1
|
Greiner D, Xue Q, Waddell TQ, Kurudza E, Chaudhary P, Belote RL, Dotti G, Judson-Torres RL, Reeves MQ, Cheshier SH, Roh-Johnson M. Human CSPG4-targeting CAR-macrophages inhibit melanoma growth. Oncogene 2025; 44:1665-1677. [PMID: 40082557 PMCID: PMC12122381 DOI: 10.1038/s41388-025-03332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/12/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Approximately half of melanoma patients relapse or fail to respond to current standards of care, highlighting the need for new treatment options. Engineering T-cells with chimeric antigen receptors (CARs) has revolutionized the treatment of hematological malignancies but has been clinically less effective in solid tumors. We therefore sought to engineer alternative immune cell types to inhibit melanoma progression. Engineering macrophages with CARs has emerged as a promising approach to overcome some of the challenges faced by CAR-T cells; however, whether these engineered macrophages can effectively inhibit melanoma growth is unknown. To determine whether CAR-macrophages (CAR-Ms) specifically target and kill melanoma cells, we engineered CAR-Ms targeting chondroitin sulfate proteoglycan 4 (CSPG4), an antigen expressed in melanoma. CSPG4-targeting CAR-Ms exhibited specific phagocytosis of CSPG4-expressing melanoma cells. We developed 3D approaches to show that CSPG4-targeting CAR-Ms efficiently infiltrated melanoma spheroids. Furthermore, combining CSPG4-targeting CAR-Ms with strategies inhibiting CD47/SIRPα "don't eat me" signaling synergistically enhanced CAR-M-mediated phagocytosis and robustly inhibited melanoma spheroid growth in 3D. Importantly, CSPG4-targeting CAR-Ms inhibited melanoma tumor growth in mouse models. These results suggest engineering macrophages against melanoma antigens is a promising solid tumor immunotherapy approach for treating melanoma.
Collapse
Affiliation(s)
- Daniel Greiner
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Qian Xue
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Trinity Qa Waddell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Elena Kurudza
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, 84112, USA
| | - Piyush Chaudhary
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Rachel L Belote
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Molecular Genetics, The Ohio State University College of Arts and Sciences, Columbus, OH, 43210, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert L Judson-Torres
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Melissa Q Reeves
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Samuel H Cheshier
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Division of Pediatric Neurosurgery, Intermountain Primary Children's Hospital, Salt Lake City, UT, 84112, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
2
|
Gorodetska I, Samusieva A, Lahuta T, Ponomarova O, Socha O, Kozeretska I. Exploring New Frontiers: Alternative Breast Cancer Treatments Through Glycocalyx Research. Breast J 2025; 2025:9952727. [PMID: 40443562 PMCID: PMC12122162 DOI: 10.1155/tbj/9952727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 05/03/2025] [Indexed: 06/02/2025]
Abstract
Breast cancer (BC) treatment is developing toward more precise and personalized care through the approval of different comprehensive approaches. Clinical practice emphasizes significant patient-to-patient variability in treatment response among patients, even those with similar clinical and biological profiles. Recent studies have demonstrated that the glycocalyx is an essential organelle that plays an important role in many cellular processes and can be a promising target for treatment. The glycocalyx of cancer cells is a key component influencing the interaction between the tumor and the immune system. Glycan modifications attached to glycoproteins and glycolipids are a common characteristic of the transition to malignancy. We review how the specific structure and function of the glycocalyx are regulated at the molecular level, contribute to immune evasion, and can be overcome by using both traditional drugs and combination therapies, as well as drugs not previously used in standard cancer treatments, to address treatment resistance associated with glycocalyx alterations. Trial Registration: ClinicalTrials.gov identifier: NCT00770354, NCT00925548, NCT01731587, NCT00088413, NCT00179309, NCT00986609, NCT05812326, NCT04020575, NCT05239143, NCT01279603, and NCT03562637.
Collapse
Affiliation(s)
- Ielizaveta Gorodetska
- Institute of Radiooncology – OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anastasiia Samusieva
- Department of Oncology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Tetiana Lahuta
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Olga Ponomarova
- Department of Oncology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
- Department of Chemotherapy #1, Kyiv Municipal Clinical Oncological Center, Kyiv, Ukraine
| | - Oleg Socha
- Provincial Hospital. St. Padre Pio, Przemyśl, Poland
| | | |
Collapse
|
3
|
Qiao Q, Li J, Tao C, Yang M, Chen W, Qiu L, Tu H. Camptothecin-loaded chondroitin sulfate-celecoxib reduction-sensitive micelles for enhanced colon cancer treatment. Int J Biol Macromol 2025; 315:144489. [PMID: 40409631 DOI: 10.1016/j.ijbiomac.2025.144489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/07/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Studies have shown that inflammation is closely linked to the cancer development, and the patients with inflammatory bowel disease (IBD) have a higher risk of colon cancer. Celecoxib (CXB) and camptothecin (CPT) showed potential treatment for IBD and colon cancers, respectively. However, their applications are limited by synchronous delivery, water insolubility, and off-target side effects. Herein, a glutathione (GSH) responsive chondroitin sulfate A (CSA)-SS-CXB micelle loaded with CPT (CSA-SS-CXB@CPT) was prepared as a targeted system to treat colon cancer by anti-inflammatory and antitumor synergistic effect. Specifically, CSA had tumor tumor-targeting effect due to colon cancer lesion-high expression of CD44 receptors. In vitro results verified that CSA-SS-CXB@CPT selectively internalized into colon cancer HT-29 cells and had strong reactive oxygen species (ROS) elimination ability. The CSA-SS-CXB@CPT could rapidly release CXB and CPT in the tumor microenvironment for playing an anti-tumor role. In vivo experiments illustrated that CSA-SS-CXB@CPT significantly targeted tumor tissues and suppressed tumor growth without producing serious side effects in tumor-bearing nude mice. Therefore, this work provides an opportunity for targeted co-delivery of anti-inflammatory and chemotherapy drugs to treat colon cancer.
Collapse
Affiliation(s)
- Qiao Qiao
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jie Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Chunying Tao
- Department of Oncology, Heze Municipal Hospital, Heze 274000, China
| | - Meiyang Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Weijun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Huiming Tu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Wali AF, Talath S, Sridhar SB, El-Tanani M, Rangraze IR. Endosialin-directed CAR-T cell therapy: A promising approach for targeting triple-negative breast cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167852. [PMID: 40318845 DOI: 10.1016/j.bbadis.2025.167852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/03/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
In triple-negative breast cancer, this review article explores into the utilization of Chimeric antigen receptor T-cell (CAR-T) cell therapy to target cells expressing endosialin. Even with all the new treatments available, breast cancer still kills more women than any other disease. Drug resistance and ineffective cancer cell targeting are two major problems with targeted medications, chemotherapy, and surgery. Among cancer treatments, CAR-T cell therapy stands out. To identify endosialin as a therapeutic target, it is essential to understand its molecular structure and its involvement in tumor angiogenesis and progression. An effective target for CAR-T cells is breast cancer, which overexpresses endosialin. The development of CARs that are specific to endosialin and the results of early trials are covered in relation to CAR-T cell therapy that targets endosialin. Perhaps the most effective cancer treatment is endosialin targeting, since it is expressed only in tumors and plays a crucial role in the course of cancer. This article reviews endosialin-directed CAR-T cell breast cancer treatments' safety and efficacy from current and completed clinical trials. Despite promising results, these trials reveal that clinical translation must overcome significant challenges. The report suggests further research and combination tactics to improve endosialin-targeted CAR-T cell treatment.
Collapse
Affiliation(s)
- Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sathvik B Sridhar
- Department of Clinical Pharmacy & Pharmacology, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates
| | - Imran Rashid Rangraze
- Department of Internal Medicine, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| |
Collapse
|
5
|
Jiang D, Xu C, Li Y, Nie L, Tao X, Hu X, Yang M, Li X, Chang X, Wang X, Yang X, Zheng Q, Teng H, He Y, Yuan W, Xiao Y, Deng M, Liu Y, Yu Z, Song Q, Yao J, Zhang X, Xu L, Su J, He M, Han Y, Li Y, Wang C, Liu Y, Nie X, Fan X, Xue L, Mei J, Tang F, Hou Y. Evaluating CSPG4 expression in esophageal basaloid squamous cell carcinoma and conventional squamous cell carcinoma: a multi-institutional retrospective study in China. Virchows Arch 2025:10.1007/s00428-024-04020-2. [PMID: 40301136 DOI: 10.1007/s00428-024-04020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/11/2024] [Accepted: 12/17/2024] [Indexed: 05/01/2025]
Abstract
Esophageal basaloid squamous cell carcinoma (EBSCC) is a rare subtype of esophageal squamous cell carcinoma (ESCC) that might be misdiagnosed or missed in clinical practice. Through RNA sequencing on 20 pure EBSCC and 11 poorly differentiated ESCC samples, we identified CSPG4 as a potential marker for EBSCC at the mRNA level, and verified with CSPG4 immunohistochemical staining in these cases. Then we assessed the value of CSPG4 expression in differential diagnosis and prognosis in EBSCC cases (n = 360) and conventional ESCC cases (n = 160) from 11 different institutions with whole-tissue sections. CSPG4 had acceptable discriminatory capacity for EBSCC, with an AUC ROC of 0.891. The optimal cutoff value for the H-score determined by ROC curve analysis was 77.5, with 82.7% sensitivity and 79.9% specificity. In well-moderately differentiated ESCC with CSPG4 expression, staining was mostly observed on the edge of the tumor nest or infiltration front, with different expression pattern from EBSCC. The H-scores of CSPG4 expression for the EBSCC component were higher than those for other components in the same tissue section (P < 0.05). The expression level of CSPG4 was similar in groups with different percentages of the EBSCC component (P > 0.05). In additional 505 ESCC patients, patients with high CSPG4 expression had decreased DFS and OS, especially in stage I-II disease (P < 0.001). The similar prognostic significance was also found in EBSCC. Our data indicate that CSPG4 is not only a sensitive but also a specific marker for the diagnosis of EBSCC. CSPG4 might also be a prognostic marker for ESCC.
Collapse
Affiliation(s)
- Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yan Li
- Department of Pathology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Ling Nie
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Jiangsu Province, Nanjing, 210008, P. R. China
| | - Xueqin Tao
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Jiangxi Province, Nanchang, 330006, P. R. China
| | - Xiaomu Hu
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan, 430022, China
| | - Xuefei Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan, 430022, China
| | - Xiaona Chang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan, 430022, China
| | - Xinran Wang
- Department of Pathology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Hebei Province, Shijiazhuang, 050000, P. R. China
| | - Xiaoqun Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, P. R. China
| | - Qiang Zheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Haohua Teng
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yayun He
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Wei Yuan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yuhao Xiao
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Minying Deng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yufeng Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Qi Song
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jiamei Yao
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Lei Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Miaoxia He
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yueping Liu
- Department of Pathology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Hebei Province, Shijiazhuang, 050000, P. R. China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, Wuhan, 430022, China
| | - Xiangshan Fan
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Jiangsu Province, Nanjing, 210008, P. R. China
| | - Liyan Xue
- Department of Pathology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Jinhong Mei
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Jiangxi Province, Nanchang, 330006, P. R. China.
| | - Feng Tang
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
6
|
Tavanti F, Brancolini G, Perris R. Computational analysis of the structural-functional dynamics of a Co-receptor proteoglycan. Front Mol Biosci 2025; 12:1549177. [PMID: 40201239 PMCID: PMC11975855 DOI: 10.3389/fmolb.2025.1549177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
Nerve-Glial Antigen 2/Chondroitin Sulphate Proteoglycan 4 (NG2/CSPG4) is the largest membrane-intercalated cell surface component of the human proteome known to date. NG2/CSPG4 is endowed with the capability of engaging a myriad of molecular interactions and exert co-receptor functions, of which primary ones are sequestering of growth factors and the anchoring of cells to the extracellular matrix. However, the nature of the interactive dynamics of the proteoglycan remains veiled because of its conspicuous size and structural complexity. By leveraging on a multi-scale in silico approach, we have pioneered a comprehensive computational analysis of the structural-functional traits of the NG2/CSPG4 ectodomain. The modelling highlights an intricate assembly of β-sheet motifs linked together by flexible loops. Furthermore, our in silico predictions highlight that the previously delineated D1 domain may consistently remain more accessible for molecular interplays with respect to the D2 and D3 domains. Based on these findings, we have simulated the structural mechanism through the proteoglycan may serve as a co-receptor for growth factor FGF-2, showing that NG2/CSPG4 bends towards the receptor FGFR-1 for this growth factor and confirming the previously hypothesized trimeric complex formation promoted by FGF-2 dimers bridging the FGFR-1-proteoglycan interaction. The Chondroitin Sulphate Proteoglycan 4 is a large multi-domain transmembrane protein involved in several biological processes including pathological conditions. Despite its importance, it has never been studied at the atomistic level due to its large size. Here, we employed a multi-scale computer simulations approach to study its three-dimensional structure, its movements and co-receptor properties, showing that it can serve as mediator in the growth factor signaling process.
Collapse
Affiliation(s)
- Francesco Tavanti
- COMT – Centre for Molecular and Translational Oncology, University of Parma, Parma, Italy
- Department of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Center S3, CNR Institute of Nanoscience – CNR-NANO, Modena, Italy
| | | | - Roberto Perris
- COMT – Centre for Molecular and Translational Oncology, University of Parma, Parma, Italy
- Department of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Manu DR, Bǎlaşa R, Pruteanu LL, Curean V, Barbu-Tudoran L, Şerban GM, Chinezu R, Bǎlaşa A. Identification of distinct profiles of glioblastoma through the immunocapture of extracellular vesicles from patient plasma. PLoS One 2025; 20:e0315890. [PMID: 40106404 PMCID: PMC11922215 DOI: 10.1371/journal.pone.0315890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/03/2024] [Indexed: 03/22/2025] Open
Abstract
Glioblastoma (GBM), a primary brain tumor, exhibits intratumoral heterogeneity and dynamic spatial-temporal changes. GBM-derived extracellular vesicles (EVs), reflecting tumor characteristics, present potential as liquid-biopsy markers for early diagnosis and monitoring. This study aims to evaluate molecular signatures of plasma-derived EVs from GBM patients using a conventional flow cytometer. EVs have been isolated from glioma patients and healthy controls (HCs) plasma using density gradient ultracentrifugation (DGU). EVs were evaluated by bead-based multiplex analysis in a conventional flow cytometer. Principal component analysis (PCA), hierarchical clustering, and correlation analysis provided comprehensive insights into EV characteristics. EVs successfully isolated were visualized in transmission and scanning electron microscopy (STEM). Bead-based multiplex analysis in flow cytometer detected the level of 37 EV surface markers, including tumor-related, cancer stem cell, endothelial cell, and immune cell- specific antigens. PCA identified the EV surface markers that are most significant for differentiating the subjects, and hierarchical clustering revealed four distinct clusters based on EV surface marker levels. EV molecular signature demonstrated considerable heterogeneity across patient clusters. The presence of CD29 emerged not only as a defining factor for a cluster of patients, but also served as a marker to differentiate patients from HCs.
Collapse
Affiliation(s)
- Doina Ramona Manu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania,
| | - Rodica Bǎlaşa
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital of Targu Mures, Targu Mures, Romania
| | - Lavinia-Lorena Pruteanu
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, Baia Mare, Romania
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Victor Curean
- Doctoral School, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Georgiana-Mihaela Şerban
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania
| | - Rareş Chinezu
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
- Neurosurgery Clinic, Emergency Clinical County Hospital of Targu Mures, Targu Mures, Romania
| | - Adrian Bǎlaşa
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
- Neurosurgery Clinic, Emergency Clinical County Hospital of Targu Mures, Targu Mures, Romania
| |
Collapse
|
8
|
Jain A, Barge A, Parris CN. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: overcoming resistance mechanisms. Oncogene 2025; 44:193-207. [PMID: 39572842 PMCID: PMC11746151 DOI: 10.1038/s41388-024-03227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 01/22/2025]
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive breast cancer subtype, characterised by a higher incidence in younger women, rapid metastasis, and a generally poor prognosis. Patients with TNBC and BRCA mutations face additional therapeutic challenges due to the cancer's intrinsic resistance to conventional therapies. Poly (ADP-ribose) polymerase inhibitors (PARPis) have emerged as a promising targeted treatment for BRCA-mutated TNBC, exploiting vulnerabilities in the homologous recombination repair (HRR) pathway. However, despite initial success, the efficacy of PARPis is often compromised by the development of resistance mechanisms, including HRR restoration, stabilisation of replication forks, reduced PARP1 trapping, and drug efflux. This review explores latest breakthroughs in overcoming PARPi resistance through combination therapies. These strategies include the integration of PARPis with chemotherapy, immunotherapy, antibody-drug conjugates, and PI3K/AKT pathway inhibitors. These combinations aim to enhance the therapeutic efficacy of PARPis by targeting multiple cancer progression pathways. The review also discusses the evolving role of PARPis within the broader treatment paradigm for BRCA-mutated TNBC, emphasising the need for ongoing research and clinical trials to optimise combination strategies. By tackling the challenges associated with PARPi resistance and exploring novel combination therapies, this review sheds light on the future possibilities for improving outcomes for patients with BRCA-mutated TNBC.
Collapse
Affiliation(s)
- Aditi Jain
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
9
|
Milan M, Maiullari F, Chirivì M, Ceraolo MG, Zigiotto R, Soluri A, Maiullari S, Landoni E, Silvestre DD, Brambilla F, Mauri P, De Paolis V, Fratini N, Crosti MC, Cordiglieri C, Parisi C, Calogero A, Seliktar D, Torrente Y, Lanzuolo C, Dotti G, Toccafondi M, Bombaci M, De Falco E, Bearzi C, Rizzi R. Macrophages producing chondroitin sulfate proteoglycan-4 induce neuro-cardiac junction impairment in Duchenne muscular dystrophy. J Pathol 2025; 265:1-13. [PMID: 39523812 PMCID: PMC11638662 DOI: 10.1002/path.6362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/12/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of the full form of the dystrophin protein, which is essential for maintaining the structural integrity of muscle cells, including those in the heart and respiratory system. Despite progress in understanding the molecular mechanisms associated with DMD, myocardial insufficiency persists as the primary cause of mortality, and existing therapeutic strategies remain limited. This study investigates the hypothesis that a dysregulation of the biological communication between infiltrating macrophages (MPs) and neurocardiac junctions exists in dystrophic cardiac tissue. In a mouse model of DMD (mdx), this phenomenon is influenced by the over-release of chondroitin sulfate proteoglycan-4 (CSPG4), a key inhibitor of nerve sprouting and a modulator of the neural function, by MPs infiltrating the cardiac tissue and associated with dilated cardiomyopathy, a hallmark of DMD. Givinostat, the histone deacetylase inhibitor under current development as a clinical treatment for DMD, is effective at both restoring a physiological microenvironment at the neuro-cardiac junction and cardiac function in mdx mice in addition to a reduction in cardiac fibrosis, MP-mediated inflammation, and tissue CSPG4 content. This study provides novel insight into the pathophysiology of DMD in the heart, identifying potential new biological targets. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Marika Milan
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Fabio Maiullari
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- PhD Program in Cellular and Molecular Biology, Department of BiologyUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Maila Chirivì
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Maria Grazia Ceraolo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Rebecca Zigiotto
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Andrea Soluri
- Unit of Molecular NeurosciencesUniversity Campus Bio‐Medico, RomeRomeItaly
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Silvia Maiullari
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Elisa Landoni
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | | | | | - Pierluigi Mauri
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Veronica De Paolis
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Nicole Fratini
- Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Maria Cristina Crosti
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Chiara Cordiglieri
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Chiara Parisi
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Antonella Calogero
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Dror Seliktar
- Department of Biomedical EngineeringTechnion InstituteHaifaIsrael
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Chiara Lanzuolo
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Mirco Toccafondi
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Mauro Bombaci
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Elena De Falco
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Claudia Bearzi
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| |
Collapse
|
10
|
Macaulay ARK, Yang J, Price MA, Forster CL, Riddle MJ, Ebens CL, Albert FW, Giubellino A, McCarthy JB, Tolar J. Chondroitin sulfate proteoglycan 4 increases invasion of recessive dystrophic epidermolysis bullosa-associated cutaneous squamous cell carcinoma by modifying transforming growth factor-β signalling. Br J Dermatol 2024; 192:104-117. [PMID: 39018437 PMCID: PMC11663483 DOI: 10.1093/bjd/ljae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic skin-blistering disorder that often progresses to metastatic cutaneous squamous cell carcinoma (cSCC) at chronic wound sites. Chondroitin sulfate proteoglycan 4 (CSPG4) is a cell-surface proteoglycan that is an oncoantigen in multiple malignancies, where it modulates oncogenic signalling, drives epithelial-to-mesenchymal transition (EMT) and enables cell motility. OBJECTIVES To evaluate CSPG4 expression and function in RDEB cSCC. METHODS RDEB cSCC cell lines were used to assess CSPG4-dependent changes in invasive potential, transforming growth factor (TGF)-β1-stimulated signal activation and clinically relevant cytopathology metrics in an in vitro full-thickness tumour model. CSPG4 expression in RDEB cSCC and non-RDEB cSCC tumours was analysed via immunohistochemistry and single-cell RNA sequencing (scRNA-Seq), respectively. RESULTS Inhibiting CSPG4 expression reduced invasive potential in multiple RDEB cSCC cell lines and altered membrane-proximal TGF-β signal activation via changes in SMAD3 phosphorylation. CSPG4 expression was uniformly localized to basal layer keratinocytes in fibrotic RDEB skin and tumour cells at the tumour-stroma interface at the invasive front in RDEB cSCC tumours in vivo. Analysis of published scRNA-Seq data revealed that CSPG4 expression was correlated with an enhanced EMT transcriptomic signature in cells at the tumour-stroma interface of non-RDEB cSCC tumours. Cytopathological metrics, for example nucleus : cell area ratio, were influenced by CSPG4 expression in in vitro tumour models. CONCLUSIONS We determined that CSPG4 expression in RDEB cSCC cell lines enhanced the invasive potential of tumours. Mechanistically, CSPG4 was found to enhance membrane-proximal TGF-β-stimulated signalling via SMAD3, which is a key mediator of EMT in RDEB cSCC. The implication of these studies is that CSPG4 may represent a therapeutic target that can be leveraged for the clinical management of patients with RDEB cSCC.
Collapse
Affiliation(s)
- Allison R K Macaulay
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, MN,USA
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, MN, USA
| | - Jianbo Yang
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Matthew A Price
- Masonic Cancer Center, University of Minnesota, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, MN, USA
| | - Colleen L Forster
- Biorepository and Laboratory Services, Clinical and Translational Science Institute, University of Minnesota, MN, USA
| | - Megan J Riddle
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, MN,USA
| | - Christen L Ebens
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, MN,USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Genetics, University of Minnesota, MN, USA
| | - Alessio Giubellino
- Masonic Cancer Center, University of Minnesota, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, MN, USA
| | - James B McCarthy
- Masonic Cancer Center, University of Minnesota, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, MN, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, MN,USA
| |
Collapse
|
11
|
Zhu L, Xiao F, Hou Y, Huang S, Xu Y, Guo X, Dong X, Xu C, Zhang X, Gu H. Identification of anoikis-related molecular patterns and the novel risk model to predict prognosis, tumor microenvironment infiltration and immunotherapy response in bladder cancer. Front Immunol 2024; 15:1491808. [PMID: 39664392 PMCID: PMC11631915 DOI: 10.3389/fimmu.2024.1491808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Background Anoikis, a unique form of cell death, serves as a vital part of the organism's defense by preventing shedding cells from re-attaching to the incorrect positions, and plays pivotal role in cancer metastasis. Nonetheless, the specific mechanisms among anoikis, the clinical prognosis and tumor microenvironment (TME) of bladder cancer (BLCA) are insufficiently understood. Method BLCA patients were classified into different anoikis subtypes based on the expression of candidate anoikis-related genes (ARGs), and differences in the clinicopathological features, TME, immune cell infiltration, and immune checkpoints between two anoikis subtypes were analyzed. Next, patients in the TCGA cohort were randomized into the train and test groups in a 1:1 ratio. Subsequently, the anoikis-related model was constructed to predict the prognosis via utilizing the univariate Cox, LASSO and multivariate Cox analyses, and validated internally and externally. Moreover, the relationships between the risk score and clinicopathologic features, immune cell infiltration, immunotherapy response, and antitumor drug sensitivity were also analyzed. In addition, representative genes were evaluated using immunohistochemistry in clinical specimens, and in BLCA cell lines, functional experiments were performed to determine the biological behavior of hub gene PLOD1. Result Two definite anoikis subgroups were identified. Compared to ARGcluster A, patients assigned to ARGcluster B were characterized by an immunosuppressive microenvironment and worse prognosis. Then, the anoikis-related model, including PLOD1, EHBP1, and CSPG4, was constructed, and BLCA patients in the low-risk group were characterized by a better prognosis. Next, the accurate nomogram was built to improve the clinical applicability by combining the age, tumor stage and risk Score. Moreover, immune infiltration and clinical features differed significantly between high- and low-risk groups. We also found that the low-risk group exhibited a lower tumor immune dysfunction and exclusion score, a higher immunophenoscore (IPS), had more sensitivity to immunotherapy. Eventually, the expression levels of three genes were verified by our experiment, and knockdown of PLOD1 could inhibit invasion and migration abilities in BLCA cell lines. Conclusion These results demonstrated a new direction in precision therapy for BLCA, and indicated that the ARGs might be helpful to in predicting prognosis and as therapeutic targets in BLCA.
Collapse
Affiliation(s)
- Luochen Zhu
- Department of Pharmacy, Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, China
| | - Feng Xiao
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People’s Hospital), Nantong, China
| | - Yi Hou
- Department of Pharmacy, People’s Hospital of Zhongjiang, Deyang, China
| | - Shenjun Huang
- Department of Oncology, Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, China
| | - Yanyan Xu
- Department of Pharmacy, Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, China
| | - Xiaohong Guo
- Department of Pharmacy, Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, China
| | - Xinwei Dong
- Department of Pharmacy, Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, China
| | - Chunlu Xu
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haijuan Gu
- Department of Pharmacy, Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, China
| |
Collapse
|
12
|
Chen X, Habib S, Alexandru M, Chauhan J, Evan T, Troka JM, Rahimi A, Esapa B, Tull TJ, Ng WZ, Fitzpatrick A, Wu Y, Geh JLC, Lloyd-Hughes H, Palhares LCGF, Adams R, Bax HJ, Whittaker S, Jacków-Malinowska J, Karagiannis SN. Chondroitin Sulfate Proteoglycan 4 (CSPG4) as an Emerging Target for Immunotherapy to Treat Melanoma. Cancers (Basel) 2024; 16:3260. [PMID: 39409881 PMCID: PMC11476251 DOI: 10.3390/cancers16193260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Immunotherapies, including checkpoint inhibitor antibodies, have precipitated significant improvements in clinical outcomes for melanoma. However, approximately half of patients do not benefit from approved treatments. Additionally, apart from Tebentafusp, which is approved for the treatment of uveal melanoma, there is a lack of immunotherapies directly focused on melanoma cells. This is partly due to few available targets, especially those expressed on the cancer cell surface. Chondroitin sulfate proteoglycan 4 (CSPG4) is a cell surface molecule overexpressed in human melanoma, with restricted distribution and low expression in non-malignant tissues and involved in several cancer-promoting and dissemination pathways. Here, we summarize the current understanding of the expression and functional significance of CSPG4 in health and melanoma, and we outline immunotherapeutic strategies. These include monoclonal antibodies, antibody-drug conjugates (ADCs), chimeric-antigen receptor (CAR) T cells, and other strategies such as anti-idiotypic and mimotope vaccines to raise immune responses against CSPG4-expressing melanomas. Several showed promising functions in preclinical models of melanoma, yet few have reached clinical testing, and none are approved for therapeutic use. Obstacles preventing that progress include limited knowledge of CSPG4 function in human cancer and a lack of in vivo models that adequately represent patient immune responses and human melanoma biology. Despite several challenges, immunotherapy directed to CSPG4-expressing melanoma harbors significant potential to transform the treatment landscape.
Collapse
Affiliation(s)
- Xinyi Chen
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Shabana Habib
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Madalina Alexandru
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Jitesh Chauhan
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Theodore Evan
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Joanna M. Troka
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Avigail Rahimi
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Benjamina Esapa
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Thomas J. Tull
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Wen Zhe Ng
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Amanda Fitzpatrick
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Oncology Department, Guy’s and St Thomas’ Hospitals, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
| | - Yin Wu
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
- Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Jenny L. C. Geh
- St John’s Institute of Dermatology, Guy’s, King’s and St. Thomas’ Hospitals NHS Foundation Trust, London SE1 9RT, UK
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London SE1 9RT, UK
| | - Hawys Lloyd-Hughes
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London SE1 9RT, UK
| | - Lais C. G. F. Palhares
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Sean Whittaker
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Joanna Jacków-Malinowska
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
13
|
Greiner D, Xue Q, Waddell TQ, Kurudza E, Belote RL, Dotti G, Judson-Torres RL, Reeves MQ, Cheshier SH, Roh-Johnson M. CSPG4-targeting CAR-macrophages inhibit melanoma growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597413. [PMID: 38895447 PMCID: PMC11185669 DOI: 10.1101/2024.06.04.597413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematological malignancies but has been clinically less effective in solid tumors. Engineering macrophages with CARs has emerged as a promising approach to overcome some of the challenges faced by CAR-T cells due to the macrophage's ability to easily infiltrate tumors, phagocytose their targets, and reprogram the immune response. We engineered CAR-macrophages (CAR-Ms) to target chondroitin sulfate proteoglycan 4 (CSPG4), an antigen expressed in melanoma, and several other solid tumors. CSPG4-targeting CAR-Ms exhibited specific phagocytosis of CSPG4-expressing melanoma cells. Combining CSPG4-targeting CAR-Ms with CD47 blocking antibodies synergistically enhanced CAR-M-mediated phagocytosis and effectively inhibited melanoma spheroid growth in 3D. Furthermore, CSPG4-targeting CAR-Ms inhibited melanoma tumor growth in mouse models. These results suggest that CSPG4-targeting CAR-M immunotherapy is a promising solid tumor immunotherapy approach for treating melanoma. STATEMENT OF SIGNIFICANCE We engineered macrophages with CARs as an alternative approach for solid tumor treatment. CAR-macrophages (CAR-Ms) targeting CSPG4, an antigen expressed in melanoma and other solid tumors, phagocytosed melanoma cells and inhibited melanoma growth in vivo . Thus, CSPG4-targeting CAR-Ms may be a promising strategy to treat patients with CSPG4-expressing tumors.
Collapse
|
14
|
Paul S, Konig MF, Pardoll DM, Bettegowda C, Papadopoulos N, Wright KM, Gabelli SB, Ho M, van Elsas A, Zhou S. Cancer therapy with antibodies. Nat Rev Cancer 2024; 24:399-426. [PMID: 38740967 PMCID: PMC11180426 DOI: 10.1038/s41568-024-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
The greatest challenge in cancer therapy is to eradicate cancer cells with minimal damage to normal cells. Targeted therapy has been developed to meet that challenge, showing a substantially increased therapeutic index compared with conventional cancer therapies. Antibodies are important members of the family of targeted therapeutic agents because of their extraordinarily high specificity to the target antigens. Therapeutic antibodies use a range of mechanisms that directly or indirectly kill the cancer cells. Early antibodies were developed to directly antagonize targets on cancer cells. This was followed by advancements in linker technologies that allowed the production of antibody-drug conjugates (ADCs) that guide cytotoxic payloads to the cancer cells. Improvement in our understanding of the biology of T cells led to the production of immune checkpoint-inhibiting antibodies that indirectly kill the cancer cells through activation of the T cells. Even more recently, bispecific antibodies were synthetically designed to redirect the T cells of a patient to kill the cancer cells. In this Review, we summarize the different approaches used by therapeutic antibodies to target cancer cells. We discuss their mechanisms of action, the structural basis for target specificity, clinical applications and the ongoing research to improve efficacy and reduce toxicity.
Collapse
Affiliation(s)
- Suman Paul
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Maximilian F Konig
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Katharine M Wright
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA
| | - Sandra B Gabelli
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA.
| | - Mitchell Ho
- Antibody Engineering Program, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | - Shibin Zhou
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Chen B, Liu J. Prospects and challenges of CAR-T in the treatment of ovarian cancer. Int Immunopharmacol 2024; 133:112112. [PMID: 38640714 DOI: 10.1016/j.intimp.2024.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Ovarian cancer ranks as the seventh most prevalent cancer among women and is considered the most lethal gynecological malignancy on a global scale. The absence of reliable screening techniques, coupled with the insidious onset of nonspecific symptoms, often results in a delayed diagnosis, typically at an advanced stage characterized by peritoneal involvement. Management of advanced tumors typically involves a combination of chemotherapy and cytoreductive surgery. However, the therapeutic arsenal for ovarian cancer patients remains limited, highlighting the unmet need for precise, targeted, and sustained-release pharmacological agents. Genetically engineered T cells expressing chimeric antigen receptors (CARs) represent a promising novel therapeutic modality that selectively targets specific antigens, demonstrating robust and enduring antitumor responses in numerous patients. CAR T cell therapy has exhibited notable efficacy in hematological malignancies and is currently under investigation for its potential in treating various solid tumors, including ovarian cancer. Currently, numerous researchers are engaged in the development of novel CAR-T cells designed to target ovarian cancer, with subsequent evaluation of these candidate cells in preclinical studies. Given the ability of chimeric antigen receptor (CAR) expressing T cells to elicit potent and long-lasting anti-tumor effects, this therapeutic approach holds significant promise for the treatment of ovarian cancer. This review article examines the utilization of CAR-T cells in the context of ovarian cancer therapy.
Collapse
Affiliation(s)
- Biqing Chen
- Harbin Medical University, Harbin, Heilongjiang, China.
| | | |
Collapse
|
16
|
Song Q, Xu H, Wu H, Dong J, Ji S, Zhang X, Zhang Z, Hu W. Pseudogene CSPG4P12 inhibits colorectal cancer progression by attenuating epithelial-mesenchymal transition. Braz J Med Biol Res 2024; 57:e13645. [PMID: 38808892 PMCID: PMC11136487 DOI: 10.1590/1414-431x2024e13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
Colorectal cancer is one of the most common malignant cancers. Pseudogenes have been identified as oncogenes or tumor suppressor genes in the development of various cancers. However, the function of pseudogene CSPG4P12 in colorectal cancer remains unclear. Therefore, the aim of this study was to investigate the potential role of CSPG4P12 in colorectal cancer and explore the possible underlying mechanism. The difference of CSPG4P12 expression between colorectal cancer tissues and adjacent normal tissues was analyzed using the online Gene Expression Profiling Interactive Analysis 2 (GEPIA2) database. Cell viability and colony formation assays were conducted to evaluate cell viability. Transwell and wound healing assays were performed to assess cell migration and invasion capacities. Western blot was used to measure the expression levels of epithelial-mesenchymal transition-related proteins. Colorectal cancer tissues had lower CSPG4P12 expression than adjacent normal tissues. The overexpression of CSPG4P12 inhibited cell proliferation, invasion, and migration in colorectal cancer cells. Overexpressed CSPG4P12 promoted the expression of E-cadherin, whereas it inhibited the expression of vimentin, N-cadherin, and MMP9. These findings suggested that CSPG4P12 inhibits colorectal cancer development and may serve as a new potential target for colorectal cancer.
Collapse
Affiliation(s)
- Qinqin Song
- Department of Oncology, Hebei Medical University, Shijiazhuang, China
- Affiliated Tangshan Gongren Hospital, Hebei Medical University, Tangshan, China
| | - Hongxue Xu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hongjiao Wu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Jing Dong
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Shanshan Ji
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Wanning Hu
- Department of Oncology, Hebei Medical University, Shijiazhuang, China
- Affiliated Tangshan Gongren Hospital, Hebei Medical University, Tangshan, China
| |
Collapse
|
17
|
Chen S, Liang B, Xu J. Unveiling heterogeneity in MSCs: exploring marker-based strategies for defining MSC subpopulations. J Transl Med 2024; 22:459. [PMID: 38750573 PMCID: PMC11094970 DOI: 10.1186/s12967-024-05294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/11/2024] [Indexed: 05/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a heterogeneous cell population distributed throughout various tissues, demonstrating remarkable adaptability to microenvironmental cues and holding immense promise for disease treatment. However, the inherent diversity within MSCs often leads to variability in therapeutic outcomes, posing challenges for clinical applications. To address this heterogeneity, purification of MSC subpopulations through marker-based isolation has emerged as a promising approach to ensure consistent therapeutic efficacy. In this review, we discussed the reported markers of MSCs, encompassing those developed through candidate marker strategies and high-throughput approaches, with the aim of explore viable strategies for addressing the heterogeneity of MSCs and illuminate prospective research directions in this field.
Collapse
Affiliation(s)
- Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
18
|
Andre M, Caobi A, Miles JS, Vashist A, Ruiz MA, Raymond AD. Diagnostic potential of exosomal extracellular vesicles in oncology. BMC Cancer 2024; 24:322. [PMID: 38454346 PMCID: PMC10921614 DOI: 10.1186/s12885-024-11819-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Liquid biopsy can detect circulating cancer cells or tumor cell-derived DNA at various stages of cancer. The fluid from these biopsies contains extracellular vesicles (EVs), such as apoptotic bodies, microvesicles, exomeres, and exosomes. Exosomes contain proteins and nucleic acids (DNA/RNA) that can modify the microenvironment and promote cancer progression, playing significant roles in cancer pathology. Clinically, the proteins and nucleic acids within the exosomes from liquid biopsies can be biomarkers for the detection and prognosis of cancer. We review EVs protein and miRNA biomarkers identified for select cancers, specifically melanoma, glioma, breast, pancreatic, hepatic, cervical, prostate colon, and some hematological malignancies. Overall, this review demonstrates that EV biomolecules have great potential to expand the diagnostic and prognostic biomarkers used in Oncology; ultimately, EVs could lead to earlier detection and novel therapeutic targets. Clinical implicationsEVs represent a new paradigm in cancer diagnostics and therapeutics. The potential use of exosomal contents as biomarkers for diagnostic and prognostic indicators may facilitate cancer management. Non-invasive liquid biopsy is helpful, especially when the tumor is difficult to reach, such as in pancreatic adenocarcinoma. Moreover, another advantage of using minimally invasive liquid biopsy is that monitoring becomes more manageable. Identifying tumor-derived exosomal proteins and microRNAs would allow a more personalized approach to detecting cancer and improving treatment.
Collapse
Affiliation(s)
- Mickensone Andre
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Allen Caobi
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Jana S Miles
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Arti Vashist
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Marco A Ruiz
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
- Medical Oncology, Baptist Health Miami Cancer Institute, Miami, 33176, FL, USA
| | - Andrea D Raymond
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA.
| |
Collapse
|
19
|
Su J, Wu H, Yin C, Zhang F, Han F, Yu W. The hydrophobic cluster on the surface of protein is the key structural basis for the SDS-resistance of chondroitinase VhChlABC. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:93-101. [PMID: 38433971 PMCID: PMC10902247 DOI: 10.1007/s42995-023-00201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 10/07/2023] [Indexed: 03/05/2024]
Abstract
The application of chondroitinase requires consideration of the complex microenvironment of the target. Our previous research reported a marine-derived sodium dodecyl sulfate (SDS)-resistant chondroitinase VhChlABC. This study further investigated the mechanism of VhChlABC resistance to SDS. Focusing on the hydrophobic cluster on its strong hydrophilic surface, it was found that the reduction of hydrophobicity of surface residues Ala181, Met182, Met183, Ala184, Val185, and Ile305 significantly reduced the SDS resistance and stability. Molecular dynamics (MD) simulation and molecular docking analysis showed that I305G had more conformational flexibility around residue 305 than wild type (WT), which was more conducive to SDS insertion and binding. The affinity of A181G, M182A, M183A, V185A and I305G to SDS was significantly higher than that of WT. In conclusion, the surface hydrophobic microenvironment composed of six residues was the structural basis for SDS resistance. This feature could prevent the binding of SDS and the destruction of hydrophobic packaging by increasing the rigid conformation of protein and reducing the binding force of SDS-protein. The study provides a new idea for the rational design of SDS-resistant proteins and may further promote chondroitinase research in the targeted therapy of lung diseases under the pressure of pulmonary surfactant. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00201-1.
Collapse
Affiliation(s)
- Juanjuan Su
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, 266003 China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, 266003 China
| | - Hao Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, 266003 China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, 266003 China
| | - Chengying Yin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, 266003 China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, 266003 China
| | - Fengchao Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, 266003 China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, 266003 China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, 266003 China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, 266003 China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, 266003 China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, 266003 China
| |
Collapse
|
20
|
Monzavi-Karbassi B, Kelly T, Post SR. The Tumor Microenvironment and Immune Response in Breast Cancer. Int J Mol Sci 2024; 25:914. [PMID: 38255987 PMCID: PMC10815817 DOI: 10.3390/ijms25020914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
The complex interactions between cancer cells and their surrounding microenvironment are fundamental in determining tumor progression, response to therapy, and, ultimately, patient prognosis [...].
Collapse
Affiliation(s)
| | | | - Steven R. Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (B.M.-K.); (T.K.)
| |
Collapse
|
21
|
Musket A, Davern S, Elam BM, Musich PR, Moorman JP, Jiang Y. The application of radionuclide therapy for breast cancer. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 3:1323514. [PMID: 39355029 PMCID: PMC11440853 DOI: 10.3389/fnume.2023.1323514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/27/2023] [Indexed: 10/03/2024]
Abstract
Radionuclide-mediated diagnosis and therapy have emerged as effective and low-risk approaches to treating breast cancer. Compared to traditional anatomic imaging techniques, diagnostic radionuclide-based molecular imaging systems exhibit much greater sensitivity and ability to precisely illustrate the biodistribution and metabolic processes from a functional perspective in breast cancer; this transitions diagnosis from an invasive visualization to a noninvasive visualization, potentially ensuring earlier diagnosis and on-time treatment. Radionuclide therapy is a newly developed modality for the treatment of breast cancer in which radionuclides are delivered to tumors and/or tumor-associated targets either directly or using delivery vehicles. Radionuclide therapy has been proven to be eminently effective and to exhibit low toxicity when eliminating both primary tumors and metastases and even undetected tumors. In addition, the specific interaction between the surface modules of the delivery vehicles and the targets on the surface of tumor cells enables radionuclide targeting therapy, and this represents an exceptional potential for this treatment in breast cancer. This article reviews the development of radionuclide molecular imaging techniques that are currently employed for early breast cancer diagnosis and both the progress and challenges of radionuclide therapy employed in breast cancer treatment.
Collapse
Affiliation(s)
- Anna Musket
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sandra Davern
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brianna M Elam
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Philip R Musich
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jonathan P Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yong Jiang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
22
|
Arasi MB, De Luca G, Chronopoulou L, Pedini F, Petrucci E, Flego M, Stringaro A, Colone M, Pasquini L, Spada M, Lulli V, Perrotta MC, Calin GA, Palocci C, Biffoni M, Felicetti F, Felli N. MiR126-targeted-nanoparticles combined with PI3K/AKT inhibitor as a new strategy to overcome melanoma resistance. Mol Ther 2024; 32:152-167. [PMID: 37990493 PMCID: PMC10787166 DOI: 10.1016/j.ymthe.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Metastatic melanoma poses significant challenges as a highly lethal disease. Despite the success of molecular targeting using BRAFV600E inhibitors (BRAFis) and immunotherapy, the emergence of early recurrence remains an issue and there is the need for novel therapeutic approaches. This study aimed at creating a targeted delivery system for the oncosuppressor microRNA 126 (miR126) and testing its effectiveness in combination with a phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) inhibitor for treating metastatic melanoma resistant to BRAFis. To achieve this, we synthesized chitosan nanoparticles containing a chemically modified miR126 sequence. These nanoparticles were further functionalized with an antibody specific to the chondroitin sulfate proteoglycan 4 (CSPG4) melanoma marker. After evaluation in vitro, the efficacy of this treatment was evaluated through an in vivo experiment using mice bearing resistant human melanoma. The co-administration of miR126 and the PI3K/AKT inhibitor in these experiments significantly reduced tumor growth and inhibited the formation of liver and lung metastases. These results provide evidence for a strategy to target an oncosuppressive nucleic acid sequence to tumor cells while simultaneously protecting it from plasma degradation. The system described in this study exhibits encouraging potential for the effective treatment of therapy-resistant metastatic melanoma while also presenting a prospective approach for other forms of cancer.
Collapse
Affiliation(s)
- Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Research Center for Applied Sciences to the safeguard of Environment and Cultural Heritage (CIABC) Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesca Pedini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eleonora Petrucci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Michela Flego
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Luca Pasquini
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Chiara Perrotta
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - George Adrian Calin
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, 1515 Holcombe Blvd, Houston, TX 77030, USA; The RNA Interference and Non-coding RNA Center, MD Anderson Cancer Center, Texas State University, Houston, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Research Center for Applied Sciences to the safeguard of Environment and Cultural Heritage (CIABC) Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Federica Felicetti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Nadia Felli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
23
|
KUROKAWA T, IMAI K. Chondroitin sulfate proteoglycan 4: An attractive target for antibody-based immunotherapy. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:293-308. [PMID: 38735753 PMCID: PMC11260911 DOI: 10.2183/pjab.100.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 05/14/2024]
Abstract
Multifunctional molecules involved in tumor progression and metastasis have been identified as valuable targets for immunotherapy. Among these, chondroitin sulfate proteoglycan 4 (CSPG4), a significant tumor cell membrane-bound proteoglycan, has emerged as a promising target, especially in light of advances in chimeric antigen receptor (CAR) T-cell therapy. The profound bioactivity of CSPG4 and its role in pivotal processes such as tumor proliferation, migration, and neoangiogenesis underline its therapeutic potential. We reviewed the molecular intricacies of CSPG4, its functional attributes within tumor cells, and the latest clinical-translational advances targeting it. Strategies such as blocking monoclonal antibodies, conjugate therapies, bispecific antibodies, small-molecule inhibitors, CAR T-cell therapies, trispecific killer engagers, and ribonucleic acid vaccines against CSPG4 were assessed. CSPG4 overexpression in diverse tumors and its correlation with adverse prognostic outcomes emphasize its significance in cancer biology. These findings suggest that targeting CSPG4 offers a promising avenue for future cancer therapy, with potential synergistic effects when combined with existing treatments.
Collapse
Affiliation(s)
- Tomohiro KUROKAWA
- Department of Medical Epigenomics Research, Fukushima Medical University, Fukushima, Japan
- Department of Surgery, Jyoban Hospital of Tokiwa Foundation, Fukushima, Japan
| | - Kohzoh IMAI
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Nasiri F, Farrokhi K, Safarzadeh Kozani P, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. CAR-T cell immunotherapy for ovarian cancer: hushing the silent killer. Front Immunol 2023; 14:1302307. [PMID: 38146364 PMCID: PMC10749368 DOI: 10.3389/fimmu.2023.1302307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
As the most lethal gynecologic oncological indication, carcinoma of the ovary has been ranked as the 5th cause of cancer-related mortality in women, with a high percentage of the patients being diagnosed at late stages of the disease and a five-year survival of ~ 30%. Ovarian cancer patients conventionally undergo surgery for tumor removal followed by platinum- or taxane-based chemotherapy; however, a high percentage of patients experience tumor relapse. Cancer immunotherapy has been regarded as a silver lining in the treatment of patients with various immunological or oncological indications; however, mirvetuximab soravtansine (a folate receptor α-specific mAb) and bevacizumab (a VEGF-A-specific mAb) are the only immunotherapeutics approved for the treatment of ovarian cancer patients. Chimeric antigen receptor T-cell (CAR-T) therapy has achieved tremendous clinical success in the treatment of patients with certain B-cell lymphomas and leukemias, as well as multiple myeloma. In the context of solid tumors, CAR-T therapies face serious obstacles that limit their therapeutic benefit. Such hindrances include the immunosuppressive nature of solid tumors, impaired tumor infiltration, lack of qualified tumor-associated antigens, and compromised stimulation and persistence of CAR-Ts following administration. Over the past years, researchers have made arduous attempts to apply CAR-T therapy to ovarian cancer. In this review, we outline the principles of CAR-T therapy and then highlight its limitations in the context of solid tumors. Ultimately, we focus on preclinical and clinical findings achieved in CAR-T-mediated targeting of different ovarian cancer-associated target antigens.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Khadijeh Farrokhi
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Giraudo L, Cattaneo G, Gammaitoni L, Iaia I, Donini C, Massa A, Centomo ML, Basiricò M, Vigna E, Pisacane A, Picciotto F, Berrino E, Marchiò C, Merlini A, Paruzzo L, Poletto S, Caravelli D, Biolato AM, Bortolot V, Landoni E, Ventin M, Ferrone CR, Aglietta M, Dotti G, Leuci V, Carnevale-Schianca F, Sangiolo D. CSPG4 CAR-redirected Cytokine Induced Killer lymphocytes (CIK) as effective cellular immunotherapy for HLA class I defective melanoma. J Exp Clin Cancer Res 2023; 42:310. [PMID: 37993874 PMCID: PMC10664597 DOI: 10.1186/s13046-023-02884-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Even acknowledging the game-changing results achieved in the treatment of metastatic melanoma with the use of immune checkpoint inhibitors (ICI), a large proportion of patients (40-60%) still fail to respond or relapse due to the development of resistance. Alterations in the expression of Human Leukocyte Antigen class I (HLA-I) molecules are considered to play a major role in clinical resistance to ICI. Cellular immunotherapy with HLA-independent CAR-redirected lymphocytes is a promising alternative in this challenging setting and dedicated translational models are needed. METHODS In this study, we propose an HLA-independent therapeutic strategy with Cytokine Induced Killer lymphocytes (CIK) genetically engineered with a Chimeric Antigen Receptor (CAR) targeting the tumor antigen CSPG4 as effector mechanism. We investigated the preclinical antitumor activity of CSPG4-CAR.CIK in vitro and in a xenograft murine model focusing on patient-derived melanoma cell lines (Mel) with defective expression of HLA-I molecules. RESULTS We successfully generated CSPG4-CAR.CIK from patients with metastatic melanoma and reported their intense activity in vitro against a panel of CSPG4-expressing patient-derived Mel. The melanoma killing activity was intense, even at very low effector to target ratios, and not influenced by the expression level (high, low, defective) of HLA-I molecules on target cells. Furthermore, CAR.CIK conditioned medium was capable of upregulating the expression of HLA-I molecules on melanoma cells. A comparable immunomodulatory effect was replicated by treatment of Mel cells with exogenous IFN-γ and IFN-α. The antimelanoma activity of CSPG4-CAR.CIK was successfully confirmed in vivo, obtaining a significant tumor growth inhibition of an HLA-defective Mel xenograft in immunodeficient mice. CONCLUSIONS In this study we reported the intense preclinical activity of CSPG4-CAR.CIK against melanoma, including those with low or defective HLA-I expression. Our findings support CSPG4 as a valuable CAR target in melanoma and provide translational rationale for clinical studies exploring CAR-CIK cellular immunotherapies within the challenging setting of patients not responsive or relapsing to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lidia Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Giulia Cattaneo
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy.
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Loretta Gammaitoni
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Ilenia Iaia
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Chiara Donini
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Annamaria Massa
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Maria Laura Centomo
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Marco Basiricò
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Elisa Vigna
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Alberto Pisacane
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Franco Picciotto
- Dermatologic Surgery Section, Department of Surgery, Azienda Ospedaliera Universitaria (AOU) Città Della Salute E Della Scienza, Turin, TO, Italy
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, TO, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Luca Paruzzo
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Stefano Poletto
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Daniela Caravelli
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Andrea Michela Biolato
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Valentina Bortolot
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Elisa Landoni
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Marco Ventin
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Valeria Leuci
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy
| | | | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060, Candiolo, TO, Italy.
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy.
| |
Collapse
|
26
|
Teppert K, Winter N, Herbel V, Brandes C, Lennartz S, Engert F, Kaiser A, Schaser T, Lock D. Combining CSPG4-CAR and CD20-CCR for treatment of metastatic melanoma. Front Immunol 2023; 14:1178060. [PMID: 37901209 PMCID: PMC10603253 DOI: 10.3389/fimmu.2023.1178060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
The prognosis for patients with metastatic melanoma is poor and treatment options are limited. Genetically-engineered T cell therapy targeting chondroitin sulfate proteoglycan 4 (CSPG4), however, represents a promising treatment option, especially as both primary melanoma cells as well as metastases uniformly express CSPG4. Aiming to prevent off-tumor toxicity while maintaining a high cytolytic potential, we combined a chimeric co-stimulatory receptor (CCR) and a CSPG4-directed second-generation chimeric antigen receptor (CAR) with moderate potency. CCRs are artificial receptors similar to CARs, but lacking the CD3ζ activation element. Thus, T cells expressing solely a CCR, do not induce any cytolytic activity upon target cell binding, but are capable of boosting the CAR T cell response when both CAR and CCR engage their target antigens simultaneously. Here we demonstrate that co-expression of a CCR can significantly enhance the anti-tumor response of CSPG4-CAR T cells in vitro as well as in vivo. Importantly, this boosting effect was not dependent on co-expression of both CCR- and CAR-target on the very same tumor cell, but was also achieved upon trans activation. Finally, our data support the idea of using a CCR as a powerful tool to enhance the cytolytic potential of CAR T cells, which might open a novel therapeutic window for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dominik Lock
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
27
|
Kropp KN, Fatho M, Huduti E, Faust M, Lübcke S, Lennerz V, Paschen A, Theobald M, Wölfel T, Wölfel C. Targeting the melanoma-associated antigen CSPG4 with HLA-C*07:01-restricted T-cell receptors. Front Immunol 2023; 14:1245559. [PMID: 37849763 PMCID: PMC10577170 DOI: 10.3389/fimmu.2023.1245559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Intorduction Chondroitin sulfate proteoglycan 4 (CSPG4), also known as high molecular weight-melanoma associated antigen, is expressed in melanoma but also other tumor entities and constitutes an attractive target for immunotherapeutic approaches. While recent preclinical reports focused on anti-CSPG4 chimeric antigen receptors (CAR), we here explore T-cell receptor (TCR)-based approaches targeting CSPG4. Methods The TCRs of two CSPG4-reactive T-cell clones (11C/73 and 2C/165) restricted by the highly prevalent HLA-C*07:01 allele were isolated and the respective αβTCR pairs were retrovirally expressed in CRISPR/Cas9-edited TCR-knockout T cells for functional testing. We also combined alpha and beta TCR chains derived from 11C/73 and 2C/165 in a cross-over fashion to assess for hemichain dominance. CSPG4+ melanoma, glioblastoma and lung cancer cell lines were identified and, if negative, retrovirally transduced with HLA-C*07:01. Results Functional tests confirmed specific recognition of CSPG4+HLA-C*07:01+ target cells by the αβTCR retrieved from the parental T-cell clones and in part also by the cross-over TCR construct 2Cα-11Cβ. Despite high surface expression, the 11Cα-2Cβ combination, however, was not functional. Discussion Collectively, 11C/73- and 2C/165-expressing T cells specifically and efficiently recognized CSPG4+HLA-C*07:01+ cancer cells which warrants further preclinical and clinical evaluation of these TCRs.
Collapse
Affiliation(s)
- Korbinian N. Kropp
- Internal Medicine III, University Cancer Center (UCT), Research Center for Immunotherapy (FZI), University Medical Center (UMC) of the Johannes Gutenberg University and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Mainz, Germany
| | - Martina Fatho
- Internal Medicine III, University Cancer Center (UCT), Research Center for Immunotherapy (FZI), University Medical Center (UMC) of the Johannes Gutenberg University and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Mainz, Germany
| | - Enes Huduti
- Internal Medicine III, University Cancer Center (UCT), Research Center for Immunotherapy (FZI), University Medical Center (UMC) of the Johannes Gutenberg University and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Mainz, Germany
| | - Marilena Faust
- Internal Medicine III, University Cancer Center (UCT), Research Center for Immunotherapy (FZI), University Medical Center (UMC) of the Johannes Gutenberg University and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Mainz, Germany
| | - Silke Lübcke
- Internal Medicine III, University Cancer Center (UCT), Research Center for Immunotherapy (FZI), University Medical Center (UMC) of the Johannes Gutenberg University and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Mainz, Germany
| | - Volker Lennerz
- Internal Medicine III, University Cancer Center (UCT), Research Center for Immunotherapy (FZI), University Medical Center (UMC) of the Johannes Gutenberg University and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Mainz, Germany
| | - Annette Paschen
- Dermatology, University Hospital, University Duisburg/Essen and German Cancer Research Consortium (DKTK), Partner Site Essen/Duesseldorf, Essen, Germany
| | - Matthias Theobald
- Internal Medicine III, University Cancer Center (UCT), Research Center for Immunotherapy (FZI), University Medical Center (UMC) of the Johannes Gutenberg University and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Mainz, Germany
| | - Thomas Wölfel
- Internal Medicine III, University Cancer Center (UCT), Research Center for Immunotherapy (FZI), University Medical Center (UMC) of the Johannes Gutenberg University and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Mainz, Germany
| | - Catherine Wölfel
- Internal Medicine III, University Cancer Center (UCT), Research Center for Immunotherapy (FZI), University Medical Center (UMC) of the Johannes Gutenberg University and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Mainz, Germany
| |
Collapse
|
28
|
Mascarenhas R, Meirelles PM, Batalha-Filho H. Urbanization drives adaptive evolution in a Neotropical bird. Curr Zool 2023; 69:607-619. [PMID: 37637315 PMCID: PMC10449428 DOI: 10.1093/cz/zoac066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/16/2022] [Indexed: 08/29/2023] Open
Abstract
Urbanization has dramatic impacts on natural habitats and such changes may potentially drive local adaptation of urban populations. Behavioral change has been specifically shown to facilitate the fast adaptation of birds to changing environments, but few studies have investigated the genetic mechanisms of this process. Such investigations could provide insights into questions about both evolutionary theory and management of urban populations. In this study, we investigated whether local adaptation has occurred in urban populations of a Neotropical bird species, Coereba flaveola, specifically addressing whether observed behavioral adaptations are correlated to genetic signatures of natural selection. To answer this question, we sampled 24 individuals in urban and rural environments, and searched for selected loci through a genome-scan approach based on RADseq genomic data, generated and assembled using a reference genome for the species. We recovered 46 loci as putative selection outliers, and 30 of them were identified as associated with biological processes possibly related to urban adaptation, such as the regulation of energetic metabolism, regulation of genetic expression, and changes in the immunological system. Moreover, genes involved in the development of the nervous system showed signatures of selection, suggesting a link between behavioral and genetic adaptations. Our findings, in conjunction with similar results in previous studies, support the idea that cities provide a similar selective pressure on urban populations and that behavioral plasticity may be enhanced through genetic changes in urban populations.
Collapse
Affiliation(s)
- Rilquer Mascarenhas
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, 40170-115 Salvador, Bahia, Brazil
| | - Pedro Milet Meirelles
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, 40170-115 Salvador, Bahia, Brazil
| | - Henrique Batalha-Filho
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, 40170-115 Salvador, Bahia, Brazil
| |
Collapse
|
29
|
Grossauer A, Uranowska K, Kitzwögerer M, Mostegel M, Breiteneder H, Hafner C. Immunohistochemical detection of the chondroitin sulfate proteoglycan 4 protein in primary and metastatic melanoma. Oncol Lett 2023; 26:382. [PMID: 37559576 PMCID: PMC10407859 DOI: 10.3892/ol.2023.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023] Open
Abstract
Treatment of malignant melanoma, the most aggressive form of skin cancer, continues to be a major challenge for clinicians. New targeted therapies with kinase inhibitors or drugs which modify the immune response are often accompanied by the development of resistance or severe side effects. In this context, chondroitin sulfate proteoglycan 4 (CSPG4), a highly immunogenic melanoma tumor antigen, could be a potential target for alternative therapeutic approaches. The aim of the present study was to identify differences in the levels of CSPG4 protein expression in primary and metastatic melanomas as well as to analyze correlations between CSPG4 expression and histopathological data and patient characteristics. A total of 189 melanoma tissue samples from Lower Austria, including primary melanomas and melanoma metastases, were immunohistochemically stained for the expression of CSPG4 and statistical analyses were performed. A total of 65.6% of melanoma tissue samples stained positive for the expression of CSPG4. Primary nodular and primary superficial spreading melanomas demonstrated a significantly higher number of positively stained tissue samples for CSPG4 compared with primary lentigo maligna melanomas. No significant differences in the expression of CSPG4 were demonstrated between primary melanomas and melanoma metastases. The present study supports the advancement of the understanding of CSPG4 tissue expression patterns in melanoma patients and provides additional information for further investigation of CSPG4 as a potential therapeutic target.
Collapse
Affiliation(s)
- Anna Grossauer
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, A-3100 St. Poelten, Austria
- Department of Pathology, University Hospital Krems, Karl Landsteiner University of Health Sciences, A-3500 Krems an der Donau, Austria
| | - Karolina Uranowska
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, A-3100 St. Poelten, Austria
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Melitta Kitzwögerer
- Department of Pathology, University Hospital St. Poelten, A-3100 St. Poelten, Austria
| | - Margit Mostegel
- Department of Pathology, University Hospital Krems, Karl Landsteiner University of Health Sciences, A-3500 Krems an der Donau, Austria
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, A-3100 St. Poelten, Austria
- Karl Landsteiner Institute of Dermatological Research, Karl Landsteiner Gesellschaft, A-3100 St. Poelten, Austria
| |
Collapse
|
30
|
Tarone L, Giacobino D, Camerino M, Maniscalco L, Iussich S, Parisi L, Giovannini G, Dentini A, Bolli E, Quaglino E, Merighi IF, Morello E, Buracco P, Riccardo F, Cavallo F. A chimeric human/dog-DNA vaccine against CSPG4 induces immunity with therapeutic potential in comparative preclinical models of osteosarcoma. Mol Ther 2023; 31:2342-2359. [PMID: 37312451 PMCID: PMC10421998 DOI: 10.1016/j.ymthe.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The high mortality rate of osteosarcoma (OSA) patients highlights the requirement of alternative strategies. The young age of patients, as well as the rarity and aggressiveness of the disease, limits opportunities for the robust testing of novel therapies, suggesting the need for valuable preclinical systems. Having previously shown the overexpression of the chondroitin sulfate proteoglycan (CSPG)4 in OSA, herein the functional consequences of its downmodulation in human OSA cells were evaluated in vitro, with a significant impairment of cell proliferation, migration, and osteosphere generation. The potential of a chimeric human/dog (HuDo)-CSPG4 DNA vaccine was explored in translational comparative OSA models, including human xenograft mouse models and canine patients affected by spontaneous OSA. The adoptive transfer of HuDo-CSPG4 vaccine-induced CD8+ T cells and sera in immunodeficient human OSA-bearing mice delayed tumor growth and metastasis development. HuDo-CSPG4 vaccination resulted safe and effective in inducing anti-CSPG4 immunity in OSA-affected dogs, which displayed prolonged survival as compared to controls. Finally, HuDo-CSPG4 was also able to induce a cytotoxic response in a human surrogate setting in vitro. On the basis of these results and the high predictive value of spontaneous OSA in dogs, this study paves the way for a possible translation of this approach to humans.
Collapse
Affiliation(s)
- Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - Mariateresa Camerino
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - Lorella Maniscalco
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - Lorenza Parisi
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | | | | | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
31
|
Lin YC, Chu YH, Liao WC, Chen CH, Hsiao WC, Ho YJ, Yang MY, Liu CH. CHST11-modified chondroitin 4-sulfate as a potential therapeutic target for glioblastoma. Am J Cancer Res 2023; 13:2998-3012. [PMID: 37559985 PMCID: PMC10408464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
Aberrant chondroitin sulfate (CS) accumulation in glioblastoma (GBM) tissue has been documented, but the role of excessive CS in GBM progression and whether it can be a druggable target are largely unknown. The aim of this study is to clarify the biological functions of CHST11 in GBM cells, and evaluate therapeutic effects of blocking CHST11-derived chondroitin 4-sulfate (C4S). We investigated the expression of CHST11 in glioma tissue by immunohistochemistry, and analyzed CHST11 associated genes using public RNA sequencing datasets. The effects of CHST11 on aggressive cell behaviors have been studied in vitro and in vivo. We demonstrated that CHST11 is frequently overexpressed in GBM tissue, promoting GBM cell mobility and modulating C4S on GBM cells. We further discovered that CSPG4 is positively correlated with CHST11, and CSPG4 involved in CHST11-mediated cell invasiveness. In addition, GBM patients with high expression of CHST11 and CSPG4 have a significantly shorter survival time. We examined the effects of treating C4S-specific binding peptide (C4Sp) as a therapeutic agent in vitro and in vivo. C4Sp treatment attenuated GBM cell invasiveness and, notably, improved survival rate of orthotopic glioma cell transplant mice. Our results propose a possible mechanism of CHST11 in regulating GBM malignancy and highlight a novel strategy for targeting aberrant chondroitin sulfate in GBM cells.
Collapse
Affiliation(s)
- You-Cheng Lin
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing UniversityTaichung, Taiwan
| | - Yin-Hung Chu
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing UniversityTaichung, Taiwan
| | - Wen-Chieh Liao
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing UniversityTaichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing UniversityTaichung, Taiwan
| | - Chia-Hua Chen
- Molecular Medicine Research Center, Chang Gung UniversityTaoyuan, Taiwan
| | - Wen-Chuan Hsiao
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing UniversityTaichung, Taiwan
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical UniversityTaichung, Taiwan
| | - Meng-Yin Yang
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing UniversityTaichung, Taiwan
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General HospitalTaichung, Taiwan
| | - Chiung-Hui Liu
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing UniversityTaichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
32
|
Geng P, Chi Y, Yuan Y, Yang M, Zhao X, Liu Z, Liu G, Liu Y, Zhu L, Wang S. Novel chimeric antigen receptor T cell-based immunotherapy: a perspective for triple-negative breast cancer. Front Cell Dev Biol 2023; 11:1158539. [PMID: 37457288 PMCID: PMC10339351 DOI: 10.3389/fcell.2023.1158539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive and does not express estrogen receptor (ER), progesterone (PR), or human epidermal growth factor receptor 2 (HER2). It has a poor prognosis, and traditional endocrine and anti-HER2 targeted therapies have low efficacy against it. In contrast, surgery, radiotherapy, and/or systemic chemotherapy are relatively effective at controlling TNBC. The resistance of TNBC to currently available clinical therapies has had a significantly negative impact on its treatment outcomes. Hence, new therapeutic options are urgently required. Chimeric antigen receptor T cell (CAR-T) therapy is a type of immunotherapy that integrates the antigen specificity of antibodies and the tumor-killing effect of T cells. CAR-T therapy has demonstrated excellent clinical efficacy against hematological cancers. However, its efficacy against solid tumors such as TNBC is inadequate. The present review aimed to investigate various aspects of CAR-T administration as TNBC therapy. We summarized the potential therapeutic targets of CAR-T that were identified in preclinical studies and clinical trials on TNBC. We addressed the limitations of using CAR-T in the treatment of TNBC in particular and solid tumors in general and explored key strategies to overcome these impediments. Finally, we comprehensively examined the advancement of CAR-T immunotherapy as well as countermeasures that could improve its efficacy as a TNBC treatment and the prognosis of patients with this type of cancer.
Collapse
Affiliation(s)
- Peizhen Geng
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Yuhua Chi
- Department of General Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuan Yuan
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Maoquan Yang
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Xiaohua Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhengchun Liu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Guangwei Liu
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Yihui Liu
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Liang Zhu
- Clinical Research Center, Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shuai Wang
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
33
|
Hambly JN, Ruby CE, Mourich DV, Bracha S, Dolan BP. Potential Promises and Perils of Human Biological Treatments for Immunotherapy in Veterinary Oncology. Vet Sci 2023; 10:336. [PMID: 37235419 PMCID: PMC10224056 DOI: 10.3390/vetsci10050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of immunotherapy for the treatment of human cancers has heralded a new era in oncology, one that is making its way into the veterinary clinic. As the immune system of many animal species commonly seen by veterinarians is similar to humans, there is great hope for the translation of human therapies into veterinary oncology. The simplest approach for veterinarians would be to adopt existing reagents that have been developed for human medicine, due to the potential of reduced cost and the time it takes to develop a new drug. However, this strategy may not always prove to be effective and safe with regard to certain drug platforms. Here, we review current therapeutic strategies that could exploit human reagents in veterinary medicine and also those therapies which may prove detrimental when human-specific biological molecules are used in veterinary oncology. In keeping with a One Health framework, we also discuss the potential use of single-domain antibodies (sdAbs) derived from camelid species (also known as Nanobodies™) for therapies targeting multiple veterinary animal patients without the need for species-specific reformulation. Such reagents would not only benefit the health of our veterinary species but could also guide human medicine by studying the effects of outbred animals that develop spontaneous tumors, a more relevant model of human diseases compared to traditional laboratory rodent models.
Collapse
Affiliation(s)
- Jeilene N. Hambly
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Carl E. Ruby
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Biotesserae Inc., Corvallis, OR 97331, USA
| | - Dan V. Mourich
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Biotesserae Inc., Corvallis, OR 97331, USA
| | - Shay Bracha
- Biotesserae Inc., Corvallis, OR 97331, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
34
|
Chauhan J, Grandits M, Palhares LCGF, Mele S, Nakamura M, López-Abente J, Crescioli S, Laddach R, Romero-Clavijo P, Cheung A, Stavraka C, Chenoweth AM, Sow HS, Chiaruttini G, Gilbert AE, Dodev T, Koers A, Pellizzari G, Ilieva KM, Man F, Ali N, Hobbs C, Lombardi S, Lionarons DA, Gould HJ, Beavil AJ, Geh JLC, MacKenzie Ross AD, Healy C, Calonje E, Downward J, Nestle FO, Tsoka S, Josephs DH, Blower PJ, Karagiannis P, Lacy KE, Spicer J, Karagiannis SN, Bax HJ. Anti-cancer pro-inflammatory effects of an IgE antibody targeting the melanoma-associated antigen chondroitin sulfate proteoglycan 4. Nat Commun 2023; 14:2192. [PMID: 37185332 PMCID: PMC10130092 DOI: 10.1038/s41467-023-37811-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Outcomes for half of patients with melanoma remain poor despite standard-of-care checkpoint inhibitor therapies. The prevalence of the melanoma-associated antigen chondroitin sulfate proteoglycan 4 (CSPG4) expression is ~70%, therefore effective immunotherapies directed at CSPG4 could benefit many patients. Since IgE exerts potent immune-activating functions in tissues, we engineer a monoclonal IgE antibody with human constant domains recognizing CSPG4 to target melanoma. CSPG4 IgE binds to human melanomas including metastases, mediates tumoricidal antibody-dependent cellular cytotoxicity and stimulates human IgE Fc-receptor-expressing monocytes towards pro-inflammatory phenotypes. IgE demonstrates anti-tumor activity in human melanoma xenograft models engrafted with human effector cells and is associated with enhanced macrophage infiltration, enriched monocyte and macrophage gene signatures and pro-inflammatory signaling pathways in the tumor microenvironment. IgE prolongs the survival of patient-derived xenograft-bearing mice reconstituted with autologous immune cells. No ex vivo activation of basophils in patient blood is measured in the presence of CSPG4 IgE. Our findings support a promising IgE-based immunotherapy for melanoma.
Collapse
Affiliation(s)
- Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Melanie Grandits
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Lais C G F Palhares
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Silvia Mele
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Jacobo López-Abente
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - Pablo Romero-Clavijo
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Chara Stavraka
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
- Cancer Centre at Guy's, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Alicia M Chenoweth
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Heng Sheng Sow
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Giulia Chiaruttini
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Amy E Gilbert
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Tihomir Dodev
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
- Asthma UK Centre, Allergic Mechanisms in Asthma, King's College London, London, SE1 9RT, UK
| | - Alexander Koers
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Giulia Pellizzari
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Kristina M Ilieva
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Francis Man
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, UK
| | - Niwa Ali
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9RT, UK
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| | - Sara Lombardi
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Guy's and St. Thomas' Oncology & Haematology Clinical Trials (OHCT), Cancer Centre at Guy's, London, SE1 9RT, UK
| | - Daniël A Lionarons
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Hannah J Gould
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
- Asthma UK Centre, Allergic Mechanisms in Asthma, King's College London, London, SE1 9RT, UK
| | - Andrew J Beavil
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
- Asthma UK Centre, Allergic Mechanisms in Asthma, King's College London, London, SE1 9RT, UK
| | - Jenny L C Geh
- Department of Plastic Surgery, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
- Skin Tumour Unit, St. John's Institute of Dermatology, Guy's Hospital, London, SE1 9RT, UK
| | | | - Ciaran Healy
- Department of Plastic Surgery, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Eduardo Calonje
- Dermatopathology Department, St. John's Institute of Dermatology, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Frank O Nestle
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Sanofi US, Cambridge, Massachusetts, USA
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
- Cancer Centre at Guy's, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Panagiotis Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Department of Oncology, Haematology and Bone Marrow Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
- Cancer Centre at Guy's, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK.
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK.
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
35
|
Shu C, Zheng W, Lin K, Lim CM, Huang Z. Real-time in vivo cancer staging of nasopharyngeal carcinoma patients with rapid fiberoptic Raman endoscopy. Talanta 2023; 259:124561. [PMID: 37080076 DOI: 10.1016/j.talanta.2023.124561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Cancer staging is important to guide treatment and for prognostication. This work aims to demonstrate the ability of rapid fiberoptic Raman endoscopy for real-time in vivo cancer staging of nasopharyngeal cancer (NPC) patients. We interrogate 278 tissue sites on the primary NPC with different cancer stages from 61 NPC patients and 50 healthy volunteers using rapid fiberoptic Raman endoscopy examination. Distinct Raman spectral differences of NPC at different cancer stages are observed through simultaneous fingerprint and high-wavenumber (FP/HW) Raman spectral measurements, reflecting the biomolecular differences of NPC tumor across various cancer stages. Raman staging model is established based on in vivo FP/HW tissue Raman spectra together with partial-least-squares linear-discriminant-analysis (PLS-LDA) and leave-one-tissue-site-out cross-validation (LOOCV). In vivo FP/HW Raman endoscopy provides an overall diagnostic accuracy of 92.81% for identifying different stages of NPC (i.e., NPC stage I&II and NPC stage III&IV) from normal nasopharynx. Specifically, the diagnostic sensitivity of 91.18% is obtained for identifying NPC stage I& II; and the sensitivity of 93.04% is achieved for classifying NPC stage III&IV from normal tissue. The key tissue biomolecular variations responsible for different NPC stages have been identified using biomolecular Raman modeling developed based on non-negative linear regression. The essential biomolecules (chondroitin sulfate, glucose, hemoglobin, oleic acid and triolein) are uncovered from the Raman spectra of NPC tissues through biomolecular modeling with significant variations (p < 0.05) between early-stage NPC (stage I and stage II) and late-stage NPC patients (stage III and stage IV). Our pivotal work demonstrates for the first time that fiberoptic Raman endoscopy is a robust analytical tool for real-time in vivo NPC staging in clinical settings.
Collapse
Affiliation(s)
- Chi Shu
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117576, Singapore
| | - Wei Zheng
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117576, Singapore
| | - Kan Lin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117576, Singapore
| | - Chwee Ming Lim
- Department of Otolaryngology, Singapore General Hospital, Duke-NUS Graduate Medical School, Singapore 169608
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117576, Singapore.
| |
Collapse
|
36
|
do Valle IB, Oliveira SR, da Silva JM, Peterle GT, Có ACG, Sousa-Neto SS, Mendonça EF, de Arruda JAA, Gomes NA, da Silva G, Leopoldino AM, Macari S, Birbrair A, von Zeidler SV, Diniz IMA, Silva TA. The participation of tumor residing pericytes in oral squamous cell carcinoma. Sci Rep 2023; 13:5460. [PMID: 37015965 PMCID: PMC10073133 DOI: 10.1038/s41598-023-32528-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Pericytes are perivascular cells related to vessel structure and angiogenesis that can interact with neoplastic cells, interfering with cancer progression and outcomes. This study focused on the characterization of pericytes in oral squamous cell carcinoma (OSCC) using clinical samples and a transgenic mouse model of oral carcinogenesis. Nestin-/NG2+ (type-1) and nestin+/NG2+ (type-2) pericytes were analyzed by direct fluorescence after induction of oral carcinogenesis (4-nitroquinoline-1-oxide). Gene expression of neuron glial antigen-2 (NG2), platelet-derived growth factor receptor beta (PDGFR-β), and cluster of differentiation 31 (CD31) was examined in human OSCC tissues. The protein expression of von Willebrand factor and NG2 was assessed in oral leukoplakia (i.e., oral potentially malignant disorders) and OSCC samples. Additionally, clinicopathological aspects and survival data were correlated and validated by bioinformatics using The Cancer Genome Atlas (TCGA). Induction of carcinogenesis in mice produced an increase in both NG2+ pericyte subsets. In human OSCC, advanced-stage tumors showed a significant reduction in CD31 mRNA and von Willebrand factor-positive vessels. Low PDGFR-β expression was related to a shorter disease-free survival time, while NG2 mRNA overexpression was associated with a reduction in overall survival, consistent with the TCGA data. Herein, oral carcinogenesis resulted in an increase in NG2+ pericytes, which negatively affected survival outcomes.
Collapse
Affiliation(s)
- Isabella Bittencourt do Valle
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil
| | - Sicília Rezende Oliveira
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil
| | - Janine Mayra da Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil
| | - Gabriela Tonini Peterle
- Biotechnology Post-graduation Program, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Anna Clara Gregório Có
- Biotechnology Post-graduation Program, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Sebastião Silvério Sousa-Neto
- Department of Stomatology (Oral Pathology), School of Dentistry, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Elismauro Francisco Mendonça
- Department of Stomatology (Oral Pathology), School of Dentistry, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - José Alcides Almeida de Arruda
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil
| | - Natália Aparecida Gomes
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel da Silva
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Soraia Macari
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexander Birbrair
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sandra Ventorin von Zeidler
- Biotechnology Post-graduation Program, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil.
| |
Collapse
|
37
|
Gumusoglu-Acar E, Gunel T, Hosseini MK, Dogan B, Tekarslan EE, Gurdamar B, Cevik N, Sezerman U, Topuz S, Aydinli K. Metabolic pathways of potential miRNA biomarkers derived from liquid biopsy in epithelial ovarian cancer. Oncol Lett 2023; 25:142. [PMID: 36909377 PMCID: PMC9996378 DOI: 10.3892/ol.2023.13728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/03/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the type of OC with the highest mortality rate. Due to the asymptomatic nature of the disease and few available diagnostic tests, it is mostly diagnosed at the advanced stage. Therefore, the present study aimed to discover predictive and/or early diagnostic novel circulating microRNAs (miRNAs or miRs) for EOC. Firstly, microarray analysis of miRNA expression levels was performed on 32 samples of female individuals: Eight plasma samples from patients with pathologically confirmed EOC (mean age, 45 (30-54) years), eight plasma samples from matched healthy individuals (HIs) (mean age, 44 (30-65) years), eight EOC tissue samples (mean age, 45 (30-54) years) and eight benign ovarian (mean age, 35 (17-70) years) neoplastic tissue samples A total of 31 significantly dysregulated miRNAs in serum and three miRNAs in tissue were identified by microarray. The results were validated using reverse transcription-quantitative PCR on samples from 10 patients with pathologically confirmed EOC (mean age, 47(30-54) years), 10 matched His (mean age, 40(26-65) years], 10 EOC tissue samples (mean age, 47(30-54) years) and 10 benign ovarian neoplastic tissue samples (mean age, 40(17-70) years). The 'Kyoto Encyclopedia of Genes and Genomes' (KEGG) database was used for target gene and pathway analysis. A total of three miRNAs from EOC serum (hsa-miR-1909-5p, hsa-miR-885-5p and hsa-let-7d-3p) and one microRNA from tissue samples (hsa-miR-200c-3p) were validated as significant to distinguish patients with EOC from HIs. KEGG pathway enrichment analysis showed seven significant pathways, which included 'prion diseases', 'proteoglycans in cancer', 'oxytocin signaling pathway', 'hippo signaling pathway', 'adrenergic signaling in cardiomyocytes', 'oocyte meiosis' and 'thyroid hormone signaling pathway', in which the validated miRNAs served a role. This supports the hypothesis that four validated miRNAs, have the potential to be a biomarker of EOC diagnosis and target for treatment.
Collapse
Affiliation(s)
- Ece Gumusoglu-Acar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Mohammad Kazem Hosseini
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Berkcan Dogan
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Efnan Elif Tekarslan
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Berk Gurdamar
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Nazife Cevik
- Computer Engineering Department, Engineering and Architecture Faculty, Istanbul Arel University, 34537 Istanbul, Turkey
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Samet Topuz
- Department of Obstetrics and Gynecology, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey
| | | |
Collapse
|
38
|
The New Frontier of Immunotherapy: Chimeric Antigen Receptor T (CAR-T) Cell and Macrophage (CAR-M) Therapy against Breast Cancer. Cancers (Basel) 2023; 15:cancers15051597. [PMID: 36900394 PMCID: PMC10000829 DOI: 10.3390/cancers15051597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Breast cancer represents one of the most common tumor histologies. To date, based on the specific histotype, different therapeutic strategies, including immunotherapies, capable of prolonging survival are used. More recently, the astonishing results that were obtained from CAR-T cell therapy in haematological neoplasms led to the application of this new therapeutic strategy in solid tumors as well. Our article will deal with chimeric antigen receptor-based immunotherapy (CAR-T cell and CAR-M therapy) in breast cancer.
Collapse
|
39
|
Establishment and validation of a plasma oncofetal chondroitin sulfated proteoglycan for pan-cancer detection. Nat Commun 2023; 14:645. [PMID: 36746966 PMCID: PMC9902466 DOI: 10.1038/s41467-023-36374-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Various biomarkers targeting cell-free DNA (cfDNA) and circulating proteins have been tested for pan-cancer detection. Oncofetal chondroitin sulfate (ofCS), which distinctively modifies proteoglycans (PGs) of most cancer cells and binds specifically to the recombinant Plasmodium falciparum VAR2CSA proteins (rVAR2), is explored for its potential as a plasma biomarker in pan-cancer detection. To quantitate the plasma ofCS/ofCSPGs, we optimized an ELISA using different capture/detection pairs (rVAR2/anti-CD44, -SDC1, and -CSPG4) in a case-control study with six cancer types. We show that the plasma levels of ofCS/ofCSPGs are significantly higher in cancer patients (P values, 1.2 × 10-2 to 4.4 × 10-10). Validation studies are performed with two independent cohorts covering 11 malignant tumors. The individuals in the top decile of ofCS-CD44 have more than 27-fold cancer risk (OR = 27.8, 95%CI = 18.8-41.4, P = 2.72 × 10-62) compared with the lowest 20%. Moreover, the elevated plasma ofCS-CD44 could be detected at the early stage of pan-cancer with strong dose-dependent odds risk prediction.
Collapse
|
40
|
VT68.2: An Antibody to Chondroitin Sulfate Proteoglycan 4 (CSPG4) Displays Reactivity against a Tumor-Associated Carbohydrate Antigen. Int J Mol Sci 2023; 24:ijms24032506. [PMID: 36768830 PMCID: PMC9917008 DOI: 10.3390/ijms24032506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The anti-CSPG4 monoclonal antibodies (mAbs) have shown anti-tumor activity and therapeutic potential for treating breast cancer. In addition, CSPG4 is a dominant tumor-associated antigen that is also involved in normal-tissue development in humans. Therefore, the potential for off-tumor activity remains a serious concern when targeting CSPG4 therapeutically. Previous work suggested that glycans contribute to the binding of specific anti-CSPG4 antibodies to tumor cells, but the specificity and importance of this contribution are unknown. In this study, the reactivity of anti-CSPG4 mAbs was characterized with a peptide mimetic of carbohydrate antigens expressed in breast cancer. ELISA, flow cytometry, and microarray assays were used to screen mAbs for their ability to bind to carbohydrate-mimicking peptides (CMPs), cancer cells, and glycans. The mAb VT68.2 displayed a distinctly strong binding to a CMP (P10s) and bound to triple-negative breast cancer cells. In addition, VT68.2 showed a higher affinity for N-linked glycans that contain terminal fucose and fucosylated lactosamines. The functional assays demonstrated that VT68.2 inhibited cancer cell migration. These results define the glycoform reactivity of an anti-CSPG4 antibody and may lead to the development of less toxic therapeutic approaches that target tumor-specific glyco-peptides.
Collapse
|
41
|
Kratzmeier C, Singh S, Asiedu EB, Webb TJ. Current Developments in the Preclinical and Clinical use of Natural Killer T cells. BioDrugs 2023; 37:57-71. [PMID: 36525216 PMCID: PMC9756707 DOI: 10.1007/s40259-022-00572-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Natural killer T (NKT) cells play a pivotal role as a bridge between the innate and the adaptive immune response and are instrumental in the regulation of homeostasis. In this review, we discuss the potential for NKT cells to serve as biodrugs in viral infections and in cancer. NKT cells are being investigated for their use as a prognostic biomarker, an immune adjuvant, and as a form of cellular therapy. Historically, the clinical utility of NKT cells was hampered by their low frequency in the blood, discrepancies in nomenclature, and challenges with ex vivo expansion. However, recent advances in the field have permitted the development of several NKT cell-based preclinical and clinical strategies. These new developments pave the way for the successful implementation of NKT cell-based approaches for the treatment of human disease.
Collapse
Affiliation(s)
- Christina Kratzmeier
- Department of Microbiology and Immunology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore St, HSF I-Room 380, Baltimore, MD, 21201, USA
| | - Sasha Singh
- Department of Microbiology and Immunology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore St, HSF I-Room 380, Baltimore, MD, 21201, USA
| | - Emmanuel B Asiedu
- Department of Microbiology and Immunology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore St, HSF I-Room 380, Baltimore, MD, 21201, USA
| | - Tonya J Webb
- Department of Microbiology and Immunology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore St, HSF I-Room 380, Baltimore, MD, 21201, USA.
| |
Collapse
|
42
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13. [DOI: https:/doi.org/10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body’s immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
|
43
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13:1018786. [PMID: 36483567 PMCID: PMC9722775 DOI: 10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body's immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Mehrasa Kazemi
- Department of Laboratory Medicine, Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Milad Ahmadi Najafabadi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Evazi Bakhshi
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
44
|
Chen K, Yong J, Zauner R, Wally V, Whitelock J, Sajinovic M, Kopecki Z, Liang K, Scott KF, Mellick AS. Chondroitin Sulfate Proteoglycan 4 as a Marker for Aggressive Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:5564. [PMID: 36428658 PMCID: PMC9688099 DOI: 10.3390/cancers14225564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chondroitin sulfate (CS) proteoglycan 4 (CSPG4) is a cell surface proteoglycan that is currently under investigation as a marker of cancer malignancy, and as a potential target of anticancer drug treatment. CSPG4 acts as a driver of tumourigenesis by regulating turnover of the extracellular matrix (ECM) to promote tumour cell invasion, migration as well as inflammation and angiogenesis. While CSPG4 has been widely studied in certain malignancies, such as melanoma, evidence is emerging from global gene expression studies, which suggests a role for CSPG4 in squamous cell carcinoma (SCC). While relatively treatable, lack of widely agreed upon diagnostic markers for SCCs is problematic, especially for clinicians managing certain patients, including those who are aged or infirm, as well as those with underlying conditions such as epidermolysis bullosa (EB), for which a delayed diagnosis is likely lethal. In this review, we have discussed the structure of CSPG4, and quantitatively analysed CSPG4 expression in the tissues and pathologies where it has been identified to determine the usefulness of CSPG4 expression as a diagnostic marker and therapeutic target in management of malignant SCC.
Collapse
Affiliation(s)
- Kathryn Chen
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Joel Yong
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2033, Australia
| | - Roland Zauner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - John Whitelock
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2033, Australia
| | - Mila Sajinovic
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Kang Liang
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2033, Australia
| | - Kieran Francis Scott
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Albert Sleiman Mellick
- Ingham Institute for Applied Medical Research, Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2033, Australia
| |
Collapse
|
45
|
Harrer DC, Schenkel C, Berking C, Herr W, Abken H, Dörrie J, Schaft N. Decitabine-Mediated Upregulation of CSPG4 in Ovarian Carcinoma Cells Enables Targeting by CSPG4-Specific CAR-T Cells. Cancers (Basel) 2022; 14:cancers14205033. [PMID: 36291817 PMCID: PMC9599610 DOI: 10.3390/cancers14205033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
The addition of CAR-T cells to the armamentarium of immunotherapy revigorated the field of oncology by inducing long-lasting remissions in patients with relapsing/refractory hematological malignancies. Nevertheless, in the lion's share of patients diagnosed with solid tumors, CAR-T-cell therapy so far failed to demonstrate satisfactory anti-tumor activity. A crucial cause of resistance against the antigen-specific attack of CAR-T cells is predicated on the primary or secondary absence of suitable target antigens. Thus, the necessity to create a broad repertoire of different target antigens is vital. We aimed to evaluate the potential of the well-established melanoma antigen chondroitin sulfate proteoglycan 4 (CSPG4) as an inducible antigen in ovarian cancer cells, using CSPG4-negative SKOV-3 ovarian cancer cells as a model. Based on the hypomethylating activity of the FDA-approved drug decitabine, we refined a protocol to upregulate CSPG4 in the majority of decitabine-treated SKOV-3 cells. CSPG4-specific CAR-T cells generated by mRNA-electroporation showed CSPG4-directed cytokine secretion and cytotoxicity towards decitabine-treated SKOV-3. Another ovarian cancer cell line (Caov-3) and the neoplastic cell line 293T behaved similar. In aggregate, we generated proof-of-concept data paving the way for the further exploration of CSPG4 as an inducible antigen for CAR-T cells in ovarian cancer.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Hematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
| | - Charlotte Schenkel
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Carola Berking
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Wolfgang Herr
- Department of Hematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Jan Dörrie
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-913-1853-1127
| |
Collapse
|
46
|
Boudin L, de Nonneville A, Finetti P, Mescam L, Le Cesne A, Italiano A, Blay JY, Birnbaum D, Mamessier E, Bertucci F. CSPG4 expression in soft tissue sarcomas is associated with poor prognosis and low cytotoxic immune response. Lab Invest 2022; 20:464. [PMID: 36221119 PMCID: PMC9552405 DOI: 10.1186/s12967-022-03679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022]
Abstract
Background Soft tissue sarcomas (STS) are heterogeneous and pro-metastatic tumors. Identification of accurate prognostic factors and novel therapeutic targets are crucial. CSPG4 is a cell surface proteoglycan with oncogenic functions. It recently emerged as a potential target for immunotherapy, including cell therapy based on CSPG4-specific chimeric antigen receptor (CAR)-redirected cytokine-induced killer lymphocytes (CSPG4-CAR.CIKs) in STS. However, expression of CSPG4 is poorly known in STS so far. Methods We analyzed CSPG4 gene expression in 1378 localized STS clinical samples, and searched for correlations with clinicopathological data, including disease-free survival (DFS), and with tumor immune features. Results CSPG4 expression was heterogeneous across samples. High expression was associated with younger patients’ age, more frequent undifferentiated pleomorphic sarcoma and myxofibrosarcoma pathological subtypes, more frequent internal trunk tumor site, and more CINSARC high-risk samples. No correlation existed with pathological tumor size and grade, and tumor depth. Patients with high CSPG4 expression displayed 49% (95% CI 42–57) 5-year DFS versus 61% (95% CI 56–68) in patients with low expression (p = 3.17E−03), representing a 49% increased risk of event in the “CSPG4-high” group (HR = 1.49, 95% CI 1.14–1.94). This unfavorable prognostic value persisted in multivariate analysis, independently from other variables. There were significant differences in immune variables between “CSPG4-high” and “CSPG4-low” tumors. The "CSPG4-low" tumors displayed profiles suggesting higher anti-tumor cytotoxic immune response and higher potential vulnerability to immune checkpoint inhibitors (ICI). By contrast, the "CSPG4-high" tumors displayed profiles implying an immune-excluded tumor microenvironment, potentially induced by hypoxia, resulting from an immature chaotic microvasculature, and/or the presence of contractile myofibroblasts. Conclusions Patients with “CSPG4-high” STS, theoretically candidate for CAR.CIKs, display shorter DFS and an immune environment unfavorable to vulnerability to CAR.CIKs, which could be improved by combining anti-angiogenic drugs able to normalize the tumor vasculature. By contrast, “CSPG4-low” STS are better candidates for immune therapy involving ICI. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03679-y.
Collapse
Affiliation(s)
- Laurys Boudin
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, Marseille, France
| | - A de Nonneville
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, Marseille, France.,Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, Marseille, France
| | - Léna Mescam
- French Sarcoma Group, Lyon, France.,Department of Pathology, Institut Paoli-Calmettes, 232 Bd. Sainte-Marguerite, 13009, Marseille, France
| | - A Le Cesne
- French Sarcoma Group, Lyon, France.,Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Antoine Italiano
- French Sarcoma Group, Lyon, France.,Department of Medical Oncology, Institut Bergonie, Bordeaux, France
| | - Jean-Yves Blay
- French Sarcoma Group, Lyon, France.,Department of Medical Oncology, Centre Léon Bérard, UNICANCER &, Université Claude Bernard Lyon I, Lyon, France
| | - Daniel Birnbaum
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, Marseille, France
| | - Emilie Mamessier
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, Marseille, France
| | - François Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, Marseille, France. .,Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France. .,French Sarcoma Group, Lyon, France.
| |
Collapse
|
47
|
Motzer RJ, Martini JF, Mu XJ, Staehler M, George DJ, Valota O, Lin X, Pandha HS, Ching KA, Ravaud A. Molecular characterization of renal cell carcinoma tumors from a phase III anti-angiogenic adjuvant therapy trial. Nat Commun 2022; 13:5959. [PMID: 36216827 PMCID: PMC9550765 DOI: 10.1038/s41467-022-33555-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Multigene assays can provide insight into key biological processes and prognostic information to guide development and selection of adjuvant cancer therapy. We report a comprehensive genomic and transcriptomic analysis of tumor samples from 171 patients at high risk for recurrent renal cell carcinoma post nephrectomy from the S-TRAC trial (NCT00375674). We identify gene expression signatures, including STRAC11 (derived from the sunitinib-treated population). The overlap in key elements captured in these gene expression signatures, which include genes representative of the tumor stroma microenvironment, regulatory T cell, and myeloid cells, suggests they are likely to be both prognostic and predictive of the anti-angiogenic effect in the adjuvant setting. These signatures also point to the identification of potential therapeutic targets for development in adjuvant renal cell carcinoma, such as MERTK and TDO2. Finally, our findings suggest that while anti-angiogenic adjuvant therapy might be important, it may not be sufficient to prevent recurrence and that other factors such as immune response and tumor environment may be of greater importance.
Collapse
Affiliation(s)
- Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | | | - Xinmeng J Mu
- Oncology Research Unit, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, La Jolla, CA, 92121, USA
| | - Michael Staehler
- Department of Urology, University Hospital of Munich, Munich, Bavaria, 80333, Germany
| | - Daniel J George
- Department of Medicine, Duke Cancer Institute, Durham, NC, 27710, USA
| | - Olga Valota
- Global Product Development-Oncology, Pfizer S.r.L, Milan, Lombardy, 20152, Italy
| | - Xun Lin
- Global Product Development-Oncology, Pfizer Inc, La Jolla, CA, 92121, USA
| | - Hardev S Pandha
- Department of Medical Oncology, University of Surrey, Guildford, England, GU2 7XS, UK
| | - Keith A Ching
- Oncology Research Unit, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, La Jolla, CA, 92121, USA
| | - Alain Ravaud
- Department of Medical Oncology, Bordeaux University Hospital, Bordeaux, 33300, France
| |
Collapse
|
48
|
Zhou T, Chen W, Wu Z, Cai J, Zhou C. A newly defined basement membrane-related gene signature for the prognosis of clear-cell renal cell carcinoma. Front Genet 2022; 13:994208. [PMID: 36186476 PMCID: PMC9520985 DOI: 10.3389/fgene.2022.994208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Basement membranes (BMs) are associated with cell polarity, differentiation, migration, and survival. Previous studies have shown that BMs play a key role in the progression of cancer, and thus could serve as potential targets for inhibiting the development of cancer. However, the association between basement membrane-related genes (BMRGs) and clear cell renal cell carcinoma (ccRCC) remains unclear. To address that gap, we constructed a novel risk signature utilizing BMRGs to explore the relationship between ccRCC and BMs.Methods: We gathered transcriptome and clinical data from The Cancer Genome Atlas (TCGA) and randomly separated the data into training and test sets to look for new potential biomarkers and create a predictive signature of BMRGs for ccRCC. We applied univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses to establish the model. The risk signature was further verified and evaluated through principal component analysis (PCA), the Kaplan-Meier technique, and time-dependent receiver operating characteristics (ROC). A nomogram was constructed to predict the overall survival (OS). The possible biological pathways were investigated through functional enrichment analysis. In this study, we also determined tumor mutation burden (TMB) and performed immunological analysis and immunotherapeutic drug analysis between the high- and low-risk groups.Results: We identified 33 differentially expressed genes and constructed a risk model of eight BMRGs, including COL4A4, FREM1, CSPG4, COL4A5, ITGB6, ADAMTS14, MMP17, and THBS4. The PCA analysis showed that the signature could distinguish the high- and low-risk groups well. The K-M and ROC analysis demonstrated that the model could predict the prognosis well from the areas under the curves (AUCs), which was 0.731. Moreover, the nomogram showed good predictability. Univariate and multivariate Cox regression analysis validated that the model results supported the hypothesis that BMRGs were independent risk factors for ccRCC. Furthermore, immune cell infiltration, immunological checkpoints, TMB, and the half-inhibitory concentration varied considerably between high- and low-risk groups.Conclusion: Employing eight BMRGs to construct a risk model as a prognostic indicator of ccRCC could provide us with a potential progression trajectory as well as predictions of therapeutic response.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weikang Chen
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhigang Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Zhigang Wu, ; Jian Cai, ; Chaofeng Zhou,
| | - Jian Cai
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Zhigang Wu, ; Jian Cai, ; Chaofeng Zhou,
| | - Chaofeng Zhou
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Zhigang Wu, ; Jian Cai, ; Chaofeng Zhou,
| |
Collapse
|
49
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of downregulation of jumping translocation breakpoint (JTB) protein expression in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:4373-4398. [PMID: 36225631 PMCID: PMC9548009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023] Open
Abstract
MCF7 is a commonly used luminal type A non-invasive/poor-invasive human breast cancer cell line that does not usually migrate or invade compared with MDA-MB-231 highly metastatic cells, which emphasize an invasive and migratory behavior. Under special conditions, MCF7 cells might acquire invasive features. The aberration in expression and biological functions of the jumping translocation breackpoint (JTB) protein is associated with malignant transformation of cells, based on mitochondrial dysfunction, inhibition of tumor suppressive function of TGF-β, and involvement in cancer cell cycle. To investigate new putative functions of JTB by cellular proteomics, we analyzed the biological processes and pathways that are associated with the JTB protein downregulation. The results demonstrated that MCF7 cell line developed a more "aggressive" phenotype and behavior. Most of the proteins that were overexpressed in this experiment promoted the actin cytoskeleton reorganization that is involved in growth and metastatic dissemination of cancer cells. Some of these proteins are involved in the epithelial-mesenchymal transition (EMT) process (ACTBL2, TUBA4A, MYH14, CSPG5, PKM, UGDH, HSP90AA2, and MIF), in correlation with the energy metabolism reprogramming (PKM, UGDH), stress-response (HSP10, HSP70A1A, HSP90AA2), and immune and inflammatory response (MIF and ERp57-TAPBP). Almost all upregulated proteins in JTB downregulated condition promote viability, motility, proliferation, invasion, survival into a hostile microenvironment, metabolic reprogramming, and escaping of tumor cells from host immune control, leading to a more invasive phenotype for MCF7 cell line. Due to their downregulated condition, four proteins, such as CREBZF, KMT2B, SELENOS and CACNA1I are also involved in maintenance of the invasive phenotype of cancer cells, promoting cell proliferation, migration, invasion and tumorigenesis. Other downregulated proteins, such as MAZ, PLEKHG2, ENO1, TPI2, TOR2A, and CNNM1, may promote suppression of cancer cell growth, invasion, EMT, tumorigenic abilities, interacting with glucose and lipid metabolism, disrupting nuclear envelope stability, or suppressing apoptosis and developing anti-angiogenetic activities. Therefore, the main biological processes and pathways that may increase the tumorigenic potential of the MCF7 cells in JTB downregulated condition are related to the actin cytoskeleton organization, EMT, mitotic cell cycle, glycolysis and fatty acid metabolism, inflammatory response and macrophage activation, chemotaxis and migration, cellular response to stress condition (oxidative stress and hypoxia), transcription control, histone modification and ion transport.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
50
|
Deb G, Cicala A, Papadas A, Asimakopoulos F. Matrix proteoglycans in tumor inflammation and immunity. Am J Physiol Cell Physiol 2022; 323:C678-C693. [PMID: 35876288 PMCID: PMC9448345 DOI: 10.1152/ajpcell.00023.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Cancer immunoediting progresses through elimination, equilibrium, and escape. Each of these phases is characterized by breaching, remodeling, and rebuilding tissue planes and structural barriers that engage extracellular matrix (ECM) components, in particular matrix proteoglycans. Some of the signals emanating from matrix proteoglycan remodeling are readily co-opted by the growing tumor to sustain an environment of tumor-promoting and immune-suppressive inflammation. Yet other matrix-derived cues can be viewed as part of a homeostatic response by the host, aiming to eliminate the tumor and restore tissue integrity. These latter signals may be harnessed for therapeutic purposes to tip the polarity of the tumor immune milieu toward anticancer immunity. In this review, we attempt to showcase the importance and complexity of matrix proteoglycan signaling in both cancer-restraining and cancer-promoting inflammation. We propose that the era of matrix diagnostics and therapeutics for cancer is fast approaching the clinic.
Collapse
Affiliation(s)
- Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| |
Collapse
|