1
|
Feng X, Xu M, Liu Y, Wang X, Duan Y, Zheng X, Yin W, Cai Y, Zhang W, Jiang Q, Pang J, Li J. The sperm quality in DIO male mice is linked to the NF-κB signaling and Ppp2ca expression in the hypothalamus. iScience 2025; 28:112110. [PMID: 40160428 PMCID: PMC11951025 DOI: 10.1016/j.isci.2025.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/24/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Recent studies show obesity correlated with reduced sperm quality in males, but the mechanism is unclear. In this study, diet-induced obese (DIO) male mice exhibited disrupted luteinizing hormone (LH) pulse release due to altered function of the hypothalamic-pituitary-gonadal (HPG) axis. This alteration was caused by activation of nuclear factor kappa B (NF-κB) signaling in the hypothalamus, which led to decreased sperm quality. RNA sequencing (RNA-seq) analysis of the hypothalamic arcuate nucleus (ARC) revealed a signaling network involving protein phosphatase 2 catalytic subunit alpha (Ppp2ca). This network disrupted LH pulse secretion by inhibiting Akt kinase (AKT) and cAMP responsive element-binding protein 1 (CREB1) activities, thereby reducing KiSS-1 metastasis-suppressor (Kiss1) expression. Furthermore, overexpression of the Ppp2ca gene in the ARC led to disrupted LH patterns and reduced sperm quality. These findings offer new insights into the molecular mechanisms underlying sperm quality decline in DIO male mice.
Collapse
Affiliation(s)
- Xu Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Maoxing Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Liu
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xiaoyu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yiman Duan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyan Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wen Yin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Pang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Juxue Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| |
Collapse
|
2
|
Yin WJ, Hsu JW, Chen CC, Su ECY, Wang SY, Chen YJ, Chen YC. Early-Life Risks of Central Precocious Puberty. Endocr Pract 2025:S1530-891X(25)00072-2. [PMID: 40090581 DOI: 10.1016/j.eprac.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVES To investigate the factors in early life that may contribute to central precocious puberty (CPP). METHODS The study utilized data from the Taiwan Puberty Longitudinal Study, including 2241 children under pubertal assessment and a questionnaire of risk factors. We analyzed associations using the Fitting Generalized Linear Models in R (R Core Team, 2023), with R studio (Posit, 2023) version 4.3.1. RESULTS Among the 2241 children examined, 745 had CPP. Overall, higher gestational weight gain (GWG) increased the risk of CPP (odds ratio [OR]: 1.03, 95% CI: 1.01-1.05); while higher GWG served as a protective factor in females (OR: 0.97, 95% CI: 0.95-0.99). Maternal gestational diabetes mellitus (GDM) also increased the CPP risk, particularly in males (OR: 2.66, 95% CI: 1.00-7.25). Longer exclusive breastfeeding was linked to lower CPP risk overall (OR: 0.96, 95% CI: 0.93-1.00) but was not significant when analyzed by gender. CONCLUSIONS Higher maternal GWG was associated with an increased risk of CPP overall, while GWG became negatively associated with CPP, only in females. Maternal GDM was linked to a higher risk of CPP, particularly in males. The duration of exclusive breastfeeding was inversely correlated with CPP risk, but this effect was not significant when analyzed by gender.
Collapse
Affiliation(s)
- Wei-Jou Yin
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jhih-Wei Hsu
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chang Chen
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - San-Yuan Wang
- Master Program in Clinical Genomics and Proteomics, Department of Pharmaceutical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yan-Jen Chen
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Ugrumov MV. Hypothalamic neurons fully or partially expressing the dopaminergic phenotype: development, distribution, functioning and functional significance. A review. Front Neuroendocrinol 2024; 75:101153. [PMID: 39128801 DOI: 10.1016/j.yfrne.2024.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The hypothalamus is a key link in neuroendocrine regulations, which are provided by neuropeptides and dopamine. Until the late 1980 s, it was believed that, along with peptidergic neurons, hypothalamus contained dopaminergic neurons. Over time, it has been shown that besides dopaminergic neurons expressing the dopamine transporter and dopamine-synthesizing enzymes - tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) - the hypothalamus contains neurons expressing only TH, only AADC, both enzymes or only dopamine transporter. The end secretory product of TH neurons is L-3,4-dihydroxyphenylalanine, while that of AADC neurons and bienzymatic neurons lacking the dopamine transporter is dopamine. During ontogenesis, especially in the perinatal period, monoenzymatic neurons predominate in the hypothalamic neuroendocrine centers. It is assumed that L-3,4-dihydroxyphenylalanine and dopamine are released into the neuropil, cerebral ventricles, and blood vessels, participating in the regulation of target cell differentiation in the perinatal period and the functioning of target cells in adulthood.
Collapse
Affiliation(s)
- Michael V Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
4
|
Yang L, Jia C, Li Y, Zhang Y, Ge K, She D. The hypothalamic transcriptome reveals the importance of visual perception on the egg production of Wanxi white geese. Front Vet Sci 2024; 11:1449032. [PMID: 39372898 PMCID: PMC11450866 DOI: 10.3389/fvets.2024.1449032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
Egg performance significantly impacts the development of the local goose industry. The hypothalamus plays an essential role in the egg production of birds. However, few potential candidate genes and biological functions related to egg production in geese have been identified in hypothalamus tissue. In this study, 115 geese were raised and observed for 5 months during the laying period. To understand the regulation mechanism of egg production, the hypothalamus transcriptome profiles of these geese were sequenced using RNA-seq. The hypothalamus samples of four high egg production (HEP) and four low egg production (LEP) geese were selected and collected, respectively. A total of 14,679 genes were identified in the samples. After multiple bioinformatics analyses, Gene Ontology (GO) annotations indicated that genes related to egg production were mainly enriched in biological processes of "response to light stimulus," "sensory system development," and "visual perception." Six potential candidate genes (PDE6C, RHO, MFRP, F2, APOB, and IL6) based on their corresponding GO terms and interaction networks were identified. These identified candidate genes can be used as selection markers to improve the egg production of Wanxi white geese. Our study highlights how visual perception may affect the regulation of geese egg production.
Collapse
Affiliation(s)
- Lei Yang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Changze Jia
- Animal Husbandry Development Center of Lu’ an City, Lu’an, China
| | - Yanzhong Li
- Anhui Wanxi White Goose Seed Farm Co., LTD., Lu’an, China
| | - Yafei Zhang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Kai Ge
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Deyong She
- Lu’ an Academy of Agricultural Sciences, Lu’an, China
| |
Collapse
|
5
|
Vanden Brink H, Vandeputte D, Brito IL, Ronnekleiv OK, Roberson MS, Lomniczi A. Changes in the Bile Acid Pool and Timing of Female Puberty: Potential Novel Role of Hypothalamic TGR5. Endocrinology 2024; 165:bqae098. [PMID: 39082696 PMCID: PMC11334072 DOI: 10.1210/endocr/bqae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Indexed: 08/21/2024]
Abstract
CONTEXT The regulation of pubertal timing and reproductive axis maturation is influenced by a myriad of physiologic and environmental inputs yet remains incompletely understood. OBJECTIVE To contrast differences in bile acid isoform profiles across defined stages of reproductive maturity in humans and a rat model of puberty and to characterize the role of bile acid signaling via hypothalamic expression of bile acid receptor populations in the rodent model. METHODS Secondary analysis and pilot studies of clinical cohorts, rodent models, ex vivo analyses of rodent hypothalamic tissues. Bile acid concentrations is the main outcome measure. RESULTS Lower circulatory conjugated:deconjugated bile acid concentrations and higher total secondary bile acids were observed in postmenarcheal vs pre-/early pubertal adolescents, with similar shifts observed in infantile (postnatal day [PN]14) vs early juvenile (PN21) rats alongside increased tgr5 receptor mRNA expression within the mediobasal hypothalamus of female rats. 16S rRNA gene sequencing of the rodent gut microbiome across postnatal life revealed changes in the gut microbial composition predicted to have bile salt hydrolase activity, which was observed in parallel with the increased deconjugated and increased concentrations of secondary bile acids. We show that TGR5-stimulated GnRH release from hypothalamic explants is mediated through kisspeptin receptors and that early overexpression of human-TGR5 within the arcuate nucleus accelerates pubertal onset in female rats. CONCLUSION Bile acid isoform shifts along stages of reproductive maturation are conserved across rodents and humans, with preclinical models providing mechanistic insight for the neuroendocrine-hepatic-gut microbiome axis as a potential moderator of pubertal timing in females.
Collapse
Affiliation(s)
- Heidi Vanden Brink
- Department of Nutrition, Texas A&M University, College Station, TX 77840, USA
| | - Doris Vandeputte
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Oline K Ronnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Mark S Roberson
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Alejandro Lomniczi
- Department of Physiology and Biophysics, Dalhousie School of Medicine, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
6
|
Lockington C, Favetta LA. How Per- and Poly-Fluoroalkyl Substances Affect Gamete Viability and Fertilization Capability: Insights from the Literature. J Xenobiot 2024; 14:651-678. [PMID: 38804291 PMCID: PMC11130945 DOI: 10.3390/jox14020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
There has been emerging research linking per- and poly-fluoroalkyl substances (PFAS) to gamete viability and fertility. PFAS, prevalent in the environment and water supplies, undergo slow degradation due to their C-F bond and a long half-life (2.3-8.5 years). In females, PFAS inhibit the hypothalamic-pituitary-gonadal (HPG) axis, reducing follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels, leading to the inhibition of androgen and estradiol production. PFAS have been found to cause detrimental effects on egg quality through impairing folliculogenesis. In males, PFAS can impair sperm motility and morphology: two fundamental qualities of successful fertilization. PFAS exposure has been proven to inhibit testosterone production, sperm capacitation, and acrosomal reaction. After fertilization, the results of PFAS exposure to embryos have also been investigated, showing reduced development to the blastocyst stage. The aim of this review is to report the main findings in the literature on the impact of PFAS exposure to gamete competency and fertilization capability by highlighting key studies on both male and female fertility. We report that there is significant evidence demonstrating the negative impacts on fertility after PFAS exposure. At high doses, these environmentally abundant and widespread compounds can significantly affect human fertility.
Collapse
Affiliation(s)
| | - Laura A. Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
7
|
Lalonde-Bester S, Malik M, Masoumi R, Ng K, Sidhu S, Ghosh M, Vine D. Prevalence and Etiology of Eating Disorders in Polycystic Ovary Syndrome: A Scoping Review. Adv Nutr 2024; 15:100193. [PMID: 38408541 PMCID: PMC10973592 DOI: 10.1016/j.advnut.2024.100193] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disorder affecting females across the lifespan. Eating disorders (EDs) are psychiatric conditions that may impact the development of PCOS and comorbidities including obesity, metabolic syndrome, and type 2 diabetes. The aim of this scoping review was to determine the prevalence of EDs and disordered eating, and to review the etiology of EDs in PCOS. The review was conducted using search terms addressing PCOS, EDs, and disordered eating in databases, including PubMed, Scopus, PsycINFO, and CINAHL. Structured interviews, self-administered questionnaires, chart review, or self-reported diagnosis were used to identify EDs in 38 studies included in the review. The prevalence of any ED in those with PCOS ranged from 0% to 62%. Those with PCOS were 3-6-fold more likely to have an ED and higher odds ratios (ORs) of an elevated ED score compared with controls. In those with PCOS, 30% had a higher OR of bulimia nervosa and binge ED was 3-fold higher compared with controls. Studies were limited on anorexia nervosa and other specified feeding or ED (such as night eating syndrome) and these were not reported to be higher in PCOS. To our knowledge, no studies reported on avoidant/restrictive food intake disorder, rumination disorder, or pica in PCOS. Studies showed strong associations between overweight, body dissatisfaction, and disordered eating in PCOS. The etiologic development of EDs in PCOS remains unclear; however, psychological, metabolic, hypothalamic, and genetic factors are implicated. The prevalence of any ED in PCOS varied because of the use of different diagnostic and screening tools. Screening of all individuals with PCOS for EDs is recommended and high-quality studies on the prevalence, pathogenesis of specific EDs, relationship to comorbidities, and effective interventions to treat ED in those with PCOS are needed.
Collapse
Affiliation(s)
- Sophie Lalonde-Bester
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Mishal Malik
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Reihaneh Masoumi
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Katie Ng
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Sidhu
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Mahua Ghosh
- Division of Endocrinology and Metabolism, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Donna Vine
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
张 余, 罗 飞. [Recent advances in the genetic etiology of central precocious puberty]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:302-307. [PMID: 38557384 PMCID: PMC10986386 DOI: 10.7499/j.issn.1008-8830.2309098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024]
Abstract
Central precocious puberty (CPP) is a developmental disorder caused by early activation of the hypothalamic-pituitary-gonadal axis. The incidence of CPP is rapidly increasing, but the underlying mechanisms are not fully understood. Previous studies have shown that gain-of-function mutations in the KISS1R and KISS1 genes and loss-of-function mutations in the MKRN3, LIN28, and DLK1 genes may lead to early initiation of pubertal development. Recent research has also revealed the significant role of epigenetic factors such as DNA methylation and microRNAs in the regulation of gonadotropin-releasing hormone neurons, as well as the modulating effect of gene networks involving multiple variant genes on pubertal initiation. This review summarizes the genetic etiology and pathogenic mechanisms underlying CPP.
Collapse
|
9
|
Panda SP, Kesharwani A, Singh GD, Prasanth D, Vatchavai BR, Kumari PVK, Panda SK, Mallick SP. Impose of KNDy/GnRH neural circuit in PCOS, ageing, cancer and Alzheimer's disease: StAR actions in prevention of neuroendocrine dysfunction. Ageing Res Rev 2023; 92:102086. [PMID: 37821047 DOI: 10.1016/j.arr.2023.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The Kisspeptin1 (KISS1)/neurokinin B (NKB)/Dynorphin (Dyn) [KNDy] neurons in the hypothalamus regulate the reproduction stage in human beings and rodents. KNDy neurons co-expressed all KISS1, NKB, and Dyn peptides, and hence commonly regarded as KISS1 neurons. KNDy neurons contribute to the "GnRH pulse generator" and are implicated in the regulation of pulsatile GnRH release. The estradiol (E2)-estrogen receptor (ER) interactions over GnRH neurons in the hypothalamus cause nitric oxide (NO) discharge, in addition to presynaptic GABA and glutamate discharge from respective neurons. The released GABA and glutamate facilitate the activity of GnRH neurons via GABAA-R and AMPA/kainate-R. The KISS1 stimulates MAPK/ERK1/2 signaling and cause the release of Ca2+ from intracellular store, which contribute to neuroendocrine function, increase apoptosis and decrease cell proliferation and metastasis. The ageing in women deteriorates KISS1/KISS1R interaction in the hypothalamus which causes lower levels of GnRH. Because examining the human brain is so challenging, decades of clinical research have failed to find the causes of KNDy/GnRH dysfunction. The KISS1/KISS1R interactions in the brain have a neuroprotective effect against Alzheimer's disease (AD). These findings modulate the pathophysiological role of the KNDy/GnRH neural network in polycystic ovarian syndrome (PCOS) associated with ageing and, its protective role in cancer and AD. This review concludes with protecting effect of the steroid-derived acute regulatory enzyme (StAR) against neurotoxicity in the hippocampus, and hypothalamus, and these measures are fundamental for delaying ageing with PCOS. StAR could serve as novel diagnostic marker and therapeutic target for the most prevalent hormone-sensitive breast cancers (BCs).
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | | - Dsnbk Prasanth
- KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhrapradesh, India
| | - Bhaskara Raju Vatchavai
- Sri Vasavi Institute of Pharmaceutical Sciences, Pedatadepalli, Tadepalligudem, Andhrapradesh, India
| | - P V Kamala Kumari
- Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam, Andhrapradesh, India
| | | | | |
Collapse
|
10
|
Sapkota S, Haider Ali M, Alshamrani AA, Napit PR, Roy SC, Pasula MB, Briski KP. GHRH Neurons from the Ventromedial Hypothalamic Nucleus Provide Dynamic and Sex-Specific Input to the Brain Glucose-Regulatory Network. Neuroscience 2023; 529:73-87. [PMID: 37572878 PMCID: PMC10592138 DOI: 10.1016/j.neuroscience.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
The ventromedial hypothalamic nucleus (VMN) controls glucose counter-regulation, including pituitary growth hormone (GH) secretion. VMN neurons that express the transcription factor steroidogenic factor-1/NR5A1 (SF-1) participate in glucose homeostasis. Research utilized in vivo gene knockdown tools to determine if VMN growth hormone-releasing hormone (Ghrh) regulates hypoglycemic patterns of glucagon, corticosterone, and GH outflow according to sex. Intra-VMN Ghrh siRNA administration blunted hypoglycemic hypercorticosteronemia in each sex, but abolished elevated GH release in males only. Single-cell multiplex qPCR showed that dorsomedial VMN (VMNdm) Ghrh neurons express mRNAs encoding Ghrh, SF-1, and protein markers for glucose-inhibitory (γ-aminobutyric acid) or -stimulatory (nitric oxide; glutamate) neurotransmitters. Hypoglycemia decreased glutamate decarboxylase67 (GAD67) transcripts in male, not female VMNdm Ghrh/SF-1 neurons, a response that was refractory to Ghrh siRNA. Ghrh gene knockdown prevented, in each sex, hypoglycemic down-regulation of Ghrh/SF-1 nerve cell GAD65 transcription. Ghrh siRNA amplified hypoglycemia-associated up-regulation of Ghrh/SF-1 neuron nitric oxide synthase mRNA in male and female, without affecting glutaminase gene expression. Ghrh gene knockdown altered Ghrh/SF-1 neuron estrogen receptor-alpha (ERα) and ER-beta transcripts in hypoglycemic male, not female rats, but up-regulated GPR81 lactate receptor mRNA in both sexes. Outcomes infer that VMNdm Ghrh/SF-1 neurons may be an effector of SF-1 control of counter-regulation, and document Ghrh modulation of hypoglycemic patterns of glucose-regulatory neurotransmitter along with estradiol and lactate receptor gene transcription in these cells. Co-transmission of glucose-inhibitory and -stimulatory neurochemicals of diverse chemical structure, spatial, and temporal profiles may enable VMNdm Ghrh neurons to provide complex dynamic, sex-specific input to the brain glucose-regulatory network.
Collapse
Affiliation(s)
- Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Ayed A Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
11
|
Park CJ, Minabe S, Hess RA, Lin PCP, Zhou S, Bashir ST, Barakat R, Gal A, Ko CJ. Single neonatal estrogen implant sterilizes female animals by decreasing hypothalamic KISS1 expression. Sci Rep 2023; 13:9627. [PMID: 37316510 DOI: 10.1038/s41598-023-36727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Reproductive sterilization by surgical gonadectomy is strongly advocated to help manage animal populations, especially domesticated pets, and to prevent reproductive behaviors and diseases. This study explored the use of a single-injection method to induce sterility in female animals as an alternative to surgical ovariohysterectomy. The idea was based on our recent finding that repetitive daily injection of estrogen into neonatal rats disrupted hypothalamic expression of Kisspeptin (KISS1), the neuropeptide that triggers and regulates pulsatile secretion of GnRH. Neonatal female rats were dosed with estradiol benzoate (EB) either by daily injections for 11 days or by subcutaneous implantation of an EB-containing silicone capsule designed to release EB over 2-3 weeks. Rats treated by either method did not exhibit estrous cyclicity, were anovulatory, and became infertile. The EB-treated rats had fewer hypothalamic Kisspeptin neurons, but the GnRH-LH axis remained responsive to Kisspeptin stimulation. Because it would be desirable to use a biodegradable carrier that is also easier to handle, an injectable EB carrier was developed from PLGA microspheres to provide pharmacokinetics comparable to the EB-containing silicone capsule. A single neonatal injection of EB-microspheres at an equivalent dosage resulted in sterility in the female rat. In neonatal female Beagle dogs, implantation of an EB-containing silicone capsule also reduced ovarian follicle development and significantly inhibited KISS1 expression in the hypothalamus. None of the treatments produced any concerning health effects, other than infertility. Therefore, further development of this technology for sterilization in domestic female animals, such as dogs and cats is worthy of investigation.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Epivara, Inc, Champaign, IL, 61820, USA
| | - Shiori Minabe
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, 028-3694, Japan
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Epivara, Inc, Champaign, IL, 61820, USA
| | - Po-Ching Patrick Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | | | - Shah Tauseef Bashir
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - CheMyong Jay Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
- Epivara, Inc, Champaign, IL, 61820, USA.
| |
Collapse
|
12
|
Comparative analysis of biochemical, hormonal, and mineral compositions of preovulatory and cystic ovarian follicles in buffalo during the non-breeding season. ZYGOTE 2023; 31:246-252. [PMID: 36919850 DOI: 10.1017/s0967199423000084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This study is a comparative analysis of the biochemical, hormonal, and mineral compositions of follicular fluid in preovulatory and cystic follicles of water buffalo (Bubalus bubalis). In total, reproductive tracts from 215 buffalo along with intact ovaries were collected randomly from an abattoir. The incidence of cystic conditions found in this study was 3.72% (8/215), involving the right ovary in 62.5% of instances and the left ovary in 37.5% of instances during the non-breeding season. Follicular fluid was aspirated from preovulatory follicles (12-15 mm diameter, oestrogen-active, follicular phase or stage IV corpus luteum on one of the two ovaries, n = 10) and cystic follicles (at least 20 mm diameter, no corpus luteum on any one of the two ovaries, n = 8). The follicular fluid samples were assayed for biochemical components (uric acid, creatinine, blood urea nitrogen, cholesterol, total protein, glucose, ascorbic acid, and alkaline phosphatase), hormones (progesterone, estradiol, and insulin), and minerals (calcium, magnesium, phosphorus, copper, zinc, and cobalt). Cystic follicles had greater (P < 0.05) concentrations of creatinine, blood urea nitrogen, cholesterol, progesterone, copper, zinc, and cobalt, and lesser (P < 0.05) concentrations of uric acid, glucose, ascorbic acid, estradiol, insulin, calcium, magnesium, and phosphorus compared with preovulatory follicles. These results indicated the marked differences in follicular fluid composition between preovulatory and cystic follicles in buffalo. Some of the changes were indicative of oxidative stress and disturbed steroidogenesis, two important mechanisms shown to be associated with cystic ovarian disease in various species. Further studies are warranted to investigate whether these differences are directly or indirectly involved in the formation of cystic follicles or are mere manifestations of the condition.
Collapse
|
13
|
Mechanism of kisspeptin neuron synchronization for pulsatile hormone secretion in male mice. Cell Rep 2023; 42:111914. [PMID: 36640343 DOI: 10.1016/j.celrep.2022.111914] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023] Open
Abstract
The mechanism by which arcuate nucleus kisspeptin (ARNKISS) neurons co-expressing glutamate, neurokinin B, and dynorphin intermittently synchronize their activity to generate pulsatile hormone secretion remains unknown. An acute brain slice preparation maintaining synchronized ARNKISS neuron burst firing was used alongside in vivo GCaMP GRIN lens microendoscope and fiber photometry imaging coupled with intra-ARN microinfusion. Studies in intact and gonadectomized male mice revealed that ARNKISS neuron synchronizations result from near-random emergent network activity within the population and that this was critically dependent on local glutamate-AMPA signaling. Whereas neurokinin B operated to potentiate glutamate-generated synchronizations, dynorphin-kappa opioid tone within the network served as a gate for synchronization initiation. These observations force a departure from the existing "KNDy hypothesis" for ARNKISS neuron synchronization. A "glutamate two-transition" mechanism is proposed to underlie synchronizations in this key hypothalamic central pattern generator driving mammalian fertility.
Collapse
|
14
|
Street ME, Ponzi D, Renati R, Petraroli M, D’Alvano T, Lattanzi C, Ferrari V, Rollo D, Stagi S. Precocious puberty under stressful conditions: new understanding and insights from the lessons learnt from international adoptions and the COVID-19 pandemic. Front Endocrinol (Lausanne) 2023; 14:1149417. [PMID: 37201098 PMCID: PMC10187034 DOI: 10.3389/fendo.2023.1149417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/06/2023] [Indexed: 05/20/2023] Open
Abstract
Neuro-biological variations in the timing of sexual maturation within a species are part of an evolved strategy that depend on internal and external environmental conditions. An increased incidence of central precocious puberty (CPP) has been described in both adopted and "covid-19 pandemic" children. Until recently, it was hypothesised that the triggers for CPP in internationally adopted children were likely to be better nutrition, greater environmental stability, and improved psychological wellbeing. However, following data collected during and after the coronavirus (COVID-19) global pandemic, other possibilities must be considered. In a society with high levels of child wellbeing, the threat to life presented by an unknown and potentially serious disease and the stressful environment created by lockdowns and other public health measures could trigger earlier pubertal maturation as an evolutionary response to favour early reproduction. The main driver for increased rates of precocious and rapidly progressive puberty during the pandemic could have been the environment of "fear and stress" in schools and households. In many children, CPP may have been triggered by the psychological effects of living without normal social contact, using PPE, being near adults concerned about financial and other issues and the fear of getting ill. The features and time of progression of CPP in children during the pandemic are similar to those observed in adopted children. This review considers the mechanisms regulating puberty with a focus on neurobiological and evolutionary mechanisms, and analyses precocious puberty both during the pandemic and in internationally adopted children searching for common yet unconsidered factors in an attempt to identify the factors which may have acted as triggers. In particular, we focus on stress as a potential factor in the early activation of the hypothalamic-pituitary-gonadal axis and its correlation with rapid sexual maturation.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Paediatrics, P. Barilla Children’s Hospital, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
- *Correspondence: Maria Elisabeth Street,
| | - Davide Ponzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Renati
- Department of Pedagogy, Psychology and Philosophy, University of Cagliari, Cagliari, Italy
| | - Maddalena Petraroli
- Unit of Paediatrics, P. Barilla Children’s Hospital, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Tiziana D’Alvano
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Paediatrics, P. Barilla Children’s Hospital, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Claudia Lattanzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Paediatrics, P. Barilla Children’s Hospital, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Vittorio Ferrari
- Health Sciences Department, University of Florence, Florence, Italy
| | - Dolores Rollo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Stagi
- Health Sciences Department, University of Florence, Florence, Italy
- Azienda Ospedaliero Univesitaria Meyer IRCCS, Florence, Italy
| |
Collapse
|
15
|
Iwasa T, Noguchi H, Aoki H, Tamura K, Maeda T, Takeda A, Uchishiba M, Arakaki R, Minato S, Kamada S, Yamamoto S, Imaizumi J, Kagawa T, Yoshida A, Fukui R, Daizumoto K, Kon M, Shinohara N, Yoshida K, Yamamoto Y. Effects of undernutrition and low energy availability on reproductive functions and their underlying neuroendocrine mechanisms. Endocr J 2022; 69:1363-1372. [PMID: 36372440 DOI: 10.1507/endocrj.ej22-0426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been well established that undernutrition and low energy availability disturb female reproductive functions in humans and many animal species. These reproductive dysfunctions are mainly caused by alterations of some hypothalamic factors, and consequent reduction of gonadotrophin-releasing hormone (GnRH) secretion. Evidence from literature suggests that increased activity of orexigenic factors and decreased activity of anorexigenic/satiety-related factors in undernourished conditions attenuate GnRH secretion in an integrated manner. Likewise, the activity of kisspeptin neurons, which is a potent stimulator of GnRH, is also reduced in undernourished conditions. In addition, it has been suggested that gonadotrophin-inhibitory hormone, which has anti-GnRH and gonadotrophic effects, may be involved in reproductive dysfunctions under several kinds of stress conditions. It should be remembered that these alterations, i.e., promotion of feeding behavior and temporary suppression of reproductive functions, are induced to prioritize the survival of individual over that of species, and that improvements in metabolic and nutritional conditions should be considered with the highest priority.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hidenori Aoki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kou Tamura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takaaki Maeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Maimi Uchishiba
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ryosuke Arakaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shuhei Kamada
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shota Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Rijin Fukui
- Department of Obstetrics & Gynecology, Tokushima Municipal Hospital, Tokushima 770-0812, Japan
| | - Kei Daizumoto
- Department of Urology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Masafumi Kon
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
16
|
Dardente H, Lomet D, Desmarchais A, Téteau O, Lasserre O, Gonzalez AA, Dubois E, Beltramo M, Elis S. Impact of food restriction on the medio-basal hypothalamus of intact ewes as revealed by a large-scale transcriptomics study. J Neuroendocrinol 2022; 34:e13198. [PMID: 36168278 DOI: 10.1111/jne.13198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/27/2022]
Abstract
In mammals, the medio-basal hypothalamus (MBH) integrates photoperiodic and food-related cues to ensure timely phasing of physiological functions, including seasonal reproduction. The current human epidemics of obesity and associated reproductive disorders exemplifies the tight link between metabolism and reproduction. Yet, how food-related cues impact breeding at the level of the MBH remains unclear. In this respect, the sheep, which is a large diurnal mammal with a marked dual photoperiodic/metabolic control of seasonal breeding, is a relevant model. Here, we present a large-scale study in ewes (n = 120), which investigated the impact of food restriction (FRes) on the MBH transcriptome using unbiased RNAseq, followed by RT-qPCR. Few genes (~100) were impacted by FRes and the transcriptional impact was very modest (<2-fold increase or < 50% decrease for most genes). As anticipated, FRes increased expression of Npy/AgRP/LepR and decreased expression of Pomc/Cartpt, while Kiss1 expression was not impacted. Of particular interest, Eya3, Nmu and Dio2, genes involved in photoperiodic decoding within the MBH, were also affected by FRes. Finally, we also identified a handful of genes not known to be regulated by food-related cues (e.g., RNase6, HspA6, Arrdc2). In conclusion, our transcriptomics study provides insights into the impact of metabolism on the MBH in sheep, which may be relevant to human, and identifies possible molecular links between metabolism and (seasonal) reproduction.
Collapse
Affiliation(s)
- Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Didier Lomet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Sébastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
17
|
Benevento M, Hökfelt T, Harkany T. Ontogenetic rules for the molecular diversification of hypothalamic neurons. Nat Rev Neurosci 2022; 23:611-627. [PMID: 35906427 DOI: 10.1038/s41583-022-00615-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
The hypothalamus is an evolutionarily conserved endocrine interface that, among other roles, links central homeostatic control to adaptive bodily responses by releasing hormones and neuropeptides from its many neuronal subtypes. In its preoptic, anterior, tuberal and mammillary subdivisions, a kaleidoscope of magnocellular and parvocellular neuroendocrine command neurons, local-circuit neurons, and neurons that project to extrahypothalamic areas are intermingled in partially overlapping patches of nuclei. Molecular fingerprinting has produced data of unprecedented mass and depth to distinguish and even to predict the synaptic and endocrine competences, connectivity and stimulus selectivity of many neuronal modalities. These new insights support eminent studies from the past century but challenge others on the molecular rules that shape the developmental segregation of hypothalamic neuronal subtypes and their use of morphogenic cues for terminal differentiation. Here, we integrate single-cell RNA sequencing studies with those of mouse genetics and endocrinology to describe key stages of hypothalamus development, including local neurogenesis, the direct terminal differentiation of glutamatergic neurons, transition cascades for GABAergic and GABAergic cell-derived dopamine cells, waves of local neuronal migration, and sequential enrichment in neuropeptides and hormones. We particularly emphasize how transcription factors determine neuronal identity and, consequently, circuit architecture, and whether their deviations triggered by environmental factors and hormones provoke neuroendocrine illnesses.
Collapse
Affiliation(s)
- Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria. .,Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
18
|
Ugrumov MV, Pavlova EN, Kolacheva AA, Dil’mukhametova LK, Bogdanov VV, Blokhin V, Pronina TS. The Periventricular Nucleus as a Brain Center Containing Dopaminergic Neurons and Neurons Expressing Individual Enzymes of Dopamine Synthesis. Int J Mol Sci 2022; 23:ijms23126739. [PMID: 35743179 PMCID: PMC9224269 DOI: 10.3390/ijms23126739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022] Open
Abstract
Since the 1980s, the concept of dopamine-rich brain centers as clusters of only dopaminergic neurons has been fundamentally revised. It has been shown that, in addition to dopaminergic neurons, most of these centers contain neurons expressing one of the enzymes of dopamine synthesis: tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC). We have obtained convincing evidence that in rats, the hypothalamic periventricular nucleus (PeVN) is one of the largest dopamine-rich centers, containing dopaminergic and monoenzymatic neurons. Indeed, using double immunostaining for TH and AADC, the PeVN was shown to contain almost three thousand dopaminergic and monoenzymatic neurons. According to high-performance liquid chromatography, PeVN contains L-DOPA and dopamine, which, apparently, are synthesized in monoenzymatic TH neurons and bienzymatic neurons, respectively. According to confocal microscopy, neurons (cell bodies, fibers), which were immunopositive only to TH, only to AADC, or both, are in close topographic relationships with each other and with the 3rd ventricle. These data suggest the mutual regulation of the neurons, as well as the delivery of dopamine and L-DOPA to the third ventricle, which is confirmed by their detection in the cerebrospinal fluid. Thus, evidence has been obtained that PeVN is one of the largest dopamine-rich centers of the brain, containing dopaminergic and monoenzymatic neurons.
Collapse
|
19
|
Mele E, D’Auria R, Scafuro M, Marino M, Fasano S, Viggiano A, Pierantoni R, Santoro A, Meccariello R. Differential Expression of Kisspeptin System and Kisspeptin Receptor Trafficking during Spermatozoa Transit in the Epididymis. Genes (Basel) 2022; 13:genes13020295. [PMID: 35205340 PMCID: PMC8871750 DOI: 10.3390/genes13020295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
The hypothalamus–pituitary–testis axis controls the production of spermatozoa, and the kisspeptin system, comprising Kiss1 and Kiss1 receptor (Kiss1R), is the main central gatekeeper. The activity of the kisspeptin system also occurs in testis and spermatozoa, but currently the need of peripheral kisspeptin to produce gametes is not fully understood. Hence, we characterized kisspeptin system in rat spermatozoa and epididymis caput and cauda and analyzed the possible presence of Kiss1 in the epididymal fluid. The presence of Kiss1 and Kiss1R in spermatozoa collected from epididymis caput and cauda was evaluated by Western blot; significant high Kiss1 levels in the caput (p < 0.001 vs. cauda) and constant levels of Kiss1R proteins were observed. Immunofluorescence analysis revealed that the localization of Kiss1R in sperm head shifts from the posterior region in the epididymis caput to perforatorium in the epididymis cauda. In spermatozoa-free epididymis, Western blot revealed higher expression of Kiss1 and Kiss1R in caput (p < 0.05 vs. cauda). Moreover, immunohistochemistry revealed that Kiss1 and Kiss1R proteins were mainly localized in the secretory epithelial cell types and in contractile myoid cells, respectively. Finally, both dot blot and Elisa revealed the presence of Kiss1 in the epididymal fluid collected from epididymis cauda and caput, indicating that rat epididymis and spermatozoa possess a complete kisspeptin system. In conclusion, we reported for the first time in rodents Kiss1R trafficking in spermatozoa during the epididymis transit and Kiss1 measure in the epididymal fluid, thus suggesting a possible role for the system in spermatozoa maturation and storage within the epididymis.
Collapse
Affiliation(s)
- Elena Mele
- Department of Movement Sciences and Wellness, University of Naples Parthenope, Via Medina 40, 80133 Naples, Italy;
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende, 84081 Baronissi, Italy; (R.D.); (M.M.); (A.V.)
| | - Marika Scafuro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinopoli 16, 80138 Naples, Italy;
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende, 84081 Baronissi, Italy; (R.D.); (M.M.); (A.V.)
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinpoli 16, 80138 Naples, Italy; (S.F.); (R.P.)
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende, 84081 Baronissi, Italy; (R.D.); (M.M.); (A.V.)
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinpoli 16, 80138 Naples, Italy; (S.F.); (R.P.)
| | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende, 84081 Baronissi, Italy; (R.D.); (M.M.); (A.V.)
- Correspondence: (A.S.); (R.M.)
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellness, University of Naples Parthenope, Via Medina 40, 80133 Naples, Italy;
- Correspondence: (A.S.); (R.M.)
| |
Collapse
|
20
|
Beroukhim G, Esencan E, Seifer DB. Impact of sleep patterns upon female neuroendocrinology and reproductive outcomes: a comprehensive review. Reprod Biol Endocrinol 2022; 20:16. [PMID: 35042515 PMCID: PMC8764829 DOI: 10.1186/s12958-022-00889-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022] Open
Abstract
Sleep is vital to human bodily function. Growing evidence indicates that sleep deprivation, disruption, dysrhythmia, and disorders are associated with impaired reproductive function and poor clinical outcomes in women. These associations are largely mediated by molecular-genetic and hormonal pathways, which are crucial for the complex and time sensitive processes of hormone synthesis/secretion, folliculogenesis, ovulation, fertilization, implantation, and menstruation. Pathologic sleep patterns are closely linked to menstrual irregularity, polycystic ovarian syndrome, premature ovarian insufficiency, sub/infertility, and early pregnancy loss. Measures of success with assisted reproductive technology are also lower among women who engage in shift work, or experience sleep disruption or short sleep duration. Extremes of sleep duration, poor sleep quality, sleep disordered breathing, and shift work are also associated with several harmful conditions in pregnancy, including gestational diabetes and hypertensive disorders. While accumulating evidence implicates pathologic sleep patterns in impaired reproductive function and poor reproductive outcomes, additional research is needed to determine causality and propose therapeutic interventions.
Collapse
Affiliation(s)
- Gabriela Beroukhim
- Department of Obstetrics, Gynecology, and Reproductive Sciences at Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.
| | - Ecem Esencan
- Department of Obstetrics, Gynecology, and Reproductive Sciences at Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - David B Seifer
- Department of Obstetrics, Gynecology, and Reproductive Sciences at Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| |
Collapse
|
21
|
Iwasa T, Yamamoto Y, Noguchi H, Takeda A, Minato S, Kamada S, Imaizumi J, Kagawa T, Yoshida A, Kawakita T, Yoshida K. Neuroendocrine mechanisms of reproductive dysfunctions in undernourished condition. J Obstet Gynaecol Res 2022; 48:568-575. [PMID: 34979587 DOI: 10.1111/jog.15144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
It is well known that undernourished conditions disturb female reproductive functions in many species, including humans. These alterations are mainly caused by a reduction in gonadotrophin-releasing hormone (GnRH) secretion from the hypothalamus. Evidence from the literature suggests that some hypothalamic factors play pivotal roles in the coordination of reproductive functions and energy homeostasis in response to environmental cues and internal nutritional status. Generally, anorexigenic/satiety-related factors, such as leptin, alpha-melanocyte-stimulating hormone, and proopiomelanocortin, promote GnRH secretion, whereas orexigenic factors, such as neuropeptide Y, agouti-related protein, orexin, and ghrelin, attenuate GnRH secretion. Conversely, gonadotrophin-inhibitory hormone, which exerts anti-GnRH and gonadotrophic effects, promotes feeding behavior in many species. In addition, the activity of kisspeptin, which is a potent stimulator of GnRH, is reduced by undernourished conditions. Under normal nutritional conditions, these factors are coordinated to maintain both feeding behavior and reproductive functions. However, in undernourished conditions their activity levels are markedly altered to promote feeding behavior and temporarily suppress reproductive functions, in order to prioritize the survival of the individual over that of the species.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shuhei Kamada
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
22
|
Soliman A, Alaaraj N, Hamed N, Alyafei F, Ahmed S, Shaat M, Itani M, Elalaily R, Soliman N. Review Nutritional interventions during adolescence and their possible effects. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022087. [PMID: 35315384 PMCID: PMC8972883 DOI: 10.23750/abm.v93i1.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/21/2022]
Abstract
Nutrition is one of the most important factors affecting pubertal development. Increasing demands for energy proteins and micronutrients are necessary to cope with the rapid linear pubertal growth and development, change in body composition, and increased physical activity. Adequate nutrition is a key permissive factor for the normal timing and tempo of pubertal development. Severe primary or secondary malnutrition also can adversely delay the onset and progression of puberty. The higher incidence of anorexia nervosa and bulimia in adolescents imposes a nutritional risk on pubertal development. Here we provide an overview of nutritional requirements (macronutrients and micronutrients) necessary to cope with these changes. In addition, we discuss possible nutritional interventions trials and their effects on several aspects of growth and development in undernourished and stunted adolescents, in low- and middle-income countries (LMIC), who require nutritional rehabilitation. This mini-review sums up some important findings in this important complex that links between nutrition, nutritional interventions, and pubertal development.
Collapse
Affiliation(s)
- Ashraf Soliman
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar; Qatar
| | - Nada Alaaraj
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar; Qatar
| | - Noor Hamed
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar; Qatar
| | - Fawzia Alyafei
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar; Qatar
| | - Shayma Ahmed
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar; Qatar
| | - Mona Shaat
- Dietetics and Nutrition, Hamad General Hospital
| | - Maya Itani
- Dietetics and Nutrition, Hamad General Hospital
| | | | | |
Collapse
|
23
|
Iwasa T, Minato S, Imaizumi J, Yoshida A, Kawakita T, Yoshida K, Yamamoto Y. Effects of low energy availability on female reproductive function. Reprod Med Biol 2021; 21:e12414. [PMID: 34934398 PMCID: PMC8656184 DOI: 10.1002/rmb2.12414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/15/2023] Open
Abstract
Background It is known that metabolic and nutritional disturbances induce reproductive dysfunction in females. The main cause of these alterations is reduced gonadotrophin‐releasing hormone (GnRH) secretion from the hypothalamus, and the underlying mechanisms have gradually been elucidated. Methods The present review summarizes current knowledge about the effects of nutrition/metabolism on reproductive functions, especially focusing on the GnRH regulation system. Main findings Various central and peripheral factors are involved in the regulation of GnRH secretion, and alterations in their activity combine to affect GnRH neurons. Satiety‐related factors, i.e., leptin, insulin, and alpha‐melanocyte‐stimulating hormone, directly and indirectly stimulate GnRH secretion, whereas orexigenic factors, i.e., neuropeptide Y, Agouti‐related protein, orexin, and ghrelin, attenuate GnRH secretion. In addition, kisspeptin, which is a potent positive regulator of GnRH, expression is reduced by metabolic and nutritional disturbances. Conclusion These neuroendocrine systems may be defensive mechanisms, which help organisms to survive adverse conditions by temporarily suppressing reproduction.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| |
Collapse
|
24
|
van Rosmalen L, Hut RA. Food and temperature change photoperiodic responses in two vole species. J Exp Biol 2021; 224:273462. [PMID: 34787302 DOI: 10.1242/jeb.243030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/10/2021] [Indexed: 01/23/2023]
Abstract
Seasonal timing of reproduction in voles is driven by photoperiod. We hypothesized that a negative energy balance can modify spring-programmed photoperiodic responses in the hypothalamus, controlling reproductive organ development. We manipulated energy balance by the 'work-for-food' protocol, in which voles were exposed to increasing levels of food scarcity at different ambient temperatures under long photoperiod. We found that in common voles (Microtus arvalis) and tundra voles (Microtus oeconomus), photoperiod-induced pars tuberalis thyroid-stimulating hormone β-subunit (Tshβ) expression is reduced to potentially inhibit gonadal development when food is scarce. Reduction in gonadal size is more pronounced in tundra voles, in which anterior hypothalamic Kiss1 is additionally downregulated, especially in males. Low temperature additionally leads to decreased hypothalamic Rfrp expression, which potentially may facilitate further suppression of gonadal growth. Shutting off the photoperiodic axis when food is scarce in spring may be an adaptive response to save energy, leading to delayed reproductive organ development until food resources are sufficient for reproduction, lactation and offspring survival. Defining the mechanisms through which metabolic cues modify photoperiodic responses will be important for a better understanding of how environmental cues impact reproduction.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
25
|
Shamhari A‘A, Abd Hamid Z, Budin SB, Shamsudin NJ, Taib IS. Bisphenol A and Its Analogues Deteriorate the Hormones Physiological Function of the Male Reproductive System: A Mini-Review. Biomedicines 2021; 9:1744. [PMID: 34829973 PMCID: PMC8615890 DOI: 10.3390/biomedicines9111744] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 02/06/2023] Open
Abstract
BPA is identified as an endocrine-disrupting chemical that deteriorates the physiological function of the hormones of the male reproductive system. Bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF) are actively explored as substitutes for BPA and are known as BPA analogues in most manufacturing industries. These analogues may demonstrate the same adverse effects as BPA on the male reproductive system; however, toxicological data explaining the male reproductive hormones' physiological functions are still limited. Hence, this mini-review discusses the effects of BPA and its analogues on the physiological functions of hormones in the male reproductive system, focusing on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, and spermatogenesis outcomes. The BPA analogues mainly show a similar negative effect on the hormones' physiological functions, proven by alterations in the HPG axis and steroidogenesis via activation of the aromatase activity and reduction of spermatogenesis outcomes when compared to BPA in in vitro and in vivo studies. Human biomonitoring studies also provide significant adverse effects on the physiological functions of hormones in the male reproductive system. In conclusion, BPA and its analogues deteriorate the physiological functions of hormones in the male reproductive system as per in vitro, in vivo, and human biomonitoring studies.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Zariyantey Abd Hamid
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Nurul Jehan Shamsudin
- Centre for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Izatus Shima Taib
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| |
Collapse
|
26
|
Zhang L, Liu Y, Li M, Zhu X, Shi Y. Effect of a high-calorie diet and constant light exposure on female reproduction, metabolism and immune inflammation: A comparative study of different mouse models. Am J Reprod Immunol 2021; 86:e13479. [PMID: 34152678 DOI: 10.1111/aji.13479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/20/2021] [Accepted: 06/18/2021] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Excess caloric intake and irregular circadian rhythm could severely impair female reproductive, metabolic, and immune function. However, the similarities and differences between their individual and combined effects and mechanisms have not been fully elucidated. Due to limitations and confounding factors in clinical research, we used these two kinds of unhealthy factors to intervene the mice singly or in combination to explore their effects on individuals. METHOD OF STUDY We used a high-calorie diet (HCD), constant light exposure (CLE), and a high-calorie diet combined with constant light exposure (HCD + CLE) to build three different mouse models. During the 9 weeks modeling period, the estrous cycles were monitored, and after modeling, the indicators of glycolipid metabolism, inflammation, and reproductive endocrine function were tested. RESULTS We found that both HCD and CLE alone could induce ovulatory disorders, obesity, and chronic low-grade inflammation and inhibit melatonin secretion. The difference was that HCD significantly reduced the serum luteinizing hormone (LH) and testosterone (T) levels, inhibited the expression of FSH β and LH β in pituitary, increased cytochrome P450 enzymes and LH receptor expression in ovary, as well causing impaired glucose tolerance and hyperlipidemia, and significantly promoted the secretion of leptin and inhibited the secretion of adiponectin. However, CLE significantly increased blood LH and T, prompted the expression of kisspeptin in hypothalamus and LH β in pituitary, and had no effect on glycolipid metabolic indexes or the secretion of leptin or adiponectin. The phenotype of HCD + CLE model was basically the same as that of HCD model, associated with more severe visceral obesity and chronic inflammation. CONCLUSIONS In conclusion, we found that unhealthy lifestyle determines the phenotype of reproductive endocrine, immune, and metabolic disorders. These findings can provide theoretical support for the subsequent study of PCOS-like features.
Collapse
Affiliation(s)
- Lingshan Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yukai Liu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- NHC Key Lab of Reproduction Regulation, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiaoyong Zhu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- NHC Key Lab of Reproduction Regulation, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingli Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
27
|
Manotas MC, González DM, Céspedes C, Forero C, Rojas Moreno AP. Genetic and Epigenetic Control of Puberty. Sex Dev 2021; 16:1-10. [PMID: 34649256 DOI: 10.1159/000519039] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 08/16/2021] [Indexed: 11/19/2022] Open
Abstract
Puberty is a complex transitional phase in which reproductive capacity is achieved. There is a very wide variation in the age range of the onset of puberty, which follows a familial, ethnic, and sex pattern. The hypothalamic-pituitary-gonadal axis and several genetic, environmental, and nutritional factors play an important role in the onset of and throughout puberty. Recently, there has been significant progress in identifying factors that affect normal pubertal timing. Different studies have identified single nucleotide polymorphisms (SNPs) that affect pubertal timing in both sexes and across ethnic groups. Single genes are implicated in both precocious and delayed puberty, and epigenetic mechanisms have been suggested to affect the development and function of the GnRH neuronal network and responsiveness of end organs. All these factors can influence normal puberty timing, precocious puberty, and delayed puberty. The objective of this review is to describe recent findings related to the genetic and epigenetic control of puberty and highlight the need to deepen the knowledge of the regulatory mechanisms of this process in the normal and abnormal context.
Collapse
Affiliation(s)
- María Carolina Manotas
- Institute of Human Genetics, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Daniel Mauricio González
- Institute of Human Genetics, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Camila Céspedes
- Pediatric Endocrinologist, Hospital Universitario San Ignacio, Bogotá, Colombia.,Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Catalina Forero
- Pediatric Endocrinologist, Hospital Universitario San Ignacio, Bogotá, Colombia.,Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | |
Collapse
|
28
|
Chandra K, Banerjee A, Das M. Epigenetic and transcriptional regulation of GnRH gene under altered metabolism and ageing. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00374-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Oride A, Kanasaki H, Okada H, Kyo S. Reproductive prognosis of patients with hypogonadotropic hypogonadism: Retrospective review of 16 cases with amenorrhea. J Obstet Gynaecol Res 2021; 47:3895-3902. [PMID: 34494333 DOI: 10.1111/jog.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
AIM The aim of this study was to evaluate the general characteristics, menstruation status, and fertility outcomes of patients with hypogonadotropic hypogonadism (HH). METHODS We evaluated 16 patients with HH who visited our institution between April 2012 and March 2016 with a complaint of amenorrhea. RESULTS Four (25%) patients had primary amenorrhea and the remaining 12 (75%) cases had secondary amenorrhea. Among the patients with primary amenorrhea, weight loss was considered to be the underlying cause in one (25%) patient, whereas the remaining three (75%) cases were idiopathic HH. Among HH cases with secondary amenorrhea, six (50%) developed amenorrhea following weight loss, whereas the remaining six cases were of unknown etiology. Among the 16 patients with HH, we observed the sporadic restart of the menstrual cycle in four (25%) women during follow-up. Infertility treatment was administered to nine patients with HH who wished to become pregnant. Clomiphene citrate was effective in four patients with secondary amenorrhea and induced follicular development. Seven of nine patients with HH (77.8%) became pregnant following infertility treatment. In some cases of HH, the serum levels of gonadotropin increased sporadically during follow-up, regardless of the recovery of menstruation. We followed one patient with HH for more than 20 years. Although her gonadotropin levels were generally low and sometimes fluctuated without spontaneous menstruation, they increased dramatically to menopausal levels at 50 years of age. However, they again decreased to hypogonadotropic levels. CONCLUSION As the pathophysiology varied widely among patients, the etiologic factors underlying HH might also vary.
Collapse
Affiliation(s)
- Aki Oride
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Hiroe Okada
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
30
|
Rabaglino MB, Bojsen-Møller Secher J, Sirard MA, Hyttel P, Kadarmideen HN. Epigenomic and transcriptomic analyses reveal early activation of the HPG axis in in vitro-produced male dairy calves. FASEB J 2021; 35:e21882. [PMID: 34460963 DOI: 10.1096/fj.202101067r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
In cattle, several calves born after IVP ("in vitro" embryo production) present similar birthweight to those generated after MOET (multiple ovulation and embryo transfer). However, the underlying molecular patterns in organs involved in the developmental process are unknown and could indicate physiological programming. The objectives of this study were: (1) to compare epigenomic and transcriptomic modifications in the hypothalamus, pituitary, gonadal and adrenal organs between 3 months old ovum pick-up-IVP and MOET male calves (n = 4 per group) and (2) to use blood epigenomic data to proxy methylation of the inner organs. Extracted gDNA and RNA were sequenced through whole-genome bisulfite sequencing and RNA sequencing, respectively. Next, bioinformatic analyses determined differentially methylated cytosines (DMC) and differentially expressed genes (DEG) (FDR < 0.05) in IVP versus MOET samples and the KEGG pathways that were overrepresented by genes associated with DMC or DEG (FDR < 0.1). Pathways related to hypothalamus, pituitary, gonadal (HPG) axis activation (GnRH secretion in the hypothalamus, GnRH signaling in the pituitary, and steroidogenesis in the testicle) were enriched in IVP calves. Modeling the effect of the methylation levels and the group on the expression of all the genes involved in these pathways confirmed their upregulation in HPG organs in IVP calves. The application of the DIABLO method allowed the identification of 15 epigenetic and five transcriptomic biomarkers, which were able to predict the embryo origin using the epigenomic data from the blood. In conclusion, the use of an integrated epigenomic-transcriptomic approach suggested an early activation of the HPG axis in male IVP calves compared to MOET counterparts, and the identification of potential biomarkers allowed the use of blood samples to proxy methylation levels of the relevant internal organs.
Collapse
Affiliation(s)
- María B Rabaglino
- Quantitative Genetics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | | | - Marc-André Sirard
- Departement des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Inter-générationnelle (CRDSI), Université Laval, Laval, Quebec, Canada
| | - Poul Hyttel
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Haja N Kadarmideen
- Quantitative Genetics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
31
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
32
|
Ibos KE, Bodnár É, Bagosi Z, Bozsó Z, Tóth G, Szabó G, Csabafi K. Kisspeptin-8 Induces Anxiety-Like Behavior and Hypolocomotion by Activating the HPA Axis and Increasing GABA Release in the Nucleus Accumbens in Rats. Biomedicines 2021; 9:112. [PMID: 33503835 PMCID: PMC7911394 DOI: 10.3390/biomedicines9020112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Kisspeptins (Kp) are RF-amide neuropeptide regulators of the reproductive axis that also influence anxiety, locomotion, and metabolism. We aimed to investigate the effects of intracerebroventricular Kp-8 (an N-terminally truncated octapeptide) treatment in Wistar rats. Elevated plus maze (EPM), computerized open field (OF), and marble burying (MB) tests were performed for the assessment of behavior. Serum LH and corticosterone levels were determined to assess kisspeptin1 receptor (Kiss1r) activation and hypothalamic-pituitary-adrenal axis (HPA) stimulation, respectively. GABA release from the nucleus accumbens (NAc) and dopamine release from the ventral tegmental area (VTA) and NAc were measured via ex vivo superfusion. Kp-8 decreased open arm time and entries in EPM, and also raised corticosterone concentration, pointing to an anxiogenic effect. Moreover, the decrease in arm entries in EPM, the delayed increase in immobility accompanied by reduced ambulatory activity in OF, and the reduction in interactions with marbles show that Kp-8 suppressed exploratory and spontaneous locomotion. The increase in GABA release from the NAc might be in the background of hypolocomotion by inhibiting the VTA-NAc dopaminergic circuitry. As Kp-8 raised LH concentration, it could activate Kiss1r and stimulate the reproductive axis. As Kiss1r is associated with hyperlocomotion, it is more likely that neuropeptide FF receptor activation is involved in the suppression of locomotor activity.
Collapse
Affiliation(s)
- Katalin Eszter Ibos
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (É.B.); (Z.B.); (K.C.)
| | - Éva Bodnár
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (É.B.); (Z.B.); (K.C.)
| | - Zsolt Bagosi
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (É.B.); (Z.B.); (K.C.)
| | - Zsolt Bozsó
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (Z.B.); (G.T.)
| | - Gábor Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (Z.B.); (G.T.)
| | - Gyula Szabó
- Office of International Affairs, Budapest Campus, McDaniel College, H-1071 Budapest, Hungary;
| | - Krisztina Csabafi
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (É.B.); (Z.B.); (K.C.)
| |
Collapse
|
33
|
Hrabovszky E, Takács S, Rumpler É, Skrapits K. The human hypothalamic kisspeptin system: Functional neuroanatomy and clinical perspectives. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:275-296. [PMID: 34225935 DOI: 10.1016/b978-0-12-820107-7.00017-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, kisspeptin neurons are the key components of the hypothalamic neuronal networks that regulate the onset of puberty, account for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and mediate negative and positive estrogen feedback signals to GnRH neurons. Being directly connected anatomically and functionally to the hypophysiotropic GnRH system, the major kisspeptin cell groups of the preoptic area/rostral hypothalamus and the arcuate (or infundibular) nucleus, respectively, are ideally positioned to serve as key nodes which integrate various types of environmental, endocrine, and metabolic signals that can influence fertility. This chapter provides an overview of the current state of knowledge on the anatomy, functions, and plasticity of brain kisspeptin systems based on the wide literature available from different laboratory and domestic species. Then, the species-specific features of human hypothalamic kisspeptin neurons are described, covering their topography, morphology, unique neuropeptide content, plasticity, and connectivity to hypophysiotropic GnRH neurons. Some newly emerging roles of central kisspeptin signaling in behavior and finally, clinical perspectives, are discussed.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
34
|
Meccariello R, Fasano S, Pierantoni R. Kisspeptins, new local modulators of male reproduction: A comparative overview. Gen Comp Endocrinol 2020; 299:113618. [PMID: 32950583 DOI: 10.1016/j.ygcen.2020.113618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 11/29/2022]
Abstract
Spermatogenesis is a complex process that leads to the production of male gametes within the testis through the coordination of mitotic, meiotic and differentiation events, under a deep control of endocrine, paracrine and autocrine modulators along the Hypothalamus-pituitary-gonad (HPG) axis. The kisspeptin system plays a fundamental role along the HPG axis as it is the main positive modulator upstream of the hypothalamic neurons that secrete the Gonadotropin Releasing Hormone (GnRH), the decapeptide that supports pituitary gonadotropins and the production of gonadal sex steroid. Currently, kisspeptins and their receptor, KISS1R, have a recognized activity in the central control of puberty onset, sex maturation, reproduction and sex-steroid feedback mechanisms in both animal models and human. However, kisspeptin signaling has been widely reported in peripheral tissues, particularly in the testis of mammalian and non-mammalian vertebrates, with functions related to Leydig cells physiology and steroid biosynthesis, spermatogenesis progression and spermatozoa functions, but its mandatory role within the testis is still a matter of discussion. This review provides a summary of the main intratesticular effects of kisspeptin in vertebrates, via a comparative approach. Particular emphasis was devoted to data from the anuran amphibian Pelophylax esculentus, the first animal model in which the direct intratesticular activity of kisspeptin was reported.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Napoli, Italy.
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "L. Vanvitelli", Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "L. Vanvitelli", Napoli, Italy
| |
Collapse
|
35
|
Shalev D, Melamed P. The role of the hypothalamus and pituitary epigenomes in central activation of the reproductive axis at puberty. Mol Cell Endocrinol 2020; 518:111031. [PMID: 32956708 DOI: 10.1016/j.mce.2020.111031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/02/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Puberty is programmed through a multifactorial gene network which works to activate the pulsatile secretion of the gonadotropin releasing hormone (GnRH), and subsequently elevate circulating levels of the pituitary gonadotropins that stimulate gonadal activity. Although this developmental transition normally occurs at a limited age-range in individuals of the same genetic background and environment, pubertal onset can occur prematurely or be delayed following changes in ambient conditions, or due to genetic variations or mutations, many of which have remained elusive due to their location in distal regulatory elements. Growing evidence is pointing to a pivotal role for the epigenome in regulating key genes in the reproductive hypothalamus and pituitary at this time, which might mediate some of the plasticity of pubertal timing. This review will address epigenetic mechanisms which have been demonstrated in the KNDy neurons that increase the output of pulsatile GnRH, and those involved in activation of the GnRH gene and its receptor, and describes how GnRH utilizes epigenetic mechanisms to stimulate transcription of the pituitary gonadotropin genes in the context of the chromatin landscape.
Collapse
Affiliation(s)
- Dor Shalev
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
36
|
D’Occhio MJ, Campanile G, Baruselli PS. Peripheral action of kisspeptin at reproductive tissues-role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: a review. Biol Reprod 2020; 103:1157-1170. [PMID: 32776148 PMCID: PMC7711897 DOI: 10.1093/biolre/ioaa135] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Kisspeptin (KISS1) is encoded by the KISS1 gene and was initially found to be a repressor of metastasis. Natural mutations in the KISS1 receptor gene (KISS1R) were subsequently shown to be associated with idiopathic hypothalamic hypogonadism and impaired puberty. This led to interest in the role of KISS1 in reproduction. It was established that KISS1 had a fundamental role in the control of gonadotropin releasing hormone (GnRH) secretion. KISS1 neurons have receptors for leptin and estrogen receptor α (ERα), which places KISS1 at the gateway of metabolic (leptin) and gonadal (ERα) regulation of GnRH secretion. More recently, KISS1 has been shown to act at peripheral reproductive tissues. KISS1 and KISS1R genes are expressed in follicles (granulosa, theca, oocyte), trophoblast, and uterus. KISS1 and KISS1R proteins are found in the same tissues. KISS1 appears to have autocrine and paracrine actions in follicle and oocyte maturation, trophoblast development, and implantation and placentation. In some studies, KISS1 was beneficial to in vitro oocyte maturation and blastocyst development. The next phase of KISS1 research will explore potential benefits on embryo survival and pregnancy. This will likely involve longer-term KISS1 treatments during proestrus, early embryo development, trophoblast attachment, and implantation and pregnancy. A deeper understanding of the direct action of KISS1 at reproductive tissues could help to achieve the next step change in embryo survival and improvement in the efficiency of assisted reproductive technology.
Collapse
Affiliation(s)
- Michael J D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
37
|
Li X, Xiao J, Li K, Zhou Y. MiR-199-3p modulates the onset of puberty in rodents probably by regulating the expression of Kiss1 via the p38 MAPK pathway. Mol Cell Endocrinol 2020; 518:110994. [PMID: 32818586 DOI: 10.1016/j.mce.2020.110994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
The Kiss1 gene plays an indispensable role in modulating the onset of puberty and fertility in mammals. Although an increasing number of genetic and environmental factors that influence reproduction through Kiss1 have been identified, the function of microRNAs, a class of posttranscriptional regulators, in regulating Kiss1 expression remains poorly understood. This study aimed at investigating the mechanism by which Kiss1 expression is regulated by microRNAs. A simplified miRNome screen by a dual-fluorescence reporter system based on Kiss1 was performed to identify microRNAs that affect the expression of Kiss1. The expression patterns of the identified microRNAs during the period of murine sexual development were investigated, and only miR-199-3p was studied further. Aided by bioinformatics algorithms, miR-199-3p was demonstrated to be a repressor of Kiss1 expression, as it blocked the expression of Kiss1 through the p38 MAPK pathway by simultaneously inhibiting several targets in both GT1-7 cells and primary hypothalamic neurons. Both the inhibition of the p38 MAPK pathway by the intracerebroventricular administration of chemical agents in rats and the ectopic expression of miR-199-3p by lentivirus injection in the hypothalamus in mice delayed puberty onset and gonad development. Our results presented a novel regulatory mechanism of puberty onset which the sustained downregulation of miR-199-3p might gradually release the inhibition of the p38 MAPK/Fos/CREB/Kiss1 pathway during puberty development.
Collapse
Affiliation(s)
- Xiaoning Li
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China; College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China
| | - Junhua Xiao
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China
| | - Kai Li
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China
| | - Yuxun Zhou
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China; College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China.
| |
Collapse
|
38
|
Beltramo M, Robert V, Decourt C. The kisspeptin system in domestic animals: what we know and what we still need to understand of its role in reproduction. Domest Anim Endocrinol 2020; 73:106466. [PMID: 32247617 DOI: 10.1016/j.domaniend.2020.106466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 02/05/2023]
Abstract
The discovery of the kisspeptin (Kp) system stirred a burst of research in the field of reproductive neuroendocrinology. In the last 15 yr, the organization and activity of the system, including its neuroanatomical structure, its major physiological functions, and its main pharmacological properties, were outlined. To this endeavor, the use of genetic tools to delete and to restore Kp system functionality in a specific tissue was essential. At present, there is no question as to the key role of the Kp system in mammalian reproduction. However, easily applicable genetic manipulations are unavailable for domestic animals. Hence, many essential details on the physiological mechanisms underlying its action on domestic animals require further investigation. The potentially different effects of the various Kp isoforms, the precise anatomical localization of the Kp receptor, and the respective role played by the 2 main populations of Kp cells in different species are only few of the questions that remain unanswered and that will be illustrated in this review. Furthermore, the application of synthetic pharmacologic tools to manipulate the Kp system is still in its infancy but has produced some interesting results, suggesting the possibility of developing new methods to manage reproduction in domestic animals. In spite of a decade and a half of intense research effort, much work is still required to achieve a comprehensive understanding of the influence of the Kp system on reproduction. Furthermore, Kp system ramifications in other physiological functions are emerging and open new research perspectives.
Collapse
Affiliation(s)
- M Beltramo
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | - V Robert
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - C Decourt
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
39
|
Abstract
Ovarian cysts are one of the most common ovarian dysfunctions in dairy cattle, which can
lead to a considerable economic loss through its high incidence and can reduce the
reproductive performance. Anestrus is the most significant clinical sign observed in dairy
cattle suffering from this condition. For diagnosis, most of the veterinarians use a
combination of methods, from ultrasonography as an additional approach to trans-rectal
palpation and symptomatology when assessing ovarian cysts. Although the Ovsynch treatment
seems to be preferred, the pregnancy rate after this treatment is relatively low. Despite
such reports on dairy cattle ovarian cysts, the data is insufficient to validate all the
characteristics of this condition. This review summarizes what the literature has so far
provided from definition to treatment of ovarian cysts in dairy cattle.
Collapse
Affiliation(s)
- Silviu-Ionuț BorŞ
- Research and Development Station for Cattle Breeding, 707252 Dancu, Iaşi, Romania
| | - Alina BorŞ
- Department of Public Health, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 700489 Iasi, Romania
| |
Collapse
|
40
|
Disruption of Circadian Rhythms: A Crucial Factor in the Etiology of Infertility. Int J Mol Sci 2020; 21:ijms21113943. [PMID: 32486326 PMCID: PMC7312974 DOI: 10.3390/ijms21113943] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Infertility represents a growing health problem in industrialized countries. Thus, a greater understanding of the molecular networks involved in this disease could be critical for the development of new therapies. A recent finding revealed that circadian rhythmicity disruption is one of the main causes of poor reproductive outcome. The circadian clock system beats circadian rhythms and modulates several physiological functions such as the sleep-wake cycle, body temperature, heart rate, and hormones secretion, all of which enable the body to function in response to a 24 h cycle. This intricated machinery is driven by specific genes, called “clock genes” that fine-tune body homeostasis. Stress of modern lifestyle can determine changes in hormone secretion, favoring the onset of infertility-related conditions that might reflect disfunctions within the hypothalamic–pituitary–gonadal axis. Consequently, the loss of rhythmicity in the suprachiasmatic nuclei might affect pulsatile sexual hormones release. Herein, we provide an overview of the recent findings, in both animal models and humans, about how fertility is influenced by circadian rhythm. In addition, we explore the complex interaction among hormones, fertility and the circadian clock. A deeper analysis of these interactions might lead to novel insights that could ameliorate the therapeutic management of infertility and related disorders.
Collapse
|
41
|
Surkin PN, Dmytrenko G, Di Giorgio NP, Bizzozzero M, De Laurentiis A, Fernández-Solari J. Participation of TRPV1 in the activity of the GnRH system in male rats. Eur J Neurosci 2020; 52:2995-3001. [PMID: 32372526 DOI: 10.1111/ejn.14770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
GnRH neuron activity is under the influence of multiple stimuli, including those coming from the endocannabinoid and the immune systems. Since it has been previously suggested that some of the main elements controlling the GnRH pulse generator possess the TRPV1 receptor, the aim of the present study was to evaluate the participation of the hypothalamic TRPV1, through its pharmacological blockade, in the activity of the hypothalamic-pituitary-testicular axis in male rats under basal or acute inflammatory conditions. Our hypothesis was based on the idea that the hypothalamic TRPV1 participates in the synthesis of the main neuromodulatory signals controlling GnRH, and therefore the reproductive axis. Our results showed that the hypothalamic TRPV1 blockade induced pro-inflammatory effects by increasing Tnfα and Il-1β mRNA hypothalamic levels and inhibited the reproductive axis by affecting Gnrh, Kiss1 and Rfrp3 mRNA levels and decreasing plasma levels of luteinizing hormone and testosterone under basal conditions, without significant additive effects in rats exposed to systemic LPS. Altogether, these results suggest that the hypothalamic TRPV1 receptor participates in the regulation of the GnRH system, probably by modulating immune-dependent mechanisms.
Collapse
Affiliation(s)
- Pablo Nicolás Surkin
- Facultad de Odontología, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ganna Dmytrenko
- Centro de Estudios Farmacológicos y Botánicos, Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Marianne Bizzozzero
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Andrea De Laurentiis
- Centro de Estudios Farmacológicos y Botánicos, Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Fernández-Solari
- Facultad de Odontología, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
42
|
Qiu J, Sun Y, Sun W, Wang Y, Fan T, Yu J. Neonatal exposure to bisphenol A advances pubertal development in female rats. Mol Reprod Dev 2020; 87:503-511. [PMID: 32109339 DOI: 10.1002/mrd.23329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/09/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Qiu
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Yanyan Sun
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Wen Sun
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Yonghong Wang
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Teng Fan
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Jian Yu
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| |
Collapse
|
43
|
Stoker C, Andreoli MF, Kass L, Bosquiazzo VL, Rossetti MF, Canesini G, Luque EH, Ramos JG. Perinatal exposure to bisphenol A (BPA) impairs neuroendocrine mechanisms regulating food intake and kisspetin system in adult male rats. Evidences of metabolic disruptor hypothesis. Mol Cell Endocrinol 2020; 499:110614. [PMID: 31606416 DOI: 10.1016/j.mce.2019.110614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Bisphenol A (BPA) is a compound used in the polymerization of plastic polycarbonates. It is an endocrine disruptor and it has been postulated to be an obesogen. Our objective was to determine the influence of perinatal exposure to BPA on body weight, hormone levels, metabolic parameters and hypothalamic signals that regulate food intake and kisspeptin system in adult male rats. Male rats were exposed to 50 μg/kg/day of BPA or vehicle from day 9 of gestation to weaning in the drinking water. Since weaning, they were fed with control or high fat diet for 20 weeks. Perinatal exposure to BPA impaired glucose homeostasis, induced obesity and increased food intake in adult male rats altering hypothalamic signals, partially mimicking and/or producing an exacerbation of the effects of feeding fat diet. We also observed an increase in kisspeptin expression by BPA exposure. Evidences shown in this work support the metabolic disruptor hypothesis for BPA.
Collapse
Affiliation(s)
- Cora Stoker
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - M Florencia Andreoli
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Verónica L Bosquiazzo
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - M Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - G Canesini
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| |
Collapse
|
44
|
Suszka‐Świtek A, Pałasz A, Filipczyk Ł, Menezes IC, Mordecka‐Chamera K, Angelone T, Bogus K, Bacopoulou F, Worthington JJ, Wiaderkiewicz R. The Gn
RH
analogues affect novel neuropeptide
SMIM
20/phoenixin and
GPR
173 receptor expressions in the female rat hypothalamic–pituitary–gonadal (
HPG
) axis. Clin Exp Pharmacol Physiol 2019; 46:350-359. [DOI: 10.1111/1440-1681.13061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/21/2018] [Accepted: 12/28/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Aleksandra Suszka‐Świtek
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Artur Pałasz
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Łukasz Filipczyk
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Itiana Castro Menezes
- Department of Neurosciences and Behaviour Faculty of Medicine University of São Paulo São Paulo Brazil
| | - Kinga Mordecka‐Chamera
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiac Physiology Department of Biology, Ecology and Earth Sciences University of Calabria Arcavacata di Rende Italy
| | - Katarzyna Bogus
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care First Department of Pediatrics School of Medicine National and Kapodistrian University of Athens ‘Aghia Sophia’ Children's Hospital Athens Greece
| | - John J. Worthington
- Division of Biomedical and Life Sciences Faculty of Health and Medicine Lancaster University Lancaster UK
| | - Ryszard Wiaderkiewicz
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| |
Collapse
|
45
|
Spergel DJ. Modulation of Gonadotropin-Releasing Hormone Neuron Activity and Secretion in Mice by Non-peptide Neurotransmitters, Gasotransmitters, and Gliotransmitters. Front Endocrinol (Lausanne) 2019; 10:329. [PMID: 31178828 PMCID: PMC6538683 DOI: 10.3389/fendo.2019.00329] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neuron activity and GnRH secretion are essential for fertility in mammals. Here, I review findings from mouse studies on the direct modulation of GnRH neuron activity and GnRH secretion by non-peptide neurotransmitters (GABA, glutamate, dopamine, serotonin, norepinephrine, epinephrine, histamine, ATP, adenosine, and acetylcholine), gasotransmitters (nitric oxide and carbon monoxide), and gliotransmitters (prostaglandin E2 and possibly GABA, glutamate, and ATP). These neurotransmitters, gasotransmitters, and gliotransmitters have been shown to directly modulate activity and/or GnRH secretion in GnRH neurons in vivo or ex vivo (brain slices), from postnatal through adult mice, or in embryonic or immortalized mouse GnRH neurons. However, except for GABA, nitric oxide, and prostaglandin E2, which appear to be essential for normal GnRH neuron activity, GnRH secretion, and fertility in males and/or females, the biological significance of their direct modulation of GnRH neuron activity and/or GnRH secretion in the central regulation of reproduction remains largely unknown and requires further exploration.
Collapse
|
46
|
Schafer D, Kane G, Colledge WH, Piet R, Herbison AE. Sex- and sub region-dependent modulation of arcuate kisspeptin neurones by vasopressin and vasoactive intestinal peptide. J Neuroendocrinol 2018; 30:e12660. [PMID: 30422333 DOI: 10.1111/jne.12660] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 02/04/2023]
Abstract
A population of kisspeptin neurones located in the hypothalamic arcuate nucleus (ARN) very likely represent the gonadotrophin-releasing hormone pulse generator responsible for driving pulsatile luteinising hormone secretion in mammals. As such, it has become important to understand the neural inputs that modulate the activity of ARN kisspeptin (ARNKISS ) neurones. Using a transgenic GCaMP6 mouse model allowing the intracellular calcium levels ([Ca2+ ]i ) of individual ARNKISS neurones to be assessed simultaneously, we examined whether the circadian neuropeptides vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) modulated the activity of ARNKISS neurones directly. To validate this methodology, we initially evaluated the effects of neurokinin B (NKB) on [Ca2+ ]i in kisspeptin neurones residing within the rostral, middle and caudal ARN subregions of adult male and female mice. All experiments were undertaken in the presence of tetrodotoxin and ionotropic amino acid antagonists. NKB was found to evoke an abrupt increase in [Ca2+ ]i in 95%-100% of kisspeptin neurones throughout the ARN of both sexes. By contrast, both VIP and AVP were found to primarily activate kisspeptin neurones located in the caudal ARN of female mice. Although 58% and 59% of caudal ARN kisspeptin neurones responded to AVP and VIP, respectively, in female mice, only 0%-8% of kisspeptin neurones located in other ARN subregions responded in females and 0%-12% of cells in any subregion in males (P < 0.05). These observations demonstrate unexpected sex differences and marked heterogeneity in functional neuropeptide receptor expression amongst ARNKISS neurones organised on a rostro-caudal basis. The functional significance of this unexpected influence of VIP and AVP on ARNKISS neurones remains to be established.
Collapse
Affiliation(s)
- Danielle Schafer
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Grace Kane
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - William H Colledge
- Reproductive Physiology Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
47
|
Potent effect of KISS1-54 DNA vaccine compared with KISS1-10 DNA vaccine in inhibiting the fertility of female rats. Vaccine 2018; 36:6631-6639. [DOI: 10.1016/j.vaccine.2018.09.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/09/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
|
48
|
Effects of Low Energy Availability on Reproductive Functions and Their Underlying Neuroendocrine Mechanisms. J Clin Med 2018; 7:jcm7070166. [PMID: 29976877 PMCID: PMC6068835 DOI: 10.3390/jcm7070166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
It is known that metabolic disturbances suppress reproductive functions in females. The mechanisms underlying metabolic and nutritional effects on reproductive functions have been established based on a large body of clinical and experimental data. From the 1980s to 1990s, it was revealed that disrupted gonadotropin-releasing hormone (GnRH) secretion is the main cause of reproductive impairments in metabolic and nutritional disorders. From the late 1990s to early 2000s, it was demonstrated that, in addition to their primary functions, some appetite- or metabolism-regulating factors affect GnRH secretion. Furthermore, in the early 2000s, kisspeptin, which is a potent positive regulator of GnRH secretion, was newly discovered, and it has been revealed that kisspeptin integrates the effects of metabolic status on GnRH neurons. Recent studies have shown that kisspeptin mediates at least some of the effects of appetite- and metabolism-regulating factors on GnRH neurons. Thus, kisspeptin might be a useful clinical target for treatments aimed at restoring reproductive functions in individuals with metabolic or nutritional disturbances, such as those who exercise excessively, experience marked weight loss, or suffer from eating disorders. This paper presents a review of what is currently known about the effects of metabolic status on reproductive functions and their underlying mechanisms by summarizing the available evidence.
Collapse
|