1
|
Peng Y, Zhou L, Jin Y, Wu D, Chen N, Zhang C, Liu H, Li C, Ning R, Yang X, Mao Q, Liu J, Zhang P. Calcium bridges built by mitochondria-associated endoplasmic reticulum membranes: potential targets for neural repair in neurological diseases. Neural Regen Res 2025; 20:3349-3369. [PMID: 39589178 PMCID: PMC11974651 DOI: 10.4103/nrr.nrr-d-24-00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 09/29/2024] [Indexed: 11/27/2024] Open
Abstract
The exchange of information and materials between organelles plays a crucial role in regulating cellular physiological functions and metabolic levels. Mitochondria-associated endoplasmic reticulum membranes serve as physical contact channels between the endoplasmic reticulum membrane and the mitochondrial outer membrane, formed by various proteins and protein complexes. This microstructural domain mediates several specialized functions, including calcium (Ca 2+ ) signaling, autophagy, mitochondrial morphology, oxidative stress response, and apoptosis. Notably, the dysregulation of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes is a critical factor in the pathogenesis of neurological diseases. Certain proteins or protein complexes within these membranes directly or indirectly regulate the distance between the endoplasmic reticulum and mitochondria, as well as the transduction of Ca 2+ signaling. Conversely, Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes influences other mitochondria-associated endoplasmic reticulum membrane-associated functions. These functions can vary significantly across different neurological diseases-such as ischemic stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease-and their respective stages of progression. Targeted modulation of these disease-related pathways and functional proteins can enhance neurological function and promote the regeneration and repair of damaged neurons. Therefore, mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling plays a pivotal role in the pathological progression of neurological diseases and represents a significant potential therapeutic target. This review focuses on the effects of protein complexes in mitochondria-associated endoplasmic reticulum membranes and the distinct roles of mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling in neurological diseases, specifically highlighting the early protective effects and neuronal damage that can result from prolonged mitochondrial Ca 2+ overload or deficiency. This article provides a comprehensive analysis of the various mechanisms of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes in neurological diseases, contributing to the exploration of potential therapeutic targets for promoting neuroprotection and nerve repair.
Collapse
Affiliation(s)
- Yichen Peng
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Li Zhou
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Yaju Jin
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Danli Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Na Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chengcai Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Hongpeng Liu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chunlan Li
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Rong Ning
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Xichen Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Qiuyue Mao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Jiaxin Liu
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Pengyue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Zaman M, Sharma G, Almutawa W, Soule TG, Sabouny R, Joel M, Mohan A, Chute C, Joseph JT, Pfeffer G, Shutt TE. The MFN2 Q367H variant reveals a novel pathomechanism connected to mtDNA-mediated inflammation. Life Sci Alliance 2025; 8:e202402921. [PMID: 40175090 PMCID: PMC11966011 DOI: 10.26508/lsa.202402921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
Pathogenic variants in the mitochondrial protein MFN2 are typically associated with a peripheral neuropathy phenotype, but can also cause a variety of additional pathologies including myopathy. Here, we identified an uncharacterized MFN2 variant, Q367H, in a patient diagnosed with late-onset distal myopathy, but without peripheral neuropathy. Supporting the hypothesis that this variant contributes to the patient's pathology, patient fibroblasts and transdifferentiated myoblasts showed changes consistent with impairment of several MFN2 functions. We also observed mtDNA outside of the mitochondrial network that colocalized with early endosomes, and measured activation of both TLR9 and cGAS-STING inflammation pathways that sense mtDNA. Re-expressing the Q367H variant in MFN2 KO cells also induced mtDNA release, demonstrating this phenotype is a direct result of the variant. As elevated inflammation can cause myopathy, our findings linking the Q367H MFN2 variant with elevated TLR9 and cGAS-STING signalling can explain the patient's myopathy. Thus, we characterize a novel MFN2 variant in a patient with an atypical presentation that separates peripheral neuropathy and myopathy phenotypes, and establish a potential pathomechanism connecting MFN2 dysfunction to mtDNA-mediated inflammation.
Collapse
Affiliation(s)
- Mashiat Zaman
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Govinda Sharma
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Walaa Almutawa
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Tyler Gb Soule
- Department of Neuroscience, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Rasha Sabouny
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Matt Joel
- Department of Neuroscience, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Armaan Mohan
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Cole Chute
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jeffrey T Joseph
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Department of Pathology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences; and Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Alberta Children's Hospital Research Institute; University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Xu J, Ren F, Wang J, Liu J, Cui X, Hao J, Yang W, Zhang Y, Cao D, Li L, Wang H. Tubeimoside I induces mitophagy by activating the PINK1/Parkin/Mfn2 signaling pathway in acute myeloid leukemia cells. Transl Oncol 2025; 55:102355. [PMID: 40112502 PMCID: PMC11979407 DOI: 10.1016/j.tranon.2025.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Acute myeloid leukemia (AML) is the most prevalent kind of acute leukemia in adults. Despite the availability of new targeted therapies, AML remains connected with a poor prognosis and decreased rate of survival. Tubeimoside I (TBMS1), a critical compound extracted from Bolbostemma paniculatum, has demonstrated potential anticancer effects in lung and colorectal cancers. Nevertheless, the TBMS1 anticancer pathway against AML is still elusive. This study aimed to explore the potential role of TBMS1 in anti-AML and its molecular mechanism. In vitro, TBMS1 treatment suppressed AML cells proliferation, induced apoptosis, and mitochondrial damage, and elevated ROS levels. Network pharmacological analysis suggested, and subsequent studies confirmed, that TBMS1 induced mitophagy in AML cells by modulating the PINK1/Parkin/Mfnh2 signaling pathway, an effect that was effectively reversed following PINK1 knockdown. In vivo, TBMS1 treatment suppressed the proliferation of AML cells after 21 days, improved the survival rates of nude mice, and showed no evident organ toxicity. These evidences suggest that TBMS1 may have significant therapeutic potential in treating AML.
Collapse
Affiliation(s)
- Jing Xu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China
| | - Fanggang Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jinjuan Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jianbing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaohua Cui
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jianqing Hao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Wanfang Yang
- School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Yaofang Zhang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Dongmin Cao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Zhongshan 528437, China.
| | - Li Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China.
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China; School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| |
Collapse
|
4
|
Xiang Y, Li Z, He X, Chu X, Gao C, Guo J, Luan Y, Yang K, Zhang D. Puerarin relives inflammation, bone destruction and facilitates osteogenic differentiation in periodontitis by enhancing mitochondrial autophagy via activating mitochondrial Mitofusin 2. Stem Cell Res Ther 2025; 16:218. [PMID: 40312745 PMCID: PMC12044717 DOI: 10.1186/s13287-025-04355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/22/2025] [Indexed: 05/03/2025] Open
Abstract
PURPOSE Puerarin (Pue) has recently been reported to have therapeutic effects on periodontitis (PD). However, there is insufficient evidence, and the mechanism involved has not yet been revealed. This work delved to explore the exact therapeutic effects and molecular mechanism of Pue in treating PD. METHODS PD mouse (C57BL/6 N mouse) model constructed by Porphyromonas gingivalis-lipopolysaccharide (Pg-LPS) induction was treated with Pue. Therapeutic efficacy of Pue for PD was examined by a series of experiments. PD cell model was induced by treating human periodontal ligament cells with Pg-LPS. Therapeutic effects of Pue on PD cell model, along with the potential molecular mechanism, were explored by logical experiments. Rescue experiments based on in vitro and in vivo studies were implemented to validate the molecular mechanism of Pue in treating PD. RESULTS In PD mice, Pue treatment relieved inflammation and bone destruction, facilitated osteogenic differentiation and autophagy in periapical tissues. In PD cell model, Pue treatment facilitated osteogenic differentiation and mitochondrial autophagy; suppressed inflammation and mitochondrial reactive oxygen species; maintained mitochondrial membrane potential and mitochondrial kinetic homeostasis; and activated mitochondrial Mitofusin 2 (Mfn2). However, these influences of Pue on PD cell model were eliminated by CsA (mitochondrial autophagy inhibitor). The enhanced mitochondrial autophagy induced by Pue was reversed by Mfn2 silencing. Through in vivo data, Mfn2 knockdown counteracted the therapeutic effects of Pue on PD mice. CONCLUSION Pue exerted therapeutic effects on PD, possibly by enhancing mitochondrial autophagy via activating mitochondrial Mfn2. This might be a cure for PD.
Collapse
Affiliation(s)
- Yulan Xiang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Capital Medical University, Beijing, China
| | - Zelu Li
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Capital Medical University, Beijing, China
| | - Xin He
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Capital Medical University, Beijing, China
| | - Xiaoyang Chu
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunyan Gao
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Capital Medical University, Beijing, China
| | - Jiahao Guo
- Weifang Medical College, Weifang, Shandong, China
| | - Yingyi Luan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| | - Kai Yang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
- Translational Medical Center, Weifang Second People's Hospital, Shandong Second Medical University, Weifang, Shandong, China.
| | - Dongliang Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Scudese E, Marshall AG, Vue Z, Exil V, Rodriguez BI, Demirci M, Vang L, López EG, Neikirk K, Shao B, Le H, Stephens D, Hall DD, Rostami R, Rodman T, Kabugi K, Shao JQ, Mungai M, AshShareef ST, Hicsasmaz I, Manus S, Wanjalla CN, Whiteside A, Dasari R, Williams CR, Damo SM, Gaddy JA, Glancy B, Dantas EHM, Kinder A, Kadam A, Tomar D, Scartoni F, Baffi M, McReynolds MR, Phillips MA, Cooper A, Murray SA, Quintana AM, Wandira N, Ochayi OM, Ameka M, Kirabo A, Masenga SK, Harris C, Oliver A, Martin P, Gaye A, Korolkova O, Sharma V, Mobley BC, Katti P, Hinton A. 3D Mitochondrial Structure in Aging Human Skeletal Muscle: Insights Into MFN-2-Mediated Changes. Aging Cell 2025:e70054. [PMID: 40285369 DOI: 10.1111/acel.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 04/29/2025] Open
Abstract
Age-related skeletal muscle atrophy, known as sarcopenia, is characterized by loss of muscle mass, strength, endurance, and oxidative capacity. Although exercise has been shown to mitigate sarcopenia, the underlying governing mechanisms are poorly understood. Mitochondrial dysfunction is implicated in aging and sarcopenia; however, few studies explore how mitochondrial structure contributes to this dysfunction. In this study, we sought to understand how aging impacts mitochondrial three-dimensional (3D) structure and its regulators in skeletal muscle. We hypothesized that aging leads to remodeling of mitochondrial 3D architecture permissive to dysfunction and is ameliorated by exercise. Using serial block-face scanning electron microscopy (SBF-SEM) and Amira software, mitochondrial 3D reconstructions from patient biopsies were generated and analyzed. Across five human cohorts, we correlate differences in magnetic resonance imaging, mitochondria 3D structure, exercise parameters, and plasma immune markers between young (under 50 years) and old (over 50 years) individuals. We found that mitochondria are less spherical and more complex, indicating age-related declines in contact site capacity. Additionally, aged samples showed a larger volume phenotype in both female and male humans, indicating potential mitochondrial swelling. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age-related losses. Exercise stimulation restored mitofusin 2 (MFN2), one such of these mitochondrial dynamic proteins, which we show is required for the integrity of mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved, as Marf, the MFN2 ortholog in Drosophila, knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age-related structural changes in mitochondria and further suggest that exercise may mitigate age-related structural decline through modulation of mitofusin 2.
Collapse
Affiliation(s)
- Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Vernat Exil
- Department of Pediatrics, Div. of Cardiology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Benjamin I Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mert Demirci
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Edgar Garza López
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Duane D Hall
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Rahmati Rostami
- Department of Genetic Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | - Innes Hicsasmaz
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Sasha Manus
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Celestine N Wanjalla
- Division of Infection Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Revathi Dasari
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati, AP, India
| | - Clintoria R Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, USA
| | - Jennifer A Gaddy
- Division of Infection Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, TN, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- NIAMS, NIH, Bethesda, MD, USA
| | - Estélio Henrique Martin Dantas
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Doctor's Degree Program in Nursing and Biosciences - PpgEnfBio, Federal University of the State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
- Laboratory of Human Motricity Biosciences - LABIMH, Federal University of the State of Rio de Janeiro - UNIRIO, RJ, Brazil
- Brazilian Paralympic Academy - APB, Brazil
- Doctor's Degree Program in Health and Environment - PSA, Tiradentes University - UNIT, Aracaju, SE, Brazil
| | - André Kinder
- Artur Sá Earp Neto University Center - UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Fabiana Scartoni
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Matheus Baffi
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Mark A Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anita M Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Nelson Wandira
- Institute of Health Sciences Busoga University, Iganga, Uganda
| | - Okwute M Ochayi
- Department of Human Physiology, Baze University, Abuja, Nigeria
| | - Magdalene Ameka
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Sepiso K Masenga
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Chanel Harris
- Department of Biomedical Sciences, Meharry Medical College, Nashville, US
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Sciences, Meharry Medical College, Nashville, US
| | - Pamela Martin
- Department of Biomedical Sciences, Meharry Medical College, Nashville, US
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, Meharry Medical College, Nashville, TN, USA
| | - Olga Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Vineeta Sharma
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Bret C Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Prasanna Katti
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati, AP, India
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
Barsa C, Perrin J, David C, Mourier A, Rojo M. A cellular assay to determine the fusion capacity of MFN2 variants linked to Charcot-Marie-Tooth disease of type 2 A. Sci Rep 2025; 15:9971. [PMID: 40121276 PMCID: PMC11929822 DOI: 10.1038/s41598-025-93702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Charcot-Marie-Tooth Disease (CMT) is an inherited peripheral neuropathy with two main forms: demyelinating CMT1 and axonal CMT2. The most frequent subtype of CMT2 (CMT2A) is linked to mutations of MFN2, encoding a ubiquitously expressed GTP-binding protein anchored to the mitochondrial outer membrane and essential for mitochondrial fusion. The use of Next-Generation Sequencing has led to the identification of increasing numbers of MFN2 variants, yet many of them remain of unknown significance, depriving patients of a clear diagnosis. In this work, we establish a cellular assay allowing to assess the impact of 12 known MFN2 variants linked to CMT2A on mitochondrial fusion. The functional analysis revealed that out of the 12 selected MFN2 mutations, only six exhibited reduced fusion activity. The classification of MFN2 variants according to the results of the functional assay revealed a correlation between the fusion capacity, the age at onset of CMT2A and computational variant effect predictions relying on the analysis of the protein sequence. The functional assay and the results obtained will assist and improve the classification of novel MFN2 variants identified in patients.
Collapse
Affiliation(s)
- Chloe Barsa
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France
| | - Julian Perrin
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France
| | - Claudine David
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France
| | - Arnaud Mourier
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France
| | - Manuel Rojo
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
7
|
Inferrera F, Marino Y, Genovese T, Cuzzocrea S, Fusco R, Di Paola R. Mitochondrial quality control: Biochemical mechanism of cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119906. [PMID: 39837389 DOI: 10.1016/j.bbamcr.2025.119906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Mitochondria play a key role in the regulation of energy homeostasis and ATP production in cardiac cells. Mitochondrial dysfunction can trigger several pathological events that contribute to the development and progression of cardiovascular diseases. These mechanisms include the induction of oxidative stress, dysregulation of intracellular calcium cycling, activation of the apoptotic pathway, and alteration of lipid metabolism. This review focuses on the role of mitochondria in intracellular signaling associated with cardiovascular diseases, emphasizing the contributions of reactive oxygen species production and mitochondrial dynamics. Indeed, mitochondrial dysfunction has been implicated in every aspect of cardiovascular disease and is currently being evaluated as a potential target for therapeutic interventions. To treat cardiovascular diseases and improve overall heart health, it is important to better understand these biochemical systems. These findings allow the achievement of targeted therapies and preventive measures. Therefore, this review investigates different studies that demonstrate how changes in mitochondrial dynamics like fusion, fission, and mitophagy contribute to the development or worsening of disorders related to heart diseases by summarizing current research on their role.
Collapse
Affiliation(s)
- Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; Link Campus University, Via del Casale di San Pio V, 4400165 Rome, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy.
| |
Collapse
|
8
|
Liu X, Li T, Tu X, Xu M, Wang J. Mitochondrial fission and fusion in neurodegenerative diseases:Ca 2+ signalling. Mol Cell Neurosci 2025; 132:103992. [PMID: 39863029 DOI: 10.1016/j.mcn.2025.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca2+ signaling have long been considered to play important roles in the development of various NDs. Mitochondrial fission and fusion dynamics are important processes of mitochondrial quality control, ensuring the stability of mitochondrial structure and function. Mitochondrial fission and fusion imbalance and Ca2+ signaling disorders can aggravate the disease progression of NDs. In this review, we explore the relationship between mitochondrial dynamics and Ca2+ signaling in AD, PD, ALS, and HD, focusing on the roles of key regulatory proteins (Drp1, Fis1, Mfn1/2, and Opa1) and the association structures between mitochondria and the endoplasmic reticulum (MERCs/MAMs). We provide a detailed analysis of their involvement in the pathogenesis of these four NDs. By integrating these mechanisms, we aim to clarify their contributions to disease progression and offer insights into the development of therapeutic strategies that target mitochondrial dynamics and Ca2+ signaling. We also examine the progress in drug research targeting these pathways, highlighting their potential as therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Xinya Tu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
9
|
Ilha M, Sehgal R, Matilainen J, Rilla K, Kaminska D, Gandhi S, Männistö V, Ling C, Romeo S, Pajukanta P, Pirinen E, Virtanen KA, Pietiläinen KH, Vaittinen M, Pihlajamäki J. Indole-3-propionic acid promotes hepatic stellate cells inactivation. J Transl Med 2025; 23:253. [PMID: 40025530 PMCID: PMC11871697 DOI: 10.1186/s12967-025-06266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/16/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND & AIMS We have previously reported that the serum levels of gut-derived tryptophan metabolite indole-3-propionic acid (IPA) are lower in individuals with liver fibrosis. Now, we explored the transcriptome and DNA methylome associated with serum IPA levels in human liver from obese individuals together with IPA effects on shifting the hepatic stellate cell (HSC) phenotype to inactivation in vitro. METHODS A total of 116 obese individuals without type 2 diabetes (T2D) (age 46.8 ± 9.3 years; BMI: 42.7 ± 5.0 kg/m2) from the Kuopio OBesity Surgery (KOBS) study undergoing bariatric surgery were included. Circulating IPA levels were measured using LC-MS, liver transcriptomics with total RNA-sequencing and DNA methylation with Infinium HumanMethylation450 BeadChip. Human hepatic stellate cells (LX-2) where used for in vitro experiments. RESULTS Serum IPA levels were associated with the expression of liver genes enriched for apoptosis, mitophagy and longevity pathways in the liver. AKT serine/threonine kinase 1 (AKT1) was the shared and topmost interactive gene from the liver transcript and DNA methylation profile. IPA treatment induced apoptosis, reduced mitochondrial respiration as well as modified cell morphology, and mitochondrial dynamics by modulating the expression of genes known to regulate fibrosis, apoptosis, and survival in LX-2 cells. CONCLUSION In conclusion, these data support that IPA has a plausible therapeutic effect and may induce apoptosis and the HSC phenotype towards the inactivation state, extending the possibilities to suppress hepatic fibrogenesis by interfering with HSC activation and mitochondrial metabolism.
Collapse
Affiliation(s)
- Mariana Ilha
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Ratika Sehgal
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Johanna Matilainen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorota Kaminska
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Shrey Gandhi
- Institute of Immunology, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Ville Männistö
- Departments of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Göteborg, Sweden
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Institute for Precision Health, School of Medicine, UCLA, Los Angeles, CA, USA
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Research Unit for Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Obesity Center, Endocrinology, Abdominal Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Maija Vaittinen
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
10
|
Wang J, Wang M, Zeng X, Li Y, Lei L, Chen C, Lin X, Fang P, Guo Y, Jiang X, Wang Y, Chen L, Long J. Targeting membrane contact sites to mediate lipid dynamics: innovative cancer therapies. Cell Commun Signal 2025; 23:89. [PMID: 39955542 PMCID: PMC11830217 DOI: 10.1186/s12964-025-02089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
Membrane contact sites (MCS) are specialized regions where organelles are closely interconnected through membrane structures, facilitating the transfer and exchange of ions, lipids, and other molecules. This proximity enables a synergistic regulation of cellular homeostasis and functions. The formation and maintenance of these contact sites are governed by specific proteins that bring organelle membranes into close apposition, thereby enabling functional crosstalk between cellular compartments. In eukaryotic cells, lipids are primarily synthesized and metabolized within distinct organelles and must be transported through MCS to ensure proper cellular function. Consequently, MCS act as pivotal platforms for lipid synthesis and trafficking, particularly in cancer cells and immune cells within the tumor microenvironment, where dynamic alterations are critical for maintaining lipid homeostasis. This article provides a comprehensive analysis of how these cells exploit membrane contact sites to modulate lipid synthesis, metabolism, and transport, with a specific focus on how MCS-mediated lipid dynamics influence tumor progression. We also examine the differences in MCS and associated molecules across various cancer types, exploring novel therapeutic strategies targeting MCS-related lipid metabolism for the development of anticancer drugs, while also addressing the challenges involved.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China.
| | - Meifeng Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Xueni Zeng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Yanhan Li
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Lingzhi Lei
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Changan Chen
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Xi Lin
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Peiyuan Fang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Yuxuan Guo
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, 410013, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, 410013, China
| | - Lihong Chen
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China.
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
11
|
Yang HM. Mitochondrial Dysfunction in Neurodegenerative Diseases. Cells 2025; 14:276. [PMID: 39996748 PMCID: PMC11853439 DOI: 10.3390/cells14040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Mitochondrial dysfunction represents a pivotal characteristic of numerous neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These conditions, distinguished by unique clinical and pathological features, exhibit shared pathways leading to neuronal damage, all of which are closely associated with mitochondrial dysfunction. The high metabolic requirements of neurons make even minor mitochondrial deficiencies highly impactful, driving oxidative stress, energy deficits, and aberrant protein processing. Growing evidence from genetic, biochemical, and cellular investigations associates impaired electron transport chain activity and disrupted quality-control mechanisms, such as mitophagy, with the initial phases of disease progression. Furthermore, the overproduction of reactive oxygen species and persistent neuroinflammation can establish feedforward cycles that exacerbate neuronal deterioration. Recent clinical research has increasingly focused on interventions aimed at enhancing mitochondrial resilience-through antioxidants, small molecules that modulate the balance of mitochondrial fusion and fission, or gene-based therapeutic strategies. Concurrently, initiatives to identify dependable mitochondrial biomarkers seek to detect pathological changes prior to the manifestation of overt symptoms. By integrating the current body of knowledge, this review emphasizes the critical role of preserving mitochondrial homeostasis as a viable therapeutic approach. It also addresses the complexities of translating these findings into clinical practice and underscores the potential of innovative strategies designed to delay or potentially halt neurodegenerative processes.
Collapse
Affiliation(s)
- Han-Mo Yang
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
12
|
Baron KR, Oviedo S, Krasny S, Zaman M, Aldakhlallah R, Bora P, Mathur P, Pfeffer G, Bollong MJ, Shutt TE, Grotjahn DA, Wiseman RL. Pharmacologic activation of integrated stress response kinases inhibits pathologic mitochondrial fragmentation. eLife 2025; 13:RP100541. [PMID: 39937095 PMCID: PMC11820110 DOI: 10.7554/elife.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) - comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI - is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions, including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.
Collapse
Affiliation(s)
- Kelsey R Baron
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
| | - Samantha Oviedo
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
- Department of Integrative Structural and Computation Biology, The Scripps Research InstituteLa JollaUnited States
| | - Sophia Krasny
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
| | - Mashiat Zaman
- Department of Biochemistry and Molecular Biology, Cummings School of Medicine, University of CalgaryCalgaryCanada
| | - Rama Aldakhlallah
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
| | - Prerona Bora
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
| | - Prakhyat Mathur
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of CalgaryCalgaryCanada
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of CalgaryCalgaryCanada
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Alberta Children's Hospital Research Institute, University of CalgaryCalgaryCanada
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computation Biology, The Scripps Research InstituteLa JollaUnited States
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
13
|
Joaquim M, Altin S, Bulimaga MB, Simões T, Nolte H, Bader V, Franchino CA, Plouzennec S, Szczepanowska K, Marchesan E, Hofmann K, Krüger M, Ziviani E, Trifunovic A, Chevrollier A, Winklhofer KF, Motori E, Odenthal M, Escobar-Henriques M. Mitofusin 2 displays fusion-independent roles in proteostasis surveillance. Nat Commun 2025; 16:1501. [PMID: 39929801 PMCID: PMC11811173 DOI: 10.1038/s41467-025-56673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Mitochondria are essential organelles and their functional state dictates cellular proteostasis. However, little is known about the molecular gatekeepers involved, especially in absence of external stress. Here we identify a role of MFN2 in quality control independent of its function in organellar shape remodeling. MFN2 ablation alters the cellular proteome, marked for example by decreased levels of the import machinery and accumulation of the kinase PINK1. Moreover, MFN2 interacts with the proteasome and cytosolic chaperones, thereby preventing aggregation of newly translated proteins. Similarly to MFN2-KO cells, patient fibroblasts with MFN2-disease variants recapitulate excessive protein aggregation defects. Restoring MFN2 levels re-establishes proteostasis in MFN2-KO cells and rescues fusion defects of MFN1-KO cells. In contrast, MFN1 loss or mitochondrial shape alterations do not alter protein aggregation, consistent with a fusion-independent role of MFN2 in cellular homeostasis. In sum, our findings open new possibilities for therapeutic strategies by modulation of MFN2 levels.
Collapse
Affiliation(s)
- Mariana Joaquim
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Selver Altin
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Maria-Bianca Bulimaga
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Pathology, Medical Faculty of the University of Cologne and University Hospital of Cologne, Cologne, Germany
| | - Tânia Simões
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hendrik Nolte
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- MPI for Biology of Ageing, 50931, Cologne, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany, and Cluster of Excellence RESOLV, Bochum, Germany
| | - Camilla Aurora Franchino
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Solenn Plouzennec
- University of Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
| | - Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- ReMedy International Research Agenda Unit, International Institute of Molecular Mechanisms and Machines (IMol), Polish Academy of Sciences, 00-783, Warsaw, Poland
| | | | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Ziviani
- Deparment of Biology, University of Padova, Padova, Italy
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Arnaud Chevrollier
- University of Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany, and Cluster of Excellence RESOLV, Bochum, Germany
| | - Elisa Motori
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Pathology, Medical Faculty of the University of Cologne and University Hospital of Cologne, Cologne, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Munshi S, Alarbi AM, Zheng H, Kuplicki R, Burrows K, Figueroa-Hall LK, Victor TA, Aupperle RL, Khalsa SS, Paulus MP, Teague TK, Savitz J. Increased expression of ER stress, inflammasome activation, and mitochondrial biogenesis-related genes in peripheral blood mononuclear cells in major depressive disorder. Mol Psychiatry 2025; 30:574-586. [PMID: 39174649 PMCID: PMC12054637 DOI: 10.1038/s41380-024-02695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
A subset of major depressive disorder (MDD) is characterized by immune system dysfunction, but the intracellular origin of these immune changes remains unclear. Here we tested the hypothesis that abnormalities in endoplasmic reticulum (ER) stress, inflammasome activity and mitochondrial biogenesis contribute to the development of systemic inflammation in MDD. RT-qPCR was used to measure mRNA expression of key organellar genes from peripheral blood mononuclear cells (PBMCs) isolated from 186 MDD and 67 healthy control (HC) subjects. The comparative CT (2-ΔΔCT) method was applied to quantify mRNA expression using GAPDH as the reference gene. After controlling for age, sex, BMI, and medication status using linear regression models, expression of the inflammasome (NLRC4 and NLRP3) and the ER stress (XBP1u, XBP1s, and ATF4) genes was found to be significantly increased in the MDD versus the HC group. Sensitivity analyses excluding covariates yielded similar results. After excluding outliers, expression of the inflammasome genes was no longer statistically significant but expression of the ER stress genes (XBP1u, XBP1s, and ATF4) remained significant and the mitochondrial biogenesis gene, MFN2, was significantly increased in the MDD group. NLRC4 and MFN2 were positively correlated with serum C-reactive protein concentrations, while ASC trended significant. The altered expression of inflammasome activation, ER stress, and mitochondrial biogenesis pathway components suggest that dysfunction of these organelles may play a role in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Soumyabrata Munshi
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Ahlam M Alarbi
- Integrative Immunology Center, Department of Surgery and Department of Psychiatry, University of Oklahoma - School of Community Medicine, 4502 E. 41st St., Tulsa, OK, 74135, USA
| | - Haixia Zheng
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Kaiping Burrows
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Leandra K Figueroa-Hall
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Teresa A Victor
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Robin L Aupperle
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, 300 UCLA Medical Plaza, Los Angeles, CA, 90095, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - T Kent Teague
- Integrative Immunology Center, Department of Surgery and Department of Psychiatry, University of Oklahoma - School of Community Medicine, 4502 E. 41st St., Tulsa, OK, 74135, USA
- Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University, 1111 W. 17th St., Tulsa, OK, 74107, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| |
Collapse
|
15
|
Varma SR, Ani OHAA, Narayanan JK, Mathew A. The role of Mitofusin-1 and Mitofusin-2 in periodontal disease: a comprehensive review. FRONTIERS IN ORAL HEALTH 2025; 6:1540178. [PMID: 39896143 PMCID: PMC11782281 DOI: 10.3389/froh.2025.1540178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Periodontal disease is a widespread chronic inflammatory state influencing the supporting anatomy of the teeth, distinguished by oxidative stress, progressive bone loss, and tissue damage. Recent articles have highlighted the significance of mitochondrial dynamics, mainly Mitofusin-1 (MFN1) along with Mitofusin-2 (MFN2), inflammation regulation, tissue homeostasis, and in cellular function. The aim of the current study is to comprehensively review including evaluate the roles of MFN2 and MFN1 in the pathogenesis as well as the progression of periodontal disease, foregrounding their effect on mitochondrial integrity, inflammatory pathways, and oxidative stress. Studies were selected depending on inclusion criteria based on the roles of MFN2 and MFN1 in periodontal disease and health. Data from chosen in vivo, clinical studies, and in vitro were synthesized. Outcomes indicate that MFN2 and MFN1 are important for preserving cellular function, mitigating oxidative damage, and mitochondrial fusion. Decreased levels of these proteins were related to elevated oxidative stress, inflammation, and increased mitochondrial dysfunction in periodontal tissues. The current comprehensive review shows the important roles of MFN1 along with MFN2 in inflammation regulation, cell survival, and mitochondrial dynamics within periodontal disease. The prospective for targeting MFN1 along with MFN2 in therapeutic policy is promising, presenting avenues for upgraded periodontal management and regeneration.
Collapse
Affiliation(s)
- Sudhir R. Varma
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates
- Center for Medical and bio-allied health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Omar H. A. A. Ani
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates
| | - Jayaraj K. Narayanan
- Center for Medical and bio-allied health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Basic Sciences, Ajman University, Ajman, United Arab Emirates
| | - Asok Mathew
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates
- Center for Medical and bio-allied health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
16
|
Wang Y, Wang Y, Yin H, Xiao Z, Ren Z, Ma X, Zhang J, Fu X, Zhang F, Zeng L. BI1 Activates Autophagy and Mediates TDP43 to Regulate ALS Pathogenesis. Mol Neurobiol 2025; 62:988-1030. [PMID: 38954254 DOI: 10.1007/s12035-024-04313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disease in adults. Currently, there are no known drugs or clinical approaches that have demonstrated efficacy in treating ALS. Mitochondrial function and autophagy have been identified as crucial mechanisms in the development of ALS. While Bax inhibitor 1 (BI1) has been implicated in neurodegenerative diseases, its exact mechanism remains unknown. This study investigates the therapeutic impact of BI1 overexpression on ALS both in vivo and in vitro, revealing its ability to mitigate SOD1G93A-induced apoptosis, nuclear damage, mitochondrial dysfunction, and axonal degeneration of motor neurons. At the same time, BI1 prolongs onset time and lifespan of ALS mice, improves motor function, and alleviates neuronal damage, muscle damage, neuromuscular junction damage among other aspects. The findings indicate that BI1 can inhibit pathological TDP43 morphology and initially stimulate autophagy through interaction with TDP43. This study establishes a solid theoretical foundation for understanding the regulation of autophagy by BI1 and TDP43 while shedding light on the pathogenesis of ALS through their interaction - offering new concepts and targets for clinical implementation and drug development.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yuxiang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Hanlan Yin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zixuan Xiao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zhichao Ren
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xueting Ma
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Jingtian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Xueqi Fu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Fuqiang Zhang
- Scientific Research Centre of China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Linlin Zeng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
17
|
Baron KR, Oviedo S, Krasny S, Zaman M, Aldakhlallah R, Bora P, Mathur P, Pfeffer G, Bollong MJ, Shutt TE, Grotjahn DA, Wiseman RL. Pharmacologic Activation of Integrated Stress Response Kinases Inhibits Pathologic Mitochondrial Fragmentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598126. [PMID: 38915623 PMCID: PMC11195119 DOI: 10.1101/2024.06.10.598126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically-diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) - comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI - is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.
Collapse
Affiliation(s)
- Kelsey R. Baron
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
- These authors contributed equally
| | - Samantha Oviedo
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
- Department of Integrative Structural and Computation Biology, The Scripps Research Institute, La Jolla, CA 92037
- These authors contributed equally
| | - Sophia Krasny
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Mashiat Zaman
- Department of Biochemistry and Molecular Biology, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rama Aldakhlallah
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Prerona Bora
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Prakhyat Mathur
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary; Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary
| | - Michael J. Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computation Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - R. Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
18
|
Yang NV, Chao JY, Garton KA, Tran T, King SM, Orr J, Oei JH, Crawford A, Kang M, Zalpuri R, Jorgens DM, Konchadi P, Chorba JS, Theusch E, Krauss RM. TOMM40 regulates hepatocellular and plasma lipid metabolism via an LXR-dependent pathway. Mol Metab 2024; 90:102056. [PMID: 39489289 PMCID: PMC11600064 DOI: 10.1016/j.molmet.2024.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE The gene encoding TOMM40 (Transporter of Outer Mitochondrial Membrane 40) is adjacent to that encoding APOE, which has a central role in lipid and lipoprotein metabolism. While human genetic variants near APOE and TOMM40 have been shown to be strongly associated with plasma lipid levels, a specific role for TOMM40 in lipid metabolism has not been established, and the present study was aimed at assessing this possibility. METHODS TOMM40 was knocked down by siRNA in human hepatoma HepG2 cells, and effects on mitochondrial function, lipid phenotypes, and crosstalk between mitochondria, ER, and lipid droplets were examined. Additionally, hepatic and plasma lipid levels were measured in mice following shRNA-induced knockdown of Tomm40 shRNA. RESULTS In HepG2 cells, TOMM40 knockdown upregulated expression of APOE and LDLR in part via activation of LXRB (NR1H2) by oxysterols, with consequent increased uptake of VLDL and LDL. This is in part due to disruption of mitochondria-endoplasmic reticulum contact sites, with resulting accrual of reactive oxygen species and non-enzymatically derived oxysterols. With TOMM40 knockdown, cellular triglyceride and lipid droplet content were increased, effects attributable in part to receptor-mediated VLDL uptake, since lipid staining was significantly reduced by concomitant suppression of either LDLR or APOE. In contrast, cellular cholesterol content was reduced due to LXRB-mediated upregulation of the ABCA1 transporter as well as increased production and secretion of oxysterol-derived cholic acid. Consistent with the findings in hepatoma cells, in vivo knockdown of TOMM40 in mice resulted in significant reductions of plasma triglyceride and cholesterol concentrations, reduced hepatic cholesterol and increased triglyceride content, and accumulation of lipid droplets leading to development of steatosis. CONCLUSIONS These findings demonstrate a role for TOMM40 in regulating hepatic lipid and plasma lipoprotein levels and identify mechanisms linking mitochondrial function with lipid metabolism.
Collapse
Affiliation(s)
- Neil V Yang
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Justin Y Chao
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Kelly A Garton
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Tommy Tran
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Sarah M King
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Joseph Orr
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Jacob H Oei
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Alexandra Crawford
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Misun Kang
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Reena Zalpuri
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Danielle M Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Pranav Konchadi
- Department of Medicine, University of California, San Francisco, CA, USA
| | - John S Chorba
- Department of Medicine, University of California, San Francisco, CA, USA; Division of Cardiology, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Ronald M Krauss
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
19
|
Weigele J, Zhang L, Franco A, Cartier E, Dorn GW. Sensory-Motor Neuropathy in Mfn2 T105M Knock-in Mice and Its Reversal by a Novel Piperine-Derived Mitofusin Activator. J Pharmacol Exp Ther 2024; 391:361-374. [PMID: 39284622 PMCID: PMC11493442 DOI: 10.1124/jpet.124.002258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/09/2024] [Indexed: 10/20/2024] Open
Abstract
Mitochondrial dysfunction is a hallmark of many genetic neurodegenerative diseases, but therapeutic options to reverse mitochondrial dysfunction are limited. While recent studies support the possibility of improving mitochondrial fusion/fission dynamics and motility to correct mitochondrial dysfunction and resulting neurodegeneration in Charcot-Marie-Tooth disease (CMT) and other neuropathies, the clinical utility of reported compounds and relevance of preclinical models are uncertain. Here, we describe motor and sensory neuron dysfunction characteristic of clinical CMT type 2 A in a CRISPR/Casp-engineered Mfn2 Thr105Met (T105M) mutant knock-in mouse. We further demonstrate that daily oral treatment with a novel mitofusin activator derived from the natural product piperine can reverse these neurologic phenotypes. Piperine derivative 8015 promoted mitochondrial fusion and motility in Mfn2-deficient cells in a mitofusin-dependent manner and reversed mitochondrial dysfunction in cultured fibroblasts and reprogrammed motor neurons from a human CMT2A patient carrying the MFN2 T105M mutation. Like previous mitofusin activators, 8015 exhibited stereospecific functionality, but the more active stereoisomer, 8015-P2, is unique in that it has subnanomolar potency and undergoes entero-hepatic recirculation which extends its in vivo half-life. Daily administration of 8015-P2 to Mfn2 T105M knock-in mice for 6 weeks normalized neuromuscular and sensory dysfunction and corrected histological/ultrastructural neurodegeneration and neurogenic myoatrophy. These studies describe a more clinically relevant mouse model of CMT2A and an improved mitofusin activator derived from piperine. We posit that 8015-P2 and other piperine derivatives may benefit CMT2A or other neurodegenerative conditions wherein mitochondrial dysdynamism plays a contributory role. SIGNIFICANCE STATEMENT: Mitochondrial dysfunction is widespread and broadly contributory in neurodegeneration, but difficult to target therapeutically. Here, we describe 8015-P2, a new small molecule mitofusin activator with ∼10-fold greater potency and improved in vivo pharmacokinetics versus comparators, and demonstrate its rapid reversal of sensory and motor neuron dysfunction in an Mfn2 T105M knock-in mouse model of Charcot-Marie-Tooth disease type 2 A. These findings further support the therapeutic approach of targeting mitochondrial dysdynamism in neurodegeneration.
Collapse
Affiliation(s)
- Jochen Weigele
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Lihong Zhang
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Antonietta Franco
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Etienne Cartier
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Gerald W Dorn
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| |
Collapse
|
20
|
Serangeli I, Diamanti T, De Jaco A, Miranda E. Role of mitochondria-endoplasmic reticulum contacts in neurodegenerative, neurodevelopmental and neuropsychiatric conditions. Eur J Neurosci 2024; 60:5040-5068. [PMID: 39099373 DOI: 10.1111/ejn.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs) mediate a close and continuous communication between both organelles that is essential for the transfer of calcium and lipids to mitochondria, necessary for cellular signalling and metabolic pathways. Their structural and molecular characterisation has shown the involvement of many proteins that bridge the membranes of the two organelles and maintain the structural stability and function of these contacts. The crosstalk between the two organelles is fundamental for proper neuronal function and is now recognised as a component of many neurological disorders. In fact, an increasing proportion of MERC proteins take part in the molecular and cellular basis of pathologies affecting the nervous system. Here we review the alterations in MERCs that have been reported for these pathologies, from neurodevelopmental and neuropsychiatric disorders to neurodegenerative diseases. Although mitochondrial abnormalities in these debilitating conditions have been extensively attributed to the high energy demand of neurons, a distinct role for MERCs is emerging as a new field of research. Understanding the molecular details of such alterations may open the way to new paths of therapeutic intervention.
Collapse
Affiliation(s)
- Ilaria Serangeli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Tamara Diamanti
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
Chen M, Wang Q, Wang Y, Xuan Y, Shen M, Hu X, Li Y, Guo Y, Wang J, Tan F. Thiostrepton induces oxidative stress, mitochondrial dysfunction and ferroptosis in HaCaT cells. Cell Signal 2024; 121:111285. [PMID: 38969192 DOI: 10.1016/j.cellsig.2024.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
TST has been mainly studied for its anti-tumor proliferation and antimicrobial effects, but not widely used in dermatological diseases. The mechanism of cellular damage by TST in response to H2O2-mediated oxidative stress was investigated in human skin immortalized keratinocytes (HaCaT) as an in vitro model. The findings reveal that TST treatment leads to increased oxidative stress in the cells by reducing levels of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). This effect is further supported by an upsurge in the expression of malondialdehyde (MDA, a pivotal marker of lipid peroxidation). Additionally, dysregulation of FoxM1 at both gene and protein levels corroborates its involvement TST associated effects. Analysis of ferroptosis-related genes confirms dysregulation following TST treatment in HaCaT cells. Furthermore, TST treatment exhibits effects on mitochondrial morphology and function, affirming its induction of apoptosis in the cells through heightened oxidative stress due to mitochondrial damage and dysregulation of mitochondrial membrane potential.
Collapse
Affiliation(s)
- MeiYu Chen
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, People's Republic of China
| | - QiXia Wang
- Department of General Practice, Xi'an Central Hospital, Xi'an, Shaanxi 710000, China
| | - YaoQun Wang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, People's Republic of China
| | - Yuan Xuan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, People's Republic of China
| | - MengYuan Shen
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, People's Republic of China
| | - XiaoPing Hu
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, People's Republic of China
| | - YunJin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yi Guo
- SICU, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Kunming, Yunnan 650102, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China.
| | - Fei Tan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, People's Republic of China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
22
|
Guo J, Wang Y, Shi C, Zhang D, Zhang Q, Wang L, Gong Z. Mitochondrial calcium uniporter complex: Unveiling the interplay between its regulators and calcium homeostasis. Cell Signal 2024; 121:111284. [PMID: 38964444 DOI: 10.1016/j.cellsig.2024.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The mitochondrial calcium uniporter complex (MCUc), serving as the specific channel for calcium influx into the mitochondrial matrix, is integral to calcium homeostasis and cellular integrity. Given its importance, ongoing research spans various disease models to understand the properties of the MCUc in pathophysiological contexts, but reported a different conclusion. Therefore, this review delves into the profound connection between MCUc-mediated calcium transients and cellular signaling pathways, mitochondrial dynamics, metabolism, and cell death. Additionally, we shed light on the recent advancements concerning the structural intricacies and auxiliary components of the MCUc in both resting and activated states. Furthermore, emphasis is placed on novel extrinsic and intrinsic regulators of the MCUc and their therapeutic implications across a spectrum of diseases. Meanwhile, we employed molecular docking simulations and identified candidate traditional Chinese medicine components with potential binding sites to the MCUc, potentially offering insights for further research on MCUc modulation.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
23
|
Patergnani S, Bataillard MS, Danese A, Alves S, Cazevieille C, Valéro R, Tranebjærg L, Maurice T, Pinton P, Delprat B, Richard EM. The Wolfram-like variant WFS1 E864K destabilizes MAM and compromises autophagy and mitophagy in human and mice. Autophagy 2024; 20:2055-2066. [PMID: 38651637 PMCID: PMC11346566 DOI: 10.1080/15548627.2024.2341588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Dominant variants in WFS1 (wolframin ER transmembrane glycoprotein), the gene coding for a mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) resident protein, have been associated with Wolfram-like syndrome (WLS). In vitro and in vivo, WFS1 loss results in reduced ER to mitochondria calcium (Ca2+) transfer, mitochondrial dysfunction, and enhanced macroautophagy/autophagy and mitophagy. However, in the WLS pathological context, whether the mutant protein triggers the same cellular processes is unknown. Here, we show that in human fibroblasts and murine neuronal cultures the WLS protein WFS1E864K leads to decreases in mitochondria bioenergetics and Ca2+ uptake, deregulation of the mitochondrial quality system mechanisms, and alteration of the autophagic flux. Moreover, in the Wfs1E864K mouse, these alterations are concomitant with a decrease of MAM number. These findings reveal pathophysiological similarities between WS and WLS, highlighting the importance of WFS1 for MAM's integrity and functionality. It may open new treatment perspectives for patients with WLS.Abbreviations: BafA1: bafilomycin A1; ER: endoplasmic reticulum; HSPA9/GRP75: heat shock protein family A (Hsp70) member 9; ITPR/IP3R: inositol 1,4,5-trisphosphate receptor; MAM: mitochondria-associated endoplasmic reticulum membrane; MCU: mitochondrial calcium uniporter; MFN2: mitofusin 2; OCR: oxygen consumption rate; ROS: reactive oxygen species; ROT/AA: rotenone+antimycin A; VDAC1: voltage dependent anion channel 1; WLS: Wolfram-like syndrome; WS: Wolfram syndrome; WT: wild-type.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine, Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), Ferrara, Italy
| | | | - Alberto Danese
- Department of Medical Sciences, Section of Experimental Medicine, Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), Ferrara, Italy
| | - Stacy Alves
- MMDN, University Montpellier, EPHE, INSERM, Montpellier, France
| | | | - René Valéro
- Department of Nutrition, Metabolic Diseases and Endocrinology, Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Marseille, France
| | - Lisbeth Tranebjærg
- The Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tangui Maurice
- MMDN, University Montpellier, EPHE, INSERM, Montpellier, France
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), Ferrara, Italy
| | | | | |
Collapse
|
24
|
Choi EH, Kim MH, Park SJ. Targeting Mitochondrial Dysfunction and Reactive Oxygen Species for Neurodegenerative Disease Treatment. Int J Mol Sci 2024; 25:7952. [PMID: 39063194 PMCID: PMC11277296 DOI: 10.3390/ijms25147952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases, and they affect millions of people worldwide, particularly older individuals. Therefore, there is a clear need to develop novel drug targets for the treatment of age-related neurodegenerative diseases. Emerging evidence suggests that mitochondrial dysfunction and reactive oxygen species (ROS) generation play central roles in the onset and progression of neurodegenerative diseases. Mitochondria are key regulators of respiratory function, cellular energy adenosine triphosphate production, and the maintenance of cellular redox homeostasis, which are essential for cell survival. Mitochondrial morphology and function are tightly regulated by maintaining a balance among mitochondrial fission, fusion, biogenesis, and mitophagy. In this review, we provide an overview of the main functions of mitochondria, with a focus on recent progress highlighting the critical role of ROS-induced oxidative stress, dysregulated mitochondrial dynamics, mitochondrial apoptosis, mitochondria-associated inflammation, and impaired mitochondrial function in the pathogenesis of age-related neurodegenerative diseases, such as AD and PD. We also discuss the potential of mitochondrial fusion and biogenesis enhancers, mitochondrial fission inhibitors, and mitochondria-targeted antioxidants as novel drugs for the treatment of these diseases.
Collapse
Affiliation(s)
| | | | - Sun-Ji Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea; (E.-H.C.); (M.-H.K.)
| |
Collapse
|
25
|
Ji L, Han H, Shan X, Zhao P, Chen H, Zhang C, Xu M, Lu R, Guo W. Ginsenoside Rb1 ameliorates lipotoxicity-induced myocardial injury in diabetes mellitus by regulating Mfn2. Eur J Pharmacol 2024; 974:176609. [PMID: 38677536 DOI: 10.1016/j.ejphar.2024.176609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE Diabetic cardiomyopathy is a prevalent cardiovascular complication of diabetes mellitus. This study aimed to investigate the effects of ginsenoside Rb1 (GRb1) on the diabetic myocardium. METHODS Leptin receptor-deficient db/db mice and palmitic acid (PA)-treated cardiomyocyte models were utilized. Cardiac systolic and diastolic function, mitochondrial morphology, and respiratory chain function were determined. The expression of mitochondrial dynamics proteins was measured. Mitofusin 2 (Mfn2) overexpression and inhibition were achieved by lentiviral infection and small interfering RNA (siRNA) transfection. RESULTS In comparison to non-diabetic mice, db/db mice exhibited significant increases in body weight, blood glucose, blood lipids, and cardiac free fatty acid levels. This was accompanied by myocardial hypertrophy and left ventricular diastolic dysfunction, which were significantly ameliorated by GRb1 intervention. Stimulation with PA increased oxidative stress and apoptosis, and decreased viability in H9c2 cardiomyocytes. PA also reduced sarcomere contractility and relaxation in adult mice ventricular myocytes. PA-induced cellular and mitochondrial damage were reversed with GRb1 treatment. The cardiac tissue of db/db mice and PA-treated cardiomyocytes exhibited a decrease in Mfn2 expression, which was markedly improved by GRb1. Mfn2 overexpression reversed PA-induced mitochondrial fragmentation and functional damage in cardiomyocytes, while inhibition of Mfn2 expression by siRNA transfection blocked the protective effects of GRb1. CONCLUSION GRb1 alleviated myocardial lipid accumulation and mitochondrial injury, and attenuated ventricular diastolic dysfunction in diabetic mice. The regulation of Mfn2 was involved in the protective effects of GRb1 against lipotoxic myocardial injury.
Collapse
MESH Headings
- Animals
- Ginsenosides/pharmacology
- Ginsenosides/therapeutic use
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/drug therapy
- Diabetic Cardiomyopathies/pathology
- Mice
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/genetics
- Male
- Palmitic Acid/pharmacology
- Apoptosis/drug effects
- Oxidative Stress/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Rats
- Receptors, Leptin/genetics
- Receptors, Leptin/metabolism
- Receptors, Leptin/deficiency
- Cell Line
- Mice, Inbred C57BL
- Myocardium/pathology
- Myocardium/metabolism
Collapse
Affiliation(s)
- Louyin Ji
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hui Han
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoli Shan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Pei Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Huihua Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Chen Zhang
- Department of Pathology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ming Xu
- Department of Physiology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Rong Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wei Guo
- Department of Pathology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
26
|
Pan B, Ma X, Zhou S, Cheng X, Fang J, Yi Q, Li Y, Li S, Yang J. Predicting mitophagy-related genes and unveiling liver endothelial cell heterogeneity in hepatic ischemia-reperfusion injury. Front Immunol 2024; 15:1370647. [PMID: 38694511 PMCID: PMC11061384 DOI: 10.3389/fimmu.2024.1370647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Background Hepatic Ischemia-Reperfusion Injury (HIRI) is a major complication in liver transplants and surgeries, significantly affecting postoperative outcomes. The role of mitophagy, essential for removing dysfunctional mitochondria and maintaining cellular balance, remains unclear in HIRI. Methods To unravel the role of mitophagy-related genes (MRGs) in HIRI, we assembled a comprehensive dataset comprising 44 HIRI samples alongside 44 normal control samples from the Gene Expression Omnibus (GEO) database for this analysis. Using Random Forests and Support Vector Machines - Recursive Feature Elimination (SVM-RFE), we pinpointed eight pivotal genes and developed a logistic regression model based on these findings. Further, we employed consensus cluster analysis for classifying HIRI patients according to their MRG expression profiles and conducted weighted gene co-expression network analysis (WGCNA) to identify clusters of genes that exhibit high correlation within different modules. Additionally, we conducted single-cell RNA sequencing data analysis to explore insights into the behavior of MRGs within the HIRI. Results We identified eight key genes (FUNDC1, VDAC1, MFN2, PINK1, CSNK2A2, ULK1, UBC, MAP1LC3B) with distinct expressions between HIRI and controls, confirmed by PCR validation. Our diagnostic model, based on these genes, accurately predicted HIRI outcomes. Analysis revealed a strong positive correlation of these genes with monocytic lineage and a negative correlation with B and T cells. HIRI patients were divided into three subclusters based on MRG profiles, with WGCNA uncovering highly correlated gene modules. Single-cell analysis identified two types of endothelial cells with different MRG scores, indicating their varied roles in HIRI. Conclusions Our study highlights the critical role of MRGs in HIRI and the heterogeneity of endothelial cells. We identified the macrophage migration inhibitory factor (MIF) and cGAS-STING (GAS) pathways as regulators of mitophagy's impact on HIRI. These findings advance our understanding of mitophagy in HIRI and set the stage for future research and therapeutic developments.
Collapse
Affiliation(s)
- Bochen Pan
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuan Ma
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shihuan Zhou
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoling Cheng
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jianwei Fang
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiuyun Yi
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuke Li
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Song Li
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiawei Yang
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
27
|
Guo H, Chen LQ, Zou ZR, Cheng S, Hu Y, Mao L, Tian H, Mei XF. Zinc remodels mitochondrial network through SIRT3/Mfn2-dependent mitochondrial transfer in ameliorating spinal cord injury. Eur J Pharmacol 2024; 968:176368. [PMID: 38316246 DOI: 10.1016/j.ejphar.2024.176368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Spinal cord injury (SCI) is a traumatic neuropathic condition that results in motor, sensory and autonomic dysfunction. Mitochondrial dysfunction caused by primary trauma is one of the critical pathogenic mechanisms. Moderate levels of zinc have antioxidant effects, promote neurogenesis and immune responses. Zinc normalises mitochondrial morphology in neurons after SCI. However, how zinc protects mitochondria within neurons is unknown. In the study, we used transwell culture, Western blot, Quantitative Real-time Polymerase Chain Reaction (QRT-PCR), ATP content detection, reactive oxygen species (ROS) activity assay, flow cytometry and immunostaining to investigate the relationship between zinc-treated microglia and injured neurons through animal and cell experiments. We found that zinc promotes mitochondrial transfer from microglia to neurons after SCI through Sirtuin 3 (SIRT3) regulation of Mitofusin 2 protein (Mfn2). It can rescue mitochondria in damaged neurons and inhibit oxidative stress, increase ATP levels and promote neuronal survival. Therefore, it can improve the recovery of motor function in SCI mice. In conclusion, our work reveals a potential mechanism to describe the communication between microglia and neurons after SCI, which may provide a new idea for future therapeutic approaches to SCI.
Collapse
Affiliation(s)
- Hui Guo
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Li-Qing Chen
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Zhi-Ru Zou
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Shuai Cheng
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Yu Hu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Liang Mao
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - He Tian
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Xi-Fan Mei
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
28
|
Gettings SM, Timbury W, Dmochowska A, Sharma R, McGonigle R, MacKenzie LE, Miquelard-Garnier G, Bourbia N. Polyethylene terephthalate (PET) micro- and nanoplastic particles affect the mitochondrial efficiency of human brain vascular pericytes without inducing oxidative stress. NANOIMPACT 2024; 34:100508. [PMID: 38663501 DOI: 10.1016/j.impact.2024.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The objective of this investigation was to evaluate the influence of micro- and nanoplastic particles composed of polyethylene terephthalate (PET), a significant contributor to plastic pollution, on human brain vascular pericytes. Specifically, we delved into their impact on mitochondrial functionality, oxidative stress, and the expression of genes associated with oxidative stress, ferroptosis and mitochondrial functions. Our findings demonstrate that the exposure of a monoculture of human brain vascular pericytes to PET particles in vitro at a concentration of 50 μg/ml for a duration of 3, 6 and 10 days did not elicit oxidative stress. Notably, we observed a reduction in various aspects of mitochondrial respiration, including maximal respiration, spare respiratory capacity, and ATP production in pericytes subjected to PET particles for 3 days, with a mitochondrial function recovery at 6 and 10 days. Furthermore, there were no statistically significant alterations in mitochondrial DNA copy number, or in the expression of genes linked to oxidative stress and ferroptosis, but an increase of the expression of the gene mitochondrial transcription factor A (TFAM) was noted at 3 days exposure. These outcomes suggest that, at a concentration of 50 μg/ml, PET particles do not induce oxidative stress in human brain vascular pericytes. Instead, at 3 days exposure, PET exposure impairs mitochondrial functions, but this is recovered at 6-day exposure. This seems to indicate a potential mitochondrial hormesis response (mitohormesis) is incited, involving the gene TFAM. Further investigations are warranted to explore the stages of mitohormesis and the potential consequences of plastics on the integrity of the blood-brain barrier and intercellular interactions. This research contributes to our comprehension of the potential repercussions of nanoplastic pollution on human health and underscores the imperative need for ongoing examinations into the exposure to plastic particles.
Collapse
Affiliation(s)
- Sean M Gettings
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - William Timbury
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Anna Dmochowska
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Universite, 75013 Paris, France
| | - Riddhi Sharma
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Rebecca McGonigle
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Lewis E MacKenzie
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Universite, 75013 Paris, France
| | - Nora Bourbia
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK.
| |
Collapse
|
29
|
El-Emam MA, Sheta E, El-Abhar HS, Abdallah DM, El Kerdawy AM, Eldehna WM, Gowayed MA. Morin suppresses mTORc1/IRE-1α/JNK and IP3R-VDAC-1 pathways: Crucial mechanisms in apoptosis and mitophagy inhibition in experimental Huntington's disease, supported by in silico molecular docking simulations. Life Sci 2024; 338:122362. [PMID: 38141855 DOI: 10.1016/j.lfs.2023.122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
AIMS Endoplasmic reticulum stress (ERS) with aberrant mitochondrial-ER contact (MERC), mitophagy, and apoptosis are interconnected determinants in neurodegenerative diseases. Previously, we proved the potential of Morin hydrate (MH), a potent antioxidant flavonoid, to mitigate Huntington's disease (HD)-3-nitropropionic acid (3-NP) model by modulating glutamate/calpain/Kidins220/BDNF trajectory. Extending our work, we aimed to evaluate its impact on combating the ERS/MERC, mitophagy, and apoptosis. METHODS Rats were subjected to 3-NP for 14 days and post-treated with MH and/or the ERS inducer WAG-4S for 7 days. Disease progression was assessed by gross inspection and striatal biochemical, histopathological, immunohistochemical, and transmission electron microscopical (TEM) examinations. A molecular docking study was attained to explore MH binding to mTOR, JNK, the kinase domain of IRE1-α, and IP3R. KEY FINDINGS MH decreased weight loss and motor dysfunction using open field and rotarod tests. It halted HD degenerative striatal neurons and nucleus/mitochondria ultra-microscopic alterations reflecting neuroprotection. Mechanistically, MH deactivated striatal mTOR/IRE1-α/XBP1s&JNK/IP3R, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase-3 signaling pathways, besides enhancing p-PGC-1α and p-VDAC1. WAG-4S was able to ameliorate all effects initiated by MH to different extents. Molecular docking simulations revealed promising binding patterns of MH and hence its potential inhibition of the studied proteins, especially mTOR, IP3R, and JNK. SIGNIFICANCE MH alleviated HD-associated ERS, MERC, mitophagy, and apoptosis. This is mainly achieved by combating the mTOR/IRE1-α signaling, IP3R/VDAC hub, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase 3 axis to be worsened by WAG-4S. Molecular docking simulations showed the promising binding of MH to mTOR and JNK as novel identified targets.
Collapse
Affiliation(s)
- Mohamed A El-Emam
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
30
|
Munshi S, Alarbi A, Zheng H, Kuplicki R, Burrows K, Figueroa-Hall L, Victor T, Aupperle R, Khalsa S, Paulus M, Teague TK, Savitz J. Increased expression of ER stress, inflammasome activation, and mitochondrial biogenesis-related genes in peripheral blood mononuclear cells in major depressive disorder. RESEARCH SQUARE 2024:rs.3.rs-3564760. [PMID: 38260352 PMCID: PMC10802690 DOI: 10.21203/rs.3.rs-3564760/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A subset of major depressive disorder (MDD) is characterized by immune system dysfunction, but the intracellular origin of these immune changes remains unclear. Here we tested the hypothesis that abnormalities in the endoplasmic reticulum (ER) stress, inflammasome activity and mitochondrial biogenesis contribute to the development of systemic inflammation in MDD. RT-qPCR was used to measure mRNA expression of key organellar genes from peripheral blood mononuclear cells (PBMCs) isolated from 186 MDD and 67 healthy control (HC) subjects. The comparative CT (2-ΔΔCT) method was applied to quantify mRNA expression using GAPDH as the reference gene. After controlling for age, sex, BMI, and medication status using linear regression models, expression of the inflammasome (NLRC4 and NLRP3) and the ER stress (XBP1u, XBP1s, and ATF4) genes was found to be significantly increased in the MDD versus the HC group. After excluding outliers, expression of the inflammasome genes was no longer statistically significant but expression of the ER stress genes (XBP1u, XBP1s, and ATF4) and the mitochondrial biogenesis gene, MFN2, was significantly increased in the MDD group. ASC and MFN2 were positively correlated with serum C-reactive protein concentrations. The altered expression of inflammasome activation, ER stress, and mitochondrial biogenesis pathway components suggest that dysfunction of these organelles may play a role in the pathogenesis of MDD.
Collapse
|
31
|
Chevrollier A, Bonnard AA, Ruaud L, Gueguen N, Perrin L, Desquiret-Dumas V, Guimiot F, Becker PH, Levy J, Reynier P, Gaignard P. Homozygous MFN2 variants causing severe antenatal encephalopathy with clumped mitochondria. Brain 2024; 147:91-99. [PMID: 37804319 DOI: 10.1093/brain/awad347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
Pathogenic variants in the MFN2 gene are commonly associated with autosomal dominant (CMT2A2A) or recessive (CMT2A2B) Charcot-Marie-Tooth disease, with possible involvement of the CNS. Here, we present a case of severe antenatal encephalopathy with lissencephaly, polymicrogyria and cerebellar atrophy. Whole genome analysis revealed a homozygous deletion c.1717-274_1734 del (NM_014874.4) in the MFN2 gene, leading to exon 16 skipping and in-frame loss of 50 amino acids (p.Gln574_Val624del), removing the proline-rich domain and the transmembrane domain 1 (TM1). MFN2 is a transmembrane GTPase located on the mitochondrial outer membrane that contributes to mitochondrial fusion, shaping large mitochondrial networks within cells. In silico modelling showed that the loss of the TM1 domain resulted in a drastically altered topological insertion of the protein in the mitochondrial outer membrane. Fetus fibroblasts, investigated by fluorescent cell imaging, electron microscopy and time-lapse recording, showed a sharp alteration of the mitochondrial network, with clumped mitochondria and clusters of tethered mitochondria unable to fuse. Multiple deficiencies of respiratory chain complexes with severe impairment of complex I were also evidenced in patient fibroblasts, without involvement of mitochondrial DNA instability. This is the first reported case of a severe developmental defect due to MFN2 deficiency with clumped mitochondria.
Collapse
Affiliation(s)
- Arnaud Chevrollier
- MitoVasc Unit, INSERM U1083, CNRS 6015, SFR-ICAT, Angers University, MitoLab Team, 49000 Angers, France
| | - Adeline Alice Bonnard
- Department of Genetics, APHP Nord, Robert Debré University Hospital, 75019 Paris, France
- INSERM UMR 1131, Saint-Louis Research Institute, Paris University, 75010 Paris, France
| | - Lyse Ruaud
- Department of Genetics, APHP Nord, Robert Debré University Hospital, 75019 Paris, France
- INSERM UMR 1141, Paris-Cité University, NeuroDiderot, 75019 Paris, France
| | - Naïg Gueguen
- MitoVasc Unit, INSERM U1083, CNRS 6015, SFR-ICAT, Angers University, MitoLab Team, 49000 Angers, France
- Department of Biochemistry and Molecular biology, Angers University Hospital, 49000 Angers, France
| | - Laurence Perrin
- Department of Genetics, APHP Nord, Robert Debré University Hospital, 75019 Paris, France
| | - Valérie Desquiret-Dumas
- MitoVasc Unit, INSERM U1083, CNRS 6015, SFR-ICAT, Angers University, MitoLab Team, 49000 Angers, France
- Department of Biochemistry and Molecular biology, Angers University Hospital, 49000 Angers, France
| | - Fabien Guimiot
- INSERM UMR 1141, Paris-Cité University, NeuroDiderot, 75019 Paris, France
- Genetic department, CHU Robert Debre, Fetal Pathology Unit, 75019 Paris, France
| | - Pierre-Hadrien Becker
- Multi-site medical biology laboratory SeqOIA-FMG2025, 75014 Paris, France
- APHP Paris-Saclay, Department of Biochemistry, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, 94275 Le Kremlin-Bicêtre, France
| | - Jonathan Levy
- Department of Genetics, APHP Nord, Robert Debré University Hospital, 75019 Paris, France
- Multi-site medical biology laboratory SeqOIA-FMG2025, 75014 Paris, France
| | - Pascal Reynier
- MitoVasc Unit, INSERM U1083, CNRS 6015, SFR-ICAT, Angers University, MitoLab Team, 49000 Angers, France
- Department of Biochemistry and Molecular biology, Angers University Hospital, 49000 Angers, France
| | - Pauline Gaignard
- Multi-site medical biology laboratory SeqOIA-FMG2025, 75014 Paris, France
- APHP Paris-Saclay, Department of Biochemistry, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, 94275 Le Kremlin-Bicêtre, France
| |
Collapse
|
32
|
Makio T, Simmen T. Not So Rare: Diseases Based on Mutant Proteins Controlling Endoplasmic Reticulum-Mitochondria Contact (MERC) Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241261228. [PMID: 39070058 PMCID: PMC11273598 DOI: 10.1177/25152564241261228] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/30/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs), also called endoplasmic reticulum (ER)-mitochondria contact sites (ERMCS), are the membrane domains, where these two organelles exchange lipids, Ca2+ ions, and reactive oxygen species. This crosstalk is a major determinant of cell metabolism, since it allows the ER to control mitochondrial oxidative phosphorylation and the Krebs cycle, while conversely, it allows the mitochondria to provide sufficient ATP to control ER proteostasis. MERC metabolic signaling is under the control of tethers and a multitude of regulatory proteins. Many of these proteins have recently been discovered to give rise to rare diseases if their genes are mutated. Surprisingly, these diseases share important hallmarks and cause neurological defects, sometimes paired with, or replaced by skeletal muscle deficiency. Typical symptoms include developmental delay, intellectual disability, facial dysmorphism and ophthalmologic defects. Seizures, epilepsy, deafness, ataxia, or peripheral neuropathy can also occur upon mutation of a MERC protein. Given that most MERC tethers and regulatory proteins have secondary functions, some MERC protein-based diseases do not fit into this categorization. Typically, however, the proteins affected in those diseases have dominant functions unrelated to their roles in MERCs tethering or their regulation. We are discussing avenues to pharmacologically target genetic diseases leading to MERC defects, based on our novel insight that MERC defects lead to common characteristics in rare diseases. These shared characteristics of MERCs disorders raise the hope that they may allow for similar treatment options.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
Franchino CA, Motori E, Bergami M. Janus-faced Mitofusin 2 (MFN2): mitochondria-endoplasmic reticulum shaping and tethering functions unveiled. Signal Transduct Target Ther 2024; 9:4. [PMID: 38161206 PMCID: PMC10757993 DOI: 10.1038/s41392-023-01730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Affiliation(s)
- Camilla Aurora Franchino
- Institute for Biochemistry, University of Cologne, 50674, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Elisa Motori
- Institute for Biochemistry, University of Cologne, 50674, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine, 50931, Cologne, Germany.
| | - Matteo Bergami
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine, 50931, Cologne, Germany.
| |
Collapse
|
34
|
Wang Y, Dai X, Li H, Jiang H, Zhou J, Zhang S, Guo J, Shen L, Yang H, Lin J, Yan H. The role of mitochondrial dynamics in disease. MedComm (Beijing) 2023; 4:e462. [PMID: 38156294 PMCID: PMC10753647 DOI: 10.1002/mco2.462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023] Open
Abstract
Mitochondria are multifaceted and dynamic organelles regulating various important cellular processes from signal transduction to determining cell fate. As dynamic properties of mitochondria, fusion and fission accompanied with mitophagy, undergo constant changes in number and morphology to sustain mitochondrial homeostasis in response to cell context changes. Thus, the dysregulation of mitochondrial dynamics and mitophagy is unsurprisingly related with various diseases, but the unclear underlying mechanism hinders their clinical application. In this review, we summarize the recent developments in the molecular mechanism of mitochondrial dynamics and mitophagy, particularly the different roles of key components in mitochondrial dynamics in different context. We also summarize the roles of mitochondrial dynamics and target treatment in diseases related to the cardiovascular system, nervous system, respiratory system, and tumor cell metabolism demanding high-energy. In these diseases, it is common that excessive mitochondrial fission is dominant and accompanied by impaired fusion and mitophagy. But there have been many conflicting findings about them recently, which are specifically highlighted in this view. We look forward that these findings will help broaden our understanding of the roles of the mitochondrial dynamics in diseases and will be beneficial to the discovery of novel selective therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Xinyan Dai
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Hui Li
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huiling Jiang
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Junfu Zhou
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Shiying Zhang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jiacheng Guo
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Lidu Shen
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huantao Yang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jie Lin
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Hengxiu Yan
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| |
Collapse
|
35
|
Deng X, Xu H, Pan C, Hao X, Liu J, Shang X, Chi R, Hou W, Xu T. Moderate mechanical strain and exercise reduce inflammation and excessive autophagy in osteoarthritis by downregulating mitofusin 2. Life Sci 2023; 332:122020. [PMID: 37579836 DOI: 10.1016/j.lfs.2023.122020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
AIMS The major pathological mechanisms of osteoarthritis (OA) progression include inflammation, autophagy, and apoptosis, etc. Moderate mechanical strain and exercise effectively improve chondrocyte degeneration by reducing these adverse factors. Mitofusin 2 (MFN2) is a crucial regulatory factor associated with inflammation, autophagy and apoptosis, and its expression is regulated by exercise. This study aims to elucidate the effects of moderate mechanical strain and exercise on MFN2 expression and its influence on OA progression. MAIN METHODS Destabilization of the medial meniscus (DMM) surgery was performed on rats to induce an OA rat model. Subsequently, adeno-associated virus (overexpression/knockdown) intra-articular injection or moderate treadmill exercise was administered to evaluate the effects of these treatments on MFN2 expression and OA progression. Overexpressed plasmids and siRNA vectors were used to regulate MFN2 expression in chondrocytes. An inflammatory degeneration cell model was generated by IL-1β stimulation. Moderate mechanical strain was applied to MFN2-overexpressing cells to explore their interactions. KEY FINDINGS MFN2 overexpression aggravated inflammation by activating the NF-κB and P38 pathways and induced excessive autophagy by inhibiting the PI3K/AKT/mTOR pathway, thereby causing chondrocyte apoptosis and metabolic disorder. Moderate mechanical strain partially reversed these adverse effects. In the DMM rat model, MFN2 overexpression in articular cartilage exacerbated OA progression, whereas MFN2 knockdown and treadmill exercise alleviated cartilage degeneration, inflammation, and mechanical pain. SIGNIFICANCE MFN2 is a critical factor mediating the association between inflammation and excessive autophagy in OA progression. Moderate mechanical strain and treadmill exercise may improve OA through downregulating MFN2 expression. This study may provide a theoretical basis for exercise therapy in OA treatment.
Collapse
Affiliation(s)
- Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xingru Shang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
36
|
Curieses Andrés CM, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. From reactive species to disease development: Effect of oxidants and antioxidants on the cellular biomarkers. J Biochem Mol Toxicol 2023; 37:e23455. [PMID: 37437103 DOI: 10.1002/jbt.23455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases. Exposure to elevated levels of free radicals can cause molecular structural impact on proteins, lipids, and DNA, as well as functional alteration of enzyme homeostasis, leading to aberrations in gene expression. Endogenous depletion of antioxidant enzymes can be mitigated using exogenous antioxidants. The current interest in the use of exogenous antioxidants as adjunctive agents for the treatment of human diseases allows a better understanding of these diseases, facilitating the development of new therapeutic agents with antioxidant activity to improve the treatment of various diseases. Here we examine the role that RS play in the initiation of disease and in the reactivity of free radicals and RS in organic and inorganic cellular components.
Collapse
Affiliation(s)
| | | | - Celia Andrés Juan
- Department of Organic Chemistry, Cinquima Institute, Faculty of Sciences, Valladolid University, Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, Madrid, Spain
| | | |
Collapse
|
37
|
Wong YC, Jayaraj ND, Belton TB, Shum GC, Ball HE, Ren D, Tadenev ALD, Krainc D, Burgess RW, Menichella DM. Misregulation of mitochondria-lysosome contact dynamics in Charcot-Marie-Tooth Type 2B disease Rab7 mutant sensory peripheral neurons. Proc Natl Acad Sci U S A 2023; 120:e2313010120. [PMID: 37878717 PMCID: PMC10622892 DOI: 10.1073/pnas.2313010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023] Open
Abstract
Inter-organelle contact sites between mitochondria and lysosomes mediate the crosstalk and bidirectional regulation of their dynamics in health and disease. However, mitochondria-lysosome contact sites and their misregulation have not been investigated in peripheral sensory neurons. Charcot-Marie-Tooth type 2B disease is an autosomal dominant axonal neuropathy affecting peripheral sensory neurons caused by mutations in the GTPase Rab7. Using live super-resolution and confocal time-lapse microscopy, we showed that mitochondria-lysosome contact sites dynamically form in the soma and axons of peripheral sensory neurons. Interestingly, Charcot-Marie-Tooth type 2B mutant Rab7 led to prolonged mitochondria-lysosome contact site tethering preferentially in the axons of peripheral sensory neurons, due to impaired Rab7 GTP hydrolysis-mediated contact site untethering. We further generated a Charcot-Marie-Tooth type 2B mutant Rab7 knock-in mouse model which exhibited prolonged axonal mitochondria-lysosome contact site tethering and defective downstream axonal mitochondrial dynamics due to impaired Rab7 GTP hydrolysis as well as fragmented mitochondria in the axon of the sciatic nerve. Importantly, mutant Rab7 mice further demonstrated preferential sensory behavioral abnormalities and neuropathy, highlighting an important role for mutant Rab7 in driving degeneration of peripheral sensory neurons. Together, this study identifies an important role for mitochondria-lysosome contact sites in the pathogenesis of peripheral neuropathy.
Collapse
Affiliation(s)
- Yvette C. Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Nirupa D. Jayaraj
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Tayler B. Belton
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - George C. Shum
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Hannah E. Ball
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Dongjun Ren
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | | | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Center for Neurogenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | | | - Daniela M. Menichella
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
38
|
Huang D, Chen S, Xiong D, Wang H, Zhu L, Wei Y, Li Y, Zou S. Mitochondrial Dynamics: Working with the Cytoskeleton and Intracellular Organelles to Mediate Mechanotransduction. Aging Dis 2023; 14:1511-1532. [PMID: 37196113 PMCID: PMC10529762 DOI: 10.14336/ad.2023.0201] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/01/2023] [Indexed: 05/19/2023] Open
Abstract
Cells are constantly exposed to various mechanical environments; therefore, it is important that they are able to sense and adapt to changes. It is known that the cytoskeleton plays a critical role in mediating and generating extra- and intracellular forces and that mitochondrial dynamics are crucial for maintaining energy homeostasis. Nevertheless, the mechanisms by which cells integrate mechanosensing, mechanotransduction, and metabolic reprogramming remain poorly understood. In this review, we first discuss the interaction between mitochondrial dynamics and cytoskeletal components, followed by the annotation of membranous organelles intimately related to mitochondrial dynamic events. Finally, we discuss the evidence supporting the participation of mitochondria in mechanotransduction and corresponding alterations in cellular energy conditions. Notable advances in bioenergetics and biomechanics suggest that the mechanotransduction system composed of mitochondria, the cytoskeletal system, and membranous organelles is regulated through mitochondrial dynamics, which may be a promising target for further investigation and precision therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Stergachis AB, Blue EE, Gillentine MA, Wang LK, Schwarze U, Cortés AS, Ranchalis J, Allworth A, Bland AE, Chanprasert S, Chen J, Doherty D, Folta AB, Glass I, Horike-Pyne M, Huang AY, Khan AT, Leppig KA, Miller DE, Mirzaa G, Parhin A, Raskind WH, Rosenthal EA, Sheppeard S, Strohbehn S, Sybert VP, Tran TT, Wener MH, Byers PHH, Nelson SF, Bamshad MJ, Dipple KM, Jarvik GP, Hoppins S, Hisama FM. Full-length Isoform Sequencing for Resolving the Molecular Basis of Charcot-Marie-Tooth 2A. Neurol Genet 2023; 9:e200090. [PMID: 37560121 PMCID: PMC10409571 DOI: 10.1212/nxg.0000000000200090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/05/2023] [Indexed: 08/11/2023]
Abstract
Objectives Transcript sequencing of patient-derived samples has been shown to improve the diagnostic yield for solving cases of suspected Mendelian conditions, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods We applied short-read and full-length transcript sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts the branch point critical for intron 6 splicing. Full-length long-read isoform complementary DNA (cDNA) sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates 5 distinct altered splicing transcripts. All 5 altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.
Collapse
Affiliation(s)
- Andrew B Stergachis
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Elizabeth E Blue
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Madelyn A Gillentine
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Lee-Kai Wang
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Ulrike Schwarze
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Adriana Sedeño Cortés
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Jane Ranchalis
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Aimee Allworth
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Austin E Bland
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Sirisak Chanprasert
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Jingheng Chen
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Daniel Doherty
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Andrew B Folta
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Ian Glass
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Martha Horike-Pyne
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Alden Y Huang
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Alyna T Khan
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Kathleen A Leppig
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Danny E Miller
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Ghayda Mirzaa
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Azma Parhin
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Wendy H Raskind
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Elisabeth A Rosenthal
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Sam Sheppeard
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Samuel Strohbehn
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Virginia P Sybert
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Thao T Tran
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Mark H Wener
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Peter H H Byers
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Stanley F Nelson
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Michael J Bamshad
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Katrina M Dipple
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Gail P Jarvik
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Suzanne Hoppins
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| | - Fuki M Hisama
- From the Department of Medicine (A.B.S., E.E.B., A.S.C., J.R., A.A., A.E.B., S.C., A.B.F., M.H.-P., A.P., W.H.R., E.A.R., S. Sheppeard, S. Strohbehn, V.P.S., P.H.H.B., G.P.J., F.M.H.), Genome Sciences (A.B.S., G.P.J.), University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine (A.B.S., E.E.B., D.D., I.G., D.E.M., G.M., M.J.B., K.M.D., G.P.J., F.M.H.); University of Washington (E.E.B., J.C., A.T.K.), Institute of Public Health Genetics; Department of Laboratories (M.A.G.), Seattle Children's Hospital, WA; Institute for Precision Health (L.-K.W., A.Y.H., S.F.N.), David Geffen School of Medicine, University of California Los Angeles; Department of Laboratory Medicine and Pathology (U.S., D.E.M., T.T.T., M.H.W., P.H.H.B.), University of Washington School of Medicine; Department of Pediatrics (D.D., I.G., D.E.M., G.M., M.J.B., K.M.D.), Department of Biostatistics (A.T.K.), University of Washington; Group Health Cooperative (K.A.L.), Kaiser Permanente Washington; Seattle Children's Research Institute (G.M.), Center for Integrative Brain Research; and Department of Biochemistry (S.H.), University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
40
|
Fung TS, Chakrabarti R, Higgs HN. The multiple links between actin and mitochondria. Nat Rev Mol Cell Biol 2023; 24:651-667. [PMID: 37277471 PMCID: PMC10528321 DOI: 10.1038/s41580-023-00613-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Actin plays many well-known roles in cells, and understanding any specific role is often confounded by the overlap of multiple actin-based structures in space and time. Here, we review our rapidly expanding understanding of actin in mitochondrial biology, where actin plays multiple distinct roles, exemplifying the versatility of actin and its functions in cell biology. One well-studied role of actin in mitochondrial biology is its role in mitochondrial fission, where actin polymerization from the endoplasmic reticulum through the formin INF2 has been shown to stimulate two distinct steps. However, roles for actin during other types of mitochondrial fission, dependent on the Arp2/3 complex, have also been described. In addition, actin performs functions independent of mitochondrial fission. During mitochondrial dysfunction, two distinct phases of Arp2/3 complex-mediated actin polymerization can be triggered. First, within 5 min of dysfunction, rapid actin assembly around mitochondria serves to suppress mitochondrial shape changes and to stimulate glycolysis. At a later time point, at more than 1 h post-dysfunction, a second round of actin polymerization prepares mitochondria for mitophagy. Finally, actin can both stimulate and inhibit mitochondrial motility depending on the context. These motility effects can either be through the polymerization of actin itself or through myosin-based processes, with myosin 19 being an important mitochondrially attached myosin. Overall, distinct actin structures assemble in response to diverse stimuli to affect specific changes to mitochondria.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
41
|
Hines TJ, Bailey J, Liu H, Guntur AR, Seburn KL, Pratt SL, Funke JR, Tarantino LM, Burgess RW. A Novel ENU-Induced Mfn2 Mutation Causes Motor Deficits in Mice without Causing Peripheral Neuropathy. BIOLOGY 2023; 12:953. [PMID: 37508383 PMCID: PMC10376023 DOI: 10.3390/biology12070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Mitochondrial fission and fusion are required for maintaining functional mitochondria. The mitofusins (MFN1 and MFN2) are known for their roles in mediating mitochondrial fusion. Recently, MFN2 has been implicated in other important cellular functions, such as mitophagy, mitochondrial motility, and coordinating endoplasmic reticulum-mitochondria communication. In humans, over 100 MFN2 mutations are associated with a form of inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 2A (CMT2A). Here we describe an ENU-induced mutant mouse line with a recessive neuromuscular phenotype. Behavioral screening showed progressive weight loss and rapid deterioration of motor function beginning at 8 weeks. Mapping and sequencing revealed a missense mutation in exon 18 of Mfn2 (T1928C; Leu643Pro), within the transmembrane domain. Compared to wild-type and heterozygous littermates, Mfn2L643P/L643P mice exhibited diminished rotarod performance and decreases in activity in the open field test, muscular endurance, mean mitochondrial diameter, sensory tests, mitochondrial DNA content, and MFN2 protein levels. However, tests of peripheral nerve physiology and histology were largely normal. Mutant leg bones had reduced cortical bone thickness and bone area fraction. Together, our data indicate that Mfn2L643P causes a recessive motor phenotype with mild bone and mitochondrial defects in mice. Lack of apparent nerve pathology notwithstanding, this is the first reported mouse model with a mutation in the transmembrane domain of the protein, which may be valuable for researchers studying MFN2 biology.
Collapse
Affiliation(s)
| | - Janice Bailey
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hedi Liu
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Health Institute for Research, Scarborough, ME 04074, USA
| | | | - Samia L Pratt
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Jonathan R Funke
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Lisa M Tarantino
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
42
|
Dhureja M, Arthur R, Soni D, Upadhayay S, Temgire P, Kumar P. Calcium channelopathies in neurodegenerative disorder: an untold story of RyR and SERCA. Expert Opin Ther Targets 2023; 27:1159-1172. [PMID: 37971192 DOI: 10.1080/14728222.2023.2277863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Recent neuroscience breakthroughs have shed light on the sophisticated relationship between calcium channelopathies and movement disorders, exposing a previously undiscovered tale focusing on the Ryanodine Receptor (RyR) and the Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA). Calcium signaling mainly orchestrates neural communication, which regulates synaptic transmission and total network activity. It has been determined that RyR play a significant role in managing neuronal functions, most notably in releasing intracellular calcium from the endoplasmic reticulum. AREAS COVERED It highlights the involvement of calcium channels such as RyR and SERCA in physiological and pathophysiological conditions. EXPERT OPINION Links between RyR and SERCA activity dysregulation, aberrant calcium levels, motor and cognitive dysfunction have brought attention to the importance of RyR and SERCA modulation in neurodegenerative disorders. Understanding the obscure function of these proteins will open up new therapeutic possibilities to address the underlying causes of neurodegenerative diseases. The unreported RyR and SERCA narrative broadens the understanding of calcium channelopathies in movement disorders and calls for more research into cutting-edge therapeutic approaches.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pooja Temgire
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
43
|
Zaninello M, Bean C. Highly Specialized Mechanisms for Mitochondrial Transport in Neurons: From Intracellular Mobility to Intercellular Transfer of Mitochondria. Biomolecules 2023; 13:938. [PMID: 37371518 DOI: 10.3390/biom13060938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The highly specialized structure and function of neurons depend on a sophisticated organization of the cytoskeleton, which supports a similarly sophisticated system to traffic organelles and cargo vesicles. Mitochondria sustain crucial functions by providing energy and buffering calcium where it is needed. Accordingly, the distribution of mitochondria is not even in neurons and is regulated by a dynamic balance between active transport and stable docking events. This system is finely tuned to respond to changes in environmental conditions and neuronal activity. In this review, we summarize the mechanisms by which mitochondria are selectively transported in different compartments, taking into account the structure of the cytoskeleton, the molecular motors and the metabolism of neurons. Remarkably, the motor proteins driving the mitochondrial transport in axons have been shown to also mediate their transfer between cells. This so-named intercellular transport of mitochondria is opening new exciting perspectives in the treatment of multiple diseases.
Collapse
Affiliation(s)
- Marta Zaninello
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Camilla Bean
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
44
|
Couly S, Yasui Y, Su TP. SIGMAR1 Confers Innate Resilience against Neurodegeneration. Int J Mol Sci 2023; 24:ijms24097767. [PMID: 37175473 PMCID: PMC10178636 DOI: 10.3390/ijms24097767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The sigma-1 receptor (SIGMAR1) is one of a kind: a receptor chaperone protein. This 223 amino acid-long protein is enriched at the mitochondria-associated endoplasmic reticulum membrane (MAM), a specialized microdomain of the endoplasmic reticulum that is structurally and functionally connected to the mitochondria. As a receptor, SIGMAR1 binds a wide spectrum of ligands. Numerous molecules targeting SIGMAR1 are currently in pre-clinical or clinical development. Interestingly, the range of pathologies covered by these studies is broad, especially with regard to neurodegenerative disorders. Upon activation, SIGMAR1 can translocate and interact with other proteins, mostly at the MAM but also in other organelles, which allows SIGMAR1 to affect many cellular functions. During these interactions, SIGMAR1 exhibits chaperone protein behavior by participating in the folding and stabilization of its partner. In this short communication, we will shed light on how SIGMAR1 confers protection against neurodegeneration to the cells of the nervous system and why this ability makes SIGMAR1 a multifunctional therapeutic prospect.
Collapse
Affiliation(s)
- Simon Couly
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| |
Collapse
|
45
|
Kiriyama Y, Nochi H. Role of Microbiota-Modified Bile Acids in the Regulation of Intracellular Organelles and Neurodegenerative Diseases. Genes (Basel) 2023; 14:825. [PMID: 37107583 PMCID: PMC10137455 DOI: 10.3390/genes14040825] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Bile acids (BAs) are amphiphilic steroidal molecules generated from cholesterol in the liver and facilitate the digestion and absorption of fat-soluble substances in the gut. Some BAs in the intestine are modified by the gut microbiota. Because BAs are modified in a variety of ways by different types of bacteria present in the gut microbiota, changes in the gut microbiota can affect the metabolism of BAs in the host. Although most BAs absorbed from the gut are transferred to the liver, some are transferred to the systemic circulation. Furthermore, BAs have also been detected in the brain and are thought to migrate into the brain through the systemic circulation. Although BAs are known to affect a variety of physiological functions by acting as ligands for various nuclear and cell-surface receptors, BAs have also been found to act on mitochondria and autophagy in the cell. This review focuses on the BAs modified by the gut microbiota and their roles in intracellular organelles and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
- Institute of Neuroscience, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| |
Collapse
|
46
|
Shahin S, Lu B, Zhou Y, Xu H, Chetsawang J, Baloh RH, Wang S. MFN1 augmentation prevents retinal degeneration in a Charcot-Marie-Tooth type 2A mouse model. iScience 2023; 26:106270. [PMID: 36936780 PMCID: PMC10014277 DOI: 10.1016/j.isci.2023.106270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/30/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Charcot-Marie-Tooth disease type 2A (CMT2A), the most common inherited peripheral axonal neuropathy, is associated with more than 100 dominant mutations, including R94Q as the most abundant mutation in the Mitofusin2 (MFN2) gene. CMT2A is characterized by progressive motor and sensory loss, color-vision defects, and progressive loss of visual acuity. We used a well-established transgenic mouse model of CMT2A with R94Q mutation on MFN2 gene (MFN2 R94Q ) to investigate the functional and morphological changes in retina. We documented extensive vision loss due to photoreceptor degeneration, retinal ganglion cell and their axonal loss, retinal secondary neuronal and synaptic alternation, and Müller cell gliosis in the retina of MFN2 R94Q mice. Imbalanced MFN1/MFN2 ratio and dysregulated mitochondrial fusion/fission result in retinal degeneration via P62/LC3B-mediated mitophagy/autophagy in MFN2 R94Q mice. Finally, transgenic MFN1 augmentation (MFN2 R94Q :MFN1) rescued vision and retinal morphology to wild-type level via restoring homeostasis in mitochondrial MFN1/MFN2 ratio, fusion/fission cycle, and PINK1-dependent, Parkin-independent mitophagy.
Collapse
Affiliation(s)
- Saba Shahin
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yueqin Zhou
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hui Xu
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jason Chetsawang
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert H. Baloh
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Corresponding author
| |
Collapse
|
47
|
Kulkarni PG, Mohire VM, Bhaisa PK, Joshi MM, Puranik CM, Waghmare PP, Banerjee T. Mitofusin-2: Functional switch between mitochondrial function and neurodegeneration. Mitochondrion 2023; 69:116-129. [PMID: 36764501 DOI: 10.1016/j.mito.2023.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/07/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Mitochondria are highly dynamic organelles known to play role in the regulation of several cellular biological processes. However, their dynamics such as number, shape, and biological functions are regulated by mitochondrial fusion and fission process. The balance between the fusion and fission process is most important for the maintenance of mitochondrial structure as well as cellular functions. The alterations within mitochondrial dynamic processes were found to be associated with the progression of neurodegenerative diseases. In recent years, mitofusin-2 (Mfn2), a GTPase has emerged as a multifunctional protein which not only is found to regulate the mitochondrial fusion-fission process but also known to regulate several cellular functions such as mitochondrial metabolism, cellular biogenesis, signalling, and apoptosis via maintaining the ER-mitochondria contact sites. In this review, we summarize the current knowledge of the structural and functional properties of the Mfn2, its transcriptional regulation and their roles in several cellular functions with a focus on current advances in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Vaibhavi M Mohire
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Pooja K Bhaisa
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Mrudula M Joshi
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Chitranshi M Puranik
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Pranjal P Waghmare
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Tanushree Banerjee
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India; Infosys Ltd., SEZ unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra 411057, India.
| |
Collapse
|
48
|
Yang L, Ao Y, Li Y, Dai B, Li J, Duan W, Gao W, Zhao Z, Han Z, Guo R. Morinda officinalis oligosaccharides mitigate depression-like behaviors in hypertension rats by regulating Mfn2-mediated mitophagy. J Neuroinflammation 2023; 20:31. [PMID: 36765376 PMCID: PMC9912533 DOI: 10.1186/s12974-023-02715-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
OBJECTIVE Patients with hypertension have a risk of depression. Morinda officinalis oligosaccharides (MOOs) have anti-depressant properties. In this study, we aimed to determine whether MOOs can improve the symptoms of depression in individuals with hypertension. METHODS Dahl salt-sensitive rats fed with a high-salt diet were stimulated by chronic unpredictable mild stress to mimic hypertension with depression. Primary astrocytes and neurons were isolated from these rats. Astrocytes underwent LPS stimulation to simulate the inflammatory astrocytes during depression. MOOs were administrated at 0.1 mg/g/day in vivo and 1.25, 2.5, and 5 mg/mL in vitro. Mitophagy was inhibited using 5 mM 3-methyladenine (3-MA). Astrocyte-mediated neurotoxicity was detected by co-culturing astrocytes and neurons. RESULTS MOOs decreased systolic pressure, diastolic pressure, and mean arterial pressure, thereby improving depression-like behavior, including behavioral despair, lack of enthusiasm, and loss of pleasure during hypertension with depression. Furthermore, MOOs inhibited inflammation, astrocytic dysfunction, and mitochondrial damage in the brain. Then, MOOs promoted autophagosome and lysosome enriched in mitochondria in LPS-stimulated astrocytes. MOOs suppressed mitochondrial damage and the release of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β in astrocytes undergoing LPS stimulation. Importantly, MOOs rescued the impaired neurons co-cultured with astrocytes. The effects of MOOs on LPS-stimulated astrocytes were reversed by 3-MA. Finally, MOOs upregulated LPS-downregulated Mfn2 expression in astrocytes. Mfn2 inhibition partly reversed the effects of MOOs on hypertension with depression. Intriguingly, Mfn2 suppression activated PI3K/Akt/mTOR pathway during MOOs treatment. CONCLUSIONS Astrocytes develop neuroinflammation in response to mitochondrial damage during hypertension with depression. MOOs upregulated Mfn2 expression to activate the PI3K/Akt/mTOR pathway-mediated mitophagy, thereby removing impaired mitochondria in astrocytes. HIGHLIGHTS 1. MOOs have anti-hypertensive and anti-depressive properties. 2. MOOs inhibit inflammation and injury in astrocytes during hypertension with depression. 3. MOOs induce mitophagy activation in inflammatory astrocytes with mitochondrial damage. 4. MOOs upregulate Mfn2 expression in astrocytes. 5. Mfn2 activates mitophagy to resist mitochondrial damage in astrocytes.
Collapse
Affiliation(s)
- Lixuan Yang
- grid.24695.3c0000 0001 1431 9176Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029 People’s Republic of China
| | - Yutian Ao
- grid.24695.3c0000 0001 1431 9176Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029 People’s Republic of China
| | - Yannan Li
- grid.24695.3c0000 0001 1431 9176Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029 People’s Republic of China
| | - Baoan Dai
- grid.24695.3c0000 0001 1431 9176Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029 People’s Republic of China
| | - Jingchun Li
- grid.24695.3c0000 0001 1431 9176Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029 People’s Republic of China
| | - Wenzhe Duan
- grid.24695.3c0000 0001 1431 9176Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029 People’s Republic of China
| | - Wei Gao
- grid.12527.330000 0001 0662 3178Department of Clinical Psychology, Yuquan Hospital of Tsinghua University, Beijing, 100049 People’s Republic of China
| | - Zhonghui Zhao
- grid.24695.3c0000 0001 1431 9176Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029 People’s Republic of China ,grid.452402.50000 0004 1808 3430Department of Traditional Chinese Medicice, Qilu Hospital of Shandong University, Jinan, 250012 Shandong People’s Republic of China
| | - Zhenyun Han
- grid.24695.3c0000 0001 1431 9176Department of Neurology, Shenzhen Hospital of Beijing University of Chinese Medicine, Shenzhen, 518110 Guangdong People’s Republic of China
| | - Rongjuan Guo
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, No.6, Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, People's Republic of China.
| |
Collapse
|
49
|
Stergachis AB, Blue EE, Gillentine MA, Wang LK, Schwarze U, Cortés AS, Ranchalis J, Allworth A, Bland AE, Chanprasert S, Chen J, Doherty D, Folta AB, Glass I, Horike-Pyne M, Huang AY, Khan AT, Leppig KA, Miller DE, Mirzaa G, Parhin A, Raskind W, Rosenthal EA, Sheppeard S, Strohbehn S, Sybert VP, Tran TT, Wener M, Byers PH, Nelson SF, Bamshad MJ, Dipple KM, Jarvik GP, Hoppins S, Hisama FM. Full-length isoform sequencing for resolving the molecular basis of Charcot-Marie-Tooth 2A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.526487. [PMID: 36798371 PMCID: PMC9934537 DOI: 10.1101/2023.02.07.526487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Objectives Transcript sequencing of patient derived samples has been shown to improve the diagnostic yield for solving cases of likely Mendelian disorders, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods We applied short-read and full-length isoform cDNA sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts a branch point critical for intron 6 spicing. Full-length long-read isoform cDNA sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates five distinct altered splicing transcripts. All five altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 protein levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.
Collapse
Affiliation(s)
- Andrew B Stergachis
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
- University of Washington School of Medicine, Genome Sciences, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Elizabeth E Blue
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington, Institute of Public Health Genetics, Seattle, WA, USA
| | | | - Lee-Kai Wang
- Institute for Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Ulrike Schwarze
- University of Washington School of Medicine, Department of Laboratory Medicine and Pathology, Seattle, WA, USA
| | - Adriana Sedeño Cortés
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Jane Ranchalis
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Aimee Allworth
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Austin E Bland
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Sirisak Chanprasert
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Jingheng Chen
- University of Washington, Institute of Public Health Genetics, Seattle, WA, USA
| | - Daniel Doherty
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington, Department of Pediatrics, Seattle, WA, USA
| | - Andrew B Folta
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Ian Glass
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington, Department of Pediatrics, Seattle, WA, USA
| | - Martha Horike-Pyne
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Alden Y Huang
- Institute for Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Alyna T Khan
- University of Washington, Institute of Public Health Genetics, Seattle, WA, USA
- University of Washington, Department of Biostatistics, Seattle, WA, USA
| | - Kathleen A Leppig
- Group Health Cooperative, Kaiser Permanente Washington, Seattle, WA, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington School of Medicine, Department of Laboratory Medicine and Pathology, Seattle, WA, USA
- University of Washington, Department of Pediatrics, Seattle, WA, USA
| | - Ghayda Mirzaa
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington, Department of Pediatrics, Seattle, WA, USA
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Azma Parhin
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Wendy Raskind
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Elisabeth A Rosenthal
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Sam Sheppeard
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Samuel Strohbehn
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Virginia P Sybert
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Thao T Tran
- University of Washington School of Medicine, Department of Laboratory Medicine and Pathology, Seattle, WA, USA
| | - Mark Wener
- University of Washington School of Medicine, Department of Laboratory Medicine and Pathology, Seattle, WA, USA
| | - Peter H Byers
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
- University of Washington School of Medicine, Department of Laboratory Medicine and Pathology, Seattle, WA, USA
| | - Stanley F Nelson
- Institute for Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington, Department of Pediatrics, Seattle, WA, USA
| | - Katrina M Dipple
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington, Department of Pediatrics, Seattle, WA, USA
| | - Gail P Jarvik
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
- University of Washington School of Medicine, Genome Sciences, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Suzanne Hoppins
- University of Washington School of Medicine, Department of Biochemistry, Seattle, WA, USA
| | - Fuki M Hisama
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| |
Collapse
|
50
|
Pero ME, Chowdhury F, Bartolini F. Role of tubulin post-translational modifications in peripheral neuropathy. Exp Neurol 2023; 360:114274. [PMID: 36379274 PMCID: PMC11320756 DOI: 10.1016/j.expneurol.2022.114274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Peripheral neuropathy is a common disorder that results from nerve damage in the periphery. The degeneration of sensory axon terminals leads to changes or loss of sensory functions, often manifesting as debilitating pain, weakness, numbness, tingling, and disability. The pathogenesis of most peripheral neuropathies remains to be fully elucidated. Cumulative evidence from both early and recent studies indicates that tubulin damage may provide a common underlying mechanism of axonal injury in various peripheral neuropathies. In particular, tubulin post-translational modifications have been recently implicated in both toxic and inherited forms of peripheral neuropathy through regulation of axonal transport and mitochondria dynamics. This knowledge forms a new area of investigation with the potential for developing therapeutic strategies to prevent or delay peripheral neuropathy by restoring tubulin homeostasis.
Collapse
Affiliation(s)
- Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University, New York, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Farihah Chowdhury
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|