1
|
Sun G, He L. A new paradigm for cancer immunotherapy: targeting immunogenic cell death-related noncoding RNA. Front Immunol 2025; 15:1498781. [PMID: 39916954 PMCID: PMC11798941 DOI: 10.3389/fimmu.2024.1498781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025] Open
Abstract
Cancer immunotherapy has shown significant potential in treating several malignancies by stimulating the host immune system to recognize and attack cancer cells. Immunogenic cell death (ICD) can amplify the antitumor immune responses and reverse the immunosuppressive tumor microenvironment, thus increasing the sensitivity of cancer immunotherapy. In recent years, noncoding RNAs (ncRNAs) have emerged as key regulatory factors in ICD and oncologic immunity. Accordingly, ICD-related ncRNAs hold promise as novel therapeutic targets for optimizing the efficacy of cancer immunotherapy. However, the immunomodulatory properties of ICD-related ncRNAs have not yet been comprehensively summarized. Hence, we summarize the current knowledge on ncRNAs involved in ICD and their potential roles in cancer immunotherapy in this review. It deepens our understanding of ncRNAs associated with ICD and provides a new strategy to enhance cancer immunotherapy by specifically targeting the ICD-related ncRNAs.
Collapse
Affiliation(s)
| | - Ling He
- The Ward Section of Home Overseas Doctors, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Jin S, Zheng Y, Li D, Liu X, Zhu T, Wang S, Liu Z, Liu Y. Effect of genistein supplementation on microenvironment regulation of breast tumors in obese mice. Breast Cancer Res 2024; 26:147. [PMID: 39456028 PMCID: PMC11515845 DOI: 10.1186/s13058-024-01904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity is an important risk factor for breast cancer in women before and after menopause. Adipocytes, key mediators in the tumor microenvironment, play a pivotal role in the relationship between obesity with cancer. However, the potential of dietary components in modulating this relationship remains underexplored. Genistein, a soy-derived isoflavone, has shown promise in reducing breast cancer risk, attenuating obesity-associated inflammation, and improving insulin resistance. However, there are no reports examining whether genistein has the ability to reduce the effects of obesity on breast tumor development. In this study, we constructed a mammary tumor model in ovariectomized obese mice and examined the effects of genistein on body condition and tumor growth. Moreover, the effects of genistein on the tumor microenvironment were examined via experimental observation of peritumoral adipocytes and macrophages. In addition, we further investigated the effect of genistein on adipocyte and breast cancer cell crosstalk via coculture experiments. Our findings indicate that dietary genistein significantly alleviates obesity, systemic inflammation, and metabolic disorders induced by a high-fat diet in ovariectomized mice. Notably, it also inhibits tumor growth in vivo. The impact of genistein extends to the tumor microenvironment, where it reduces the production of cancer-associated adipocytes (CAAs) and the recruitment of M2d-subtype macrophages. In vitro, genistein mitigates the transition of adipocytes into CAAs and inhibits the expression of inflammatory factors by activating PPAR-γ pathway and degrading nuclear NF-κB. Furthermore, it impedes the acquisition of invasive properties and epithelial‒mesenchymal transition in breast cancer cells under CAA-induced inflammation, disrupting the Wnt3a/β-catenin pathway. Intriguingly, the PPAR-γ inhibitor T0070907 counteracted the effects of genistein in the coculture system, underscoring the specificity of its action. Our study revealed that genistein can mitigate the adverse effects of obesity on breast cancer by modulating the tumor microenvironment. These findings provide new insights into how genistein intake and a soy-based diet can reduce breast cancer risk.
Collapse
Affiliation(s)
- Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yingce Zheng
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China
| | - Ding Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xingyao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tingting Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuang Wang
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Zhonghua Liu
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China.
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Habanjar O, Nehme R, Goncalves-Mendes N, Cueff G, Blavignac C, Aoun J, Decombat C, Auxenfans C, Diab-Assaf M, Caldefie-Chézet F, Delort L. The obese inflammatory microenvironment may promote breast DCIS progression. Front Immunol 2024; 15:1384354. [PMID: 39072314 PMCID: PMC11272476 DOI: 10.3389/fimmu.2024.1384354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Ductal carcinoma in situ (DCIS), characterized by a proliferation of neoplastic cells confined within the mammary ducts, is distinctly isolated from the surrounding stroma by an almost uninterrupted layer of myoepithelial cells (MECs) and by the basement membrane. Heightened interactions within the adipose microenvironment, particularly in obese patients, may play a key role in the transition from DCIS to invasive ductal carcinoma (IDC), which is attracting growing interest in scientific research. Adipose tissue undergoes metabolic changes in obesity, impacting adipokine secretion and promoting chronic inflammation. This study aimed to assess the interactions between DCIS, including in situ cancer cells and MECs, and the various components of its inflammatory adipose microenvironment (adipocytes and macrophages). Methods To this end, a 3D co-culture model was developed using bicellular bi-fluorescent DCIS-like tumoroids, adipose cells, and macrophages to investigate the influence of the inflammatory adipose microenvironment on DCIS progression. Results The 3D co-culture model demonstrated an inhibition of the expression of genes involved in apoptosis (BAX, BAG1, BCL2, CASP3, CASP8, and CASP9), and an increase in genes related to cell survival (TP53, JUN, and TGFB1), inflammation (TNF-α, PTGS2, IL-6R), invasion and metastasis (TIMP1 and MMP-9) in cancer cells of the tumoroids under inflammatory conditions versus a non-inflammatory microenvironment. On the contrary, it confirmed the compromised functionality of MECs, resulting in the loss of their protective effects against cancer cells. Adipocytes from obese women showed a significant increase in the expression of all studied myofibroblast-associated genes (myoCAFs), such as FAP and α-SMA. In contrast, adipocytes from normal-weight women expressed markers of inflammatory fibroblast phenotypes (iCAF) characterized by a significant increase in the expression of LIF and inflammatory cytokines such as TNF-α, IL-1β, IL-8, and CXCL-10. These changes also influenced macrophage polarization, leading to a pro-inflammatory M1 phenotype. In contrast, myoCAF-associated adipocytes, and the cancer-promoting microenvironment polarized macrophages towards an M2 phenotype, characterized by high CD163 receptor expression and IL-10 and TGF-β secretion. Discussion Reciprocal interactions between the tumoroid and its microenvironment, particularly in obesity, led to transcriptomic changes in adipocytes and macrophages, may participate in breast cancer progression while disrupting the integrity of the MEC layer. These results underlined the importance of adipose tissue in cancer progression.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Gwendal Cueff
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Christelle Blavignac
- Université Clermont-Auvergne, Centre d’Imagerie Cellulaire Santé (CCIS), Clermont-Ferrand, France
| | - Jessy Aoun
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Céline Auxenfans
- Banque de tissus et de cellules, Hôpital Edouard-Herriot, Lyon, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beirut, Lebanon
| | | | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| |
Collapse
|
4
|
Hernández-Peralta P, Chacón-Salinas R, Gracia-Mora MI, Soldevila G, Moreno-Rodríguez J, Cobos-Marín L. Microenvironment M1/M2 macrophages and tumoral progression vary within C57BL/6 mice from same substrain in prostate cancer model. Sci Rep 2024; 14:15112. [PMID: 38956203 PMCID: PMC11219814 DOI: 10.1038/s41598-024-65960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Cancer mice models are critical for immune-oncology research; they provide conditions to explore tumor immunoenviroment aiming to advance knowledge and treatment development. Often, research groups breed their own mice colonies. To assess the effect of C57BL/6 mice breeding nuclei in prostate cancer development and intratumoral macrophage populations, an isotransplantation experiment was performed. C57BL/6J mice from two breeding nuclei (nA and nB) were employed for prostate adenocarcinoma TRAMP-C1 cell implantation; tumor growth period and intratumoral macrophage profile were measured. BL/6nB mice (54%) showed tumor implantation after 69-day growth period while BL/6nA implantation reached 100% across tumor growth period (28 days). No difference in total macrophage populations was observed between groups within several tumoral regions; significantly higher M2 macrophage profile was observed in tumor microenvironments from both mice groups. Nevertheless, BL/6nB tumors showed around twice the population of M1 profile (11-27%) than BL6nA (4-15%) and less non-polarized macrophages. The M1:M2 average ratio was 1:8 for group A and 1:4 for B. Our results demonstrate different tumor progression and intratumoral macrophage populations among mice from the same substrain. Data obtained in this study shows the relevance of animal source renewal for better control of murine cancer model variables.
Collapse
Affiliation(s)
- P Hernández-Peralta
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior sn, 04510, Mexico City, Mexico
| | - R Chacón-Salinas
- Department of Immunology, National School of Biological Sciences, Instituto Politécnico Nacional (ENCB-IPN), 11340, Mexico City, Mexico
| | - M I Gracia-Mora
- Department of Inorganic and Nuclear Chemistry, Faculty of Chemistry, Universidad Nacional Autónoma de México (UNAM), Investigación Científica 70, 04510, Mexico City, Mexico
| | - G Soldevila
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - J Moreno-Rodríguez
- Research Division, Hospital Juárez de México, 07760, Mexico City, Mexico
| | - L Cobos-Marín
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior sn, 04510, Mexico City, Mexico.
| |
Collapse
|
5
|
Dahdah N, Tercero-Alcázar C, Malagón MM, Garcia-Roves PM, Guzmán-Ruiz R. Interrelation of adipose tissue macrophages and fibrosis in obesity. Biochem Pharmacol 2024; 225:116324. [PMID: 38815633 DOI: 10.1016/j.bcp.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Obesity is characterized by adipose tissue expansion, extracellular matrix remodelling and unresolved inflammation that contribute to insulin resistance and fibrosis. Adipose tissue macrophages represent the most abundant class of immune cells in adipose tissue inflammation and could be key mediators of adipocyte dysfunction and fibrosis in obesity. Although macrophage activation states are classically defined by the M1/M2 polarization nomenclature, novel studies have revealed a more complex range of macrophage phenotypes in response to external condition or the surrounding microenvironment. Here, we discuss the plasticity of adipose tissue macrophages (ATMs) in response to their microenvironment in obesity, with special focus on macrophage infiltration and polarization, and their contribution to adipose tissue fibrosis. A better understanding of the role of ATMs as regulators of adipose tissue remodelling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Norma Dahdah
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carmen Tercero-Alcázar
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Pablo Miguel Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rocío Guzmán-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain.
| |
Collapse
|
6
|
Grosser B, Emmerson J, Reitsam NG, Cunningham D, Nankivell M, Langley RE, Allum WH, Trepel M, Märkl B, Grabsch HI. Stroma AReactive Invasion Front Areas (SARIFA) improves prognostic risk stratification of perioperative chemotherapy treated oesophagogastric cancer patients from the MAGIC and the ST03 trial. Br J Cancer 2024; 130:457-466. [PMID: 38123705 PMCID: PMC10844337 DOI: 10.1038/s41416-023-02515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Tumour-associated fat cells without desmoplastic stroma reaction at the invasion front (Stroma AReactive Invasion Front Areas (SARIFA)) is a prognostic biomarker in gastric and colon cancer. The clinical utility of the SARIFA status in oesophagogastric cancer patients treated with perioperative chemotherapy is currently unknown. METHODS The SARIFA status was determined in tissue sections from patients recruited into the MAGIC (n = 292) or ST03 (n = 693) trials treated with surgery alone (S, MAGIC) or perioperative chemotherapy (MAGIC, ST03). The relationship between SARIFA status, clinicopathological factors, overall survival (OS) and treatment was analysed. RESULTS The SARIFA status was positive in 42% MAGIC trial S patients, 28% MAGIC and 48% ST03 patients after pre-operative chemotherapy. SARIFA status was related to OS in MAGIC trial S patients and was an independent prognostic biomarker in ST03 trial patients (HR 1.974, 95% CI 1.555-2.507, p < 0.001). ST03 patients with lymph node metastasis (ypN + ) and SARIFA-positive tumours had poorer OS than patients with ypN+ and SARIFA-negative tumours (plogrank < 0.001). CONCLUSIONS The SARIFA status has clinical utility as prognostic biomarker in oesophagogastric cancer patients irrespective of treatment modality. Whilst underlying biological mechanisms warrant further investigation, the SARIFA status might be used to identify new drug targets, potentially enabling repurposing of existing drugs targeting lipid metabolism.
Collapse
Affiliation(s)
- Bianca Grosser
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
| | - Jake Emmerson
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Nic G Reitsam
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
| | - David Cunningham
- Department of Medicine, Royal Marsden Hospital, Sutton, Surrey, UK
| | - Matthew Nankivell
- Medical Research Council Clinical Trials Unit at University College London, London, UK
| | - Ruth E Langley
- Medical Research Council Clinical Trials Unit at University College London, London, UK
| | - William H Allum
- Department of Oncology and Department of Surgery, Royal Marsden NHS Foundation Trust, London, UK
| | - Martin Trepel
- Haematology and Oncology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
| | - Bruno Märkl
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany.
| | - Heike I Grabsch
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's University, University of Leeds, Leeds, UK.
| |
Collapse
|
7
|
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, Du J, Liu L, Li Y, Bai Y. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis 2023; 14:587. [PMID: 37666813 PMCID: PMC10477351 DOI: 10.1038/s41419-023-06110-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is made up of cells and extracellular matrix (non-cellular component), and cellular components include cancer cells and non-malignant cells such as immune cells and stromal cells. These three types of cells establish complex signals in the body and further influence tumor genesis, development, metastasis and participate in resistance to anti-tumor therapy. It has attracted scholars to study immune cells in TME due to the significant efficacy of immune checkpoint inhibitors (ICI) and chimeric antigen receptor T (CAR-T) in solid tumors and hematologic tumors. After more than 10 years of efforts, the role of immune cells in TME and the strategy of treating tumors based on immune cells have developed rapidly. Moreover, ICI have been recommended by guidelines as first- or second-line treatment strategies in a variety of tumors. At the same time, stromal cells is another major class of cellular components in TME, which also play a very important role in tumor metabolism, growth, metastasis, immune evasion and treatment resistance. Stromal cells can be recruited from neighboring non-cancerous host stromal cells and can also be formed by transdifferentiation from stromal cells to stromal cells or from tumor cells to stromal cells. Moreover, they participate in tumor genesis, development and drug resistance by secreting various factors and exosomes, participating in tumor angiogenesis and tumor metabolism, regulating the immune response in TME and extracellular matrix. However, with the deepening understanding of stromal cells, people found that stromal cells not only have the effect of promoting tumor but also can inhibit tumor in some cases. In this review, we will introduce the origin of stromal cells in TME as well as the role and specific mechanism of stromal cells in tumorigenesis and tumor development and strategies for treatment of tumors based on stromal cells. We will focus on tumor-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), tumor-associated adipocytes (CAAs), tumor endothelial cells (TECs) and pericytes (PCs) in stromal cells.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Liangqiang Wu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Haiqin Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Yixuan Yao
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Qingbiao Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Jianshi Du
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Linlin Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Yapeng Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China.
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China.
| |
Collapse
|
8
|
Lin YC, Hou YC, Wang HC, Shan YS. New insights into the role of adipocytes in pancreatic cancer progression: paving the way towards novel therapeutic targets. Theranostics 2023; 13:3925-3942. [PMID: 37554282 PMCID: PMC10405844 DOI: 10.7150/thno.82911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/21/2023] [Indexed: 08/10/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies across the world, which is due to delayed diagnosis and resistance to current therapies. The interactions between pancreatic tumor cells and their tumor microenvironment (TME) allow cancer cells to escape from anti-cancer therapies, leading to difficulties in treating PC. With endocrine function and lipid storage capacity, adipose tissue can maintain energy homeostasis. Direct or indirect interaction between adipocytes and PC cells leads to adipocyte dysfunction characterized by morphological change, fat loss, abnormal adipokine secretion, and fibroblast-like transformation. Various adipokines released from dysfunctional adipocytes have been reported to promote proliferation, invasion, metastasis, stemness, and chemoresistance of PC cells via different mechanisms. Additional lipid outflow from adipocytes can be taken into the TME and thus alter the metabolism in PC cells and surrounding stromal cells. Besides, the trans-differentiation potential enables adipocytes to turn into various cell types, which may give rise to an inflammatory response as well as extracellular matrix reorganization to modulate tumor burden. Understanding the molecular basis behind the protumor functions of adipocytes in PC may offer new therapeutic targets.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Medical Imaging Center, Innovation Headquarter, National Cheng Kung University; Tainan 704, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
9
|
Wang L, Lv Q, Wu P, Luo S, Liu S, Chen X, Luo X. RNA-seq and ATAC-seq analysis of CD163 + macrophage-induced progestin-insensitive endometrial cancer cells. Cancer Med 2023; 12:5964-5978. [PMID: 36373483 PMCID: PMC10028121 DOI: 10.1002/cam4.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Progestins are used as fertility-sparing regimens for young patients with stage 1A endometrioid endometrial cancer (EEC) and atypical endometrial hyperplasia (AEH). CD163+ macrophages promote estrogen-dependent EEC development, but whether they induce progestin insensitivity remains unclear. This study aimed to investigate the possible effects of CD163+ macrophages on progestin response in AEH/EEC patients. METHODS The number of infiltrating CD163+ macrophages in progestin-insensitive and -sensitive endometrial lesions was compared. The effects of CD163+ macrophages on progestin responses and progesterone receptor (PR) expression in EC cells were evaluated in vitro. ATAC-seq and RNA-seq were combined to identify molecular/biological changes induced by CD163+ macrophages in progestin-insensitive EC cells. RESULTS Increased CD163+ macrophage infiltration was significantly associated with progestin insensitivity and longer treatment durations in AEH/EEC patients. Additionally, the number of CD163+ macrophages was negatively correlated with PR expression in AEH/EEC tissues. Furthermore, the CD163+ macrophage-mediated microenvironment and secreted cytokines downregulated PR expression and impaired the response of EC cells to medroxyprogesterone acetate (MPA). RNA-seq analysis demonstrated that CD163+ macrophages antagonized PR signaling by blocking or even reversing MPA-regulated differential gene expression. Based on RNA-seq and ATAC-seq analyses, extracellular matrix (ECM) signaling and ECM-related transcription factors, FOXF2, POU1F1, and RUNX1were identified to potentially be involved in CD163+ macrophage-induced progestin insensitivity in endometrial cancer patients. CONCLUSIONS We identified CD163+ macrophages as an important mediator of progestin desensitization and an unfavorable factor for the efficacy of fertility-preserving treatment in AEH/EEC patients.
Collapse
Affiliation(s)
- Lulu Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qiaoying Lv
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Pengfei Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shuhan Luo
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Sijia Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiaojun Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xuezhen Luo
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Wen D, Liang T, Chen G, Li H, Wang Z, Wang J, Fu R, Han X, Ci T, Zhang Y, Abdou P, Li R, Bu L, Dotti G, Gu Z. Adipocytes Encapsulating Telratolimod Recruit and Polarize Tumor-Associated Macrophages for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206001. [PMID: 36526596 PMCID: PMC9929126 DOI: 10.1002/advs.202206001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Indexed: 05/09/2023]
Abstract
Tumor-associated adipocytes (TAAs) recruit monocytes and promote their differentiation into tumor-associated macrophages (TAMs) that support tumor development. Here, TAAs are engineered to promote the polarization of TAMs to the tumor suppressive M1 phenotype. Telratolimod, a toll-like receptor 7/8 agonist, is loaded into the lipid droplets of adipocytes to be released at the tumor site upon tumor cell-triggered lipolysis. Locally administered drug-loaded adipocytes increased tumor suppressive M1 macrophages in both primary and distant tumors and suppressed tumor growth in a melanoma model. Furthermore, drug-loaded adipocytes improved CD8+ T cell-mediated immune responses within the tumor microenvironment and favored dendritic cell maturation in the tumor draining lymph nodes.
Collapse
Affiliation(s)
- Di Wen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Earle A. Chiles Research InstituteRobert W. Franz Cancer CenterProvidence Portland Medical CenterPortlandOregon97213USA
| | - Tingxizi Liang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Guojun Chen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Hongjun Li
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Zejun Wang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Jinqiang Wang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Ruxing Fu
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Xiao Han
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Tianyuan Ci
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Yuqi Zhang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Peter Abdou
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Ruoxin Li
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Linlin Bu
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Gianpietro Dotti
- Department of Microbiology and ImmunologySchool of MedicineUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Zhen Gu
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhua321299P. R. China
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| |
Collapse
|
11
|
Cancer-Associated Adipocytes and Breast Cancer: Intertwining in the Tumor Microenvironment and Challenges for Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030726. [PMID: 36765683 PMCID: PMC9913307 DOI: 10.3390/cancers15030726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Adipocytes are the main components in breast tissue, and cancer-associated adipocytes (CAAs) are one of the most important components in the tumor microenvironment of breast cancer (BC). Bidirectional regulation was found between CAAs and BC cells. BC facilitates the dedifferentiation of adjacent adipocytes to form CAAs with morphological and biological changes. CAAs increase the secretion of multiple cytokines and adipokines to promote the tumorigenesis, progression, and metastasis of BC by remodeling the extracellular matrix, changing aromatase expression, and metabolic reprogramming, and shaping the tumor immune microenvironment. CAAs are also associated with the therapeutic response of BC and provide potential targets in BC therapy. The present review provides a comprehensive description of the crosstalk between CAAs and BC and discusses the potential strategies to target CAAs to overcome BC treatment resistance.
Collapse
|
12
|
Singh A, Mayengbam SS, Yaduvanshi H, Wani MR, Bhat MK. Obesity Programs Macrophages to Support Cancer Progression. Cancer Res 2022; 82:4303-4312. [PMID: 36191083 DOI: 10.1158/0008-5472.can-22-1257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/14/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023]
Abstract
Obesity induces multifactorial effects such as dyslipidemia, insulin resistance, and arterial hypertension that influence the progression of many diseases. Obesity is associated with an increased incidence of cancers, and multiple mechanisms link obesity with cancer initiation and progression. Macrophages participate in the homeostasis of adipose tissue and play an important role in cancer. Adipose tissue expansion in obesity alters the balance between pro- and anti-inflammatory macrophages, which is a primary cause of inflammation. Chronic low-grade inflammation driven by macrophages is also an important characteristic of cancer. Adipocytes secrete various adipokines, including adiponectin, leptin, IL6, and TNFα, that influence macrophage behavior and tumor progression. Furthermore, other metabolic effects of obesity, such as hyperlipidemia, hyperglycemia, and hypercholesterolemia, can also regulate macrophage functionality in cancer. This review summarizes how obesity influences macrophage-tumor cell interactions and the role of macrophages in the response to anticancer therapies under obese conditions.
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Biotechnology, National Centre for Cell Science, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Shyamananda Singh Mayengbam
- Department of Biotechnology, National Centre for Cell Science, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Himanshi Yaduvanshi
- Department of Biotechnology, National Centre for Cell Science, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Mohan R Wani
- Department of Biotechnology, National Centre for Cell Science, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Manoj Kumar Bhat
- Department of Biotechnology, National Centre for Cell Science, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, India
| |
Collapse
|
13
|
Gentile P, Cervelli V. Systematic review: Oncological safety of reconstruction with fat grafting in breast cancer outcomes. J Plast Reconstr Aesthet Surg 2022; 75:4160-4168. [PMID: 36180337 DOI: 10.1016/j.bjps.2022.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Autologous fat grafting (AFG) has become a commonly used procedure for breast reconstruction (BR) after cancer removal. Nevertheless, oncological considerations remain for AFG after breast cancer surgery. OBJECTIVES This article aims to evaluate the oncological safety of AFG in BR and its effect on disease-free survival (DFS) and local-regional recurrences (LRR). METHODS A systematic review regarding the use of AFG in BR to identify a difference in incidence rates of LRR and DFS between patients who had AFG and controls was performed using PubMed, MEDLINE, Embase, PreMEDLINE, Ebase, CINAHL, PsycINFO, Clinicaltrials.gov, Scopus, and Cochrane databases. The protocol was developed following the Preferred Reporting for Items for Systematic Reviews-Protocols (PRISMA-P) guidelines. The included studies had to match predetermined criteria according to the PICOS approach. RESULTS A total of 11 studies were included. Seven studies reported LRR, and 5 studies reported DFS in 5,886 patients. Our systematic review showed that AFG was not associated with increased LRR and DFS. Pooled hazard ratios (HRs) (95% confidence intervals [CIs]) for LRR and DFS were 1.26 (0.90-1.76) and 1.27 (0.96-1.69), respectively. CONCLUSIONS AFG can, therefore, be performed safely in BR after breast cancer. Further, randomized controlled trials and related systematic reviews, as well as evidence-based medicine (EBM) studies of level 1, are required to consolidate the results of the studies identified in this systematic review.
Collapse
Affiliation(s)
- Pietro Gentile
- Associate Professor of Plastic and Reconstructive Surgery, Department of Surgical Science, Medical School, "Tor Vergata" University, Rome, 00133, Italy; Scientific Director of Academy of International Regenerative Medicine & Surgery Societies (AIRMESS), 1201 Geneva, Switzerland; Top Italian Scientists (H-Index >30).
| | - Valerio Cervelli
- Full Professor of Plastic and Reconstructive Surgery, Department of Surgical Science, Medical School, "Tor Vergata" University, Rome, 00133, Italy.
| |
Collapse
|
14
|
Flavonoids regulate tumor-associated macrophages - From structure-activity relationship to clinical potential (Review). Pharmacol Res 2022; 184:106419. [PMID: 36041653 DOI: 10.1016/j.phrs.2022.106419] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/13/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
In recent years, the strategy for tumor therapy has changed from focusing on the direct killing effect of different types of therapeutic agents on cancer cells to the new mainstream of multi-mode and -pathway combined interventions in the microenvironment of the developing tumor. Flavonoids, with unique tricyclic structures, have diverse and extensive immunomodulatory and anti-cancer activities in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the most abundant immunosuppressive cells in the TME. The regulation of macrophages to fight cancer is a promising immunotherapeutic strategy. This study covers the most comprehensive cognition of flavonoids in regulating TAMs so far. Far more than a simple list of studies, we try to dig out evidence of crosstalk at the molecular level between flavonoids and TAMs from literature, in order to discuss the most relevant chemical structure and its possible relationship with the multimodal pharmacological activity, as well as systematically build a structure-activity relationship between flavonoids and TAMs. Additionally, we point out the advantages of the macro-control of flavonoids in the TME and discuss the potential clinical implications as well as areas for future research of flavonoids in regulating TAMs. These results will provide hopeful directions for the research of antitumor drugs, while providing new ideas for the pharmaceutical industry to develop more effective forms of flavonoids.
Collapse
|
15
|
Prasad S, Saha P, Chatterjee B, Chaudhary AA, Lall R, Srivastava AK. Complexity of Tumor Microenvironment: Therapeutic Role of Curcumin and Its Metabolites. Nutr Cancer 2022; 75:1-13. [PMID: 35818029 DOI: 10.1080/01635581.2022.2096909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor microenvironment (TME) is a complex network of cellular and non-cellular components surrounding the tumor. The cellular component includes fibroblasts, adipocytes, endothelial cells, and immune cells, while non-cellular components are tumor vasculature, extracellular matrix and signaling molecules. The tumor cells have constant close interaction with their surrounding TME components that facilitate their growth, survival, and metastasis. Targeting a complex TME network and its interaction with the tumor can offer a novel strategy to disrupt cancer cell progression. Curcumin, from turmeric rhizome, is recognized as a safe and effective natural therapeutic agent against multiple diseases including cancer. Here the effects of curcumin and its metabolites on tumor-TME interaction modulating ability have been described. Curcumin and its metabolites regulate TME by inhibiting the growth of its cellular components such as cancer-associated adipocytes, cancer-associated fibroblast, tumor endothelial cells, tumor-stimulating immune cells, and inducing anticancer immune cells. They also inhibit the interplay of tumor cells to TME by suppressing non-cellular components such as extracellular matrix, and associated tumor promoting signaling-pathways. In addition, curcumin inhibits the inflammatory environment, suppresses angiogenic factors, and increases antioxidant status in TME. Overall, curcumin has the capability to regulate TME components and their interaction with tumor cells.
Collapse
Affiliation(s)
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Bilash Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh, Saudi Arabia
| | - Rajiv Lall
- Noble Pharma, LLC, Menomonie, Wisconsin, USA
| | - Amit K Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
16
|
Oncological safety of reconstruction with autologous fat grafting in breast cancer patients: a systematic review and meta-analysis. Int J Clin Oncol 2022; 27:1379-1385. [PMID: 35790652 DOI: 10.1007/s10147-022-02207-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/11/2022] [Indexed: 11/05/2022]
Abstract
To evaluate the oncological safety of autologous fat grafting and its effect on disease-free survival and local recurrence in breast cancer patients with autologous fat grafting (AFG) reconstruction. A literature search was performed using the Pubmed, Medline, Web of Science, and Cochrane libraries from January 2011 to March 2020, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to identify all relevant studies involving the application of autologous fat grafting in breast cancer reconstruction procedures. The primary outcome of the meta-analysis was a difference in incidence rates of locoregional recurrence and disease-free survival (DFS) between patients who had autologous fat grafting and controls. A total of 11 studies were included. Eight studies reported local-regional recurrences (LRR) and five studies reported disease-free survival (DFS) in 5,886 patients. Our meta-analysis of all included studies about survival outcomes showed AFG was not associated with increased LRR and DFS. Pooled hazard ratios (HRs) (95% CIs) for LRR and DFS were 1.26 (0.90-1.76) and 1.27 (0.96-1.69), respectively. According to the published literature, autologous fat grafting did not result in an increased rate of LRR and DFS in patients with breast cancer. Autologous fat grafting can, therefore, be performed safely in breast reconstruction after breast cancer.
Collapse
|
17
|
Red Rice Bran Extract Attenuates Adipogenesis and Inflammation on White Adipose Tissues in High-Fat Diet-Induced Obese Mice. Foods 2022; 11:foods11131865. [PMID: 35804681 PMCID: PMC9266166 DOI: 10.3390/foods11131865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Red rice bran extract (RRBE) has been reported to have the potential for in vitro metabolic modulation and anti-inflammatory properties. However, little is known about the molecular mechanisms of these potentials in adipose tissue. This study aimed to evaluate the in vivo anti-adipogenic, anti-hypertrophic, and anti-inflammatory activities of RRBE and its major bioactive compounds in mice. After six weeks of consuming either a low-fat diet or a high-fat diet (HFD), 32 mice with initial body weights of 20.76 ± 0.24 g were randomly divided into four groups; the four groups were fed a low-fat diet, a HFD, a HFD plus 0.5 g/kg of RRBE, or a HFD plus 1 g/kg of RRBE, respectively. The 6-week treatment using RRBE reduced HFD-induced adipocyte hypertrophy, lipid accumulation, and inflammation in intra-abdominal epididymal white adipose tissue (p < 0.05) without causing significant changes in body and adipose tissue weight, which reductions were accompanied by the down-regulated expression of adipogenic and lipid metabolism genes, including CCAAT/enhancer-binding protein-alpha, sterol regulatory element-binding protein-1c, and hormone-sensitive lipase (p < 0.05), as well as inflammatory genes, including macrophage marker F4/80, nuclear factor-kappa B p65, monocyte chemoattractant protein-1, tumor necrosis factor-alpha, and inducible nitric oxide synthase (p < 0.05), in adipose tissue. Furthermore, RRBE significantly decreased serum tumor necrosis factor-alpha levels (p < 0.05). Bioactive compound analyses revealed the presence of phenolics, flavonoids, anthocyanins, and proanthocyanidins in these extracts. Collectively, this study demonstrates that RRBE effectively attenuates HFD-induced pathological adipose tissue remodeling by suppressing adipogenesis, lipid dysmetabolism, and inflammation. Therefore, RRBE may emerge as one of the alternative food products to be used against obesity-associated adipose tissue dysfunction.
Collapse
|
18
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
19
|
The Complex Biology of the Obesity-Induced, Metastasis-Promoting Tumor Microenvironment in Breast Cancer. Int J Mol Sci 2022; 23:ijms23052480. [PMID: 35269622 PMCID: PMC8910079 DOI: 10.3390/ijms23052480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most prevalent cancers in women contributing to cancer-related death in the advanced world. Apart from the menopausal status, the trigger for developing breast cancer may vary widely from race to lifestyle factors. Epidemiological studies refer to obesity-associated metabolic changes as a critical risk factor behind the progression of breast cancer. The plethora of signals arising due to obesity-induced changes in adipocytes present in breast tumor microenvironment, significantly affect the behavior of adjacent breast cells. Adipocytes from white adipose tissue are currently recognized as an active endocrine organ secreting different bioactive compounds. However, due to excess energy intake and increased fat accumulation, there are morphological followed by secretory changes in adipocytes, which make the breast microenvironment proinflammatory. This proinflammatory milieu not only increases the risk of breast cancer development through hormone conversion, but it also plays a role in breast cancer progression through the activation of effector proteins responsible for the biological phenomenon of metastasis. The aim of this review is to present a comprehensive picture of the complex biology of obesity-induced changes in white adipocytes and demonstrate the relationship between obesity and breast cancer progression to metastasis.
Collapse
|
20
|
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. The Impact of Obesity, Adipose Tissue, and Tumor Microenvironment on Macrophage Polarization and Metastasis. BIOLOGY 2022; 11:339. [PMID: 35205204 PMCID: PMC8869089 DOI: 10.3390/biology11020339] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Tumor metastasis is a major cause of death in cancer patients. It involves not only the intrinsic alterations within tumor cells, but also crosstalk between these cells and components of the tumor microenvironment (TME). Tumorigenesis is a complex and dynamic process, involving the following three main stages: initiation, progression, and metastasis. The transition between these stages depends on the changes within the extracellular matrix (ECM), in which tumor and stromal cells reside. This matrix, under the effect of growth factors, cytokines, and adipokines, can be morphologically altered, degraded, or reorganized. Many cancers evolve to form an immunosuppressive TME locally and create a pre-metastatic niche in other tissue sites. TME and pre-metastatic niches include myofibroblasts, immuno-inflammatory cells (macrophages), adipocytes, blood, and lymphatic vascular networks. Several studies have highlighted the adipocyte-macrophage interaction as a key driver of cancer progression and dissemination. The following two main classes of macrophages are distinguished: M1 (pro-inflammatory/anti-tumor) and M2 (anti-inflammatory/pro-tumor). These cells exhibit distinct microenvironment-dependent phenotypes that can promote or inhibit metastasis. On the other hand, obesity in cancer patients has been linked to a poor prognosis. In this regard, tumor-associated adipocytes modulate TME through the secretion of inflammatory mediators, which modulate and recruit tumor-associated macrophages (TAM). Hereby, this review describes the cellular and molecular mechanisms that link inflammation, obesity, and cancer. It provides a comprehensive overview of adipocytes and macrophages in the ECM as they control cancer initiation, progression, and invasion. In addition, it addresses the mechanisms of tumor anchoring and recruitment for M1, M2, and TAM macrophages, specifically highlighting their origin, classification, polarization, and regulatory networks, as well as their roles in the regulation of angiogenesis, invasion, metastasis, and immunosuppression, specifically highlighting the role of adipocytes in this process.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie moléculaire et anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beyrouth 1500, Liban;
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| |
Collapse
|
21
|
Subash-Babu P, Mohammed Alowaidh H, Al-Harbi LN, Shamlan G, Aloud AA, AlSedairy SA, Alshatwi AA. Ocimum basilicum L. Methanol Extract Enhances Mitochondrial Efficiency and Decreases Adipokine Levels in Maturing Adipocytes Which Regulate Macrophage Systemic Inflammation. Molecules 2022; 27:molecules27041388. [PMID: 35209178 PMCID: PMC8876186 DOI: 10.3390/molecules27041388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Excessive storage of lipids in visceral or ectopic sites stimulates adipokine production, which attracts macrophages. This process determines the pro- and anti-inflammatory response regulation in adipose tissue during obesity-associated systemic inflammation. The present study aimed to identify the composition of Ocimum basilicum L. (basil) seed extract and to determine its bio-efficacy on adipocyte thermogenesis or fatty acid oxidation and inhibition of lipid accumulation and adipokine secretion. Ocimum basilicum L. seed methanol extract (BSME) was utilized to analyze the cytotoxicity vs. control; lipid accumulation assay (oil red O and Nile red staining), adipogenesis and mitochondrial-thermogenesis-related gene expression vs. vehicle control were analyzed by PCR assay. In addition, vehicle control and BSME-treated adipocytes condition media were collected and treated with lipopolysaccharide (LPS)-induced macrophage to identify the macrophage polarization. The results shown that the active components present in BSME did not produce significant cytotoxicity in preadipocytes or macrophages in the MTT assay. Furthermore, oil red O and Nile red staining assay confirmed that 80 and 160 μg/dL concentrations of BSME effectively arrested lipid accumulation and inhibited adipocyte maturation, when compared with tea polyphenols. Gene expression level of adipocyte hyperplasia (CEBPα, PPARγ) and lipogenesis (LPL)-related genes have been significantly (p ≤ 0.05) downregulated, and mitochondrial-thermogenesis-associated genes (PPARγc1α, UCP-1, prdm16) have been significantly (p ≤ 0.001) upregulated. The BSME-treated, maturing, adipocyte-secreted proteins were detected with a decreased protein level of leptin, TNF-α, IL-6 and STAT-6, which are associated with insulin resistance and macrophage recruitment. The “LPS-stimulated macrophage” treated with “BSME-treated adipocytes condition media”, shown with significant (p ≤ 0.001) decrease in metabolic-inflammation-related proteins—such as PGE-2, MCP-1, TNF-α and NF-κB—were majorly associated with the development of foam cell formation and progression of atherosclerotic lesion. The present findings concluded that the availability of active principles in basil seed effectively inhibit adipocyte hypertrophy, macrophage polarization, and the inflammation associated with insulin resistance and thrombosis development. Ocimum basilicum L. seed may be useful as a dietary supplement to enhance fatty acid oxidation, which aids in overcoming metabolic complications.
Collapse
|
22
|
Assumpção JAF, Pasquarelli-do-Nascimento G, Duarte MSV, Bonamino MH, Magalhães KG. The ambiguous role of obesity in oncology by promoting cancer but boosting antitumor immunotherapy. J Biomed Sci 2022; 29:12. [PMID: 35164764 PMCID: PMC8842976 DOI: 10.1186/s12929-022-00796-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is nowadays considered a pandemic which prevalence's has been steadily increasingly in western countries. It is a dynamic, complex, and multifactorial disease which propitiates the development of several metabolic and cardiovascular diseases, as well as cancer. Excessive adipose tissue has been causally related to cancer progression and is a preventable risk factor for overall and cancer-specific survival, associated with poor prognosis in cancer patients. The onset of obesity features a state of chronic low-grade inflammation and secretion of a diversity of adipocyte-derived molecules (adipokines, cytokines, hormones), responsible for altering the metabolic, inflammatory, and immune landscape. The crosstalk between adipocytes and tumor cells fuels the tumor microenvironment with pro-inflammatory factors, promoting tissue injury, mutagenesis, invasion, and metastasis. Although classically established as a risk factor for cancer and treatment toxicity, recent evidence suggests mild obesity is related to better outcomes, with obese cancer patients showing better responses to treatment when compared to lean cancer patients. This phenomenon is termed obesity paradox and has been reported in different types and stages of cancer. The mechanisms underlying this paradoxical relationship between obesity and cancer are still not fully described but point to systemic alterations in metabolic fitness and modulation of the tumor microenvironment by obesity-associated molecules. Obesity impacts the response to cancer treatments, such as chemotherapy and immunotherapy, and has been reported as having a positive association with immune checkpoint therapy. In this review, we discuss obesity's association to inflammation and cancer, also highlighting potential physiological and biological mechanisms underlying this association, hoping to clarify the existence and impact of obesity paradox in cancer development and treatment.
Collapse
Affiliation(s)
| | | | - Mariana Saldanha Viegas Duarte
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martín Hernan Bonamino
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice - Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
23
|
Klinger M, Losurdo A, Lisa AVE, Morenghi E, Vinci V, Corsi F, Albasini S, Leonardi MC, Jereczek-Fossa BA, Veronesi P, Rietjens M, Fabiocchi L, Santicchia S, Klinger F, Loreti A, Fortunato L, Bocchiotti MA, Nicolò FA, Stringhini P, Parodi PC, Rampino E, Guarneri V, Pagura G, Venezia ED, Meneghini G, Kraljic T, Persichetti P, Barone M, Vaia N, Zerini I, Grimaldi L, Riccio M, Aquinati A, Bassetto F, Vindigni V, Ciuffreda L, Tinterri C, Santoro A. Safety of autologous fat grafting in breast cancer: a multicenter Italian study among 17 senonetwork breast units autologous fat grafting safety: a multicenter Italian retrospective study. Breast Cancer Res Treat 2021; 191:355-363. [PMID: 34755240 DOI: 10.1007/s10549-021-06444-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Autologous fat grafting (AFG), defined as the re-implant to the breast of fat tissue from different body areas, has been firstly applied to esthetic plastic surgery and then has moved to reconstructive surgery, mainly used for scar correction and opposite breast altering. Nevertheless, due to the potentially unsafe stem-like properties of adipocytes at the tumoral bed level, no clear evidence of the procedure's oncological safety has been clearly documented at present. PATIENTS AND METHODS We retrospectively collected data of early breast cancer (BC) patients from 17 Italian Breast Units and assessed differences in terms of locoregional recurrence rate (LRR) and locoregional recurrence-free survival (LRFS) between patients who underwent AFG and patients who did not. Differences were analyzed in the entire cohort of invasive tumors and in different subgroups, according to prognostic biological subtypes. RESULTS With a median follow-up time of 60 months, LRR was 5.3% (n = 71) in the matched population, 3.9% (n = 18) in the AFG group, and 6.1% (n = 53) in the non-AFG group, suggesting non-inferiority of AFG (p = 0.084). Building Kaplan-Meier curves confirmed non-inferiority of the AFG procedure for LRFS (aHR 0.73, 95% CI 0.41-1.30, p = 0.291). The same effect, in terms of LRFS, was also documented among different biological subtypes (luminal-like group, aHR 0.76, 95% CI 0.34-1.68, p = 0.493; HER2 enriched-like, aHR 0.89, 95% CI 0.19-4.22, p = 0.882; and TNBC, aHR 0.61, 95% CI 0.12-2.98, p = 0.543). CONCLUSIONS Our study confirms in a very large, multicenter cohort of early BC patients that, aside the well-known benefits on the esthetic result, AFG do not interfere negatively with cancer prognosis.
Collapse
Affiliation(s)
- Marco Klinger
- Reconstructive and Aesthetic Plastic Surgery School, Department of Medical Biotechnology and Translational Medicine BIOMETRA - Plastic Surgery Unit, University of Milan, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Agnese Losurdo
- UO of Medical Oncology, Department of Oncology and Hematology, Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Andrea V E Lisa
- Reconstructive and Aesthetic Plastic Surgery School, Department of Medical Biotechnology and Translational Medicine BIOMETRA - Plastic Surgery Unit, University of Milan, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Emanuela Morenghi
- Biostatistics Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Valeriano Vinci
- Reconstructive and Aesthetic Plastic Surgery School, Department of Medical Biotechnology and Translational Medicine BIOMETRA - Plastic Surgery Unit, University of Milan, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences, "Luigi Sacco", Università di Milano, Milan, Italy
- Department of Surgery, Breast Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Sara Albasini
- Department of Surgery, Breast Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | | | - Barbara A Jereczek-Fossa
- Division of Radiotherapy, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - Paolo Veronesi
- Department of Oncology and Hematology, University of Milan, Milan, Italy
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Mario Rietjens
- Division of Plastic and Reconstructive Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Fabiocchi
- Plastic Surgery Unit, Breast Unit, Rimini Santarcangelo Hospital, Rimini, Italy
| | - Sonia Santicchia
- Department of Breast Diagnosis, Breast Unit, Rimini Santarcangelo Hospital, Rimini, Italy
| | - Francesco Klinger
- University of Milan, Reconstructive and Aesthetic Plastic Surgery School - MultiMedica Holding S.p.A.- Plastic Surgery Unit - Sesto San Giovanni, Milan, Italy
| | - Andrea Loreti
- Department of Plastic and Reconstructive Surgery, Azienda Ospedaliera San Giovanni Addolorata, Rome, Italy
| | - Lucio Fortunato
- Breast Surgery Unit, Azienda Ospedaliera San Giovanni Addolorata, Rome, Italy
| | - Maria A Bocchiotti
- Department of Plastic and Reconstructive Surgery, Università Città della Salute e della Scienza, Torino, Italy
| | - Fulvio A Nicolò
- Department of Plastic and Reconstructive Surgery, Università Città della Salute e della Scienza, Torino, Italy
| | - Paolo Stringhini
- Reconstructive Surgery, Fondazione Poliambulanza Brescia, Brescia, Italy
| | - Pier Camillo Parodi
- Department of Medical, Experimental and Clinical Sciences - Plastic and Aesthetic Surgery, University of Udine, Udine, Italy
| | - Emanuele Rampino
- Department of Medical, Experimental and Clinical Sciences - Plastic and Aesthetic Surgery, University of Udine, Udine, Italy
| | - Valentina Guarneri
- UO of Clinical Oncology, Università di Padova, Istituto Oncologico Veneto IRCCS, Padova, Italy
- Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | - Erica Dalla Venezia
- Department of Plastic and Reconstructive Surgery, ULSS3 Serenissima, Mestre, Italy
| | | | - Tanja Kraljic
- Breast Unit, Azienda ULSS8 Berica, Vicenza, Montecchio Maggiore, Italy
| | - Paolo Persichetti
- Department of Plastic and Reconstructive Surgery, Medico University of Rome, Campus Bio, Rome, Italy
| | - Mauro Barone
- Department of Plastic and Reconstructive Surgery, Medico University of Rome, Campus Bio, Rome, Italy
| | - Nicola Vaia
- Department of Plastic and Reconstructive Surgery, Belcolle Hospital, Viterbo, Italy
| | - Irene Zerini
- Department of Plastic and Reconstructive Surgery, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Luca Grimaldi
- Department of Plastic and Reconstructive Surgery, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Michele Riccio
- Department of Plastic and Reconstructive Hand Surgery, AOU Ospedali Riuniti di Ancona, Ancona, Italy
| | - Angelica Aquinati
- Regenerative Surgery Research and Formation Center, Accademia del Lipofilling, Montelabbate, Italy
| | - Franco Bassetto
- Clinic of Plastic and Reconstructive Surgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Vincenzo Vindigni
- Clinic of Plastic and Reconstructive Surgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Luigi Ciuffreda
- Breast Surgery Unit, IRCCS Fondazione Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Corrado Tinterri
- Breast Surgery Department, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Armando Santoro
- UO of Medical Oncology, Department of Oncology and Hematology, Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
24
|
Liang YL, Lin CN, Tsai HF, Wu PY, Lin SH, Hong TM, Hsu KF. Omental Macrophagic "Crown-like Structures" Are Associated with Poor Prognosis in Advanced-Stage Serous Ovarian Cancer. ACTA ACUST UNITED AC 2021; 28:4234-4246. [PMID: 34677277 PMCID: PMC8534828 DOI: 10.3390/curroncol28050359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
The tumor microenvironment is a well-recognized framework in which immune cells present in the tumor microenvironment promote or inhibit cancer formation and development. A crown-like structure (CLS) has been reported as a dying or dead adipocyte surrounded by a 'crown' of macrophages within adipose tissue, which is a histologic hallmark of the inflammatory process in this tissue. CLSs have also been found to be related to formation, progression and prognosis of some types of cancer. However, the presence of CLSs in the omentum of advanced-stage high-grade serous ovarian carcinoma (HGSOC) has not been thoroughly investigated. By using CD68, a pan-macrophage marker, and CD163, an M2-like polarization macrophage marker, immunohistochemistry (IHC) was performed to identify tumor-associated macrophages (TAMs) and CLSs. This retrospective study analyzed 116 patients with advanced-stage HGSOC who received complete treatment and had available clinical data from July 2008 through December 2016 at National Cheng Kung University Hospital (NCKUH) (Tainan, Taiwan). Based on multivariate Cox regression analysis, patients with omental CD68+ CLSs had poor OS (median survival: 24 vs. 38 months, p = 0.001, hazard ratio (HR): 2.26, 95% confidence interval (CI): 1.41-3.61); patients with omental CD163+ CLSs also had poor OS (median survival: 22 vs. 36 months, HR: 2.14, 95%CI: 1.33-3.44, p = 0.002). Additionally, patients with omental CD68+ or CD163+ CLSs showed poor PFS (median survival: 11 vs. 15 months, HR: 2.28, 95%CI: 1.43-3.64, p = 0.001; median survival: 11 vs. 15 months, HR: 2.17, 95%CI: 1.35-3.47, respectively, p = 0.001). Conversely, the density of CD68+ or CD163+ TAMs in ovarian tumors was not associated with patient prognosis in advanced-stage HGSOC in our cohort. In conclusion, we, for the first time, demonstrate that the presence of omental CLSs is associated with poor prognosis in advanced-stage HGSOC.
Collapse
Affiliation(s)
- Yu-Ling Liang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-L.L.); (C.-N.L.); (H.-F.T.); (P.-Y.W.)
| | - Chang-Ni Lin
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-L.L.); (C.-N.L.); (H.-F.T.); (P.-Y.W.)
| | - Hsing-Fen Tsai
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-L.L.); (C.-N.L.); (H.-F.T.); (P.-Y.W.)
| | - Pei-Ying Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-L.L.); (C.-N.L.); (H.-F.T.); (P.-Y.W.)
| | - Sheng-Hsiang Lin
- Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Tse-Ming Hong
- Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Correspondence: (T.-M.H.); (K.-F.H.); Tel.: +886-6-2353535 (ext. 4259) (T.-M.H.); +886-6-2353535 (ext. 5263) (K.-F.H.); Fax: +886-6-2359885 (T.-M.H.); +886-6-2766185 (K.-F.H.)
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-L.L.); (C.-N.L.); (H.-F.T.); (P.-Y.W.)
- Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Correspondence: (T.-M.H.); (K.-F.H.); Tel.: +886-6-2353535 (ext. 4259) (T.-M.H.); +886-6-2353535 (ext. 5263) (K.-F.H.); Fax: +886-6-2359885 (T.-M.H.); +886-6-2766185 (K.-F.H.)
| |
Collapse
|
25
|
Franchi-Mendes T, Eduardo R, Domenici G, Brito C. 3D Cancer Models: Depicting Cellular Crosstalk within the Tumour Microenvironment. Cancers (Basel) 2021; 13:4610. [PMID: 34572836 PMCID: PMC8468887 DOI: 10.3390/cancers13184610] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
The tumour microenvironment plays a critical role in tumour progression and drug resistance processes. Non-malignant cell players, such as fibroblasts, endothelial cells, immune cells and others, interact with each other and with the tumour cells, shaping the disease. Though the role of each cell type and cell communication mechanisms have been progressively studied, the complexity of this cellular network and its role in disease mechanism and therapeutic response are still being unveiled. Animal models have been mainly used, as they can represent systemic interactions and conditions, though they face recognized limitations in translational potential due to interspecies differences. In vitro 3D cancer models can surpass these limitations, by incorporating human cells, including patient-derived ones, and allowing a range of experimental designs with precise control of each tumour microenvironment element. We summarize the role of each tumour microenvironment component and review studies proposing 3D co-culture strategies of tumour cells and non-malignant cell components. Moreover, we discuss the potential of these modelling approaches to uncover potential therapeutic targets in the tumour microenvironment and assess therapeutic efficacy, current bottlenecks and perspectives.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Eduardo
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Giacomo Domenici
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Catarina Brito
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
26
|
Herrada AA, Olate-Briones A, Rojas A, Liu C, Escobedo N, Piesche M. Adipose tissue macrophages as a therapeutic target in obesity-associated diseases. Obes Rev 2021; 22:e13200. [PMID: 33426811 DOI: 10.1111/obr.13200] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023]
Abstract
Obesity is an increasing problem in developed and developing countries. Individuals with obesity have a higher risk of several diseases, such as cardiovascular disease, increased risk of insulin resistance, type 2 diabetes, infertility, degenerative disorders, and also certain types of cancer. Adipose tissue (AT) is considered an extremely active endocrine organ, and the expansion of AT is accompanied by the infiltration of different types of immune cells, which induces a state of low-grade, chronic inflammation and metabolic dysregulation. Even though the exact mechanism of this low-grade inflammation is not fully understood, there is clear evidence that AT-infiltrating macrophages (ATMs) play a significant role in the pro-inflammatory state and dysregulated metabolism. ATMs represent the most abundant class of leukocytes in AT, constituting 5% of the cells in AT in individuals with normal weight. However, this percentage dramatically increases up to 50% in individuals with obesity, suggesting an important role of ATMs in obesity and its associated complications. In this review, we discuss current knowledge of the function of ATMs during steady-state and obesity and analyze its contribution to different obesity-associated diseases, highlighting the potential therapeutic target of ATMs in these pathological conditions.
Collapse
Affiliation(s)
- Andrés A Herrada
- Lymphatic vasculature and inflammation research laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Alexandra Olate-Briones
- Lymphatic vasculature and inflammation research laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Noelia Escobedo
- Lymphatic vasculature and inflammation research laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
- Oncology Center, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
27
|
Sanchez-Pino MD, Gilmore LA, Ochoa AC, Brown JC. Obesity-Associated Myeloid Immunosuppressive Cells, Key Players in Cancer Risk and Response to Immunotherapy. Obesity (Silver Spring) 2021; 29:944-953. [PMID: 33616242 PMCID: PMC8154641 DOI: 10.1002/oby.23108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
Obesity is a risk factor for developing several cancers. The dysfunctional metabolism and chronic activation of inflammatory pathways in obesity create a milieu that supports tumor initiation, progression, and metastasis. Obesity-associated metabolic, endocrine, and inflammatory mediators, besides interacting with cells leading to a malignant transformation, also modify the intrinsic metabolic and functional characteristics of immune myeloid cells. Here, the evidence supporting the hypothesis that obesity metabolically primes and promotes the expansion of myeloid cells with immunosuppressive and pro-oncogenic properties is discussed. In consequence, the accumulation of these cells, such as myeloid-derived suppressor cells and some subtypes of adipose-tissue macrophages, creates a microenvironment conducive to tumor development. In this review, the role of lipids, insulin, and leptin, which are dysregulated in obesity, is emphasized, as well as dietary nutrients in metabolic reprogramming of these myeloid cells. Moreover, emerging evidence indicating that obesity enhances immunotherapy response and hypothesized mechanisms are summarized. Priorities in deeper exploration involving the mechanisms of cross talk between metabolic disorders and myeloid cells related to cancer risk in patients with obesity are highlighted.
Collapse
Affiliation(s)
- Maria Dulfary Sanchez-Pino
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
- Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
| | | | - Augusto C. Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
- Department of Pediatrics, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
| | - Justin C. Brown
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
- Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
- LSU Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
28
|
Perego S, Sansoni V, Ziemann E, Lombardi G. Another Weapon against Cancer and Metastasis: Physical-Activity-Dependent Effects on Adiposity and Adipokines. Int J Mol Sci 2021; 22:ijms22042005. [PMID: 33670492 PMCID: PMC7922129 DOI: 10.3390/ijms22042005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
Physically active behavior has been associated with a reduced risk of developing certain types of cancer and improved psychological conditions for patients by reducing anxiety and depression, in turn improving the quality of life of cancer patients. On the other hand, the correlations between inactivity, sedentary behavior, and overweight and obesity with the risk of development and progression of various cancers are well studied, mainly in middle-aged and elderly subjects. In this article, we have revised the evidence on the effects of physical activity on the expression and release of the adipose-tissue-derived mediators of low-grade chronic inflammation, i.e., adipokines, as well as the adipokine-mediated impacts of physical activity on tumor development, growth, and metastasis. Importantly, exercise training may be effective in mitigating the side effects related to anti-cancer treatment, thereby underlining the importance of encouraging cancer patients to engage in moderate-intensity activities. However, the strong need to customize and adapt exercises to a patient’s abilities is apparent. Besides the preventive effects of physically active behavior against the adipokine-stimulated cancer risk, it remains poorly understood how physical activity, through its actions as an adipokine, can actually influence the onset and development of metastases.
Collapse
Affiliation(s)
- Silvia Perego
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
- Correspondence: ; Tel.: +39-0266214068
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland; or
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, Milano, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); or
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland; or
| |
Collapse
|
29
|
Annett S, Moore G, Robson T. Obesity and Cancer Metastasis: Molecular and Translational Perspectives. Cancers (Basel) 2020; 12:E3798. [PMID: 33339340 PMCID: PMC7766668 DOI: 10.3390/cancers12123798] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is a modern health problem that has reached pandemic proportions. It is an established risk factor for carcinogenesis, however, evidence for the contribution of adipose tissue to the metastatic behavior of tumors is also mounting. Over 90% of cancer mortality is attributed to metastasis and metastatic tumor cells must communicate with their microenvironment for survival. Many of the characteristics observed in obese adipose tissue strongly mirror the tumor microenvironment. Thus in the case of prostate, pancreatic and breast cancer and esophageal adenocarcinoma, which are all located in close anatomical proximity to an adipose tissue depot, the adjacent fat provides an ideal microenvironment to enhance tumor growth, progression and metastasis. Adipocytes provide adipokines, fatty acids and other soluble factors to tumor cells whilst immune cells infiltrate the tumor microenvironment. In addition, there are emerging studies on the role of the extracellular vesicles secreted from adipose tissue, and the extracellular matrix itself, as drivers of obesity-induced metastasis. In the present review, we discuss the major mechanisms responsible for the obesity-metastatic link. Furthermore, understanding these complex mechanisms will provide novel therapies to halt the tumor-adipose tissue crosstalk with the ultimate aim of inhibiting tumor progression and metastatic growth.
Collapse
Affiliation(s)
| | | | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Science, 123 St Stephen’s Green, Dublin D02 YN77, Ireland; (S.A.); (G.M.)
| |
Collapse
|
30
|
The role of caspase-8 in the tumor microenvironment of ovarian cancer. Cancer Metastasis Rev 2020; 40:303-318. [PMID: 33026575 PMCID: PMC7897206 DOI: 10.1007/s10555-020-09935-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
Caspase-8 is an aspartate-specific cysteine protease, which is best known for its apoptotic functions. Caspase-8 is placed at central nodes of multiple signal pathways, regulating not only the cell cycle but also the invasive and metastatic cell behavior, the immune cell homeostasis and cytokine production, which are the two major components of the tumor microenvironment (TME). Ovarian cancer often has dysregulated caspase-8 expression, leading to imbalance between its apoptotic and non-apoptotic functions within the tumor and the surrounding milieu. The downregulation of caspase-8 in ovarian cancer seems to be linked to high aggressiveness with chronic inflammation, immunoediting, and immune resistance. Caspase-8 plays therefore an essential role not only in the primary tumor cells but also in the TME by regulating the immune response, B and T lymphocyte activation, and macrophage differentiation and polarization. The switch between M1 and M2 macrophages is possibly associated with changes in the caspase-8 expression. In this review, we are discussing the non-apoptotic functions of caspase-8, highlighting this protein as a modulator of the immune response and the cytokine composition in the TME. Considering the low survival rate among ovarian cancer patients, it is urgently necessary to develop new therapeutic strategies to optimize the response to the standard treatment. The TME is highly heterogenous and provides a variety of opportunities for new drug targets. Given the variety of roles of caspase-8 in the TME, we should focus on this protein in the development of new therapeutic strategies against the TME of ovarian cancer.
Collapse
|
31
|
Gwak J, Jeong H, Lee K, Shin JY, Sim T, Na J, Kim J, Ju BG. SFMBT2-Mediated Infiltration of Preadipocytes and TAMs in Prostate Cancer. Cancers (Basel) 2020; 12:E2718. [PMID: 32971847 PMCID: PMC7565541 DOI: 10.3390/cancers12092718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022] Open
Abstract
Infiltration of diverse cell types into tumor microenvironment plays a critical role in cancer progression including metastasis. We previously reported that SFMBT2 (Scm-like with four mbt domains 2) regulates the expression of matrix metalloproteinases (MMPs) and migration and invasion of cancer cells in prostate cancer. Here we investigated whether the down-regulation of SFMBT2 regulates the infiltration of preadipocytes and tumor-associated macrophages (TAMs) in prostate cancer. We found that the down-regulation of SFMBT2 promotes the infiltration of preadipocytes and TAMs through up-regulation of CXCL8, CCL2, CXCL10, and CCL20 expression in prostate cancer. Expression of CXCL8, CCL2, CXCL10, and CCL20 was also elevated in prostate cancer patients having a higher Gleason score (≥8), which had substantially lower SFMBT2 expression. We also found that the up-regulation of CXCL8, CCL2, CXCL10, and CCL20 expression is dependent on NF-κB activation in prostate cancer cells expressing a low level of SFMBT2. Moreover, increased IL-6 from infiltrated preadipocytes and TAMs promoted migration and invasion of prostate cancer cells expressing a low level of SFMBT2. Our study may suggest that SFMBT2 a critical regulator for the infiltration of preadipocytes and TAMs into the prostate tumor microenvironment. Thus, the regulation of SFMBT2 may provide a new therapeutic strategy to inhibit prostate cancer metastasis, and SFMBT2 could be used as a potential biomarker in prostate cancer metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul 04107, Korea; (J.G.); (H.J.); (K.L.); (J.Y.S.); (T.S.); (J.N.); (J.K.)
| |
Collapse
|
32
|
Application of Anti-Inflammatory Agents in Prostate Cancer. J Clin Med 2020; 9:jcm9082680. [PMID: 32824865 PMCID: PMC7464558 DOI: 10.3390/jcm9082680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is a major cause of human cancers. The environmental factors, such as microbiome, dietary components, and obesity, provoke chronic inflammation in the prostate, which promotes cancer development and progression. Crosstalk between immune cells and cancer cells enhances the secretion of intercellular signaling molecules, such as cytokines and chemokines, thereby orchestrating the generation of inflammatory microenvironment. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) play pivotal roles in inflammation-associated cancer by inhibiting effective anti-tumor immunity. Anti-inflammatory agents, such as aspirin, metformin, and statins, have potential application in chemoprevention of prostate cancer. Furthermore, pro-inflammatory immunity-targeted therapies may provide novel strategies to treat patients with cancer. Thus, anti-inflammatory agents are expected to suppress the “vicious cycle” created by immune and cancer cells and inhibit cancer progression. This review has explored the immune cells that facilitate prostate cancer development and progression, with particular focus on the application of anti-inflammatory agents for both chemoprevention and therapeutic approach in prostate cancer.
Collapse
|
33
|
Khadge S, Sharp JG, Thiele GM, McGuire TR, Talmadge JE. Fatty Acid Mediators in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:125-153. [PMID: 32578175 DOI: 10.1007/978-3-030-43093-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with cancer frequently overexpress inflammatory cytokines with an associated neutrophilia both of which may be downregulated by diets with high omega-3 polyunsaturated fatty acids (ω-3 PUFA). The anti-inflammatory activity of dietary ω-3 PUFA has been suggested to have anticancer properties and to improve survival of cancer patients. Currently, the majority of dietary research efforts do not differentiate between obesity and dietary fatty acid consumption as mediators of inflammatory cell expansion and tumor microenvironmental infiltration, initiation, and progression. In this chapter, we discuss the relationships between dietary lipids, inflammation, neoplasia and strategies to regulate these relationships. We posit that dietary composition, notably the ratio of ω-3 vs. ω-6 PUFA, regulates tumor initiation and progression and the frequency and sites of metastasis that, together, impact overall survival (OS). We focus on three broad topics: first, the role of dietary lipids in chronic inflammation and tumor initiation, progression, and regression; second, lipid mediators linking inflammation and cancer; and third, dietary lipid regulation of murine and human tumor initiation, progression, and metastasis.
Collapse
Affiliation(s)
- Saraswoti Khadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Vanderbilt University, Nashville, TN, USA
| | - John Graham Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - James E Talmadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
34
|
Faria SS, Corrêa LH, Heyn GS, de Sant'Ana LP, Almeida RDN, Magalhães KG. Obesity and Breast Cancer: The Role of Crown-Like Structures in Breast Adipose Tissue in Tumor Progression, Prognosis, and Therapy. J Breast Cancer 2020; 23:233-245. [PMID: 32595986 PMCID: PMC7311368 DOI: 10.4048/jbc.2020.23.e35] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is associated with increased risk and aggressiveness of many types of cancer. Women with obesity and breast cancer are more likely to be diagnosed with larger and higher-grade tumors and have higher incidence of metastases than lean individuals. Increasing evidence indicates that obesity includes systemic, chronic low-grade inflammation, and that adipose tissue can act as an important endocrine site, secreting a variety of substances that may regulate inflammation, immune response, and cancer predisposition. Obesity-associated inflammation appears to be initially mediated by macrophage infiltration into adipose tissue. Macrophages can surround damaged or necrotic adipocytes, forming "crown-like" structures (CLS). CLS are increased in breast adipose tissue from breast cancer patients and are more abundant in patients with obesity conditions. Moreover, the CLS index-ratio from individuals with obesity seems to influence breast cancer recurrence rates and survival. In this review, we discuss the most recent cellular and molecular mechanisms involved in CLS establishment in the white adipose tissue of women with obesity and their implications for breast cancer biology. We also explain how CLS influence the tumor microenvironment and affect breast cancer behavior. Targeting breast adipose tissue CLS can be a crucial therapeutic tool in cancer treatment, especially in patients with obesity.
Collapse
Affiliation(s)
- Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Luís Henrique Corrêa
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Gabriella Simões Heyn
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Lívia Pimentel de Sant'Ana
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Raquel das Neves Almeida
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
35
|
Hao Q, Vadgama JV, Wang P. CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signal 2020; 18:82. [PMID: 32471499 PMCID: PMC7257158 DOI: 10.1186/s12964-020-00589-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a family of small cytokines, which guide a variety of immune/inflammatory cells to the site of tumor in tumorigenesis. A dysregulated expression of chemokines is implicated in different types of cancer including prostate cancer. The progression and metastasis of prostate cancer involve a complex network of chemokines that regulate the recruitment and trafficking of immune cells. The chemokine CCL2 and its main receptor CCR2 have been receiving particular interest on their roles in cancer pathogenesis. The up-regulation of CCL2/CCR2 and varied immune conditions in prostate cancer, are associated with cancer advancement, metastasis, and relapse. Here we reviewed recent findings, which link CCL2/CCR2 to the inflammation and cancer pathogenesis, and discussed the therapeutic potential of CCL2/CCR2 axis in cancer treatment based on results from our group and other investigators, with a major focus on prostate cancer. Video Abstract.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA. .,David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA. .,David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Piwen Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA. .,David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA. .,Center for Human Nutrition, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
36
|
A STAT3 of Addiction: Adipose Tissue, Adipocytokine Signalling and STAT3 as Mediators of Metabolic Remodelling in the Tumour Microenvironment. Cells 2020; 9:cells9041043. [PMID: 32331320 PMCID: PMC7226520 DOI: 10.3390/cells9041043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling of the tumour microenvironment is a major mechanism by which cancer cells survive and resist treatment. The pro-oncogenic inflammatory cascade released by adipose tissue promotes oncogenic transformation, proliferation, angiogenesis, metastasis and evasion of apoptosis. STAT3 has emerged as an important mediator of metabolic remodelling. As a downstream effector of adipocytokines and cytokines, its canonical and non-canonical activities affect mitochondrial functioning and cancer metabolism. In this review, we examine the central role played by the crosstalk between the transcriptional and mitochondrial roles of STAT3 to promote survival and further oncogenesis within the tumour microenvironment with a particular focus on adipose-breast cancer interactions.
Collapse
|
37
|
Wen Z, Tang Z, Li M, Zhang Y, Li J, Cao Y, Zhang D, Fu Y, Wang C. APPL1 knockdown blocks adipogenic differentiation and promotes adipocyte lipolysis. Mol Cell Endocrinol 2020; 506:110755. [PMID: 32045627 DOI: 10.1016/j.mce.2020.110755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/19/2020] [Accepted: 02/06/2020] [Indexed: 01/12/2023]
Abstract
Adipocyte dysfunction is closely associated with the development of obesity, insulin resistance, and type 2 diabetes. In addition to having a positive effect on adiponectin pathway and insulin signaling through direct and/or indirect mechanisms, adapter protein APPL1 has also been reported to regulate body weight, brown fat tissues thermogenesis, and body fat distribution in diabetic individuals. However, there is dearth of data on the specific role of APPL1 on adipogenic differentiation and adipocyte lipolysis. In this study, APPL1's function in adipocyte differentiation and adipocyte lipolysis was evaluated, and the possible mechanisms were investigated. We found that APPL1 knockdown (KD) impeded differentiation of 3T3-L1 preadipocytes into mature 3T3-L1 adipocytes and enhanced basal and insulin-suppressed lipolysis in mature 3T3-L1 adipocytes. APPL1 KD cells presented a reduced autophagic activity in 3T3-L1 preadipocytes and mature 3T3-L1 adipocytes. In 3T3-L1 preadipocytes, APPL1 KD reduced PPARγ protein levels, which was prevented by administration with proteasome inhibitor MG132. Furthermore, APPL1 KD-reduced autophagic activity in mature 3T3-L1 adipocytes was markedly restored by inhibition of PKA, accompanied with prevention of APPL1-induced lipolysis. In addition, APPL1 KD caused insulin resistance in mature 3T3-L1 adipocytes. Unexpectedly, we found that APPL1 overexpression did not appear to play a role in adipogenic differentiation and adipocyte lipolysis. Our results confirmed that APPL1 KD inhibits adipogenic differentiation by suppressing autophagy and enhances adipocyte lipolysis through activating PKA respectively. These findings may deepen our understanding of APPL1 function, especially its regulation on adipocyte biology.
Collapse
Affiliation(s)
- Zhongyuan Wen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhao Tang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mingxin Li
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yemin Zhang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Junfeng Li
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingkang Cao
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Deling Zhang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yalin Fu
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
38
|
Yadav NVS, Barcikowski A, Uehana Y, Jacobs AT, Connelly L. Breast Adipocyte Co-culture Increases the Expression of Pro-angiogenic Factors in Macrophages. Front Oncol 2020; 10:454. [PMID: 32318345 PMCID: PMC7154118 DOI: 10.3389/fonc.2020.00454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/13/2020] [Indexed: 01/31/2023] Open
Abstract
Obese individuals with breast cancer have a poorer prognosis and higher risk of metastatic disease vs. non-obese patients. Adipose tissue in obese individuals is characterized by an enhanced macrophage infiltration, creating a microenvironment that favors tumor progression. Here, we demonstrate a role for adipocyte-macrophage interactions in the regulation of angiogenesis. Co-culture of THP-1 macrophages with human breast adipocytes led to increased expression of the pro-angiogenic growth factor, vascular endothelial growth factor A (VEGFA). Several adipocyte-derived proteins including leptin, insulin, IL-6, and TNF-α were each capable of increasing VEGFA expression in THP-1 macrophages, identifying these as possible mediators of the changes that were observed with co-culture. Furthermore, analysis of THP-1 culture media by antibody array revealed that THP-1 secrete several other pro-angiogenic signals in response to adipocyte co-culture, including interleukin 8 (IL-8), matrix metalloproteinase 9 (MMP9), pentraxin 3 (PTX3), and serpin E1 (plasminogen activator inhibitor 1, PAI1) after co-culture with human adipocytes. We used an in vitro endothelial tube formation assay with human vascular endothelial cells to evaluate the effects of THP-1 culture media on angiogenesis. Here, culture media from THP-1 cells previously exposed to human adipocytes stimulated endothelial tube formation more significantly than THP-1 cells cultured alone. In summary, we find that adipocyte co-culture stimulates the expression of pro-angiogenic mediators in macrophages and has pro-angiogenic effects in vitro, thus representing a possible mechanism for the enhanced risk of breast cancer progression in obese individuals.
Collapse
Affiliation(s)
- Nalini V. S. Yadav
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, United States
| | - Arthur Barcikowski
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, United States
| | - Yuko Uehana
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, United States
| | - Aaron T. Jacobs
- School of Medicine, California University of Science and Medicine, San Bernardino, CA, United States
| | - Linda Connelly
- School of Medicine, California University of Science and Medicine, San Bernardino, CA, United States
| |
Collapse
|
39
|
Revisiting Cancer Stem Cells as the Origin of Cancer-Associated Cells in the Tumor Microenvironment: A Hypothetical View from the Potential of iPSCs. Cancers (Basel) 2020; 12:cancers12040879. [PMID: 32260363 PMCID: PMC7226406 DOI: 10.3390/cancers12040879] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/17/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment (TME) has an essential role in tumor initiation and development. Tumor cells are considered to actively create their microenvironment during tumorigenesis and tumor development. The TME contains multiple types of stromal cells, cancer-associated fibroblasts (CAFs), Tumor endothelial cells (TECs), tumor-associated adipocytes (TAAs), tumor-associated macrophages (TAMs) and others. These cells work together and with the extracellular matrix (ECM) and many other factors to coordinately contribute to tumor growth and maintenance. Although the types and functions of TME cells are well understood, the origin of these cells is still obscure. Many scientists have tried to demonstrate the origin of these cells. Some researchers postulated that TME cells originated from surrounding normal tissues, and others demonstrated that the origin is cancer cells. Recent evidence demonstrates that cancer stem cells (CSCs) have differentiation abilities to generate the original lineage cells for promoting tumor growth and metastasis. The differentiation of CSCs into tumor stromal cells provides a new dimension that explains tumor heterogeneity. Using induced pluripotent stem cells (iPSCs), our group postulates that CSCs could be one of the key sources of CAFs, TECs, TAAs, and TAMs as well as the descendants, which support the self-renewal potential of the cells and exhibit heterogeneity. In this review, we summarize TME components, their interactions within the TME and their insight into cancer therapy. Especially, we focus on the TME cells and their possible origin and also discuss the multi-lineage differentiation potentials of CSCs exploiting iPSCs to create a society of cells in cancer tissues including TME.
Collapse
|
40
|
Bahcecioglu G, Basara G, Ellis BW, Ren X, Zorlutuna P. Breast cancer models: Engineering the tumor microenvironment. Acta Biomater 2020; 106:1-21. [PMID: 32045679 PMCID: PMC7185577 DOI: 10.1016/j.actbio.2020.02.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022]
Abstract
The mechanisms behind cancer initiation and progression are not clear. Therefore, development of clinically relevant models to study cancer biology and drug response in tumors is essential. In vivo models are very valuable tools for studying cancer biology and for testing drugs; however, they often suffer from not accurately representing the clinical scenario because they lack either human cells or a functional immune system. On the other hand, two-dimensional (2D) in vitro models lack the three-dimensional (3D) network of cells and extracellular matrix (ECM) and thus do not represent the tumor microenvironment (TME). As an alternative approach, 3D models have started to gain more attention, as such models offer a platform with the ability to study cell-cell and cell-material interactions parametrically, and possibly include all the components present in the TME. Here, we first give an overview of the breast cancer TME, and then discuss the current state of the pre-clinical breast cancer models, with a focus on the engineered 3D tissue models. We also highlight two engineering approaches that we think are promising in constructing models representative of human tumors: 3D printing and microfluidics. In addition to giving basic information about the TME in the breast tissue, this review article presents the state-of-the-art tissue engineered breast cancer models. STATEMENT OF SIGNIFICANCE: Involvement of biomaterials and tissue engineering fields in cancer research enables realistic mimicry of the cell-cell and cell-extracellular matrix (ECM) interactions in the tumor microenvironment (TME), and thus creation of better models that reflect the tumor response against drugs. Engineering the 3D in vitro models also requires a good understanding of the TME. Here, an overview of the breast cancer TME is given, and the current state of the pre-clinical breast cancer models, with a focus on the engineered 3D tissue models is discussed. This review article is useful not only for biomaterials scientists aiming to engineer 3D in vitro TME models, but also for cancer researchers willing to use these models for studying cancer biology and drug testing.
Collapse
Affiliation(s)
- Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
41
|
Pinheiro-Machado E, Gurgul-Convey E, Marzec MT. Immunometabolism in type 2 diabetes mellitus: tissue-specific interactions. Arch Med Sci 2020; 19:895-911. [PMID: 37560741 PMCID: PMC10408029 DOI: 10.5114/aoms.2020.92674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/23/2019] [Indexed: 08/11/2023] Open
Abstract
The immune system is frequently described in the context of its protective function against infections and its role in the development of autoimmunity. For more than a decade, the interactions between the immune system and metabolic processes have been reported, in effect creating a new research field, termed immunometabolism. Accumulating evidence supports the hypothesis that the development of metabolic diseases may be linked to inflammation, and reflects, in some cases, the activation of immune responses. As such, immunometabolism is defined by 1) inflammation as a driver of disease development and/or 2) metabolic processes stimulating cellular differentiation of the immune components. In this review, the main factors capable of altering the immuno-metabolic communication leading to the development and establishment of obesity and diabetes are comprehensively presented. Tissue-specific immune responses suggested to impair metabolic processes are described, with an emphasis on the adipose tissue, gut, muscle, liver, and pancreas.
Collapse
Affiliation(s)
- Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Michal T. Marzec
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Significance of CT attenuation and F-18 fluorodeoxyglucose uptake of visceral adipose tissue for predicting survival in gastric cancer patients after curative surgical resection. Gastric Cancer 2020; 23:273-284. [PMID: 31485803 PMCID: PMC7031193 DOI: 10.1007/s10120-019-01001-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The purpose of this study was to investigate the prognostic significance of computed tomography (CT) attenuation and F-18 fluorodeoxyglucose (FDG) uptake of visceral adipose tissue (VAT) to predict peritoneal recurrence-free survival (RFS) as well as RFS and overall survival (OS) in patients with advanced gastric cancer (AGC). METHODS We retrospectively enrolled 117 patients with AGC who underwent staging FDG positron emission tomography (PET)/CT and subsequent curative surgical resection. CT attenuation and FDG uptake (SUV) of VAT and maximum FDG uptake of primary tumor (SUVmaxT) were measured from PET/CT images. The relationship of VAT attenuation and SUV with clinico-histopathologic factors and survival was assessed. RESULTS There was a significant positive correlation between VAT attenuation and SUV (p < 0.001, r = 0.799). In correlation analyses, both VAT attenuation and SUV showed significant positive correlations with T stage, TNM stage, tumor size, and platelet-to-lymphocyte ratio (p < 0.05), and patients who experienced recurrence during the first 3-year after surgery had significantly higher VAT attenuation and SUV than those who had no recurrence (p < 0.05). Patients with high VAT attenuation and SUV showed significantly worse RFS, peritoneal RFS, and OS than those with low values (p < 0.05). On multivariate survival analysis, VAT attenuation was significantly associated with peritoneal RFS and OS and VAT SUV was significantly associated with OS (p < 0.05). CONCLUSIONS CT attenuation and FDG uptake of VAT on staging FDG PET/CT were correlated with tumor characteristics and were significant predictive factors for peritoneal RFS and OS in patients with AGC.
Collapse
|
43
|
Ribeiro Franco PI, Rodrigues AP, de Menezes LB, Pacheco Miguel M. Tumor microenvironment components: Allies of cancer progression. Pathol Res Pract 2019; 216:152729. [PMID: 31735322 DOI: 10.1016/j.prp.2019.152729] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022]
Abstract
Cancer is a disease that affects millions of individuals worldwide and has a great impact on public health. Therefore, the study of tumor biology and an understanding of how the components of the tumor microenvironment behave and interact is extremely important for cancer research. Factors expressed by the components of the tumor microenvironment and induce angiogenesis have important roles in the onset and progression of the tumor. These components are represented by the extracellular matrix, fibroblasts, adipocytes, immune cells, and macrophages, besides endothelial cells, which modulate tumor cells and the tumor microenvironment to favor survival and the progression of cancer. The characteristics and function of the main stromal components and their mechanisms of interaction with the tumor cells that contribute to progression, tumor invasion, and tumor spread will be addressed in this review. Furthermore, reviewing these components is expected to indicate their importance as possible prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - Arthur Perillo Rodrigues
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Marina Pacheco Miguel
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
44
|
Hayashi T, Fujita K, Matsushita M, Nonomura N. Main Inflammatory Cells and Potentials of Anti-Inflammatory Agents in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11081153. [PMID: 31408948 PMCID: PMC6721573 DOI: 10.3390/cancers11081153] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the most common type of cancer and the leading cause of cancer deaths among men in many countries. Preventing progression is a major concern for prostate cancer patients on active surveillance, patients with recurrence after radical therapies, and patients who acquired resistance to systemic therapies. Inflammation, which is induced by various factors such as infection, microbiome, obesity, and a high-fat diet, is the major etiology in the development of prostate cancer. Inflammatory cells play important roles in tumor progression. Various immune cells including tumor-associated neutrophils, tumor-infiltrating macrophages, myeloid-derived suppressor cells, and mast cells promote prostate cancer via various intercellular signaling. Further basic studies examining the relationship between the inflammatory process and prostate cancer progression are warranted. Interventions by medications and diets to control systemic and/or local inflammation might be effective therapies for prostate cancer progression. Epidemiological investigations and basic research using human immune cells or mouse models have revealed that non-steroidal anti-inflammatory drugs, metformin, statins, soy isoflavones, and other diets are potential interventions for preventing progression of prostate cancer by suppressing inflammation. It is essential to evaluate appropriate indications and doses of each drug and diet.
Collapse
Affiliation(s)
- Takuji Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
45
|
Marchini A, Daeffler L, Pozdeev VI, Angelova A, Rommelaere J. Immune Conversion of Tumor Microenvironment by Oncolytic Viruses: The Protoparvovirus H-1PV Case Study. Front Immunol 2019; 10:1848. [PMID: 31440242 PMCID: PMC6692828 DOI: 10.3389/fimmu.2019.01848] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer cells utilize multiple mechanisms to evade and suppress anticancer immune responses creating a “cold” immunosuppressive tumor microenvironment. Oncolytic virotherapy is emerging as a promising approach to revert tumor immunosuppression and enhance the efficacy of other forms of immunotherapy. Growing evidence indicates that oncolytic viruses (OVs) act in a multimodal fashion, inducing immunogenic cell death and thereby eliciting robust anticancer immune responses. In this review, we summarize information about OV-mediated immune conversion of the tumor microenvironment. As a case study we focus on the rodent protoparvovirus H-1PV and its dual role as an oncolytic and immune modulatory agent. Potential strategies to improve H-1PV anticancer efficacy are also discussed.
Collapse
Affiliation(s)
- Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Laurent Daeffler
- Université de Strasbourg, IPHC, Strasbourg, France.,CNRS, UMR7178, Strasbourg, France
| | - Vitaly I Pozdeev
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Assia Angelova
- Infection, Inflammation and Cancer Program, German Cancer Research Center, Heidelberg, Germany
| | - Jean Rommelaere
- Infection, Inflammation and Cancer Program, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
46
|
Corrêa LH, Heyn GS, Magalhaes KG. The Impact of the Adipose Organ Plasticity on Inflammation and Cancer Progression. Cells 2019; 8:E662. [PMID: 31262098 PMCID: PMC6679170 DOI: 10.3390/cells8070662] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is characterized by chronic and low-grade systemic inflammation, an increase of adipose tissue, hypertrophy, and hyperplasia of adipocytes. Adipose tissues can be classified into white, brown, beige and pink adipose tissues, which display different regulatory, morphological and functional characteristics of their adipocyte and immune cells. Brown and white adipocytes can play a key role not only in the control of energy homeostasis, or through the balance between energy storage and expenditure, but also by the modulation of immune and inflammatory responses. Therefore, brown and white adipocytes can orchestrate important immunological crosstalk that may deeply impact the tumor microenvironment and be crucial for cancer establishment and progression. Recent works have indicated that white adipose tissues can undergo a process called browning, in which an inducible brown adipocyte develops. In this review, we depict the mechanisms involved in the differential role of brown, white and pink adipocytes, highlighting their structural, morphological, regulatory and functional characteristics and correlation with cancer predisposition, establishment, and progression. We also discuss the impact of the increased adiposity in the inflammatory and immunological modulation. Moreover, we focused on the plasticity of adipocytes, describing the molecules produced and secreted by those cells, the modulation of the signaling pathways involved in the browning phenomena of white adipose tissue and its impact on inflammation and cancer.
Collapse
MESH Headings
- Adipocytes, Brown/immunology
- Adipocytes, Brown/metabolism
- Adipocytes, White/immunology
- Adipocytes, White/metabolism
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/immunology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Adiposity/immunology
- Animals
- Carcinogenesis/immunology
- Carcinogenesis/pathology
- Disease Models, Animal
- Disease Progression
- Energy Metabolism/immunology
- Humans
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Obesity/complications
- Obesity/immunology
- Obesity/metabolism
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Luís Henrique Corrêa
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Gabriella Simões Heyn
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Kelly Grace Magalhaes
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil.
| |
Collapse
|
47
|
Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants (Basel) 2019; 8:E103. [PMID: 30995775 PMCID: PMC6523469 DOI: 10.3390/antiox8040103] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) remains the second most common cause of cancer-related deaths in women in the US, despite advances in detection and treatment. In addition, breast cancer survivors often struggle with long-term treatment related comorbidities. Identifying novel therapies that are effective while minimizing toxicity is critical in curtailing this disease. Flavonoids, a subclass of plant polyphenols, are emerging as promising treatment options for the prevention and treatment of breast cancer. Recent evidence suggests that in addition to anti-oxidant properties, flavonoids can directly interact with proteins, making them ideal small molecules for the modulation of enzymes, transcription factors and cell surface receptors. Of particular interest is the ability of flavonoids to modulate the tumor associated macrophage function. However, clinical applications of flavonoids in cancer trials are limited. Epidemiological and smaller clinical studies have been largely hypothesis generating. Future research should aim at addressing known challenges with a broader use of preclinical models and investigating enhanced dose-delivery systems that can overcome limited bioavailability of dietary flavonoids. In this review, we discuss the structure-functional impact of flavonoids and their action on breast tumor cells and the tumor microenvironment, with an emphasis on their clinical role in the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Sagar Sardesai
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Andrea I Doseff
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Department Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
48
|
Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther 2019; 20:1057-1067. [PMID: 30990132 PMCID: PMC6606043 DOI: 10.1080/15384047.2019.1598759] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/24/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor-specific, circulating cell-free DNA in liquid biopsies is a promising source of biomarkers for minimally invasive serial monitoring of treatment responses in cancer management. We will review the current understanding of the origin of circulating cell-free DNA and different forms of DNA release (including various types of cell death and active secretion processes) and clearance routes. The dynamics of extracellular DNA in blood during therapy and the role of circulating DNA in pathophysiological processes (tumor-associated inflammation, NETosis, and pre-metastatic niche development) provide insights into the mechanisms that contribute to tumor development and metastases formation. Better knowledge of circulating tumor-specific cell-free DNA could facilitate the development of new therapeutic and diagnostic options for cancer management.
Collapse
Affiliation(s)
- Anatoli Kustanovich
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ruth Schwartz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Albert Grinshpun
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
49
|
Fujita K, Hayashi T, Matsushita M, Uemura M, Nonomura N. Obesity, Inflammation, and Prostate Cancer. J Clin Med 2019; 8:jcm8020201. [PMID: 30736371 PMCID: PMC6406330 DOI: 10.3390/jcm8020201] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
The prevalence of obesity is increasing in the world, and obesity-induced disease, insulin-resistance, cardiovascular disease, and malignancies are becoming a problem. Epidemiological studies have shown that obesity is associated with advanced prostate cancer and that obese men with prostate cancer have a poorer prognosis. Obesity induces systemic inflammation via several mechanisms. High-fat diet-induced prostate cancer progresses via adipose-secretory cytokines or chemokines. Inflammatory cells play important roles in tumor progression. A high-fat diet or obesity changes the local profile of immune cells, such as myeloid-derived suppressor cells and macrophages, in prostate cancer. Tumor-associated neutrophils, B cells, and complements may promote prostate cancer in the background of obesity. Interventions to control systemic and/or local inflammation and changes in lifestyle may also be viable therapies for prostate cancer.
Collapse
Affiliation(s)
- Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Takuji Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
50
|
Willemsen L, Neele AE, van der Velden S, Prange KHM, den Toom M, van Roomen CPAA, Reiche ME, Griffith GR, Gijbels MJJ, Lutgens E, de Winther MPJ. Peritoneal macrophages have an impaired immune response in obesity which can be reversed by subsequent weight loss. BMJ Open Diabetes Res Care 2019; 7:e000751. [PMID: 31798899 PMCID: PMC6861071 DOI: 10.1136/bmjdrc-2019-000751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Obesity is recognized as a risk factor for various microbial infections. The immune system, which is affected by obesity, plays an important role in the pathophysiology of these infections and other obesity-related comorbidities. Weight loss is considered the most obvious treatment for obesity. However, multiple studies suggest that the comorbidities of obesity may persist after weight loss. Deregulation of immune cells including adipose tissue macrophages of obese individuals has been extensively studied, but how obesity and subsequent weight loss affect immune cell function outside adipose tissue is not well defined. RESEARCH DESIGN AND METHODS Here we investigated the phenotype of non-adipose tissue macrophages by transcriptional characterization of thioglycollate-elicited peritoneal macrophages (PM) from mice with diet-induced obesity and type 2 diabetes (T2D). Subsequently, we defined the characteristics of PMs after weight loss and mimicked a bacterial infection by exposing PMs to lipopolysaccharide. RESULTS AND CONCLUSIONS In contrast to the proinflammatory phenotype of adipose tissue macrophages in obesity and T2D, we found a deactivated state of PMs in obesity and T2D. Weight loss could reverse this deactivated macrophage phenotype. Anti-inflammatory characteristics of these non-adipose macrophages may explain why patients with obesity and T2D have an impaired immune response against pathogens. Our data also suggest that losing weight restores macrophage function and thus contributes to the reduction of immune-related comorbidities in patients.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/therapy
- Diet, High-Fat
- Dietary Fats/pharmacology
- Immunity, Cellular/drug effects
- Immunity, Cellular/physiology
- Insulin Resistance/physiology
- Macrophage Activation/drug effects
- Macrophage Activation/physiology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Obesity/complications
- Obesity/immunology
- Obesity/pathology
- Obesity/therapy
- Weight Loss/immunology
- Weight Loss/physiology
Collapse
Affiliation(s)
- Lisa Willemsen
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annette E Neele
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Saskia van der Velden
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Koen H M Prange
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Myrthe den Toom
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Cindy P A A van Roomen
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Myrthe E Reiche
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Guillermo R Griffith
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marion J J Gijbels
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Departments of Pathology and Molecular Genetics, CARIM School for Cardiovascular Diseases and GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University Munich, Munich, Germany
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University Munich, Munich, Germany
| |
Collapse
|