1
|
de Paulo Farias D, de Araújo FF, Villasante J, Fogliano V, Pastore GM. In vitro gastrointestinal digestion and gut microbiota fermentation of phenolic compounds from uvaia. Food Chem 2025; 477:143462. [PMID: 40043608 DOI: 10.1016/j.foodchem.2025.143462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 03/27/2025]
Abstract
Gastrointestinal digestion and gut microbiota fermentation can alter the bioaccessibility and bioactivity of phenolic compounds. This study assessed the effects of gastrointestinal digestion and gut microbiota fermentation on the bioaccessibility, bioactivity, and catabolism of phenolic compounds from uvaia (Eugenia pyriformis) seed and edible fraction (pulp + peel). The bioaccessibility of epigallocatechin, epicatechin, myricetin, and ferulic acid increased after the gastrointestinal digestion of the edible fraction, while seed digestion reduced epigallocatechin, procyanidin B2, and salicyl aldehyde levels. Acetate and butyrate production was higher from uvaia seed after 24-h fermentation (212.93 and 192.09 mg/L, respectively), while propionate production was higher from the edible fraction (63.37 mg/L). These findings suggest that gastrointestinal digestion influences the bioaccessibility and bioactivity of phenolic compounds in uvaia fractions. Additionally, the increased production of short-chain fatty acids points to a potential prebiotic effect, highlighting the potential of uvaia for developing intestinal health-promoting food products or supplements.
Collapse
Affiliation(s)
- David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, 13083-862, 7, Brazil.
| | - Fábio Fernandes de Araújo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, 13083-862, 7, Brazil
| | - Juliana Villasante
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700, AA Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700, AA Wageningen, the Netherlands
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, 13083-862, 7, Brazil.
| |
Collapse
|
2
|
Huang H, Zhao T, Ma W. Omega-3 polyunsaturated fatty acids attenuates cognitive impairment via the gut-brain axis in diabetes-associated cognitive dysfunction rats. Brain Behav Immun 2025; 127:147-169. [PMID: 40068791 DOI: 10.1016/j.bbi.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Diabetes-related cognitive dysfunction (DACD) is a comorbidity of type 2 diabetes that has a negative effect on patients' quality of life. Research has indicated that disruption of the gut microbiota (GM) may be linked to dementia with altered cognitive performance. Conversely, omega-3 polyunsaturated fatty acids (n-3 PUFAs) may reverse DACD. The present study aimed to assess the effects of an n-3 PUFA intervention and fecal microbiota transplantation (FMT) on high-fat and streptozotocin-induced DACD model rats. In DACD rats, n-3 PUFA treatment restored fasting blood glucose (FBG) levels and cognitive function, increased the expression of anti-inflammatory cytokines and downregulated the expression of proinflammatory cytokines in the cortex and colon. Additionally, the expression of the postsynaptic density protein-95 mRNA and protein varied with n-3 PUFA treatment. Treatment with n-3 PUFAs also increased the expression of tight junction proteins. Beneficial and short-chain fatty acid-producing bacteria were more abundant when rats were exposed to n-3 PUFAs. After FMT from the rats with DACD symptoms that were improved by the n-3 PUFA dietary intervention into another batch of DACD rats, we observed recovery in recipient DACD rats. These results indicated that the alleviation of DACD symptoms by n-3 PUFAs was attributed to gut microbiota remodeling.
Collapse
Affiliation(s)
- Hongying Huang
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China; Nanchang Institute of Disease Control and Prevention, China Railway Nanchang Bureau Group Co., Ltd., Nanchang, 330003, People's Republic of China
| | - Tong Zhao
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China
| | - Weiwei Ma
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.
| |
Collapse
|
3
|
Li M, Liu M, Wang X, Wei H, Jin S, Liu X. Comparison of intestinal microbes and metabolites in active VKH versus acute anterior uveitis associated with ankylosing spondylitis. Br J Ophthalmol 2025; 109:353-361. [PMID: 37821210 DOI: 10.1136/bjo-2023-324125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND It has been reported that the gut microbiome is involved in the pathogenesis of uveitis, but the specific pathogenic microbes and metabolites in different types of uveitis are still unclear. METHODS Microbiome and metabolites were detected using 16S ribosomal DNA and LC‒MS/MS (liquid chromatography tandem mass spectrometry) in 45 individuals, including 16 patients with Vogt Koyanagi Harada (VKH), 11 patients with acute anterior uveitis (AAU) and 18 healthy controls. RESULT The diversity of intestinal microbes among the VKH, AAU and control groups was not significantly different. Thirteen specific microbes and 38 metabolites were detected in the VKH group, and 7 metabolites (vanillin, erythro-isoleucine, pyrimidine, 1-aminocyclopropanecarboxylic acid, beta-tocopherol, (-)-gallocatechin and N1-methyl-4-pyridone-3-carboxamide) significantly changed only in patients with VKH, which mainly acted on nicotinamide and nicotinamide metabolism and biotin metabolism (p<0.05). Compared with the VKH group, the AAU group had milder intestinal changes. Only 11 specific microbes and 29 metabolites changed in the AAU group, while these metabolites were not specific (p<0.05). These metabolites mainly acted on arachidonic acid metabolism. In addition, three microbes and two metabolites had the same changes in the VKH and AAU groups (p<0.05). Multiple correlations were found between gut microbes and metabolites in the VKH and AAU groups. Six microbes (Pediococcus, Pseudomonas, Rhodococcus, Photobacterium, Gardnerella and Lawsonia) and two metabolites (pyrimidine and gallocatechin) as biomarkers could effectively distinguish patients with VKH from patients with AAU and healthy individuals, with AUC (area under the curve) values greater than 82%. Four microbes (Lentilactobacillus, Lachnospiraceae_UCG-010, Cetobacterium, Liquorilactobacillus) could distinguish patients with AAU from patients with VKH and healthy controls with AUC>76%. CONCLUSION Significant differences in intestinal microbes and metabolites suggest their different roles in the pathogenesis of uveitis entities. Changes in the metabolism of certain B vitamins may be involved in the pathogenesis of VKH.
Collapse
MESH Headings
- Humans
- Male
- Female
- Uveitis, Anterior/microbiology
- Uveitis, Anterior/metabolism
- Uveitis, Anterior/diagnosis
- Uveitis, Anterior/etiology
- Spondylitis, Ankylosing/complications
- Spondylitis, Ankylosing/microbiology
- Spondylitis, Ankylosing/metabolism
- Spondylitis, Ankylosing/diagnosis
- Gastrointestinal Microbiome/physiology
- Adult
- Acute Disease
- Middle Aged
- Tandem Mass Spectrometry
- RNA, Ribosomal, 16S/genetics
- Chromatography, Liquid
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacteria/metabolism
- DNA, Bacterial/genetics
- DNA, Bacterial/analysis
- Young Adult
Collapse
Affiliation(s)
- Mengyao Li
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Mingzhu Liu
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Xia Wang
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Haihui Wei
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Siyan Jin
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Xiaoli Liu
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
4
|
Lu S, Tao Z, Wang G, Na K, Wu L, Zhang L, Li X, Guo X. Mannuronate Oligosaccharides Ameliorate Experimental Colitis and Secondary Neurological Dysfunction by Manipulating the Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2935-2950. [PMID: 39846727 DOI: 10.1021/acs.jafc.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Microbiota dysfunction induces intestinal disorders and neurological diseases. Mannuronate oligosaccharides (MAOS), a kind of alginate oligosaccharide (AOS), specifically exert efficacy in shaping gut microbiota and relieving cognitive impairment. However, the key regulatory factors involved, such as the specific strains and metabolites as well as their regulatory mechanisms, remain unclear at present. This research investigates how MAOS specifically impact the gut-brain axis in vivo and in vitro. The results showed that pretreatment with MAOS significantly ameliorated dextran sodium sulfate (DSS)-induced colitis and secondary nerve injury. This preventive mechanism operates through the regulation of serum DOPC abundance and the gut-brain axis, achieved by inhibiting the TLR4/MyD88/NF-κB pathway. These findings underscore the crucial role of dietary MAOS in the prevention of colitis and neurological disorders, providing a rationale for the application of MAOS in disease prevention and functional food ingredients.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Zhengxiong Tao
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Gan Wang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Lisha Wu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Xiangyu Li
- Hubei Province Nutrition Chemicals Biosynthetic Engineering Technology Research Center, Wuhan 430073, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
5
|
Men J, Li H, Cui C, Ma X, Liu P, Yu Z, Gong X, Yao Y, Ren J, Zhao C, Song B, Yin K, Wu J, Liu W. Fecal bacteria transplantation replicates aerobic exercise to reshape the gut microbiota in mice to inhibit high-fat diet-induced atherosclerosis. PLoS One 2025; 20:e0314698. [PMID: 39903739 PMCID: PMC11793757 DOI: 10.1371/journal.pone.0314698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/14/2024] [Indexed: 02/06/2025] Open
Abstract
Aerobic exercise exerts a significant impact on the gut microbiota imbalance and atherosclerosis induced by a high-fat diet. However, whether fecal microbiota transplantation, based on aerobic exercise, can improve atherosclerosis progression remains unexplored. In this study, we utilized male C57 mice to establish models of aerobic exercise and atherosclerosis, followed by fecal microbiota transplantation(Fig 1a). Firstly, we analyzed the body weight, somatotype, adipocyte area, and aortic HE images of the model mice. Our findings revealed that high-fat diet -induced atherosclerosis mice exhibited elevated lipid accumulation, larger adipocyte area, and more severe atherosclerosis progression. Additionally, we assessed plasma lipid levels, inflammatory factors, and gut microbiota composition in each group of mice. high-fat diet -induced atherosclerosis mice displayed dyslipidemia along with inflammatory responses and reduced gut microbiota diversity as well as abundance of beneficial bacteria. Subsequently performing fecal microbiota transplantation demonstrated that high-fat diet -induced atherosclerosis mice experienced weight loss accompanied by reduced lipid accumulation while normalizing their gut microbiota profile; furthermore it significantly improved blood lipids and inflammation markers thereby exhibiting notable anti- atherosclerosis effects. The findings suggest that aerobic exercise can modify gut microbiota composition and improve high-fat diet-induced atherosclerosis(Fig 1b). Moreover, these beneficial effects can be effectively transmitted through fecal microbiota transplantation, offering a promising therapeutic approach for managing atherosclerosis.
Collapse
Affiliation(s)
- Jie Men
- Fenyang College of Shanxi Medical University, Fenyang, PR China
| | - Hao Li
- Fenyang College of Shanxi Medical University, Fenyang, PR China
| | - Chenglong Cui
- Fenyang College of Shanxi Medical University, Fenyang, PR China
| | - Xuedi Ma
- Fenyang College of Shanxi Medical University, Fenyang, PR China
| | - Penghong Liu
- First Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Zhengyang Yu
- Fenyang College of Shanxi Medical University, Fenyang, PR China
| | - Xueyan Gong
- Third Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Youhao Yao
- Fifth Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Jieying Ren
- First Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chengrui Zhao
- Fenyang College of Shanxi Medical University, Fenyang, PR China
| | - Binyu Song
- Fenyang College of Shanxi Medical University, Fenyang, PR China
| | - Kaijiang Yin
- Fenyang College of Shanxi Medical University, Fenyang, PR China
| | - Jianting Wu
- Fenyang College of Shanxi Medical University, Fenyang, PR China
| | - Wei Liu
- Anhui Agricultural University, Hefei, PR China
| |
Collapse
|
6
|
Arshad R, Wan J, Ai T, Yin C, Qin Y, Qin R, Liu J, Liu H. A targeted reformulation of safflower oil: Enhancing anti-inflammatory potential and market competitiveness through ω3 enrichment. Food Res Int 2025; 203:115793. [PMID: 40022324 DOI: 10.1016/j.foodres.2025.115793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
Safflower seed oil, rich in linoleic acid, has a high ω6/ω3 ratio due to its negligible ω3 content, which is potentially linked to inflammation and metabolic disorders. Despite its recognized health potential, excessive consumption of pure safflower oil can lead to adverse outcomes. To address a possible solution to solve this problem, this study optimized the ω6/ω3 ratio by blending safflower oil with ω3-rich flaxseed oil, and investigated whether the nutritional profile and health benefits of the ω3-supplemented safflower oil could be improved. Results have shown that in high-fat diet-fed mice, the optimized safflower oil significantly reduced body weight gain, fat mass, and improved glucose tolerance. The optimized safflower oil also improved the serum lipid profiles by lowering triglyceride, total cholesterol, and LDL-C levels, while reducing pro-inflammatory markers. Moreover, the adjusted ω6/ω3 ratios led to increased microbial diversity, a favorable Firmicutes/Bacteroidetes ratio, and enrichment of beneficial bacteria like Helicobacteraceae, while reducing pro-inflammatory bacteria such as Deferribacteraceae. These changes correlated with improved lipid metabolism and reduced fat accumulation. This study not only highlights a practical approach to improving safflower oil's health benefits but also provides a strategic direction for breeding programs to enhance its ω3 synthesis pathways, positioning safflower oil as a competitive and innovative alternative in the health food market.
Collapse
Affiliation(s)
- Rubab Arshad
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China
| | - Jiawei Wan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China
| | - Tingyang Ai
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China
| | - Cong Yin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China
| | - Yonghua Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China.
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430070 China.
| |
Collapse
|
7
|
Cai Y, Chen Q. Resveratrol: A Narrative Review Regarding Its Mechanisms in Mitigating Obesity-Associated Metabolic Disorders. Phytother Res 2025; 39:999-1019. [PMID: 39715730 DOI: 10.1002/ptr.8416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024]
Abstract
Resveratrol (RSV) is a naturally occurring astragalus-like polyphenolic compound with remarkable weight loss properties. However, the mechanism of RSV in treating obesity is unclear. In this narrative review, we explored electronic databases (PubMed) for research articles from 2021 to the present using the keywords "resveratrol" and "obesity". This article explores the mechanisms involved in the alleviation of obesity-related metabolic disorders by RSV. RSV affects obesity by modulating mitochondrial function, insulin signaling, and gut microbiota, regulating lipid metabolism, inhibiting oxidative stress, and regulating epigenetic regulation. Administering RSV to pregnant animals exhibits maternal and first-generation offspring benefits, and RSV administration to lactating animals has long-term benefits, which involve the epigenetic modulations by RSV. A comprehensive understanding of the epigenetic mechanisms of RSV regulation could help in developing drugs suitable for pregnancy preparation groups, pregnant women, and nursing infants.
Collapse
Affiliation(s)
- Yichen Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Xia R, Wu B, Jian Y, Li X, Zhang W, Zeng X, Chen S. Cordycepin improves liver fibrosis and the intestinal flora disturbance induced by 3,5-diethoxycarbonyl-1,4-dihydroxylidine in mice. Eur J Pharmacol 2025; 987:177172. [PMID: 39681281 DOI: 10.1016/j.ejphar.2024.177172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND AND AIMS Studies have shown that improving the intestinal flora can alleviate the progression of liver fibrosis. Cordycepin has shown potential anti-inflammatory and anti-fibrosis effects. In this study, we aimed to investigate the effects of cordycepin on liver fibrosis and how it affects the intestinal flora composition to determine a potentially effective therapeutic approach for liver fibrosis. EXPERIMENTAL PROCEDURE C57BL/6 mice were fed a special diet containing 3,5-diethoxycarbonyl-1,4-dihydroxylidine (DDC) to induce liver fibrosis. The histopathological changes in liver tissue and intestinal mucosa were determining via immunohistochemical staining. Serum transaminase levels were determined using biochemical test kits. Faecalibaculum samples were sequenced via 16S rRNA sequencing. RESULTS Cordycepin reduced DDC-induced liver collagen deposition, improved serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and reduced the levels of endothelial dysfunction markers vascular cell adhesion molecule 1 (VCAM) and thrombomodulin (TM). Our analysis of the intestinal flora composition showed that Dubosiella, Faecalibaculum, and Bifidobacterium were significantly increased in the cordycepin-treated group (P < 0.05). The Dubosiella level was significantly negatively correlated with TM and VCAM levels, and serum levels of ALT and AST (P < 0.05). After treatment with cordycepin, the microvilli length in the intestinal mucosa, the density of goblet cells, and the expressions of occludin and zonula occludens protein 1 (ZO-1) were significantly increased (P < 0.05). CONCLUSION We discovered that cordycepin improves liver fibrosis in vivo. We found that Dubosiella levels were considerably increased in the cordycepin-treated group and were significantly negatively correlated with liver sinusoidal endothelial damage.
Collapse
Affiliation(s)
- Ruiqi Xia
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China; Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Wu
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yourong Jian
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangting Li
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen Zhang
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqing Zeng
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China; Evidence-based Medicine Centre, Fudan University, Shanghai, China.
| | - Shiyao Chen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China; Evidence-based Medicine Centre, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Yang Z, Lian J, Yang Y, Li J, Guo W, Lv X, Ni L, Chen Y. Selenium enrichment enhances the alleviating effect of Lactobacillus rhamnosus GG on alcoholic liver injury in mice. Curr Res Food Sci 2024; 10:100964. [PMID: 39811256 PMCID: PMC11732223 DOI: 10.1016/j.crfs.2024.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Selenium-enriched probiotics have attracted much attention due to the physiological activities of both probiotics and selenium (organic selenium). In this study, we investigated the mitigating effect of selenium-enriched Lactobacillus rhamnosus GG (LGG@Se) and its pathway on alcohol-induced liver injury (ALI) in mice. The results showed that LGG@Se was superior to LGG and sodium selenite in alleviating ALI. Oral LGG@Se effectively prevented lipid metabolism disorders and liver oxidative damage in mice caused by excessive alcohol intake. 16S amplicon sequencing showed that LGG@Se intervention increased the abundance of beneficial bacteria and suppressed the growth of harmful bacteria in the intestinal tract of over-drinking mice, and thus effectively modulated the homeostasis of intestinal flora, which were highly correlated with the improvement of liver function. Liver metabolomics analysis indicated that LGG@Se intervention altered liver metabolic profiling, and the characteristic biomarkers were mainly involved in amino acid metabolism, including alanine, aspartate and glutamate metabolism, arginine biosynthesis, etc. In addition, LGG@Se intervention modulated the expression of genes and proteins related to lipid metabolism and oxidative stress in liver of over-drinking mice. Western blot analysis revealed that LGG@Se intervention up-regulated the expression of intestinal barrier function-related proteins, thereby ameliorating alcohol-induced intestinal barrier damage. Collectively, these findings provide scientific evidence that LGG@Se possesses the biological activity of improving alcohol-induced lipid metabolism and intestinal microbiota disorder.
Collapse
Affiliation(s)
- Ziyi Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Jingyu Lian
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yuheng Yang
- Department of Hepatopancreatobiliary Surgery, Fujian Research Institute of Abdominal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, PR China
| | - Jiayi Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Weiling Guo
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Youting Chen
- Department of Hepatopancreatobiliary Surgery, Fujian Research Institute of Abdominal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, PR China
| |
Collapse
|
10
|
Wang C, Zhao L, Xu J, Li X, Liu S, Du J, Jia X, Wang Z, Ge L, Yan Z, Xia X. Trace antibiotic exposure affects murine gut microbiota and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177033. [PMID: 39447894 DOI: 10.1016/j.scitotenv.2024.177033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Gut microbiota is important for host metabolism regulation. Antibiotic exposure disturbs this regulation by affecting the microbiome. Trace levels of antibiotics in water have been widely reported and the impact on gut microbiota remains understudied. We provide evidence of trace antibiotic exposure affecting the host's gut microbiota using a mouse model exposed to trace amounts of azithromycin (AZI) or ciprofloxacin (CIP) in drinking water. AZI exposure in males changed the distribution of gram-positive (Firmicutes and Bacteroidetes) and gram-negative (Proteobacteria, Fusobacteria, and Verrucomicrobia) bacteria at an early age. Both AZI and CIP resulted in abnormal microbiota maturation. Additionally, the production of short-chain fatty acids (SCFAs), including acetate, butyrate, and propionate, in females is affected. Serum hormone and metabolome levels shifted after trace antibiotic exposure. AZI and CIP exposure broadly disrupted original host-microbe interaction relationships between the gut microbiota and SCFAs or serum metabolites. In this study, we demonstrated that trace antibiotic exposure was associated with extensive gut microbiota and metabolism perturbation in mice and that the potential health risks in susceptible populations should be considered.
Collapse
Affiliation(s)
- Chengfei Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China; State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Liang Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaowei Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Saiwa Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - JingJing Du
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xixi Jia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhinan Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lirui Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zuhao Yan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xi Xia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Zhou GL, Xie Y, Zhang YD, Wang L, Xie YT, Qiu HL, Zhu XQ, Jiang JC, Yang Y, Xiang M, Dong GH, Zhou Y, Fan SJ, Yang BY. Exposure to greenspaces sourced soils improves mice gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124931. [PMID: 39260549 DOI: 10.1016/j.envpol.2024.124931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/30/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Greenspaces are important components of our living environment and have been linked to various human health. However, the mechanisms underlying the linkages remain unclear. Enriching microbiota has emerged as a novel mechanism, but the corresponding evidence is still limited. We collected soil samples from forest land, grassland, and barren land in Zunyi City, southwestern China and prepared soil solutions. A total of 40 BALB/c mice were evenly divided into normal control group, model control group, forest soil group, grassland soil group, and barren land soil group. After establishing the pseudo germ-free mouse model, different soil solutions were administered through gavage, lasting for seven weeks. Fecal samples were collected and a 16S rRNA high-throughput sequencing analysis was performed. Then, alpha- and beta-diversity were calculated and employed to estimate the effects of soil exposures on mice gut microbial diversity and composition. Further, Linear Discriminant Analysis Effect Size (LEfSe) analysis was carried out to evaluate the effects of soil exposures on gut microbiota specific genera abundances and functional pathways. Compared to mice exposed to barren land soils, those exposed to soils sourced from forest land showed an increase of 0.43 and 70.63 units in the Shannon index and the Observed ASVs, respectively. In addition, exposure to soils sourced from forest land and grassland resulted in healthier changes (i.e., more short-chain fatty acids (SCFAs)-producing bacteria) in gut microbiota than those from barren land. Furthermore, mice exposed to forest soil and grassland soil showed enrichment in 5 and 3 pathways (e.g., butanoate metabolism) compared to those exposed to barren land soil, respectively. In conclusion, exposure to various greenspaces soils may modify the gut microbial communities of mice, potentially fostering a more beneficial microbiota profile. Further better-designed studies are needed to validate the current findings and to explore the effects of greenspace related gut microbiota on human health.
Collapse
Affiliation(s)
- Gang-Long Zhou
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Xie
- Department of Toxicology, School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yi-Dan Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lu Wang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu-Ting Xie
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui-Ling Qiu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Qi Zhu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian-Cheng Jiang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Yang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuanzhong Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shu-Jun Fan
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; Institute of Public Health, Guangzhou Medical University and Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Bo-Yi Yang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Zhao Y, Yuan M, Sun X, Wang P, Meng X, Zhang S, Luo W, Zhang M, Gao X. The Chinese herbal prescription Kang-Gong-Yan alleviates cervicitis by modulating metabolites and gut microbiota. PHARMACEUTICAL BIOLOGY 2024; 62:341-355. [PMID: 39648685 PMCID: PMC11086028 DOI: 10.1080/13880209.2024.2318791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 12/10/2024]
Abstract
CONTEXT Cervicitis is a common gynecological inflammatory disease. The Chinese herbal prescription Kang-Gong-Yan (KGY) is clinically effective against cervicitis; however, the chemical constituents and therapeutic mechanism of KGY remain elusive. OBJECTIVE To analyze the chemical constituents of KGY and explore the potential mechanism of KGY in treating cervicitis. MATERIALS AND METHODS UHPLC-Q-Exactive Plus Orbitrap MS was used to identify the active compounds of KGY; Sprague-Dawley (SD) female rats were randomly divided into the control, model, and KGY groups. Phenol mucilage (25%) was slowly injected into the vagina and cervix of the rats to establish the cervicitis model. Then, rats in the KGY groups (low dose: 1 g/kg/d; medium dose: 5 g/kg/d; high dose: 10 g/kg/d) were continuously gavaged KGY for one week. HE staining was used to observe the cervical tissues of rats; ELISA was used to detect inflammatory factors in plasma; non-targeted metabolomics was used to analyze metabolites; 16S rRNA sequencing was used to analyze intestinal microorganisms. RESULTS KGY exerted anti-cervicitis effects and decreased the levels of IL-6, IL-1β, and TNF-α. The mechanism of KGY in treating cervicitis is mainly associated with betaine, amino acid, pyrimidine, and phospholipid metabolism by regulating fifteen metabolites. Moreover, KGY reversed cervicitis-induced gut dysbiosis by mediating five bacteria. DISCUSSION AND CONCLUSIONS The Chinese herbal prescription KGY may alleviate cervicitis by modulating metabolites and gut microbiota disorders. These findings provide a scientific basis for the clinical application of KGY and a new strategy for treating cervicitis in Chinese medicine.
Collapse
Affiliation(s)
- Yanni Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Minyan Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Xiaoxia Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Shuo Zhang
- Experimental Animal Center of Guizhou Medical University, Guiyang, China
| | - Wei Luo
- Guizhou Huizheng Pharmaceutical Co., Ltd, Qiannan, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
13
|
Manghi P, Bhosle A, Wang K, Marconi R, Selma-Royo M, Ricci L, Asnicar F, Golzato D, Ma W, Hang D, Thompson KN, Franzosa EA, Nabinejad A, Tamburini S, Rimm EB, Garrett WS, Sun Q, Chan AT, Valles-Colomer M, Arumugam M, Bermingham KM, Giordano F, Davies R, Hadjigeorgiou G, Wolf J, Strowig T, Berry SE, Huttenhower C, Spector TD, Segata N, Song M. Coffee consumption is associated with intestinal Lawsonibacter asaccharolyticus abundance and prevalence across multiple cohorts. Nat Microbiol 2024; 9:3120-3134. [PMID: 39558133 PMCID: PMC11602726 DOI: 10.1038/s41564-024-01858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Although diet is a substantial determinant of the human gut microbiome, the interplay between specific foods and microbial community structure remains poorly understood. Coffee is a habitually consumed beverage with established metabolic and health benefits. We previously found that coffee is, among >150 items, the food showing the highest correlation with microbiome components. Here we conducted a multi-cohort, multi-omic analysis of US and UK populations with detailed dietary information from a total of 22,867 participants, which we then integrated with public data from 211 cohorts (N = 54,198). The link between coffee consumption and microbiome was highly reproducible across different populations (area under the curve of 0.89), largely driven by the presence and abundance of the species Lawsonibacter asaccharolyticus. Using in vitro experiments, we show that coffee can stimulate growth of L. asaccharolyticus. Plasma metabolomics on 438 samples identified several metabolites enriched among coffee consumers, with quinic acid and its potential derivatives associated with coffee and L. asaccharolyticus. This study reveals a metabolic link between a specific gut microorganism and a specific food item, providing a framework for the understanding of microbial dietary responses at the biochemical level.
Collapse
Affiliation(s)
- Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
- Computational Biology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Amrisha Bhosle
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kai Wang
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Liviana Ricci
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | - Wenjie Ma
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dong Hang
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kelsey N Thompson
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric A Franzosa
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Sabrina Tamburini
- IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University, Venice, Italy
| | - Eric B Rimm
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Wendy S Garrett
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qi Sun
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Mireia Valles-Colomer
- Department CIBIO, University of Trento, Trento, Italy
- MELIS Department, University Pompeu Fabra, Barcelona, Spain
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kate M Bermingham
- Department of Nutritional Sciences, King's College London, London, UK
| | | | | | | | | | - Till Strowig
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Curtis Huttenhower
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Tim D Spector
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy.
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| | - Mingyang Song
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| |
Collapse
|
14
|
Buelna-Chontal M. Coffee: Fuel for Your Day or Foe for Your Arteries. Antioxidants (Basel) 2024; 13:1455. [PMID: 39765784 PMCID: PMC11672806 DOI: 10.3390/antiox13121455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis, a major cause of cardiovascular diseases, is influenced by modifiable factors such as adiposity and blood cholesterol. Diet is crucial in these areas, particularly regarding antioxidant, inflammatory, and obesity effects. Coffee, a globally popular stimulant beverage, has garnered significant attention for its potential impact on cardiovascular diseases. Recent insights reinforce the need to re-examine the relationship between coffee consumption and atherosclerosis progression. Coffee's complex composition includes polyphenols, renowned for their antioxidant and anti-inflammatory properties as well as potential weight-reducing effects. In addition, studies have demonstrated that certain coffee compounds such as chlorogenic acid, caffeic, p-coumaric, and ferulic acid can prevent atherogenesis by preventing the oxidation of low-density lipoproteins. Conversely, diterpenes, found in some coffee brews, can elevate cholesterol levels, posing a risk to coronary health. Notably, coffee intake has been shown to influence gut microbiota diversity, potentially contributing to anti-obesity effects. This review explores the insights from preclinical and clinical studies investigating the potential mechanisms through which coffee consumption may reduce the risk of atherosclerosis-highlighting the potential benefits of moderate filtered coffee consumption and the potential risks associated with excessive coffee consumption. Understanding this relationship is crucial for informing public health recommendations and guiding future research.
Collapse
Affiliation(s)
- Mabel Buelna-Chontal
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chavez, Mexico City 14080, Mexico
| |
Collapse
|
15
|
Rivera K, Gonzalez L, Bravo L, Manjarres L, Andia ME. The Gut-Heart Axis: Molecular Perspectives and Implications for Myocardial Infarction. Int J Mol Sci 2024; 25:12465. [PMID: 39596530 PMCID: PMC11595032 DOI: 10.3390/ijms252212465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Myocardial infarction (MI) remains the leading cause of death globally, imposing a significant burden on healthcare systems and patients. The gut-heart axis, a bidirectional network connecting gut health to cardiovascular outcomes, has recently emerged as a critical factor in MI pathophysiology. Disruptions in this axis, including gut dysbiosis and compromised intestinal barrier integrity, lead to systemic inflammation driven by gut-derived metabolites like lipopolysaccharides (LPSs) and trimethylamine N-oxide (TMAO), both of which exacerbate MI progression. In contrast, metabolites such as short-chain fatty acids (SCFAs) from a balanced microbiota exhibit protective effects against cardiac damage. This review examines the molecular mediators of the gut-heart axis, considering the role of factors like sex-specific hormones, aging, diet, physical activity, and alcohol consumption on gut health and MI outcomes. Additionally, we highlight therapeutic approaches, including dietary interventions, personalized probiotics, and exercise regimens. Addressing the gut-heart axis holds promise for reducing MI risk and improving recovery, positioning it as a novel target in cardiovascular therapy.
Collapse
Affiliation(s)
- Katherine Rivera
- Doctoral Program in Medical Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 8331010, Chile;
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| | - Leticia Gonzalez
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| | - Liena Bravo
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| | - Laura Manjarres
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| | - Marcelo E. Andia
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| |
Collapse
|
16
|
Yu X, Xiong T, Yu L, Liu G, Yang F, Li X, Wei Y, Wang X, Wei S, Jiang Y, Kong X, Ren S, Shi Y. Gut microbiome and metabolome profiling in coal workers' pneumoconiosis: potential links to pulmonary function. Microbiol Spectr 2024; 12:e0004924. [PMID: 39283109 PMCID: PMC11537036 DOI: 10.1128/spectrum.00049-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/02/2024] [Indexed: 11/07/2024] Open
Abstract
Coal workers' pneumoconiosis (CWP) is a severe occupational disease resulting from prolonged exposure to coal dust. However, its pathogenesis remains elusive, compounded by a lack of early detection markers and effective treatments. Although the impact of gut microbiota on lung diseases is acknowledged, its specific role in CWP is unclear. This study aims to explore changes in the gut microbiome and metabolome in CWP, while also assessing the correlation between gut microbes and alterations in lung function. Fecal specimens from 43 CWP patients and 48 dust-exposed workers (DEW) were examined using 16S rRNA gene sequencing for microbiota and liquid chromatography-mass spectrometry for metabolite profiling. We observed similar gut microbial α-diversity but significant differences in flora composition (β-diversity) between patients with CWP and the DEW group. After adjusting for age using multifactorial linear regression analysis (MaAsLin2), the distinct gut microbiome profile in CWP patients revealed an increased presence of pro-inflammatory microorganisms such as Klebsiella and Haemophilus. Furthermore, in CWP patients, alterations in gut microbiota-particularly reduced α-diversity and changes in microbial composition-were significantly correlated with impaired pulmonary function, a relationship not observed in DEW. This underscores the specific impact of gut microbiota on pulmonary health in individuals with CWP. Metabolomic analysis of fecal samples from CWP patients and DEW identified 218 differential metabolites between the two groups, with a predominant increase in metabolites in CWP patients, suggesting enhanced metabolic activity in CWP. Key altered metabolites included various lipids, amino acids, and organic compounds, with silibinin emerging as a potential biomarker. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis linked these metabolites to pathways relevant to the development of pulmonary fibrosis. Additionally, studies on the interaction between microbiota and metabolites showed positive correlations between certain bacteria and increased metabolites in CWP, further elucidating the complex interplay in this disease state. Our findings suggest a potential contributory role of gut microbiota in CWP pathogenesis through metabolic regulation, with implications for diagnostic biomarkers and understanding disease mechanisms, warranting further molecular investigation. IMPORTANCE The findings have significant implications for the early diagnosis and treatment of coal workers' pneumoconiosis, highlighting the potential of gut microbiota as diagnostic biomarkers. They pave the way for new research into gut microbiota-based therapeutic strategies, potentially focusing on modifying gut microbiota to mitigate disease progression.
Collapse
Affiliation(s)
- Xiao Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Tao Xiong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lu Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaisheng Liu
- Quality Control Office, Xishan Occupational Disease Prevention and Control Institute, Taiyuan, China
| | - Fan Yang
- Quality Control Office, Xishan Occupational Disease Prevention and Control Institute, Taiyuan, China
| | - Xueqin Li
- Department of Respiratory Medicine, Jincheng General Hospital, Shanxi, China
| | - Yangyang Wei
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaojing Wang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuting Wei
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Jiang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shouan Ren
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yiwei Shi
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
17
|
Liu X, Ji Y, Miao Z, Lv H, Lv Z, Guo Y, Nie W. Effects of baicalin and chlorogenic acid on growth performance, slaughter performance, antioxidant capacity, immune function and intestinal health of broilers. Poult Sci 2024; 103:104251. [PMID: 39244784 PMCID: PMC11407039 DOI: 10.1016/j.psj.2024.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
This study aimed to investigate the effects of baicalin and chlorogenic acid (BC) on growth performance, intestinal barrier function, antioxidant capacity, intestinal microbiota, and mucosal metabolism in broilers. A total of 720 twenty-one-day-old broilers were randomly allocated into 3 groups, with 6 replicates per group and 40 chickens per replicate. They were fed a basal diet (Con group) or a basal diet supplemented with 250 or 400 mg/kg BC (BC250 and BC400 groups) for 40 consecutive days. The results revealed that 250 mg/kg BC significantly increased 60-d body weight and average daily gain during 39 to 60 d (P < 0.05). Furthermore, Supplementation with 250 mg/kg BC improved the antioxidant capacity and immunity of broilers, as evidenced by increased (P < 0.05) superoxide dismutase and decreased (P < 0.05) malondialdehyde levels in serum and ileum, as well as increased (P < 0.05) immunoglobulin G levels. Supplementation with 250 mg/kg BC enhanced intestinal development by improving intestinal morphology and promoting the proliferation of intestinal crypts. Moreover, Supplementation with 250 mg/kg BC improved (P < 0.05) intestinal permeability, up-regulated (P < 0.05) the expression of tight junction-related genes (Occludin and ZO-1), and down-regulated (P < 0.05) the expression of pro-inflammatory genes (IL-2, IL-8, and IFN-γ). 16S rRNA sequencing revealed significant enrichment of Microbacteriaceae, Micromonosporaceae, Anaerovoracaceae, and Coriobacteriaceae in the BC250 group. Metabolomics showed that 250 mg/kg BC up-regulated the lysosome, foxo signaling pathway, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and oxidative phosphorylation pathways, while down-regulating the biosynthesis of cofactors pathway. In conclusion, supplementing diets with 250 mg/kg BC is recommended to modulate intestinal microbiota, mucosal metabolism, and antioxidant capacity, thereby improving broiler growth performance and intestinal health.
Collapse
Affiliation(s)
- Xingbo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yunru Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang 453003,China
| | - Huiyuan Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Beijing Centre Biology Co., Ltd., Beijing 102218, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Nie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Mi J, Tong Y, Zhang Q, Wang Q, Wang Y, Wang Y, Lin G, Ma Q, Li T, Huang S. Alginate Oligosaccharides Enhance Gut Microbiota and Intestinal Barrier Function, Alleviating Host Damage Induced by Deoxynivalenol in Mice. J Nutr 2024; 154:3190-3202. [PMID: 39357672 DOI: 10.1016/j.tjnut.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Alginate oligosaccharides (AOS) exhibits notable effects in terms of anti-inflammatory, antibacterial, and antioxidant properties. Deoxynivalenol (DON) has the potential to trigger intestinal inflammation by upregulating pro-inflammatory cytokines and apoptosis, thereby compromising the integrity of the intestinal barrier function and perturbing the balance of the gut microbiota. OBJECTIVES We assessed the impact of AOS on mitigating DON-induced intestinal damage and systemic inflammation in mice. METHODS After a 1-wk acclimatization period, the mice were divided into 4 groups. For 3 wk, the AOS and AOS + DON groups were gavaged daily with 200 μL of AOS [200 mg/kg body weight (BW)], whereas the CON and DON groups received an equivalent volume of sterile Phosphate-Buffered Saline (PBS). Subsequently, for 1 wk, the DON and AOS + DON groups received 100 μL of DON (4.8 mg/kg BW) daily, whereas the control (CON) and AOS groups continued receiving PBS. RESULTS After administering DON via gavage to mice, there was a significant decrease (P < 0.05) in body weights compared with the CON group. Interestingly, AOS exhibited a tendency to mitigate this weight loss in the AOS + DON group. In the feces of mice treated with both AOS and DON, the concentration of DON significantly increased (P < 0.05) compared with the DON group alone. Histological analysis revealed that DON exposure caused increased intestinal damage, including shortened villi and eroded epithelial cells, which was ameliorated by presupplementation with AOS, alleviating harm to the intestinal barrier function. In both jejunum and colon tissues, DON exposure significantly reduced (P < 0.05) the expression of tight junction proteins (claudin and occludin in the colon) and the mucin protein mucin 2, compared with the CON group. Prophylactic administration of AOS alleviated these reductions, thereby improving the expression levels of these key proteins. Additionally, AOS supplementation protected DON-exposed mice by increasing the abundance of probiotics such as Bifidobacterium, Faecalibaculum, and Romboutsia. These gut microbes are known to enhance (P < 0.05) anti-inflammatory responses and the production of short-chain fatty acids (SCFAs), including total SCFAs, acetate, and valerate, compared with the DON group. CONCLUSIONS This study unveils that AOS not only enhances gut microbiota and intestinal barrier function but also significantly mitigates DON-induced intestinal damage.
Collapse
Affiliation(s)
- Jinqiu Mi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yaoyi Tong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiyue Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China; College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qingfeng Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yanwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China; School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Tiantian Li
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China.
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China.
| |
Collapse
|
19
|
Lu M, Feng R, Li M, Liu L, Xiao Y, Liu Y, Yin C. Causal relationship between gut microbiota and childhood obesity: A Mendelian randomization study and case-control study. Clin Nutr ESPEN 2024; 63:197-206. [PMID: 38963766 DOI: 10.1016/j.clnesp.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/28/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Gut microbiota and obesity are deeply interconnected. However, the causality in the relationship between these factors remains unclear. Therefore, this study aimed to elucidate the genetic relationship between gut microbiota and childhood obesity. METHODS Genetic summary statistics for the gut microbiota were obtained from the MiBioGen consortium. Genome-wide association studies (GWAS) summary data for childhood obesity were obtained from North American, Australian, and European collaborative genome-wide meta-analyses. Mendelian randomization (MR) analyses were performed using the inverse variance weighting method. 16 children with obesity and 16 without obesity were included for clinical observation, and their weight, body mass index, blood lipid levels, and gut microbiology were assessed. Paired t-test was the primary method of data analysis, and statistical significance was set at P < 0.05. RESULTS MR identified 16 causal relationships between the gut microbiome and childhood obesity. In the case-control study, we found that five gut microorganisms differed between children with and without obesity, whereas three gut microorganisms changed after weight loss in children with obesity. CONCLUSION Our study provides new insights into the genetic mechanisms underlying gut microbiota and childhood obesity. TRIAL REGISTRATION NUMBER ChiCTR2300072179. NAME OF REGISTRY Change of intestinal flora and plasma metabolome in obese children and their weight loss intervention: a randomized controlled tria URL OF REGISTRY: https://www.chictr.org.cn/showproj.html. DATE OF REGISTRATION 2023-06-06. DATE OF ENROLMENT OF THE FIRST PARTICIPANT TO THE TRIAL 2023-06-07.
Collapse
Affiliation(s)
- Mengnan Lu
- Department of Pediatrics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shanxi, 710054, China
| | - Ruoyang Feng
- Department of Joint Surgery, Xi'an Jiaotong University HongHui Hospital, Xi'an, Shanxi, 710054, China
| | - Meng Li
- Department of Pediatrics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shanxi, 710054, China
| | - Lujie Liu
- Department of Pediatrics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shanxi, 710054, China
| | - Yanfeng Xiao
- Department of Pediatrics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shanxi, 710054, China.
| | - Yuesheng Liu
- Department of Pediatrics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shanxi, 710054, China.
| | - Chunyan Yin
- Department of Pediatrics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shanxi, 710054, China.
| |
Collapse
|
20
|
Ma H, Wang Y, Wei J, Wang X, Yang H, Wang S. Stabilization of hypoxia-inducible factor 1α and regulation of specific gut microbes by EGCG contribute to the alleviation of ileal barrier disorder and obesity. Food Funct 2024; 15:9983-9994. [PMID: 39279449 DOI: 10.1039/d4fo02283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Tea polyphenols have a regulatory effect on metabolic-related diseases, however, the underlying mechanism remains elusive. Our study aims to explore the dietary intervention effect of Epigallocatechin gallate (EGCG), the major polyphenol in green tea, on obesity and intestinal barrier disorders in mice fed a high-fat diet. By supplementing with 50 mg kg-1 EGCG, we observed a significant amelioration in body weight gain, fat accumulation, and liver dysfunction. Furthermore, EGCG modulated the HFD-induced metabolomic alterations. In particular, EGCG intervention restored the ileal barrier by enhancing the expression of tight junction proteins and antimicrobial peptides. At the mechanistic level, EGCG treatment stabilized hypoxia-inducible factor 1α (HIF1α) both in vitro and in vivo. Meanwhile, EGCG significantly increased the abundance of Dubosiella and Akkermansia, along with the elevated SCFA contents. These findings suggest that the ability of EGCG to stabilize HIF1α and regulate specific gut microbes is pivotal in mitigating ileal barrier dysfunction and obesity. Moreover, serum metabolomics revealed potential biomarkers following EGCG intervention. This study supports the intake of EGCG or green tea in obesity management and offers a novel perspective for investigating the metabolic regulatory mechanism of other dietary polyphenols.
Collapse
Affiliation(s)
- Hui Ma
- College of Food Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China.
| | - Yuanyifei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Jiayu Wei
- College of Food Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China.
| | - Xiaochi Wang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China.
| | - Hui Yang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
21
|
Dai Z, Wang H, Shen Q, Hu Y, Xue Y. Raw and heat-treated quinoa protein protects against glucose metabolism disorders in high-fat diet (HFD)-induced mice by reshaping gut microbiota and fecal metabolic profiles. Food Funct 2024; 15:9409-9419. [PMID: 39189421 DOI: 10.1039/d4fo02904f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Plant-based proteins have received considerable global attention due to their nutritional value and potential health effects. As a high-quality plant protein, the hypoglycemic effect of quinoa protein and its potential mechanism have not been fully elucidated. In the present study, we compared the hypoglycemic effects of raw quinoa protein (RP-quinoa) and heat-treated quinoa protein (HP-quinoa) and further explored their potential mechanisms using multi-omics analysis based on gut microbiota and fecal metabolic profiles in HFD-fed mice. Our results showed that both RP-quinoa and HP-quinoa effectively improved glucose metabolism and protected against alterations in gut microbiota induced by a chronic HFD. In addition, quinoa protein increased the relative abundance of beneficial bacteria such as the g__Lachnospiraceae_NK4A136_group, g__Eubacterium_xylanophilum_group, and g__Negativibacillus, followed by an increase in short-chain fatty acids and potentially beneficial metabolites such as L-phenylalanine and L-cysteine. Together, these findings provided the basis for linking gut microbiota and their metabolites to the hypoglycemic effect of quinoa protein.
Collapse
Affiliation(s)
- Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China.
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Han Wang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China.
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China.
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China.
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| |
Collapse
|
22
|
Qiu Y, Wu L, Zhou W, Wang F, Li N, Wang H, He R, Tian Y, Liu Z. Day and Night Reversed Feeding Aggravates High-Fat Diet-Induced Abnormalities in Intestinal Flora and Lipid Metabolism in Adipose Tissue of Mice. J Nutr 2024; 154:2772-2783. [PMID: 38880175 DOI: 10.1016/j.tjnut.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The incongruity between dietary patterns and the circadian clock poses an elevated risk for metabolic health issues, particularly obesity and associated metabolic disorders. The intestinal microflora engages in regulating various physiological functions of the host through its metabolites. OBJECTIVES This study aimed to investigate the impact of reversed feeding schedules during the day and night on intestinal flora and lipid metabolism in high-fat diet-induced obese mice. METHODS Mice aged 8-10 wk were subjected to either daytime or nighttime feeding and were administered a control or high-fat diet for 18 wk. At the end of the experiment, various assessments were conducted, including analysis of serum biochemic indices, histologic examination, evaluation of gene and protein expression in adipose tissue, and scrutiny of changes in intestinal microbial composition. RESULTS The results showed that day-night reversed feeding caused an increase in fasting blood glucose and exacerbated the high-fat diet-induced weight gain and lipid abnormalities. The mRNA expression levels of Leptin and Dgat1 were increased by day-night reversed feeding, which also reduced the expression level of adiponectin under the high-fat diet. Additionally, there was a significant increase in the protein concentrations of PPARγ, SREBP1c, and CD36. Inverted feeding schedules led to a reduction in intestinal microbial diversity, an increase in the abundance of inflammation-related bacteria, such as Coriobacteriaceae_UCG-002, and a suppression of beneficial bacteria, including Akkermansia, Candidatus_Saccharimonas, Anaeroplasma, Bifidobacterium, Carnobacterium, and Odoribacter. Acinetobacter exhibited a significant negative correlation with Leptin and Fasn, suggesting potential involvement in the regulation of lipid metabolism. CONCLUSIONS The results elucidated the abnormalities of lipid metabolism and intestinal flora caused by day-night reversed feeding, which exacerbates the adverse effects of a high-fat diet on lipid metabolism and intestinal microflora. This reversal in feeding patterns may disrupt both intestinal and lipid metabolism homeostasis by altering the composition and abundance of intestinal microflora in mice.
Collapse
Affiliation(s)
- Yi Qiu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Libang Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Wenting Zhou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Fangyi Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Na Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Hualin Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Ruyi He
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yu Tian
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China.
| | - Zhiguo Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China.
| |
Collapse
|
23
|
Karagöz MF, Koçyiğit E, Koçak T, Özturan Şirin A, Icer MA, Ağagündüz D, Coreta-Gomes F. Decoding coffee cardiometabolic potential: Chemical composition, nutritional, and health relationships. Compr Rev Food Sci Food Saf 2024; 23:e13414. [PMID: 39137004 DOI: 10.1111/1541-4337.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024]
Abstract
Coffee is one of the most consumed beverages worldwide, recognized for its unique taste and aroma and for its social and health impacts. Coffee contains a plethora of nutritional and bioactive components, whose content can vary depending on their origin, processing, and extraction methods. Gathered evidence in literature shows that the regular coffee consumption containing functional compounds (e.g., polysaccharides, phenolic compounds, and melanoidins) can have potential beneficial effects on cardiometabolic risk factors such as abdominal adiposity, hyperglycemia, and lipogenesis. On the other hand, coffee compounds, such as caffeine, diterpenes, and advanced glycation end products, may be considered a risk for cardiometabolic health. The present comprehensive review provides up-to-date knowledge on the structure-function relationships between different chemical compounds present in coffee, one of the most prevalent beverages present in human diet, and cardiometabolic health.
Collapse
Affiliation(s)
- Mustafa Fevzi Karagöz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hitit University, Çorum, Türkiye
| | - Emine Koçyiğit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, Ordu, Türkiye
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gümüşhane University, Gümüşhane, Türkiye
| | - Ayçıl Özturan Şirin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya, Türkiye
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Filipe Coreta-Gomes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
- Department of Chemistry, Coimbra Chemistry Centre, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
24
|
Sun S, Zhang Q, Li D, Li H, Ma H, Wu X, Li Y, Wang P, Liu R, Feng H, Zhang Y, Sang Y, Fang B, Wang R. Heat-killed Bifidobacterium longum BBMN68 and inulin protect against high-fat diet-induced obesity by modulating gut microbiota. Front Nutr 2024; 11:1406070. [PMID: 39206310 PMCID: PMC11351561 DOI: 10.3389/fnut.2024.1406070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Obesity, a pervasive global epidemic, has heightened susceptibility to chronic ailments and diminished the overall life expectancy on a global scale. Probiotics and inulin (IN) have been documented to mitigate obesity by exerting an influence on the composition of the gut microbiota. Whether heat-killed Bifidobacterium longum BBMN68 (MN68) and IN have an anti-obesity effect remains to be investigated. METHODS In this study, Wistar rats were fed a high-fat diet (HFD), and orally administered heat-killed MN68 (2 × 1011 CFU/kg) and/or inulin (0.25 kg/kg) for 12 weeks. Histological analysis, serology analysis and 16S rRNA gene sequencing were performed. RESULTS Heat-killed MN68 + IN treatment showed an enhanced effect on preventing weight gain, diminishing fat accumulation, and regulating lipid metabolism, compared to either heat-killed MN68 treatment or inulin treatment. Gut microbiota results showed that heat-killed MN68 + IN treatment significantly increased the relative abundance of Bacteroidota, Oscillospira, Intestinimonas, Christensenella, and Candidatus_Stoquefichus, and reduced the relative abundance of Enterococcus. Furthermore, heat-killed MN68 + IN significantly increased the SCFA levels, which were correlated with changes in the gut microbiota. DISCUSSION This research provides support for the application of heat-killed MN68 and IN in the treatment of obesity, and highlights the combination of heat-killed BBMN68 and IN as functional food ingredients.
Collapse
Affiliation(s)
- Siyuan Sun
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Qi Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Dongdong Li
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot, Inner Mongolia, China
| | - Hongliang Li
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot, Inner Mongolia, China
- Mengniu Hi-Tech Dairy (Beijing) Co., Ltd., Beijing, China
| | - Hairan Ma
- Mengniu Hi-Tech Dairy (Beijing) Co., Ltd., Beijing, China
| | - Xiuying Wu
- Mengniu Hi-Tech Dairy (Beijing) Co., Ltd., Beijing, China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Haihong Feng
- Research Center for Probiotics, China Agricultural University, Beijing, China
| | - Yongxiang Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yue Sang
- Research Center for Probiotics, China Agricultural University, Beijing, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Shu T, Zhang J, Hu R, Zhou F, Li H, Liu J, Fan Y, Li X, Ding P. Qi Huang Fang improves intestinal barrier function and intestinal microbes in septic mice through NLRP3 inflammasome-mediated cellular pyroptosis. Transpl Immunol 2024; 85:102072. [PMID: 38857634 DOI: 10.1016/j.trim.2024.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE Sepsis has a high incidence, morbidity, and mortality rate and is a great threat to human safety. Gut health plays an important role in sepsis development. Qi Huang Fang (QHF) contains astragalus, rhubarb, zhishi, and atractylodes. It is used to treat syndromes of obstructive qi and deficiency of righteousness. This study aimed to investigate whether QHF improves intestinal barrier function and microorganisms in mice through NLRP3 inflammatory vesicle-mediated cellular focal death. METHODS A mouse model of sepsis was constructed by cecal ligation and puncture (CLP) of specific pathogen-free (SPF)-grade C57BL/6 mice after continuous gavage of low, medium, and high doses of astragalus formula or probiotics for 4 weeks. Twenty-four hours postoperatively, the mechanism of action of QHF in alleviating septic intestinal dysfunction and restoring intestinal microecology, thereby alleviating intestinal injury, was evaluated by pathological observation, immunohistochemistry, western blotting, ELISA, and 16S rDNA high-throughput sequencing. RESULTS Different doses of QHF and probiotics ameliorated intestinal injury and reduced colonic apoptosis in mice to varying degrees (P < 0.05). Meanwhile, different doses of QHF and probiotics were able to reduce the serum levels of IL-6, IL-1β, and TNF-α (P < 0.05); down-regulate the protein expression of NLRP3, caspase-1, and caspase-11 (P < 0.05); and up-regulate the protein expression of zonula occluden-1 (ZO-1) and occludin (P < 0.05), which improved the intestinal barrier function in mice. In addition, QHF decreased the relative abundance of harmful bacteria (Firmicutes, Muribaculaceae, Campilobacterota, Helicobacter, and Alistipes) and increased the relative abundance of beneficial bacteria (Bacteroidetes and Actinobacteria) (P < 0.05). CONCLUSION QHF improves intestinal barrier function and gut microbiology in mice via NLRP3 inflammasome-mediated cellular pyroptosis.
Collapse
Affiliation(s)
- Tingting Shu
- Department of Intensive Care Unit, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Jun Zhang
- Department of Intensive Care Unit, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Ruiying Hu
- Department of Emergency Medicine, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Fang Zhou
- Department of Emergency Medicine, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Hanyong Li
- Department of Intensive Care Unit, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Jing Liu
- Department of Medical, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Yanbo Fan
- Department of Science and Education Section, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Xucheng Li
- Department of Emergency Medicine, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Peiwu Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
26
|
Wang W, Zhang J, Li Y, Su S, Wei L, Li L, Hu R. Lactoferrin alleviates chronic low‑grade inflammation response in obese mice by regulating intestinal flora. Mol Med Rep 2024; 30:138. [PMID: 38873986 PMCID: PMC11200051 DOI: 10.3892/mmr.2024.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/21/2024] [Indexed: 06/15/2024] Open
Abstract
Chronic low‑grade inflammation defines obesity as a metabolic disorder. Alterations in the structure of gut flora are strongly associated with obesity. Lactoferrin (LF) has a biological function in regulating intestinal flora. The present study aimed to investigate the therapeutic and anti‑-inflammatory effects of LF in obese mice based on intestinal flora. A total of 30 C57BL/6 mice were divided into three groups consisting of 10 mice each. Subsequently, one group was fed a normal diet (Group K), another group was fed a high‑fat diet (Group M) and the remaining group switched from regular drinking to drinking 2% LF water (Group Z2) after 2 weeks of high‑fat diet; all mice were fed for 12 weeks. After the experiment, the mouse blood lipid and lipopolysaccharide levels, levels of inflammatory factors and intestinal tight junction proteins were assessed. Mouse stool samples were analyzed using 16S ribosomal RNA sequencing. The results showed that LF reduced serum total cholesterol, triglycerides and low‑density lipoprotein levels, elevated high‑density lipoprotein levels, suppressed metabolic endotoxemia and attenuated chronic low‑grade inflammatory responses in obese mice. In addition, LF upregulated zonula occludens‑1 and occludin protein expression levels in the intestine, thereby improving intestinal barrier integrity. LF altered the intestinal microbial structure of obese mice, reduced the ratio of Firmicutes and an elevated ratio of Bacteroidota, modifying the bacterial population to the increased relative abundance of Alistipes, Acidobacteriota, Psychrobacter and Bryobacter.
Collapse
Affiliation(s)
- Wuji Wang
- Basic Medical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| | - Jing Zhang
- Basic Medical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| | - Yanyi Li
- Nursing College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| | - Si Su
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| | - Lisi Wei
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| | - Li Li
- Basic Medical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| | - Rilebagen Hu
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| |
Collapse
|
27
|
Wang Y, Zhang Y, Wang Q, Fan Y, Li W, Liu M, Zhang X, Zhou W, Wang M, Jiang S, Shang E, Duan J. Multi-omics combined to explore the purging mechanism of Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124218. [PMID: 38959707 DOI: 10.1016/j.jchromb.2024.124218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex have been used together to treat constipation in the clinical practices for more than 2000 years. Nonetheless, their compatibility mechanism is still unclear. In this study, the amelioration of Rhei Radix et Rhizoma combined with Magnoliae Officinalis Cortex on constipation was systematically and comprehensively evaluated. The results showed that their compatibility could markedly shorten gastrointestinal transport time, increase fecal water content and frequency of defecation, improve gastrointestinal hormone disorders and protect colon tissue of constipation rats compared with the single drug. Furthermore, according to 16S rRNA sequencing in conjunction with UPLC-Q-TOF/MS, the combination of two herbal medications could greatly raise the number of salutary bacteria (Lachnospiraceae, Romboutsia and Subdoligranulum) while decreasing the abundance of pathogenic bacteria (Erysipelatoclostridiaceae). And two herb drugs could markedly improve the disorder of fecal metabolic profiles. A total of 7 different metabolites associated with constipation were remarkably shifted by the compatibility of two herbs, which were mainly related to arachidonic acid metabolism, alpha-linolenic acid metabolism, unsaturated fatty acid biosynthesis and other metabolic ways. Thus, the regulation of intestinal microbiome and its metabolism could be a potential target for Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex herb pair to treat constipation. Furthermore, the multi-omics approach utilized in this study, which integrated the microbiome and metabolome, had potential for investigating the mechanism of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Yun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Quyi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Yuwen Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Meijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Xiaoxiao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Wenwen Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Mingyang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| |
Collapse
|
28
|
Mirzaei F, Agbaria L, Bhatnagar K, Sirimanne N, Omar A'amar N, Jindal V, Gerald Thilagendra A, Tawfiq Raba F. Coffee and Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2024; 289:21-55. [PMID: 39168581 DOI: 10.1016/bs.pbr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Coffee, a universally consumed beverage, is known to contain thousands of bioactive constituents that have garnered interest due to their potential neuroprotective effects against various neurodegenerative disorders, including Alzheimer's disease (AD). Extensive research has been conducted on coffee constituents such as Caffeine, Trigonelline, Chlorogenic acid, and Caffeic acid, focusing on their neuroprotective properties. These compounds have potential to impact key mechanisms in AD development, including amyloidopathy, tauopathy, and neuroinflammation. Furthermore, apart from its neuroprotective effects, coffee consumption has been associated with anticancerogenic and anti-inflammatory effects, thereby enhancing its therapeutic potential. Studies suggest that moderate coffee intake, typically around two to three cups daily, could potentially contribute to mitigating AD progression and lowering the risk of related neurological disorders. This literature underscores the potential neuroprotective properties of coffee compounds, which usually perform their neuronal protective effects via modulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nuclear factor erythroid-derived 2-like 2 (Nrf2), interleukins, tumor necrosis factor-alpha (TNF-α), and many other molecules.
Collapse
Affiliation(s)
- Foad Mirzaei
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia.
| | - Lila Agbaria
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Khushbu Bhatnagar
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Nethmini Sirimanne
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Nathalie Omar A'amar
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Vaishali Jindal
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Albankha Gerald Thilagendra
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Farah Tawfiq Raba
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| |
Collapse
|
29
|
Xie J, Xiong S, Li Y, Xia B, Li M, Zhang Z, Shi Z, Peng Q, Li C, Lin L, Liao D. Phenolic acids from medicinal and edible homologous plants: a potential anti-inflammatory agent for inflammatory diseases. Front Immunol 2024; 15:1345002. [PMID: 38975345 PMCID: PMC11224438 DOI: 10.3389/fimmu.2024.1345002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Inflammation has been shown to trigger a wide range of chronic diseases, particularly inflammatory diseases. As a result, the focus of research has been on anti-inflammatory drugs and foods. In recent years, the field of medicinal and edible homology (MEH) has developed rapidly in both medical and food sciences, with 95% of MEH being associated with plants. Phenolic acids are a crucial group of natural bioactive substances found in medicinal and edible homologous plants (MEHPs). Their anti-inflammatory activity is significant as they play a vital role in treating several inflammatory diseases. These compounds possess enormous potential for developing anti-inflammatory drugs and functional foods. However, their development is far from satisfactory due to their diverse structure and intricate anti-inflammatory mechanisms. In this review, we summarize the various types, structures, and distribution of MEHP phenolic acids that have been identified as of 2023. We also analyze their anti-inflammatory activity and molecular mechanisms in inflammatory diseases through NF-κB, MAPK, NLRP3, Nrf2, TLRs, and IL-17 pathways. Additionally, we investigate their impact on regulating the composition of the gut microbiota and immune responses. This analysis lays the groundwork for further exploration of the anti-inflammatory structure-activity relationship of MEHP phenolic acids, aiming to inspire structural optimization and deepen our understanding of their mechanism, and provides valuable insights for future research and development in this field.
Collapse
Affiliation(s)
- Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Suhui Xiong
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qiuxian Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
30
|
Ziółkiewicz A, Niziński P, Soja J, Oniszczuk T, Combrzyński M, Kondracka A, Oniszczuk A. Potential of Chlorogenic Acid in the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Animal Studies and Clinical Trials-A Narrative Review. Metabolites 2024; 14:346. [PMID: 38921480 PMCID: PMC11205996 DOI: 10.3390/metabo14060346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol found in coffee, tea, vegetables, and fruits. It exhibits strong antioxidant activity and possesses several other biological properties, including anti-inflammatory effects, antimicrobial activity, and insulin-sensitizing properties. Moreover, it may improve lipid and glucose metabolism. This review summarizes the available information on the therapeutic effect of CGA in metabolic dysfunction-associated steatotic liver disease (MASLD). As the literature search engine, the browsers in the PubMed, Scopus, Web of Science databases, and ClinicalTrials.gov register were used. Animal trials and clinical studies suggest that CGA has promising therapeutic potential in treating MASLD and hepatic steatosis. Its mechanisms of action include antioxidant, anti-inflammatory, and anti-apoptotic effects via the activation of the Nrf2 signaling pathway and the inhibition of the TLR4/NF-κB signaling cascade. Furthermore, the alleviation of liver disease by CGA also involves other important molecules such as AMPK and important physiological processes such as the intestinal barrier and gut microbiota. Nevertheless, the specific target cell and key molecule to which CGA is directed remain unidentified and require further study.
Collapse
Affiliation(s)
- Agnieszka Ziółkiewicz
- Department of Inorganic Chemistry, Medical University of Lublin, Dr Witolda Chodźki 4a, 20-093 Lublin, Poland; (A.Z.); (A.O.)
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Jakub Soja
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland; (J.S.); (T.O.); (M.C.)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland; (J.S.); (T.O.); (M.C.)
| | - Maciej Combrzyński
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland; (J.S.); (T.O.); (M.C.)
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Dr Witolda Chodźki 4a, 20-093 Lublin, Poland; (A.Z.); (A.O.)
| |
Collapse
|
31
|
Tian Y, Jian T, Li J, Huang L, Li S, Lu H, Niu G, Meng X, Ren B, Liao H, Ding X, Chen J. Phenolic acids from Chicory roots ameliorate dextran sulfate sodium-induced colitis in mice by targeting TRP signaling pathways and the gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155378. [PMID: 38507851 DOI: 10.1016/j.phymed.2024.155378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 01/17/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a type of immune-mediated condition associated with intestinal homeostasis. Our preliminary studies disclosed that Cichorium intybus L., a traditional medicinal plant, also known as Chicory in Western countries, contained substantial phenolic acids displaying significant anti-inflammatory activities. We recognized the potential of harnessing Chicory for the treatment of IBD, prompting a need for in-depth investigation into the underlying mechanisms. METHODS On the third day, mice were given 100, 200 mg/kg of total phenolic acids (PA) from Chicory and 200 mg/kg of sulfasalazine (SASP) via gavage, while dextran sodium sulfate (DSS) concentration was 2.5 % for one week. The study measured and evaluated various health markers including body weight, disease activity index (DAI), colon length, spleen index, histological score, serum concentrations of myeloperoxidase (MPO), nitric oxide (NO), superoxide dismutase (SOD), lipid oxidation (MDA), and inflammatory factors. We evaluated the TRP family and the NLRP3 inflammatory signaling pathways by Western blot, while 16S rDNA sequencing was used to track the effects of PA on gut microbes. RESULTS It was shown that PA ameliorated the weight loss trend, attenuated inflammatory damage, regulated oxidative stress levels, and repaired the intestinal barrier in DSS mice. Analyses of Western blots demonstrated that PA suppressed what was expressed of transient receptor potential family TRPV4, TRPA1, and the expression of NLRP3 inflammatory signaling pathway, NLRP3 and GSDMD. In addition, PA exerted therapeutic effects on IBD by regulating gut microbiota richness and diversity. Meanwhile, the result of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis showed that gut microbiota was mainly related to Membrane Transport, Replication and Repair, Carbohydrate Metabolism and Amino Acid Metabolism. CONCLUSION PA derived from Chicory may have therapeutic effects on IBD by regulating the TRPV4/NLRP3 signaling pathway and gut microbiome. This study provides new insights into the effects of phenolic acids from Chicory on TRP ion channels and gut microbiota, revealing previously unexplored modes of action.
Collapse
Affiliation(s)
- Yuwen Tian
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jin Li
- Department of Painology, Hainan Cancer Hospital, Haikou 570311, China
| | - Lushi Huang
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shen Li
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao Lu
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bingru Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Huarong Liao
- Pharmaceutical Affairs Department, Hubei Provincial Traditional Chinese Medical Hospital HuBei Institute of traditional Chinese Medicine, WuHan 430061, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jian Chen
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
32
|
Li R, Yang P, Liu B, Ye Z, Zhang P, Li M, Gong Y, Huang Y, Yang L, Li M. Lycium barbarum polysaccharide remodels colon inflammatory microenvironment and improves gut health. Heliyon 2024; 10:e30594. [PMID: 38774318 PMCID: PMC11107222 DOI: 10.1016/j.heliyon.2024.e30594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Aim Disturbed intestinal microbiota has been implicated in the inflammatory microenvironment of the colon, which usually results in ulcerative colitis (UC). Given the limitations of these drugs, it is important to explore alternative means of protecting the gut health from UC. This study aimed to investigate the potential of polysaccharides as beneficial nutrients in the regulation of the gut microbiota, which determines the inflammatory microenvironment of the colon. Materials and methods Mice were treated with dextran sulfate sodium (DSS) to evaluate the effects and mechanisms of Lycium barbarum polysaccharide (LBP) in remodeling the inflammatory microenvironment and improving gut health. Body weight and disease activity indices were monitored daily. Hematoxylin and eosin staining was used to analyze colon dynamics. The levels of inflammatory indicators and expression of MUC-2, claudin-1, ZO-1, and G-protein-coupled receptor 5 (TGR5) were determined using assay kits and immunohistochemistry, respectively. 16S rRNA high-throughput sequencing of the intestinal microbiota and liquid chromatography-tandem mass spectrometry for related bile acids were used. Results LBP significantly improved the colonic tissue structure by upregulating MUC-2, claudin-1, and ZO-1 protein expression. The bacterial genus Dubosiella was dominant in healthy mice, but significantly decreased in mice treated with DSS. LBP rehabilitated Dubosiella in the sick guts of DSS mice to a level close to that of healthy mice. The levels of other beneficial bacterial genera Akkermansia and Bifidobacterium were also increased, whereas those of the harmful bacterial genera Turicibacter, Clostridium_sensu_stricto_1, Escherichia-Shigella, and Faecalibaculum decreased. The activity of beneficial bacteria promoted the bile acids lithocholic and deoxycholic acids in mice with UC, which improved the gut barrier function through the upregulation of TGR5. Conclusion The inflammatory microenvironment in the gut is determined by the balance of the gut microbiota. LBP showed great potential as a beneficial nutrient for rehabilitating Dubosiella which is dominant in the gut of healthy mice. Nutrient-related LBP may play an important role in gut health management.
Collapse
Affiliation(s)
- Rong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ping Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Bowen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ziru Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Puyue Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Mingjian Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yong Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Lan Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Min Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| |
Collapse
|
33
|
Zhang C, Fang B, Zhang N, Zhang Q, Niu T, Zhao L, Sun E, Wang J, Xiao R, He J, Li S, Chen J, Guo J, Xiong W, Wang R. The Effect of Bifidobacterium animalis subsp. lactis MN-Gup on Glucose Metabolism, Gut Microbiota, and Their Metabolites in Type 2 Diabetic Mice. Nutrients 2024; 16:1691. [PMID: 38892624 PMCID: PMC11174421 DOI: 10.3390/nu16111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Probiotics have garnered increasing attention as a potential therapeutic approach for type 2 diabetes mellitus (T2DM). Previous studies have confirmed that Bifidobacterium animalis subsp. lactis MN-Gup (MN-Gup) could stimulate the secretion of glucagon-like peptide-1 (GLP-1) in NCI-H716 cells, but whether MN-Gup has a hypoglycemic effect on T2DM in vivo remains unclear. In this study, a T2DM mouse model was constructed, with a high-fat diet and streptozotocin in mice, to investigate the effect of MN-Gup on diabetes. Then, different doses of MN-Gup (2 × 109 CFU/kg, 1 × 1010 CFU/kg) were gavaged for 6 weeks to investigate the effect of MN-Gup on glucose metabolism and its potential mechanisms. The results showed that a high-dose of MN-Gup significantly reduced the fasting blood glucose (FBG) levels and homeostasis model assessment-insulin resistance (HOMA-IR) of T2DM mice compared to the other groups. In addition, there were significant increases in the short-chain fatty acids (SCFAs), especially acetate, and GLP-1 levels in the MN-Gup group. MN-Gup increased the relative abundance of Bifidobacterium and decreased the number of Escherichia-Shigella and Staphylococcus. Moreover, the correlation analysis revealed that Bifidobacterium demonstrated a significant positive correlation with GLP-1 and a negative correlation with the incremental AUC. In summary, this study demonstrates that Bifidobacterium animalis subsp. lactis MN-Gup has significant hypoglycemic effects in T2DM mice and can modulate the gut microbiota, promoting the secretion of SCFAs and GLP-1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Nana Zhang
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Qi Zhang
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Tianjiao Niu
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Liang Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Erna Sun
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Jian Wang
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Ran Xiao
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Jingjing He
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Shusen Li
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Juan Chen
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Jie Guo
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Wei Xiong
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| |
Collapse
|
34
|
Chen J, Zhou M, Chen L, Yang C, Deng Y, Li J, Sun S. Evaluation of Physicochemical Properties and Prebiotics Function of a Bioactive Pleurotus eryngii Aqueous Extract Powder Obtained by Spray Drying. Nutrients 2024; 16:1555. [PMID: 38892489 PMCID: PMC11173815 DOI: 10.3390/nu16111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
A bioactive Pleurotus eryngii aqueous extract powder (SPAE) was obtained by spray drying and its performance in terms of physicochemical properties, in vitro digestion, inflammatory factors, and modulation of the intestinal microbiota was explored. The results indicated that the SPAE exhibited a more uniform particle size distribution than P. eryngii polysaccharide (PEP). Meanwhile, a typical absorption peak observed at 843 cm-1 in the SPAE FTIR spectra indicated the existence of α-glycosidic bonds. SPAE exhibited higher antioxidant abilities and superior resistance to digestion in vitro. In addition, SPAE supplementation to mice significantly reduced the release of factors that promote inflammation, enhanced the secretion of anti-inflammatory factors, and sustained maximum production of short-chain fatty acids (SCFAs). Additionally, it significantly enhanced the relative abundance of SCFAs-producing Akkermansia and reduced the abundance of Ruminococcus and Clostridiides in intestines of mice. These results show the potential of SPAE as a novel material with prebiotic effects for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Jianqiu Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (M.Z.); (L.C.); (Y.D.)
| | - Mengling Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (M.Z.); (L.C.); (Y.D.)
| | - Liding Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (M.Z.); (L.C.); (Y.D.)
- Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Chengfeng Yang
- Sanya Institute, China Agricultural University, Sanya 572025, China;
| | - Yating Deng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (M.Z.); (L.C.); (Y.D.)
| | - Jiahuan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (M.Z.); (L.C.); (Y.D.)
- Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (M.Z.); (L.C.); (Y.D.)
- Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Ningde 352200, China
| |
Collapse
|
35
|
Yi C, Zou H, Lin X, Liu S, Wang J, Tian Y, Deng X, Luo J, Li C, Long Y. Zhibai dihuang pill (ZBDH) exhibits therapeutic effects on idiopathic central sexual precocity in rats by modulating the gut microflora. Heliyon 2024; 10:e29723. [PMID: 38707434 PMCID: PMC11066310 DOI: 10.1016/j.heliyon.2024.e29723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024] Open
Abstract
To reveal the role of gut microbiota (GM) in the occurrence and development of idiopathic central precocious puberty (ICPP) using 16S rDNA sequencing and bioinformatics analysis. The Danazol-induced ICPP model was successfully constructed in this study. ZBDH and GnRHa treatments could effectively inhibit ICPP in rats, as manifested by the delayed vaginal opening time, reduced weight, decreased uterine organ coefficient, and decreased uterine wall thickness and corpus luteum number, as well as remarkably reduced serum hormone (LH, FSH, and E2) levels. According to 16S rDNA sequencing analysis results, there was no significant difference in the GM community diversity across different groups; however, the composition of the microbial community and the abundance of the dominant microbial community were dramatically different among groups. ZBDH and GnRHa treatments could effectively reduce the abundance of Muribaculateae and Lactobacillus and promote Prevotella abundance. ZBDH and GnRHa were effective in treating Danazol-induced ICPP model rats. The therapeutic effects of ZBDH and GnRHa could be related to the changes in GM in rats.
Collapse
Affiliation(s)
- Canhong Yi
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Hui Zou
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Xiaojuan Lin
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Shanshan Liu
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Juan Wang
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Yuquan Tian
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Xujing Deng
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Jianhong Luo
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Chan Li
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| | - Yin Long
- Children's Medical Center, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, Hunan, 410005, PR China
| |
Collapse
|
36
|
Zhang W, Yu L, Yang Q, Zhang J, Wang W, Hu X, Li J, Zheng G. Smilax China L. polysaccharide prevents HFD induced-NAFLD by regulating hepatic fat metabolism and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155478. [PMID: 38452696 DOI: 10.1016/j.phymed.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/28/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The increasing incidence of nonalcoholic fatty liver disease (NAFLD) has urged the development of new therapeutics. NAFLD is intimately linked to gut microbiota due to the hepatic portal system, and utilizing natural polysaccharides as prebiotics has become a prospective strategy for preventing NAFLD. Smilax china L. polysaccharide (SCP) possesses excellent hepatoprotective and anti-inflammatory activity. However, its protective effects on NAFLD remains unclear. PURPOSE The goal of this study was to explore the protective effects of SCP on high-fat diet (HFD)-induced NAFLD mice by regulating hepatic fat metabolism and gut microbiota. METHODS Extraction and isolation from Smilax china L. rhizome to obtain SCP. C57BL/6 J mice were distributed to six groups: Control (normal chow diet), HFD-fed mice were assigned to HFD, simvastatin (SVT), and low-, medium-, high-doses of SCP for 12 weeks. The body, liver, and different adipose tissues weights were detected, and lipids in serum and liver were assessed. RT-PCR and Western blot were used to detect the hepatic fat metabolism-related genes and proteins. Gut microbiota of cecum contents was profiled through 16S rRNA gene sequencing. RESULTS SCP effectively reversed HFD-induced increase weights of body, liver, and different adipose tissues. Lipid levels of serum and liver were also significantly reduced after SCP intervention. According to the results of RT-PCR and western blot analysis, SCP treatment up-regulated the genes and proteins related to lipolysis were up-regulated, while lipogenesis-related genes and proteins were down-regulated. Furthermore, the HFD-induced dysbiosis of intestinal microbiota was similarly repaired by SCP intervention, including enriching beneficial bacteria and depleting harmful bacteria. CONCLUSION SCP could effectively prevent HFD-induced NAFLD, might be considered as a prebiotic agent due to its excellent effects on altering hepatic fat metabolism and maintaining gut microbiota homeostasis.
Collapse
Affiliation(s)
- Wenkai Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Longhui Yu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinru Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jinfeng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Wenjing Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xinru Hu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jingen Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
37
|
Chen H, Yu Z, Qi Z, Huang X, Gao J. Tongfu Lifei Decoction Attenuated Sepsis-Related Intestinal Mucosal Injury Through Regulating Th17/Treg Balance and Modulating Gut Microbiota. J Interferon Cytokine Res 2024; 44:208-220. [PMID: 38691831 DOI: 10.1089/jir.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Intestinal damage and secondary bacterial translocation are caused by the inflammatory response induced by sepsis. Tongfu Lifei (TLF) decoction has a protective effect on sepsis-related gastrointestinal function injury. However, the relation between gut microbiota, immune barrier, and sepsis under the treatment of TLF have not been well clarified yet. Here, rats were subjected to cecal ligation and puncture (CLP) to create a sepsis model. Subsequently, the TLF decoction was given to CLP rats by gavage, fecal microbiota transplantation (FMT), and antibiotic were used as positive control. TLF suppressed the inflammatory response and improved the pathological changes in the intestines of CLP rats. Besides, TLF promoted the balance of the percentage of the Th17 and Treg cells. Intestinal barrier function was also improved by TLF through enhancing ZO-1, and Occludin and Claudin 1 expression, preventing the secondary translocation of other gut microbiota. TLF dramatically boosted the gut microbiota's alpha- and beta-diversity in CLP rats. Moreover, it increased the relative abundance of anti-inflammatory gut microbiota and changed the progress of the glucose metabolism. In short, TLF regulated the gut microbiota to balance the ratio of Th17/Treg cells, reducing the inflammation in serum and intestinal mucosal injury in rats.
Collapse
Affiliation(s)
- Huizhen Chen
- Department of Intensive Care Medicine, and Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Zhenfei Yu
- Department of Intensive Care Medicine, and Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Zeming Qi
- Department of Infectious Diseases, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Xiaozhe Huang
- Department of Infectious Diseases, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jianting Gao
- Department of Intensive Care Medicine, and Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| |
Collapse
|
38
|
Jing Y, Wang Q, Bai F, Li Z, Li Y, Liu W, Yan Y, Zhang S, Gao C, Yu Y. Role of microbiota-gut-brain axis in natural aging-related alterations in behavior. Front Neurosci 2024; 18:1362239. [PMID: 38699678 PMCID: PMC11063250 DOI: 10.3389/fnins.2024.1362239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Aging is a complex, time-dependent biological process that involves a decline of overall function. Over the past decade, the field of intestinal microbiota associated with aging has received considerable attention. However, there is limited information surrounding microbiota-gut-brain axis (MGBA) to further reveal the mechanism of aging. Methods In this study, locomotory function and sensory function were evaluated through a series of behavioral tests.Metabolic profiling were determined by using indirect calorimetry.16s rRNA sequence and targeted metabolomics analyses were performed to investigate alterations in the gut microbiota and fecal short-chain fatty acids (SCFAs). The serum cytokines were detected by a multiplex cytokine assay.The expression of proinflammatory factors were detected by western blotting. Results Decreased locomotor activity, decreased pain sensitivity, and reduced respiratory metabolic profiling were observed in aged mice. High-throughput sequencing revealed that the levels of genus Lactobacillus and Dubosiella were reduced, and the levels of genus Alistipes and Bacteroides were increased in aged mice. Certain bacterial genus were directly associated with the decline of physiological behaviors in aged mice. Furthermore, the amount of fecal SCFAs in aged mice was decreased, accompanied by an upregulation in the circulating pro-inflammatory cytokines and increased expression of inflammatory factors in the brain. Discussion Aging-induced microbial dysbiosis was closely related with the overall decline in behavior, which may attribute to the changes in metabolic products, e.g., SCFAs, caused by an alteration in the gut microbiota, leading to inflammaging and contributing to neurological deficits. Investigating the MGBA might provide a novel viewpoint to exploring the pathogenesis of aging and expanding appropriate therapeutic targets.
Collapse
Affiliation(s)
- Yingli Jing
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Qiuying Wang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Zihan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Weijin Liu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yitong Yan
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuangyue Zhang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Chen Gao
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yan Yu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
39
|
Sun L, Wen L, Li Q, Chen R, Wen S, Lai X, Lai Z, Cao J, Zhang Z, Hao M, Cao F, Sun S. Microbial Fermentation Enhances the Effect of Black Tea on Hyperlipidemia by Mediating Bile Acid Metabolism and Remodeling Intestinal Microbes. Nutrients 2024; 16:998. [PMID: 38613030 PMCID: PMC11013065 DOI: 10.3390/nu16070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Black tea (BT), the most consumed tea worldwide, can alleviate hyperlipidemia which is a serious threat to human health. However, the quality of summer BT is poor. It was improved by microbial fermentation in a previous study, but whether it affects hypolipidemic activity is unknown. Therefore, we compared the hypolipidemic activity of BT and microbially fermented black tea (EFT). The results demonstrated that BT inhibited weight gain and improved lipid and total bile acid (TBA) levels, and microbial fermentation reinforced this activity. Mechanistically, both BT and EFT mediate bile acid circulation to relieve hyperlipidemia. In addition, BT and EFT improve dyslipidemia by modifying the gut microbiota. Specifically, the increase in Lactobacillus johnsonii by BT, and the increase in Mucispirillum and Colidextribacter by EFT may also be potential causes for alleviation of hyperlipidemia. In summary, we demonstrated that microbial fermentation strengthened the hypolipidemic activity of BT and increased the added value of BT.
Collapse
Affiliation(s)
- Lingli Sun
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Lianghua Wen
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China; (L.W.); (F.C.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Ruohong Chen
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Shuai Wen
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Junxi Cao
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Mengjiao Hao
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Fanrong Cao
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China; (L.W.); (F.C.)
| | - Shili Sun
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| |
Collapse
|
40
|
Lackner S, Mahnert A, Moissl-Eichinger C, Madl T, Habisch H, Meier-Allard N, Kumpitsch C, Lahousen T, Kohlhammer-Dohr A, Mörkl S, Strobl H, Holasek S. Interindividual differences in aronia juice tolerability linked to gut microbiome and metabolome changes-secondary analysis of a randomized placebo-controlled parallel intervention trial. MICROBIOME 2024; 12:49. [PMID: 38461313 PMCID: PMC10924357 DOI: 10.1186/s40168-024-01774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Aronia melanocarpa is a berry rich in polyphenols known for health benefits. However, the bioavailability of polyphenols has been questioned, and the individual taste acceptance of the fruit with its specific flavor varies. We recently observed substantial differences in the tolerability of aronia juice among healthy females, with half of the individuals tolerating aronia juice without complaints. Given the importance of the gut microbiome in food digestion, we investigated in this secondary analysis of the randomized placebo-controlled parallel intervention study (ClinicalTrials.gov registration: NCT05432362) if aronia juice tolerability was associated with changes in intestinal microbiota and bacterial metabolites, seeking for potential mechanistic insights into the impact on aronia polyphenol tolerance and metabolic outcomes. RESULTS Forty females were enrolled for this 6-week trial, receiving either 100 ml natural aronia juice (verum, V) twice daily or a polyphenol-free placebo (P) with a similar nutritional profile, followed by a 6-week washout. Within V, individuals were categorized into those who tolerated the juice well (Vt) or reported complaints (Vc). The gut microbiome diversity, as analyzed by 16S rRNA gene-based next-generation sequencing, remained unaltered in Vc but changed significantly in Vt. A MICOM-based flux balance analysis revealed pronounced differences in the 40 most predictive metabolites post-intervention. In Vc carbon-dioxide, ammonium and nine O-glycans were predicted due to a shift in microbial composition, while in Vt six bile acids were the most likely microbiota-derived metabolites. NMR metabolomics of plasma confirmed increased lipoprotein subclasses (LDL, VLDL) post-intervention, reverting after wash out. Stool samples maintained a stable metabolic profile. CONCLUSION In linking aronia polyphenol tolerance to gut microbiota-derived metabolites, our study explores adaptive processes affecting lipoprotein profiles during high polyphenol ingestion in Vt and examines effects on mucosal gut health in response to intolerance to high polyphenol intake in Vc. Our results underpin the importance of individualized hormetic dosing for beneficial polyphenol effects, demonstrate dynamic gut microbiome responses to aronia juice, and emphasize personalized responses in polyphenol interventions.
Collapse
Affiliation(s)
- Sonja Lackner
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Hansjörg Habisch
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Nathalie Meier-Allard
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Theresa Lahousen
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Alexandra Kohlhammer-Dohr
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Auenbruggerplatz 3, 8036, Graz, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Sandra Holasek
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|
41
|
Xu W, Zhang S, Yang Y, Zhan J, Zang C, Yu H, Wu C. Therapeutic potential of dietary nutrients and medicinal foods against metabolic disorders: Targeting Akkermansia muciniphila. FOOD FRONTIERS 2024; 5:329-349. [DOI: 10.1002/fft2.341] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
AbstractAs one of the most attractive next‐generation probiotics, mucin‐degrading Akkermansia muciniphila has emerged as an essential and integral factor in maintaining human health and affecting pathological outcomes. Its abundance is inversely associated with various metabolic diseases (e.g., obesity and type 2 diabetes), cardiovascular diseases, and intestinal inflammation. Supplementing A. muciniphila to restore the gut microbiota ecosystem is a promising approach for treating metabolic disorders. However, the direct utilization of this probiotic is limited by technological and regulatory hurdles, such as the in vitro bulk culture of A. muciniphila and the need for expensive animal‐derived materials. Therefore, enrichment of A. muciniphila using nutraceutical supplements is a feasible strategy. Dietary supplements, especially medicinal herbs, offer a vast and valuable resource as potential prebiotics for promoting the growth of A. muciniphila in the gut, ensuring reliable safety and efficacy. In this study, we first systemically reviewed the dietary substances and medicinal foods known to promote A. muciniphila from over 100 literature sources, aiming to establish a candidate basis for future exploration of prebiotics targeting A. muciniphila. Furthermore, we summarized and discussed the major regulatory factors and mechanisms responsible for the beneficial effect of A. muciniphila on metabolic disorders, hoping to open up exciting directions for in‐depth research on the pharmacological mechanism of A. muciniphila and pave the way for its clinical therapeutics.
Collapse
Affiliation(s)
- Wenyi Xu
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Beijing QuantiHealth Technology Co., Ltd. Beijing China
| | - Shaozhuo Zhang
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Yanan Yang
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Jiaguo Zhan
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Chenchen Zang
- Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Huifang Yu
- Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Chongming Wu
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| |
Collapse
|
42
|
Baranowska-Wójcik E, Winiarska-Mieczan A, Olcha P, Kwiecień M, Jachimowicz-Rogowska K, Nowakowski Ł, Miturski A, Gałczyński K. Polyphenols Influence the Development of Endometrial Cancer by Modulating the Gut Microbiota. Nutrients 2024; 16:681. [PMID: 38474808 DOI: 10.3390/nu16050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Dysbiosis of the microbiota in the gastrointestinal tract can induce the development of gynaecological tumours, particularly in postmenopausal women, by causing DNA damage and alterations in metabolite metabolism. Dysbiosis also complicates cancer treatment by influencing the body's immune response and disrupting the sensitivity to chemotherapy drugs. Therefore, it is crucial to maintain homeostasis in the gut microbiota through the effective use of food components that affect its structure. Recent studies have shown that polyphenols, which are likely to be the most important secondary metabolites produced by plants, exhibit prebiotic properties. They affect the structure of the gut microbiota and the synthesis of metabolites. In this review, we summarise the current state of knowledge, focusing on the impact of polyphenols on the development of gynaecological tumours, particularly endometrial cancer, and emphasising that polyphenol consumption leads to beneficial modifications in the structure of the gut microbiota.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Piotr Olcha
- Department of Gynecology and Gynecological Endocrinology, Medical University of Lublin, Aleje Racławickie 23, 20-049 Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Łukasz Nowakowski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Andrzej Miturski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Krzysztof Gałczyński
- Faculty of Medical Sciences and Health Sciences, Siedlce University of Natural Sciences and Humanities, Konarskiego 2, 08-110 Siedlce, Poland
| |
Collapse
|
43
|
Li S, Li X, Sha Y, Qi S, Zhang X, Wang H, Wang Z, Zhao S, Jiao T. Effects of Isochlorogenic Acid on Ewes Rumen Fermentation, Microbial Diversity and Ewes Immunity of Different Physiological Stages. Animals (Basel) 2024; 14:715. [PMID: 38473100 DOI: 10.3390/ani14050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The effects of isochlorogenic acid (ICGA) on ewes rumen environment, microbial diversity, and immunity at different physiological stages (estrus, pregnancy and lactation) were studied in this experiment. Twenty healthy female Hu lambs of 1.5 months with similar body weight (17.82 ± 0.98 kg) and body condition were selected and randomly divided into two groups: the control group (CON) and the ICGA group (ICGA). The lambs of CON were fed a basal diet, while the lambs of ICGA were supplemented with 0.1% ICGA based on the basal diet. Lambs rumen fermentation characteristics, microbial diversity and immunity at estrus, pregnancy, and lactation stages were determined and analyzed, respectively. The results showed that the rumen pH in CON increased first and then decreased as lambs grew (p < 0.05). However, it showed the opposite change in ICGA. The content of ammonia nitrogen (NH3-N) showed the highest at estrus stage in both groups, but it was significantly higher in ICGA than that in CON (p < 0.05). The Acetic acid/propionic acid (A/P) ratio at estrus stage and the volatile fatty acids (VFAs) at pregnancy stage in ICGA were significantly higher than those of the CON (p < 0.05). The 16S rDNA sequencing analysis showed that the Shannon, Chao 1 and ACE indexes of the ICGA were significantly higher than those of the CON both at estrus and lactation stages (p < 0.05), while they showed higher at the pregnancy stage in CON (p > 0.05). Principal component analysis (PCA) showed that there were significant differences in rumen microorganism structure between CON and ICGA at all physiological stages (p < 0.01). At the phylum level, compared with the CON, Firmicutes relative abundance of three physiological stages decreased (p > 0.05) while Bacteroidota increased (p > 0.05). The relative abundance of Synergistota at estrus stage and Patescibacteria at the lactation stage increased significantly too (p < 0.05). At the genus level, compared with the CON, the relative abundance of Prevotella at three stages showed the highest (p > 0.05), while the relative abundance of Succiniclasticum, unclassified_Selenomonadaceae and Rikenellaceae_RC9_gut_group showed different abundances at different physiological stages in ICGA. Compared with the CON, the lambs of the ICGA showed higher blood IgG, IgM, and TNF- α contents at three physiological stages and higher IL-6 contents at pregnancy stage (p < 0.05). Conclusion: Adding ICGA could regulate ewes rumen fermentation mode at different physiological stages by increasing rumen NH3-N at estrus, VFAs at pregnancy, and the ratio of A/P at lactation. It optimizes rumen microbial flora of different physiological stages by increasing Bacteroidota relative abundance while reducing Firmicutes relative abundance, maintaining rumen microbial homeostasis at pregnant stage, increasing the number of beneficial bacteria in later lactating and ewes blood immunoglobulins content at three physiological stages.
Collapse
Affiliation(s)
- Shuyan Li
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiongxiong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Sha
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuai Qi
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| | - Xia Zhang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| | - Huning Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhengwen Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ting Jiao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
44
|
Guo W, Tang X, Zhang Q, Xiong F, Yan Y, Zhao J, Mao B, Zhang H, Cui S. Lacticaseibacillus paracasei CCFM1222 Ameliorated the Intestinal Barrier and Regulated Gut Microbiota in Mice with Dextran Sulfate Sodium-Induced Colitis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10236-0. [PMID: 38376820 DOI: 10.1007/s12602-024-10236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Lacticaseibacillus paracasei has been regarded as a probiotic bacterium because of its role in anti-inflammatory properties and maintenance of intestinal barrier permeability. Here, we explored the anticolitic effects and mechanism of L. paracasei CCFM1222. The results showed that L. paracasei CCFM1222 supplementation could suppress the disease activity index (DAI) and colon length shortening in colitis mice, accompanied by a moderate increase in colonic tight junction proteins (ZO-1, occludin and claudin-1). L. paracasei CCFM1222 intervention significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and significantly elevated the activities of antioxidant enzymes (including SOD, GSH-Px, and CAT) in the colon by regulating the TLR4/MyD88/NF-κB and Nrf2 signaling pathways in colitis mice. In addition, L. paracasei CCFM1222 significantly shifted the gut microbiota, including elevating the abundance of Catabacter, Ruminiclostridium 9, Alistipes, and Faecalibaculum, as well as reducing the abundance of Mucispirillum, Escherichia-Shigella, and Salmonella, which was associated with the improvement of colonic barrier damage. Overall, these results suggest that L. paracasei CCFM1222 is a good candidate for probiotic of improving colonic barrier damage and associated diseases.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Feifei Xiong
- Ningbo Yuyi Biotechnology Co., Ltd, Ningbo, 315153, China
| | - Yongqiu Yan
- Ningbo Yuyi Biotechnology Co., Ltd, Ningbo, 315153, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Ningbo Yuyi Biotechnology Co., Ltd, Ningbo, 315153, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Ningbo Yuyi Biotechnology Co., Ltd, Ningbo, 315153, China
| |
Collapse
|
45
|
Kong J, Yang F, Zong Y, Wang M, Jiang S, Ma Z, Li Z, Li W, Cai Y, Zhang H, Zhao X, Wang J. Early-life antibiotic exposure promotes house dust mite-induced allergic airway inflammation by impacting gut microbiota and lung lipid metabolism. Int Immunopharmacol 2024; 128:111449. [PMID: 38199196 DOI: 10.1016/j.intimp.2023.111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Asthma is a chronic inflammatory respiratory disease. Early-life antibiotic exposure is a unique risk factor for the incidence and severity of asthma later in life. Perturbations in microbial-metabolite-immune interaction caused by antibiotics are closely associated with the pathogenesis of allergy and asthma. We investigated the effect of early intervention with common oral antibiotics on later asthma exacerbations and found that different antibiotic exposures can amplify different types of immune responses induced by HDM. Cefixime (CFX) promoted a biased type 2 inflammation, azithromycin (AZM) enhanced Th17 immune response, and cefuroxime axetil (CFA) induced eosinophils recruitment. Moreover, early-life antibiotic exposure can have short- and long-term effects on the abundance, composition, and diversity of the gut microbiota. In the model of CFX-promoted type 2 airway inflammation, fecal metabolomics indicated abnormal lipid metabolism and T cell response. Lipidomic also suggested allergic airway inflammation amplified by CFX is closely associated with abnormal lipid metabolism in lung tissues. Moreover, abnormalities in lipid metabolism-related genes (LMRGs) were found to have cellular heterogeneity be associated with asthma severity by bioinformatics analysis.
Collapse
Affiliation(s)
- Jingwei Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Manting Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shiyuan Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaotian Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenle Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyang Cai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huixian Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
46
|
Ocampo-Anguiano PV, Victoria-Ruiz LL, Reynoso-Camacho R, Olvera-Ramírez AM, Rocha-Guzmán NE, Ramos-Gómez M, Ahumada-Solórzano SM. Ingestion of Bean Leaves Reduces Metabolic Complications and Restores Intestinal Integrity in C57BL/6 Mice with Obesity Induced by a High-Fat and High-Fructose Diet. Nutrients 2024; 16:367. [PMID: 38337654 PMCID: PMC10856891 DOI: 10.3390/nu16030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Consumption of foods with fiber and compounds can promote gastrointestinal health and reduce obesity complications. Therefore, treatment with common bean leaves (BL) against obesity was evaluated in mice with a high-fat and high-fructose diet (HFFD) for 14 weeks. The bromatological and phytochemical characterization of BL were determined. Afterwards, the animals were supplemented with BL (10%) or a standard diet (SD) as a strategy to encourage a healthy diet for 12 additional weeks. Changes in body composition, lipid profile, and intestinal integrity were analyzed. The characterization of BL stood out for its content of 27.2% dietary fiber, total phenolics (475.04 mg/100 g), and saponins (2.2 mg/100 g). The visceral adipose tissue (VAT) decreased in the BL group by 52% compared to the HFFD group. Additionally, triglyceride levels were 23% lower in the BL consumption group compared to the HFFD group. The improvement in lipid profile was attributed to the 1.77-fold higher fecal lipid excretion in the BL consumption group compared to the HFFD group and the inhibition of pancreatic lipase by 29%. Furthermore, BL supplementation reduced the serum levels of IL-6 (4.4-fold) and FITC-dextran by 50% compared with those in the HFFD group. Metabolic endotoxemia was inhibited after BL supplementation (-33%) compared to the HFFD group. BL consumption as a treatment in obese mice reduces adipose tissue accumulation and improves the lipid profile. Furthermore, we report for the first time that BL consumption improves intestinal integrity.
Collapse
Affiliation(s)
- Perla Viridiana Ocampo-Anguiano
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
- Interdisciplinary Research in Biomedicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. de las Ciencias S/N, Queretaro 76230, Mexico
| | - Laura Lizeth Victoria-Ruiz
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
| | - Rosalía Reynoso-Camacho
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
| | - Andrea Margarita Olvera-Ramírez
- Department of Veterinary Medicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. de las Ciencias S/N, Queretaro 76230, Mexico;
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Durango 34080, Mexico;
| | - Minerva Ramos-Gómez
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
| | - Santiaga Marisela Ahumada-Solórzano
- Interdisciplinary Research in Biomedicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. de las Ciencias S/N, Queretaro 76230, Mexico
| |
Collapse
|
47
|
Langhi C, Vallier M, Bron A, Otero YF, Maura M, Le Joubioux F, Blomberg N, Giera M, Guigas B, Maugard T, Chassaing B, Peltier S, Blanquet-Diot S, Bard JM, Sirvent P. A polyphenol-rich plant extract prevents hypercholesterolemia and modulates gut microbiota in western diet-fed mice. Front Cardiovasc Med 2024; 11:1342388. [PMID: 38317864 PMCID: PMC10839041 DOI: 10.3389/fcvm.2024.1342388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Totum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia. Methods C57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks. Results The Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota. Discussion The characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota.
Collapse
Affiliation(s)
| | | | - Auriane Bron
- UMR 454 Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | | | | | | | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Thierry Maugard
- Equipe BCBS (Biotechnologies et Chimie des Bioressources Pour la Santé), UMR CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, France
| | - Benoit Chassaing
- Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris, France
| | | | - Stéphanie Blanquet-Diot
- UMR 454 Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean-Marie Bard
- Laboratoire de Biochimie Générale et Appliquée, UFR de Pharmacie, ISOMer-UE 2160, IUML-Institut Universitaire Mer et Littoral-FR3473 CNRS, Université de Nantes, Nantes, France
| | | |
Collapse
|
48
|
Rosa F, Marigliano B, Mannucci S, Candelli M, Savioli G, Merra G, Gabrielli M, Gasbarrini A, Franceschi F, Piccioni A. Coffee and Microbiota: A Narrative Review. Curr Issues Mol Biol 2024; 46:896-908. [PMID: 38275671 PMCID: PMC10814731 DOI: 10.3390/cimb46010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Coffee is one of the most widely consumed beverages in the world, which has important repercussions on the health of the individual, mainly because of certain compounds it contains. Coffee consumption exerts significant influences on the entire body, including the gastrointestinal tract, where a central role is played by the gut microbiota. Dysbiosis in the gut microbiota is implicated in the occurrence of numerous diseases, and knowledge of the microbiota has proven to be of fundamental importance for the development of new therapeutic strategies. In this narrative review, we thoroughly investigated the link between coffee consumption and its effects on the gut microbiota and the ensuing consequences on human health. We have selected the most significant articles published on this very interesting link, with the aim of elucidating the latest evidence about the relationship between coffee consumption, its repercussions on the composition of the gut microbiota, and human health. Based on the various studies carried out in both humans and animal models, it has emerged that coffee consumption is associated with changes in the gut microbiota, although further research is needed to understand more about this link and the repercussions for the whole organism.
Collapse
Affiliation(s)
- Federico Rosa
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.M.); (S.M.); (A.G.); (F.F.)
| | - Benedetta Marigliano
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.M.); (S.M.); (A.G.); (F.F.)
| | - Sergio Mannucci
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.M.); (S.M.); (A.G.); (F.F.)
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.C.); (M.G.)
| | - Gabriele Savioli
- Emergency Department, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
- PhD School in Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Merra
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy;
| | - Maurizio Gabrielli
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.C.); (M.G.)
| | - Antonio Gasbarrini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.M.); (S.M.); (A.G.); (F.F.)
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.C.); (M.G.)
| | - Francesco Franceschi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.M.); (S.M.); (A.G.); (F.F.)
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.C.); (M.G.)
| | - Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.C.); (M.G.)
| |
Collapse
|
49
|
Li S, Han X, Liu N, Chang J, Liu G, Hu S. Lactobacillus plantarum attenuates glucocorticoid-induced osteoporosis by altering the composition of rat gut microbiota and serum metabolic profile. Front Immunol 2024; 14:1285442. [PMID: 38264658 PMCID: PMC10803555 DOI: 10.3389/fimmu.2023.1285442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Osteoporosis, one of the most common non-communicable human diseases worldwide, is one of the most prevalent disease of the adult skeleton. Glucocorticoid-induced osteoporosis(GIOP) is the foremost form of secondary osteoporosis, extensively researched due to its prevalence.Probiotics constitute a primary bioactive component within numerous foods, offering promise as a potential biological intervention for preventing and treating osteoporosis. This study aimed to evaluate the beneficial effects of the probiotic Lactobacillus plantarum on bone health and its underlying mechanisms in a rat model of glucocorticoid dexamethasone-induced osteoporosis, using the osteoporosis treatment drug alendronate as a reference. Methods We examined the bone microstructure (Micro-CT and HE staining) and analyzed the gut microbiome and serum metabolome in rats. Results and discussion The results revealed that L. plantarum treatment significantly restored parameters of bone microstructure, with elevated bone density, increased number and thickness of trabeculae, and decreased Tb.Sp. Gut microbiota sequencing results showed that probiotic treatment increased gut microbial diversity and the ratio of Firmicutes to Bacteroidota decreased. Beneficial bacteria abundance was significantly increased (Lachnospiraceae_NK4A136_group, Ruminococcus, UCG_005, Romboutsia, and Christensenellaceae_R_7_group), and harmful bacteria abundance was significantly decreased (Desulfovibrionaceae). According to the results of serum metabolomics, significant changes in serum metabolites occurred in different groups. These differential metabolites were predominantly enriched within the pathways of Pentose and Glucuronate Interconversions, as well as Propanoate Metabolism. Furthermore, treatment of L. plantarum significantly increased serum levels of Pyrazine and gamma-Glutamylcysteine, which were associated with inhibition of osteoclast formation and promoting osteoblast formation. Lactobacillus plantarum can protect rats from DEX-induced GIOP by mediating the "gut microbial-bone axis" promoting the production of beneficial bacteria and metabolites. Therefore L. plantarum is a potential candidate for the treatment of GIOP.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiang Chang
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| |
Collapse
|
50
|
Tang E, Hu T, Jiang Z, Shen X, Lin H, Xian H, Wu X. Isoquercitrin alleviates lipopolysaccharide-induced intestinal mucosal barrier damage in mice by regulating TLR4/MyD88/NF-κB signaling pathway and intestinal flora. Food Funct 2024; 15:295-309. [PMID: 38084034 DOI: 10.1039/d3fo03319h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Intestinal mucosal barrier damage is closely associated with the development of several intestinal inflammatory diseases. Isoquercitrin (IQ) is a natural flavonoid compound derived from plants, which exhibits high antioxidant and anti-inflammatory activity with minimal side effects in humans. Therefore, it shows great potential for preventing and treating intestinal mucosal barrier damage. This study aims to investigate the ameliorative effect and mechanism of IQ on lipopolysaccharide (LPS)-induced intestinal mucosal barrier damage in mice. The mice were treated with IQ for 7 days and then injected with LPS to induce intestinal mucosal barrier damage. The results revealed that IQ treatment alleviated LPS-induced intestinal mucosal barrier damage in mice, which can be evidenced by the improvements in intestinal morphology and the promotion of expression in intestinal tight junctions (ZO-1, Claudin-1, and Occludin), as well as MUC2 mucin. IQ also attenuated intestinal inflammatory responses by inhibiting the TLR4/MyD88/NF-κB signaling pathway and reducing the expression and plasma levels of IL-6, IL-1β, and TNF-α. Furthermore, IQ significantly increased the relative abundance of beneficial bacteria, including Dubosiella, Akkermansia muciniphila and Faecalibaculum rodentium, while suppressing the growth of harmful bacteria such as Mucispirillum schaedleri in the intestinal flora of mice. Consequently, IQ can alleviate the LPS-induced intestinal mucosal barrier damage in mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway and modulating the intestinal flora.
Collapse
Affiliation(s)
- Enhui Tang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tong Hu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Zhaokang Jiang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Xiaojun Shen
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Huan Lin
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Haiyan Xian
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Xinlan Wu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|