1
|
da Cruz PD, Santos BR, Spritzer PM. Hemostatic parameters in transgender women receiving gender-affirming hormone therapy: A shift to a cisgender female pattern? PLoS One 2025; 20:e0323606. [PMID: 40367073 PMCID: PMC12077691 DOI: 10.1371/journal.pone.0323606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Transgender women have an increased incidence of venous thromboembolism (VTE) compared with cisgender individuals. However, data on hemostatic parameters in this population are scarce. We aimed to evaluate hemostatic parameters in transgender women receiving gender-affirming hormone therapy (GAHT) compared with cisgender controls. We conducted a cross-sectional study including 40 transgender women (sample size based on prior calculation), and age- and body mass index-matched cisgender women (n = 25) and cisgender men (n = 25) as controls. Blood samples were collected between 2016 and 2023. We assessed hemostatic parameters (plasminogen activator inhibitor-1 [PAI-1], free protein S, vascular cell adhesion molecule-1, antithrombin, anticoagulant protein C, prothrombin time activity, thrombin time), hormonal profile (estradiol, sex hormone-binding globulin, estrogen dose, total testosterone, and free androgen index), and inflammatory markers (fibrinogen, C-reactive protein, and leukocyte count). Transgender women (mean [SD] age, 30.6 [8.0] years; median GAHT duration, 36.5 months) and cisgender women had similar hemostatic and inflammatory parameters. Compared with cisgender men, transgender women had higher PAI-1 levels (p = 0.001) and lower free protein S levels (p = 0.023). No differences were found in other hemostatic parameters between the groups. In conclusion, transgender women on long-term GAHT had higher levels of PAI-1 and lower levels of free protein S than cisgender men, indicating a slightly more prothrombotic profile. However, their hemostatic and inflammatory parameters were similar to those of cisgender women, suggesting a shift towards a female pattern. Factors beyond GAHT may contribute to the increased risk of VTE in this population.
Collapse
Affiliation(s)
- Paloma Dias da Cruz
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul (RS), Brazil
- Post-Graduate Program in Endocrinology, Medicine School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Betânia Rodrigues Santos
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul (RS), Brazil
- Department of Physiology and Post-Graduate Program in Physiology, UFRGS, Porto Alegre, RS, Brazil
| | - Poli Mara Spritzer
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul (RS), Brazil
- Post-Graduate Program in Endocrinology, Medicine School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Physiology and Post-Graduate Program in Physiology, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Bahr J, Poschmann G, Jungmann A, Busch M, Ding Z, Vogt J, Zalfen R, Steinhausen J, Euan Martínez AA, Wachtmeister T, Rickert D, Lautwein T, Alter C, Amrute JM, Lavine KJ, Köhrer K, Levkau B, Most P, Stühler K, Hesse J, Schrader J. A secretome atlas of cardiac fibroblasts from healthy and infarcted mouse hearts. Commun Biol 2025; 8:675. [PMID: 40301568 PMCID: PMC12041564 DOI: 10.1038/s42003-025-08083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/12/2025] [Indexed: 05/01/2025] Open
Abstract
Cardiac fibroblasts (CF) are key players after myocardial infarction (MI), but their signaling is only incompletely understood. Here we report a first secretome atlas of CF in control (cCF) and post-MI mouse hearts (miCF), combining a rapid cell isolation technique with SILAC and click chemistry. In CF, numerous paracrine factors involved in immune homeostasis are identified. Comparing secretome, transcriptome (SLAMseq), and cellular proteome disclose protein turnover. In miCF at day 5 post-MI, significantly upregulated proteins include SLIT2, FN1, and CRLF1 in mouse and human samples. Comparing the miCF secretome at days 3 and 5 post-MI reveals the dynamic nature of protein secretion. Specific in-vivo labeling of miCF proteins via biotin ligase TurboID using the POSTN promotor mirrors the in-vitro data. In summary, we identify numerous paracrine factors specifically secreted from CF in mice and humans. This secretome atlas may lead to new biomarkers and/or therapeutic targets for the activated CF.
Collapse
Affiliation(s)
- Jasmin Bahr
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Jungmann
- Division of Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Busch
- Division of Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Zhaoping Ding
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jens Vogt
- Institute of Molecular Medicine III, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ria Zalfen
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Steinhausen
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arlen Aurora Euan Martínez
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Rickert
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Lautwein
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christina Alter
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Junedh M Amrute
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Most
- Division of Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Hesse
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Jürgen Schrader
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
3
|
Blackmon TJ, MacMahon JA, Bernardino PN, Hogans RE, Cheng MY, Vu J, Lee RD, Saito NH, Grodzki AC, Bruun DA, Wulff H, Woolard KD, Brooks-Kayal A, Harvey DJ, Gorin FA, Lein PJ. Spatiotemporal perturbations of the plasminogen activation system in a rat model of acute organophosphate intoxication. Acta Neuropathol Commun 2025; 13:62. [PMID: 40102979 PMCID: PMC11917081 DOI: 10.1186/s40478-025-01979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Neuroinflammation is widely posited to be a key pathogenic mechanism linking acute organophosphate (OP)-induced status epilepticus (SE) to persistent brain injury and abnormal electrical activity that contribute to epilepsy and cognitive impairment. The plasminogen activation system (PAS) promotes neuroinflammation in diverse neurological diseases but whether it is activated following acute OP intoxication has yet to be evaluated. To address this data gap, we characterized the spatiotemporal expression patterns of multiple components of the PAS in a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP). Adult male Sprague Dawley rats administered DFP (4 mg/kg, sc), atropine sulfate (2 mg/kg, im) and 2-pralidoxime (25 mg/kg, im) went into SE that persisted for hours. One day after acute DFP-induced SE, plasmin activity and protein concentrations of plasminogen activator inhibitor-1 (PAI-1) in the plasma were increased, though not significantly. In contrast, acute DFP intoxication significantly increased brain levels of PAI-1, tissue-type plasminogen activator (tPA), urokinase plasminogen activator (uPA), and transcripts of TGF-β in a time- and region-dependent manner. In the cortex and hippocampus, quantification of PAI-1, tPA, and uPA by ELISA indicated significantly increased levels at 1 day post-exposure (DPE). PAI-1 and uPA returned to control values by 7 DPE while tPA protein remained elevated at 28 DPE. Immunohistochemistry detected elevated PAI-1 expression in the DFP brain up to 28 DPE. Co-localization of PAI-1 with biomarkers of neurons, microglia, and astrocytes demonstrated that PAI-1 localized predominantly to a subpopulation of astrocytes. Cytologically, PAI-1 localized to astrocytic end feet, but not adjacent neurovascular endothelium. Electron microscopy revealed neuronal metabolic stress and neurodegeneration with disruption of adjacent neurovascular units in the hippocampus post-DFP exposure. These data indicate that acute DFP intoxication altered PAS expression in the brain, with aberrant PAI-1 expression in a subset of reactive astrocyte populations.
Collapse
Affiliation(s)
- Thomas J Blackmon
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jeremy A MacMahon
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Pedro N Bernardino
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Ryan E Hogans
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Mei-Yun Cheng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Joan Vu
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Ruth Diana Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Naomi H Saito
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Amy Brooks-Kayal
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Fredric A Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
- Molecular Biosciences, UC Davis School of Veterinary Medicine, 1089 Veterinary Research Drive, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Al Masoodi WTM, Radhi SW, Abdalsada HK, Niu M, Al-Hakeim HK, Maes M. Increased galanin-galanin receptor 1 signaling, inflammation, and insulin resistance are associated with affective symptoms and chronic fatigue syndrome due to long COVID. PLoS One 2025; 20:e0316373. [PMID: 40048451 PMCID: PMC11884674 DOI: 10.1371/journal.pone.0316373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/10/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Patients with Long COVID (LC) often experience neuropsychiatric symptoms such as depression, anxiety, and chronic fatigue syndrome (CFS), collectively referred to as the physio-affective phenome of LC. Activated immune-inflammatory pathways and insulin resistance significantly contribute to the physio-affective phenome associated with LC. METHODS In a cohort of 90 individuals, categorized into those with and without LC, we evaluated, 3-6 months following acute SARS-CoV-2 infection, the correlations between the Hamilton Depression (HAMD), Hamilton Anxiety (HAMA), and Fibro-Fatigue (FF) Rating Scale scores, and serum C-reactive protein (CRP), prostaglandin E2 (PGE2), galanin-galanin receptor 1 (GAL-GALR1) signaling, insulin resistance, insulin-like growth factor (IGF-1), plasminogen activator inhibitor-1 (PAI1), S100B and neuron-specific enolase (NSE). RESULTS HAMD, HAMA, FF scores, CRP, PGE2, GAL-GALR1 signaling, insulin resistance, PAI1, NSE, and S100B are all higher in people with LC compared to those without LC. The HAMD/HAMA/FF scores were significantly correlated with PGE, CRP, GAL, GALR1, insulin resistance, and PAI1 levels, and a composite score based on peak body temperature (PBT) - oxygen saturation (SpO2) (PBT/SpO2 index) during the acute infectious phase. A combination of biomarkers explained a large part of the variance in CFS and affective scores (33.6%-42.0%), with GAL-GALR1 signaling, PGE2, and CRP being the top 3 most important biomarkers. The inclusion of the PBT/SpO2 index increased the prediction (55.3%-67.1%). The PBT/SpO2 index predicted the increases in GAL-GALR1 signaling. CONCLUSION These results indicate that the CFS and affective symptoms that are linked to LC are the consequence of metabolic aberrations, activated immune-inflammatory pathways, and the severity of inflammation during the acute phase of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wasim Talib Mahdi Al Masoodi
- Department of Chemistry, College of Science, University of Kufa, Najaf, Iraq
- Department of Chemistry, Faculty of Medicine, University of Al-Ameed, Karbala, Iraq
| | - Sami Waheed Radhi
- Department of Chemistry, College of Science, University of Kufa, Najaf, Iraq
| | | | - Mengqi Niu
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | | | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, Dongdaemun-gu, Seoul, Korea
- Research and Innovation Program for the Development of MU – PLOVDIV–(SRIPD-MUP), Creation of a Network of Research Higher Schools, National Plan for Recovery and Sustainability, European Union – Next Generation EU, Plovdiv, Bulgaria
| |
Collapse
|
5
|
Rashki M, Ghasemzadeh Rahbardar M, Boskabady MH. Nutritional Advantages of Walnut ( Juglans regia L.) for Cardiovascular Diseases: A Comprehensive Review. Food Sci Nutr 2025; 13:e4526. [PMID: 39803290 PMCID: PMC11717060 DOI: 10.1002/fsn3.4526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/07/2024] [Accepted: 09/24/2024] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain one of the leading causes of morbidity and mortality worldwide. In recent years, the potential role of dietary interventions in preventing and managing CVDs has gained significant attention. Among these dietary components, walnuts (Juglans regia L.) have emerged as a promising candidate due to their unique nutrient profile and potential cardiovascular benefits. This review aims to provide a comprehensive analysis of the existing literature on the role of walnuts in cardiovascular health. Using databases from Scopus, Google Scholar, and PubMed, the most relevant in vitro, in vivo, and clinical trial research has been collected from the time of inception until 2024. Several studies have shown that walnut consumption has a positive effect on a variety of cardiovascular risk factors. Walnut bioactive ingredients, including omega-3 fatty acids, antioxidants, fiber, and polyphenols, have been demonstrated to improve lipid profiles, blood pressure, endothelial function, inflammation, oxidative stress, and thrombosis. These processes all contribute to the possible cardioprotective properties of walnuts. Epidemiological and clinical research indicates that daily walnut consumption can reduce the risk of CVDs like coronary heart disease and stroke. Walnuts may aid in managing CVDs through mechanisms such as enhancing lipid profiles, reducing inflammation, and improving overall cardiovascular function. This review highlights the potential role of walnuts as a dietary strategy for the prevention and management of CVDs. Further understanding of the mechanisms and long-term effects of walnut consumption is crucial for optimizing their therapeutic potential and integrating them into clinical practice. Future research should focus on elucidating specific dose-response relationships and exploring the synergistic effects of walnuts in combination with other dietary and lifestyle interventions.
Collapse
Affiliation(s)
- Mostafa Rashki
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | | | - Mohammad Hossein Boskabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
6
|
Wang W, Wang XM, Zhang HL, Zhao R, Wang Y, Zhang HL, Song ZJ. Molecular and metabolic landscape of adenosine triphosphate-induced cell death in cardiovascular disease. World J Cardiol 2024; 16:689-706. [PMID: 39734818 PMCID: PMC11669974 DOI: 10.4330/wjc.v16.i12.689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
The maintenance of intracellular and extracellular adenosine triphosphate (ATP) levels plays a pivotal role in cardiac function. In recent years, burgeoning attention has been directed towards ATP-induced cell death (AICD), revealing it as a distinct cellular demise pathway triggered by heightened extracellular ATP concentrations, distinguishing it from other forms of cell death such as apoptosis and necrosis. AICD is increasingly acknowledged as a critical mechanism mediating the pathogenesis and progression of various cardiovascular maladies, encompassing myocardial ischemia-reperfusion injury, sepsis-induced cardiomyopathy, hypertrophic cardiomyopathy, arrhythmia, and diabetic cardiomyopathy. Consequently, a comprehensive understanding of the molecular and metabolic underpinnings of AICD in cardiac tissue holds promise for the prevention and amelioration of cardiovascular diseases. This review first elucidates the vital physiological roles of ATP in the cardiovascular system, subsequently delving into the intricate molecular mechanisms and metabolic signatures governing AICD. Furthermore, it addresses the potential therapeutic targets implicated in mitigating AICD for treating cardiovascular diseases, while also delineating the current constraints and future avenues for these innovative therapeutic targets, thereby furnishing novel insights and strategies for the prevention and management of cardiovascular disorders.
Collapse
Affiliation(s)
- Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Xue-Mei Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 73000, Gansu Province, China
| | - Hao-Long Zhang
- University Sains Malaysia, Advanced Medical and Dental Institute, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Yong Wang
- Department of Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
7
|
Hong G, Zhou Y, Yang S, Yan S, Lu J, Xu B, Zhan Z, Jiang H, Wei B, Wang J. Metformin acts on miR-181a-5p/PAI-1 axis in stem cells providing new strategies for improving age-related osteogenic differentiation decline. Stem Cells 2024; 42:1055-1069. [PMID: 39283761 DOI: 10.1093/stmcls/sxae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/26/2024] [Indexed: 12/12/2024]
Abstract
A general decline in the osteogenic differentiation capacity of human bone marrow mesenchymal stem cells (hBMSCs) in the elderly is a clinical consensus, with diverse opinions on the mechanisms. Many studies have demonstrated that metformin (MF) significantly protects against osteoporosis and reduces fracture risk. However, the exact mechanism of this effect remains unclear. In this study, we found that the decreased miR-181a-5p expression triggered by MF treatment plays a critical role in recovering the osteogenic ability of aging hBMSCs (derived from elderly individuals). Notably, the miR-181a-5p expression in hBMSCs was significantly decreased with prolonged MF (1000 μM) treatment. Further investigation revealed that miR-181a-5p overexpression markedly impairs the osteogenic ability of hBMSCs, while miR-181a-5p inhibition reveals the opposite result. We also found that miR-181a-5p could suppress the protein translation process of plasminogen activator inhibitor-1 (PAI-1), as evidenced by luciferase assays and Western blots. Additionally, low PAI-1 levels were associated with diminished osteogenic ability, whereas high levels promoted it. These findings were further validated in human umbilical cord mesenchymal stem cells (hUCMSCs). Finally, our in vivo experiment with a bone defects rat model confirmed that the agomiR-181a-5p (long-lasting miR-181a-5p mimic) undermined bone defects recovery, while the antagomiR-181a-5p (long-lasting miR-181a-5p inhibitor) significantly promoted the bone defects recovery. In conclusion, we found that MF promotes bone tissue regeneration through the miR-181a-5p/PAI-1 axis by affecting MSC osteogenic ability, providing new strategies for the treatment of age-related bone regeneration disorders.
Collapse
Affiliation(s)
- Guanhao Hong
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Yulan Zhou
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Shukai Yang
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Shouquan Yan
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Jiaxu Lu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Bo Xu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Zeyu Zhan
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Huasheng Jiang
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Bo Wei
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Jiafeng Wang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| |
Collapse
|
8
|
Laan SNJ, Lenderink BG, Eikenboom JCJ, Bierings R. Endothelial colony-forming cells in the spotlight: insights into the pathophysiology of von Willebrand disease and rare bleeding disorders. J Thromb Haemost 2024; 22:3355-3365. [PMID: 39243860 DOI: 10.1016/j.jtha.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Endothelial cells deliver a vital contribution to the maintenance of hemostasis by constituting an anatomical as well as functional barrier between the blood and the rest of the body. Apart from the physical barrier function, endothelial cells maintain the hemostatic equilibrium by their pro- and anticoagulant functions. An important part of their procoagulant contribution is the production of von Willebrand factor (VWF), which is a carrier protein for coagulation factor VIII and facilitates the formation of a platelet plug. Thus, VWF is indispensable for both primary and secondary hemostasis, which is exemplified by the bleeding disorder von Willebrand disease that results from qualitative or quantitative deficiencies in VWF. A cellular model that was found to accurately reflect the endothelium and its secretory organelles are endothelial colony-forming cells, which can be readily isolated from peripheral blood and constitute a robust ex vivo model to investigate the donor's endothelial cell function. This review summarizes some of the valuable insights on biology of VWF and pathogenic mechanisms of von Willebrand disease that have been made possible using studies with endothelial colony-forming cells derived from patients with bleeding disorders.
Collapse
Affiliation(s)
- Sebastiaan N J Laan
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands; Department of Hematology, Erasmus University Medical Centre, Rotterdam, the Netherlands. https://twitter.com/laan_bas
| | - Britte G Lenderink
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jeroen C J Eikenboom
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands
| | - Ruben Bierings
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Sharma D, Barrett CD, Moore HB, Jackson JH, Sandberg TM, Gawargi FI, Moody TB, Cheng X, Georgesen CJ, Wei EX. Resistance to tPA-induced fibrinolysis and activation of coagulation is present in autoimmune bullous diseases of the skin. J Thromb Haemost 2024; 22:3640-3644. [PMID: 39299613 PMCID: PMC11616783 DOI: 10.1016/j.jtha.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Divya Sharma
- Department of Dermatology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christopher D Barrett
- Division of Acute Care Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA. https://twitter.com/ChrisBarrettMD
| | - Hunter B Moore
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; Division of Solid Organ Transplantation, Department of Surgery, AdventHealth Porter, Denver, Colorado, USA
| | | | | | - Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Trace B Moody
- Division of Acute Care Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Xiaoyue Cheng
- Department of Mathematical and Statistical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Corey J Georgesen
- Department of Dermatology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Erin X Wei
- Department of Dermatology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
10
|
Sharma D, Thomas S, Moody TB, Taylor M, Ituarte B, Georgeson CJ, Barrett CD, Wei EX. Laboratory and clinical haemostatic aberrations in primary dermatologic disease: A review. Thromb J 2024; 22:101. [PMID: 39533305 PMCID: PMC11558853 DOI: 10.1186/s12959-024-00665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammatory dermatologic diseases have long been viewed as a "skin limited" disease process. Current literature on inflammatory dermatologic diseases investigates their relationship and influence on thromboembolic states and thromboembolic complications and the understanding of their pathophysiology and molecular mechanisms.Studies specifically discuss known inflammatory skin diseases including alopecia areata, vitiligo, psoriasis, hidradenitis suppurativa, atopic dermatitis, chronic spontaneous urticaria, and autoimmune bullous diseases, and their effects on systemic inflammation, associated cardiovascular comorbidities, and thromboembolic or hypercoagulable states. The limited current literature shows potential for links between inflammatory skin diseases and hypercoagulable states. Biomarkers such as F1 + 2, D-dimer, eosinophilic cationic protein, and PAI-1 are currently being studied to outline the mechanisms connecting inflammatory skin disease to the coagulation system. Further study and larger amounts of data are needed to draw definitive conclusions, especially when interpreting biomarkers alone such as PAI-1.The mechanisms, rates of systemic inflammation, and clinical outcomes of traditionally "skin limited" inflammatory diseases remain chronically understudied in dermatology. Many organ systems have well established connections between inflammatory disease and hypercoagulable states, but there are significant gaps in the literature regarding skin diseases. There is a significant need for comprehensive investigation of molecular mechanisms behind inflammatory dermatologic disease and hypercoagulability, how hypercoagulability effects clinical outcomes, and proper intervention to optimize patient outcomes.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Dermatology, University of Nebraska Medical Center, 985645, Omaha, NE, 68198-5645, USA
| | - Sierra Thomas
- Department of Dermatology, University of Nebraska Medical Center, 985645, Omaha, NE, 68198-5645, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Trace B Moody
- Division of Acute Care Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell Taylor
- Department of Dermatology, University of Nebraska Medical Center, 985645, Omaha, NE, 68198-5645, USA
- Creighton University School of Medicine, Omaha, NE, USA
| | - Bianca Ituarte
- Department of Dermatology, University of Nebraska Medical Center, 985645, Omaha, NE, 68198-5645, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Corey J Georgeson
- Department of Dermatology, University of Nebraska Medical Center, 985645, Omaha, NE, 68198-5645, USA
| | - Christopher D Barrett
- Division of Acute Care Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Erin X Wei
- Department of Dermatology, University of Nebraska Medical Center, 985645, Omaha, NE, 68198-5645, USA
| |
Collapse
|
11
|
Di Nubila A, Dilella G, Simone R, Barbieri SS. Vascular Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2024; 25:12017. [PMID: 39596083 PMCID: PMC11594217 DOI: 10.3390/ijms252212017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The extracellular matrix (ECM) plays a central role in the structural integrity and functionality of the cardiovascular system. Moreover, the ECM is involved in atherosclerotic plaque formation and stability. In fact, ECM remodeling affects plaque stability, cellular migration, and inflammatory responses. Collagens, fibronectin, laminin, elastin, and proteoglycans are crucial proteins during atherosclerosis development. This dynamic remodeling is driven by proteolytic enzymes such as matrix metalloproteinases (MMPs), cathepsins, and serine proteases. Exploring and investigating ECM dynamics is an important step to designing innovative therapeutic strategies targeting ECM remodeling mechanisms, thus offering significant advantages in the management of cardiovascular diseases. This review illustrates the structure and role of vascular ECM, presenting a new perspective on ECM remodeling and its potential as a therapeutic target in atherosclerosis treatments.
Collapse
Affiliation(s)
| | | | | | - Silvia S. Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (A.D.N.); (G.D.); (R.S.)
| |
Collapse
|
12
|
Im S, Kang S, Son WJ, Son M, Oh SJ, Yoon HJ, Pak YK. Dioxin-Induced PAI-1 Expression: A Novel Pathway to Pancreatic β-Cell Failure in Type 2 Diabetes. Int J Mol Sci 2024; 25:11974. [PMID: 39596044 PMCID: PMC11594116 DOI: 10.3390/ijms252211974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Exposure to environment-polluting chemicals (EPCs), which are ligands of the aryl hydrocarbon receptor (AhR), is associated with the development of type 2 diabetes (T2D). This study explores the mechanisms by which AhR ligands contribute to β-cell failure in T2D. Incubation of RINm5F rat pancreatic β-cells with low-dose 2,3,7,8-tetrachlorodibenzodioxin (TCDD), the most potent AhR ligand, inhibited glucose-stimulated insulin secretion (GSIS). A single injection of TCDD in wild type mice reduced the size of Langerhans islets, but not in AhR liver knock-out mice (AhR-LKO). RNA-seq database analysis identified Serpine1, encoding for plasminogen activator inhibitor type-1 (PAI-1) as a TCDD-mediated secretory protein that is synthesized in an AhR-dependent manner in the liver. Elevated PAI-1 levels were shown to induce Caspase-3/7-dependent apoptosis in RINm5F cells, suggesting a novel pathway through which EPCs exacerbate T2D. These findings support the hypothesis that chronic exposure to AhR ligands may directly inhibit GSIS in pancreatic β-cells and indirectly induce β-cell apoptosis through increased PAI-1. This study provides new insights into the EPC-PAI-1 axis as a missing link between pancreatic β-cell failure and the progression of T2D and offers a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Suyeol Im
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.I.); (S.K.); (W.J.S.); (S.J.O.)
- Department of Physiology, School of Medicine, Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sora Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.I.); (S.K.); (W.J.S.); (S.J.O.)
- Department of Physiology, School of Medicine, Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo Jung Son
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.I.); (S.K.); (W.J.S.); (S.J.O.)
| | - Minuk Son
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.S.); (H.J.Y.)
| | - Seung Jun Oh
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.I.); (S.K.); (W.J.S.); (S.J.O.)
| | - Hye Ji Yoon
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.S.); (H.J.Y.)
| | - Youngmi Kim Pak
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.I.); (S.K.); (W.J.S.); (S.J.O.)
- Department of Physiology, School of Medicine, Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.S.); (H.J.Y.)
| |
Collapse
|
13
|
Johnson TA, Mukhopadhyay S, Buzza MS, Brooks JA, Sarkar R, Antalis TM. Regulation of macrophage fibrinolysis during venous thrombus resolution. Thromb Res 2024; 243:109149. [PMID: 39317013 PMCID: PMC11486561 DOI: 10.1016/j.thromres.2024.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Venous thromboembolism (VTE), which includes pulmonary embolism (PE) and deep vein thrombosis (DVT), is a serious cardiovascular disease with significant mortality and morbidity. Clinically, patients with faster resolution of a venous thrombi have improved prognosis. Urokinase-plasminogen activator (uPA), produced by macrophages, is a key mediator of fibrinolysis required for resolving venous thrombi and restoring vascular integrity. The major macrophage protein, plasminogen activator inhibitor type-2 (PAI-2), was originally identified as an inhibitor of uPA and is implicated in the modulation of pathways affecting fibrinolytic uPA activity, however its direct role in blocking uPA-mediated clot lysis is not known. OBJECTIVE To determine the contribution of macrophage PAI-2 in inhibiting uPA-mediated fibrinolysis during resolution of DVT. METHODS Using a murine model of venous thrombosis and resolution, we determined histological changes and molecular features of fibrin degradation in venous thrombi from WT mice and mice genetically deficient in PAI-2 and PAI-1, and determined the fibrinolytic activities of macrophages from these genotypes ex vivo. RESULTS Acceleration of venous thrombus resolution by PAI-2-/- mice increases fibrin degradation in venous thrombi showing a pattern similar to genetic deficiency of PAI-1, the major attenuator of fibrinolysis. PAI-2 deficiency was not associated with increased macrophage infiltration into thrombi or changes in macrophage PAI-1 expression. uPA-initiated fibrinolysis by macrophages in vitro could be accelerated by PAI-1 deficiency, but not PAI-2 deficiency. CONCLUSION PAI-2 has an alternate anti-fibrinolytic activity that is macrophage uPA independent, where PAI-1 is the dominant uPA inhibitor during DVT resolution.
Collapse
Affiliation(s)
- Tierra A Johnson
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Subhradip Mukhopadhyay
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marguerite S Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jacob A Brooks
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rajabrata Sarkar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Toni M Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Research & Development Service, VA Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Yang Z, Gao C, Li Z, Jiang T, Liang Y, Jiang T, Yu C, Yan S, Li P, Zhou L. The changes of tPA/PAI-1 system are associated with the ratio of BDNF/proBDNF in major depressive disorder and SSRIs antidepressant treatment. Neuroscience 2024; 559:220-228. [PMID: 39244009 DOI: 10.1016/j.neuroscience.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Increasing evidence demonstrates that brain-derived neurotrophic factor (BDNF) can be regarded as a biomarker for major depression. Our previous work found that the ratio of mature BDNF (mBDNF) to precursor-BDNF (proBDNF) was a pivotal factor in the pathogenesis of major depressive disorder (MDD). But the mechanism behind the ratio is still obscure. Tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) both play essential roles in depression by regulating the ratio of BDNF/proBDNF. In present study, we analyzed BDNF, proBDNF, tPA and PAI-1 in the peripheral blood in 57 MDD patients pre- and post-treatment and in 57 healthy controls. We verified that BDNF and tPA levels were significantly decreased, whereas proBDNF and PAI-1 levels elevated obviously in MDD group pre-treatment. And after 4 weeks SSRIs treatment, the BDNF and tPA levels increased while the proBDNF and PAI-1 levels reduced. The MDD pre-treatment group had the lowest ratio of BDNF to proBDNF compared to MDD post-treatment group and control group. Though the ratio of tPA/PAI-1 in MDD pre-treatment had not reached the significance, it was still the lowest one among the three groups. The combination of tPA + PAI + BDNF showed the best diagnostic value for MDD. In summary, our data suggested that the interaction between tPA and PAI-1 implicated to the MDD and the antidepressant treatment which might through regulating the BDNF/proBDNF ratio. The combination of tPA, PAI-1 and BDNF might offer a helpful way for MDD diagnosis.
Collapse
Affiliation(s)
- Zhilan Yang
- Department of Psychiatry, The Mental Hospital of Yunnan Province, 733 Chuanjin Road, Panlong District, Kunming 650224, Yunnan, PR China
| | - Changqing Gao
- Department of Psychiatry, The Mental Hospital of Yunnan Province, 733 Chuanjin Road, Panlong District, Kunming 650224, Yunnan, PR China
| | - Zhipeng Li
- Department of Psychiatry, The Mental Hospital of Yunnan Province, 733 Chuanjin Road, Panlong District, Kunming 650224, Yunnan, PR China
| | - Tiantian Jiang
- Department of Psychiatry, The Mental Hospital of Yunnan Province, 733 Chuanjin Road, Panlong District, Kunming 650224, Yunnan, PR China
| | - Yuhang Liang
- Department of Psychiatry, The Mental Hospital of Yunnan Province, 733 Chuanjin Road, Panlong District, Kunming 650224, Yunnan, PR China
| | - Tiankai Jiang
- Department of Psychiatry, The Mental Hospital of Yunnan Province, 733 Chuanjin Road, Panlong District, Kunming 650224, Yunnan, PR China
| | - Chen Yu
- Department of Psychiatry, The Mental Hospital of Yunnan Province, 733 Chuanjin Road, Panlong District, Kunming 650224, Yunnan, PR China
| | - Shan Yan
- Institute of Biomedical Engineering, Kunming Medical University, 1168 West Chunrong Road, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Peikai Li
- Department of Clinical Psychology, The Affiliated Hospital of Yunnan University, Qingnian Road, Wuhua District, Kunming 650021, Yunnan, PR China.
| | - Li Zhou
- Department of Psychiatry, The Mental Hospital of Yunnan Province, 733 Chuanjin Road, Panlong District, Kunming 650224, Yunnan, PR China.
| |
Collapse
|
15
|
Liu B, Feng H, Li W. Association between PAI-1 4G/5G genotype and residual thrombus in acute mesenteric venous thrombosis. Mol Biol Rep 2024; 51:1001. [PMID: 39302481 DOI: 10.1007/s11033-024-09947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE Plasminogen activator inhibitor-1 (PAI-1) is the most important inhibitor of plasminogen activator. The functional 4G/5G polymorphism of the gene coding for PAI-1 may affect PAI-1 plasmatic activity, influencing the imbalance between coagulation and fibrinolysis cascades. In this study, we investigated the association between the PAI-1 4G/5G genotype and the development and residual thrombus of acute primary mesenteric venous thrombosis (MVT). METHODS The clinical data of 34 patients who underwent acute primary MVT were retrospectively reviewed. Fluorescence in situ hybridization was used to determine if patients had the 4G/5G polymorphism in the promoter of the PAI-1 gene. Patients were stratified according to the genotype of PAI-1. RESULTS 11 patients (32.3%) were homozygous for the 4G genotype, 23 patients (67.6%) were non-homozygous for the 4G genotype (5G/5G). The extent of thrombosis was not correlated with the PAI-4G/5G polymorphism. After a mean follow-up of 16.6 ± 10.4 months, the 4G/4G genotype had a significantly larger thrombus burden (p < 0.05). 54% of patients in the 4G/4G genotype group had no lessening in the degree of mesenteric venous thrombosis, significantly higher than other patients (4G/5G + 5G/5G genotypes) (p < 0.05). CONCLUSION The PAI-1 4G/4G predicts residual thrombus of mesenteric veins after the acute phase.
Collapse
Affiliation(s)
- Bin Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hai Feng
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wenrui Li
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
16
|
Safa, Norton CE. Plasminogen Activation Inhibitor-1 Promotes Resilience to Acute Oxidative Stress in Cerebral Arteries from Females. Pharmaceuticals (Basel) 2024; 17:1210. [PMID: 39338372 PMCID: PMC11434643 DOI: 10.3390/ph17091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Plasminogen activation inhibitor-1 (PAI-1) plays a central role in thrombus formation leading to stroke; however, the contributions of PAI-1 to cellular damage in response to reactive oxygen species which are elevated during reperfusion are unknown. Given that PAI-1 can limit apoptosis, we hypothesized that PAI increases the resilience of cerebral arteries to H2O2 (200 µM). Cell death, mitochondrial membrane potential, and mitochondrial ROS production were evaluated in pressurized mouse posterior cerebral arteries from males and females. The effects of pharmacological and genetic inhibition of PAI-1 signaling were evaluated with the inhibitor PAI-039 (10 µM) and PAI-1 knockout mice, respectively. During exposure to H2O2, PCAs from male mice lacking PAI-1 had reduced mitochondrial depolarization and smooth muscle cell death, and PAI-039 increased EC death. In contrast, mitochondrial depolarization and cell death were augmented in female PCAs. With no effect of PAI-1 inhibition on resting mitochondrial ROS production, vessels from female PAI-1 knockout mice had increased mitochondrial ROS generation during H2O2 exposure. During acute exposure to oxidative stress, protein ablation of PAI-1 enhances cell death in posterior cerebral arteries from females while limiting cell death in males. These findings provide important considerations for blood flow restoration during stroke treatment.
Collapse
Affiliation(s)
| | - Charles E. Norton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
17
|
Lomelí-Nieto JA, Muñoz-Valle JF, Navarro-Zarza JE, Baños-Hernández CJ, Gutierrez-Brito JA, Renteria-Cabrera V, Horta-Chávez EA, Morales-Núñez JJ, García-Arellano S, Parra-Rojas I, Hernández-Bello J. Impact of Plasminogen Activator Inhibitor-1 Serum Levels and the -675 4G/5G Variant in the SERPINE1 Gene on Systemic Sclerosis in a Mexican Population. Life (Basel) 2024; 14:1056. [PMID: 39337840 PMCID: PMC11433212 DOI: 10.3390/life14091056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Systemic sclerosis (SSc) is characterized by a complex interplay of vascular damage, inflammation, and fibrosis, affecting the skin and internal organs. Plasminogen activator inhibitor-1 (PAI-1), a protein encoded by the SERPINE1 gene, is a potential biomarker of SSc because it is primarily involved in fibrinolysis and is associated with the severity of some autoimmune diseases. This study aimed to determine the association between SERPINE1 variant -675 4G/5G and soluble PAI-1 (sPAI-1) levels with the clinical characteristics and risk of SSc in a Mexican population. This cross-sectional study included 56 SSc patients and 114 control subjects (CSs). The variant was genotyped via the PCR-RFLP method and the levels of sPAI-1 were determined using enzyme-linked immunosorbent assays (ELISAs). The -675 4G/5G variant was not associated with SSc risk or sPAI-I levels. However, higher sPAI-1 levels were observed in SSc patients than in CSs (p = 0.045); these levels were significantly correlated with age, platelets, glucose, and serum levels of transforming growth factor (TGF)-β1, 2, and 3. The SERPINE1 -675 4G/5G variant did not show any association with SSc risk or sPAI-I levels. However, our study shows a possible alteration of sPAI-1 in this disease, which could be associated with the fibrotic and thrombotic processes in SSc.
Collapse
Affiliation(s)
- José Alvaro Lomelí-Nieto
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - José Eduardo Navarro-Zarza
- Departamento de Medicina Interna-Servicio de Reumatología, Hospital General de Chilpancingo "Dr. Raymundo Abarca Alarcón", Chilpancingo de los Bravo 39020, Mexico
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Jesús Alberto Gutierrez-Brito
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Valeria Renteria-Cabrera
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Eduardo Arturo Horta-Chávez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - José Javier Morales-Núñez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39020, Mexico
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
18
|
Garcia-Ovejero D, Beyerer E, Mach O, Leister I, Strowitzki M, Wutte C, Maier D, Kramer JL, Aigner L, Arevalo-Martin A, Grassner L. Untargeted blood serum proteomics identifies novel proteins related to neurological recovery after human spinal cord injury. J Transl Med 2024; 22:666. [PMID: 39020346 PMCID: PMC11256486 DOI: 10.1186/s12967-024-05344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/24/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The discovery of new prognostic biomarkers following spinal cord injury (SCI) is a rapidly growing field that could help uncover the underlying pathological mechanisms of SCI and aid in the development of new therapies. To date, this search has largely focused on the initial days after the lesion. However, during the subacute stage of SCI (weeks to months after the injury), there remains potential for sensorimotor recovery, and numerous secondary events develop in various organs. Additionally, the confounding effects of early interventions after the injury are less likely to interfere with the results. METHODS In this study, we conducted an untargeted proteomics analysis to identify biomarkers of recovery in blood serum samples during the subacute phase of SCI patients, comparing those with strong recovery to those with no recovery between 30 and 120 days. We analyzed the fraction of serum that is depleted of the most abundant proteins to unmask proteins that would otherwise go undetected. Linear models were used to identify peptides and proteins related to neurological recovery and we validated changes in some of these proteins using Enzyme-linked Immunosorbent Assay (ELISA). RESULTS Our findings reveal that differences in subacute recovery after SCI (from 30 to 120 days) are associated with an enrichment in proteins involved in inflammation, coagulation, and lipid metabolism. Technical validation using commercial ELISAs further confirms that high levels of SERPINE1 and ARHGAP35 are associated with strong neurological recovery, while high levels of CD300a and DEFA1 are associated with a lack of recovery. CONCLUSIONS Our study identifies new candidates for biomarkers of neurological recovery and for novel therapeutic targets after SCI.
Collapse
Affiliation(s)
- Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Evelyn Beyerer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Orpheus Mach
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Iris Leister
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Christof Wutte
- Department of Neurosurgery, BG Trauma Center, Murnau, Germany
| | - Doris Maier
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - John Lk Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain.
| | - Lukas Grassner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany.
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria.
- Department of Neurosurgery, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
19
|
Du Y, Xiao X, You HZ, Hou ZY, Yang XD, Wang J, Tang J, Wang Y. Association of High Plasma Levels of Serpin E1, IGFBP2, and CCL5 With Refractory Epilepsy in Children by Cytokine Profiling. Clin Pediatr (Phila) 2024; 63:953-962. [PMID: 37731223 DOI: 10.1177/00099228231201245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Inflammatory cytokines participate in the pathology of epilepsy and the development of drug resistance. In this study, we combined a cytokine array and enzyme-linked immunosorbent assay to identify new cytokines in the plasma from children on early stage of the onset of epilepsy (EOE) and children with drug-resistant epilepsy (DRE). Compared with healthy controls, a broad up-regulation of cytokines was observed in patients with EOE, and many of the cytokines were not previously reported. In patients with DRE, most of these up-regulated cytokines maintained at relatively low levels close to those in controls; only a few of them, including CCL5, Serpin E1, and IGFBP2, remained at high levels. The dramatic difference in cytokine profile could be a strong clue for the incidence of DRE, and DRE-associated cytokines appeared to have the potential to be new biomarkers for epilepsy prognosis and therapeutic targets.
Collapse
Affiliation(s)
- Yaning Du
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Xiao
- Department of Neurology, The Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hai-Zhen You
- Department of Traditional Chinese Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao-Yuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Dong Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiwen Wang
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jihong Tang
- Department of Neurology, The Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yingyan Wang
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Coupland LA, Pai KG, Pye SJ, Butorac MT, Miller JJ, Crispin PJ, Rabbolini DJ, Stewart AHL, Aneman A. Protracted fibrinolysis resistance following cardiac surgery with cardiopulmonary bypass: A prospective observational study of clinical associations and patient outcomes. Acta Anaesthesiol Scand 2024; 68:772-780. [PMID: 38497568 DOI: 10.1111/aas.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Surgery on cardiopulmonary bypass (CPB) elicits a pleiomorphic systemic host response which, when severe, requires prolonged intensive care support. Given the substantial cross-talk between inflammation, coagulation, and fibrinolysis, the aim of this hypothesis-generating observational study was to document the kinetics of fibrinolysis recovery post-CPB using ClotPro® point-of-care viscoelastometry. Tissue plasminogen activator-induced clot lysis time (TPA LT, s) was correlated with surgical risk, disease severity, organ dysfunction and intensive care length of stay (ICU LOS). RESULTS In 52 patients following CPB, TPA LT measured on the first post-operative day (D1) correlated with surgical risk (EuroScore II, Spearman's rho .39, p < .01), time on CPB (rho = .35, p = .04), disease severity (APACHE II, rho = .52, p < .001) and organ dysfunction (SOFA, rho = .51, p < .001) scores, duration of invasive ventilation (rho = .46, p < .01), and renal function (eGFR, rho = -.65, p < .001). In a generalized linear regression model containing TPA LT, CPB run time and markers of organ function, only TPA LT was independently associated with the ICU LOS (odds ratio 1.03 [95% CI 1.01-1.05], p = .01). In a latent variables analysis, the association between TPA LT and the ICU LOS was not mediated by renal function and thus, by inference, variation in the clearance of intraoperative tranexamic acid. CONCLUSIONS This observational hypothesis-generating study in patients undergoing cardiac surgery with cardiopulmonary bypass demonstrated an association between the severity of fibrinolysis resistance, measured on the first post-operative day, and the need for extended postoperative ICU level support. Further examination of the role of persistent fibrinolysis resistance on the clinical outcomes in this patient cohort is warranted through large-scale, well-designed clinical studies.
Collapse
Affiliation(s)
- Lucy A Coupland
- Liverpool Hospital, South Western Sydney Local Health District, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, University of New South Wales Medicine, New South Wales, Australia
- Ingham Institute for Applied Medical Research, New South Wales, Australia
| | - Kieran G Pai
- Liverpool Hospital, South Western Sydney Local Health District, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, University of New South Wales Medicine, New South Wales, Australia
| | - Sidney J Pye
- Liverpool Hospital, South Western Sydney Local Health District, Liverpool, New South Wales, Australia
| | - Mark T Butorac
- Liverpool Hospital, South Western Sydney Local Health District, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, University of New South Wales Medicine, New South Wales, Australia
| | - Jennene J Miller
- Liverpool Hospital, South Western Sydney Local Health District, Liverpool, New South Wales, Australia
| | - Philip J Crispin
- Haematology Department, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
- The Australian National University Medical School, Canberra, Australian Capital Territory, Australia
| | - David J Rabbolini
- Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Antony H L Stewart
- Liverpool Hospital, South Western Sydney Local Health District, Liverpool, New South Wales, Australia
| | - Anders Aneman
- Liverpool Hospital, South Western Sydney Local Health District, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, University of New South Wales Medicine, New South Wales, Australia
- Ingham Institute for Applied Medical Research, New South Wales, Australia
| |
Collapse
|
21
|
Scaravilli V, Turconi G, Colombo SM, Guzzardella A, Bosone M, Zanella A, Bos L, Grasselli G. Early serum biomarkers to characterise different phenotypes of primary graft dysfunction after lung transplantation: a systematic scoping review. ERJ Open Res 2024; 10:00121-2024. [PMID: 39104958 PMCID: PMC11298996 DOI: 10.1183/23120541.00121-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/12/2024] [Indexed: 08/07/2024] Open
Abstract
Background Lung transplantation (LUTX) is often complicated by primary graft dysfunction (PGD). Plasma biomarkers hold potential for PGD phenotyping and targeted therapy. This scoping review aims to collect the available literature in search of serum biomarkers for PGD phenotyping. Methods Following JBI and PRISMA guidelines, we conducted a systematic review searching MEDLINE, Web of Science, EMBASE and The Cochrane Library for papers reporting the association between serum biomarkers measured within 72 h of reperfusion and PGD, following International Society for Heart and Lung Transplantation (ISHLT) guidelines. We extracted study details, patient demographics, PGD definition and timing, biomarker concentration, and their performance in identifying PGD cases. Results Among the 1050 papers screened, 25 prospective observational studies were included, with only nine conducted in the last decade. These papers included 1793 unique adult patients (1195 double LUTX, median study size 100 (IQR 44-119)). Most (n=21) compared PGD grade 3 to less severe PGD, but only four adhered to 2016 PGD definitions. Enzyme-linked immunosorbent assays and the multiplex bead array technique were utilised in 23 and two papers, respectively. In total, 26 candidate biomarkers were identified, comprising 13 inflammatory, three endothelial activation, three epithelial injury, three cellular damage and two coagulation dysregulation markers. Only five biomarkers (sRAGE, ICAM-1, PAI-1, SP-D, FSTL-1) underwent area under the receiver operating characteristic curve analysis, yielding a median value of 0.58 (0.51-0.78) in 406 patients (276 double LUTX). Conclusions Several biomarkers exhibit promise for future studies aimed at PGD phenotyping after LUTX. To uncover the significant existing knowledge gaps, further international prospective studies incorporating updated diagnostic criteria, modern platforms and advanced statistical approaches are essential.
Collapse
Affiliation(s)
- Vittorio Scaravilli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda – Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gloria Turconi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sebastiano Maria Colombo
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda – Ospedale Maggiore Policlinico, Milan, Italy
| | - Amedeo Guzzardella
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Bosone
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alberto Zanella
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda – Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lieuwe Bos
- Department of Intensive Care, University of Amsterdam, Amsterdam, Netherlands
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda – Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
22
|
Domingo JC, Battistini F, Cordobilla B, Zaragozá MC, Sanmartin-Sentañes R, Alegre-Martin J, Cambras T, Castro-Marrero J. Association of circulating biomarkers with illness severity measures differentiates myalgic encephalomyelitis/chronic fatigue syndrome and post-COVID-19 condition: a prospective pilot cohort study. J Transl Med 2024; 22:343. [PMID: 38600563 PMCID: PMC11005215 DOI: 10.1186/s12967-024-05148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/30/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Accumulating evidence suggests that autonomic dysfunction and persistent systemic inflammation are common clinical features in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID. However, there is limited knowledge regarding their potential association with circulating biomarkers and illness severity in these conditions. METHODS This single-site, prospective, cross-sectional, pilot cohort study aimed to distinguish between the two patient populations by using self-reported outcome measures and circulating biomarkers of endothelial function and systemic inflammation status. Thirty-one individuals with ME/CFS, 23 individuals with long COVID, and 31 matched sedentary healthy controls were included. All study participants underwent non-invasive cardiovascular hemodynamic challenge testing (10 min NASA lean test) for assessment of orthostatic intolerance. Regression analysis was used to examine associations between outcome measures and circulating biomarkers in the study participants. Classification across groups was based on principal component and discriminant analyses. RESULTS Four ME/CFS patients (13%), 1 with long COVID (4%), and 1 healthy control (3%) presented postural orthostatic tachycardia syndrome (POTS) using the 10-min NASA lean test. Compared with matched healthy controls, ME/CFS and long COVID subjects showed higher levels of ET-1 (p < 0.05) and VCAM-1 (p < 0.001), and lower levels of nitrites (NOx assessed as NO2- + NO3-) (p < 0.01). ME/CFS patients also showed higher levels of serpin E1 (PAI-1) and E-selectin than did both long COVID and matched control subjects (p < 0.01 in all cases). Long COVID patients had lower TSP-1 levels than did ME/CFS patients and matched sedentary healthy controls (p < 0.001). As for inflammation biomarkers, both long COVID and ME/CFS subjects had higher levels of TNF-α than did matched healthy controls (p < 0.01 in both comparisons). Compared with controls, ME/CFS patients had higher levels of IL-1β (p < 0.001), IL-4 (p < 0.001), IL-6 (p < 0.01), IL-10 (p < 0.001), IP-10 (p < 0.05), and leptin (p < 0.001). Principal component analysis supported differentiation between groups based on self-reported outcome measures and biomarkers of endothelial function and inflammatory status in the study population. CONCLUSIONS Our findings revealed that combining biomarkers of endothelial dysfunction and inflammation with outcome measures differentiate ME/CFS and Long COVID using robust discriminant analysis of principal components. Further research is needed to provide a more comprehensive characterization of these underlying pathomechanisms, which could be promising targets for therapeutic and preventive strategies in these conditions.
Collapse
Affiliation(s)
- Joan Carles Domingo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Federica Battistini
- Molecular Modelling and Bioinformatics Group, Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Begoña Cordobilla
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | | | - Ramón Sanmartin-Sentañes
- Division of Rheumatology, Clinical Unit in ME/CFS and Long COVID, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
- Division of Rheumatology, Research Unit in ME/CFS and Long COVID, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | - Jose Alegre-Martin
- Division of Rheumatology, Clinical Unit in ME/CFS and Long COVID, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
- Division of Rheumatology, Research Unit in ME/CFS and Long COVID, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | - Trinitat Cambras
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, Spain.
| | - Jesus Castro-Marrero
- Division of Rheumatology, Research Unit in ME/CFS and Long COVID, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain.
| |
Collapse
|
23
|
Galal HM, Abdelhafez AT, Sayed MM, Gomaa WMS, Tohamy TA, Gomaa AMS, El-Metwally TH. Impact of L-Arginine on diabetes-induced neuropathy and myopathy: Roles of PAI-1, Irisin, oxidative stress, NF-κβ, autophagy and microRNA-29a. Tissue Cell 2024; 87:102342. [PMID: 38430848 DOI: 10.1016/j.tice.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND T2DM is a chronic disorder with progressive neuromuscular alterations. L-arginine (ARG) is the most common semi-essential amino acid having several metabolic functions. AIM to investigate the impact of L-arginine in combating diabetic-induced neuromyopathy and its possible mechanisms. MATERIALS & METHODS 24 rats were divided into CON, CON+ARG, DC, DC+ARG. Behavioral tests, Body weight (BW), fasting blood glucose (FBG), insulin, total antioxidant capacity (TAC), malondialdehyde (MDA), plasminogen activator inhibitor-1 (PAI-1), and irisin were done. Creatine kinase-MM (CK-MM), interleukin 4 (IL-4), interleukin 6 (IL-6), TAC, MDA, expression of microRNA-29a mRNA & light chain 3 protein were determined in muscle. Histological and NF-κβ immunohistochemical expression in muscle and nerve were assessed. RESULTS ARG supplementation to diabetic rats improved altered behavior, significantly increased BW, insulin, TAC, irisin and Il-4, decreased levels of glucose, microRNA-29a, NF-κβ and LC3 expression, PAI-1, CK-MM and restored the normal histological appearance. CONCLUSIONS ARG supplementation potently alleviated diabetic-induced neuromuscular alterations.
Collapse
Affiliation(s)
- Heba M Galal
- Department of Medical Physiology, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alaa T Abdelhafez
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Basic Medical Sciences, Badr University, New Nasser City, West of Assiut, Assiut, Egypt.
| | - Manal M Sayed
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Walaa M S Gomaa
- Department of Nutrition and Clinical Nutrition, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt
| | | | - Asmaa M S Gomaa
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Tarek H El-Metwally
- Biochemistry Division, Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
24
|
Frischmuth T, Tøndel BG, Brækkan SK, Hansen JB, Morelli VM. The Risk of Incident Venous Thromboembolism Attributed to Overweight and Obesity: The Tromsø Study. Thromb Haemost 2024; 124:239-249. [PMID: 37549694 DOI: 10.1055/s-0043-1772212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
BACKGROUND Obesity is a well-established risk factor for venous thromboembolism (VTE). However, data on the proportion of incident VTEs attributed to overweight and obesity in the general population are limited. OBJECTIVE To investigate the population attributable fraction (PAF) of VTE due to overweight and obesity in a population-based cohort with repeated measurements of body mass index (BMI). METHODS Participants from the fourth to seventh surveys of the Tromsø Study (enrolment: 1994-2016) were followed through 2020, and all incident VTEs were recorded. In total, 36,341 unique participants were included, and BMI measurements were updated for those attending more than one survey. BMI was categorized as <25 kg/m2, 25-30 kg/m2 (overweight), and ≥30 kg/m2 (obesity). Time-varying Cox regression models were used to calculate hazard ratios (HRs) with 95% confidence intervals (CIs). The PAF was estimated based on age- and sex-adjusted HRs and the prevalence of BMI categories in VTE cases. RESULTS At baseline, the prevalence of overweight and obesity was 37.9 and 13.8%, respectively. During a median follow-up of 13.9 years, 1,051 VTEs occurred. The age- and sex-adjusted HRs of VTE were 1.40 (95% CI: 1.21-1.61) for overweight and 1.86 (95% CI: 1.58-2.20) for obesity compared with subjects with BMI <25 kg/m2. The PAF of VTE due to overweight and obesity was 24.6% (95% CI: 16.6-32.9), with 12.9% (95% CI: 6.6-19.0) being attributed to overweight and 11.7% (95% CI: 8.5-14.9) to obesity. Similar PAFs were obtained in analyses stratified by sex and VTE subtypes (provoked/unprovoked events, deep vein thrombosis, pulmonary embolism). CONCLUSION Our findings indicate that almost 25% of all VTE events can be attributed to overweight and obesity in a general population from Norway.
Collapse
Affiliation(s)
- Tobias Frischmuth
- Thrombosis Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, Thrombosis Research Center, University Hospital of North Norway, Tromsø, Norway
| | - Birgitte G Tøndel
- Thrombosis Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Sigrid K Brækkan
- Thrombosis Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, Thrombosis Research Center, University Hospital of North Norway, Tromsø, Norway
| | - John-Bjarne Hansen
- Thrombosis Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, Thrombosis Research Center, University Hospital of North Norway, Tromsø, Norway
| | - Vânia M Morelli
- Thrombosis Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, Thrombosis Research Center, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
25
|
Hoang VT, Le DS, Hoang DM, Phan TTK, Ngo LAT, Nguyen TK, Bui VA, Nguyen Thanh L. Impact of tissue factor expression and administration routes on thrombosis development induced by mesenchymal stem/stromal cell infusions: re-evaluating the dogma. Stem Cell Res Ther 2024; 15:56. [PMID: 38414067 PMCID: PMC10900728 DOI: 10.1186/s13287-023-03582-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/22/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Hyperactive coagulation might cause dangerous complications such as portal vein thrombosis and pulmonary embolism after mesenchymal stem/stromal cell (MSC) therapy. Tissue factor (TF), an initiator of the extrinsic coagulation pathway, has been suggested as a predictor of this process. METHODS The expression of TF and other pro- and anticoagulant genes was analyzed in xeno- and serum-free manufactured MSCs. Furthermore, culture factors affecting its expression in MSCs were investigated. Finally, coagulation tests of fibrinogen, D-dimer, aPPTs, PTs, and TTs were measured in patient serum after umbilical cord (UC)-MSC infusions to challenge a potential connection between TF expression and MSC-induced coagulant activity. RESULTS: Xeno- and serum-free cultured adipose tissue and UC-derived MSCs expressed the highest level of TF, followed by those from dental pulp, and the lowest expression was observed in MSCs of bone marrow origin. Environmental factors such as cell density, hypoxia, and inflammation impact TF expression, so in vitro analysis might fail to reflect their in vivo behaviors. MSCs also expressed heterogeneous levels of the coagulant factor COL1A1 and surface phosphatidylserine and anticoagulant factors TFPI and PTGIR. MSCs of diverse origins induced fibrin clots in healthy plasma that were partially suppressed by an anti-TF inhibitory monoclonal antibody. Furthermore, human umbilical vein endothelial cells exhibited coagulant activity in vitro despite their negative expression of TF and COL1A1. Patients receiving intravenous UC-MSC infusion exhibited a transient increase in D-dimer serum concentration, while this remained stable in the group with intrathecal infusion. There was no correlation between TF expression and D-dimer or other coagulation indicators. CONCLUSIONS The study suggests that TF cannot be used as a solid biomarker to predict MSC-induced hypercoagulation. Local administration, prophylactic intervention with anticoagulation drugs, and monitoring of coagulation indicators are useful to prevent thrombogenic events in patients receiving MSCs. Trial registration NCT05292625. Registered March 23, 2022, retrospectively registered, https://www. CLINICALTRIALS gov/ct2/show/NCT05292625?term=NCT05292625&draw=2&rank=1 . NCT04919135. Registered June 9, 2021, https://www. CLINICALTRIALS gov/ct2/show/NCT04919135?term=NCT04919135&draw=2&rank=1 .
Collapse
Affiliation(s)
- Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam.
| | - Duc Son Le
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Trang Thi Kieu Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Lan Anh Thi Ngo
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
- Center of Applied Science and Regenerative Medicine, Vinmec Health Care System, 458 Minh Khai, Hanoi, 10000, Vietnam
| | - Trung Kien Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Viet Anh Bui
- Center of Applied Science and Regenerative Medicine, Vinmec Health Care System, 458 Minh Khai, Hanoi, 10000, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam.
- Vinmec International Hospital - Times City, Vinmec Health Care System, 458 Minh Khai, Hanoi, 11622, Vietnam.
- College of Health Science, VinUniversity, Vinhomes Ocean Park, Gia Lam District, Hanoi, 1310, Vietnam.
| |
Collapse
|
26
|
Rehill AM, Leon G, McCluskey S, Schoen I, Hernandez-Santana Y, Annett S, Klavina P, Robson T, Curtis AM, Renné T, Hussey S, O'Donnell JS, Walsh PT, Preston RJS. Glycolytic reprogramming fuels myeloid cell-driven hypercoagulability. J Thromb Haemost 2024; 22:394-409. [PMID: 37865288 DOI: 10.1016/j.jtha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Myeloid cell metabolic reprogramming is a hallmark of inflammatory disease; however, its role in inflammation-induced hypercoagulability is poorly understood. OBJECTIVES We aimed to evaluate the role of inflammation-associated metabolic reprogramming in regulating blood coagulation. METHODS We used novel myeloid cell-based global hemostasis assays and murine models of immunometabolic disease. RESULTS Glycolysis was essential for enhanced activated myeloid cell tissue factor expression and decryption, driving increased cell-dependent thrombin generation in response to inflammatory challenge. Similarly, inhibition of glycolysis enhanced activated macrophage fibrinolytic activity through reduced plasminogen activator inhibitor 1 activity. Macrophage polarization or activation markedly increased endothelial protein C receptor (EPCR) expression on monocytes and macrophages, leading to increased myeloid cell-dependent protein C activation. Importantly, inflammation-dependent EPCR expression on tissue-resident macrophages was also observed in vivo. Adipose tissue macrophages from obese mice fed a high-fat diet exhibited significantly enhanced EPCR expression and activated protein C generation compared with macrophages isolated from the adipose tissue of healthy mice. Similarly, the induction of colitis in mice prompted infiltration of EPCR+ innate myeloid cells within inflamed colonic tissue that were absent from the intestinal tissue of healthy mice. CONCLUSION Collectively, this study identifies immunometabolic regulation of myeloid cell hypercoagulability, opening new therapeutic possibilities for targeted mitigation of thromboinflammatory disease.
Collapse
Affiliation(s)
- Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland. https://twitter.com/aislingrehill
| | - Gemma Leon
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland
| | - Sean McCluskey
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Yasmina Hernandez-Santana
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland; Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Stephanie Annett
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Paula Klavina
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Annie M Curtis
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Thomas Renné
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Seamus Hussey
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland; Department of Paediatrics, University College Dublin and Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Patrick T Walsh
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland; Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland.
| |
Collapse
|
27
|
Yatsenko T, Rios R, Nogueira T, Salama Y, Takahashi S, Tabe Y, Naito T, Takahashi K, Hattori K, Heissig B. Urokinase-type plasminogen activator and plasminogen activator inhibitor-1 complex as a serum biomarker for COVID-19. Front Immunol 2024; 14:1299792. [PMID: 38313435 PMCID: PMC10835145 DOI: 10.3389/fimmu.2023.1299792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Patients with coronavirus disease-2019 (COVID-19) have an increased risk of thrombosis and acute respiratory distress syndrome (ARDS). Thrombosis is often attributed to increases in plasminogen activator inhibitor-1 (PAI-1) and a shut-down of fibrinolysis (blood clot dissolution). Decreased urokinase-type plasminogen activator (uPA), a protease necessary for cell-associated plasmin generation, and increased tissue-type plasminogen activator (tPA) and PAI-1 levels have been reported in COVID-19 patients. Because these factors can occur in free and complexed forms with differences in their biological functions, we examined the predictive impact of uPA, tPA, and PAI-1 in their free forms and complexes as a biomarker for COVID-19 severity and the development of ARDS. In this retrospective study of 69 Japanese adults hospitalized with COVID-19 and 20 healthy donors, we found elevated free, non-complexed PAI-1 antigen, low circulating uPA, and uPA/PAI-1 but not tPA/PAI-1 complex levels to be associated with COVID-19 severity and ARDS development. This biomarker profile was typical for patients in the complicated phase. Lack of PAI-1 activity in circulation despite free, non-complexed PAI-1 protein and plasmin/α2anti-plasmin complex correlated with suPAR and sVCAM levels, markers indicating endothelial dysfunction. Furthermore, uPA/PAI-1 complex levels positively correlated with TNFα, a cytokine reported to trigger inflammatory cell death and tissue damage. Those levels also positively correlated with lymphopenia and the pro-inflammatory factors interleukin1β (IL1β), IL6, and C-reactive protein, markers associated with the anti-viral inflammatory response. These findings argue for using uPA and uPA/PAI-1 as novel biomarkers to detect patients at risk of developing severe COVID-19, including ARDS.
Collapse
Affiliation(s)
- Tetiana Yatsenko
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Department of Enzymes Chemistry and Biochemistry, Palladin Institute of Biochemistry of the National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Ricardo Rios
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Tatiane Nogueira
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yoko Tabe
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshio Naito
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Division of Clinical Precision Research Platform, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Hematology/Oncology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Mutch NJ, Medcalf RL. The fibrinolysis renaissance. J Thromb Haemost 2023; 21:3304-3316. [PMID: 38000850 DOI: 10.1016/j.jtha.2023.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 11/26/2023]
Abstract
Fibrinolysis is the system primarily responsible for removal of fibrin deposits and blood clots in the vasculature. The terminal enzyme in the pathway, plasmin, is formed from its circulating precursor, plasminogen. Fibrin is by far the most legendary substrate, but plasmin is notoriously prolific and is known to cleave many other proteins and participate in the activation of other proteolytic systems. Fibrinolysis is often overshadowed by the coagulation system and viewed as a simplistic poorer relation. However, the primordial plasminogen activators evolved alongside the complement system, approximately 70 million years before coagulation saw the light of day. It is highly likely that the plasminogen activation system evolved with its roots in primordial immunity. Almost all immune cells harbor at least one of a dozen plasminogen receptors that allow plasmin formation on the cell surface that in turn modulates immune cell behavior. Similarly, numerous pathogens express their own plasminogen activators or contain surface proteins that provide binding sites for host plasminogen. The fibrinolytic system has been harnessed for clinical medicine for many decades with the development of thrombolytic drugs and antifibrinolytic agents. Our refined understanding and appreciation of the fibrinolytic system and its alliance with infection and immunity and beyond are paving the way for new developments and interest in novel therapeutics and applications. One must ponder as to whether the nomenclature of the system hampered our understanding, by focusing on fibrin, rather than the complex myriad of interactions and substrates of the plasminogen activation system.
Collapse
Affiliation(s)
- Nicola J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Wu Z, Yuan R, Gu Q, Wu X, Gu L, Ye X, Zhou Y, Huang J, Wang Z, Chen X. Parasitoid Serpins Evolve Novel Functions to Manipulate Host Homeostasis. Mol Biol Evol 2023; 40:msad269. [PMID: 38061001 PMCID: PMC10735303 DOI: 10.1093/molbev/msad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Parasitoids introduce various virulence factors when parasitism occurs, and some taxa generate teratocytes to manipulate the host immune system and metabolic homeostasis for the survival and development of their progeny. Host-parasitoid interactions are extremely diverse and complex, yet the evolutionary dynamics are still poorly understood. A category of serpin genes, named CvT-serpins, was discovered to be specifically expressed and secreted by the teratocytes of Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella. Genomic and phylogenetic analysis indicated that the C. vestalis serpin genes are duplicated and most of them are clustered into 1 monophyletic clade. Intense positive selection was detected at the residues around the P1-P1' cleavage sites of the Cv-serpin reactive center loop domain. Functional analyses revealed that, in addition to the conserved function of melanization inhibition (CvT-serpins 1, 16, 18, and 21), CvT-serpins exhibited novel functions, i.e. bacteriostasis (CvT-serpins 3 and 5) and nutrient metabolism regulation (CvT-serpins 8 and 10). When the host-parasitoid system is challenged with foreign bacteria, CvT-serpins act as an immune regulator to reprogram the host immune system through sustained inhibition of host melanization while simultaneously functioning as immune effectors to compensate for this suppression. In addition, we provided evidence that CvT-serpin8 and 10 participate in the regulation of host trehalose and lipid levels by affecting genes involved in these metabolic pathways. These findings illustrate an exquisite tactic by which parasitoids win out in the parasite-host evolutionary arms race by manipulating host immune and nutrition homeostasis via adaptive gene evolution and neofunctionalization.
Collapse
Affiliation(s)
- Zhiwei Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ruizhong Yuan
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Qijuan Gu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaotong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Licheng Gu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yuenan Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| | - Zhizhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
- The Rural Development Academy, Zhejiang University, Hangzhou, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Simpson M, Narwal A, West E, Martin J, Bagot CN, Page AR, Watson HG, Whyte CS, Mutch NJ. Fibrinogenolysis and fibrinolysis in vaccine-induced immune thrombocytopenia and thrombosis. J Thromb Haemost 2023; 21:3589-3596. [PMID: 37734715 DOI: 10.1016/j.jtha.2023.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Vaccine-induced immune thrombocytopenia and thrombosis (VITT) is a rare syndrome associated with adenoviral vector vaccines for COVID-19. The syndrome is characterized by thrombosis, anti-platelet factor 4 (PF4) antibodies, thrombocytopenia, high D-dimer, and hypofibrinogenemia. OBJECTIVES To investigate abnormalities in fibrinolysis that contribute to the clinical features of VITT. METHODS Plasma samples from 18 suspected VITT cases were tested for anti-PF4 by ELISA and characterized as meeting criteria for VITT (11/18) or deemed unlikely (7/18; non-VITT). Antigen levels of PAI-1, factor XIII (FXIII), plasmin-α2antiplasmin (PAP), and inflammatory markers were quantified. Plasmin generation was quantified by chromogenic substrate. Western blotting was performed with antibodies to fibrinogen, FXIII-A, and plasminogen. RESULTS VITT patients 10/11 had scores indicative of overt disseminated intravascular coagulation, while 0/7 non-VITT patients met the criteria. VITT patients had significantly higher levels of inflammatory markers, IL-1β, IL-6, IL-8, TNFα, and C-reactive protein. In VITT patients, both fibrinogen and FXIII levels were significantly lower, while PAP and tPA-mediated plasmin generation were higher compared to non-VITT patients. Evidence of fibrinogenolysis was observed in 9/11 VITT patients but not in non-VITT patients or healthy controls. Fibrinogen degradation products were apparent, with obvious cleavage of the fibrinogen α-chain. PAP complex was evident in those VITT patients with fibrinogenolysis, but not in non-VITT patients or healthy donors. CONCLUSION VITT patients show evidence of overt disseminated intravascular coagulation and fibrinogenolysis, mediated by dysregulated plasmin generation, as evidenced by increased PAP and plasmin generation. These observations are consistent with the clinical presentation of both thrombosis and bleeding in VITT.
Collapse
Affiliation(s)
- Megan Simpson
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK. https://twitter.com/SimpsonMegan8
| | - Anuj Narwal
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Eric West
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Jill Martin
- Department of Haematology Laboratory, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | - Andrew R Page
- Department of Haematology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Henry G Watson
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Claire S Whyte
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK. https://twitter.com/ClaireW63108369
| | - Nicola J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
31
|
Denorme F, Andrianova I, Cody MJ, Kosaka Y, Campbell RA. Age-specific impact of type I interferons on cerebral thrombosis and inflammation. Blood Adv 2023; 7:6672-6675. [PMID: 37738163 PMCID: PMC10637883 DOI: 10.1182/bloodadvances.2023010495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Affiliation(s)
- Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Division of Vascular Neurology, Department of Neurology, The University of Utah, Salt Lake City, UT
| | | | - Mark J. Cody
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Yasuhiro Kosaka
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, The University of Utah, Salt Lake City, UT
- Division of Microbiology and Immunology, Department of Pathology, The University of Utah, Salt Lake City, UT
| |
Collapse
|
32
|
Siebert AE, Brake MA, Verbeek SC, Johnston AJ, Morgan AP, Cleuren AC, Jurek AM, Schneider CD, Germain DM, Battistuzzi FU, Zhu G, Miller DR, Johnsen JM, Pardo-Manuel de Villena F, Rondina MT, Westrick RJ. Identification of genomic loci regulating platelet plasminogen activator inhibitor-1 in mice. J Thromb Haemost 2023; 21:2917-2928. [PMID: 37364776 PMCID: PMC10826891 DOI: 10.1016/j.jtha.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/09/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1, Serpine1) is an important circulating fibrinolysis inhibitor. PAI-1 exists in 2 pools, packaged within platelet α-granules and freely circulating in plasma. Elevated plasma PAI-1 levels are associated with cardiovascular disease. However, little is known about the regulation of platelet PAI-1 (pPAI-1). OBJECTIVES We investigated the genetic control of pPAI-1 levels in mice and humans. METHODS We measured pPAI-1 antigen levels via enzyme-linked immunosorbent assay in platelets isolated from 10 inbred mouse strains, including LEWES/EiJ (LEWES) and C57BL/6J (B6). LEWES and B6 were crossed to produce the F1 generation, B6LEWESF1. B6LEWESF1 mice were intercrossed to produce B6LEWESF2 mice. These mice were subjected to genome-wide genetic marker genotyping followed by quantitative trait locus analysis to identify pPAI-1 regulatory loci. RESULTS We identified differences in pPAI-1 between several laboratory strains, with LEWES having pPAI-1 levels more than 10-fold higher than those in B6. Quantitative trait locus analysis of B6LEWESF2 offspring identified a major pPAI-1 regulatory locus on chromosome 5 from 136.1 to 137.6 Mb (logarithm of the odds score, 16.2). Significant pPAI-1 modifier loci on chromosomes 6 and 13 were also identified. CONCLUSION Identification of pPAI-1 genomic regulatory elements provides insights into platelet/megakaryocyte-specific and cell type-specific gene expression. This information can be used to design more precise therapeutic targets for diseases where PAI-1 plays a role.
Collapse
Affiliation(s)
- Amy E Siebert
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Marisa A Brake
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Stephanie C Verbeek
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | | | - Andrew P Morgan
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Audrey C Cleuren
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Adrianna M Jurek
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Caitlin D Schneider
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Derrik M Germain
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Fabia U Battistuzzi
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA; Department of Bioengineering, Oakland University, Rochester, Michigan, USA; Centers for Data Science and Big Data Analytics and Biomedical Research, Oakland University, Rochester, Michigan, USA
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Darla R Miller
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jill M Johnsen
- Department of Medicine, Institute for Stem Cell & Regenerative Medicine, and Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew T Rondina
- Molecular Medicine Program, Departments of Internal Medicine and Pathology, the University of Utah, Salt Lake City, Utah, USA; The George E. Wahlen Department of Medical Affairs Medical Center, Salt Lake City, Utah, USA
| | - Randal J Westrick
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Department of Bioengineering, Oakland University, Rochester, Michigan, USA; Centers for Data Science and Big Data Analytics and Biomedical Research, Oakland University, Rochester, Michigan, USA; Eye Research Center and Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA.
| |
Collapse
|
33
|
Hoirisch-Clapauch S. Silicone breast implants may contribute to early-onset fetal growth restriction. Clin Rheumatol 2023; 42:2445-2452. [PMID: 37271772 PMCID: PMC10239713 DOI: 10.1007/s10067-023-06650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
INTRODUCTION There are many studies showing that silicone breast implants may affect lactation, but few analyzed whether these implants affect placentation. We observed that many mothers with growth-restricted pregnancies had inflammatory conditions, such as silicone breast implants or giardiasis. METHODS This single-center cohort study assessed the prevalence of inflammatory conditions in normotensive growth-restricted singleton pregnancies. Next, we stratified the patients according to the presence or absence of silicone breast implants, to determine whether these implants influence fetal growth restriction onset or severity. RESULTS Twelve (32%) of the 38 participants underwent cosmetic breast augmentation 4-18 years before pregnancy. Half of the patients with and 38% without silicone breast implants had giardiasis. Half of the mothers with and 35% without silicone breast implants had autoantibodies. Silicone breast implants were associated with a 70% increased risk of fetal growth restriction before 32 weeks' gestation (95% confidence interval [CI], 1.2-2.5). Fetal growth restriction was diagnosed significantly earlier in mothers with than in those without silicone breast implants, respectively at 27 (95% CI, 25-30) and 30 weeks' gestation (95% CI, 29-32). Silicone breast implants also tripled the risk of fetuses being below the third percentile, but the difference was not significant. CONCLUSION Our results suggest that the association of inflammatory conditions, such as silicone breast implants, giardiasis, and autoantibodies may contribute to placental insufficiency. Silicone breast implants older than four years increased the risk of early-onset fetal growth restriction. Studies with large samples are needed to validate our findings and define whether silicone-related fetal growth restriction should be included in autoimmune/inflammatory syndrome induced by adjuvants (ASIA) criteria. Key Points • Fetal growth restriction (FGR), responsible for 30% of stillbirths, is the most common cause of prematurity and intrapartum asphyxia. • In this study, including 38 mothers with normotensive FGR, all participants had 2-4 inflammatory conditions, such as giardiasis, sinusitis, candidiasis, dysbiosis, extreme fear or autoantibodies. • Silicone breast implants were associated with a 70% increased risk of fetal growth restriction before 32 weeks' gestation. • FGR was diagnosed at 27 weeks' gestation (95% CI, 25-30) in mothers with and at 30 weeks' gestation (95% CI, 29-32) in mothers without silicone breast implants.
Collapse
|
34
|
Li X, Hu S, Liu P. Vascular-related biomarkers in psychosis: a systematic review and meta-analysis. Front Psychiatry 2023; 14:1241422. [PMID: 37692299 PMCID: PMC10486913 DOI: 10.3389/fpsyt.2023.1241422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Background While the molecular underpinnings of vascular dysfunction in psychosis are under active investigation, their implications remain unclear due to inconsistent and sometimes sparse observations. We conducted a comprehensive meta-analysis to critically assess the alterations of vascular-related molecules in the cerebrospinal fluid (CSF) and blood of patients with psychotic disorders compared with healthy individuals. Methods Databases were searched from inception to February 23, 2023. Meta-analyses were performed using a random-effects model. Meta-regression and subgroup analyses were conducted to assess the effects of clinical correlates. Results We identified 93 eligible studies with 30 biomarkers investigated in the CSF and/or blood. Among the biomarkers examined, psychotic disorders were associated with elevated CSF-to-serum albumin ratio (standardized mean difference [SMD], 0.69; 95% confidence interval [CI], 0.35-1.02); blood S100B (SMD, 0.88; 95% CI, 0.59-1.17), matrix metalloproteinase-9 (MMP-9; SMD, 0.66; 95% CI, 0.46-0.86), and zonulin (SMD, 1.17; 95% CI, 0.04-2.30). The blood levels of S100B, MMP-9, nerve growth factor (NGF), vascular endothelial growth factor (VEGF), intercellular adhesion molecule 1 (ICAM-1), and vascular adhesion molecule 1 (VCAM-1) were altered in patient subgroups differing in demographic and clinical characteristics. Blood S100B level was positively correlated with age and duration of illness. Substantial between-study heterogeneity was observed in most molecules. Conclusion The alterations in certain vascular-related fluid markers in psychotic disorders suggest disturbances in normal vascular structures and functions. However, not all molecules examined displayed clear evidence of changes. While potential impacts of clinical factors, including the administered treatment, were identified, the exploration remained limited. Further studies are needed to investigate the diverse patterns of expression, and understand how these abnormalities reflect the pathophysiology of psychosis and the impact of clinical factors.
Collapse
Affiliation(s)
- Xiaojun Li
- Tsinghua University School of Medicine, Beijing, China
| | - Shuang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pozi Liu
- Tsinghua University School of Medicine, Beijing, China
- Department of Psychiatry, Beijing Yuquan Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
35
|
Moore HB. Fibrinolysis Shutdown and Hypofibrinolysis Are Not Synonymous Terms: The Clinical Significance of Differentiating Low Fibrinolytic States. Semin Thromb Hemost 2023; 49:433-443. [PMID: 36318960 PMCID: PMC10366941 DOI: 10.1055/s-0042-1758057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Low fibrinolytic activity has been associated with pathologic thrombosis and multiple-organ failure. Low fibrinolytic activity has two commonly associated terms, hypofibrinolysis and fibrinolysis shutdown. Hypofibrinolysis is a chronic state of lack of ability to generate an appropriate fibrinolytic response when anticipated. Fibrinolysis shutdown is the shutdown of fibrinolysis after systemic activation of the fibrinolytic system. There has been interchanging of these terms to describe critically ill patients in multiple settings. This is problematic in understanding the pathophysiology of disease processes related to these conditions. There is also a lack of research on the cellular mediators of these processes. The purpose of this article is to review the on and off mechanisms of fibrinolysis in the context of low fibrinolytic states to define the importance in differentiating hypofibrinolysis from fibrinolysis shutdown. In many clinical scenarios, the etiology of a low fibrinolytic state cannot be determined due to ambiguity if a preceding fibrinolytic activation event occurred. In this scenario, the term "low fibrinolytic activity" or "fibrinolysis resistance" is a more appropriate descriptor, rather than using assumptive of hypofibrinolysis and fibrinolysis shutdown, particularly in the acute setting of infection, injury, and surgery.
Collapse
Affiliation(s)
- Hunter B. Moore
- Division of Transplant Surgery, Department of Surgery, University of Colorado Denver, Aurora, Colorado Semin Thromb Hemost
| |
Collapse
|
36
|
Li W, Cao S, Liu B, Zhang Z, Liu Z, Feng H. Influence of the 4G/5G polymorphism of plasminogen activator inhibitor-1 gene in acute unprovoked deep vein thrombosis and residual vein thrombosis. J Vasc Surg Venous Lymphat Disord 2023; 11:748-753. [PMID: 36907506 DOI: 10.1016/j.jvsv.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) is an important inhibitor of plasminogen activator, but the role of the PAI-1 4G/5G polymorphism in deep vein thrombosis (DVT) has been contradictory. In this study, we investigated the distribution of the PAI-1 4G/5G genotype in Chinese patients with DVT compared with healthy controls and the association between the PAI-1 4G/5G genotype and the persistence of residual venous occlusion (RVO) after different treatments. METHODS The PAI-1 4G/5G genotype was determined by fluorescence in situ hybridization in 108 patients with unprovoked DVT and 108 healthy controls. The patients with DVT were treated with catheter-based therapy or anticoagulation only. RVO was assessed by duplex sonography during the follow-up. RESULTS Thirty-two patients (29.6%) were homozygous for 4G (4G/4G), 62 patients (57.4%) were heterozygous for 4G/5G, and 14 patients (13%) were homozygous for 5G (5G/5G). No significant difference in genotype frequency was found between patients with DVT and controls. A total of 86 patients completed follow-up of ultrasound examination with a mean follow-up of 13.4 ±7.2 months. The results of patients with RVO were significantly different between homozygous 4G carriers (76.9%), heterozygous 4G/5G (58.3%), and homozygous carriers of 5G (33.3%) (P <.05) at the end of follow-up. Catheter-based therapy showed a better result in patients who were noncarriers of 4G (P = .045). CONCLUSIONS The PAI-1 4G/5G genotype was not a relevant predictor for DVT in Chinese patients, but is a risk factor for persistent RVO after idiopathic DVT.
Collapse
Affiliation(s)
- Wenrui Li
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Saisai Cao
- Department of Plastic Surgery, Peking University People's Hospital, Beijing, China
| | - Bin Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhiwen Zhang
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhao Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hai Feng
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
37
|
Whyte CS. All tangled up: interactions of the fibrinolytic and innate immune systems. Front Med (Lausanne) 2023; 10:1212201. [PMID: 37332750 PMCID: PMC10272372 DOI: 10.3389/fmed.2023.1212201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
The hemostatic and innate immune system are intertwined processes. Inflammation within the vasculature promotes thrombus development, whilst fibrin forms part of the innate immune response to trap invading pathogens. The awareness of these interlinked process has resulted in the coining of the terms "thromboinflammation" and "immunothrombosis." Once a thrombus is formed it is up to the fibrinolytic system to resolve these clots and remove them from the vasculature. Immune cells contain an arsenal of fibrinolytic regulators and plasmin, the central fibrinolytic enzyme. The fibrinolytic proteins in turn have diverse roles in immunoregulation. Here, the intricate relationship between the fibrinolytic and innate immune system will be discussed.
Collapse
|
38
|
Morrow GB, Mutch NJ. Past, Present, and Future Perspectives of Plasminogen Activator Inhibitor 1 (PAI-1). Semin Thromb Hemost 2023; 49:305-313. [PMID: 36522166 DOI: 10.1055/s-0042-1758791] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plasminogen activator inhibitor 1 (PAI-1), a SERPIN inhibitor, is primarily known for its regulation of fibrinolysis. However, it is now known that this inhibitor functions and contributes to many (patho)physiological processes including inflammation, wound healing, cell adhesion, and tumor progression.This review discusses the past, present, and future roles of PAI-1, with a particular focus on the discovery of this inhibitor in the 1970s and subsequent characterization in health and disease. Throughout the past few decades diverse functions of this serpin have unraveled and it is now considered an important player in many disease processes. PAI-1 is expressed by numerous cell types, including megakaryocytes and platelets, adipocytes, endothelial cells, hepatocytes, and smooth muscle cells. In the circulation PAI-1 exists in two pools, within plasma itself and in platelet α-granules. Platelet PAI-1 is secreted following activation with retention of the inhibitor on the activated platelet membrane. Furthermore, these anucleate cells contain PAI-1 messenger ribonucleic acid to allow de novo synthesis.Outside of the traditional role of PAI-1 in fibrinolysis, this serpin has also been identified to play important roles in metabolic syndrome, obesity, diabetes, and most recently, acute respiratory distress syndrome, including coronavirus disease 2019 disease. This review highlights the complexity of PAI-1 and the requirement to ascertain a better understanding on how this complex serpin functions in (patho)physiological processes.
Collapse
Affiliation(s)
- Gael B Morrow
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola J Mutch
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
39
|
Niculae CM, Hristea A, Moroti R. Mechanisms of COVID-19 Associated Pulmonary Thrombosis: A Narrative Review. Biomedicines 2023; 11:929. [PMID: 36979908 PMCID: PMC10045826 DOI: 10.3390/biomedicines11030929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
COVID-19, the infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is frequently associated with pulmonary thrombotic events, especially in hospitalized patients. Severe SARS-CoV-2 infection is characterized by a proinflammatory state and an associated disbalance in hemostasis. Immune pathology analysis supports the inflammatory nature of pulmonary arterial thrombi composed of white blood cells, especially neutrophils, CD3+ and CD20+ lymphocytes, fibrin, red blood cells, and platelets. Immune cells, cytokines, chemokines, and the complement system are key drivers of immunothrombosis, as they induce the damage of endothelial cells and initiate proinflammatory and procoagulant positive feedback loops. Neutrophil extracellular traps induced by COVID-19-associated "cytokine storm", platelets, red blood cells, and coagulation pathways close the inflammation-endotheliopathy-thrombosis axis, contributing to SARS-CoV-2-associated pulmonary thrombotic events. The hypothesis of immunothrombosis is also supported by the minor role of venous thromboembolism with chest CT imaging data showing peripheral blood clots associated with inflammatory lesions and the high incidence of thrombotic events despite routine thromboprophylaxis. Understanding the complex mechanisms behind COVID-19-induced pulmonary thrombosis will lead to future combination therapies for hospitalized patients with severe disease that would target the crossroads of inflammatory and coagulation pathways.
Collapse
Affiliation(s)
- Cristian-Mihail Niculae
- Infectious Diseases Department, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.H.); (R.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Adriana Hristea
- Infectious Diseases Department, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.H.); (R.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Ruxandra Moroti
- Infectious Diseases Department, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.H.); (R.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| |
Collapse
|
40
|
Bedawi EO, Kanellakis NI, Corcoran JP, Zhao Y, Hassan M, Asciak R, Mercer RM, Sundaralingam A, Addala DN, Miller RF, Dong T, Condliffe AM, Rahman NM. The Biological Role of Pleural Fluid PAI-1 and Sonographic Septations in Pleural Infection: Analysis of a Prospectively Collected Clinical Outcome Study. Am J Respir Crit Care Med 2023; 207:731-739. [PMID: 36191254 PMCID: PMC10037470 DOI: 10.1164/rccm.202206-1084oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Sonographic septations are assumed to be important clinical predictors of outcome in pleural infection, but the evidence for this is sparse. The inflammatory and fibrinolysis-associated intrapleural pathway(s) leading to septation formation have not been studied in a large cohort of pleural fluid (PF) samples with confirmed pleural infection matched with ultrasound and clinical outcome data. Objectives: To assess the presence and severity of septations against baseline PF PAI-1 (Plasminogen-Activator Inhibitor-1) and other inflammatory and fibrinolysis-associated proteins as well as to correlate these with clinically important outcomes. Methods: We analyzed 214 pleural fluid samples from PILOT (Pleural Infection Longitudinal Outcome Study), a prospective observational pleural infection study, for inflammatory and fibrinolysis-associated proteins using the Luminex platform. Multivariate regression analyses were used to assess the association of pleural biological markers with septation presence and severity (on ultrasound) and clinical outcomes. Measurements and Main Results: PF PAI-1 was the only protein independently associated with septation presence (P < 0.001) and septation severity (P = 0.003). PF PAI-1 concentrations were associated with increased length of stay (P = 0.048) and increased 12-month mortality (P = 0.003). Sonographic septations alone had no relation to clinical outcomes. Conclusions: In a large and well-characterized cohort, this is the first study to associate pleural biological parameters with a validated sonographic septation outcome in pleural infection. PF PAI-1 is the first biomarker to demonstrate an independent association with mortality. Although PF PAI-1 plays an integral role in driving septation formation, septations themselves are not associated with clinically important outcomes. These novel findings now require prospective validation.
Collapse
Affiliation(s)
- Eihab O. Bedawi
- Oxford Pleural Unit, Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Respiratory Trials Unit
- National Institute for Health Research Oxford Biomedical Research Centre
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Nikolaos I. Kanellakis
- Oxford Pleural Unit, Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Respiratory Trials Unit
- National Institute for Health Research Oxford Biomedical Research Centre
- Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, and
| | - John P. Corcoran
- Department of Respiratory Medicine, Derriford Hospital, University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | - Yu Zhao
- Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine
| | - Maged Hassan
- Oxford Pleural Unit, Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Chest Diseases Department, Alexandria University Faculty of Medicine, Alexandria, Egypt
| | - Rachelle Asciak
- Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth, United Kingdom; and
| | - Rachel M. Mercer
- Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth, United Kingdom; and
| | - Anand Sundaralingam
- Oxford Pleural Unit, Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Respiratory Trials Unit
| | - Dinesh N. Addala
- Oxford Pleural Unit, Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Respiratory Trials Unit
| | - Robert F. Miller
- Institute for Global Health, University College London, London, United Kingdom
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, and
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Alison M. Condliffe
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Najib M. Rahman
- Oxford Pleural Unit, Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Respiratory Trials Unit
- National Institute for Health Research Oxford Biomedical Research Centre
- Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, and
| |
Collapse
|
41
|
Glucocorticoid-Responsive Tissue Plasminogen Activator (tPA) and Its Inhibitor Plasminogen Activator Inhibitor-1 (PAI-1): Relevance in Stress-Related Psychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054496. [PMID: 36901924 PMCID: PMC10003592 DOI: 10.3390/ijms24054496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Stressful events trigger a set of complex biological responses which follow a bell-shaped pattern. Low-stress conditions have been shown to elicit beneficial effects, notably on synaptic plasticity together with an increase in cognitive processes. In contrast, overly intense stress can have deleterious behavioral effects leading to several stress-related pathologies such as anxiety, depression, substance use, obsessive-compulsive and stressor- and trauma-related disorders (e.g., post-traumatic stress disorder or PTSD in the case of traumatic events). Over a number of years, we have demonstrated that in response to stress, glucocorticoid hormones (GCs) in the hippocampus mediate a molecular shift in the balance between the expression of the tissue plasminogen activator (tPA) and its own inhibitor plasminogen activator inhibitor-1 (PAI-1) proteins. Interestingly, a shift in favor of PAI-1 was responsible for PTSD-like memory induction. In this review, after describing the biological system involving GCs, we highlight the key role of tPA/PAI-1 imbalance observed in preclinical and clinical studies associated with the emergence of stress-related pathological conditions. Thus, tPA/PAI-1 protein levels could be predictive biomarkers of the subsequent onset of stress-related disorders, and pharmacological modulation of their activity could be a potential new therapeutic approach for these debilitating conditions.
Collapse
|
42
|
Phair IR, Nisr RB, Howden AJM, Sovakova M, Alqurashi N, Foretz M, Lamont D, Viollet B, Rena G. AMPK integrates metabolite and kinase-based immunometabolic control in macrophages. Mol Metab 2023; 68:101661. [PMID: 36586434 PMCID: PMC9842865 DOI: 10.1016/j.molmet.2022.101661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Previous mechanistic studies on immunometabolism have focused on metabolite-based paradigms of regulation, such as itaconate. Here, we, demonstrate integration of metabolite and kinase-based immunometabolic control by AMP kinase. METHODS We combined whole cell quantitative proteomics with gene knockout of AMPKα1. RESULTS Comparing macrophages with AMPKα1 catalytic subunit deletion with wild-type, inflammatory markers are largely unchanged in unstimulated cells, but with an LPS stimulus, AMPKα1 knockout leads to a striking M1 hyperpolarisation. Deletion of AMPKα1 also resulted in increased expression of rate-limiting enzymes involved in itaconate synthesis, metabolism of glucose, arginine, prostaglandins and cholesterol. Consistent with this, we observed functional changes in prostaglandin synthesis and arginine metabolism. Selective AMPKα1 activation also unlocks additional regulation of IL-6 and IL-12 in M1 macrophages. CONCLUSIONS Together, our results validate AMPK as a pivotal immunometabolic regulator in macrophages.
Collapse
Affiliation(s)
- Iain R Phair
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Raid B Nisr
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Andrew J M Howden
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Magdalena Sovakova
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Noor Alqurashi
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Marc Foretz
- Université Paris Cité, Institut Cochin, CNRS, INSERM, F-75014 Paris, France.
| | - Douglas Lamont
- Centre for Advanced Scientific Technologies, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Benoit Viollet
- Université Paris Cité, Institut Cochin, CNRS, INSERM, F-75014 Paris, France.
| | - Graham Rena
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
43
|
Wang X, Guo L, Huang J, Jiang S, Li N, Mu HH, Xu C. Plasminogen Activator Inhibitor-1 Potentiates Neutrophil Infiltration and Tissue Injury in Colitis. Int J Biol Sci 2023; 19:2132-2149. [PMID: 37151884 PMCID: PMC10158018 DOI: 10.7150/ijbs.75890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/23/2023] [Indexed: 05/09/2023] Open
Abstract
The mechanism underlying inflammatory bowel disease (IBD) remains unclear. We aimed to identify early diagnostic biomarkers and understand their roles in the pathogenesis of IBD. Methods: We identified plasminogen activator inhibitor-1 (PAI-1) as a potential key gene that is upregulated in IBD based on published transcriptomic datasets. To further determine the role of PAI-1 in disease pathogenesis, we induced colitis in wild-type (WT) and PAI-1 knockout (KO) mice by administering dextran sulfate sodium (DSS). We used an RNA array of genes and 16S rRNA sequencing of the microbiome to analyze PAI-1 function. The colon and serum PAI-1 levels in humans were further evaluated for their diagnostic value. Results: PAI-1 expression was significantly increased in patients and DSS-induced WT mice but reduced in PAI-1 KO mice. These changes were associated with significantly decreased neutrophil infiltration in colonic tissues. The RNA array revealed that the CXC chemokines CXCL1 and CXCL5 and their common receptor CXCR2 were among the most significantly different genes between the PAI-1 KO mice with DSS-induced colitis and the WT mice. Mechanistically, PAI-1 deficiency led to blunted activation of the NF-κB pathway in the colon epithelium. The gut microbiome was altered in the PAI-1 KO mice, which showed enriched abundances of short-chain fatty acid-producing genera and diminished abundances of pathogenic genera. Receiver operating characteristic (ROC) curve analysis revealed the diagnostic value of PAI-1. Conclusions: Our data suggest a previously unknown function of PAI-1 inducing neutrophil-mediated chemokine expression by activating the NF-κB pathway and affecting the function of the gut microbiome. PAI-1 could be a potential diagnostic biomarker and a therapeutic target in IBD.
Collapse
Affiliation(s)
- Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine; Shanghai, 200025, China
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, University of Utah; Salt Lake City, Utah, 84132, USA
- ✉ Corresponding author: Xinqiong Wang, MD, Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China. ; Tel: +86-21-64370045; Fax: +86-21-64333414. Chundi Xu, MD, Ph.D., Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China. ; Tel: +86-21-64370045; Fax: +86-21-64333414
| | - Li Guo
- Molecular Medicine Program, University of Utah; Salt Lake City, Utah, 84132, USA
| | - Jiebin Huang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine; Shanghai, 200025, China
| | - Shaowei Jiang
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, University of Utah; Salt Lake City, Utah, 84132, USA
- Department of Emergency, Shanghai Jiahui International Hospital; Shanghai, 200233, China
| | - Na Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine; Shanghai, 200025, China
- Institute of tropical medicine, Hainan Medical University; Haikou, 570228, China
| | - Hong-Hua Mu
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, University of Utah; Salt Lake City, Utah, 84132, USA
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine; Shanghai, 200025, China
- ✉ Corresponding author: Xinqiong Wang, MD, Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China. ; Tel: +86-21-64370045; Fax: +86-21-64333414. Chundi Xu, MD, Ph.D., Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China. ; Tel: +86-21-64370045; Fax: +86-21-64333414
| |
Collapse
|
44
|
Cobeta P, Pariente R, Osorio A, Marchan M, Blázquez L, Pestaña D, Galindo J, Botella-Carretero JI. The Beneficial Changes on Inflammatory and Endothelial Biomarkers Induced by Metabolic Surgery Decreases the Carotid Intima-Media Thickness in Men. Biomolecules 2022; 12:biom12121827. [PMID: 36551255 PMCID: PMC9775021 DOI: 10.3390/biom12121827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity increases cardiovascular risk in men through several mechanisms. Among them, low-grade chronic inflammation and obesity-associated hypogonadism have been described. We aimed to study the effects of metabolic surgery on the carotid-intima media thickness through changes in inflammatory, endothelial biomarkers, and testosterone. We included 60 men; 20 submitted to laparoscopic Roux-en-Y gastric bypass (RYGB), 20 to sleeve gastrectomy (SG), and 20 to lifestyle modification (controls). Several inflammatory and endothelial biomarkers and total testosterone (TT) were measured at baseline and six months after surgery. Free testosterone (FT) was calculated, and carotid intima-media thickness (cIMT) was measured by ultrasonography. Compared to controls, cIMT decreased after surgery concomitantly with CRP, PAI-1, sICAM-1, and IL-18 (p < 0.01) and with an increase in sTWEAK (p = 0.027), with no differences between RYGB and SG. The increase in TT and FT after surgery correlated with the changes in cIMT (p = 0.010 and p = 0.038, respectively), but this association disappeared after multivariate analysis. Linear regression showed that sTWEAK (ß = -0.245, p = 0.039), PAI-1 (ß = 0.346, p = 0.005), and CRP (ß = 0.236, p = 0.049) were associated with the changes in cIMT (R2 = 0.267, F = 6.664, p = 0.001). In conclusion, both RYGB and SG induced improvements in inflammation and endothelial biomarkers that drove a decrease in cIMT compared to men with obesity who submitted to diet and exercise.
Collapse
Affiliation(s)
- Pilar Cobeta
- Department of Anesthesiology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria—IRyCIS, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Roberto Pariente
- Department of Inmunology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Alvaro Osorio
- Instituto Ramón y Cajal de Investigación Sanitaria—IRyCIS, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Department of Angiology and Vascular Surgery, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Marta Marchan
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Luis Blázquez
- Instituto Ramón y Cajal de Investigación Sanitaria—IRyCIS, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Department of General and Digestive Surgery, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - David Pestaña
- Department of Anesthesiology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Julio Galindo
- Instituto Ramón y Cajal de Investigación Sanitaria—IRyCIS, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Department of General and Digestive Surgery, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - José I. Botella-Carretero
- Instituto Ramón y Cajal de Investigación Sanitaria—IRyCIS, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Correspondence: ; Tel.: +34-913368343
| |
Collapse
|
45
|
Haynes LM, Huttinger ZM, Yee A, Kretz CA, Siemieniak DR, Lawrence DA, Ginsburg D. Deep mutational scanning and massively parallel kinetics of plasminogen activator inhibitor-1 functional stability to probe its latency transition. J Biol Chem 2022; 298:102608. [PMID: 36257408 PMCID: PMC9667310 DOI: 10.1016/j.jbc.2022.102608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor superfamily of proteins, is unique among serine protease inhibitors for exhibiting a spontaneous conformational change to a latent or inactive state. The functional half-life for this transition at physiologic temperature and pH is ∼1 to 2 h. To better understand the molecular mechanisms underlying this transition, we now report on the analysis of a comprehensive PAI-1 variant library expressed on filamentous phage and selected for functional stability after 48 h at 37 °C. Of the 7201 possible single amino acid substitutions in PAI-1, we identified 439 that increased the functional stability of PAI-1 beyond that of the WT protein. We also found 1549 single amino acid substitutions that retained inhibitory activity toward the canonical target protease of PAI-1 (urokinase-like plasminogen activator), whereas exhibiting functional stability less than or equal to that of WT PAI-1. Missense mutations that increase PAI-1 functional stability are concentrated in highly flexible regions within the PAI-1 structure. Finally, we developed a method for simultaneously measuring the functional half-lives of hundreds of PAI-1 variants in a multiplexed, massively parallel manner, quantifying the functional half-lives for 697 single missense variants of PAI-1 by this approach. Overall, these findings provide novel insight into the mechanisms underlying the latency transition of PAI-1 and provide a database for interpreting human PAI-1 genetic variants.
Collapse
Affiliation(s)
- Laura M Haynes
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Zachary M Huttinger
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew Yee
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Colin A Kretz
- Department of Medicine, McMaster University and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - David R Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Howard Hughes Medical Institute
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA; Howard Hughes Medical Institute; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Departments of Human Genetics and Pediatrics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
46
|
Reed E, Fellows A, Lu R, Rienks M, Schmidt L, Yin X, Duregotti E, Brandt M, Krasemann S, Hartmann K, Barallobre-Barreiro J, Addison O, Cuello F, Hansen A, Mayr M. Extracellular Matrix Profiling and Disease Modelling in Engineered Vascular Smooth Muscle Cell Tissues. Matrix Biol Plus 2022; 16:100122. [PMID: 36193159 PMCID: PMC9526190 DOI: 10.1016/j.mbplus.2022.100122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Aortic smooth muscle cells (SMCs) have an intrinsic role in regulating vessel homeostasis and pathological remodelling. In two-dimensional (2D) cell culture formats, however, SMCs are not embedded in their physiological extracellular matrix (ECM) environment. To overcome the limitations of conventional 2D SMC cultures, we established a 3D in vitro model of engineered vascular smooth muscle cell tissues (EVTs). EVTs were casted from primary murine aortic SMCs by suspending a SMC-fibrin master mix between two flexible silicon-posts at day 0 before prolonged culture up to 14 days. Immunohistochemical analysis of EVT longitudinal sections demonstrated that SMCs were aligned, viable and secretory. Mass spectrometry-based proteomics analysis of murine EVT lysates was performed and identified 135 matrisome proteins. Proteoglycans, including the large aggregating proteoglycan versican, accumulated within EVTs by day 7 of culture. This was followed by the deposition of collagens, elastin-binding proteins and matrix regulators up to day 14 of culture. In contrast to 2D SMC controls, accumulation of versican occurred in parallel to an increase in versikine, a cleavage product mediated by proteases of the A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) family. Next, we tested the response of EVTs to stimulation with transforming growth factor beta-1 (TGFβ-1). EVTs contracted in response to TGFβ-1 stimulation with altered ECM composition. In contrast, treatment with the pharmacological activin-like kinase inhibitor (ALKi) SB 431542 suppressed ECM secretion. As a disease stimulus, we performed calcification assays. The ECM acts as a nidus for calcium phosphate deposition in the arterial wall. We compared the onset and extent of calcification in EVTs and 2D SMCs cultured under high calcium and phosphate conditions for 7 days. Calcified EVTs displayed increased tissue stiffness by up to 30 % compared to non-calcified controls. Unlike the rapid calcification of SMCs in 2D cultures, EVTs sustained expression of the calcification inhibitor matrix Gla protein and allowed for better discrimination of the calcification propensity between independent biological replicates. In summary, EVTs are an intuitive and versatile model to investigate ECM synthesis and turnover by SMCs in a 3D environment. Unlike conventional 2D cultures, EVTs provide a more relevant pathophysiological model for retention of the nascent ECM produced by SMCs.
Collapse
Key Words
- 2D, Two-dimensional
- 3D cell culture
- 3D, Three-dimensional
- ADAMTS, A disintegrin and metalloproteinase with thrombospondin motifs
- ALKi, Activin-like kinase inhibitor
- Calcification
- ECM
- ECM, Extracellular matrix
- EHT, Engineered heart tissue
- EVT, Engineered vascular smooth muscle cell tissue
- LC-MS/MS, Liquid chromatography with tandem mass spectrometry
- Proteomics
- SMC, Smooth muscle cell
- Smooth muscle cells
- TCP, Tissue culture polystyrene
- TGFβ-1, Transforming growth factor beta-1
- Tissue engineering
Collapse
Affiliation(s)
- Ella Reed
- King's British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London SE5 9NU, UK
| | - Adam Fellows
- King's British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London SE5 9NU, UK
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ruifang Lu
- King's British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London SE5 9NU, UK
| | - Marieke Rienks
- King's British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London SE5 9NU, UK
| | - Lukas Schmidt
- King's British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London SE5 9NU, UK
| | - Xiaoke Yin
- King's British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London SE5 9NU, UK
| | - Elisa Duregotti
- King's British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London SE5 9NU, UK
| | - Mona Brandt
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, University Medical Center Hamburg-Eppendorf, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Javier Barallobre-Barreiro
- King's British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London SE5 9NU, UK
| | - Owen Addison
- Centre of Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, University Medical Center Hamburg-Eppendorf, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, University Medical Center Hamburg-Eppendorf, Germany
| | - Manuel Mayr
- King's British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London SE5 9NU, UK
| |
Collapse
|
47
|
Diurnal Oscillations of Fibrinolytic Parameters in Patients with Acute Myocardial Infarction and Their Relation to Platelet Reactivity: Preliminary Insights. J Clin Med 2022; 11:jcm11237105. [PMID: 36498682 PMCID: PMC9740563 DOI: 10.3390/jcm11237105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
There is limited information about diurnal changes in fibrinolysis parameters after acute myocardial infarction (AMI) and their relationship with on-treatment platelet reactivity. The aim of this study was to assess tissue plasminogen activator (t-PA), plasminogen activator inhibitor type-1 (PAI-1), α2-antiplasmin (α2-AP) activity, and plasmin-antiplasmin (PAP) complexes in 30 AMI patients taking dual antiplatelet therapy (DAPT), i.e., acetylsalicylic acid and clopidogrel. Fibrinolytic parameters were assessed at four time points (6 a.m., 10 a.m., 2 p.m., and 7 p.m.) on the third day after AMI using immunoenzymatic methods. Moreover, platelet reactivity was measured using multiple-electrode aggregometry, to assess potential differences in fibrinolytic parameters in low/high on-aspirin platelet reactivity and low/high on-clopidogrel platelet reactivity subgroups of patients. We detected significant diurnal oscillations in t-PA and PAI-1 levels in the whole study group. However, PAP complexes and α2-AP activity were similar at the analyzed time points. Our study reveals a potential impact of DAPT on the time course of fibrinolytic parameters, especially regarding clopidogrel. We suggest the presence of diurnal variations in t-PA and PAI-1 concentrations in AMI patients, with the highest levels midmorning, regardless of platelet reactivity. Significantly elevated levels of PAI-1 during the evening hours in clopidogrel-resistant patients may increase the risk of thrombosis.
Collapse
|
48
|
Puvogel S, Alsema A, Kracht L, Webster MJ, Weickert CS, Sommer IEC, Eggen BJL. Single-nucleus RNA sequencing of midbrain blood-brain barrier cells in schizophrenia reveals subtle transcriptional changes with overall preservation of cellular proportions and phenotypes. Mol Psychiatry 2022; 27:4731-4740. [PMID: 36192459 PMCID: PMC9734060 DOI: 10.1038/s41380-022-01796-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
The midbrain is an extensively studied brain region in schizophrenia, in view of its reported dopamine pathophysiology and neuroimmune changes associated with this disease. Besides the dopaminergic system, the midbrain contains other cell types that may be involved in schizophrenia pathophysiology. The neurovascular hypothesis of schizophrenia postulates that both the neurovasculature structure and the functioning of the blood-brain barrier (BBB) are compromised in schizophrenia. In the present study, potential alteration in the BBB of patients with schizophrenia was investigated by single-nucleus RNA sequencing of post-mortem midbrain tissue (15 schizophrenia cases and 14 matched controls). We did not identify changes in the relative abundance of the major BBB cell types, nor in the sub-populations, associated with schizophrenia. However, we identified 14 differentially expressed genes in the cells of the BBB in schizophrenia as compared to controls, including genes that have previously been related to schizophrenia, such as FOXP2 and PDE4D. These transcriptional changes were limited to the ependymal cells and pericytes, suggesting that the cells of the BBB are not broadly affected in schizophrenia.
Collapse
Affiliation(s)
- Sofía Puvogel
- Department of Biomedical Sciences of Cells and Systems, section Cognitive Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Astrid Alsema
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura Kracht
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Iris E C Sommer
- Department of Biomedical Sciences of Cells and Systems, section Cognitive Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
49
|
Lake JE, Wang R, Barrett BW, Bowman E, Hyatt AN, Debroy P, Candelario J, Teplin L, Bodnar K, McKay H, Plankey M, Brown TT, Funderburg N, Currier JS. Trans women have worse cardiovascular biomarker profiles than cisgender men independent of hormone use and HIV serostatus. AIDS 2022; 36:1801-1809. [PMID: 35950945 PMCID: PMC9529791 DOI: 10.1097/qad.0000000000003346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Feminizing hormonal therapy (FHT) and HIV potentially alter cardiovascular disease (CVD) risk in transgender women (TW). METHODS TW were enrolled in Los Angeles, California and Houston, Texas and frequency-matched to Multicenter AIDS Cohort Study cisgender men (CM) on age, race, substance use, and abacavir use. Biomarkers of CVD risk and inflammation were assessed via ELISA. Wilcoxon rank sum and Fisher's exact tests compared TW and CM. Multivariable linear regression assessed factors associated with biomarker concentrations. RESULTS TW (HIV+ n = 75, HIV- n = 47) and CM (HIV+ n = 40, HIV- n = 40) had mean age 43-45 years; TW/CM were 90%/91% non-Hispanic Black, Hispanic, or Multiracial, 26%/53% obese, and 34%/24% current smokers; 67% of TW were on FHT. Among people with HIV (PWH), TW had higher median extracellular newly-identified receptor for advanced glycation end-products (EN-RAGE), lipoprotein-associated phospholipase A2 (LpPLA2), oxidized low-density lipoprotein (oxLDL), soluble tumor necrosis factor receptor type (sTNFR) I/II, interleukin (IL)-8 and plasminogen activator inhibitor (PAI)-1, but lower soluble CD14, von Willebrand factor (vWF) and endothelin (ET)-1 levels than CM. Findings were similar for participants without HIV (all P < 0.05). In multivariable analysis, TW had higher EN-RAGE, IL-6, IL-8, P selectin, PAI-1, oxLDL and sTNFRI/II concentrations, and lower vWF, independent of HIV serostatus and current FHT use. Both being a TW and a PWH were associated with lower ET-1. CONCLUSIONS Compared to matched cisgender men, trans women have altered profiles of biomarkers associated with systemic inflammation and CVD. Further work is needed to decipher the contributions of FHT to CVD risk in TW with HIV.
Collapse
Affiliation(s)
- Jordan E Lake
- University of Texas Health Science Center at Houston, Houston, Texas
| | - Ruibin Wang
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | - Ana N Hyatt
- University of Texas Health Science Center at Houston, Houston, Texas
| | - Paula Debroy
- University of Texas Health Science Center at Houston, Houston, Texas
| | | | | | | | - Heather McKay
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Todd T Brown
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Judith S Currier
- University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
50
|
Long-range allostery mediates the regulation of plasminogen activator inhibitor-1 by cell adhesion factor vitronectin. J Biol Chem 2022; 298:102652. [PMID: 36444882 PMCID: PMC9731859 DOI: 10.1016/j.jbc.2022.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
Abstract
The serpin plasminogen activator inhibitor 1 (PAI-1) spontaneously undergoes a massive structural change from a metastable and active conformation, with a solvent-accessible reactive center loop (RCL), to a stable, inactive, or latent conformation, with the RCL inserted into the central β-sheet. Physiologically, conversion to the latent state is regulated by the binding of vitronectin, which hinders the latency transition rate approximately twofold. The molecular mechanisms leading to this rate change are unclear. Here, we investigated the effects of vitronectin on the PAI-1 latency transition using all-atom path sampling simulations in explicit solvent. In simulated latency transitions of free PAI-1, the RCL is quite mobile as is the gate, the region that impedes RCL access to the central β-sheet. This mobility allows the formation of a transient salt bridge that facilitates the transition; this finding rationalizes existing mutagenesis results. Vitronectin binding reduces RCL and gate mobility by allosterically rigidifying structural elements over 40 Å away from the binding site, thus blocking transition to the latent conformation. The effects of vitronectin are propagated by a network of dynamically correlated residues including a number of conserved sites that were previously identified as important for PAI-1 stability. Simulations also revealed a transient pocket populated only in the vitronectin-bound state, corresponding to a cryptic drug-binding site identified by crystallography. Overall, these results shed new light on PAI-1 latency transition regulation by vitronectin and illustrate the potential of path sampling simulations for understanding functional protein conformational changes and for facilitating drug discovery.
Collapse
|