1
|
Okail HA, El Sayed MF, Adly MA, Abd Elsamei WM. Protective Effects of Melatonin and Bee Pollen on Hematotoxicity and Hepatorenal Toxicity Induced by Long-Term Intake of Gabapentin in Female Albino Rats. Cell Biochem Biophys 2025:10.1007/s12013-025-01731-4. [PMID: 40227562 DOI: 10.1007/s12013-025-01731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/15/2025]
Abstract
Gabapentin (GBN) is an anti-seizure medication that is also used to treat nerve pain and other diseases. However, its misuse is currently a growing worry, as it may pose a significant health danger. The present study aimed to evaluate the protective effect of melatonin (MEL) and bee pollen (BP) as antioxidants against GBN-induced hematotoxicity and hepatorenal toxicity in female Albino rats. In this study, fifty-six adult female albino rats were divided into seven groups (n = 8 each), served as control, GBN, MEL, BP, MEL + GBN, BP + GBN, and MEL + BP + GBN treated groups. Results showed that oral administration of GBN resulted in a hematological toxicity as confirmed by a significant reduction in RBCs, Hb concentration, Ht%, MCV, MCH, platelets as well as altering of leukocyte profiles, WBCs, neutrophils, lymphocytes, monocytes, eosinophils and basophils. The biochemical results of liver and kidney functions showed a significant decrease in serum glucose, total protein, triglycerides, urea and uric acid. However, a significant increase in albumin, cholesterol, creatinine as well as ALP, AST, and ALT liver enzymes compared to the control was found. The oral administration of MEL and BP 12 h before GBN mostly ameliorates the altered hematological and biochemical parameters as well as hepatic and renal histopathological architecture to normal levels. In conclusion, Pre-treatment with MEL and BP, individually or together provided protection against the GBN induced changes in the blood parameters as well as hepatorenal structure and function.
Collapse
Affiliation(s)
- Hanan A Okail
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt.
| | | | - Mohamed A Adly
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt
| | | |
Collapse
|
2
|
Tripathy S, Bhattamisra SK. Cellular signalling of melatonin and its role in metabolic disorders. Mol Biol Rep 2025; 52:193. [PMID: 39903334 DOI: 10.1007/s11033-025-10306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Melatonin released from the pineal gland plays an important role in maintaining the light/dark cycle. Melatonin exerts its effects on various organs through receptor and nonreceptor pathways. Recently, the role of melatonin in various metabolic disorders has been investigated. This review focuses on the molecular pathways associated with melatonin and its role in metabolic disorders. In humans, melatonin acts through two G protein-coupled receptors (MT1 and MT2). Melatonin modulates insulin release, such as elevated insulin levels in the evening compared to morning hours, exerts cardioprotective effects through the cGMP pathway and nitric oxide production in endothelial cells, and controls oxidative stress and apoptosis in myocardial tissue. Melatonin through MT2 receptors increases lipolysis and thermogenesis, which have a positive effect on weight reduction in obese individuals. Currently, most drugs that target melatonin receptors are primarily used to treat neurological disorders. A detailed investigation to explore the role of melatonin and its signalling pathway in peripheral organs is essential to develop therapeutic molecules for managing metabolic disorders.
Collapse
Affiliation(s)
- Snehasis Tripathy
- IMT Pharmacy College, Sai Bihar, Gopalpur, Puri, Odisha, 752004, India
| | - Subrat Kumar Bhattamisra
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya, Bihar, 824236, India.
| |
Collapse
|
3
|
Cano-Barquilla P, Jiménez-Ortega V, Fernández-Mateos P, Virto L, Maldonado Bautista E, Perez-Miguelsanz J, Esquifino AI. Daily Lipolysis Gene Expression in Male Rat Mesenteric Adipose Tissue: Obesity and Melatonin Effects. Int J Mol Sci 2025; 26:577. [PMID: 39859293 PMCID: PMC11765279 DOI: 10.3390/ijms26020577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Melatonin is involved in various functions such as the timing of circadian rhythms, energy metabolism, and body mass gain in experimental animals. However, its effects on adipose tissue lipid metabolism are still unclear. This study analyzes the effects of melatonin on the relative gene expression of lipolytic proteins in rat mesenteric adipose tissue and free fatty acid (FFA) and glycerol plasma levels of male Wistar rats fed a high-fat (HFD) or maintenance diet. Four experimental groups were established: control, obese, and control or obese plus 2.3 mg/kg/day of melatonin in tap water. After 11 weeks, animals were sacrificed at different times throughout a 24 h cycle, and mesenteric adipose tissue and plasma samples were collected and analyzed. Cgi58, Perilipin, and Dgat1 gene expression, as well as FFA and glycerol concentrations, showed rhythm patterns in the control group. HFD disrupted those rhythm patterns and increased FFA and glycerol concentrations during the dark photoperiod. In both melatonin-treated groups, almost all analyzed genes showed circadian patterns. Notably, melatonin significantly prevented the increase in FFA levels during the dark photoperiod in obese rats (obese group: ~1100 mM vs. obese + melatonin group: ~600 μM, similar to control levels). However, the rhythmic pattern observed in control animals was not sustained. According to our results, melatonin could regulate circadian gene transcription of mesenteric adipose tissue lipolysis proteins. The effect of melatonin on preventing elevated FFA plasma levels associated with high-fat diet intake warrants further investigation.
Collapse
Affiliation(s)
- Pilar Cano-Barquilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (L.V.); (J.P.-M.)
| | - Vanesa Jiménez-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (L.V.); (J.P.-M.)
| | - Pilar Fernández-Mateos
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (L.V.); (J.P.-M.)
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Leire Virto
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (L.V.); (J.P.-M.)
- Departamento de Anatomía y Embriología, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Estela Maldonado Bautista
- Departamento de Anatomía y Embriología, Faculta de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Juliana Perez-Miguelsanz
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (L.V.); (J.P.-M.)
- Departamento de Anatomía y Embriología, Faculta de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Ana I. Esquifino
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (L.V.); (J.P.-M.)
| |
Collapse
|
4
|
Dobrovinskaya O, Alamilla J, Olivas-Aguirre M. Impact of Modern Lifestyle on Circadian Health and Its Contribution to Adipogenesis and Cancer Risk. Cancers (Basel) 2024; 16:3706. [PMID: 39518143 PMCID: PMC11545514 DOI: 10.3390/cancers16213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Recent research underscores a crucial connection between circadian rhythm disruption and cancer promotion, highlighting an urgent need for attention. OBJECTIVES Explore the molecular mechanisms by which modern lifestyle factors-such as artificial light exposure, shift work, and dietary patterns-affect cortisol/melatonin regulation and cancer risk. METHODS Employing a narrative review approach, we synthesized findings from Scopus, Google Scholar, and PubMed to analyze lifestyle impacts on circadian health, focusing on cortisol and melatonin chronobiology as molecular markers. We included studies that documented quantitative changes in these markers due to modern lifestyle habits, excluding those lacking quantitative data or presenting inconclusive results. Subsequent sections focused solely on articles that quantified the effects of circadian disruption on adipogenesis and tumor microenvironment modifications. RESULTS This review shows how modern habits lead to molecular changes in cortisol and melatonin, creating adipose microenvironments that support cancer development. These disruptions facilitate immune evasion, chemotherapy resistance, and tumor growth, highlighting the critical roles of cortisol dysregulation and melatonin imbalance. CONCLUSIONS Through the presented findings, we establish a causal link between circadian rhythm dysregulation and the promotion of certain cancer types. By elucidating this relationship, the study emphasizes the importance of addressing lifestyle factors that contribute to circadian misalignment, suggesting that targeted interventions could play a crucial role in mitigating cancer risk and improving overall health outcomes.
Collapse
Affiliation(s)
- Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28040, Mexico;
| | - Javier Alamilla
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Programa de Investigadores e Investigadoras por México, México City 03940, Mexico;
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima 28040, Mexico
| | - Miguel Olivas-Aguirre
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Programa de Investigadores e Investigadoras por México, México City 03940, Mexico;
- Laboratory of Cancer Pathophysiology, University Center for Biomedical Research, University of Colima, Colima 28040, Mexico
| |
Collapse
|
5
|
Kowalska K, Olejnik A. Rosehip Extract Decreases Reactive Oxygen Species Production and Lipid Accumulation in Hypertrophic 3T3-L1 Adipocytes with the Modulation of Inflammatory State. Nutrients 2024; 16:3269. [PMID: 39408236 PMCID: PMC11478984 DOI: 10.3390/nu16193269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Rosa canina L. (rosehip) is used worldwide in traditional medicine as a plant with medicinal properties. However, its anti-obesity effects are not fully explained on a transcriptional level. METHODS In the present work, the 3T3-L preadipocytes were utilized to explore the impact of R. canina fruit extract (RCE) on the cellular and molecular pathways involved in adipocyte hypertrophy. RESULTS Obtained results showed the ability of RCE to reduce lipid overloads in hypertrophic adipocytes associated with the down-regulation of mRNA expressions of adipogenic transcription factors such as PPARγ, C/EBPα, and SREBP-1c as well as genes involved in lipid biosyntheses such as FAS, LPL, and aP2. Moreover, obesity-associated oxidative stress (antioxidant enzyme activities and ROS generation) and inflammation were ameliorated in RCE-treated hypertrophic adipocytes. The mRNA and protein levels of adipokines such as leptin, resistin, and adiponectin were restored to more favorable levels. CONCLUSIONS Rosa canina fruit might be a valuable source of phytochemicals in preventing obesity and obesity-related metabolic complications.
Collapse
Affiliation(s)
- Katarzyna Kowalska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland;
| | | |
Collapse
|
6
|
Azzeh FS, Kamfar WW, Ghaith MM, Alsafi RT, Shamlan G, Ghabashi MA, Farrash WF, Alyamani RA, Alazzeh AY, Alkholy SO, Bakr ESH, Qadhi AH, Arbaeen AF. Unlocking the health benefits of melatonin supplementation: A promising preventative and therapeutic strategy. Medicine (Baltimore) 2024; 103:e39657. [PMID: 39312371 PMCID: PMC11419438 DOI: 10.1097/md.0000000000039657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Melatonin (MLT) is crucial in controlling human sleep-wake patterns. While it has long been recognized for regulating circadian rhythms, its demonstrated efficacy in managing various diseases has recently gained considerable attention. This review discusses MLT's potential preventative and therapeutic effects on various diseases. Several studies have focused on examining the molecular mechanisms through which MLT brings about its protective or therapeutic effects on various diseases, including cancer, obesity, coronavirus, and cardiovascular diseases. Numerous preventative and therapeutic applications of MLT have been proposed, resulting from its ability to function as an antioxidant, anti-cancer, anti-inflammatory, and immune-regulating agent. There is a need for further research to determine MLT's long-term effects on antioxidant defense systems, its preventative and therapeutic benefits, and its molecular basis.
Collapse
Affiliation(s)
- Firas S. Azzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waad W. Kamfar
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Nutrition and Food Services Department, Almana Hospitals, Aziziah, Dammam, Saudi Arabia
| | - Mazen M. Ghaith
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Radi T. Alsafi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mai A. Ghabashi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam F. Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Reema A. Alyamani
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Awfa Y. Alazzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Sarah O. Alkholy
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - El-Sayed H. Bakr
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa H. Qadhi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad F. Arbaeen
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Jan A, Shah M, Shah SA, Habib SH, Ehtesham E, Ahmed N. Melatonin rescues pregnant female mice and their juvenile offspring from high fat diet-induced alzheimer disease neuropathy. Heliyon 2024; 10:e36921. [PMID: 39281480 PMCID: PMC11395765 DOI: 10.1016/j.heliyon.2024.e36921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
High fat diet (HFD) is a prime factor, which contributes to the present epidemic of metabolic syndrome. Prolonged intake of HFD induces oxidative stress (OS) that in turn causes neuroinflammation, neurodegeneration, insulin resistance, amyloid burden, synaptic dysfunction and cognitive impairment hence leading to Alzheimer's disease neuropathy. Melatonin (secreted by the Pineal gland) has the potential to nullify the toxic effects of reactive oxygen species (ROS) and have been shown to ameliorate various complications induced by HFD in rodent models. This study aimed to assess the neurotherapeutic effects of melatonin on HFD-induced neuroinflammation and neurodegeneration mediated by OS in pregnant female mice and their offspring. Western blotting, immunohistochemistry and antioxidant enzyme assays were used for quantification of samples from the hippocampal region of the brain of pregnant albino mice and their offspring. Short- and long-term memory was assessed by Y-maze and Morris Water Maze tests. HFD significantly induced OS leading to AD like neuropathology in the pregnant mice and their offspring while melatonin administration simultaneously with the HFD significantly prevented this neuropathy. This study reports that melatonin exerts these effects through the stimulation of SIRT1/Nrf2/HO-1 pathway that in turn reduces the HFD-induced OS and its downstream signaling. In conclusion melatonin prevents HFD-induced multiple complications that ultimately leads to the memory dysfunction in pregnant female mice and their successive generation via activation of SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Amin Jan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mohsin Shah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shahid Ali Shah
- Department of Biochemistry, Haripur University, Haripur, Pakistan
| | - Syed Hamid Habib
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Ehtesham Ehtesham
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Naseer Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
8
|
Megha KB, Arathi A, Shikha S, Alka R, Ramya P, Mohanan PV. Significance of Melatonin in the Regulation of Circadian Rhythms and Disease Management. Mol Neurobiol 2024; 61:5541-5571. [PMID: 38206471 DOI: 10.1007/s12035-024-03915-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Melatonin, the 'hormone of darkness' is a neuronal hormone secreted by the pineal gland and other extra pineal sites. Responsible for the circadian rhythm and seasonal behaviour of vertebrates and mammals, melatonin is responsible for regulating various physiological conditions and the maintenance of sleep, body weight and the neuronal activities of the ocular sites. With its unique amphiphilic structure, melatonin can cross the cellular barriers and elucidate its activities in the subcellular components, including mitochondria. Melatonin is a potential scavenger of oxygen and nitrogen-reactive species and can directly obliterate the ROS and RNS by a receptor-independent mechanism. It can also regulate the pro- and anti-inflammatory cytokines in various pathological conditions and exhibit therapeutic activities against neurodegenerative, psychiatric disorders and cancer. Melatonin is also found to show its effects on major organs, particularly the brain, liver and heart, and also imparts a role in the modulation of the immune system. Thus, melatonin is a multifaceted candidate with immense therapeutic potential and is still considered an effective supplement on various therapies. This is primarily due to rectification of aberrant circadian rhythm by improvement of sleep quality associated with risk development of neurodegenerative, cognitive, cardiovascular and other metabolic disorders, thereby enhancing the quality of life.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - Saini Shikha
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Rao Alka
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Prabhu Ramya
- P.G. Department of Biotechnology, Government Arts College, Trivandrum, 695 014, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India.
| |
Collapse
|
9
|
Vajdi M, Moeinolsadat S, Noshadi N, Pourteymour Fard Tabrizi F, Khajeh M, Abbasalizad-Farhangi M, Alipour B. Effect of melatonin supplementation on body composition and blood pressure in adults: A systematic review and Dose-Response meta-analysis of randomized controlled trial. Heliyon 2024; 10:e34604. [PMID: 39113944 PMCID: PMC11305311 DOI: 10.1016/j.heliyon.2024.e34604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Background Several randomized controlled trials (RCTs) have explored the impact of melatonin on body composition and blood pressure (BP). However, the findings from these studies remain a topic of debate. This systematic review and meta-analysis of RCTs sought to evaluate the effects of melatonin consumption on body composition (body weight (BW), body mass index (BMI), waist circumference (WC), hip circumference (HC)) and asleep/daytime BP (systolic blood pressure (SBP) and diastolic blood pressure (DBP)) in adults. Methods In order to identify eligible RCTs, a systematic literature search was carried out up to June 2024 in PubMed, Embase, Scopus, and Web of Science without any language restrictions. The I2 statistic was used to perform heterogeneity tests on the selected studies. After evaluating random effects models based on heterogeneity tests, the weighted mean differences (WMD) with a 95 % confidence interval (CI) were calculated using pooled data. Results Overall, 28 studies (n = 1,543 participants) met our inclusion criteria. A pooled analysis of studies demonstrated that melatonin consumption led to a significant reduction in HC (WMD: 1.21 cm; 95 % CI: 1.94 to -0.49; P = 0.001), and daytime DBP (WMD: 1.40 mmHg; 95 % CI: 2.46 to -0.34; P = 0.009) in comparison with the control group. However, no substantial effects were observed on BW, BMI, WC, and SBP compared to the control group. Conclusion: The current meta-analysis of RCTs shows that treatment with melatonin reduces HC and daytime DBP levels in adults. However, further well-designed RCTs with large sample sizes and long durations are necessary to determine the effect of this supplement on body composition and BP.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nooshin Noshadi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahsa Khajeh
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Beitullah Alipour
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Dorranipour D, Pourjafari F, Malekpour-Afshar R, Basiri M, Hosseini M. Assessment of melatonin's therapeutic effectiveness against hepatic steatosis induced by a high-carbohydrate high-fat diet in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2971-2985. [PMID: 37864588 DOI: 10.1007/s00210-023-02784-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Several studies have demonstrated the protective effects of melatonin against metabolic diseases, such as liver steatosis. However, its therapeutic effects have received less scrutiny. The present study aimed to explore melatonin's therapeutic effectiveness in treating non-alcoholic fatty liver disease (NAFLD) induced by a high-carbohydrate high-fat (HCHF) diet in rats. The NAFLD was developed in male Wistar rats using an HCHF diet for 8 weeks. Afterward, they were given melatonin orally for four weeks at doses of 5 mg/kg, 10 mg/kg, and 30 mg/kg, along with the HCHF diet. In addition, six age-matched healthy rats received the highest dose of melatonin (30 mg/kg) for the same duration. Rats on the HCHF diet exhibited obesity, dyslipidemia, hyperglycemia, glucose intolerance, insulin resistance, inflammation, oxidative stress, and liver injury (steatosis). Melatonin treatment at 10 mg/kg and 30 mg/kg reduced body weight, adiposity index, oxidative damage, and inflammation but did not affect impaired glucose metabolism induced by the HCHF diet. Meanwhile, the highest dose of melatonin (30 mg/kg) reduced the liver steatosis index in HCHF rats but caused mild liver damage in healthy rats. In conclusion, using melatonin demonstrated positive outcomes in treating NAFLD induced by the HCHF diet in rats, with no noteworthy effects observed in healthy rats. A moderate dosage of 10 mg/kg of melatonin proved to be a safer and more efficient method for reducing HCHF diet-induced NAFLD in rats. Higher melatonin doses should be cautiously administered due to potential disruptions in lipid metabolism and the risk of liver complications.
Collapse
Affiliation(s)
- Davood Dorranipour
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Pourjafari
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Malekpour-Afshar
- Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehran Hosseini
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
11
|
Li Y, Sun X, Wang M, Jiang Y, Ge QQ, Li T, Hou Z, Shi P, Yao K, Yin J. Meta-analysis and machine learning reveal the antiobesity effects of melatonin on obese rodents. Obes Rev 2024; 25:e13701. [PMID: 38311366 DOI: 10.1111/obr.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Melatonin appears to be a promising supplement for obesity treatment. The antiobesity effects of melatonin on obese rodents are influenced by various factors, including the species, sex, the dosage of melatonin, treatment duration, administration via, daily treatment time, and initial body weight (IBW). Therefore, we conducted a meta-analysis and machine learning study to evaluate the antiobesity effect of melatonin on obese mice or rats from 31 publications. The results showed that melatonin significantly reduced body weight, serum glucose (GLU), triglycerides (TGs), low-density lipoprotein (LDL), and cholesterol (TC) levels in obese mice or rats but increased high-density lipoprotein (HDL) levels. Melatonin showed a slight positive effect on clock-related genes, although the number of studies was limited. Meta-regression analysis and machine learning indicated that the dosage of melatonin was the primary factor influencing body weight, with higher melatonin dosages leading to a stronger weight reduction effect. Together, male obese C57BL/6 mice and Sprague-Dawley rats with an IBW of 100-200 g showed better body weight reduction when supplemented with a dose of 10-30 mg/kg melatonin administered at night via injection for 5-8 weeks.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xihang Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yayun Jiang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Qian Ge
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tiejun Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
12
|
Challet E, Pévet P. Melatonin in energy control: Circadian time-giver and homeostatic monitor. J Pineal Res 2024; 76:e12961. [PMID: 38751172 DOI: 10.1111/jpi.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Melatonin is a neurohormone synthesized from dietary tryptophan in various organs, including the pineal gland and the retina. In the pineal gland, melatonin is produced at night under the control of the master clock located in the suprachiasmatic nuclei of the hypothalamus. Under physiological conditions, the pineal gland seems to constitute the unique source of circulating melatonin. Melatonin is involved in cellular metabolism in different ways. First, the circadian rhythm of melatonin helps the maintenance of proper internal timing, the disruption of which has deleterious effects on metabolic health. Second, melatonin modulates lipid metabolism, notably through diminished lipogenesis, and it has an antidiabetic effect, at least in several animal models. Third, pharmacological doses of melatonin have antioxidative, free radical-scavenging, and anti-inflammatory properties in various in vitro cellular models. As a result, melatonin can be considered both a circadian time-giver and a homeostatic monitor of cellular metabolism, via multiple mechanisms of action that are not all fully characterized. Aging, circadian disruption, and artificial light at night are conditions combining increased metabolic risks with diminished circulating levels of melatonin. Accordingly, melatonin supplementation could be of potential therapeutic value in the treatment or prevention of metabolic disorders. More clinical trials in controlled conditions are needed, notably taking greater account of circadian rhythmicity.
Collapse
Affiliation(s)
- Etienne Challet
- Centre National de la Recherche Scientifique (CNRS), Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | - Paul Pévet
- Centre National de la Recherche Scientifique (CNRS), Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Guan Y, Wei X, Li J, Zhu Y, Luo P, Luo M. Obesity-related glomerulopathy: recent advances in inflammatory mechanisms and related treatments. J Leukoc Biol 2024; 115:819-839. [PMID: 38427925 DOI: 10.1093/jleuko/qiae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024] Open
Abstract
Obesity-related glomerulopathy, which is an obesity-triggered kidney damage, has become a significant threat to human health. Several studies have recently highlighted the critical role of inflammation in obesity-related glomerulopathy development. Additionally, excess adipose tissue and adipocytes in patients with obesity produce various inflammatory factors that cause systemic low-grade inflammation with consequent damage to vascular endothelial cells, exacerbating glomerular injury. Therefore, we conducted a comprehensive review of obesity-related glomerulopathy and addressed the critical role of obesity-induced chronic inflammation in obesity-related glomerulopathy pathogenesis and progression, which leads to tubular damage and proteinuria, ultimately impairing renal function. The relationship between obesity and obesity-related glomerulopathy is facilitated by a network of various inflammation-associated cells (including macrophages, lymphocytes, and mast cells) and a series of inflammatory mediators (such as tumor necrosis factor α, interleukin 6, leptin, adiponectin, resistin, chemokines, adhesion molecules, and plasminogen activator inhibitor 1) and their inflammatory pathways. Furthermore, we discuss a recently discovered relationship between micronutrients and obesity-related glomerulopathy inflammation and the important role of micronutrients in the body's anti-inflammatory response. Therefore, assessing these inflammatory molecules and pathways will provide a strong theoretical basis for developing therapeutic strategies based on anti-inflammatory effects to prevent or delay the onset of kidney injury.
Collapse
Affiliation(s)
- Yucan Guan
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Xianping Wei
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Jicui Li
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Yuexin Zhu
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Ping Luo
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Manyu Luo
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| |
Collapse
|
14
|
Dorranipour D, Pourjafari F, Malekpour-Afshar R, Basiri M, Hosseini M. Astrocyte response to melatonin treatment in rats under high-carbohydrate high-fat diet. J Chem Neuroanat 2024; 136:102389. [PMID: 38215799 DOI: 10.1016/j.jchemneu.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
The involvement of consumption of high-carbohydrate high-fat (HCHF) diet in cognitive impairment is attributed, at least in part, to the activation of astrocytes, which contributes to the development of neuroinflammation, oxidative stress, and subsequent cognitive deficits. This study aimed to assess the influence of melatonin on cognitive impairment and astrogliosis induced by the HCHF diet in rats. Male Wistar rats were fed an HCHF diet for eight weeks to induce obesity and metabolic syndrome. Subsequently, they received oral melatonin treatment for four weeks at doses of 5 mg/kg, 10 mg/kg, and 30 mg/kg, alongside the HCHF diet. Cognitive function was evaluated using the Y-maze test, while the levels of proinflammatory cytokines, oxidative stress, and the number glial fibrillary acidic protein (GFAP) positive cells were assessed in the hippocampi and hypothalamus. The consumption of the HCHF diet resulted in weight gain, hyperlipidemia, impaired glucose tolerance, cognitive decline, neuroinflammation, oxidative stress damage, and astrogliosis in rats. Although melatonin treatment did not demonstrate beneficial effects on blood glucose and lipid metabolism, it improved the impaired working memory caused by the HCHF diet. Melatonin exhibited a dose-dependent reduction of astrogliosis, neuroinflammation, and lipid peroxidation while restored superoxide dismutase in the hippocampus and hypothalamus of HCHF diet-treated rats. These findings provide evidence that melatonin inhibits astrocyte activation, thereby attenuating inflammation and minimizing oxidative stress damage induced by the HCHF diet.
Collapse
Affiliation(s)
- Davood Dorranipour
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Pourjafari
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Malekpour-Afshar
- Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehran Hosseini
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
15
|
Bianco V, Kratky D. Glycoprotein Non-Metastatic Protein B (GPNMB): The Missing Link Between Lysosomes and Obesity. Exp Clin Endocrinol Diabetes 2023; 131:639-645. [PMID: 37956971 PMCID: PMC10700020 DOI: 10.1055/a-2192-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023]
Abstract
As a result of an unhealthy diet and limited physical activity, obesity has become a widespread pandemic worldwide and is an important predictor for the development of cardiovascular disease. Obesity is often characterized by a pro-inflammatory environment in white adipose tissue (WAT), mainly due to increased macrophage infiltration. These immune cells boost their lipid concentrations by accumulating the content of dying adipocytes. As the lysosome is highly involved in lipid handling, the progressive lipid accumulation may result in lysosomal stress and a metabolic shift. Recent studies have identified glycoprotein non-metastatic melanoma protein B (GPNMB) as a novel marker of inflammatory diseases. GPNMB is a type I transmembrane protein on the cell surface of various cell types, such as macrophages, dendritic cells, osteoblasts, and microglia, from which it can be proteolytically cleaved into a soluble molecule. It is induced by lysosomal stress via microphthalmia-associated transcription factor and thus has been found to be upregulated in many lysosomal storage disorders. In addition, a clear connection between GPNMB and obesity was recently established. GPNMB was shown to have protective and anti-inflammatory effects in most cases, preventing the progression of obesity-related metabolic disorders. In contrast, soluble GPNMB likely has the opposite effect and promotes lipogenesis in WAT. This review aims to summarize and clarify the role of GPNMB in the progression of obesity and to highlight its potential use as a biomarker for lipid-associated disorders.
Collapse
Affiliation(s)
- Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry,
Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry,
Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
16
|
Lapa Neto CJC, de Melo IMF, Alpiovezza PKBM, de Albuquerque YML, Francisco Soares A, Teixeira ÁAC, Wanderley-Teixeira V. Melatonin associated with a high-fat diet during pregnancy and lactation prevents liver changes in the offspring. Gen Comp Endocrinol 2023; 343:114357. [PMID: 37586542 DOI: 10.1016/j.ygcen.2023.114357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
In the present study, we set out to determine whether melatonin combined with a high-fat diet during pregnancy and lactation can prevent liver disorders in offspring. Forty rats were divided into four groups: DC - pregnant rats submitted to the standard diet; DC + Mel - pregnant rats submitted to the standard diet combined with melatonin; HFD - pregnant rats submitted to a high-fat diet; HFD + Mel - pregnant rats submitted to a high-fat diet combined with melatonin. Morphophysiological and biochemical parameters were analyzed. Melatonin (5 mg/kg) was administered intraperitoneally. The HFD group offspring showed an increase in AST, ALT, alkaline phosphatase, cholesterol, triglycerides, LDL and glucose levels, and a reduction in HDL and lipase levels. In the liver obseved steatosis, hepatocellular ballooning, increased lobular parenchyma and reduced non-lobular parenchyma, beside reduced liver glycogen and fibrosis. These changes were not observed in the HFD + Mel group. In conclusion, melatonin combined with a high-fat diet preserves the liver architecture and function in the offspring.
Collapse
Affiliation(s)
- Clovis J C Lapa Neto
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Ismaela M F de Melo
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Paloma K B M Alpiovezza
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Yuri M L de Albuquerque
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Anísio Francisco Soares
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Álvaro A C Teixeira
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Valéria Wanderley-Teixeira
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil.
| |
Collapse
|
17
|
Hohor S, Mandanach C, Maftei A, Zugravu CA, Oțelea MR. Impaired Melatonin Secretion, Oxidative Stress and Metabolic Syndrome in Night Shift Work. Antioxidants (Basel) 2023; 12:antiox12040959. [PMID: 37107334 PMCID: PMC10135726 DOI: 10.3390/antiox12040959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic syndrome has been associated in many studies with working in shifts. Even if the mechanistic details are not fully understood, forced sleep deprivation and exposure to light, as happens during night shifts, or irregular schedules with late or very early onset of the working program, lead to a sleep-wake rhythm misalignment, metabolic dysregulation and oxidative stress. The cyclic melatonin secretion is regulated by the hypothalamic suprachiasmatic nuclei and light exposure. At a central level, melatonin promotes sleep and inhibits wake-signals. Beside this role, melatonin acts as an antioxidant and influences the functionality of the cardiovascular system and of different metabolic processes. This review presents data about the influence of night shifts on melatonin secretion and oxidative stress. Assembling data from epidemiological, experimental and clinical studies contributes to a better understanding of the pathological links between chronodisruption and the metabolic syndrome related to working in shifts.
Collapse
Affiliation(s)
- Sorina Hohor
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Cristina Mandanach
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Andreea Maftei
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- "Dr. Carol Davila" Central Military Emergency University Hospital, 134 Calea Plevnei, Sector 1, 010242 Bucharest, Romania
| | - Corina Aurelia Zugravu
- Department of Hygiene and Ecology, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Marina Ruxandra Oțelea
- Clinical Department 5, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| |
Collapse
|
18
|
Maity J, Dey T, Banerjee A, Chattopadhyay A, Das AR, Bandyopadhyay D. Melatonin ameliorates myocardial infarction in obese diabetic individuals: The possible involvement of macrophage apoptotic factors. J Pineal Res 2023; 74:e12847. [PMID: 36456538 DOI: 10.1111/jpi.12847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
In recent days, the hike in obesity-mediated epidemics across the globe and the prevalence of obesity-induced cardiovascular disease has become one of the chief grounds for morbidity and mortality. This epidemic-driven detrimental events in the cardiac tissues start with the altered distribution and metabolism pattern of high-density lipoprotein and low-density lipoprotein (LDL) leading to cholesterol (oxidized LDL) deposition on the arterial wall and atherosclerotic plaque generation, followed by vascular spasms and infarction. Subsequently, obesity-triggered metabolic malfunctions induce free radical generation which may further trigger pro-inflammatory signaling and nuclear factor kappa-light-chain-enhancer of activated B cells transcriptional factor, thus inducing interferon-gamma, tumor necrosis factor-alpha, and inducible nitric oxide synthase. This terrifying cardiomyopathy can be further aggravated in type 2 diabetes mellitus, thereby making obese diabetic patients prone toward the development of myocardial infarction (MI) or stroke in comparison to their nondiabetic counterparts. The accelerated oxidative stress and pro-inflammatory response induced cardiomyocyte hypertrophy, followed by apoptosis in obese diabetic individuals, causing progression of athero-thrombotic vascular disease. Being an efficient antioxidative and anti-inflammatory indolamine, melatonin effectively inhibits lipid peroxidation, pro-inflammatory reactions, thereby resolving free radical-induced myocardial damages along with maintaining antioxidant reservoir to preserve cardiovascular integrity. Prolonged melatonin treatment maintains balanced body weight and serum total cholesterol concentration by inhibiting cholesterol synthesis and promoting cholesterol catabolism. Additionally, melatonin promotes macrophage polarization toward the anti-inflammatory state, providing a proper shield during the recovery period. Therefore, the protective role of melatonin in maintaining the lipid metabolism homeostasis and blocking the atherosclerotic plaque rupture could be targeted as the possible therapeutic strategy for the management of obesity-induced acute MI. This review aimed at orchestrating the efficacy of melatonin in ameliorating irrevocable oxidative cardiovascular damage induced by the obesity-diabetes correlation.
Collapse
Affiliation(s)
- Juin Maity
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Adrita Banerjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | | | - Asish R Das
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| |
Collapse
|
19
|
Bondy SC. Melatonin and Aging. Subcell Biochem 2023; 103:291-307. [PMID: 37120473 DOI: 10.1007/978-3-031-26576-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The health problems associated with the aging process are becoming increasingly widespread due to the increase in mean life expectancy taking place globally. While decline of many organ functions is an unavoidable concomitant of senescence, these can be delayed or moderated by a range of factors. Among these are dietary changes and weight control, taking sufficient exercise, and the utilization of various micronutrients. The utility of incurring appropriate changes in lifestyle is generally not confined to a single organ system but has a broadly positive systemic effect.Among one of the most potent means of slowing down age-related changes is the use of melatonin, a widely distributed biological indole. While melatonin is well known as a treatment for insomnia, it has a wide range of beneficial qualities many of which are relevant. This overview describes how several of the properties of melatonin are especially relevant to many of the changes associated with senescence. Changes in functioning of the immune system are particularly marked in the aged, combining diminishing effectiveness with increasing ineffective and harmful activity. Melatonin treatment appears able to moderate and partially reverse this detrimental drift toward immune incompetence.
Collapse
Affiliation(s)
- Stephen C Bondy
- Center for Occupational and Environmental Health, University of California, Irvine, CA, USA.
| |
Collapse
|
20
|
Kuzmenko NV, Tsyrlin VA, Pliss MG. Meta-Analysis of Experimental Studies of Diet-Dependent Effects of Melatonin Monotherapy on Circulatory Levels of Triglycerides, Cholesterol, Glucose and Insulin in Rats. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
21
|
Hu S, Liu X, Wang Y, Zhang R, Wei S. Melatonin protects against body weight gain induced by sleep deprivation in mice. Physiol Behav 2022; 257:113975. [PMID: 36183851 DOI: 10.1016/j.physbeh.2022.113975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/10/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Sleep deprivation is an epidemic phenomenon in modern society. Lack of sleep has been shown to result in metabolic and endocrine disorders that predispose to obesity and other chronic metabolic diseases. Melatonin is a sleep-related neurohormone and affected by the circadian rhythm and light/dark cycles. Melatonin has recently been used to ameliorate diet-induced or night light-induced energy metabolic imbalance. However, the effect of melatonin on sleep deprivation-induced obesity has been poorly characterized. This study focuses on the protective effects of melatonin on lipid metabolism and body weight homeostasis in sleep-deprived mice. Mice subjected to sleep deprivation had significantly decreased plasma melatonin content and increased food intake and body weight gain compared to that of control. Meanwhile, the transcription factor PPARγ protein in liver increased, but there were no significant changes in hepatic circadian proteins BMAL1 and REV-ERBα after 10 consecutive days of sleep deprivation. Moreover, melatonin supplementation increased liver AMPKα/PPARα signaling pathway activity, which leads to lipid catabolism and reduced fat accumulation. These findings suggested that melatonin may be a potential agent for protecting against sleep deprivation-induced obesity.
Collapse
Affiliation(s)
- Shuang Hu
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Xuan Liu
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Yuefan Wang
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Zhang
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Shougang Wei
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
The melatonergic agonist agomelatine ameliorates high fat diet-induced obesity in mice through the modulation of the gut microbiome. Biomed Pharmacother 2022; 153:113445. [PMID: 36076560 DOI: 10.1016/j.biopha.2022.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
|
23
|
Dose-Dependent Effect of Melatonin on BAT Thermogenesis in Zücker Diabetic Fatty Rat: Future Clinical Implications for Obesity. Antioxidants (Basel) 2022; 11:antiox11091646. [PMID: 36139720 PMCID: PMC9495691 DOI: 10.3390/antiox11091646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Experimental data have revealed that melatonin at high doses reduced obesity and improved metabolic outcomes in experimental models of obesity, mainly by enhancing brown adipose tissue (BAT) thermogenesis. A potential dose-response relationship has yet to be performed to translate these promising findings into potential clinical therapy. This study aimed to assess the effects of different doses of melatonin on interscapular BAT (iBAT) thermogenic capacity in Zücker diabetic fatty (ZDF) rats. At 6 wk of age, male ZDF rats were divided into four groups (n = 4 per group): control and those treated with different doses of melatonin (0.1, 1, and 10 mg/kg of body weight) in their drinking water for 6 wk. Body weight (BW) was significantly decreased at doses of 1 and 10 mg/kg of melatonin, but not at 0.1 mg/kg compared with the control, with a similar rate of BW decrease being reached at the dose of 1 mg/kg (by ~11%) and 10 mg/kg (by ~12%). This effect was associated with a dose-dependent increase in the thermal response to the baseline condition or acute cold challenge in the interscapular area measurable by infrared thermography, with the highest thermal response being recorded at the 10 mg/kg dose. Upon histology, melatonin treatment markedly restored the typical brownish appearance of the tissue and promoted a shift in size distribution toward smaller adipocytes in a dose-dependent fashion, with the most pronounced brownish phenotype being observed at 10 mg/kg of melatonin. As a hallmark of thermogenesis, the protein level of uncoupled protein 1 (UCP1) from immunofluorescence and Western blot analysis increased significantly and dose-dependently at all three doses of melatonin, reaching the highest level at the dose of 10 mg/kg. Likewise, all three doses of melatonin modulated iBAT mitochondrial dynamics by increasing protein expression of the optic atrophy protein type 1 (OPA1) fusion marker and decreasing that of the dynamin-related protein1 (DRP1) fission marker, again dose-dependently, with the highest and lowest expression levels, respectively, being reached at the 10 mg/kg dose. These findings highlight for the first time the relevance of the dose-dependency of melatonin toward BW control and BAT thermogenic activation, which may have potential therapeutic implications for the treatment of obesity. To clinically apply the potential therapeutic of melatonin for obesity, we consider that the effective animal doses that should be extrapolated to obese individuals may be within the dose range of 1 to 10 mg/kg.
Collapse
|
24
|
Arjunan A, Sah DK, Jung YD, Song J. Hepatic Encephalopathy and Melatonin. Antioxidants (Basel) 2022; 11:837. [PMID: 35624703 PMCID: PMC9137547 DOI: 10.3390/antiox11050837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatic encephalopathy (HE) is a severe metabolic syndrome linked with acute/chronic hepatic disorders. HE is also a pernicious neuropsychiatric complication associated with cognitive decline, coma, and death. Limited therapies are available to treat HE, which is formidable to oversee in the clinic. Thus, determining a novel therapeutic approach is essential. The pathogenesis of HE has not been well established. According to various scientific reports, neuropathological symptoms arise due to excessive accumulation of ammonia, which is transported to the brain via the blood-brain barrier (BBB), triggering oxidative stress and inflammation, and disturbing neuronal-glial functions. The treatment of HE involves eliminating hyperammonemia by enhancing the ammonia scavenging mechanism in systemic blood circulation. Melatonin is the sole endogenous hormone linked with HE. Melatonin as a neurohormone is a potent antioxidant that is primarily synthesized and released by the brain's pineal gland. Several HE and liver cirrhosis clinical studies have demonstrated impaired synthesis, secretion of melatonin, and circadian patterns. Melatonin can cross the BBB and is involved in various neuroprotective actions on the HE brain. Hence, we aim to elucidate how HE impairs brain functions, and elucidate the precise molecular mechanism of melatonin that reverses the HE effects on the central nervous system.
Collapse
Affiliation(s)
- Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun 58128, Korea
| |
Collapse
|
25
|
Pivonello C, Negri M, Patalano R, Amatrudo F, Montò T, Liccardi A, Graziadio C, Muscogiuri G, Pivonello R, Colao A. The role of melatonin in the molecular mechanisms underlying metaflammation and infections in obesity: A narrative review. Obes Rev 2022; 23:e13390. [PMID: 34861097 PMCID: PMC9285339 DOI: 10.1111/obr.13390] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/20/2022]
Abstract
Obesity is a chronic condition whose management is a critical challenge for physicians. The scientific community has increased its focus on the molecular mechanisms involved in obesity etiopathogenesis to better manage patients with obesity and its associated complications. The tight connection between adipose tissue and the immune system has been demonstrated to play a crucial role in inflammation, and melatonin is important for circadian rhythm regulation and metabolic homeostasis, in which it orchestrates several molecular mechanisms involved in obesity and associated inflammation. Melatonin also regulates innate and adaptive immunity; its antioxidant properties are linked to reduced predisposition to infection and weight gain in patients with obesity through the modulation of the immune response, which has a significant beneficial effect on inflammation and, consequently, on the metabolic state. Low melatonin levels have been linked to obesity, and melatonin supplementation can reduce body weight, improve metabolic profile, and ameliorate immune responses and pro-inflammatory stimuli. The role of melatonin in obesity is mainly related to improved oxidative stress signaling, modulation of adipokine secretion, and a switching from white-to-brown adipose tissue phenotype and activity. Moreover, the role of melatonin in obesity modulation by controlling circadian rhythm has recently emerged as a pivotal mechanism for lipid and glucose metabolism dysfunction in adipose, muscle, and liver tissues. Melatonin may also regulate the immune system by acting directly on thymus morphology and activity as well as by modulating oxidative stress and inflammatory states during infections. The tight association between melatonin and immune response regulation is coordinated by Toll-like receptors, which are rhythmically expressed during the day. Their expression may be strongly modulated by melatonin as their signaling is highly inhibited by melatonin. The current review summarizes studies of melatonin-induced mechanisms involved in infection regulation, particularly the modulation of obesity-associated inflammation and systemic complications.
Collapse
Affiliation(s)
- Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Roberta Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Feliciana Amatrudo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Tatiana Montò
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Alessia Liccardi
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Chiara Graziadio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| |
Collapse
|
26
|
Suriagandhi V, Nachiappan V. Protective Effects of Melatonin against Obesity-Induced by Leptin Resistance. Behav Brain Res 2022; 417:113598. [PMID: 34563600 DOI: 10.1016/j.bbr.2021.113598] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
Consumption of an exceedingly high-fat diet with irregular eating and sleeping habits is typical in the current sedentary lifestyle, leading to chronic diseases like obesity and diabetes mellitus. Leptin is a primary appetite-regulating hormone that binds to its receptors in the hypothalamic cell membrane and regulates downstream appetite-regulating neurons NPY/AgRp and POMC in the hypothalamus. Based on the fat content of the adipose tissue, leptin is secreted, and excess accumulation of fat in adipose tissue stimulates the abnormal secretion of leptin. The secreted leptin circulating in the bloodstream uses its transporters to cross the blood-brain barrier (BBB) and reach the CSF. There is a saturation limit for leptin bound to its transporters to cross the BBB, and increased leptin secretion in adipose tissue has a defect in its transport across the BBB. Leptin resistance is due to excess leptin, a saturation of its transporters, and deficiency in either the receptor level or signalling in the hypothalamus. Leptin resistance leads to obesity due to excess food intake and less energy expenditure. Normal leptin secretion follows a rhythm, and alteration in the lifestyle leads to hormonal imbalances and increases ROS generation leading to oxidative stress. The sleep disturbance causes obesity with increased lipid accumulation in adipose tissue. Melatonin is the master regulator of the sleep-wake cycle secreted by the pineal gland during the night. It is a potent antioxidant with anti-inflammatory properties. Melatonin is secreted in a pattern called the circadian rhythm in humans as well. Research indicates that melatonin plays a vital role in hormonal regulation and energy metabolism, including leptin signalling and secretion. Studying the role of melatonin in leptin regulation will help us combat the pathologies of obesity caused by leptin resistance.
Collapse
Affiliation(s)
- Vennila Suriagandhi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India.
| |
Collapse
|
27
|
Therapeutic potential of melatonin in colorectal cancer: Focus on lipid metabolism and gut microbiota. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166281. [PMID: 34610472 DOI: 10.1016/j.bbadis.2021.166281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/24/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. The occurrence and development of CRC are complicated processes. Obesity and dysbacteriosis have been increasingly regarded as the main risk factors for CRC. Understanding the etiology of CRC from multiple perspectives is conducive to screening for some potential drugs or new treatment strategies to limit the serious side effects of conventional treatment and prolong the survival of CRC patients. Melatonin, a natural indoleamine, is mainly produced by the pineal gland, but it is also abundant in other tissues, including the gastrointestinal tract, retina, testes, lymphocytes, and Harder's glands. Melatonin could participate in lipid metabolism by regulating adipogenesis and lipolysis. Additionally, many studies have focused on the potential beneficial effects of melatonin in CRC, such as promotion of apoptosis; inhibition of cell proliferation, migration, and invasion; antioxidant activity; and immune regulation. Meaningfully, gut microbiota is the main determinant of all aspects of health and disease (including obesity and tumorigenesis). The gut microbiota is of great significance for understanding the relationship between obesity and increased risk of CRC. Although the current understanding of how the melatonin-mediated gut microbiota coordinates a variety of physiological and pathological activities is fairly comprehensive, there are still many unknown topics to be explored in the face of a complex nutritional status and a changeable microbiota. This review summarizes the potential links among melatonin, lipid metabolism, gut microbiota, and CRC to promote the development of melatonin as a preventive and therapeutic agent for CRC.
Collapse
|
28
|
Mechanisms of Melatonin in Obesity: A Review. Int J Mol Sci 2021; 23:ijms23010218. [PMID: 35008644 PMCID: PMC8745381 DOI: 10.3390/ijms23010218] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and its complications have become a prominent global public health problem that severely threatens human health. Melatonin, originally known as an effective antioxidant, is an endogenous hormone found throughout the body that serves various physiological functions. In recent decades, increasing attention has been paid to its unique function in regulating energy metabolism, especially in glucose and lipid metabolism. Accumulating evidence has established the relationship between melatonin and obesity; nevertheless, not all preclinical and clinical evidence indicates the anti-obesity effect of melatonin, which makes it remain to conclude the clinical effect of melatonin in the fight against obesity. In this review, we have summarized the current knowledge of melatonin in regulating obesity-related symptoms, with emphasis on its underlying mechanisms. The role of melatonin in regulating the lipid profile, adipose tissue, oxidative stress, and inflammation, as well as the interactions of melatonin with the circadian rhythm, gut microbiota, sleep disorder, as well as the α7nAChR, the opioidergic system, and exosomes, make melatonin a promising agent to open new avenues in the intervention of obesity.
Collapse
|
29
|
Yawoot N, Sengking J, Wicha P, Govitrapong P, Tocharus C, Tocharus J. Melatonin attenuates reactive astrogliosis and glial scar formation following cerebral ischemia and reperfusion injury mediated by GSK-3β and RIP1K. J Cell Physiol 2021; 237:1818-1832. [PMID: 34825376 DOI: 10.1002/jcp.30649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/06/2022]
Abstract
Even though astrocytes have been widely reported to support several brain functions, studies have emerged that they exert deleterious effects on the brain after ischemia and reperfusion (I/R) injury. The present study investigated the neuroprotective effects of melatonin on the processes of reactive astrogliosis and glial scar formation, as well as axonal regeneration after transient middle cerebral artery occlusion. Male Wistar rats were randomly divided into four groups: sham-operated, I/R, I/R treated with melatonin, and I/R treated with edaravone. All drugs were administered via intraperitoneal injection at the onset of reperfusion and were continued until the rats were sacrificed on Day 7 or 14 after the surgery. Melatonin presented long-term benefits on cerebral damage after I/R injury, as demonstrated by a decreased infarct volume, histopathological changes, and reduced neuronal cell death. We also found that melatonin attenuated reactive astrogliosis and glial scar formation and, consequently, enhanced axonal regeneration and promoted neurobehavioral recovery. Furthermore, glycogen synthase kinase-3 beta (GSK-3β) and receptor-interacting serine/threonine-protein 1 kinase (RIP1K), which had previously been revealed as proteins involved in astrocyte responses, were significantly reduced after melatonin administration. Taken together, melatonin effectively counteracted the deleterious effects due to astrocyte responses and improved axonal regeneration to promote functional recovery during the chronic phase of cerebral I/R injury by inhibiting GSK-3β and RIP1K activities.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand.,Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Piyawadee Wicha
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
30
|
Delpino FM, Figueiredo LM. Melatonin supplementation and anthropometric indicators of obesity: A systematic review and meta-analysis. Nutrition 2021; 91-92:111399. [PMID: 34626955 DOI: 10.1016/j.nut.2021.111399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE According to in vivo and in vitro studies, melatonin appears to be a potential supplement for obesity reduction. The aim of this study was to review the literature on randomized clinical trials that evaluated the effects of melatonin supplementation on anthropometric indicators of obesity in humans. METHODS We conducted a systematic review with meta-analysis in the following databases: Pubmed, LILACS, Scielo, Scopus, Web of Science, Cochrane, and Embase. We included studies that evaluated melatonin supplementation's effects, compared with placebo, on anthropometric measures, including body weight, body mass index (BMI), and waist circumference, in people ≥18 y of age. This systematic review and meta-analysis were registered on PROSPERO: CRD42021241079. RESULTS Of the 23 studies included, 11 showed significant results from melatonin supplementation on weight loss, BMI, or waist circumference, compared with placebo. In the meta-analysis, melatonin supplementation significantly reduced body weight (standardized mean difference, -0.48; 95% confidence interval, -0.94 to -0.02; P = <0.01; I2 = 92%). Results for BMI and waist circumference were null. The I2 tests were significant for the analyses with significant results. CONCLUSION The results demonstrated that melatonin supplementation was responsible for significantly reducing body weight. More studies are needed before melatonin can be recommended for weight loss.
Collapse
Affiliation(s)
- Felipe Mendes Delpino
- Postgraduate Program in Nursing, Federal University of Pelotas, Rio Grande do Sul, Brazil; Faculty of Nursing, Federal University of Pelotas, Rio Grande do Sul, Brazil.
| | | |
Collapse
|
31
|
Marqueze EC, Nogueira LFR, Vetter C, Skene DJ, Cipolla-Neto J, Moreno CRC. Exogenous melatonin decreases circadian misalignment and body weight among early types. J Pineal Res 2021; 71:e12750. [PMID: 34091954 DOI: 10.1111/jpi.12750] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Shift workers experience chronic circadian misalignment, which can manifest itself in reduced melatonin production, and has been associated with metabolic disorders. In addition, chronotype modulates the effect of night shift work, with early types presenting greater circadian misalignment when working night shift as compared to late types. Melatonin supplementation has shown positive results reducing weight gain in animal models, but the effect of exogenous melatonin in humans on body weight in the context of shift work remains inconsistent. The aim of this study was thus to evaluate the effects of exogenous melatonin on circadian misalignment and body weight among overweight night shift workers, according to chronotype, under real-life conditions. We conducted a double-blind, randomized, placebo-controlled, crossover trial where melatonin (3 mg) or placebo was administered on non-night shift nights for 12 weeks in 27 female nurses (37.1 yo, ±5.9 yo; BMI 29.9 kg/m2 , ±3.3 kg/m2 ). Melatonin (or placebo) was only taken on nights when the participants did not work night shifts, that is, on nights when they slept (between night shifts and on days off). Composite Phase Deviations (CPD) of actigraphy-based mid-sleep timing were calculated to measure circadian misalignment. The analyses were performed for the whole group and by chronotype. We found approximately 20% reduction in circadian misalignment after exogenous melatonin administration considering all chronotypes. Moreover, melatonin supplementation in those who presented high circadian misalignment, as observed in early chronotypes, reduced body weight, BMI, waist circumference, and hip circumference, without any change in the participants' calorie intake or physical activity levels.
Collapse
Affiliation(s)
- Elaine C Marqueze
- Department of Epidemiology, Public Health Graduate Program, Catholic University of Santos, São Paulo, Brazil
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Luciana F R Nogueira
- Department of Epidemiology, Public Health Graduate Program, Catholic University of Santos, São Paulo, Brazil
| | - Céline Vetter
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Debra J Skene
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - José Cipolla-Neto
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Claudia R C Moreno
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo, Brazil
- Department of Psychology, Stress Research Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
32
|
Ashrafizadeh M, Najafi M, Kavyiani N, Mohammadinejad R, Farkhondeh T, Samarghandian S. Anti-Inflammatory Activity of Melatonin: a Focus on the Role of NLRP3 Inflammasome. Inflammation 2021; 44:1207-1222. [PMID: 33651308 DOI: 10.1007/s10753-021-01428-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
Melatonin is a hormone of the pineal gland that contributes to the regulation of physiological activities, such as sleep, circadian rhythm, and neuroendocrine processes. Melatonin is found in several plants and has pharmacological activities including antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, and neuroprotective. It also has shown therapeutic efficacy in treatment of cancer and diabetes. Melatonin affects several molecular pathways to exert its protective effects. The NLRP3 inflammasome is considered a novel target of melatonin. This inflammasome contributes to enhanced level of IL-1β, caspase-1 activation, and pyroptosis stimulation. The function of NLRP3 inflammasome has been explored in various diseases, including cancer, diabetes, and neurological disorders. By inhibiting NLRP3, melatonin diminishes inflammation and influences various molecular pathways, such as SIRT1, microRNA, long non-coding RNA, and Wnt/β-catenin. Here, we discuss these molecular pathways and suggest that melatonin-induced inhibition of NLRP3 should be advanced in disease therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Kavyiani
- Department of Basic Science, Faculty of Veterinary Medicine Faculty, Islamic Azad Branch, University of Shushtar, Shushtar, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
33
|
Khalil SS, Aziz JA, Ismail KA, El-Malkey NF. Comparative protective effects of N-acetylcysteine and melatonin against obesity-induced testicular dysfunction in rats. Can J Physiol Pharmacol 2021; 99:708-719. [PMID: 33201734 DOI: 10.1139/cjpp-2020-0499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N-acetylcysteine (NAC) and melatonin were reported to exert protective effects on testicular tissues. Thus, this study aimed to determine which of these is more efficient against obesity-induced testicular dysfunction in albino rats. A total of 32 adult male rats (195 ± 10 g) were divided into four groups: control, obese rats fed a high-fat diet (HFD), HFD+NAC (150 mg/kg per day, i.p.) and HFD+melatonin (10 mg/kg per day, i.p.), for 5 weeks. Testes and epididymis were weighed. Lipid profile, pituitary-testicular hormones, tumor necrosis factor α (TNFα), epididymal sperm parameters, testicular oxidant-antioxidant system, testicular and the epididymal histopathology and immunohistochemical localization for androgen receptors (AR) and Bax reaction were analyzed. Administration of NAC or melatonin significantly improved the lipid parameters, gonadal hormones, TNFα level, sperm count and abnormal morphology, oxidant-antioxidant system and the absolute testicular and epididymal mass with an enhancement of testicular architecture, AR expression and apoptosis as compared with that in the obese group. Additionally, as compared with the NAC group, the melatonin group had significantly reduced body mass index, total cholesterol, triglyceride, and TNFα and increased testosterone, sperm count, motility, superoxide dismutase activity, mitigated histomorphometrical changes, Bax expression, and increased testicular AR expression. Therefore, melatonin was more efficient than NAC in affording fortification against HFD-induced testicular dysfunction.
Collapse
Affiliation(s)
- Sama S Khalil
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Al-Sharquia, Egypt
| | - Joseph Amin Aziz
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Al-Sharquia, Egypt
| | - Khadiga Ahmed Ismail
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Taif, Saudi Arabia
- Medical Parasitology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Nanees F El-Malkey
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Al-Sharquia, Egypt
| |
Collapse
|
34
|
Nogueira LFR, Marqueze EC. Effects of melatonin supplementation on eating habits and appetite-regulating hormones: a systematic review of randomized controlled clinical and preclinical trials. Chronobiol Int 2021; 38:1089-1102. [PMID: 33934676 DOI: 10.1080/07420528.2021.1918143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Melatonin is a hormone involved in appetite regulation and food intake. Circadian chronorrupture caused by its absence has been associated with excessive food consumption, and there is evidence that exogenous melatonin supplementation can restore homeostasis. Therefore, the aim of this systematic review was to synthesize evidence from randomized controlled clinical and preclinical trials that evaluated the effects of exogenous melatonin supplementation on eating habits and appetite-regulating hormones. The protocol was registered in PROSPERO (number 42020175809). Medline, Scopus, Web of Science and Cochrane Library were systematically searched from January 2020 to February 2021. Of 3.695 articles identified, 2 clinical and 13 preclinical trials (n = 15) met the inclusion criteria. The outcomes were total food intake, calories, macronutrients, cholesterol intake, leptin and ghrelin levels. Interventions ranged from 28 to 336 days and dose of melatonin varied between 0.2 µg/mL of drinking water and 10 mg/day. Clinical trials were conducted with healthy adults, and preclinical trials with rodents and dogs. Of the 15 articles, five assessed food intake and leptin, four assessed food intake only, five assessed leptin only, and one assessed leptin and ghrelin serum levels. The majority of the articles were judged as having low risk of bias. Although findings are heterogeneous and do not allow a robust conclusion, this review adds to the growing body of evidence suggesting that exogenous melatonin may be a potential therapeutic agent against endocrine-metabolic disorders. This reversal is not necessarily associated with changes in food consumption, signaling that melatonin's metabolic effects may occur independently of energy intake. Further studies, especially with humans, are needed provide more evidences for melatonin supplementation in clinical practice, as well as to understand its role on eating habits and appetite-regulating hormones.
Collapse
Affiliation(s)
- Luciana F R Nogueira
- Department of Epidemiology, Public Health Graduate Program, Catholic University of Santos, SP, Brazil
| | - Elaine C Marqueze
- Department of Epidemiology, Public Health Graduate Program, Catholic University of Santos, SP, Brazil
| |
Collapse
|
35
|
Kim JS, Jung YH, Lee HJ, Chae CW, Choi GE, Lim JR, Kim SY, Lee JE, Han HJ. Melatonin activates ABCA1 via the BiP/NRF1 pathway to suppress high-cholesterol-induced apoptosis of mesenchymal stem cells. Stem Cell Res Ther 2021; 12:114. [PMID: 33546749 PMCID: PMC7866631 DOI: 10.1186/s13287-021-02181-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Retarded wound healing in patients with obesity contributes to a risk of complications associated with vascular insufficiency and oxidative stress. The high cholesterol levels of patients with obesity are associated with apoptosis of engrafted umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). Melatonin contributes to the prevention of cholesterol accumulation in patients with obesity via a mechanism that is poorly understood. We therefore investigated the regulatory mechanism of melatonin in cholesterol-induced apoptosis. METHODS The protective effects of melatonin on cholesterol-induced apoptosis were investigated in UCB-MSCs. We used a mouse model of induced obesity to show that melatonin treatment restored the survival rate of transplanted UCB-MSCs and their wound-healing capacity. The mean values of the treatment groups were compared with those of the control group using Student's t test, and differences among three or more groups were analyzed using one-way analysis of variance with Dunnett's multiple comparison test. RESULTS Melatonin treatment increased the expression of ATP-binding cassette subfamily A member 1 (ABCA1), which reduced cholesterol accumulation and cholesterol-induced apoptosis. The mouse skin wound healing model showed that melatonin treatment restored the survival rate of transplanted UCB-MSCs and the wound-healing capacity of obese mice. Melatonin inhibited the expression of binding immunoglobulin protein (BiP) through the regulation of MT2/Sp1-dependent microRNA-597-5p. Melatonin decreased the co-localization of BiP with nuclear factor erythroid 2-related factor 1 (NRF1), which resulted in increased ABCA1 expression. CONCLUSION Melatonin induced the efflux of intracellular cholesterol through ABCA1 to decrease apoptosis of UCB-MSCs via an MT2-dependent BiP/NRF1 pathway.
Collapse
Affiliation(s)
- Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.,Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seo Yihl Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo Eun Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
36
|
Yawoot N, Govitrapong P, Tocharus C, Tocharus J. Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. Biofactors 2021; 47:41-58. [PMID: 33135223 DOI: 10.1002/biof.1690] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Obesity is a predominant risk factor in ischemic stroke and is commonly comorbid with it. Pathologies following these conditions are associated with systemic and local inflammation. Moreover, there is increasing evidence that the susceptibility for ischemic brain damage increases substantially in experimental models of ischemic stroke with concomitant obesity. Herein, we explore the proinflammatory events that occur during ischemic stroke and obesity, and we discuss the influence of obesity on the inflammatory response and cerebral damage outcomes in experimental models of brain ischemia. In addition, because melatonin is a neurohormone widely reported to exhibit protective effects in various diseases, this study also demonstrates the anti-inflammatory role and possible mechanistic actions of melatonin in both epidemic diseases. A summary of research findings suggests that melatonin administration has great potential to exert an anti-inflammatory role and provide protection against obesity and ischemic stroke conditions. However, the efficacy of this hormonal treatment on ischemic stroke with concomitant obesity, when more serious inflammation is generated, is still lacking.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Jiraporn Tocharus
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
37
|
Romo-Nava F, Buijs RM, McElroy SL. The use of melatonin to mitigate the adverse metabolic side effects of antipsychotics. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:371-382. [PMID: 34225976 DOI: 10.1016/b978-0-12-819975-6.00024-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antipsychotic drugs are efficacious first-line treatments for many individuals diagnosed with a psychiatric illness. However, their adverse metabolic side-effect profile, which resembles the metabolic syndrome, represents a significant clinical problem that increases morbidity and limits treatment adherence. Moreover, the mechanisms involved in antipsychotic-induced adverse metabolic effects (AMEs) are unknown and mitigating strategies and interventions are limited. However, recent clinical trials show that nightly administration of exogenous melatonin may mitigate or even prevent antipsychotic-induced AMEs. This clinical evidence in combination with recent preclinical data implicate the circadian system in antipsychotic-induced AMEs and their mitigation. In this chapter, we provide an overview on the circadian system and its involvement in antipsychotic-induced AMEs, as well as the potential beneficial effect of nightly melatonin administration to mitigate them.
Collapse
Affiliation(s)
- Francisco Romo-Nava
- Lindner Center of HOPE Research Institute, Lindner Center of HOPE, Mason, OH, United States; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Ruud M Buijs
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Susan L McElroy
- Lindner Center of HOPE Research Institute, Lindner Center of HOPE, Mason, OH, United States; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
38
|
Zhang J, Lu J, Zhu H, Zhou X, Wei X, Gu M. Association of Serum Melatonin Level with Mild Cognitive Impairment in Type 2 Diabetic Patients: A Cross-Sectional Study. Int J Endocrinol 2021; 2021:5566019. [PMID: 34007273 PMCID: PMC8099517 DOI: 10.1155/2021/5566019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Melatonin is an essential neuroendocrine hormone that participates in the regulation of sleep rhythm and cognitive function. This study aimed to determine serum melatonin levels with mild cognitive impairment (MCI) in patients with type 2 diabetes (T2DM). METHODS A total of 247 T2DM patients were recruited in this retrospective study and divided into 75 subjects with MCI and 172 with normal cognition. Cognitive function was evaluated by the Montreal Cognitive Assessment (MoCA). Their blood sample was examined for the level of melatonin and other biochemical parameters. RESULTS Melatonin concentration was decreased in MCI patients to non-MCI patients (P < 0.001). Melatonin level was negatively correlated with age (r = -0.202; P = 0.001), diabetes duration (r = -0.282; P < 0.001), serum HbA1c (r = -0.195; P = 0.002), hs-CRP (r = -0.324; P < 0.001), and TSH (r = -0.184; P = 0.004) levels and positively correlated with MoCA score, serum HDL-C (r = 0.145; P < 0.001), FT3 (r = 0.241; P < 0.001), and FT4 (r = 0.169; P = 0.008) levels. The multivariable analysis indicated that fewer years of formal education, longer diabetes duration, higher serum HbA1c, higher serum hs-CRP, and lower serum melatonin are the predisposing factors for MCI. CONCLUSION Lower melatonin level was associated with cognitive impairment in patients with T2DM. Melatonin might serve as a potential protective molecule against cognitive dysfunction in T2DM.
Collapse
Affiliation(s)
- Jichen Zhang
- The Graduate School, Ningxia Medical University, Yinchuan, Ningxia 750005, China
- Department of Endocrinology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Jiancan Lu
- Department of Endocrinology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Hongling Zhu
- Department of Endocrinology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Xinglu Zhou
- Department of Endocrinology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Xijuan Wei
- Department of Endocrinology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Mingjun Gu
- Department of Endocrinology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| |
Collapse
|
39
|
Tchio C, Baba K, Piccione G, Tosini G. Removal of melatonin receptor type 1 signalling induces dyslipidaemia and hormonal changes in mice subjected to environmental circadian disruption. Endocrinol Diabetes Metab 2021; 4:e00171. [PMID: 33532613 PMCID: PMC7831213 DOI: 10.1002/edm2.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 11/26/2022] Open
Abstract
Background Melatonin is a hormone secreted by the pineal gland in a circadian rhythmic manner with peak synthesis at night. Melatonin signalling was suggested to play a critical role in metabolism during the circadian disruption. Methods Melatonin-proficient (C3H-f+/+ or WT) and melatonin receptor type 1 knockout (MT1 KO) male and female mice were phase-advanced (6 hours) once a week for 6 weeks. Every week, we measured weight, food intake and basal glucose levels. At the end of the experiment, we sacrificed the animals and measured the blood's plasma for lipids profile (total lipids, phospholipids, triglycerides and total cholesterol), metabolic hormones profiles (ghrelin, leptin, insulin, glucagon, glucagon-like-peptide and resistin) and the body composition. Results Environmental circadian disruption (ECD) did not produce any significant effects in C3H-f+/+, while it increased lipids profile in MT1 KO with the significant increase observed in total lipids and triglycerides. For metabolic hormones profile, ECD decreased plasma ghrelin and increased plasma insulin in MT1 KO females. Under control condition, MT1 KO females have significantly different body weight, fat mass, total lipids and total cholesterol than the control C3H-f+/+ females. Conclusion Our data show that melatonin-proficient mice are not affected by ECD. When the MT1 receptors are removed, ECD induced dyslipidaemia in males and females with females experiencing the most adverse effect. Overall, our data demonstrate that MT1 signalling is an essential modulator of lipid and metabolic homeostasis during ECD.
Collapse
Affiliation(s)
- Cynthia Tchio
- Circadian Rhythms and Sleep Disorders ProgramNeuroscience InstituteAtlantaGAUSA
- Department of Pharmacology and ToxicologyMorehouse School of MedicineNeuroscience InstituteAtlantaGAUSA
| | - Kenkichi Baba
- Circadian Rhythms and Sleep Disorders ProgramNeuroscience InstituteAtlantaGAUSA
- Department of Pharmacology and ToxicologyMorehouse School of MedicineNeuroscience InstituteAtlantaGAUSA
| | - Giuseppe Piccione
- Dipartimento di Medicine VeterinariaUniversita di MessinaMessinaItaly
| | - Gianluca Tosini
- Circadian Rhythms and Sleep Disorders ProgramNeuroscience InstituteAtlantaGAUSA
- Department of Pharmacology and ToxicologyMorehouse School of MedicineNeuroscience InstituteAtlantaGAUSA
| |
Collapse
|
40
|
Semenova N, Madaeva I, Kolesnikov S, Rychkova L, Bairova T, Darenskaya M, Kolesnikova L. CLOCK 3111TT Genotype Is Associated with Increased Total Cholesterol and Low-Density Lipoprotein Levels in Menopausal Women with a Body Mass Index of at Least 25 kg/m2. PATHOPHYSIOLOGY 2020; 28:1-9. [PMID: 35366265 PMCID: PMC8830446 DOI: 10.3390/pathophysiology28010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
Lipid profile comparative analysis was performed to reveal the interdependence of lipids with Circadian locomoter output cycles protein kaput (CLOCK) 3111T/C gene polymorphism in menopausal women with/without a body mass index (BMI) of ≥25 kg/m2. Methods: A total of 193 female volunteers aged 45 to 60 years were divided into two groups: Those with BMI < 25 kg/m2 (control) and those with BMI ≥ 25 kg/m2. Each group was then divided into two subgroups: Those with the CLOCK TT-genotype and those with the CLOCK TC-, CC-genotypes. Lipid metabolism parameters were determined by the enzymatic method. Single-nucleotide polymorphisms (SNPs) were detected via polymerase chain reaction–restriction fragment length polymorphism technology. Results: There were no differences in CLOCK 3111T/C genotypes or allele frequency between the control and main groups. In addition, there were no differences in lipid profile parameters between women of the control group and different CLOCK 3111T/C genotypes. The total cholesterol (p = 0.041) and low-density lipoprotein cholesterol (p = 0.036) levels were higher in the subgroup of women with a BMI ≥ 25 kg/m2 and CLOCK TT-genotype as compared to the subgroup with a BMI ≥ 25 kg/m2 and minor allele 3111C. Conclusions: SNP 3111T/C of the CLOCK gene is not associated with BMI however, data suggest that the minor allele of the CLOCK 3111T/C gene polymorphism may have a protective role in atherogenic lipid levels in women with a BMI greater than or equal to 25 kg/m2.
Collapse
|
41
|
Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 2020; 320:C375-C391. [PMID: 33356944 DOI: 10.1152/ajpcell.00379.2020] [Citation(s) in RCA: 876] [Impact Index Per Article: 175.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Several lines of preclinical and clinical research have confirmed that chronic low-grade inflammation of adipose tissue is mechanistically linked to metabolic disease and organ tissue complications in the overweight and obese organism. Despite this widely confirmed paradigm, numerous open questions and knowledge gaps remain to be investigated. This is mainly due to the intricately intertwined cross-talk of various pro- and anti-inflammatory signaling cascades involved in the immune response of expanding adipose depots, particularly the visceral adipose tissue. Adipose tissue inflammation is initiated and sustained over time by dysfunctional adipocytes that secrete inflammatory adipokines and by infiltration of bone marrow-derived immune cells that signal via production of cytokines and chemokines. Despite its low-grade nature, adipose tissue inflammation negatively impacts remote organ function, a phenomenon that is considered causative of the complications of obesity. The aim of this review is to broadly present an overview of adipose tissue inflammation by highlighting the most recent reports in the scientific literature and summarizing our overall understanding of the field. We also discuss key endogenous anti-inflammatory mediators and analyze their mechanistic role(s) in the pathogenesis and treatment of adipose tissue inflammation. In doing so, we hope to stimulate studies to uncover novel physiological, cellular, and molecular targets for the treatment of obesity.
Collapse
Affiliation(s)
- Tatsuo Kawai
- The Cardiovascular Research Center and The Limole Center for Integrated Lymphatic Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Michael V Autieri
- The Cardiovascular Research Center and The Limole Center for Integrated Lymphatic Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Rosario Scalia
- The Cardiovascular Research Center and The Limole Center for Integrated Lymphatic Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Berdina ON, Madaeva IM, Bolshakova SE, Tsykunova MV, Sholokhov LF, Rashidova MA, Bugun OV, Rychkova LV. Circadian Melatonin Secretion In Obese Adolescents With Or Without Obstructive Sleep Apnea. RUSSIAN OPEN MEDICAL JOURNAL 2020. [DOI: 10.15275/rusomj.2020.0402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objective — To compare melatonin levels in saliva during a 24-hr day in order to identify the specificities of circadian melatonin secretion in obese adolescents with or without obstructive sleep apnea (OSA). Material and Methods — We examined 18 obese adolescents with OSA, 12 obese adolescents without OSA, and 15 healthy adolescents with a normal body weight, from whom saliva was sampled four time during the 24-hr day. Polysomnography was used to diagnose OSA. Saliva samples (n=180) were subjected to enzyme-linked immunosorbent assay. Results — Obese adolescents with OSA had higher evening melatonin levels than obese adolescents without OSA. For example, this indicator in OSA patients was 5.3 times higher than in participants without OSA, who had the lowest evening melatonin level among all groups. In both obese groups, nighttime melatonin levels were significantly lower than in the control group. A positive correlation was detected between the levels of morning and afternoon melatonin and body mass index only in obese adolescents without OSA (r=0.58; p=0.03 and r=0.68; p=0.01, respectively). It was found that evening melatonin correlated with minimum blood oxygen saturation (SaO2) in the entire sample of adolescents with OSA (r=-0.69; p=0.008), and it also correlated with time with SaO2 <90% in the group with clinical manifestations of OSA (r=0.76; p=0.003). Nighttime melatonin levels negatively correlated with the minimum SaO2 value solely in the group with clinical manifestations of OSA (r=-0.58; p=0.035). Conclusion — The circadian melatonin secretion in obese adolescents differed, depending on the presence or absence of OSA, and correlated with the level of oxygen desaturation in OSA patients, to a greater extent – in the presence of clinical manifestations.
Collapse
Affiliation(s)
- Olga N. Berdina
- Scientific Centre for Family Health and Human Reproduction Problems
| | - Irina M. Madaeva
- Scientific Centre for Family Health and Human Reproduction Problems
| | | | - Maria V. Tsykunova
- Clinic of Scientific Centre for Family Health and Human Reproduction Problems
| | | | | | - Olga V. Bugun
- Scientific Centre for Family Health and Human Reproduction Problems
| | | |
Collapse
|
43
|
Genario R, Cipolla-Neto J, Bueno AA, Santos HO. Melatonin supplementation in the management of obesity and obesity-associated disorders: A review of physiological mechanisms and clinical applications. Pharmacol Res 2020; 163:105254. [PMID: 33080320 DOI: 10.1016/j.phrs.2020.105254] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 02/08/2023]
Abstract
Despite the evolving advances in clinical approaches to obesity and its inherent comorbidities, the therapeutic challenge persists. Among several pharmacological tools already investigated, recent studies suggest that melatonin supplementation could be an efficient therapeutic approach in the context of obesity. In the present review, we have amalgamated the evidence so far available on physiological effects of melatonin supplementation in obesity therapies, addressing its effects upon neuroendocrine systems, cardiometabolic biomarkers and body composition. Most studies herein appraised employed melatonin supplementation at dosages ranging from 1 to 20 mg/day, and most studies followed up participants for periods from 3 weeks to 12 months. Overall, it was observed that melatonin plays an important role in glycaemic homeostasis, in addition to modulation of white adipose tissue activity and lipid metabolism, and mitochondrial activity. Additionally, melatonin increases brown adipose tissue volume and activity, and its antioxidant and anti-inflammatory properties have also been demonstrated. There appears to be a role for melatonin in adiposity reduction; however, several questions remain unanswered, for example melatonin baseline levels in obesity, and whether any seeming hypomelatonaemia or melatonin irresponsiveness could be clarifying factors. Supplementation dosage studies and more thorough clinical trials are needed to ascertain not only the relevance of such findings but also the efficacy of melatonin supplementation.
Collapse
Affiliation(s)
- Rafael Genario
- School of Medicine, University of Sao Paulo (USP), São Paulo, Brazil.
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Allain A Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester, United Kingdom
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
44
|
El-Missiry MA, El-Missiry ZMA, Othman AI. Melatonin is a potential adjuvant to improve clinical outcomes in individuals with obesity and diabetes with coexistence of Covid-19. Eur J Pharmacol 2020; 882:173329. [PMID: 32615182 PMCID: PMC7324339 DOI: 10.1016/j.ejphar.2020.173329] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a newly discovered highly pathogenic virus that was declared pandemic in March 2020 by the World Health Organization. The virus affects the respiratory system, produces an inflammatory storm that causes lung damage and respiratory dysfunction. It infects humans of all ages. The Covid-19 takes a more severe course in individuals with chronic metabolic diseases such as obesity, diabetes mellitus, and hypertension. This category of persons exhibits weak immune activity and decreased levels of endogenous antioxidants. Melatonin is a multifunctional signaling hormone synthesized and secreted primarily by the pineal gland. It is a potent antioxidant with immunomodulatory action and has remarkable anti-inflammatory effects under a variety of circumstances. Regarding Covid-19 and metabolic syndrome, adequate information about the relationship between these two comorbidities is required for better management of these patients. Since Covid-19 infection and complications involve severe inflammation and oxidative stress in people with obesity and diabetes, we anticipated the inclusion of melatonin, as powerful antioxidant, within proposed treatment protocols. In this context, melatonin is a potential and promising agent to help overcome Covid-19 infection and boost the immune system in healthy persons and obese and diabetic patients. This review summarizes some evidence from recently published reports on the utility of melatonin as a potential adjuvant in Covid-19-infected individuals with diabetes and obesity.
Collapse
Affiliation(s)
| | - Ziad M A El-Missiry
- Department of Oro-maxillofacial Surgery, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Azza I Othman
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
45
|
Melatonin Orchestrates Lipid Homeostasis through the Hepatointestinal Circadian Clock and Microbiota during Constant Light Exposure. Cells 2020; 9:cells9020489. [PMID: 32093272 PMCID: PMC7072737 DOI: 10.3390/cells9020489] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Misalignment between natural light rhythm and modern life activities induces disruption of the circadian rhythm. It is mainly evident that light at night (LAN) interferes with the human endocrine system and contributes to the increasing rates of obesity and lipid metabolic disease. Maintaining hepatointestinal circadian homeostasis is vital for improving lipid homeostasis. Melatonin is a chronobiotic substance that plays a main role in stabilizing bodily rhythm and has shown beneficial effects in protecting against obesity. Based on the dual effect of circadian rhythm regulation and antiobesity, we tested the effect of melatonin in mice under constant light exposure. Exposure to 24-h constant light (LL) increased weight and insulin resistance compared with those of the control group (12-h light–12-h dark cycle, LD), and simultaneous supplementation in the melatonin group (LLM) ameliorated this phenotype. Constant light exposure disturbed the expression pattern of a series of transcripts, including lipid metabolism, circadian regulation and nuclear receptors in the liver. Melatonin also showed beneficial effects in improving lipid metabolism and circadian rhythm homeostasis. Furthermore, the LL group had increased absorption and digestion of lipids in the intestine as evidenced by the elevated influx of lipids in the duodenum and decrease in the efflux of lipids in the jejunum. More interestingly, melatonin ameliorated the gut microbiota dysbiosis and improved lipid efflux from the intestine. Thus, these findings offer a novel clue regarding the obesity-promoting effect attributed to LAN and suggest a possibility for obesity therapy by melatonin in which melatonin could ameliorate rhythm disorder and intestinal dysbiosis.
Collapse
|
46
|
Cruz MM, Simão JJ, de Sá RDCC, Farias TSM, da Silva VS, Abdala F, Antraco VJ, Armelin-Correa L, Alonso-Vale MIC. Palmitoleic Acid Decreases Non-alcoholic Hepatic Steatosis and Increases Lipogenesis and Fatty Acid Oxidation in Adipose Tissue From Obese Mice. Front Endocrinol (Lausanne) 2020; 11:537061. [PMID: 33117273 PMCID: PMC7561405 DOI: 10.3389/fendo.2020.537061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023] Open
Abstract
We recently demonstrated that palmitoleic acid (C16:1n7), a monounsaturated fatty acid, increases the metabolic and oxidative capacity of 3T3-L1 adipocytes. Herein, the effect of 16:1n7 supplementation on metabolic parameters on white adipose tissue (WAT) and liver of obese mice induced by a high-fat diet (HFD) was addressed by analyzing metabolic (dys)function and altered genes expression in adipose tissue, as well as liver and serum biochemistry analysis. For this purpose, mice were induced to obesity for 8 weeks, and from the 5th week, they received 16:1n7 (300 mg/kg per day) or water for 30 days, by gavage. Subcutaneous inguinal (ING) and epididymal (EPI) WAT were removed for analysis of metabolic, (anti)inflammatory, adipogenic, and thermogenic genes expression by real-time reverse transcriptase-polymerase chain reaction. Additionally, metabolic activities of isolated adipocytes, such as glucose uptake, lipogenesis (triacylglycerol esterification), β-oxidation, and lipolysis in ING adipocytes, were also assessed. Despite the higher fat intake, the HFD group showed lower food intake but higher body weight, increased glucose, significant dyslipidemia, and increased liver and adipose depot mass, accompanied by liver steatosis. The 16:1n7 supplementation slowed down the body mass gain and prevented the increase of lipids in the liver. HFD+n7 animals presented increased fatty acid oxidation and lipogenesis compared to control, but no effect was observed on lipolysis and glucose uptake in ING isolated adipocytes. Besides, 16:1n7 increased the content of the mRNA encoding FABP4, but partially prevented the expression of genes encoding ATGL, HSL, perilipin, lipin, C/EBP-α, PPAR-γ, C/EBP-β, CPT1, NRF1, TFAM, PRDM16, and nitric oxide synthase 2 in ING depot from HFD group of animals. Finally, HFD increased Mcp1 and Tnfα expression, and 16:1n7 promoted a more marked increase in it. In summary, the data show that palmitoleic acid promotes metabolic changes and partially prevents the increase in gene expression on adipocytes triggered by obesity, suggesting that HFD+n7 animals do not require the same magnitude of metabolic adaptation to cope with energy demand from the HFD. In the long term, the effects of 16:1n7 may be more evident and beneficial for the function/dysfunction of WAT from an obese organism, with relevant repercussions in the systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Maysa M. Cruz
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Jussara J. Simão
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Roberta D. C. C. de Sá
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Talita S. M. Farias
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Viviane S. da Silva
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Fernanda Abdala
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Vitor J. Antraco
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Lucia Armelin-Correa
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Maria Isabel C. Alonso-Vale
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- *Correspondence: Maria Isabel C. Alonso-Vale
| |
Collapse
|
47
|
Liu W, Zhang Y, Chen Q, Liu S, Xu W, Shang W, Wang L, Yu J. Melatonin Alleviates Glucose and Lipid Metabolism Disorders in Guinea Pigs Caused by Different Artificial Light Rhythms. J Diabetes Res 2020; 2020:4927403. [PMID: 33150187 PMCID: PMC7603608 DOI: 10.1155/2020/4927403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Modern lifestyle-associated factors, such as high-calorie intake, high-fat diet (HFD), and excessive artificial light, are risk factors for glucose and lipid metabolism disturbances. Melatonin may be beneficial for managing obesity and diabetes; however, the underlying molecular mechanisms are not well elucidated. We aimed to assess whether melatonin has beneficial effects on constant artificial light-induced fat deposition, lipid metabolism, and insulin resistance. Guinea pigs were randomly divided into five experimental groups: control (C), HFD (H), 12 h light (12HL), 24 h light (24HL), and melatonin (M). The majority of indexes, including insulin resistance and obesity, were measured after 10 weeks. AMP-activated protein kinase α (AMPKα)/peroxisome proliferator-activated receptor-α (PPARα) pathway expression was analyzed by quantitative reverse transcription PCR and western blotting. Although insulin resistance and obesity indexes were higher in the 24HL group than in the 12HL group, they were significantly lower in the M group than in the 24HL group. Melatonin treatment markedly upregulated AMPKα, phosphorylated AMPKα (p-AMPKα), PPARα, and carnitine palmitoyl-CoA transferase 1 A (CPT1A) gene and protein expression. Melatonin may alleviate insulin resistance and obesity caused by persistent artificial light exposure in guinea pigs, likely via activation of the AMPKα/PPARα signaling pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yunchao Zhang
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Qi Chen
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Su Liu
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Weilong Xu
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wenbin Shang
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lijuan Wang
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jiangyi Yu
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|