1
|
Pilling D, Consalvo KM, Kirolos SA, Gomer RH. Differences Between Unstimulated and Stimulated Human Male and Female Neutrophils in Protein and Phosphoprotein Profiles. Proteomics 2025; 25:e202400232. [PMID: 39937132 DOI: 10.1002/pmic.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Human males and females show differences in the incidence of neutrophil-associated diseases and differences in neutrophil responses such as a faster response to the chemorepellent Ser-Leu-Ile-Gly-Lys-Val-NH2 (SLIGKV) in males. Little is known about the basis of sex-based differences in human neutrophils. We used mass spectrometry to identify proteins and phosphoproteins in unstimulated human neutrophils and in neutrophils incubated with the SLIGKV, a protease-activated receptor 2 agonist. There were 132 proteins with higher levels in unstimulated male neutrophils; these proteins tended to be associated with RNA regulation, ribosome, and phosphoinositide signaling pathways, whereas 30 proteins with higher levels in unstimulated female neutrophils were associated with metabolic processes, proteasomes, and phosphatase regulatory proteins. Unstimulated male neutrophils had increased phosphorylation of 32 proteins compared to females. After exposure to SLIGKV, male neutrophils showed a faster response in terms of protein phosphorylation compared to female neutrophils. Male neutrophils have higher levels of proteins and higher phosphorylation of proteins associated with RNA processing and signaling pathways. Female neutrophils have higher levels of proteins associated with metabolism and proteolytic pathways. This suggests that male neutrophils might be more ready to adapt to a new environment, and female neutrophils might be more effective at responding to pathogens.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Ruiz-Pozo VA, Cadena-Ullauri S, Tamayo-Trujillo R, Guevara-Ramírez P, Paz-Cruz E, Castañeda Cataña MA, Zambrano AK. Interplay between endogenous hormones and immune systems in human metapneumovirus pathogenesis and management. Front Pharmacol 2025; 16:1568828. [PMID: 40176892 PMCID: PMC11961889 DOI: 10.3389/fphar.2025.1568828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
The present review explores the role of endogenous hormones, such as cortisol, melatonin, thyroid hormones, sex hormones, and insulin, in the modulation of the immune response to a human metapneumovirus (hMPV) infection. hMPV is a respiratory pathogen responsible for severe infections, particularly in vulnerable populations like children and the elderly. The virus triggers inflammatory responses through various molecular processes, including cytokine production and immune signaling pathways. Notably, these processes can be influenced by endocrine factors, such as hormones. Cortisol, through hypothalamic-pituitary-adrenal (HPA) axis activation, modulates inflammation but may contribute to immunosuppression. Melatonin inhibits the NLRP3 inflammasome, reducing lung inflammation. Thyroid hormones regulate immune responses via nuclear factor kappa B (NF-κB) and JAK/STAT pathways, while hypothyroidism may alter infection severity. Sex hormones, particularly estrogens, enhance antiviral immunity, whereas androgens may have variable effects on immune modulation. Insulin influences inflammation through NF-κB suppression, with insulin resistance potentially worsening viral pathogenesis. Therapeutic implications suggest that modulating these hormonal pathways could aid in hMPV management. Strategies such as hormone therapy, glucocorticoid regulation, and nanoparticle-based drug delivery are potential routes of intervention. The aim of the present review is to understand the complex interplay between endogenous hormones and the immune system during an hMPV infection by describing the complex molecular mechanisms associated with these processes.
Collapse
Affiliation(s)
- Viviana A. Ruiz-Pozo
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Elius Paz-Cruz
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Mayra A. Castañeda Cataña
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Laboratorio de Estrategias Antivirales, UBA-CONICET, Buenos Aires, Argentina
| | - Ana Karina Zambrano
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| |
Collapse
|
3
|
Sanchez SS, Sillé FCM. Sex-Specific Effects of Environmental Pollutants on Pulmonary Immune Responses. CURRENT OPINION IN PHYSIOLOGY 2025; 43:100813. [PMID: 40124675 PMCID: PMC11928163 DOI: 10.1016/j.cophys.2025.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Environmental pollutants can adversely impact various physiological processes, affecting systems such as the respiratory and immune systems. Immune responses are influenced by various factors including age, hormonal status, genetic background, and notably, sex, with effects extending to both innate and adaptive immunity. External factors, like environmental pollutants, can also disrupt innate and/or adaptive immunity and compromise pathogen recognition and memory against future infections. Furthermore, environmental pollutants can play a pivotal role in the development and exacerbation of many chronic respiratory diseases. It is becoming increasingly evident that environmental pollutants elicit sex-specific effects across different species. This review highlights recent findings on the intricate interplay between sex differences and immune-related effects induced by environmental pollutants, with a particular focus on the dysregulation of pulmonary immune responses.
Collapse
Affiliation(s)
- Sylvia S Sanchez
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| |
Collapse
|
4
|
Braun J. Fast, Present and Future of the Concept of Spondyloarthritis. Curr Rheumatol Rep 2025; 27:15. [PMID: 39869233 DOI: 10.1007/s11926-024-01179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/28/2025]
Abstract
PURPOSE OF REVIEW Axial spondyloarthritis (axSpA) is a rather prevalent chronic inflammatory rheumatic disease that affects already relatively young patients. It has been known better since the end of the nineteenth century but quite a lot has been learned since the early 60ies when the first classification (diagnostic) criteria for ankylosing spondylitis (AS) were agreed on. I have been part of many developments in the last 30 years, and I'm happy to have been able to contribute to the scientific progress in terms of diagnosis, imaging, pathophysiology and therapy. When I was asked to write a manuscript about the SpA concept I felt honored. Thus, the purpose of this extensive review was, on the one hand, to describe the history of AS and axSpA, and on the other hand, to reason about the concept and the gestalt of axSpA, and finally to deliver some ideas what future researchers could possibly do to further study the disease. RECENT FINDINGS The last 3 decades were full of innovations for both, classification and treatment of axSpA which also helped us to learn about the pathophysiology. Thus, TNFa, IL-17, IL-23 and Janus kinase are established targets to reduce inflammation. IL-17 and IL-23 are very special in that regard because they both work for psoriasis but only anti-IL-17 agents which don't work in IBD are approved for axSpA, while IL 23 inhibitors are approved for both, psoriasis and IBD, but they don't work in axSpA. New imaging techniques such as low dose CT and synthetic MRI are likely to improve the detection of both active and structural lesions of axSpA. This manuscript tries to describe the most important findings about axSpA. The main aim of research remains to discover the pathophysiology and to further improve treatment options in order to reduce and abolish inflammation and prevent new bone formation to increase the quality of life of our patients. The differences between male and female disease and the role of the immune system in axSpA are now the main challenges, and the role of special T-cell receptors seem to deserve special interest.
Collapse
Affiliation(s)
- J Braun
- Rheumatologisches Versorgungszentrum Steglitz, Ruhr Universität Bochum, Schloßstr.110, 12163, Berlin, Germany.
| |
Collapse
|
5
|
Yalcinkaya A, Yalcinkaya R, Sardh F, Landegren N. Immune dynamics throughout life in relation to sex hormones and perspectives gained from gender-affirming hormone therapy. Front Immunol 2025; 15:1501364. [PMID: 39885993 PMCID: PMC11779622 DOI: 10.3389/fimmu.2024.1501364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
Biological sex is closely associated with the properties and extent of the immune response, with males and females showing different susceptibilities to diseases and variations in immunity. Androgens, predominantly in males, generally suppress immune responses, while estrogens, more abundant in females, tend to enhance immunity. It is also established that sex hormones at least partially explain sex biases in different diseases, particularly autoimmune diseases in females. These differences are influenced by hormonal, genetic, and environmental factors, and vary throughout life stages. The advent of gender-affirming hormone therapy offers a novel opportunity to study the immunological effects of sex hormones. Despite the limited studies on this topic, available research has revealed that testosterone therapy in transgender men may suppress certain immune functions, such as type I interferon responses, while increasing inflammation markers like TNF-α. Transgender women on estrogen therapy also experience alterations in coagulation-related and inflammatory characteristics. Furthermore, other possible alterations in immune regulation can be inferred from the assessment of inflammatory and autoimmune markers in transgender individuals receiving hormone therapy. Understanding the complex interactions between sex hormones and the immune system, particularly through the unique perspective offered by gender-affirming hormone therapies, may facilitate the development of targeted therapies for infections and autoimmune diseases while also improving healthcare outcomes for transgender individuals. Here we review immune dynamics throughout life in both sexes and provide a summary of novel findings drawn from studies exploring gender-affirming hormone therapy.
Collapse
Affiliation(s)
- Ahmet Yalcinkaya
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Rumeysa Yalcinkaya
- Department of Pediatric Infectious Diseases, Ankara Etlik City Hospital, Ankara, Türkiye
| | - Fabian Sardh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Escarcega RD, M J VK, Kyriakopoulos VE, Ortiz GJ, Gusdon AM, Fan H, Peesh P, Blasco Conesa MP, Colpo GD, Ahnstedt HW, Couture L, Kim SH, Hinojosa M, Farrell CM, Marrelli SP, Urayama A, Ganesh BP, Schulz PE, McCullough LD, Tsvetkov AS. Serum metabolome profiling in patients with mild cognitive impairment reveals sex differences in lipid metabolism. Neurobiol Dis 2025; 204:106747. [PMID: 39617329 DOI: 10.1016/j.nbd.2024.106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024] Open
Abstract
Alzheimer's disease (AD) affects more women than men. Although women live longer than men, it is not longevity alone, but other factors, including metabolic changes, that contribute to the higher risk of AD in women. Metabolic pathways have been implicated in AD progression, but studies to date examined targeted pathways, leaving many metabolites unmeasured. Sex is often a neglected biological variable, and most metabolomic studies were not designed to investigate sex differences in metabolomic profiles. Here, we performed untargeted metabolomic profiling of sera from male and female patients with mild cognitive impairment (MCI), a common precursor to AD, and matched controls. We discovered significant metabolic changes in individuals with MCI, and found several pathways that were strongly associated with sex. Peptide energy metabolism demonstrated sexual dimorphism. Lipid pathways exhibited the strongest differences between female and male MCI patients, including specific phosphatidylcholine lipids, lysophospholipids, long-chain fatty acids, and monoacylglycerols. 1-palmitoleoyl glycerol and 1-arachidonoyl glycerol were higher in female MCI subjects than in male MCI subjects with no differences between control males and females. Conversely, specific dicarboxylic fatty acids were lower in female MCI subjects than male MCI subjects. In cultured astrocytes, 1-arachidonoyl glycerol promoted phosphorylation of the transcriptional regulator sphingosine kinase 2, which was inhibited by the transient receptor potential vanilloid 1 receptor antagonists, as well as chromatin remodelling. Overall, we identified novel sex-specific metabolites in MCI patients that could serve as biomarkers of MCI in both sexes, help further define AD etiology, and reveal new potential prevention strategies for AD.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Vijay Kumar M J
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Vasilia E Kyriakopoulos
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Guadalupe J Ortiz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Aaron M Gusdon
- Department of Neurosurgery, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Huihui Fan
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Maria P Blasco Conesa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Hilda W Ahnstedt
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Lucy Couture
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Stella H Kim
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Miriam Hinojosa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Christine M Farrell
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Sean P Marrelli
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Bhanu P Ganesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Paul E Schulz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrey S Tsvetkov
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
7
|
Magyar CTJ, Arteaga NF, Germani G, Karam VH, Adam R, Romagnoli R, De Simone P, Robin F, Cherqui D, Boscà A, Mazzaferro V, Fundora Y, Heneghan M, Llado L, Lesurtel M, Cescon M, Mirza D, Cavelti A, Christen L, Storni F, Kim-Fuchs C, Lachenmayer A, Beldi G, Candinas D, Radu IP, Schwacha-Eipper B, Berzigotti A, Banz V. Recipient-Donor Sex Constellation in Liver Transplantation for Hepatocellular Carcinoma-An ELTR Study. Liver Int 2025; 45:e16178. [PMID: 39564600 DOI: 10.1111/liv.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/07/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Liver transplantation (LT) is a curative treatment option. We investigated survival outcomes based on recipient-donor sex constellation (RDSC) following LT. METHODS We performed a European Liver Transplant Registry analysis, including patients from 1988 to December 2022. The cohort was split into four RDSC groups: female donor female recipient (FDFR), female donor male recipient (FDMR), male donor female recipient (MDFR) and male donor male recipient (MDMR). Survival analysis, including death with recurrence, was performed. RESULTS In 7601 LT for HCC with an overall median follow-up of 22.6 months (5.8, 60.7), death was registered in 25.1% and, as primary cause of death, HCC tumour recurrence in 26.0%. There was no statistically significant difference on crude survival estimates among the different RDSC groups (log-rank p = 0.66) with 10-year overall survival (OS) of 54.5% in FDFR, 54.6% in FDMR, 59.1% in MDFR and 56.9% in MDMR. On multivariable analysis, RDSC showed a significant effect on OS (FDFR as reference): MDFR (aHR 0.72, p = 0.023). No significant difference was found for FDMR (aHR 0.98, p = 0.821) and MDMR (aHR 0.90, p= 0.288). Regarding overall registered causes of death, differences between RDSC groups were found in rejection (p = 0.017) and cardiovascular (p = 0.046) associated deaths. CONCLUSIONS In female recipients undergoing LT for HCC, male donor grafts were associated with a 28% reduction of mortality compared to female donor grafts.
Collapse
Affiliation(s)
- Christian Tibor Josef Magyar
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Noah Free Arteaga
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Giacomo Germani
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | | | - Rene Adam
- Department of Surgery, AP-HP Hôpital Paul Brousse, Université Paris-Saclay, Villejuif, France
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, AOU Città della Salute della Scienza di Torino, University of Turin, Turin, Italy
| | - Paolo De Simone
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Fabien Robin
- Hepatobiliary and Digestive Surgery Department, Pontchaillou Hospital, Rennes 1 University, Rennes, France
| | - Daniel Cherqui
- Liver Transplantation, APHP-Paul Brousse Hospital-Paris Saclay University, Villejuif, France
| | - Andrea Boscà
- Liver Transplantation & Hepatology Laboratory, Hepatology, HPB Surgery & Transplant Unit, Health Research Institute Hospital La Fe, La Fe University Hospital, Valencia, Spain
| | - Vincenzo Mazzaferro
- Istituto Nazionale Tumori Milano, Hepato Pancreatic Surgery & Liver Transplantation Unit, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Yiliam Fundora
- General & Digestive Surgery Service, Hospital Clínic, Barcelona, Spain
| | | | - Laura Llado
- Department of Hepato-Biliary and Pancreatic Surgery and Liver Transplantation, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Mickael Lesurtel
- Department of HPB Surgery and Liver Transplantation, AP-HP, Beaujon Hospital, University of Paris Cité, Clichy, France
| | - Matteo Cescon
- Hepatobiliary Surgery & Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
| | - Darius Mirza
- The Queen Elizabeth Hospital, Queen Elisabeth Medical Center, Birmingham, UK
| | - Andrea Cavelti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lucienne Christen
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Federico Storni
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Corina Kim-Fuchs
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anja Lachenmayer
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Iuliana-Pompilia Radu
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Birgit Schwacha-Eipper
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vanessa Banz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Li X, Xiao X, Wu Z, Li A, Wang W, Lin R. Global, regional, and national burden of early-onset colorectal cancer and projection to 2050: An analysis based on the Global Burden of Disease Study 2021. Public Health 2025; 238:245-253. [PMID: 39700867 DOI: 10.1016/j.puhe.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES Early-onset colorectal cancer (EO-CRC) is becoming increasingly concerning due to its impact on individuals under 50 years old. We explored the burden of EO-CRC to provide information for planning effective management and prevention strategies. STUDY DESIGN We conducted secondary analyses to assess the burden of EO-CRC using data from GBD 2021. METHODS The incidence, prevalence, deaths, disability-adjusted life years (DALYs) and their rates across 204 countries and territories were obtained from GBD 2021 database. The estimated annual percentage change (EAPC) calculation was used to assess temporal trends in these metrics. Additionally, we reported the proportion of DALYs attributable to risk factors and projected future disease burden till 2050. RESULTS The global number of new EO-CRC cases increased from 107,310 in 1990 to 211,890 in 2021. Both age-standardized incidence rate (ASIR) and prevalence rate (ASPR) of EO-CRC showed overall increases over the study period (ASIR: EAPC = 0.96 (0.9-1.02), ASPR: EAPC = 1.5 (1.44-1.55)). However, a decline in ASIR and ASPR was observed in 2020 and 2021. Males consistently showed higher EO-CRC indicators compared to females. Furthermore, projections indicated that deaths and DALYs cases are likely to fluctuate but generally increase by 2050, reaching 85,602 and 4,283,093, respectively. CONCLUSIONS The global impact of EO-CRC has increased significantly from 1990 to 2021, revealing notable variations across SDI regions, countries, age groups, and sexes. Besides, deaths and DALYs are predicted to rise by 2050. These results highlight the importance of implementing measures to address the growing burden of EO-CRC globally.
Collapse
Affiliation(s)
- Xinyi Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyan Xiao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zenghong Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anni Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Pangrazzi L, Meryk A. Molecular and Cellular Mechanisms of Immunosenescence: Modulation Through Interventions and Lifestyle Changes. BIOLOGY 2024; 14:17. [PMID: 39857248 PMCID: PMC11760833 DOI: 10.3390/biology14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Immunosenescence, the age-related decline in immune function, is a complex biological process with profound implications for health and longevity. This phenomenon, characterized by alterations in both innate and adaptive immunity, increases susceptibility to infections, reduces vaccine efficacy, and contributes to the development of age-related diseases. At the cellular level, immunosenescence manifests as decreased production of naive T and B cells, accumulation of memory and senescent cells, thymic involution, and dysregulated cytokine production. Recent advances in molecular biology have shed light on the underlying mechanisms of immunosenescence, including telomere attrition, epigenetic alterations, mitochondrial dysfunction, and changes in key signaling pathways such as NF-κB and mTOR. These molecular changes lead to functional impairments in various immune cell types, altering their proliferative capacity, differentiation, and effector functions. Emerging research suggests that lifestyle factors may modulate the rate and extent of immunosenescence at both cellular and molecular levels. Physical activity, nutrition, stress management, and sleep patterns have been shown to influence immune cell function, inflammatory markers, and oxidative stress in older adults. This review provides a comprehensive analysis of the molecular and cellular mechanisms underlying immunosenescence and explores how lifestyle interventions may impact these processes. We will examine the current understanding of immunosenescence at the genomic, epigenomic, and proteomic levels, and discuss how various lifestyle factors can potentially mitigate or partially reverse aspects of immune aging. By integrating recent findings from immunology, gerontology, and molecular biology, we aim to elucidate the intricate interplay between lifestyle and immune aging at the molecular level, potentially informing future strategies for maintaining immune competence in aging populations.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Institute for Biomedical Aging Research, Faculty of Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andreas Meryk
- Department of Pediatrics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Chen F, Chen Y, Liang H, Pan X, Wang Y, Shen L, Hu Y. Non-linear effects of age in reporting of adverse events following influenza immunization in Zhejiang, China. BMC Infect Dis 2024; 24:1457. [PMID: 39716104 DOI: 10.1186/s12879-024-10385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/20/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Previous evidence had suggested age and sex affect the reporting rate of adverse events following immunization (AEFI), but with little exploration of potential their non-linear and interaction effects on AEFIs. Examining these non-linear effects could be beneficial for identifying high-risk populations. METHODS Using AEFI records and vaccination data from national passive surveillance system of adverse event following immunization and Zhejiang provincial immunization information system in the 2021-2022 influenza season, respectively. The effects of age and sex on AEFIs were analyzed through the generalized additive model (logistic regression with a smooth term) to estimate non-linear characteristics after adjusting for other co-variables (adopted significance level p < 0.05). RESULTS There were 1,259,975 influenza vaccine doses administered and 1304 AEFI records reported during the 2021-2022 influenza season, with a reporting rate of 10.35/10,000 doses. The odds of reporting an AEFI increased from 6 months of age, peaking at about 54 years of age, then gradually declined. The odds of females experiencing AEFIs are higher than that of males. The data model indicated clear effects of age, sex, and their interaction (p < 0.01) on reporting rate of AEFI. Concomitant vaccination and vaccine type were also the impact factors for reporting rate of AEFI. CONCLUSION This study revealed a non-linear property in age and the AEFI odds, with a significant interaction and higher reporting rate in females. In addition, the odds of AEFI increased with co-administration compared to separate vaccination.
Collapse
Affiliation(s)
- Fuxing Chen
- Institute of Immunization and Prevention, Zhejiang Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, P.R. China
| | - Yaping Chen
- Institute of Immunization and Prevention, Zhejiang Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, P.R. China
| | - Hui Liang
- Institute of Immunization and Prevention, Zhejiang Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, P.R. China
| | - Xuejiao Pan
- Institute of Immunization and Prevention, Zhejiang Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, P.R. China
| | - Ying Wang
- Institute of Immunization and Prevention, Zhejiang Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, P.R. China
| | - Lingzhi Shen
- Institute of Immunization and Prevention, Zhejiang Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, P.R. China
| | - Yu Hu
- Institute of Immunization and Prevention, Zhejiang Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, P.R. China.
| |
Collapse
|
11
|
Wang Y, Su Y, Guo T, Zhao M, Liu L, Chen W, Zhao X. Immune-mediated liver injury caused by immune checkpoint inhibitors exhibits distinct clinical features that differ from autoimmune hepatitis. Expert Opin Drug Metab Toxicol 2024:1-9. [PMID: 39665399 DOI: 10.1080/17425255.2024.2434642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Immune-mediated liver injury caused by immune checkpoint inhibitors (ILICI) and autoimmune hepatitis (AIH) are both related to the distorted immune system. However, ILICI differs from AIH in several distinct ways. We aimed to study the differences between ILICI and AIH. RESEARCH DESIGN AND METHODS This is a retrospective study collecting clinical data of ILICI (2016.1-2024.2) and AIH (2002.1-2023.6) patients. Demographic, clinicopathological, radiological characteristics, treatment and outcomes were analyzed. RESULTS A total of 71 ILICI and 158 AIH cases were included. ILICI group had older patients and fewer females (age: 66 vs. 56 years, gender: 28.2% vs. 85.4%, p < 0.001). They had lower ALT, AST, TBil, IgG levels, and lower titers of ANA. Some ILICI patients exhibited bile duct edema and dilation, while AIH patients typically had liver fibrosis in CT/MRI. Histologically, ILICI showed bile duct injury, inflammatory cells infiltration with fewer plasma cells. Glucocorticoid treatment was less common, but ALT level recovery was faster in ILICI patients (41 vs. 140 days, p < 0.001). CONCLUSIONS ILICI generally affects older patients without a female predilection and is linked to milder, acute liver injury. High ANA titers, elevated IgG, and prominent plasma cell infiltration were less common. Liver function normalizes more quickly in ILICI.
Collapse
Affiliation(s)
- Yan Wang
- Liver Research Center, Beijing Friendship Hospital, Key Laboratory on Translational Medicine on Cirrhosis, National Clinical Research Center for Digestive Disease, Capital Medical University, Beijing, China
| | - Yu Su
- Liver Research Center, Beijing Friendship Hospital, Key Laboratory on Translational Medicine on Cirrhosis, National Clinical Research Center for Digestive Disease, Capital Medical University, Beijing, China
| | - Tiantian Guo
- Liver Research Center, Beijing Friendship Hospital, Key Laboratory on Translational Medicine on Cirrhosis, National Clinical Research Center for Digestive Disease, Capital Medical University, Beijing, China
| | - Mengyu Zhao
- Liver Research Center, Beijing Friendship Hospital, Key Laboratory on Translational Medicine on Cirrhosis, National Clinical Research Center for Digestive Disease, Capital Medical University, Beijing, China
| | - Liwei Liu
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Capital Medical University, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Key Laboratory on Translational Medicine on Cirrhosis, National Clinical Research Center for Digestive Disease, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Esmaeili S, Razaghi H, Malekshahi M, Soleimani M, Shafiei SH, Golbakhsh M. Impact of Benign Prostatic Hyperplasia on Postoperative Complications and Periprosthetic Joint Infections After Total Joint Arthroplasty: A Systematic Review and Meta-Analysis. Arthroplast Today 2024; 30:101552. [PMID: 39559544 PMCID: PMC11570822 DOI: 10.1016/j.artd.2024.101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
Background Total joint arthroplasty (TJA) is one of the most frequently performed surgical procedures each year, offering considerable cost-effectiveness and numerous benefits. However, certain postoperative complications can be observed following TJA. While the relationship between various comorbidities and these complications has been well-documented, this study aims to specifically investigate the impact of benign prostatic hyperplasia (BPH) on postoperative outcomes. Methods For this systematic review, we searched PubMed, Scopus, and Web of Science using terms like "total hip arthroplasty," "total knee arthroplasty," "BPH," and "benign prostatic hypertrophy." Screening of retrieved articles was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies comparing complications in TJA between patients with and without preexisting BPH were eligible for inclusion. Data extraction was performed on the included articles, and their quality was assessed using the Newcastle-Ottawa scale. A meta-analysis was conducted using the Mantel-Haenszel method. Results This systematic review encompassed 4 articles evaluating TJA outcomes in men with a history of BPH, involving a total of 75,222 male cases. Among these, 17,183 cases (23%) presented with symptomatic BPH. The meta-analysis revealed that the incidence rate of periprosthetic joint infection did not significantly differ between BPH and non-BPH groups across both total hip and knee arthroplasty cases (odds ratio [OR] (95% confidence interval [CI]) = 1.28 [0.92-1.79]). However, postoperative urinary retention was significantly higher among patients with BPH (OR [95% CI] = 3.43 [2.04-5.78]). Additionally, patients with BPH exhibited a notably elevated incidence of postoperative urinary tract infection (OR [95% CI] = 2.55 [2.33-2.79]), as well as sepsis (OR [95% CI] = 1.31 [1.09-1.58]). Conclusions It is noteworthy that while patients with BPH are prone to certain complications, meta-analysis indicate that BPH cannot be considered a comorbidity that increases the risk of periprosthetic joint infection.
Collapse
Affiliation(s)
- Sina Esmaeili
- Orthopaedic Subspecialty Research Centre (OSRC), Sina University Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hannaneh Razaghi
- Orthopaedic Subspecialty Research Centre (OSRC), Sina University Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahda Malekshahi
- Orthopaedic Subspecialty Research Centre (OSRC), Sina University Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- Orthopaedic Subspecialty Research Centre (OSRC), Sina University Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Shafiei
- Orthopaedic Subspecialty Research Centre (OSRC), Sina University Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Golbakhsh
- Orthopaedic Subspecialty Research Centre (OSRC), Sina University Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Keur N, Flikweert AW, Ricaño-Ponce I, Muller Kobold AC, van der Sar-van der Brugge S, Rodenhuis-Zybert IA, Le KT, van Meurs M, Grootenboers MJ, van der Voort PH, Heeringa P, Kumar V, Moser J. Delineating sex-specific circulating host response signatures associated with COVID-19 severity and mortality. iScience 2024; 27:111150. [PMID: 39507250 PMCID: PMC11539596 DOI: 10.1016/j.isci.2024.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Male SARS-CoV-2-infected patients have higher hospitalization rates, ICU admissions, and mortality compared to females, yet with unclear underlying mechanisms. We investigated the influence of biological sex on COVID-19 severity and patient outcomes. We profiled 41 circulating host response markers and identified differentially regulated proteins based on disease severity using covariates, such as sex, age, BMI, diabetes, and corticosteroid administration. IL-8, D-dimer, S100B, IL-6, Angpt-2, MMP-8, TNF-R1, u-PAR, u-PA, osteopontin, IL-13, TNF-α, pentraxin-3, P-selectin, fractalkine, and SP-D levels were elevated in critically ill COVID-19 males compared to severe cases. In contrast, IL-8, D-dimer, IL-6, Angpt-2, Tie-2, uPAR, and SP-D were higher in females with critical-COVID-19 than in severe cases. Notably, D-dimer, IL-6, pentraxin-3, and S100B were associated with male mortality, yet none of the measured plasma proteins associated with female mortality. Our study delineated distinct sex-specific plasma protein signatures linked to the severity and mortality of COVID-19 patients.
Collapse
Affiliation(s)
- Nick Keur
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud UMC, Nijmegen, the Netherlands
| | - Antine W. Flikweert
- Department of Pulmonary Medicine, Amphia Hospital, Breda, the Netherlands
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Isis Ricaño-Ponce
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud UMC, Nijmegen, the Netherlands
| | - Anneke C. Muller Kobold
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kieu T.T. Le
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Peter H.J. van der Voort
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peter Heeringa
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud UMC, Nijmegen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
14
|
Yu Y, Yan X, Wang L, Dong L, Song D, Liu J, Gao X. Investigation and Analysis of Inhalant Allergens in Patients with Allergic Rhinitis in Yinchuan, China. Int Arch Allergy Immunol 2024:1-9. [PMID: 39551050 DOI: 10.1159/000541710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/23/2024] [Indexed: 11/19/2024] Open
Abstract
INTRODUCTION This study aimed to analyze the types and distribution characteristics of major inhalant allergens in patients with allergic rhinitis (AR) in Yinchuan, China. METHODS In this cross-sectional study, 2,000 outpatients suspected of having AR were included from 2022 to 2023 at the Department of Otolaryngology-Head and Neck Surgery, General Hospital of Ningxia Medical University. Skin prick tests were performed on the included individuals using 13 common inhalant allergens: house dust mites, dust mites, tropical mites, Artemisia, dog hair, ragweed, cat hair, grass pollen, tree pollen, mold group I, mold group IV, German cockroach (Blattella germanica), and American cockroach (Periplaneta americana). The results of the skin prick tests were summarized, and patients with positive results were grouped by ethnicity, gender, and age to compare the differences in the positive rates of various inhalant allergens between the groups. The number of patients visiting each month was recorded to analyze the temporal variation in the incidence rate and compare the differences in the main inhalant sensitizers among patients in each quarter. RESULTS Among the 2,000 included patients, there were 1,060 males and 940 females, with an average age of 18.7 years. Among the 2,000 outpatients who underwent allergen skin prick tests, 1,346 cases (67.30%) had positive results. The inhalant allergens were ranked in descending order of positive rates as follows: Artemisia (53.25%), dust mites (51.10%), house dust mites (49.10%), ragweed (45.70%), tropical mites (43.15%), dog hair (19.20%), cat hair (16.05%), American cockroach (12.10%), German cockroach (11.25%), grass pollen (9.15%), tree pollen (7.10%), mold group I (6.10%), and mold group IV (5.05%). There were no statistically significant differences in positive rates between different ethnicities or genders (all p > 0.05). Compared to patients aged 18 years and above, patients under 18 years old had statistically significant differences in positive rates for dust mites, Artemisia, ragweed, mold group I, and German cockroach (all p < 0.05). The seasonal distribution indicated that autumn had the highest number of patient visits in a year (579 cases, 58.95%). CONCLUSION Artemisia and dust mites were the major inhalant allergens in patients with suspected AR in Yinchuan, China. The positive rate of inhalant allergen skin prick tests was not correlated with the ethnicity or gender of the local population. Autumn was the season with the highest frequency of visits by patients with suspected AR.
Collapse
Affiliation(s)
- Yingjie Yu
- Department of Otorhinolaryngology/Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaohui Yan
- Department of Otorhinolaryngology/Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lixin Wang
- Department of Otorhinolaryngology/Head and Neck Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Lun Dong
- Department of Otorhinolaryngology/Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dong Song
- Department of Otorhinolaryngology/Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jing Liu
- Department of Otorhinolaryngology/Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoping Gao
- Department of Otorhinolaryngology/Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
15
|
Escarcega RD, Vijay Kumar MJ, Kyriakopoulos VE, Ortiz GJ, Gusdon AM, Fan H, Peesh P, Conesa MPB, Colpo GD, Ahnstedt HW, Couture L, Kim SH, Hinojosa M, Farrell CM, Marrelli SP, Urayama A, Ganesh BP, Schulz PE, McCullough LD, Tsvetkov AS. Serum metabolome profiling in patients with mild cognitive impairment reveals sex differences in lipid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623108. [PMID: 39605322 PMCID: PMC11601308 DOI: 10.1101/2024.11.11.623108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) affects more women than men. Although women live longer than men, it is not longevity alone, but other factors, including metabolic changes, that contribute to the higher risk of AD in women. Metabolic pathways have been implicated in AD progression, but studies to date examined targeted pathways, leaving many metabolites unmeasured. Sex is often a neglected biological variable, and most metabolomic studies were not designed to investigate sex differences in metabolomic profiles. Here, we performed untargeted metabolomic profiling of sera from male and female patients with mild cognitive impairment (MCI), a common precursor to AD, and matched controls. We discovered significant metabolic changes in individuals with MCI, and found several pathways that were strongly associated with sex. Peptide energy metabolism demonstrated sexual dimorphism. Lipid pathways exhibited the strongest differences between female and male MCI patients, including specific phosphatidylcholine lipids, lysophospholipids, long-chain fatty acids, and monoacylglycerols. 1-palmitoleoyl glycerol and 1-arachidonoyl glycerol were higher in female MCI subjects than in male MCI subjects with no differences between control males and females. Conversely, specific dicarboxylic fatty acids were lower in female MCI subjects than male MCI subjects. In cultured astrocytes, 1-arachidonoyl glycerol promoted phosphorylation of the transcriptional regulator sphingosine kinase 2, which was inhibited by the transient receptor potential vanilloid 1 receptor antagonists, as well as chromatin remodelling. Overall, we identified novel sex-specific metabolites in MCI patients that could serve as biomarkers of MCI in both sexes, help further define AD etiology, and reveal new potential prevention strategies for AD.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - M. J. Vijay Kumar
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | | | - Guadalupe J. Ortiz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Aaron M. Gusdon
- Department of Neurosurgery, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Huihui Fan
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Maria P. Blasco Conesa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Hilda W. Ahnstedt
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Lucy Couture
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Stella H. Kim
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Miriam Hinojosa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Christine M. Farrell
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Sean P. Marrelli
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Bhanu P. Ganesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Paul E. Schulz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrey S. Tsvetkov
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
- UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
16
|
Gonçalves J, Caliceti P. Optimizing Pharmacological and Immunological Properties of Therapeutic Proteins Through PEGylation: Investigating Key Parameters and Their Impact. Drug Des Devel Ther 2024; 18:5041-5062. [PMID: 39529843 PMCID: PMC11552514 DOI: 10.2147/dddt.s481420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024] Open
Abstract
Protein PEGylation represents a significant technological advancement in the development of protein-based therapeutics and is widely used to reduce immunogenicity, enhance pharmacokinetics, and/or improve stability. The improved pharmacokinetic profile of PEGylated proteins compared with the native protein results in sustained versus fluctuating plasma concentrations and carries the potential of less frequent administration. However, attachment of PEG to therapeutic proteins can alter their structural conformation, which exposes new epitopes to the immune system. The design of PEGylated proteins thus needs to balance the intended benefits with the potential risks associated with the immunogenicity of the PEG moiety itself or resulting from alterations in the conformation of the therapeutic protein. In recent years, advancements in protein PEGylation chemistry have offered the capability to target PEG attachment to specific amino acids to create more stable and bioactive therapies. The biophysical and biopharmaceutical features of PEGylated proteins can vary based on polymer size, shape, density, and conjugation site, and the immunogenicity of the conjugate can be further impacted by the properties of the therapeutic protein itself and the characteristics of the patient. It is important to note that not all patients will develop an immune response toward the PEG moiety, and not all immune responses are clinically meaningful. A comprehensive understanding of the factors that influence immunogenic responses to PEGylated proteins is important to optimize their therapeutic benefits. This article reviews the design and optimization of PEGylation strategies to enhance the clinical performance of protein-based therapeutics while minimizing immunogenic responses to the PEG moiety or PEGylated proteins.
Collapse
Affiliation(s)
- João Gonçalves
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Harvey BJ, Alvarez de la Rosa D. Sex Differences in Kidney Health and Disease. Nephron Clin Pract 2024; 149:77-103. [PMID: 39406203 DOI: 10.1159/000541352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/02/2024] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Sex differences exist in kidney physiology and disease which are underpinned by the biological actions of the sex hormones estrogen, progesterone and testosterone. In this review, we present an up-to-date discussion of the hormonal and molecular signalling pathways implicated in sex differences in kidney health and disease. SUMMARY Estrogen and progesterone have protective effects on renal blood flow, glomerular filtration rate and nephron ion and water reabsorptive processes, whereas testosterone tends to compromise these functions. The biological effects of estrogen appear to be the most important in reinforcing kidney function and protecting against kidney diseases in females. The actions of estrogen are myriad but all tend to bolster kidney physiology to maintain a steady-state and adaptable extracellular fluid volume (ECFV) and blood pressure. Estrogen safeguards ECFV homeostasis by stimulating renal epithelial sodium channel (ENaC) and water channel (AQP2) expression and transport function. Renal maintenance of ECFV within narrow physiological limits is a first-line of defense against hypertension and lowers the risk of cardiovascular disease in women. The estrogenic and XX chromosome basis for a female advantage are evident in a wide range of kidney diseases including acute kidney injury, chronic kidney disease, end-stage kidney disease, diabetic kidney disease, and polycystic kidney disease. The molecular mechanisms involve estrogen regulation of nephron ion and water transport, genetic immunogenic responses, activation of the protective arm of the renin angiotensin-aldosterone system and XX chromosome reinforcement of immune responses. Kidney disease can also predispose patients to cancer and women are protected in renal cancer with lower incidence, morbidity, and mortality than age-matched men with the disease. KEY MESSAGES This review underscores the importance of incorporating sex-specific considerations into clinical practice and basic research to bridge the gap in understanding and addressing biological sex disparities in kidney disease and renal cancer.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Centro de Estudios Científicos, Valdivia, Chile
| | - Diego Alvarez de la Rosa
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
18
|
Valcarcel B, Schonfeld SJ, Jackson SS, Dores GM, Linet MS, Morton LM. Changes in sex-specific incidence of lymphoid neoplasms across the lifespan. Haematologica 2024; 109:3408-3413. [PMID: 38867579 PMCID: PMC11443394 DOI: 10.3324/haematol.2024.285281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 06/14/2024] Open
Affiliation(s)
- Bryan Valcarcel
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Sara J Schonfeld
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sarah S Jackson
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Graça M Dores
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | - Martha S Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lindsay M Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
19
|
Leno-Duran E, Serrano-Conde E, Salas-Rodríguez A, Salcedo-Bellido I, Barrios-Rodríguez R, Fuentes A, Viñuela L, García F, Requena P. Evaluation of inflammatory biomarkers and their association with anti-SARS-CoV-2 antibody titers in healthcare workers vaccinated with BNT162B2. Front Immunol 2024; 15:1447317. [PMID: 39247198 PMCID: PMC11377239 DOI: 10.3389/fimmu.2024.1447317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Vaccine-induced immunity against COVID-19 generates antibody and lymphocyte responses. However, variability in antibody titers has been observed after vaccination, and the determinants of a better response should be studied. The main objective of this investigation was to analyze the inflammatory biomarker response induced in healthcare workers vaccinated with BNT162b2, and its association with anti-Spike (a SARS-CoV-2 antigen) antibodies measured throughout a 1-year follow-up. Methods Anti-spike antibodies and 92 biomarkers were analyzed in serum, along with socio-demographic and clinical variables collected by interview or exploration. Results In our study, four biomarkers (ADA, IL-17C, CCL25 and CD8α) increased their expression after the first vaccine dose; and 8 others (uPA, IL-18R1, EN-RAGE, CASP-8, MCP-2, TNFβ, CD5 and CXCL10) decreased their expression. Age, body mass index (BMI), smoking, alcohol consumption, and prevalent diseases were associated with some of these biomarkers. Furthermore, higher baseline levels of T-cell surface glycoprotein CD6 and hepatocyte growth factor (HGF) were associated with lower mean antibody titers at follow-up, while levels of monocyte chemotactic protein 2 (MCP-2) had a positive association with antibody levels. Age and BMI were positively related to baseline levels of MCP-2 (β=0.02, 95%CI 0.00-0.04, p=0.036) and HGF (β=0.03, 95%CI 0.00-0.06, p=0.039), respectively. Conclusion Our findings indicate that primary BNT162b2 vaccination had a positive effect on the levels of several biomarkers related to T cell function, and a negative one on some others related to cancer or inflammatory processes. In addition, a higher level of MCP-2 and lower levels of HGF and CD6 were found to be associated with higher anti-Spike antibody titer following vaccination.
Collapse
Affiliation(s)
- Ester Leno-Duran
- Universidad de Granada, Departamento de Obstetricia y Ginecología, Granada, Spain
| | - Esther Serrano-Conde
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Ana Salas-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rocío Barrios-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Fuentes
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Laura Viñuela
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Federico García
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Pilar Requena
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
20
|
Li Y, Yang X, Ma L. Comparative analysis of adverse event risks in breast cancer patients receiving pembrolizumab combined with paclitaxel versus paclitaxel monotherapy: insights from the FAERS database. Front Pharmacol 2024; 15:1345671. [PMID: 39234109 PMCID: PMC11372242 DOI: 10.3389/fphar.2024.1345671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Objective This study aimed to evaluate the risk of adverse events (AEs) in breast cancer patients treated with pembrolizumab combined with paclitaxel versus those receiving pembrolizumab or paclitaxel monotherapy, using the FDA Adverse Event Reporting System (FAERS) database. Methods Data were extracted from the FAERS database for breast cancer patients treated with pembrolizumab combined with paclitaxel or with pembrolizumab or paclitaxel monotherapy from Q1 2016 to Q2 2023. Disproportionation analysis was performed by calculating the reporting odds ratio (ROR) with corresponding 95% confidence interval (95% CI), the information component (IC), and the lower bound of the information component 95% confidence interval (IC025) to identify potential safety signals. Results No significant difference in AEs was observed between the combined treatment group and the pembrolizumab monotherapy group. However, the combined treatment group exhibited a substantial increase in AE risk compared to the paclitaxel monotherapy group. The most significant increases in AE risk were adrenal insufficiency (ROR = 189.94, 95% CI 25.41-1419.7, IC = 3.37, IC025 = 1.59), hypophysitis (ROR = 99.46, 95% CI 12.72-777.4, IC = 3.31, IC025 = 1.44), and myocarditis (ROR = 69.5, 95% CI 8.55-565.23, IC = 3.25, IC025 = 1.33). The time-to-event for combined treatment was 35 (34-70) days, for pembrolizumab was 43 (35-90) days, and for paclitaxel was 42 (37-76) days. The combination therapy group demonstrated significantly shorter intervals to the onset of adrenal insufficiency (p = 0.008), myocarditis (p < 0.001), and immune-related enterocolitis (p = 0.009). Conclusion Analysis of the FAERS database indicates that combination therapy significantly elevates the risk of adrenal insufficiency, myocarditis, hypophysitis, and immune-related enterocolitis compared to paclitaxel monotherapy. These findings provide critical insights for clinicians in predicting and managing potential AEs associated with this treatment regimen.
Collapse
Affiliation(s)
- Yilun Li
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Breast Cancer Molecular Medicine, Shijiazhuang, China
| | - Xiaolu Yang
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Medical University, Shijiazhuang, China
| | - Li Ma
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Breast Cancer Molecular Medicine, Shijiazhuang, China
| |
Collapse
|
21
|
van der Heiden M, Shetty S, Bijvank E, Beckers L, Cevirgel A, van Sleen Y, Tcherniaeva I, Ollinger T, Burny W, van Binnendijk RS, van Houten MA, Buisman AM, Rots NY, van Beek J, van Baarle D. Multiple vaccine comparison in the same adults reveals vaccine-specific and age-related humoral response patterns: an open phase IV trial. Nat Commun 2024; 15:6603. [PMID: 39097574 PMCID: PMC11297912 DOI: 10.1038/s41467-024-50760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/18/2024] [Indexed: 08/05/2024] Open
Abstract
Vaccine responsiveness is often reduced in older adults. Yet, our lack of understanding of low vaccine responsiveness hampers the development of effective vaccination strategies to reduce the impact of infectious diseases in the ageing population. Young-adult (25-49 y), middle-aged (50-64 y) and older-adult ( ≥ 65 y) participants of the VITAL clinical trials (n = 315, age-range: 28-98 y), were vaccinated with an annual (2019-2020) quadrivalent influenza (QIV) booster vaccine, followed by a primary 13-valent pneumococcal-conjugate (PCV13) vaccine (summer/autumn 2020) and a primary series of two SARS-CoV-2 mRNA-1273 vaccines (spring 2021). This unique setup allowed investigation of humoral responsiveness towards multiple vaccines within the same individuals over the adult age-range. Booster QIV vaccination induced comparable H3N2 hemagglutination inhibition (HI) titers in all age groups, whereas primary PCV13 and mRNA-1273 vaccination induced lower antibody concentrations in older as compared to younger adults (primary endpoint). The persistence of humoral responses, towards the 6 months timepoint, was shorter in older adults for all vaccines (secondary endpoint). Interestingly, highly variable vaccine responder profiles overarching multiple vaccines were observed. Yet, approximately 10% of participants, mainly comprising of older male adults, were classified as low responders to multiple vaccines. This study aids the identification of risk groups for low vaccine responsiveness and hence supports targeted vaccination strategies. Trial number: NL69701.041.19, EudraCT: 2019-000836-24.
Collapse
Affiliation(s)
- Marieke van der Heiden
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Sudarshan Shetty
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Elske Bijvank
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lisa Beckers
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Alper Cevirgel
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, The Netherlands
| | - Irina Tcherniaeva
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | | | - Rob S van Binnendijk
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marianne A van Houten
- Spaarne Academy, Spaarne Gasthuis, Hoofddorp, The Netherlands
- Department of Pediatrics, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Anne-Marie Buisman
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Nynke Y Rots
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Josine van Beek
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
22
|
Huckestein BR, Antos D, Manni ML, Zeng K, Miller LM, Parenteau KL, Gelhaus SL, Mullett SJ, Shoemaker JE, Alcorn JF. Sex-based differences in persistent lung inflammation following influenza infection of juvenile outbred mice. Am J Physiol Lung Cell Mol Physiol 2024; 327:L189-L202. [PMID: 38810239 PMCID: PMC11687968 DOI: 10.1152/ajplung.00407.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Children are susceptible to influenza infections and can experience severe disease presentation due to a lack of or limited pre-existing immunity. Despite the disproportionate impact influenza has on this population, there is a lack of focus on pediatric influenza research, particularly when it comes to identifying the pathogenesis of long-term outcomes that persist beyond the point of viral clearance. In this study, juvenile outbred male and female mice were infected with influenza and analyzed following viral clearance to determine how sex impacts the persistent inflammatory responses to influenza. It was found that females maintained a broader cytokine response in the lung following clearance of influenza, with innate, type I and type II cytokine signatures in almost all mice. Males, on the other hand, had higher levels of IL-6 and other macrophage-related cytokines, but no evidence of a type I or type II response. The immune landscape was similar in the lungs between males and females postinfection, but males had a higher regulatory T cell to TH1 ratio compared with female mice. Cytokine production positively correlated with the frequency of TH1 cells and exudate macrophages, as well as the number of cells in the bronchoalveolar lavage fluid. Furthermore, female lungs were enriched for metabolites involved in the glycolytic pathway, suggesting glycolysis is higher in female lungs compared with males after viral clearance. These data suggest juvenile female mice have persistent and excessive lung inflammation beyond the point of viral clearance, whereas juvenile males had a more immunosuppressive phenotype.NEW & NOTEWORTHY This study identifies sex-based differences in persistent lung inflammation following influenza infection in an outbred, juvenile animal model of pediatric infection. These findings indicate the importance of considering sex and age as variable in infectious disease research.
Collapse
Affiliation(s)
- Brydie R Huckestein
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Danielle Antos
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Michelle L Manni
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kelly Zeng
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Leigh M Miller
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kristen L Parenteau
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jason E Shoemaker
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - John F Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
23
|
Zhan XZ, Luo P, Zhang C, Zhang LJ, Shen X, Jiang DL, Liu WJ. Age-related changes in the mitochondrial, synthesis of steroids, and cellular homeostasis of the chicken ovary. Anim Reprod Sci 2024; 267:107540. [PMID: 38908171 DOI: 10.1016/j.anireprosci.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
In poultry reproduction, the decline of ovarian function due to aging is related to dysfunction of mitochondria exacerbated by a reduction in antioxidant capacity, ultimately leading to follicle atresia and decreased egg production. However, the mechanisms of mitochondrial dysfunction in the chicken ovary in aging have remained to be understood. Hence, this study aims to investigate the effects of aging on mitochondrial function and cellular homeostasis. We collect ovarian tissue, small white follicles (SWF), large white follicles (LWF), and small yellow follicles (SYF) from three different laying periods of hens. The transmission electron microscopy (TEM) results showed that mitochondrial damage occurred in ovarian tissue during the late laying period (LP), characterized by structural swelling, scattered mitochondrial cristae, and an increase in the vacuoles. At the same time, with age, the synthesis of steroid hormones in the ovaries and follicular tissues is reduced. The levels of autophagy and cell apoptosis in ovarian tissues were both increased in the LP. In addition, aging adversely impacts mitochondrial function, leading to a decrease in mitochondrial unfolded protein response (UPRmt) functions. This study will expand the knowledge about regressing ovarian aging in hens and increasing egg production in older layers for poultry production.
Collapse
Affiliation(s)
- Xiao-Zhi Zhan
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Pei Luo
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Chen Zhang
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Liu-Jun Zhang
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Xu Shen
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Dan-Li Jiang
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Wen-Jun Liu
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China.
| |
Collapse
|
24
|
Abdullah G, Akpan A, Phelan MM, Wright HL. New insights into healthy ageing, inflammageing and frailty using metabolomics. FRONTIERS IN AGING 2024; 5:1426436. [PMID: 39044748 PMCID: PMC11263002 DOI: 10.3389/fragi.2024.1426436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Human ageing is a normal process and does not necessarily result in the development of frailty. A mix of genetic, environmental, dietary, and lifestyle factors can have an impact on ageing, and whether an individual develops frailty. Frailty is defined as the loss of physiological reserve both at the physical and cellular levels, where systemic processes such as oxidative stress and inflammation contribute to physical decline. The newest "omics" technology and systems biology discipline, metabolomics, enables thorough characterisation of small-molecule metabolites in biological systems at a particular time and condition. In a biological system, metabolites-cellular intermediate products of metabolic reactions-reflect the system's final response to genomic, transcriptomic, proteomic, epigenetic, or environmental alterations. As a relatively newer technique to characterise metabolites and biomarkers in ageing and illness, metabolomics has gained popularity and has a wide range of applications. We will give a comprehensive summary of what is currently known about metabolomics in studies of ageing, with a focus on biomarkers for frailty. Metabolites related to amino acids, lipids, carbohydrates, and redox metabolism may function as biomarkers of ageing and/or frailty development, based on data obtained from human studies. However, there is a complexity that underpins biological ageing, due to both genetic and environmental factors that play a role in orchestrating the ageing process. Therefore, there is a critical need to identify pathways that contribute to functional decline in people with frailty.
Collapse
Affiliation(s)
- Genna Abdullah
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Asangaedem Akpan
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Division of Internal Medicine, University of Western Australia, Bunbury, WA, Australia
- Faculty of Health Sciences, Curtis University, Bunbury, WA, Australia
- Department of Geriatric Medicine, Bunbury Regional Hospital, Bunbury, WA, Australia
| | - Marie M. Phelan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- High Field NMR Facility, Liverpool Shared Research Facilities University of Liverpool, Liverpool, United Kingdom
| | - Helen L. Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
25
|
Han J, Rindone AN, Elisseeff JH. Immunoengineering Biomaterials for Musculoskeletal Tissue Repair across Lifespan. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311646. [PMID: 38416061 PMCID: PMC11239302 DOI: 10.1002/adma.202311646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Musculoskeletal diseases and injuries are among the leading causes of pain and morbidity worldwide. Broad efforts have focused on developing pro-regenerative biomaterials to treat musculoskeletal conditions; however, these approaches have yet to make a significant clinical impact. Recent studies have demonstrated that the immune system is central in orchestrating tissue repair and that targeting pro-regenerative immune responses can improve biomaterial therapeutic outcomes. However, aging is a critical factor negatively affecting musculoskeletal tissue repair and immune function. Hence, understanding how age affects the response to biomaterials is essential for improving musculoskeletal biomaterial therapies. This review focuses on the intersection of the immune system and aging in response to biomaterials for musculoskeletal tissue repair. The article introduces the general impacts of aging on tissue physiology, the immune system, and the response to biomaterials. Then, it explains how the adaptive immune system guides the response to injury and biomaterial implants in cartilage, muscle, and bone and discusses how aging impacts these processes in each tissue type. The review concludes by highlighting future directions for the development and translation of personalized immunomodulatory biomaterials for musculoskeletal tissue repair.
Collapse
Affiliation(s)
- Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Alexandra N. Rindone
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine; Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| |
Collapse
|
26
|
Chang Y, Cao W, Lu L, Han Y, Qin L, Zhou B, Li T. An updated immunosenescence exploration in healthy Chinese donors: circular elevated PD-1 on T cell and increased Ki67 on CD8+ T cell towards aging. Aging (Albany NY) 2024; 16:10985-10996. [PMID: 38954761 PMCID: PMC11272111 DOI: 10.18632/aging.205985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/26/2024] [Indexed: 07/04/2024]
Abstract
Immunosenescence is a process of immune dysfunction that occurs along with aging. Many studies have focused on the changes of different lymphocyte subsets in diseases and immune aging. However, the fluctuation in the number and phenotype of lymphocyte subset caused by aging have not been comprehensively analyzed, especially the effects of new indicators such as PD-1 and Ki67 in peripheral blood have been rarely reported. We further investigated the humoral and cellular immune parameters of 150 healthy donors over 18 years old. Age was associated with decreased CD4+CD45RA+CD62L+ T cells, decreased CD4+CD45RA+CD31+ T cells, and increased memory CD4+ or CD8+ T cells, dominated by male CD8+ T cells. The loss of CD28 expression on T cells and the transverse trend of activated CD38 and HLA-DR were also related to the increased age. In addition, CD8+ T cells in men were more prominent in activation indicators, and the difference between the old and young groups was obvious. CD4+CD25+CD127- T cells percentage tended to decrease with age and did not differ significantly between gender. Interestingly, we found that age was positively associated with PD-1+ T cells and showed significant age-related variability in men. Similarly, the percentage of CD8+ki-67+ also showed an increasing trend, with significant differences between the young group and other elderly groups in males. Our findings can provide immunological clues for future aging research, offering new insights for clinical monitoring and prevention of certain diseases.
Collapse
Affiliation(s)
- Yue Chang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lianfeng Lu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
- School of Clinical Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lin Qin
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Baotong Zhou
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
- Tsinghua University Medical College, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Barber AJ, Del Genio CL, Swain AB, Pizzi EM, Watson SC, Tapiavala VN, Zanazzi GJ, Gaur AB. Age, sex and Alzheimer's disease: a longitudinal study of 3xTg-AD mice reveals sex-specific disease trajectories and inflammatory responses mirrored in postmortem brains from Alzheimer's patients. Alzheimers Res Ther 2024; 16:134. [PMID: 38909241 PMCID: PMC11193202 DOI: 10.1186/s13195-024-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Aging and sex are major risk factors for developing late-onset Alzheimer's disease. Compared to men, women experience worse neuropathological burden and cognitive decline despite living longer with the disease. Similarly, male 3xTg-AD mice, developed to model Alzheimer's disease, no longer consistently exhibit standard Alzheimer's neuropathology yet experience higher rates of mortality - providing a unique opportunity to further elucidate this dichotomy. We hypothesized that sex differences in the biological aging process yield distinct pathological and molecular Alzheimer's disease signatures in males and females, which could be harnessed for therapeutic and biomarker development. METHODS We aged male and female, 3xTg-AD and B6129 control mice across their respective lifespans (n = 3-8 mice per sex, strain, and age group) and longitudinally assessed neuropathological hallmarks of Alzheimer's disease, markers of hepatic inflammation, splenic mass and morphology, as well as plasma cytokine levels. We conducted RNA sequencing analysis on bulk brain tissue and examined differentially expressed genes (DEGs) between 3xTg-AD and B6129 samples and across ages in each sex. We also examined DEGs between clinical Alzheimer's and control parahippocampal gyrus brain tissue samples from the Mount Sinai Brain Bank study in each sex. RESULTS 3xTg-AD females significantly outlived 3xTg-AD males and exhibited progressive Alzheimer's neuropathology, while 3xTg-AD males demonstrated progressive hepatic inflammation, splenomegaly, circulating inflammatory proteins, and minimal Alzheimer's neuropathological hallmarks. Instead, 3xTg-AD males experienced an accelerated upregulation of immune-related gene expression in the brain relative to females. Our clinical investigations revealed that individuals with Alzheimer's disease develop similar sex-specific alterations in neuronal and immune function. In diseased males of both species, we observed greater upregulation of complement-related gene expression, and lipopolysaccharide was predicted as the top upstream regulator of DEGs. CONCLUSIONS Our data demonstrate that chronic inflammation and complement activation are associated with increased mortality, indicating that age-related changes in immune response contribute to sex differences in Alzheimer's disease trajectories. We provide evidence that aging and transgene-driven disease progression trigger a widespread inflammatory response in 3xTg-AD males, which mimics the impact of lipopolysaccharide stimulation despite the absence of infection.
Collapse
Affiliation(s)
- Alicia J Barber
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Carmen L Del Genio
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | - Elizabeth M Pizzi
- The Jackson Laboratory, Bar Harbor, ME, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | - George J Zanazzi
- Department of Pathology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Arti B Gaur
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
28
|
Rodríguez-Santiago Y, Garay-Canales CA, Nava-Castro KE, Morales-Montor J. Sexual dimorphism in colorectal cancer: molecular mechanisms and treatment strategies. Biol Sex Differ 2024; 15:48. [PMID: 38867310 PMCID: PMC11170921 DOI: 10.1186/s13293-024-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024] Open
Abstract
INTRODUCTION Sexual dimorphism significantly influences cancer incidence and prognosis. Notably, females exhibit a lower risk and favorable prognosis for non-reproductive cancers compared to males, a pattern observable beyond the scope of risk behaviors such as alcohol consumption and smoking. Colorectal cancer, ranking third in global prevalence and second in mortality, disproportionately affects men. Sex steroid hormones, particularly estrogens and androgens, play crucial roles in cancer progression, considering epidemiological in vivo and in vitro, in general estrogens imparting a protective effect in females and androgens correlating with an increasing risk of colorectal cancer development. MAIN BODY The hormonal impact on immune response is mediated by receptor interactions, resulting in heightened inflammation, modulation of NF-kB, and fostering an environment conducive to cancer progression and metastasis. These molecules also influence the enteric nervous system, that is a pivotal in neuromodulator release and intestinal neuron stimulation, also contributes to cancer development, as evidenced by nerve infiltration into tumors. Microbiota diversity further intersects with immune, hormonal, and neural mechanisms, influencing colorectal cancer dynamics. A comprehensive understanding of hormonal influences on colorectal cancer progression, coupled with the complex interplay between immune responses, microbiota diversity and neurotransmitter imbalances, underpins the development of more targeted and effective therapies. CONCLUSIONS Estrogens mitigate colorectal cancer risk by modulating anti-tumor immune responses, enhancing microbial diversity, and curbing the pro-tumor actions of the sympathetic and enteric nervous systems. Conversely, androgens escalate tumor growth by dampening anti-tumor immune activity, reducing microbial diversity, and facilitating the release of tumor-promoting factors by the nervous system. These findings hold significant potential for the strategic purposing of drugs to fine-tune the extensive impacts of sex hormones within the tumor microenvironment, promising advancements in colorectal cancer therapies.
Collapse
Affiliation(s)
- Yair Rodríguez-Santiago
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1er piso, Circuito de Posgrados, Ciudad Universitaria, Ciudad de México, 04510, México
| | - Claudia Angelica Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México
| | - Karen Elizabeth Nava-Castro
- Grupo de Biología y Química Atmosféricas, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, 04510, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México.
| |
Collapse
|
29
|
Xiao T, Lee J, Gauntner TD, Velegraki M, Lathia JD, Li Z. Hallmarks of sex bias in immuno-oncology: mechanisms and therapeutic implications. Nat Rev Cancer 2024; 24:338-355. [PMID: 38589557 DOI: 10.1038/s41568-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are present across multiple non-reproductive organ cancers, with male individuals generally experiencing higher incidence of cancer with poorer outcomes. Although some mechanisms underlying these differences are emerging, the immunological basis is not well understood. Observations from clinical trials also suggest a sex bias in conventional immunotherapies with male individuals experiencing a more favourable response and female individuals experiencing more severe adverse events to immune checkpoint blockade. In this Perspective article, we summarize the major biological hallmarks underlying sex bias in immuno-oncology. We focus on signalling from sex hormones and chromosome-encoded gene products, along with sex hormone-independent and chromosome-independent epigenetic mechanisms in tumour and immune cells such as myeloid cells and T cells. Finally, we highlight opportunities for future studies on sex differences that integrate sex hormones and chromosomes and other emerging cancer hallmarks such as ageing and the microbiome to provide a more comprehensive view of how sex differences underlie the response in cancer that can be leveraged for more effective immuno-oncology approaches.
Collapse
Affiliation(s)
- Tong Xiao
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy D Gauntner
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Rose Ella Burkhardt Brain Tumour Center, Cleveland Clinic, Cleveland, OH, USA.
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA.
| |
Collapse
|
30
|
Magyar CTJ, Gretener CP, Baldi P, Storni F, Kim-Fuchs C, Candinas D, Berzigotti A, Knecht M, Beldi G, Hirzel C, Sidler D, Reineke D, Banz V. Recipient donor sex combinations in solid organ transplantation and impact on clinical outcome: A scoping review. Clin Transplant 2024; 38:e15312. [PMID: 38678586 DOI: 10.1111/ctr.15312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Solid organ transplantation (SOT) is a lifesaving treatment for end-stage organ failure. Although many factors affect the success of organ transplantation, recipient and donor sex are important biological factors influencing transplant outcome. However, the impact of the four possible recipient and donor sex combinations (RDSC) on transplant outcome remains largely unclear. METHODS A scoping review was carried out focusing on studies examining the association between RDSC and outcomes (mortality, graft rejection, and infection) after heart, lung, liver, and kidney transplantation. All studies up to February 2023 were included. RESULTS Multiple studies published between 1998 and 2022 show that RDSC is an important factor affecting the outcome after organ transplantation. Male recipients of SOT have a higher risk of mortality and graft failure than female recipients. Differences regarding the causes of death are observed. Female recipients on the other hand are more susceptible to infections after SOT. CONCLUSION Differences in underlying illnesses as well as age, immunosuppressive therapy and underlying biological mechanisms among male and female SOT recipients affect the post-transplant outcome. However, the precise mechanisms influencing the interaction between RDSC and post-transplant outcome remain largely unclear. A better understanding of how to identify and modulate these factors may improve outcome, which is particularly important in light of the worldwide organ shortage. An analysis for differences of etiology and causes of graft loss or mortality, respectively, is warranted across the RDSC groups. PRACTITIONER POINTS Recipient and donor sex combinations affect outcome after solid organ transplantation. While female recipients are more susceptible to infections after solid organ transplantation, they have higher overall survival following SOT, with causes of death differing from male recipients. Sex-differences should be taken into account in the post-transplant management.
Collapse
Affiliation(s)
- Christian Tibor Josef Magyar
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Charlene Pierrine Gretener
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patricia Baldi
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Federico Storni
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Corina Kim-Fuchs
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Knecht
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cédric Hirzel
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Sidler
- Department for Nephrology and Hypertension, University Hospital Insel Bern, Bern, Switzerland
| | - David Reineke
- Department of Cardiac Surgery, Inselspital, University of Bern, Bern, Switzerland
| | - Vanessa Banz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Tadount F, Kiely M, Assi A, Rafferty E, Sadarangani M, MacDonald SE, Quach C. Sex Differences in the Immunogenicity and Efficacy of Seasonal Influenza Vaccines: A Meta-analysis of Randomized Controlled Trials. Open Forum Infect Dis 2024; 11:ofae222. [PMID: 38737434 PMCID: PMC11088355 DOI: 10.1093/ofid/ofae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024] Open
Abstract
Background Sex impacts individuals' response to vaccination. However, most vaccine studies do not report these differences disaggregated by sex. The aim of this study was to assess sex differences in the immunogenicity and efficacy of influenza vaccine. Methods We performed a meta-analysis using phase 3 randomized controlled trial data conducted between 2010 and 2018. Using hemagglutination inhibition antibody titers for each strain, differences in geometric mean ratios (GMRs) were calculated by sex. Risk ratios (RRs) comparing seroconversion proportions were pooled for females and males using random-effects models. Vaccine efficacy (VE) was assessed. Data were analyzed by age group (18-64 vs ≥65 years). Results A total of 33 092 healthy adults from 19 studies were included for immunogenicity analysis, and 6740 from 1 study for VE. Whereas no sex differences in immunogenicity were found in adults <65 years old, older females had a significantly greater chance to seroconvert compared to older males for all strains: RRH1N1 = 1.17 [95% confidence interval {CI}, 1.12-1.23]; RRH3N2 = 1.09 [95% CI, 1.05-1.14]; RRVictoria = 1.23 [95% CI, 1.14-1.31]; RRYamagata = 1.22 [95% CI, 1.14-1.30]. GMRs were also higher in older females for all strains compared to older males. VE in preventing laboratory-confirmed influenza was higher in older females compared to older males with VEs of 27.32% (95% CI, 1.15%-46.56%) and 6.06% (95% CI, -37.68% to 35.90%), respectively. Conclusions Our results suggest a higher immunogenicity and VE in females compared to males in older adults. These differences in immunogenicity and VE support the disaggregation of vaccine data by sex in clinical trials and observational studies. Clinical Trials Registration CRD42018112260.
Collapse
Affiliation(s)
- Fazia Tadount
- Sainte-Justine Hospital Health and Research Center, Montreal, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montreal, Canada
| | - Marilou Kiely
- Département de Microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montreal, Canada
- Institut national de santé publique du Québec, Québec, Canada
| | - Ali Assi
- Faculty of Nursing and School of Public Health, University of Alberta, Edmonton, Canada
| | - Ellen Rafferty
- Faculty of Nursing and Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Shannon E MacDonald
- Faculty of Nursing and School of Public Health, University of Alberta, Edmonton, Canada
| | - Caroline Quach
- Sainte-Justine Hospital Health and Research Center, Montreal, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montreal, Canada
- Département de Pédiaterie, Faculté de médecine, Université de Montréal, Montreal, Canada
| |
Collapse
|
32
|
Pilling D, Consalvo KM, Kirolos SA, Gomer RH. Differences between human male and female neutrophils in mRNA, translation efficiency, protein, and phosphoprotein profiles. RESEARCH SQUARE 2024:rs.3.rs-4284171. [PMID: 38746380 PMCID: PMC11092807 DOI: 10.21203/rs.3.rs-4284171/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Human males and females show differences in the incidence of neutrophil-associated diseases such as systemic lupus erythematosus, rheumatoid arthritis, and reactive arthritis, and differences in neutrophil physiological responses such as a faster response to the chemorepellent SLIGKV. Little is known about the basis of sex-based differences in human neutrophils. Methods Starting with human neutrophils from healthy donors, we used RNA-seq to examine total mRNA profiles, mRNAs not associated with ribosomes and thus not being translated, mRNAs in monosomes, and mRNAs in polysomes and thus heavily translated. We used mass spectrometry systems to identify proteins and phosphoproteins. Results There were sex-based differences in the translation of 24 mRNAs. There were 132 proteins with higher levels in male neutrophils; these tended to be associated with RNA regulation, ribosome, and phosphoinositide signaling pathways, whereas 30 proteins with higher levels in female neutrophils were associated with metabolic processes, proteosomes, and phosphatase regulatory proteins. Male neutrophils had increased phosphorylation of 32 proteins. After exposure to SLIGKV, male neutrophils showed a faster response in terms of protein phosphorylation compared to female neutrophils. Conclusions Male neutrophils have higher levels of proteins and higher phosphorylation of proteins associated with RNA processing and signaling pathways, while female neutrophils have higher levels of proteins associated with metabolism and proteolytic pathways. This suggests that male neutrophils might be more ready to adapt to a new environment, and female neutrophils might be more effective at responding to pathogens. This may contribute to the observed sex-based differences in neutrophil behavior and neutrophil-associated disease incidence and severity.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77843-3474 USA
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474 USA
| | - Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, TX 77843-3474 USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474 USA
| |
Collapse
|
33
|
Rosado MRS, Marzan-Rivera N, Watowich MM, Valle ADND, Pantoja P, Pavez-Fox MA, Siracusa ER, Cooper EB, Valle JEND, Phillips D, Ruiz-Lambides A, Martinez MI, Montague MJ, Platt ML, Higham JP, Brent LJN, Sariol CA, Snyder-Mackler N. Immune cell composition varies by age, sex and exposure to social adversity in free-ranging Rhesus Macaques. GeroScience 2024; 46:2107-2122. [PMID: 37853187 PMCID: PMC10828448 DOI: 10.1007/s11357-023-00962-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Increasing age is associated with dysregulated immune function and increased inflammation-patterns that are also observed in individuals exposed to chronic social adversity. Yet we still know little about how social adversity impacts the immune system and how it might promote age-related diseases. Here, we investigated how immune cell diversity varied with age, sex and social adversity (operationalized as low social status) in free-ranging rhesus macaques. We found age-related signatures of immunosenescence, including lower proportions of CD20 + B cells, CD20 + /CD3 + ratio, and CD4 + /CD8 + T cell ratio - all signs of diminished antibody production. Age was associated with higher proportions of CD3 + /CD8 + Cytotoxic T cells, CD16 + /CD3- Natural Killer cells, CD3 + /CD4 + /CD25 + and CD3 + /CD8 + /CD25 + T cells, and CD14 + /CD16 + /HLA-DR + intermediate monocytes, and lower levels of CD14 + /CD16-/HLA-DR + classical monocytes, indicating greater amounts of inflammation and immune dysregulation. We also found a sex-dependent effect of exposure to social adversity (i.e., low social status). High-status males, relative to females, had higher CD20 + /CD3 + ratios and CD16 + /CD3 Natural Killer cell proportions, and lower proportions of CD8 + Cytotoxic T cells. Further, low-status females had higher proportions of cytotoxic T cells than high-status females, while the opposite was observed in males. High-status males had higher CD20 + /CD3 + ratios than low-status males. Together, our study identifies the strong age and sex-dependent effects of social adversity on immune cell proportions in a human-relevant primate model. Thus, these results provide novel insights into the combined effects of demography and social adversity on immunity and their potential contribution to age-related diseases in humans and other animals.
Collapse
Affiliation(s)
- Mitchell R Sanchez Rosado
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA.
| | - Nicole Marzan-Rivera
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
| | - Marina M Watowich
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Petraleigh Pantoja
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Melissa A Pavez-Fox
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Erin R Siracusa
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Eve B Cooper
- Department of Anthropology, New York University, New York, NY, USA
| | - Josue E Negron-Del Valle
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Daniel Phillips
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Angelina Ruiz-Lambides
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Melween I Martinez
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Marketing, Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Carlos A Sariol
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
34
|
Roszczyk A, Zych M, Sołdacki D, Zagozdzon R, Kniotek MJ. Reference values of lymphocyte subsets from healthy Polish adults. Cent Eur J Immunol 2024; 49:26-36. [PMID: 38812608 PMCID: PMC11130990 DOI: 10.5114/ceji.2024.136371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/17/2024] [Indexed: 05/31/2024] Open
Abstract
The flow cytometry method could support physicians' decisions in the diagnosis and treatment monitoring of immunodeficient patients. Most clinical recommendations are focused on the search for alterations in T- and B-lymphocyte subsets, less commonly natural killer (NK) cells and granulocytes. While reference values for clinically meaningful lymphocyte subsets have been published ubiquitously among numerous countries, we have not found significant data for a population of adult Polish habitats; thus we determined reference values for T, B, and NK subsets according to sex and age. The female group showed a higher percentage of lymphocytes (CD45++), T helper lymphocytes with a higher absolute count, as well as CD4/CD8 ratio, marginal zone-like B cells, class-switched B cells, and CD21low B cells than the male group. The male group was found to have elevated percentages of naïve B lymphocytes, transitional B cells, and plasmablasts. A weak positive correlation with age was found among double positive T lymphocytes, natural killer T cells (NKT) lymphocytes, and CD21low B cells. A negative correlation with age for double negative T lymphocytes, marginal zone-like B cells, and plasmablasts was noted. The results indicated the importance of creating distinct reference ranges regarding sex and age concerning immunophenotype.
Collapse
Affiliation(s)
| | - Michał Zych
- Department of Clinical Immunology, Medical University of Warsaw, Poland
| | | | - Radoslaw Zagozdzon
- Department of Clinical Immunology, Medical University of Warsaw, Poland
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Monika J. Kniotek
- Department of Clinical Immunology, Medical University of Warsaw, Poland
| |
Collapse
|
35
|
Liu K, Wu Y, Yang W, Li T, Wang Z, Xiao S, Peng Z, Li M, Xiong W, Li M, Chen X, Zhang S, Lei X. α-Ketoglutarate Improves Ovarian Reserve Function in Primary Ovarian Insufficiency by Inhibiting NLRP3-Mediated Pyroptosis of Granulosa Cells. Mol Nutr Food Res 2024; 68:e2300784. [PMID: 38314939 DOI: 10.1002/mnfr.202300784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Indexed: 02/07/2024]
Abstract
SCOPE Premature ovarian insufficiency (POI) is a common female infertility problem, with its pathogenesis remains unknown. The NOD-like receptor family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis has been proposed as a possible mechanism in POI. This study investigates the therapeutic effect of α-ketoglutarate (AKG) on ovarian reserve function in POI rats and further explores the potential molecular mechanisms. METHODS AND RESULTS POI rats are caused by administration of cyclophosphamide (CTX) to determine whether AKG has a protective effect. AKG treatment increases the ovarian index, maintains both serum hormone levels and follicle number, and improves the ovarian reserve function in POI rats, as evidence by increased the level of lactate and the expression of rate-limiting enzymes of glycolysis in the ovaries, additionally reduced the expression of NLRP3, Gasdermin D (GSDMD), Caspase-1, Interleukin-18 (IL-18), and Interleukin-1 beta (IL-1β). In vitro, KGN cells are treated with LPS and nigericin to mimic pyroptosis, then treated with AKG and MCC950. AKG inhibits inflammatory and pyroptosis factors such as NLRP3, restores the glycolysis process in vitro, meanwhile inhibition of NLRP3 has the same effect. CONCLUSION AKG ameliorates CTX-induced POI by inhibiting NLRP3-mediated pyroptosis, which provides a new therapeutic strategy and drug target for clinical POI patients.
Collapse
Affiliation(s)
- Ke Liu
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yafei Wu
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenqin Yang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tianlong Li
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhongxu Wang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shu Xiao
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhenghua Peng
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meng Li
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenhao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Meixiang Li
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xi Chen
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
| | - Xiaocan Lei
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
36
|
Leuner B. Microglia and age-related cognitive decline: Primed for sex differences. Brain Behav Immun 2024; 116:267-268. [PMID: 38096924 DOI: 10.1016/j.bbi.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/25/2023] Open
Affiliation(s)
- Benedetta Leuner
- Departments of Psychology and Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
37
|
Martin F, Xiao Y, Welten V, Nakamori K, Gizlenci M, Zhou H, Tullius SG. The combinatorial effect of age and biological sex on alloimmunity and transplantation outcome. FRONTIERS IN TRANSPLANTATION 2024; 2:1325232. [PMID: 38993871 PMCID: PMC11235293 DOI: 10.3389/frtra.2023.1325232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 07/13/2024]
Abstract
Both age and biological sex affect transplantation outcomes. We have recently shown in a large volume clinical analysis utilizing the SRTR data that graft survival is inferior in young female kidney transplant recipients. In this multi-factorial analysis, older female recipients presented with a trend towards improved transplant outcomes compared to both young female recipients and male recipients of any age. Those data supported by reports of those of others suggest that sex and age impact alloimmune responses both, individually and synergistically. Biological sex and hormone levels change throughout a lifetime with recognized effects on longevity in addition to an impact on the development and course of several disease preconditions. Detailed mechanisms of those sex and age-specific aspects have thus far been studied outside of transplantation. Effects on alloimmunity are largely unknown. Moreover, the combinatorial impact that both, biological sex and age have on transplant outcomes is not understood. Here, we summarize available data that analyze how age in combination with biological sex may shape alloimmune responses and affect transplant outcomes.
Collapse
Affiliation(s)
- Friederike Martin
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yao Xiao
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Vanessa Welten
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Keita Nakamori
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Merih Gizlenci
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Zhou
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Ozonoff A, Jayavelu ND, Liu S, Melamed E, Milliren CE, Qi J, Geng LN, McComsey GA, Cairns CB, Baden LR, Schaenman J, Shaw AC, Samaha H, Seyfert-Margolis V, Krammer F, Rosen LB, Steen H, Syphurs C, Dandekar R, Shannon CP, Sekaly RP, Ehrlich LIR, Corry DB, Kheradmand F, Atkinson MA, Brakenridge SC, Higuita NIA, Metcalf JP, Hough CL, Messer WB, Pulendran B, Nadeau KC, Davis MM, Sesma AF, Simon V, van Bakel H, Kim-Schulze S, Hafler DA, Levy O, Kraft M, Bime C, Haddad EK, Calfee CS, Erle DJ, Langelier CR, Eckalbar W, Bosinger SE, Peters B, Kleinstein SH, Reed EF, Augustine AD, Diray-Arce J, Maecker HT, Altman MC, Montgomery RR, Becker PM, Rouphael N. Features of acute COVID-19 associated with post-acute sequelae of SARS-CoV-2 phenotypes: results from the IMPACC study. Nat Commun 2024; 15:216. [PMID: 38172101 PMCID: PMC10764789 DOI: 10.1038/s41467-023-44090-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. Modeling identified 4 PRO clusters based on reported deficits (minimal, physical, mental/cognitive, and multidomain), supporting heterogenous clinical presentations in PASC, with sub-phenotypes associated with female sex and distinctive comorbidities. During the acute phase of disease, a higher respiratory SARS-CoV-2 viral burden and lower Receptor Binding Domain and Spike antibody titers were associated with both the physical predominant and the multidomain deficit clusters. A lower frequency of circulating B lymphocytes by mass cytometry (CyTOF) was observed in the multidomain deficit cluster. Circulating fibroblast growth factor 21 (FGF21) was significantly elevated in the mental/cognitive predominant and the multidomain clusters. Future efforts to link PASC to acute anti-viral host responses may help to better target treatment and prevention of PASC.
Collapse
Affiliation(s)
- Al Ozonoff
- Clinical & Data Coordinating Center (CDCC), Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | | | - Shanshan Liu
- Clinical & Data Coordinating Center (CDCC), Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | | | - Carly E Milliren
- Clinical & Data Coordinating Center (CDCC), Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | - Jingjing Qi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Grace A McComsey
- Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA
| | | | - Lindsey R Baden
- Boston Clinical Site: Precision Vaccines Program, Boston Children's Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Joanna Schaenman
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Albert C Shaw
- Yale School of Medicine, and Yale School of Public Health, New Haven, CT, USA
| | | | | | | | - Lindsey B Rosen
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, MD, USA
| | - Hanno Steen
- Boston Clinical Site: Precision Vaccines Program, Boston Children's Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Caitlin Syphurs
- Clinical & Data Coordinating Center (CDCC), Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | - Ravi Dandekar
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Casey P Shannon
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, and the PROOF Centre of Excellence, Vancouver, BC, Canada
| | - Rafick P Sekaly
- Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA
| | | | - David B Corry
- Baylor College of Medicine, and the Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Farrah Kheradmand
- Baylor College of Medicine, and the Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Mark A Atkinson
- University of Florida/University of South Florida, Tampa, FL, USA
| | | | | | - Jordan P Metcalf
- Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | | | | | | | | | | | | | - Viviana Simon
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - David A Hafler
- Yale School of Medicine, and Yale School of Public Health, New Haven, CT, USA
| | - Ofer Levy
- Boston Clinical Site: Precision Vaccines Program, Boston Children's Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | | | | | - Elias K Haddad
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | - Carolyn S Calfee
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - David J Erle
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Charles R Langelier
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Walter Eckalbar
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | | | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Steven H Kleinstein
- Yale School of Medicine, and Yale School of Public Health, New Haven, CT, USA
| | - Elaine F Reed
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Alison D Augustine
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, MD, USA
| | - Joann Diray-Arce
- Clinical & Data Coordinating Center (CDCC), Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Ruth R Montgomery
- Yale School of Medicine, and Yale School of Public Health, New Haven, CT, USA
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
39
|
Barber AJ, del Genio CL, Swain AB, Pizzi EM, Watson SC, Tapiavala VN, Zanazzi GJ, Gaur AB. Age, Sex and Alzheimer's disease: A longitudinal study of 3xTg-AD mice reveals sex-specific disease trajectories and inflammatory responses mirrored in postmortem brains from Alzheimer's patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573209. [PMID: 38187539 PMCID: PMC10769453 DOI: 10.1101/2023.12.23.573209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Aging and sex are major risk factors for developing late-onset Alzheimer's disease. Compared to men, women are not only nearly twice as likely to develop Alzheimer's, but they also experience worse neuropathological burden and cognitive decline despite living longer with the disease. It remains unclear how and when sex differences in biological aging emerge and contribute to Alzheimer's disease pathogenesis. We hypothesized that these differences lead to distinct pathological and molecular Alzheimer's disease signatures in males and females, which could be harnessed for therapeutic and biomarker development. Methods We aged male and female, 3xTg-AD and B6129 (WT) control mice across their respective lifespans while longitudinally collecting brain, liver, spleen, and plasma samples (n=3-8 mice per sex, strain, and age group). We performed histological analyses on all tissues and assessed neuropathological hallmarks of Alzheimer's disease, markers of hepatic inflammation, as well as splenic mass and morphology. Additionally, we measured concentrations of cytokines, chemokines, and growth factors in the plasma. We conducted RNA sequencing (RNA-Seq) analysis on bulk brain tissue and examined differentially expressed genes (DEGs) between 3xTg-AD and WT samples and across ages in each sex. We also examined DEGs between clinical Alzheimer's and control parahippocampal gyrus brain tissue samples from the Mount Sinai Brain Bank (MSBB) study in each sex. Results 3xTg-AD females significantly outlived 3xTg-AD males and exhibited progressive Alzheimer's neuropathology, while 3xTg-AD males demonstrated progressive hepatic inflammation, splenomegaly, circulating inflammatory proteins, and next to no Alzheimer's neuropathological hallmarks. Instead, 3xTg-AD males experienced an accelerated upregulation of immune-related gene expression in the brain relative to females, further suggesting distinct inflammatory disease trajectories between the sexes. Clinical investigations revealed that 3xTg-AD brain aging phenotypes are not an artifact of the animal model, and individuals with Alzheimer's disease develop similar sex-specific alterations in canonical pathways related to neuronal signaling and immune function. Interestingly, we observed greater upregulation of complement-related gene expression, and lipopolysaccharide (LPS) was predicted as the top upstream regulator of DEGs in diseased males of both species. Conclusions Our data demonstrate that chronic inflammation and complement activation are associated with increased mortality, revealing that age-related changes in immune response act as a primary driver of sex differences in Alzheimer's disease trajectories. We propose a model of disease pathogenesis in 3xTg-AD males in which aging and transgene-driven disease progression trigger an inflammatory response, mimicking the effects of LPS stimulation despite the absence of infection.
Collapse
Affiliation(s)
- Alicia J. Barber
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Carmen L. del Genio
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | - Elizabeth M. Pizzi
- The Jackson Laboratory, Bar Harbor, ME, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | - George J. Zanazzi
- Department of Pathology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Arti B. Gaur
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
40
|
Hua R, Gao H, He C, Xin S, Wang B, Zhang S, Gao L, Tao Q, Wu W, Sun F, Xu J. An emerging view on vascular fibrosis molecular mediators and relevant disorders: from bench to bed. Front Cardiovasc Med 2023; 10:1273502. [PMID: 38179503 PMCID: PMC10764515 DOI: 10.3389/fcvm.2023.1273502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Vascular fibrosis is a widespread pathologic condition that arises during vascular remodeling in cardiovascular dysfunctions. According to previous studies, vascular fibrosis is characterized by endothelial matrix deposition and vascular wall thickening. The RAAS and TGF-β/Smad signaling pathways have been frequently highlighted. It is, however, far from explicit in terms of understanding the cause and progression of vascular fibrosis. In this review, we collected and categorized a large number of molecules which influence the fibrosing process, in order to acquire a better understanding of vascular fibrosis, particularly of pathologic dysfunction. Furthermore, several mediators that prevent vascular fibrosis are discussed in depth in this review, with the aim that this will contribute to the future prevention and treatment of related conditions.
Collapse
Affiliation(s)
- Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Qiang Tao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Wenqi Wu
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Ince LM, Darling JS, Sanchez K, Bell KS, Melbourne JK, Davis LK, Nixon K, Gaudet AD, Fonken LK. Sex differences in microglia function in aged rats underlie vulnerability to cognitive decline. Brain Behav Immun 2023; 114:438-452. [PMID: 37709153 PMCID: PMC10790303 DOI: 10.1016/j.bbi.2023.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Aging is associated with a significant shift in immune system reactivity ("inflammaging"), as basal inflammation increases but protective responses to infection are compromised. The immune system exhibits considerable sex differences, which may influence the process of inflammaging, including immune cell activation and behavioral consequences of immune signaling (i.e., impaired memory). Here, we test the hypothesis that sex differences in immune aging may mediate sex differences in cognitive decline. Aged male and female rats received peripheral immune stimulation using lipopolysaccharide (LPS), then molecular, cellular, and behavioral outcomes were assessed. We observed that LPS-treated aged male rats showed cognitive impairment and increased neuroinflammatory responses relative to adult males. In contrast, aged female rats did not display these aging-related deficits. Using transcriptomic and flow cytometry analyses, we further observed significant age- and sex- dependent changes in immune cell populations in the brain parenchyma and meninges, indicating a broad shift in the neuroinflammatory environment that may potentiate these behavioral effects. Ovariectomized aged female rats were also resistant to inflammation-induced memory deficits, indicating that ovarian hormones are not required for the attenuated neuroinflammation in aged females. Overall, our results indicate that males have amplified inflammatory priming with age, which contributes to age-associated cognitive decline. Our findings highlight sexual dimorphism in mechanisms of aging, and suggest that sex is a crucial consideration for identifying therapies for aging and neuroinflammation.
Collapse
Affiliation(s)
- Louise M Ince
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey S Darling
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin Sanchez
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Kiersten S Bell
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer K Melbourne
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Lourdes K Davis
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Kimberly Nixon
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew D Gaudet
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA; Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Laura K Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
42
|
Teefy BB, Lemus AJJ, Adler A, Xu A, Bhala R, Hsu K, Benayoun BA. Widespread sex dimorphism across single-cell transcriptomes of adult African turquoise killifish tissues. Cell Rep 2023; 42:113237. [PMID: 37837621 PMCID: PMC10842523 DOI: 10.1016/j.celrep.2023.113237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/18/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023] Open
Abstract
The African turquoise killifish (Nothobranchius furzeri), the shortest-lived vertebrate that can be bred in captivity, is an emerging model organism for aging research. Here, we describe a multitissue, single-cell gene expression atlas of female and male blood, kidney, liver, and spleen. We annotate 22 cell types, define marker genes, and infer differentiation trajectories. We find pervasive sex-dimorphic gene expression across cell types. Sex-dimorphic genes tend to be linked to lipid metabolism, consistent with clear differences in lipid storage in female vs. male turquoise killifish livers. We use machine learning to predict sex using single-cell gene expression and identify potential markers for molecular sex identity. As a proof of principle, we show that our atlas can be used to deconvolute existing bulk RNA sequencing (RNA-seq) data to obtain accurate estimates of cell type proportions. This atlas can be a resource to the community that could be leveraged to develop cell-type-specific expression in transgenic animals.
Collapse
Affiliation(s)
- Bryan B Teefy
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Aaron J J Lemus
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089, USA
| | - Ari Adler
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Alan Xu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Quantitative & Computational Biology Department, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089, USA
| | - Rajyk Bhala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Katelyn Hsu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089, USA; Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA; Epigenetics and Gene Regulation, USC Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA; USC Stem Cell Initiative, Los Angeles, CA 90089, USA.
| |
Collapse
|
43
|
Abstract
Myocarditis is frequently caused by viral infections, but animal models that closely resemble human disease suggest that virus-triggered autoimmune disease is the most likely cause of myocarditis. Myocarditis is a rare condition that occurs primarily in men under age 50. The incidence of myocarditis rose at least 15x during the COVID-19 pandemic from 1-10 to 150-400 cases/100,000 individuals, with most cases occurring in men under age 50. COVID-19 vaccination was also associated with rare cases of myocarditis primarily in young men under 50 years of age with an incidence as high as 50 cases/100,000 individuals reported for some mRNA vaccines. Sex differences in the immune response to COVID-19 are virtually identical to the mechanisms known to drive sex differences in myocarditis pre-COVID based on clinical studies and animal models. The many similarities between COVID-19 vaccine-associated myocarditis to COVID-19 myocarditis and non-COVID myocarditis suggest common immune mechanisms drive disease.
Collapse
Affiliation(s)
- Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, Florida, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
44
|
Chen Y, Miao C, Zhao Y, Yang L, Wang R, Shen D, Ren N, Zhang Q. Inflammasomes in human reproductive diseases. Mol Hum Reprod 2023; 29:gaad035. [PMID: 37788097 DOI: 10.1093/molehr/gaad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Inflammasomes are multi-protein complexes localized within immune and non-immune cells that induce caspase activation, proinflammatory cytokine secretion, and ultimately pyroptosis-a type of cell death. Inflammasomes are involved in a variety of human diseases, especially acute or chronic inflammatory diseases. In this review, we focused on the strong correlation between the NLRP3 inflammasome and various reproductive diseases, including ovarian aging or premature ovarian insufficiency, PCOS, endometriosis, recurrent spontaneous abortion, preterm labor, pre-eclampsia, and male subfertility, as well as the multifaceted role of NLRP3 in the pathogenesis and treatment of these diseases. In addition, we provide an overview of the structure and amplification of inflammasomes. This comprehensive review demonstrates the vital role of NLRP3 inflammasome activation in human reproductive diseases together with the underlying mechanisms, offers new insights for mechanistic studies of reproduction, and provides promising possibilities for the development of drugs targeting the NLRP3 inflammasome for the treatment of reproductive disorders in the future.
Collapse
Affiliation(s)
- Yun Chen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyun Miao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuqing Yang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruye Wang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan Shen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning Ren
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Zhang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
45
|
Leite MM, de Sousa Neto IV, Dutra MT, Funghetto SS, de Oliveira Silva A, da Silva ICR, Ramos de Lima L, Morato Stival M. Predictive Models of Muscle Strength in Older People with Type 2 Diabetes Mellitus. Clin Interv Aging 2023; 18:1535-1546. [PMID: 37727449 PMCID: PMC10506670 DOI: 10.2147/cia.s414620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/03/2023] [Indexed: 09/21/2023] Open
Abstract
Purpose To propose predictive models for absolute muscle strength (AMS) of elderly people with type 2 Diabetes Mellitus (DM2) in primary health care. Patients and Methods The cross-sectional study was conducted with 138 elderly diabetics. The AMS was measured by a JAMAR® hydraulic handgrip dynamometer, determined by the sum of both hands. The following indices were evaluated: waist-to-height ratio (WHtR), body mass index (BMI), Lipid Accumulation Product (LAP), Triglyceride/High Density Lipoprotein (TG/HDL) ratio and platelet/lymphocyte ratio (PLR). Multiple linear regression was used in the statistical analysis. Results The final regression model indicated 66.4% (R²=0.66) of the variation in AMS. WHtR decreased AMS by 41.1% (β = -0.19; t = -3.70; p < 0.001), while PLR by 11.3% (β = -0.12; t = -2.36; p = 0.020). Male sex increased AMS by 10.6% (β = 0.32; t = 4.16; p < 0.001), and lean mass (LM) by 0.89% (β = 0.46; t = 6.03; p < 0.001). Conclusion WHtR and PLR predicted a decrease, while male sex and LM predicted an increase in AMS. It is suggested that these markers be used as screening measures for variation in AMS in older adults with DM2. These results have relevant practical application in primary health care since the markers are easy to use.
Collapse
Affiliation(s)
- Mateus Medeiros Leite
- Graduate Program in Health Sciences and Technologies, University of Brasilia, Faculty of Ceilândia, Brasilia, Brazil
| | - Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | | | - Silvana Schwerz Funghetto
- Graduate Program in Health Sciences and Technologies, University of Brasilia, Faculty of Ceilândia, Brasilia, Brazil
| | | | | | | | - Marina Morato Stival
- Graduate Program in Health Sciences and Technologies, University of Brasilia, Faculty of Ceilândia, Brasilia, Brazil
| |
Collapse
|
46
|
Zhang Z, Tian X, Lu JY, Boit K, Ablaeva J, Zakusilo FT, Emmrich S, Firsanov D, Rydkina E, Biashad SA, Lu Q, Tyshkovskiy A, Gladyshev VN, Horvath S, Seluanov A, Gorbunova V. Increased hyaluronan by naked mole-rat Has2 improves healthspan in mice. Nature 2023; 621:196-205. [PMID: 37612507 PMCID: PMC10666664 DOI: 10.1038/s41586-023-06463-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Abundant high-molecular-mass hyaluronic acid (HMM-HA) contributes to cancer resistance and possibly to the longevity of the longest-lived rodent-the naked mole-rat1,2. To study whether the benefits of HMM-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHas2). nmrHas2 mice showed an increase in hyaluronan levels in several tissues, and a lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHas2 mice shifted towards that of longer-lived species. The most notable change observed in nmrHas2 mice was attenuated inflammation across multiple tissues. HMM-HA reduced inflammation through several pathways, including a direct immunoregulatory effect on immune cells, protection from oxidative stress and improved gut barrier function during ageing. These beneficial effects were conferred by HMM-HA and were not specific to the nmrHas2 gene. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exported to other species, and open new paths for using HMM-HA to improve lifespan and healthspan.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Xiao Tian
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - J Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Kathryn Boit
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Denis Firsanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Elena Rydkina
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Quan Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
47
|
Okeke C, Okonkwo R, Ibeh N, Chukwuma O, Okeke C. Assessment of gender differences in some inflammatory cytokines of tuberculosis patients before and during treatment. Afr Health Sci 2023; 23:336-342. [PMID: 38357187 PMCID: PMC10862618 DOI: 10.4314/ahs.v23i3.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background Gender variation is a feature of many physiological parameters including inflammatory cytokines. Inflammation is an obvious feature of Tuberculosis (TB) infection with changes in pro and anti-inflammatory cytokines. Objective To compare the levels of inflammatory cytokines between male and female TB patients before treatment, after 2-months and after 6-months anti-tuberculosis treatment. Materials and methods A total of 35 males and 25 females TB subjects were enlisted before initiation of therapy and followed up after 2-months and 6 months treatment and samples collected and analysed. Tumour necrosis factor-alpha (TNF-α), Interleukin 10 (IL-10, Interleukin -6 (IL-6), Interleukin-2 (IL-2), transforming growth factor-beta (TGF-β) were assayed by ELISA method. Results Before treatment, the median level of IL-6 (pg/ml) was significantly higher in males compared to female TB patients (P=0.046). While after 2-months treatment, TNF-α (pg/ml) and IL-10 (pg/ml) was significantly higher in males compared with females (P=0.008 and 0.045 respectively). Conversely, the median IL-6 (pg/ml) was significantly higher in female TB patients compared to the males (P=0.042). No significant differences were observed after 6-months treatment. Conclusion Gender differences exist in IL-6 before treatment and in IL-6, TNF-α and IL-10 at two months treatment. Thus, TB treatment contributes differentially to levels of inflammatory cytokines in male and female TB patients.
Collapse
|
48
|
Ebersole J, Kirakodu S, Nguyen L, Gonzalez O. Sex and Age Effects on Healthy Gingival Transcriptomic Patterns. J Dent Res 2023; 102:947-956. [PMID: 37232535 PMCID: PMC10399078 DOI: 10.1177/00220345231166310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Many chronic inflammatory diseases demonstrate demographic associations such as sex, age, and race-ethnicity. Periodontitis has been found to be increased with age and in males. This study used nonhuman primates representing a human-like model for periodontitis and examined the gingival transcriptome stratified on sex and age. Thirty-six Macaca mulatta in 4 age groups-young (<3 y), adolescent (3-7 y), adult (12-15 y), and aged (>17 y)-with a healthy periodontium were used to characterize gene expression in healthy gingival tissues. Gene expression was compared to clinical measures of bleeding on probing (BOP) and probing pocket depth (PPD). The results demonstrated sex differences in number of up- and downregulated genes that increased with age. Female animals generally showed elevated expression of genes related to host immunoinflammatory responses, and males showed increased expression of tissue structural genes. Gene expression correlations with BOP and/or PPD showed minimal overlap between the sexes, while male animals demonstrated substantial overlap in genes that correlated with both BOP and PPD clinical features. A cluster analysis of genes significantly different between sexes showed a clear sex and age discrimination in the young and adolescent animals. In the older groups, the genes clustered predominately by sex, irrespective of age group. A pathway analysis identified that significant gene expression patterns were quite similar in adolescent and adult animals, while the young and aged samples were quite distinct. The results confirmed substantial sex related variations in gingival tissue biology that were affected by age and observed even in adolescent animals. This suggests that "programming" of the gingival tissues related to sex can occur rather early in life and presage variations in future risk for periodontitis.
Collapse
Affiliation(s)
- J.L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, NV, USA
| | - S.S. Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - L.M. Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, NV, USA
| | - O.A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
49
|
Yunis J, Short KR, Yu D. Severe respiratory viral infections: T-cell functions diverging from immunity to inflammation. Trends Microbiol 2023; 31:644-656. [PMID: 36635162 PMCID: PMC9829516 DOI: 10.1016/j.tim.2022.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023]
Abstract
Respiratory viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) trigger distinct clinical outcomes defined by immunity-based viral clearance or disease associated with exaggerated and prolonged inflammation. The important role of T cells in shaping both antiviral immunity and inflammation has revived interest in understanding the host-pathogen interactions that lead to the diverse functions of T cells in respiratory viral infections. Inborn deficiencies and acquired insufficiency in immunity can prolong infection and shift the immune response towards exacerbated inflammation, which results from persistent innate immune activation and bystander T-cell activation that is nonspecific to the pathogen but is often driven by cytokines. This review discusses how virus variants, exposure doses, routes of infection, host genetics, and immune history can modulate the activation and function of T cells, thus influencing clinical outcomes. Knowledge of virus-host interaction can inform strategies to prevent immune dysfunction in respiratory viral infection and help in the treatment of associated diseases.
Collapse
Affiliation(s)
- Joseph Yunis
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
50
|
Knight EL, Graham-Engeland JE, Sliwinski MJ, Engeland CG. Greater Ecologically Assessed Positive Experiences Predict Heightened Sex Hormone Concentrations Across Two Weeks in Older Adults. J Gerontol B Psychol Sci Soc Sci 2023; 78:1007-1017. [PMID: 36715104 PMCID: PMC10214649 DOI: 10.1093/geronb/gbad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES Sex hormones are important components of healthy aging, with beneficial effects on physical and mental health. Positive experiences such as elevated mood, lowered stress, and higher well-being also contribute to health outcomes and, in younger adults, may be associated with elevated sex hormone levels. However, little is known about the association between positive experiences and sex hormones in older adults. METHODS In this study, older men and women (N = 224, 70+ years of age) provided blood samples before and after a 2-week period of ecological momentary assessment (EMA) of positive and negative experiences (assessed based on self-reporting items related to affect, stress, and well-being). Concentrations of a panel of steroid sex hormones and glucocorticoids were determined in blood. RESULTS Higher levels of positive experiences reported in daily life across 2 weeks were associated with increases in free (biologically active) levels of testosterone (B = 0.353 [0.106, 0.601], t(221.3) = 2.801, p = .006), estradiol (B = 0.373 [0.097, 0.649], t(225.1) = 2.645, p = .009), and estrone (B = 0.468 [0.208, 0.727], t(224.3) = 3.535, p < .001) between the start and the end of the 2-week EMA period. DISCUSSION These findings suggest that sex hormones may be a pathway linking positive experiences to health in older adults.
Collapse
Affiliation(s)
- Erik L Knight
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jennifer E Graham-Engeland
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Martin J Sliwinski
- Center for Healthy Aging, The Pennsylvania State University, University Park, Pennsylvania, USA
- Human Development and Family Studies, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Christopher G Engeland
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA
- Ross and Carol Nese College of Nursing, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|