IRS), was sustained under these conditions. Overall, our data highlight the anti-apoptotic effect of these compounds, unmasking their potential as mediators in novel therapeutic interventions against mitochondria-associated cardiac dysfunction.
Collapse
Affiliation(s)
| | | | | | - Ioanna-Katerina Aggeli
- Section of Animal and Human Physiology, Faculty of Biology, School of Science, National and Kapodistrian University of Athens, University Campus, Ilissia, 15784 Athens, Greece; (K.Z.); (E.K.); (C.G.)
| |
Collapse
|
9
|
Liu H, Song Y, Wang H, Zhou Y, Xu M, Xian J. Deciphering the Power of Resveratrol in Mitophagy: From Molecular Mechanisms to Therapeutic Applications. Phytother Res 2025; 39:1319-1343. [PMID: 39754508 DOI: 10.1002/ptr.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Resveratrol (RES), a natural polyphenolic compound, has garnered significant attention for its therapeutic potential in various pathological conditions. This review explores how RES modulates mitophagy-the selective autophagic degradation of mitochondria essential for maintaining cellular homeostasis. RES promotes the initiation and execution of mitophagy by enhancing PINK1/Parkin-mediated mitochondrial clearance, reducing reactive oxygen species production, and mitigating apoptosis, thereby preserving mitochondrial integrity. Additionally, RES regulates mitophagy through the activation of key molecular targets such as AMP-activated protein kinase (AMPK), the mechanistic target of rapamycin (mTOR), deacetylases (SIRT1 and SIRT3), and mitochondrial quality control (MQC) pathways, demonstrating substantial therapeutic effects in multiple disease models. We provide a detailed account of the biosynthetic pathways, pharmacokinetics, and metabolic characteristics of RES, focusing on its role in mitophagy modulation and implications for medical applications. Potential adverse effects associated with its clinical use are also discussed. Despite its promising therapeutic properties, the clinical application of RES is limited by issues of bioavailability and pharmacokinetic profiles. Future research should concentrate on enhancing RES bioavailability and developing derivatives that precisely modulate mitophagy, thereby unlocking new avenues for disease therapy.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yixuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Xu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jiaxun Xian
- Traditional Chinese Medicine Hospital of Meishan, Meishan, China
| |
Collapse
|
10
|
Wang Z, Sun W, Zhang K, Ke X, Wang Z. New insights into the relationship of mitochondrial metabolism and atherosclerosis. Cell Signal 2025; 127:111580. [PMID: 39732307 DOI: 10.1016/j.cellsig.2024.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Atherosclerotic cardiovascular and cerebrovascular diseases are the number one killer of human health. In view of the important role of mitochondria in the formation and evolution of atherosclerosis, our manuscript aims to comprehensively elaborate the relationship between mitochondria and the formation and evolution of atherosclerosis from the aspects of mitochondrial dynamics, mitochondria-organelle interaction (communication), mitochondria and cell death, mitochondria and vascular smooth muscle cell phenotypic switch, etc., which is combined with genome, transcriptome and proteome, in order to provide new ideas for the pathogenesis of atherosclerosis and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Zexun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China
| | - Wangqing Sun
- Department of Radiology, Yixing Tumor Hospital, Yixing 214200, China
| | - Kai Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Xianjin Ke
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
11
|
Liu X, Li T, Tu X, Xu M, Wang J. Mitochondrial fission and fusion in neurodegenerative diseases:Ca 2+ signalling. Mol Cell Neurosci 2025; 132:103992. [PMID: 39863029 DOI: 10.1016/j.mcn.2025.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca2+ signaling have long been considered to play important roles in the development of various NDs. Mitochondrial fission and fusion dynamics are important processes of mitochondrial quality control, ensuring the stability of mitochondrial structure and function. Mitochondrial fission and fusion imbalance and Ca2+ signaling disorders can aggravate the disease progression of NDs. In this review, we explore the relationship between mitochondrial dynamics and Ca2+ signaling in AD, PD, ALS, and HD, focusing on the roles of key regulatory proteins (Drp1, Fis1, Mfn1/2, and Opa1) and the association structures between mitochondria and the endoplasmic reticulum (MERCs/MAMs). We provide a detailed analysis of their involvement in the pathogenesis of these four NDs. By integrating these mechanisms, we aim to clarify their contributions to disease progression and offer insights into the development of therapeutic strategies that target mitochondrial dynamics and Ca2+ signaling. We also examine the progress in drug research targeting these pathways, highlighting their potential as therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Xinya Tu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
12
|
Trávníček Z, Vančo J, Čajan M, Malina T, Dvořák Z, Lenobel R, Beláková B, Schmid JA. Gold(I) N-heterocyclic carbene complexes show strong proapoptotic, antioxidant and anti-inflammatory effects in A2780 and endothelial cells. Chem Biol Interact 2025; 408:111381. [PMID: 39824433 DOI: 10.1016/j.cbi.2025.111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
A series of eight gold(I) N-heterocyclic carbene (NHC) complexes [Au(IMes)(Ln)] based on 1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene (IMes) and 7-azaindole derivatives (HLn), where n = 1-8 for HL1 = 5-fluoro-7-azaindole, HL2 = 5-bromo-7-azaindole, HL3 = 3-chloro-7-azaindole, HL4 = 3-iodo-7-azaindole, HL5 = 5-bromo-3-chloro-7-azaindole, HL6 = 5-bromo-3-iodo-7-azaindole, HL7 = 4-chloro-2-methyl-7-azaindole and HL8 = 7-azaindole, was prepared, characterised and studied for their in vitro anti-cancer and anti-inflammatory effects. The complexes showed significant cytotoxicity on human ovarian cancer cell lines (A2780, IC50 ≈ 8-19 μM and A2780R, IC50 ≈ 8-19 μM) and lowered toxicity in normal HaCat and MRC-5 cells. Cellular effects of the selected complexes 1 and 7 were evaluated in A2780 cells using flow cytometry. Moreover, the time-dependent cellular uptake in A2780 cells, a shotgun proteomic analysis, an ESI-MS study of hydrolysis and interactions with l-cysteine and reduced glutathione (GSH) were performed. Complexes 1 and 7 revealed remarkable anti-inflammatory effects via inhibition of NF-κB activity in human endothelial cells.
Collapse
Affiliation(s)
- Zdeněk Trávníček
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic.
| | - Ján Vančo
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Michal Čajan
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Tomáš Malina
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic; Nanotechnology Centre, Centre for Energy and Environmental Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, CZ-708 00, Ostrava-Poruba, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Barbora Beláková
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Wang Y, Wei W, Zhang Y, Miao J, Bao X, Lu C. MLKL as an emerging machinery for modulating organelle dynamics: regulatory mechanisms, pathophysiological significance, and targeted therapeutics. Front Pharmacol 2025; 16:1512968. [PMID: 40070567 PMCID: PMC11893596 DOI: 10.3389/fphar.2025.1512968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Mixed lineage kinase domain-like protein (MLKL) is a pseudokinase featured by a protein kinase-like domain without catalytic activity. MLKL was originally discovered to be phosphorylated by receptor-interacting protein kinase 1/3, typically increase plasma membrane permeabilization, and disrupt the membrane integrity, ultimately executing necroptosis. Recent evidence uncovers the association of MLKL with diverse cellular organelles, including the mitochondrion, lysosome, endosome, endoplasmic reticulum, and nucleus. Thus, this review mainly focuses on the regulatory functions, mechanisms, and targets of MLKL in organelles rather than necroptosis and summarize the medical significance in multiple diseases. On this basis, we conclude and analyze the current progress and prospect for the development of MLKL-related drugs, from natural products, small-molecule chemical compounds, to proteolysis-targeting chimera. This review is aimed to propel the development of MLKL as a valid drug target and the discovery of novel MLKL-related drugs, and promote their further applications.
Collapse
Affiliation(s)
| | | | | | | | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
14
|
Wu P, Chen J, Li H, Lu H, Li Y, Zhang J. Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review). Oncol Rep 2025; 53:18. [PMID: 39635847 PMCID: PMC11638741 DOI: 10.3892/or.2024.8851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Ferroptosis is a form of programmed cell death that is distinct from apoptosis. The mechanism involves redox‑active metallic iron and is characterized by an abnormal increase in iron‑dependent lipid reactive oxygen species, which results in high levels of membrane lipid peroxides. The relationship between ferroptosis and gynaecological tumours is complex. Ferroptosis can regulate tumour proliferation, metastasis and chemotherapy resistance, and targeting ferroptosis is a promising antitumour approach. Ferroptosis interacts with mechanisms related to tumorigenesis and development, such as macrophage polarization, the neutrophil trap network, mitochondrial autophagy and cuproptosis. The present review examines recent information on the interaction between the molecular mechanism of ferroptosis and other tumour‑related mechanisms, as well as the involvement of ferroptosis in gynaecological tumours, to identify implications for gynaecological cancer therapy.
Collapse
Affiliation(s)
- Peiting Wu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| | - Jianlin Chen
- Department of Assisted Reproductive Centre, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| | - Haiyuan Lu
- Department of Clinical Laboratory Department, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Hunan Vigorzoe Biotechnology Co., Ltd., Hunan 417700, P.R. China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| |
Collapse
|
15
|
Zeng F, Shao Y, Wu J, Luo J, Yue Y, Shen Y, Wang Y, Shi Y, Wu D, Cata JP, Yang S, Zhang H, Miao C. Tumor metastasis and recurrence: The role of perioperative NETosis. Cancer Lett 2024; 611:217413. [PMID: 39725150 DOI: 10.1016/j.canlet.2024.217413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Although surgical resection of tumor mass remains the mainstay of curative therapeutic management for solid tumors, accumulating studies suggest that these procedures promote tumor recurrence and metastasis. Regarded as the first immune cells to fight against infectious or inflammatory insults from surgery, neutrophils along with their ability of neutrophil extracellular traps (NETs) production has attracted much attention. A growing body of evidence suggests that NETs promote cancer metastasis by stimulating various stages, including local invasion, colonization, and growth. Therefore, we discussed the mechanism of NETosis induced by surgical stress and tumor cells, and the contribution of NETs on tumor metastasis: aid in the tumor cell migration and proliferation, evasion of immune surveillance, circulating tumor cell adhesion and establishment of a metastatic niche. Lastly, we summarized existing NET-targeting interventions, offering recent insights into potential targets for clinical intervention.
Collapse
Affiliation(s)
- Fu Zeng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jingyi Wu
- Department of Anesthesiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Jingwen Luo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yang Shen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA; Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Pujian Road 160, Shanghai, 200127, China.
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
16
|
Kuzmich AS, Filshtein AP, Likhatskaya GN, Gorpenchenko TY, Chikalovets IV, Mizgina TO, Hua KF, von Amsberg G, Dyshlovoy SA, Chernikov OV. Lectins CGL and MTL, representatives of mytilectin family, exhibit different antiproliferative activity in Burkitt's lymphoma cells. IUBMB Life 2024; 76:1279-1294. [PMID: 39166889 DOI: 10.1002/iub.2909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Lectins are carbohydrate-binding proteins, whose biological effects are exerted via binding to glycoconjugates expressed on the surface of cells. Exposure to lectins can lead not only to a change in the structure and properties of cells but also to their death. Here, we studied the biological activity of lectins from the mussels Crenomytilus graynus (CGL) and Mytilus trossulus (MTL) and showed that these proteins can affect the proliferation of human lymphoma cells. Both lectins suppressed the formation of colonies as well as cell cycle progression. The mechanism of action of these lectins was not mediated by reactive oxygen species but included damaging of mitochondria, inhibition of key cell cycle points, and activation of MAPK signaling pathway in tumor cells. Computer modeling suggested that various effects of CGL and MTL on lymphoma cells may be due to the difference in the energy of binding of these lectins to carbohydrate ligands on the cell surface. Thus, molecular recognition of residues of terminal carbohydrates on the surface of tumor cells is a key factor in the manifestation of the biological action of lectins.
Collapse
Affiliation(s)
- Alexandra S Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Alina P Filshtein
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Galina N Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Tatiana Y Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Irina V Chikalovets
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Tatyana O Mizgina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sergey A Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oleg V Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
17
|
Tkachenko A, Havranek O. Erythronecroptosis: an overview of necroptosis or programmed necrosis in red blood cells. Mol Cell Biochem 2024; 479:3273-3291. [PMID: 38427167 DOI: 10.1007/s11010-024-04948-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Necroptosis is considered a programmed necrosis that requires receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and pore-forming mixed lineage kinase domain-like protein (MLKL) to trigger a regulated cell membrane lysis. Membrane rupture in necroptosis has been shown to fuel innate immune response due to release of damage-associated molecular patterns (DAMPs). Recently published studies indicate that mature erythrocytes can undergo necroptosis as well. In this review, we provide an outline of multiple cell death modes occurring in erythrocytes, discuss possible immunological aspects of diverse erythrocyte cell deaths, summarize available evidence related to the ability of erythrocytes to undergo necroptosis, outline key involved molecular mechanisms, and discuss the potential implication of erythrocyte necroptosis in the physiology and pathophysiology. Furthermore, we aim to highlight the interplay between necroptosis and eryptosis signaling in erythrocytes, emphasizing specific characteristics of these pathways distinct from their counterparts in nucleated cells. Thus, our review provides a comprehensive summary of the current knowledge of necroptosis in erythrocytes. To reflect critical differences between necroptosis of nucleated cells and necroptosis of erythrocytes, we suggest a term erythronecroptosis for necroptosis of enucleated cells.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic.
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic
- First Department of Internal Medicine-Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Reiter RJ, De Almeida Chuffa LG, Simão VA, Martín Giménez VM, De Las Heras N, Spandidos DA, Manucha W. Melatonin and vitamin D as potential synergistic adjuvants for cancer therapy (Review). Int J Oncol 2024; 65:114. [PMID: 39450562 PMCID: PMC11575929 DOI: 10.3892/ijo.2024.5702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Significant advancements have been made in cancer therapy; however, limitations remain with some conventional approaches. Adjuvants are agents used alongside primary treatments to enhance their efficacy and the treatment outcomes of patients. Modern lifestyles contribute to deficiencies in melatonin and vitamin D. Limited sun exposure affects vitamin D synthesis, and artificial light at night suppresses melatonin production. Both melatonin and vitamin D possess anti‑inflammatory, immune‑boosting and anticancer properties, rendering them potential adjuvants of interest. Studies suggest melatonin and vitamin D supplementation may address antioxidant imbalances in lip, oral and pharyngeal cancers. Moreover, promising results from breast, head and neck, brain, and osteosarcoma research indicate potential for tumor growth inhibition, improved survival, and a better quality of life of patients with cancer. The radioprotective properties of melatonin and vitamin D are another exciting area of exploration, potentially enhancing radiotherapy effectiveness while reducing side effects. For its part, the sleep‑promoting effects of melatonin may indirectly benefit patients with cancer by influencing the immune system. Thus, the prevalence of vitamin D and melatonin deficiencies highlights the importance of supplementation, as lower levels can worsen side‑effects from cancer treatments. The present review explores the potential of combining melatonin and vitamin D as synergistic adjuvants for cancer therapy. These agents have shown promise individually in cancer prevention and treatment, and their combined effects warrant investigation. Therefore, large‑scale controlled trials are crucial to definitively determine the optimal dosage, safety and efficacy of this combination in improving the lives of patients with cancer.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Luiz Gustavo De Almeida Chuffa
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Virna Margarita Martín Giménez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Natalia De Las Heras
- Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Walter Manucha
- Pharmacology Area, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, 5500 Mendoza, Argentina
| |
Collapse
|
19
|
Kim S, Jung UJ, Kim SR. Role of Oxidative Stress in Blood-Brain Barrier Disruption and Neurodegenerative Diseases. Antioxidants (Basel) 2024; 13:1462. [PMID: 39765790 PMCID: PMC11673141 DOI: 10.3390/antiox13121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Upregulation of reactive oxygen species (ROS) levels is a principal feature observed in the brains of neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). In these diseases, oxidative stress can disrupt the blood-brain barrier (BBB). This disruption allows neurotoxic plasma components, blood cells, and pathogens to enter the brain, leading to increased ROS production, mitochondrial dysfunction, and inflammation. Collectively, these factors result in protein modification, lipid peroxidation, DNA damage, and, ultimately, neural cell damage. In this review article, we present the mechanisms by which oxidative damage leads to BBB breakdown in brain diseases. Additionally, we summarize potential therapeutic approaches aimed at reducing oxidative damage that contributes to BBB disruption in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
20
|
Yang L, Ren Q, Wang Y, Zheng Y, Du F, Wang F, Zhou J, Gui L, Chen S, Chen X, Zhang W, Sun Y, Zhong X, Liu H, Jiang X, Zhang Z. Research progress of mitochondrial dysfunction induced pyroptosis in acute lung injury. Respir Res 2024; 25:398. [PMID: 39511593 PMCID: PMC11545853 DOI: 10.1186/s12931-024-03028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Acute lung injury (ALI) is a common critical respiratory disease in clinical practice, especially in the ICU, with a high mortality rate. The pathogenesis of ALI is relatively complex, mainly involving inflammatory response imbalance, oxidative stress, cell apoptosis, and other aspects. However, currently, the treatment measures taken based on the above mechanisms have not had significant effects. Recent research shows that mitochondrial dysfunction and pyroptosis play an important role in ALI, but there is not much analysis on the relationship between mitochondrial dysfunction and pyroptosis at present. This article reviews the situation of mitochondrial dysfunction in ALI, pyroptosis in ALI, whether mitochondrial dysfunction is related to pyroptosis in ALI, and how to do so, and further analyzes the relationship between them in ALI. This review describes how to alleviate mitochondrial dysfunction, and then suppress the associated immunological pyroptosis, providing new ideas for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Luhan Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qingyi Ren
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yaohui Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yucheng Zheng
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fang Wang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Linxi Gui
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shengdong Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Wanting Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yuhong Sun
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaolin Zhong
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Xian Jiang
- Department of Anesthesiology, Luzhou People's Hospital, Luzhou, 646000, China.
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
21
|
Rutckeviski R, Corso CR, Fonseca AS, Rodrigues ML, Román-Ochoa Y, Cipriani TR, Cavalli LR, Cadena SMSC, Smiderle FR. Anti-Cancer Potential of Linear β-(1→6)-D-Glucan from Agaricus bisporus on Estrogen Receptor-Positive (ER+) Breast Cancer Cells. Molecules 2024; 29:4781. [PMID: 39407709 PMCID: PMC11482474 DOI: 10.3390/molecules29194781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Mushroom β-D-glucans can be isolated from several species, including the widely consumed Agaricus bisporus. Besides immunomodulatory responses, some β-D-glucans may exhibit direct antitumoral effects. It was previously observed that a β-(1→6)-D-glucan (BDG16) has indirect cytotoxicity on triple-negative breast cancer cells. In this study, the cytotoxicity of this same glucan was observed on estrogen receptor-positive (ER+) breast cancer cells (MCF-7). Cell viability was determined by multiple methods to assess metabolic activity, lysosomal membrane integrity, and adhesion capacity. Assays to evaluate cell respiration, cell cycle, apoptosis, necroptosis, and oxidative stress were performed to determine the action of BDG16 on MCF-7 cells. A gradual and significant cell viability reduction was observed when the cells were treated with BDG16 (10-1000 µg/mL). This result could be associated with the inhibition of the basal state respiration after incubation with the β-D-glucan. The cells showed a significant arrest in G1 phase population at 1000 µg/mL, with no induction of apoptosis. However, an increase in necrosis and necroptosis at the same concentration was observed. No difference in oxidative stress-related molecules was observed. Altogether, our findings demonstrate that BDG16 directly induces toxicity in MCF-7 cells, primarily by impairing mitochondrial respiration and promoting necroptosis. The specific mechanisms that mediate this action are being investigated.
Collapse
Affiliation(s)
- Renata Rutckeviski
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil; (R.R.); (C.R.C.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Munhoz da Rocha, 490, Curitiba 80035-000, PR, Brazil;
| | - Claudia Rita Corso
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil; (R.R.); (C.R.C.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Munhoz da Rocha, 490, Curitiba 80035-000, PR, Brazil;
| | - Aline Simoneti Fonseca
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Munhoz da Rocha, 490, Curitiba 80035-000, PR, Brazil;
| | - Mariane Londero Rodrigues
- Departamento de Bioquímica Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil; (M.L.R.); (S.M.S.C.C.)
| | - Yony Román-Ochoa
- Departamento de Bioquímica Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil; (M.L.R.); (S.M.S.C.C.)
| | - Thales Ricardo Cipriani
- Departamento de Bioquímica Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil; (M.L.R.); (S.M.S.C.C.)
| | - Luciane Regina Cavalli
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil; (R.R.); (C.R.C.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Munhoz da Rocha, 490, Curitiba 80035-000, PR, Brazil;
- Department of Oncology, Lombardi Comprenhensive Cancer Center, Georgetown University, Washington, DC 20007, USA;
| | - Silvia Maria Suter Correia Cadena
- Departamento de Bioquímica Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil; (M.L.R.); (S.M.S.C.C.)
| | - Fhernanda Ribeiro Smiderle
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil; (R.R.); (C.R.C.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Munhoz da Rocha, 490, Curitiba 80035-000, PR, Brazil;
| |
Collapse
|
22
|
Lee S, Choi J, Jho EH, Shin S. Effects of polyvinyl chloride and low-density polyethylene microplastics on oxidative stress and mitochondria function of earthworm (Eisenia fetida). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116847. [PMID: 39128451 DOI: 10.1016/j.ecoenv.2024.116847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Plastics are widely used worldwide due to their convenience. However, microplastics (MPs) accumulation poses a serious threat to ecosystem health. Therefore, understanding the effects of MPs on living organisms within their native ecosystem is crucial. Previous studies have primarily focused on the impacts of MPs in aquatic environments, whereas the effects of MPs on terrestrial ecosystems have remained largely understudied. Therefore, our study assessed the impacts of MPs on soil ecosystems by characterizing their toxic effects on earthworms (Eisenia fetida). Here, we exposed earthworms to two representative plastics within soil environments: polyvinyl chloride (PVC) and low-density polyethylene (LDPE). Given the known link between MPs and oxidative stress, we next quantified oxidative stress markers and mitochondrial function to assess the effects of MPs on the redox metabolism of earthworms. Mitochondria are crucial metabolic organelles that generate reactive oxygen species via uncontrolled ATP production. Our findings demonstrated that MPs exert different effects depending on their type. Neither the PVC-exposed groups nor the LDPE-exposed groups exhibited changes in oxidative stress, as worked by the action of superoxide dismutase (SOD) and glutathione (GSH). While treatment of the two types of MP did not significantly affect the amount of reactive oxygen species/reactive nitrogen species (ROS/RNS) generated, PVC exhibited a more pronounced effect on antioxidant system compared to LDPE. However, mitochondrial function was markedly decreased in the group exposed to high LDPE concentrations, suggesting that the examined LDPE concentrations were too low to activate compensatory mechanisms. Collectively, our findings demonstrated that exposure of MPs not only influences the antioxidant defense mechanisms of earthworms but also alters their mitochondrial function depending on their types.
Collapse
Affiliation(s)
- Songhee Lee
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jisun Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| | - Sooim Shin
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
23
|
Joof AN, Ren F, Zhou Y, Wang M, Li J, Tan Y. Targeting Mitochondria: Influence of Metabolites on Mitochondrial Heterogeneity. Cell Biochem Funct 2024; 42:e4131. [PMID: 39380166 DOI: 10.1002/cbf.4131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria are vital organelles that provide energy for the metabolic processes of cells. These include regulating cellular metabolism, autophagy, apoptosis, calcium ions, and signaling processes. Despite their varying functions, mitochondria are considered semi-independent organelles that possess their own genome, known as mtDNA, which encodes 13 proteins crucial for oxidative phosphorylation. However, their diversity reflects an organism's adaptation to physiological conditions and plays a complex function in cellular metabolism. Mitochondrial heterogeneity exists at the single-cell and tissue levels, impacting cell shape, size, membrane potential, and function. This heterogeneity can contribute to the progression of diseases such as neurodegenerative diseases, metabolic diseases, and cancer. Mitochondrial dynamics enhance the stability of cells and sufficient energy requirement, but these activities are not universal and can lead to uneven mitochondria, resulting in heterogeneity. Factors such as genetics, environmental compounds, and signaling pathways are found to affect these cellular processes and heterogeneity. Additionally, the varying roles of metabolites such as NADH and ATP affect glycolysis's speed and efficiency. An imbalance in metabolites can impair ATP production and redox potential in the mitochondria. Therefore, this review will explore the influence of metabolites in shaping mitochondrial morphology, how these changes contribute to age-related diseases and the therapeutic targets for regulating mitochondrial heterogeneity.
Collapse
Affiliation(s)
- Amie N Joof
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Fangyuan Ren
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, China
| | - Yan Zhou
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengyu Wang
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Jiani Li
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| |
Collapse
|
24
|
Guo J, Huang M, Hou S, Yuan J, Chang X, Gao S, Zhang Z, Wu Z, Li J. Therapeutic Potential of Terpenoids in Cancer Treatment: Targeting Mitochondrial Pathways. Cancer Rep (Hoboken) 2024; 7:e70006. [PMID: 39234662 PMCID: PMC11375335 DOI: 10.1002/cnr2.70006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND In recent decades, natural compounds have been considered a significant source of new antitumor medicines due to their unique advantages. Several in vitro and in vivo studies have focused on the effect of terpenoids on apoptosis mediated by mitochondria in malignant cells. RECENT FINDINGS In this review article, we focused on six extensively studied terpenoids, including sesquiterpenes (dihydroartemisinin and parthenolide), diterpenes (oridonin and triptolide), and triterpenes (betulinic acid and oleanolic acid), and their efficacy in targeting mitochondria to induce cell death. Terpenoid-induced mitochondria-related cell death includes apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and necrosis caused by mitochondrial permeability transition. Apoptosis and autophagy interact in meaningful ways. In addition, in view of several disadvantages of terpenoids, such as low stability and bioavailability, advances in research on combination chemotherapy and chemical modification were surveyed. CONCLUSION This article deepens our understanding of the association between terpenoids and mitochondrial cell death, presenting a hypothetical basis for the use of terpenoids in anticancer management.
Collapse
Affiliation(s)
- Jianxin Guo
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Hou
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianfeng Yuan
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyue Chang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhenhan Zhang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
25
|
Zhong G, Wang M, Sun B, Ma F, Yu W, Hu L, Liao J, Tang Z. Mitochondrial miR-12294-5p-Regulated Copper Exposure-Caused Mitochondrial-Dependent Ferroptosis by Targeted Inhibition of CISD1 in Chicken Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15948-15958. [PMID: 38965774 DOI: 10.1021/acs.jafc.4c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Copper (Cu) is a common trace element additive in animal and human foods, and excessive intake of Cu has been shown to cause hepatotoxicity, but the underlying mechanism remains unclear. Our previous research found that Cu exposure dramatically upregulated mitochondrial miR-12294-5p expression and confirmed its targeted inhibition of CISD1 expression in chicken hepatocytes. Thus, we aimed to explore the potential role of mitomiR-12294-5p/CISD1 axis in Cu exposure-resulted hepatotoxicity. Here, we observed that Cu exposure resulted in Cu accumulation and pathological injury in chicken livers. Moreover, we found that Cu exposure caused mitochondrial-dependent ferroptosis in chicken hepatocytes, which were prominent on the increased mitochondrial Fe2+ and mitochondrial lipid peroxidation, inhibited levels of CISD1, GPX4, DHODH, and IDH2, and also enhanced level of PTGS2. Notably, we identified that inhibition of mitomiR-2954 level effectively mitigated Cu-exposure-resulted mitochondrial Fe2+ accumulation and mitochondrial lipid peroxidation and prevented the development of mitochondrial-dependent ferroptosis. However, increasing the mitomiR-12294-5p expression considerably aggravated the influence of Cu on these indicators. Meanwhile, the overexpression of CISD1 effectively alleviated Cu-caused mitochondrial-dependent ferroptosis, while silent CISD1 eliminated the therapeutic role of mitomiR-12294-5p inhibitor. Overall, our findings indicated that mitomiR-12294-5p/CISD1 axis played a critical function in Cu-caused hepatotoxicity in chickens by regulating mitochondrial-dependent ferroptosis.
Collapse
Affiliation(s)
- Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - MengRan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bingxia Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Feiyang Ma
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Yang M, Wei X, Yi X, Jiang DS. Mitophagy-related regulated cell death: molecular mechanisms and disease implications. Cell Death Dis 2024; 15:505. [PMID: 39013891 PMCID: PMC11252137 DOI: 10.1038/s41419-024-06804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024]
Abstract
During oxidative phosphorylation, mitochondria continuously produce reactive oxygen species (ROS), and untimely ROS clearance can subject mitochondria to oxidative stress, ultimately resulting in mitochondrial damage. Mitophagy is essential for maintaining cellular mitochondrial quality control and homeostasis, with activation involving both ubiquitin-dependent and ubiquitin-independent pathways. Over the past decade, numerous studies have indicated that different forms of regulated cell death (RCD) are connected with mitophagy. These diverse forms of RCD have been shown to be regulated by mitophagy and are implicated in the pathogenesis of a variety of diseases, such as tumors, degenerative diseases, and ischemia‒reperfusion injury (IRI). Importantly, targeting mitophagy to regulate RCD has shown excellent therapeutic potential in preclinical trials, and is expected to be an effective strategy for the treatment of related diseases. Here, we present a summary of the role of mitophagy in different forms of RCD, with a focus on potential molecular mechanisms by which mitophagy regulates RCD. We also discuss the implications of mitophagy-related RCD in the context of various diseases.
Collapse
Affiliation(s)
- Molin Yang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Pei H, Qu J, Chen J, Zhao G, Lu Z. S100A9 as a Key Myocardial Injury Factor Interacting with ATP5 Exacerbates Mitochondrial Dysfunction and Oxidative Stress in Sepsis-Induced Cardiomyopathy. J Inflamm Res 2024; 17:4483-4503. [PMID: 39006491 PMCID: PMC11246037 DOI: 10.2147/jir.s457340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Sepsis-induced cardiomyopathy (SICM) is a prevalent cardiac dysfunction caused by sepsis. Mitochondrial dysfunction is a crucial pathogenic factor associated with adverse cardiovascular adverse events; however, research on SICM remains insufficient. Methods To investigate the factors contributing to the pathological progression of SICM, we performed a comprehensive analysis of transcriptomic data from the GEO database using bioinformatics and machine learning techniques. CRISPR-Cas9 S100A9 knockout mice and primary cardiomyocytes were exposed to lipopolysaccharide to simulate SICM. Transcriptome analysis and mass spectrometry of primary cardiomyocytes were used to determine the potential pathogenic mechanisms of S100A9. The mitochondrial ultrastructure and mitochondrial membrane potential (MMP) were detected using transmission electron microscopy and flow cytometry, respectively. Pink1/Parkin and Drp1 proteins were detected using Western blotting to evaluate mitochondrial autophagy and division. The mtDNA and mRNA levels of mitochondrial transcription factors and synthases were evaluated using real-time polymerase chain reaction. Results Bioinformatics analysis identified 12 common differentially expressed genes, including SERPINA3N, LCN2, MS4A6D, LRG1, OSMR, SOCS3, FCGR2b, S100A9, S100A8, CASP4, ABCA8A, and NFKBIZ. Significant S100A9 upregulation was closely associated with myocardial injury exacerbation and cardiac function deterioration. GSEA revealed that myocardial contractile function, oxidative stress, and mitochondrial function were significantly affected by S100A9. Knocking out S100A9 alleviates the inflammatory response and mitochondrial dysfunction. The interaction of S100A9 with ATP5 enhanced mitochondrial division and autophagy, inhibited MMP and ATP synthesis, and induced oxidative stress, which are related to the Nlrp3-Nfkb-Caspase1 and Drp1-Pink1-Parkin signaling pathways. The expression of mitochondrial transcription factors (TFAM and TFBM) and ATP synthetases (ATP6 and ATP8, as well as COX1, COX2, and COX3) was further suppressed by S100A9 in SICM. Targeted S100A9 inhibition by paquinimod partially reversed myocardial mitochondrial dysfunction and oxidative stress. Conclusion The interaction of S100A9 with ATP5 exacerbates myocardial damage in sepsis by inducing mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Hui Pei
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jie Qu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jianming Chen
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Guangju Zhao
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - ZhongQiu Lu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, People’s Republic of China
| |
Collapse
|
28
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15:1428920. [PMID: 39015566 PMCID: PMC11249567 DOI: 10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
Affiliation(s)
- Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Chang Lu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Narasimha M. Beeraka
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, India
| | - Sergey Efetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail Enikeev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, India
| | - Mingze He
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zhi Li
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
29
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15. [DOI: https:/doi.org/10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
|
30
|
Chen KQ, Wang SZ, Lei HB, Liu X. Mini-review: research and progress of oxeiptosis in diseases. Front Cell Dev Biol 2024; 12:1428250. [PMID: 38966429 PMCID: PMC11222317 DOI: 10.3389/fcell.2024.1428250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Oxeiptosis is a novel cell death pathway that was introduced in 2018. As a form of regulated cell death, it operates independently of caspases and is induced by ROS. Distinguished from other cell death pathways such as apoptosis, necroptosis, pyroptosis, and ferroptosis, oxeiptosis features unique damage causes pivotal genes, and signaling pathways (KEAP1/PGAM5/AIFM1). Emerging studies indicate that oxeiptosis plays a significant role in the progression of various diseases and its regulation could serve as a promising therapeutic target. However, the precise molecular mechanisms underlying oxeiptosis remain to be fully elucidated. In this mini-review, we systematically summarize the latest developments in oxeiptosis-related diseases while detailing the molecular mechanisms and regulatory networks of oxeiptosis. These insights offer a foundation for a deeper understanding of oxeiptosis.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, China
| | - Hai-Bo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| |
Collapse
|
31
|
Othman R, Aggour A, Elmorsy E, Fawzy MS. Nigella sativa, active principle thymoquinone, alleviates palmitate-induced cytotoxicity, inflammation and bioenergetic disruptions in macrophages: An invitro study model. Toxicon 2024; 244:107754. [PMID: 38761922 DOI: 10.1016/j.toxicon.2024.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Thymoquinone (TQ) is one of the main phytochemical bioactive ingredients in Nigella sativa, with reported immunity-boosting properties. The current study evaluated the anti-inflammatory effect of TQ against inflammation brought on by free fatty acid Palmitate (PA) using macrophages raw 264.7 cell line. Data revealed that TQ significantly improved the viability of basal and PA stimulated Macrophages at concentrations of 50 and 100 μg/mL. Also, TQ significantly reduced nitric oxide and triglyceride levels in PA-stimulated macrophages at concentrations of 50 and 100 μg/mL. The pro-inflammatory cytokines studies revealed that PA significantly increased the release of the cytokines TNF-α, MHGB-1, IL-1β, and IL-6. TQ at concentrations 25, 50, and 100 μg/ml significantly decreases the release of the studied cytokines in PA-stimulated macrophages to variable extents with parallel inhibition to their corresponding gene expression. Bioenergetic assays showed that PA significantly decreased cellular ATP, mitochondrial complexes I and III activities and mitochondrial membrane potential with a subsequent significant increase in lactate production. At the same time, TQ can alleviate the effect of PA on macrophages' bioenergetics parameters to variable extent based on TQ concentration. To conclude, TQ could mitigate palmitate-induced inflammation and cytotoxicity in macrophages by improving macrophage viability and controlling cytokine release with improved PA-induced bioenergetics disruption.
Collapse
Affiliation(s)
- Rashad Othman
- Pathology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Amal Aggour
- Regional laboratory, Northern Border Health cluster, Arar, Saudi Arabia
| | - Ekramy Elmorsy
- Pathology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia; Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia; Unit of Medical Research and Postgraduate Studies, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia.
| |
Collapse
|
32
|
Qiao S, Kang Y, Tan X, Zhou X, Zhang C, Lai S, Liu J, Shao L. Nanomaterials-induced programmed cell death: Focus on mitochondria. Toxicology 2024; 504:153803. [PMID: 38616010 DOI: 10.1016/j.tox.2024.153803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Nanomaterials are widely utilized in several domains, such as everyday life, societal manufacturing, and biomedical applications, which expand the potential for nanomaterials to penetrate biological barriers and interact with cells. Multiple studies have concentrated on the particular or improper utilization of nanomaterials, resulting in cellular death. The primary mode of cell death caused by nanotoxicity is programmable cell death, which includes apoptosis, ferroptosis, necroptosis, and pyroptosis. Based on our prior publications and latest research, mitochondria have a vital function in facilitating programmed cell death caused by nanomaterials, as well as initiating or transmitting death signal pathways associated with it. Therefore, this review takes mitochondria as the focal point to investigate the internal molecular mechanism of nanomaterial-induced programmed cell death, with the aim of identifying potential targets for prevention and treatment in related studies.
Collapse
Affiliation(s)
- Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xinru Zhou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Can Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shulin Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
33
|
Zhou QY, Ren C, Li JY, Wang L, Duan Y, Yao RQ, Tian YP, Yao YM. The crosstalk between mitochondrial quality control and metal-dependent cell death. Cell Death Dis 2024; 15:299. [PMID: 38678018 PMCID: PMC11055915 DOI: 10.1038/s41419-024-06691-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Mitochondria are the centers of energy and material metabolism, and they also serve as the storage and dispatch hubs of metal ions. Damage to mitochondrial structure and function can cause abnormal levels and distribution of metal ions, leading to cell dysfunction and even death. For a long time, mitochondrial quality control pathways such as mitochondrial dynamics and mitophagy have been considered to inhibit metal-induced cell death. However, with the discovery of new metal-dependent cell death including ferroptosis and cuproptosis, increasing evidence shows that there is a complex relationship between mitochondrial quality control and metal-dependent cell death. This article reviews the latest research results and mechanisms of crosstalk between mitochondrial quality control and metal-dependent cell death in recent years, as well as their involvement in neurodegenerative diseases, tumors and other diseases, in order to provide new ideas for the research and treatment of related diseases.
Collapse
Affiliation(s)
- Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Chao Ren
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing-Yan Li
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou, 423000, China
| | - Ren-Qi Yao
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
- Medical Innovation Research Division, Translational Medicine Research Center and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Ying-Ping Tian
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Yong-Ming Yao
- Medical Innovation Research Division, Translational Medicine Research Center and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
34
|
Feng F, He S, Li X, He J, Luo L. Mitochondria-mediated Ferroptosis in Diseases Therapy: From Molecular Mechanisms to Implications. Aging Dis 2024; 15:714-738. [PMID: 37548939 PMCID: PMC10917537 DOI: 10.14336/ad.2023.0717] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Ferroptosis, a type of cell death involving iron and lipid peroxidation, has been found to be closely associated with the development of many diseases. Mitochondria are vital components of eukaryotic cells, serving important functions in energy production, cellular metabolism, and apoptosis regulation. Presently, the precise relationship between mitochondria and ferroptosis remains unclear. In this study, we aim to systematically elucidate the mechanisms via which mitochondria regulate ferroptosis from multiple perspectives to provide novel insights into mitochondrial functions in ferroptosis. Additionally, we present a comprehensive overview of how mitochondria contribute to ferroptosis in different conditions, including cancer, cardiovascular disease, inflammatory disease, mitochondrial DNA depletion syndrome, and novel coronavirus pneumonia. Gaining a comprehensive understanding of the involvement of mitochondria in ferroptosis could lead to more effective approaches for both basic cell biology studies and medical treatments.
Collapse
Affiliation(s)
- Fuhai Feng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, China.
| | - Jiake He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
35
|
Shahlaei M, Asl SM, Derakhshani A, Kurek L, Karges J, Macgregor R, Saeidifar M, Kostova I, Saboury AA. Platinum-based drugs in cancer treatment: Expanding horizons and overcoming resistance. J Mol Struct 2024; 1301:137366. [DOI: 10.1016/j.molstruc.2023.137366] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
36
|
Zhou X, Hong Y, Chen J, Yu Y, Wang S, Wei Y, Long C, Shen L, Wu S, Wei G. The necroptosis-mediated imbalance of mitochondrial dynamics is involved in DEHP-induced toxicity to immature testes via the PGAM5-DRP1 interaction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123585. [PMID: 38367692 DOI: 10.1016/j.envpol.2024.123585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/27/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer that has been shown to impair male reproduction, but the potential mechanism underlying testicular injury caused by DEHP remains unclear. In vivo, rats were gavaged consecutively from postnatal day (PND) 21 to PND 31 with 0, 250, or 500 mg/kg DEHP for 10 days, and impaired mitochondria and increased necroptosis were observed in immature testes. In vitro, the GC-1 and GC-2 cell lines were exposed to monoethylhexyl phthalate (MEHP) at 100, 200 and 400 μM for 24 h, and this exposure induced oxidative stress damage, necroptosis and mitochondrial injury. Necroptosis and mitochondrial fission were inhibited by the reactive oxygen species (ROS) inhibitor acetylcysteine, and the imbalanced mitochondrial dynamics were rescued by the RIPK1 inhibitor necrostatin-1. Colocalization and co-IP analyses confirmed an interaction between dynamin-related protein 1 (DRP1) and phosphoglycerate mutase 5 (PGAM5), indicating that PGAM5 dephosphorylates DRP1 at serine 637 to induce mitochondrial fragmentation and thereby induces germ cell damage. Drug prediction with Connectivity Map (cMap) identified sulforaphane as a therapeutic drug. In summary, our findings indicate that DEHP triggers necroptosis and mitochondrial injury via a ROS storm in immature testes and that the PGAM5-DRP1 interaction is involved in this process.
Collapse
Affiliation(s)
- Xiazhu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Jing Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yihang Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China
| | - Siyuan Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunlan Long
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| |
Collapse
|
37
|
Xiao Liang K. Interplay of mitochondria and diabetes: Unveiling novel therapeutic strategies. Mitochondrion 2024; 75:101850. [PMID: 38331015 DOI: 10.1016/j.mito.2024.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The interplay between mitochondrial function and diabetes has gained significant attention due to its crucial role in the pathogenesis and progression of the disease. Mitochondria, known as the cellular powerhouses, are essential for glucose metabolism. Dysfunction of these organelles has been implicated in the development of insulin resistance and beta-cell failure, both prominent features of diabetes. This comprehensive review explores the intricate mechanisms involved, including the generation of reactive oxygen species and the impact of mitochondrial DNA (mtDNA) mutations. Moreover, the review delves into emerging therapeutic strategies that specifically target mitochondria, such as mitochondria-targeted antioxidants, agents promoting mitochondrial biogenesis, and compounds modulating mitochondrial dynamics. The potential of these novel approaches is critically evaluated, taking into account their benefits and limitations, to provide a well-rounded perspective. Ultimately, this review emphasizes the importance of advancing our understanding of mitochondrial biology to revolutionize the treatment of diabetes.
Collapse
|
38
|
Wu Y, Li M, Ying H, Gu Y, Zhu Y, Gu Y, Huang L. Mitochondrial quality control alterations and placenta-related disorders. Front Physiol 2024; 15:1344951. [PMID: 38390447 PMCID: PMC10883312 DOI: 10.3389/fphys.2024.1344951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Mitochondria are ubiquitous in eukaryotic cells. Normal maintenance of function is the premise and basis for various physiological activities. Mitochondrial dysfunction is commonly observed in a wide range of pathological conditions, such as neurodegenerative, metabolic, cardiovascular, and various diseases related to foetal growth and development. The placenta is a highly energy-dependent organ that acts as an intermediary between the mother and foetus and functions to maintain foetal growth and development. Recent studies have demonstrated that mitochondrial dysfunction is associated with placental disorders. Defects in mitochondrial quality control mechanisms may lead to preeclampsia and foetal growth restriction. In this review, we address the quality control mechanisms of mitochondria and the relevant pathologies of mitochondrial dysfunction in placenta-related diseases, such as preeclampsia and foetal growth restriction. This review also investigates the relation between mitochondrial dysfunction and placental disorders.
Collapse
Affiliation(s)
- Yamei Wu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Meng Li
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Gu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Yunlong Zhu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Yanfang Gu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Lu Huang
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| |
Collapse
|
39
|
Liang J, Wan Z, Qian C, Rasheed M, Cao C, Sun J, Wang X, Chen Z, Deng Y. The pyroptosis mediated biomarker pattern: an emerging diagnostic approach for Parkinson's disease. Cell Mol Biol Lett 2024; 29:7. [PMID: 38172670 PMCID: PMC10765853 DOI: 10.1186/s11658-023-00516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) affects 1% of people over 60, and long-term levodopa treatment can cause side effects. Early diagnosis is of great significance in slowing down the pathological process of PD. Multiple pieces of evidence showed that non-coding RNAs (ncRNAs) could participate in the progression of PD pathology. Pyroptosis is known to be regulated by ncRNAs as a key pathological feature of PD. Therefore, evaluating ncRNAs and pyroptosis-related proteins in serum could be worthy biomarkers for early diagnosis of PD. METHODS NcRNAs and pyroptosis/inflammation mRNA levels were measured with reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Luciferase assays were performed to confirm GSDME as a target of miR-675-5p and HMGB1 as a target of miR-1247-5p. In the serum of healthy controls (n = 106) and PD patients (n = 104), RT-qPCR was utilized to assess miR-675-5p, miR-1247-5p, and two related ncRNAs (circSLC8A1and lncH19) levels. The enzyme-linked immunosorbent assay measured serum levels of pyroptosis-related proteins in controls (n = 54) and PD patients (n = 70). RESULTS Our data demonstrated that miR-675-5p and miR-1247-5p significantly changed in PD neuron and animal models. Overexpressed miR-675-5p or downregulated miR-1247-5p could regulate pyroptosis and inflammation in PD neuron models. Using the random forest algorithm, we constructed a classifier based on PD neuron-pyroptosis pathology (four ncRNAs and six proteins) having better predictive power than single biomarkers (AUC = 92%). Additionally, we verified the performance of the classifier in early-stage PD patients (AUC ≥ 88%). CONCLUSION Serum pyroptosis-related ncRNAs and proteins could serve as reliable, inexpensive, and non-invasive diagnostic biomarkers for PD. LIMITATIONS All participants were from the same region. Additionally, longitudinal studies in the aged population are required to explore the practical application value of the classifier.
Collapse
Affiliation(s)
- Junhan Liang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhirong Wan
- Department of Neurology, Aerospace Center Hospital, Beijing, 100049, People's Republic of China
| | - Cheng Qian
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Changling Cao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Jingyan Sun
- School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xuezhe Wang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
40
|
de Morais JMB, Cruz EMS, Concato VM, de Souza MC, Santos YM, Quadreli DH, Inoue FSR, Ferreira FB, Fernandes GSA, Bidóia DL, Machado RRB, Chuffa LGA, Pavanelli WR, Seiva FRF. Unraveling the impact of melatonin treatment: Oxidative stress, metabolic responses, and morphological changes in HuH7.5 hepatocellular carcinoma cells. Pathol Res Pract 2024; 253:155056. [PMID: 38183817 DOI: 10.1016/j.prp.2023.155056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
In addition to its highly aggressive nature and late diagnosis, hepatocellular carcinoma (HCC) does not respond effectively to available chemotherapeutic agents. The search is on for an ideal and effective compound with low cost and minimal side effects that can be used as an adjunct to chemotherapeutic regimens. One of the mechanisms involved in the pathology of HCC is the oxidative stress, which plays a critical role in tumor survival and dissemination. Our group has already demonstrated the antitumor potential of melatonin against HuH 7.5 cells. In the present study, we focused on the effects of melatonin on oxidative stress parameters and their consequences on cell metabolism. HuH 7.5 cells were treated with 2 and 4 mM of melatonin for 24 and 48 h. Oxidative stress biomarkers, antioxidant enzyme, mitochondrial membrane potential, formation of lipid bodies and autophagic vacuoles, cell cycle progression, cell death rate and ultrastructural cell alterations were evaluated. The treatment with melatonin increased oxidative stress biomarkers and reduced antioxidant enzyme activities of HuH 7.5 cells. Additionally, melatonin treatment damaged the mitochondrial membrane and increased lipid bodies and autophagic vacuole formation. Melatonin triggered cell cycle arrest and induced cell death by apoptosis. Our results indicate that the treatment of HuH 7.5 cells with melatonin impaired antioxidant defense systems, inhibited cell cycle progression, and caused metabolic stress, culminating in tumor cell death.
Collapse
Affiliation(s)
- Juliana M B de Morais
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Ellen M S Cruz
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Virgínia M Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Milena C de Souza
- North of Paraná State University (UENP), Biological Science Center, Bandeirantes, PR, Brazil
| | - Yasmin M Santos
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Débora H Quadreli
- General Biology Department, Biological Sciences Center, State University of Londrina, Londrina (UEL), PR, Brazil
| | - Fabrício S R Inoue
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Francielle B Ferreira
- North of Paraná State University (UENP), Biological Science Center, Bandeirantes, PR, Brazil
| | - Glaura S A Fernandes
- General Biology Department, Biological Sciences Center, State University of Londrina, Londrina (UEL), PR, Brazil
| | | | | | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Bioscience, Botucatu, SP, Brazil
| | - Wander R Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Fábio R F Seiva
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Bioscience, Botucatu, SP, Brazil.
| |
Collapse
|
41
|
Khan MS, Jaswanth Gowda BH, Almalki WH, Singh T, Sahebkar A, Kesharwani P. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment. Drug Discov Today 2024; 29:103819. [PMID: 37940034 DOI: 10.1016/j.drudis.2023.103819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Mitochondria are the primary organelles of cells involved in various physiochemical and biochemical processes. Owing to their crucial role in cellular metabolism, mitochondria are favored therapeutic targets for the treatment and prevention of cancers. Recently, there has been growing interest in the use of mitochondria-specific functional nanoparticles for targeted delivery of therapeutic agents to these organelles. Among several nanosystems, liposomes have garnered considerable attention owing to their exceptional drug delivery capabilities, biocompatibility, biodegradability, ease of manufacturing and established regulatory guidelines for market approval. In this context, the present review provides a brief insight into the association between mitochondria and tumor formation and advantages of mitochondrial targeting in cancer therapy. Furthermore, it discusses mitochondria-targeting functional liposomes for the treatment of various cancers, such as breast, lung, colon, among others.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, 24381 Makkah, Saudi Arabia
| | - Tanuja Singh
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
42
|
Gholami S, Badalzadeh R, Alihemmati A. Alpha-lipoic acid enhances ischemic postconditioning-mediated improvement of myocardial infarction and apoptosis in diabetic rats with ischemia/reperfusion injury. Can J Physiol Pharmacol 2023; 101:682-691. [PMID: 37523770 DOI: 10.1139/cjpp-2023-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
This work evaluated the combined effects of alpha-lipoic acid (ALA) and ischemic postconditioning (Post) on myocardial infarction and cell death in rats with chronic type-II diabetes following ischemia/reperfusion injury. The rats received a high-fat diet and were given one intraperitoneal injection of 35 mg/kg streptozotocin to induce chronic diabetes. They were then pretreated with ALA (100 mg/kg/day, orally) for 5 weeks before undergoing ischemia/reperfusion (I/R) insult. The hearts experienced 35 min regional ischemia through ligating the left anterior descending coronary artery, followed by 60 min reperfusion. The Post protocol involved 6 cycles of a 10/10 s algorithm, applied during the early stage of reperfusion. The use of Post alone did not significantly alter lactate dehydrogenase and infarct size levels, while ALA showed positive effects. Similar findings were observed for apoptotic changes with single treatments. However, the concurrent administration of ALA and Post significantly reduced the protein expressions of Bax, Bax/Bcl2, and cleaved caspase-3 while increasing Bcl2 expression. Additionally, the histopathological findings of the combined therapy were superior to those of single treatments. The concomitant use of ALA and Post effectively inhibited apoptosis, leading to cardiac recovery after I/R injury in diabetic conditions. This strategy could improve outcomes for preserving diabetic hearts following I/R insults.
Collapse
Affiliation(s)
- Sanaz Gholami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
- Department of PhysiologyFaculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Alireza Alihemmati
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
- Department of Anatomical SciencesFaculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| |
Collapse
|
43
|
Shen J, San W, Zheng Y, Zhang S, Cao D, Chen Y, Meng G. Different types of cell death in diabetic endothelial dysfunction. Biomed Pharmacother 2023; 168:115802. [PMID: 37918258 DOI: 10.1016/j.biopha.2023.115802] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease caused by disorders of insulin secretion and utilization. Long-term hyperglycemia, insulin resistance, and disorders of glucose and lipid metabolism cause vascular endothelial cell damage. Endothelial dysfunction is a key feature of diabetic vascular complications such as diabetic nephropathy, retinopathy, neuropathy, and atherosclerosis. Importantly, cell death is thought to be a key factor contributing to vascular endothelial injury. Morphologically, cell death can be divided into three forms: type I apoptosis, type II autophagy, and type III necrosis. According to the difference in function, cell death can be divided into accidental cell death (ACD) and regulated cell death (RCD). RCD is a controlled process involving numerous proteins and precise signaling cascades. Multiple subroutines covered by RCD may be involved in diabetic endothelial dysfunction, including apoptosis, autophagy, necroptosis, pyroptosis, entosis, ferroptosis, ferroautophagy, parthanatos, netotic cell death, lysosome-dependent cell death, alkaliptosis, oxeiptosis, cuproptosis, and PANoptosis. This article briefly reviews the mechanism and significance of cell death associated with diabetic endothelial dysfunction, which will help deepen the understanding of diabetic endothelial cell death and provide new therapeutic ideas.
Collapse
Affiliation(s)
- Jieru Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Shuping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Danyi Cao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
44
|
Zhao L, Hao Y, Tang S, Han X, Li R, Zhou X. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury. Front Cell Dev Biol 2023; 11:1276217. [PMID: 38054182 PMCID: PMC10694365 DOI: 10.3389/fcell.2023.1276217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Acute kidney injury (AKI) induces significant energy metabolic reprogramming in renal tubular epithelial cells (TECs), thereby altering lipid, glucose, and amino acid metabolism. The changes in lipid metabolism encompass not only the downregulation of fatty acid oxidation (FAO) but also changes in cell membrane lipids and triglycerides metabolism. Regarding glucose metabolism, AKI leads to increased glycolysis, activation of the pentose phosphate pathway (PPP), inhibition of gluconeogenesis, and upregulation of the polyol pathway. Research indicates that inhibiting glycolysis, promoting the PPP, and blocking the polyol pathway exhibit a protective effect on AKI-affected kidneys. Additionally, changes in amino acid metabolism, including branched-chain amino acids, glutamine, arginine, and tryptophan, play an important role in AKI progression. These metabolic changes are closely related to the programmed cell death of renal TECs, involving autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. Notably, abnormal intracellular lipid accumulation can impede autophagic clearance, further exacerbating lipid accumulation and compromising autophagic function, forming a vicious cycle. Recent studies have demonstrated the potential of ameliorating AKI-induced kidney damage through calorie and dietary restriction. Consequently, modifying the energy metabolism of renal TECs and dietary patterns may be an effective strategy for AKI treatment.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
45
|
Boulos JC, Omer EA, Rigano D, Formisano C, Chatterjee M, Leich E, Klauck SM, Shan LT, Efferth T. Cynaropicrin disrupts tubulin and c-Myc-related signaling and induces parthanatos-type cell death in multiple myeloma. Acta Pharmacol Sin 2023; 44:2265-2281. [PMID: 37344563 PMCID: PMC10618500 DOI: 10.1038/s41401-023-01117-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/28/2023] [Indexed: 06/23/2023]
Abstract
The majority of blood malignancies is incurable and has unforeseeable remitting-relapsing paths in response to different treatments. Cynaropicrin, a natural sesquiterpene lactone from the edible parts of the artichoke plant, has gained increased attention as a chemotherapeutic agent. In this study, we investigated the effects of cynaropicrin against multiple myeloma (MM) cells in vitro and assessed its in vivo effectiveness in a xenograft tumor zebrafish model. We showed that cynaropicrin exerted potent cytotoxicity against a panel of nine MM cell lines and two leukemia cell lines with AMO1 being the most sensitive cell line (IC50 = 1.8 ± 0.3 µM). Cynaropicrin (0.8, 1.9, 3.6 µM) dose-dependently reduced c-Myc expression and transcriptional activity in AMO1 cells that was associated with significant downregulation of STAT3, AKT, and ERK1/2. Cell cycle analysis showed that cynaropicrin treatment arrested AMO1 cells in the G2M phase along with an increase in the sub-G0G1 phase after 24 h. With prolonged treatment times, cells accumulated more in the sub-G0G1 phase, implying cell death. Using confocal microscopy, we revealed that cynaropicrin disrupted the microtubule network in U2OS cells stably expressing α-tubulin-GFP. Furthermore, we revealed that cynaropicrin promoted DNA damage in AMO1 cells leading to PAR polymer production by PARP1 hyperactivation, resulting in AIF translocation from the mitochondria to the nucleus and subsequently to a novel form of cell death, parthanatos. Finally, we demonstrated that cynaropicrin (5, 10 µM) significantly reduced tumor growth in a T-cell acute lymphoblastic leukemia (T-ALL) xenograft zebrafish model. Taken together, these results demonstrate that cynaropicrin causes potent inhibition of hematopoietic tumor cells in vitro and in vivo.
Collapse
Affiliation(s)
- Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Daniela Rigano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Carmen Formisano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Manik Chatterjee
- University Hospital Würzburg, Translational Oncology, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Ellen Leich
- Julius Maximilian University, Institute of Pathology, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Le-Tian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
46
|
Białczyk A, Wełniak A, Kamińska B, Czajkowski R. Oxidative Stress and Potential Antioxidant Therapies in Vitiligo: A Narrative Review. Mol Diagn Ther 2023; 27:723-739. [PMID: 37737953 PMCID: PMC10590312 DOI: 10.1007/s40291-023-00672-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
Vitiligo is a chronic skin disorder characterised by the loss of melanocytes and subsequent skin depigmentation. Although many theories have been proposed in the literature, none alone explains the pathogenesis of vitiligo. Oxidative stress has been identified as a potential factor in the pathogenesis of vitiligo. A growing body of evidence suggests that antioxidant therapies may offer a promising approach to managing this condition. This review summarises the potential mechanisms of oxidative stress and the types of melanocyte death in vitiligo. We also provide a brief overview of the most commonly studied antioxidants. Melanocytes in vitiligo are thought to be damaged by an accumulation of reactive oxygen species to destroy the structural and functional integrity of their DNA, lipids, and proteins. Various causes, including exogenous and endogenous stress factors, an imbalance between prooxidants and antioxidants, disruption of antioxidant pathways, and gene polymorphisms, lead to the overproduction of reactive oxygen species. Although necroptosis, pyroptosis, ferroptosis, and oxeiptosis are newer types of cell death that may contribute to the pathophysiology of vitiligo, apoptosis remains the most studied cell death mechanism in vitiligo. According to studies, vitamin E helps to treat lipid peroxidation of the skin caused by psoralen ultra-violet A treatment. In addition, Polypodium leucotomos increased the efficacy of psoralen ultra-violet A or narrow-band ultraviolet B therapy. Our review provides valuable insights into the potential role of oxidative stress in pathogenesis and antioxidant-based supporting therapies in treating vitiligo, offering a promising avenue for further research and the development of effective treatment strategies.
Collapse
Affiliation(s)
- Aleksandra Białczyk
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland.
| | - Adam Wełniak
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland
| | - Barbara Kamińska
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland
| | - Rafał Czajkowski
- Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
47
|
Heo JY, Park AH, Lee MJ, Ryu MJ, Kim YK, Jang YS, Kim SJ, Shin SY, Son HJ, Stein TD, Huh YH, Chung SK, Choi SY, Kim JM, Hwang O, Shong M, Hyeon SJ, Lee J, Ryu H, Kim D, Kweon GR. Crif1 deficiency in dopamine neurons triggers early-onset parkinsonism. Mol Psychiatry 2023; 28:4474-4484. [PMID: 37648779 DOI: 10.1038/s41380-023-02234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Mitochondrial dysfunction has been implicated in Parkinson's Disease (PD) progression; however, the mitochondrial factors underlying the development of PD symptoms remain unclear. One candidate is CR6-interacting factor1 (CRIF1), which controls translation and membrane insertion of 13 mitochondrial proteins involved in oxidative phosphorylation. Here, we found that CRIF1 mRNA and protein expression were significantly reduced in postmortem brains of elderly PD patients compared to normal controls. To evaluate the effect of Crif1 deficiency, we produced mice lacking the Crif1 gene in dopaminergic neurons (DAT-CRIF1-KO mice). From 5 weeks of age, DAT-CRIF1-KO mice began to show decreased dopamine production with progressive neuronal degeneration in the nigral area. At ~10 weeks of age, they developed PD-like behavioral deficits, including gait abnormalities, rigidity, and resting tremor. L-DOPA, a medication used to treat PD, ameliorated these defects at an early stage, although it was ineffective in older mice. Taken together, the observation that CRIF1 expression is reduced in human PD brains and deletion of CRIF1 in dopaminergic neurons leads to early-onset PD with stepwise PD progression support the conclusion that CRIF1-mediated mitochondrial function is important for the survival of dopaminergic neurons.
Collapse
Affiliation(s)
- Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ah Hyung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min Joung Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yun Seon Jang
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Soo Jeong Kim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - So Yeon Shin
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jin Son
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Yang Hoon Huh
- Electron Microscopy Research center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Sookja K Chung
- Faculty of Medicine & Dr Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Song Yi Choi
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jin Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Minho Shong
- Graduate School of Medical Science and Education, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Gi Ryang Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
48
|
Zhang M, Tong Z, Wang Y, Fu W, Meng Y, Huang J, Sun L. Relationship between ferroptosis and mitophagy in renal fibrosis: a systematic review. J Drug Target 2023; 31:858-866. [PMID: 37607069 DOI: 10.1080/1061186x.2023.2250574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Renal fibrosis, characterised by glomerulosclerosis and tubulointerstitial fibrosis, is a typical pathological alteration in the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD). However, the limited and expensive options for treating renal fibrosis place a heavy financial burden on patients and healthcare systems. Therefore, it is significant to find an effective treatment for renal fibrosis. Ferroptosis, a non-traditional form of cell death, has been found to play an important role in acute kidney injury (AKI), tumours, neurodegenerative diseases, and so on. Moreover, a growing body of research suggests that ferroptosis might be a potential target of renal fibrosis. Meanwhile, mitophagy is a type of selective autophagy that can selectively degrade damaged or dysfunctional mitochondria as a form of mitochondrial quality control, reducing the production of reactive oxygen species (ROS), the accumulation of which is the main cause of renal fibrosis. Additionally, as a receptor of mitophagy, NIX can release beclin1 to induce mitophagy, which can also bind to solute carrier family 7 member 11 (SLC7A11) to block the activity of cystine/glutamate antitransporter (system Xc-) and inhibit ferroptosis, thereby suggesting a link between mitophagy and ferroptosis. However, there have been only limited studies on the relationship among mitophagy, ferroptosis and renal fibrosis. In this paper, we review the mechanisms of mitophagy, and describe how ferroptosis and mitophagy are related to renal fibrosis in an effort to identify potential novel targets for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Ziyuan Tong
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yaqing Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Wenjing Fu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yilin Meng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Jiayi Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
49
|
Li Y, Zhou Y, Liu D, Wang Z, Qiu J, Zhang J, Chen P, Zeng G, Guo Y, Wang X, DiSanto ME, Zhang X. Glutathione Peroxidase 3 induced mitochondria-mediated apoptosis via AMPK /ERK1/2 pathway and resisted autophagy-related ferroptosis via AMPK/mTOR pathway in hyperplastic prostate. J Transl Med 2023; 21:575. [PMID: 37633909 PMCID: PMC10463608 DOI: 10.1186/s12967-023-04432-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a common disease in elderly men, mainly resulted from an imbalance between cell proliferation and death. Glutathione peroxidase 3 (GPX3) was one of the differentially expressed genes in BPH identified by transcriptome sequencing of 5 hyperplastic and 3 normal prostate specimens, which had not been elucidated in the prostate. This study aimed to ascertain the mechanism of GPX3 involved in cell proliferation, apoptosis, autophagy and ferroptosis in BPH. METHODS Human prostate tissues, GPX3 silencing and overexpression prostate cell (BPH-1 and WPMY-1) models and testosterone-induced rat BPH (T-BPH) model were utilized. The qRT-PCR, CCK8 assay, flow cytometry, Western blotting, immunofluorescence, hematoxylin and eosin, masson's trichrome, immunohistochemical staining and transmission electron microscopy analysis were performed during in vivo and in vitro experiments. RESULTS Our study indicated that GPX3 was localized both in the stroma and epithelium of prostate, and down-regulated in BPH samples. Overexpression of GPX3 inhibited AMPK and activated ERK1/2 pathway, thereby inducing mitochondria-dependent apoptosis and G0/G1 phase arrest, which could be significantly reversed by MEK1/2 inhibitor U0126 preconditioning. Moreover, overexpression of GPX3 further exerted anti-autophagy by inhibiting AMPK/m-TOR and up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4, mitochondrial GPX4 and cytoplasmic GPX4) to antagonize autophagy-related ferroptosis. Consistently, GPX3 deficiency generated opposite changes in both cell lines. Finally, T-BPH rat model was treated with GPX3 indirect agonist troglitazone (TRO) or GPX4 inhibitor RAS-selective lethal 3 (RSL3) or TRO plus RSL3. These treatments produced significant atrophy of the prostate and related molecular changes were similar to our in vitro observations. CONCLUSIONS Our novel data manifested that GPX3, which was capable of inducing apoptosis via AMPK/ERK1/2 pathway and antagonizing autophagy-related ferroptosis through AMPK/m-TOR signalling, was a promising therapeutic target for BPH in the future.
Collapse
Affiliation(s)
- Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Jizhang Qiu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Yuming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
50
|
Leventić M, Opačak-Bernardi T, Rastija V, Matić J, Pavlović Saftić D, Ban Ž, Žinić B, Glavaš-Obrovac L. The Mechanism of Anti-Tumor Activity of 6-Morpholino- and 6-Amino-9-Sulfonylpurine Derivatives on Human Leukemia Cells. Molecules 2023; 28:6136. [PMID: 37630388 PMCID: PMC10458232 DOI: 10.3390/molecules28166136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study was to explore the mechanism of antitumor effect of (E)-6-morpholino-9-(styrylsulfonyl)-9H-purine (6-Morpholino-SPD) and (E)-6-amino-9-(styrylsulfonyl)-9H-purine (6-Amino-SPD). The effects on apoptosis induction, mitochondrial potential, and accumulation of ROS in treated K562 cells were determined by flow cytometry. The RT-PCR method was used to measure the expression of Akt, CA IX, caspase 3, and cytochrome c genes, as well as selected miRNAs. Western blot analysis was used to determine the expression of Akt, cytochrome c, and caspase 3. The results demonstrate the potential of the tested derivatives as effective antitumor agents with apoptotic-inducing properties. In leukemic cells treated with 6-Amino-SPD, increased expression of caspase 3 and cytochrome c genes was observed, indicating involvement of the intrinsic mitochondrial pathway in the induction of apoptosis. Conversely, leukemic cells treated with 6-Morpholino-SPD showed reduced expression of these genes. The observed downregulation of miR-21 by 6-Morpholino-SPD may contribute to the induction of apoptosis and disruption of mitochondrial function. In addition, both derivatives exhibited increased expression of Akt and CA IX genes, suggesting activation of the Akt/HIF pathway. However, the exact mechanism and its relations to the observed overexpression of miR-210 need further investigation. The acceptable absorption and distribution properties predicted by ADMET analysis suggest favorable pharmacokinetic properties for these derivatives.
Collapse
Affiliation(s)
- Marijana Leventić
- Department of Medicinal Chemistry, Biochemistry and Laboratory Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.L.); (T.O.-B.)
| | - Teuta Opačak-Bernardi
- Department of Medicinal Chemistry, Biochemistry and Laboratory Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.L.); (T.O.-B.)
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Josipa Matić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (D.P.S.); (Ž.B.); (B.Ž.)
| | - Dijana Pavlović Saftić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (D.P.S.); (Ž.B.); (B.Ž.)
| | - Željka Ban
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (D.P.S.); (Ž.B.); (B.Ž.)
| | - Biserka Žinić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (D.P.S.); (Ž.B.); (B.Ž.)
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry and Laboratory Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.L.); (T.O.-B.)
| |
Collapse
|