1
|
Hou Y, Lv Z, Hu Q, Zhu A, Niu H. The immune mechanisms of the urinary tract against infections. Front Cell Infect Microbiol 2025; 15:1540149. [PMID: 40308964 PMCID: PMC12040696 DOI: 10.3389/fcimb.2025.1540149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Urinary tract infection (UTI), a common clinical infectious disease, is marked by high incidence and frequent recurrence. Recurrent UTIs can cause severe complications, negatively affecting health. The emergence and spread of drug-resistant bacteria present significant challenges to UTI treatment. This article systematically reviews the key immune mechanisms in the body's defense against UTI pathogens. It discusses various immune response components, such as the urinary tract mucosal epithelium, neutrophils, macrophages, dendritic cells, mast cells, innate lymphocytes, T cells, and B cells, with the aim of providing insights for future UTI research.
Collapse
Affiliation(s)
- Yilin Hou
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuoxuan Lv
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Quanjie Hu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aisong Zhu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongxia Niu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Gleeson D, Bornand R, Brownlee A, Dhaliwal H, Dyson JK, Hails J, Henderson P, Kelly D, Mells GF, Miquel R, Oo YH, Sutton A, Yeoman A, Heneghan MA. British Society of Gastroenterology guidelines for diagnosis and management of autoimmune hepatitis. Gut 2025:gutjnl-2024-333171. [PMID: 40169244 DOI: 10.1136/gutjnl-2024-333171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/22/2024] [Indexed: 04/03/2025]
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease which, if untreated, often leads to cirrhosis, liver failure and death. The last British Society of Gastroenterology (BSG) guideline for the management of AIH was published in 2011. Since then, our understanding of AIH has advanced in many areas. This update to the previous guideline was commissioned by the BSG and developed by a multidisciplinary group. The aim of this guideline is to review and summarise the current evidence, in order to inform and guide diagnosis and management of patients with AIH and its variant syndromes. The main focus is on AIH in adults, but the guidelines should also be relevant to older children and adolescents.
Collapse
Affiliation(s)
- Dermot Gleeson
- Liver Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Science, University of Sheffield, Sheffield, UK
| | | | | | - Harpreet Dhaliwal
- Department of Gastroenterology, Manchester Royal Infirmary, Manchester, UK
| | - Jessica K Dyson
- Liver Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Janeane Hails
- Division of Gastroenterology and Hepatology, Addenbrooke's Hospital, Cambridge, UK
| | - Paul Henderson
- Royal Hospital for Children and Young People, Edinburgh, UK
| | - Deirdre Kelly
- Birmingham Women's & Children's Hospital, Birmingham, UK
- University of Birmingham, Birmingham, UK
| | - George F Mells
- Division of Gastroenterology and Hepatology, Addenbrooke's Hospital, Cambridge, UK
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Rosa Miquel
- Liver Histopathology Laboratory, Institute of Liver Studies, King's College London, London, UK
| | - Ye H Oo
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- NIHR Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
- Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) centre, Birmingham, UK
| | - Anthea Sutton
- Sheffield Centre for Health and Related Research, The University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
3
|
Rafati A, Ramezani R, Esmaeili Gouvarchin Ghaleh H, Bahrami S, Alvanegh AG, Masoudi MR. Calcitriol Treated Mesenchymal Stem Cells Modulated Immune Response in Collagen-Induced Rheumatoid Arthritis in BALB/c Mice. Transplant Proc 2025; 57:355-363. [PMID: 39837674 DOI: 10.1016/j.transproceed.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND AND AIM Rheumatoid arthritis (RA) is a chronic inflammatory disease that primarily involves synovial joints. During the past decade, disease-modifying antirheumatic drugs and biologic agents have been introduced for the treatment of RA. However, they have limitations, including incomplete treatment response, adverse effects requiring drug withdrawal, fall off in efficacy over time, high cost of biologic agents, and refractory cases. Consequently, there is a need to establish safe and effective advanced therapeutic modalities for RA to overcome the shortcomings of current treatments. METHODS MSCs after isolation were exposed to 200 nM calcitriol. Rheumatoid arthritis was induced in BALB/c mice using collagen and Freund's complete adjuvant. One week after immunization, the mice were divided into 3 groups including without treatment, groups treated with untreated and treated MSCs. One week after the last injection, mice sacrificed and samples were taken and the desired evaluations were done. RESULTS Our results revealed that the respiratory burst capacity, neutrophil phagocytosis, and nitric oxide production in the population of splenocytes were higher in the positive control group compared to the treatment groups. Also, the level of production of IL-4, IL-10 and TGF-β cytokines and INF-γ and IL-17 cytokines showed a significant increase and decrease, respectively, compared to the positive control group. CONCLUSION Treatment of MSCs with calcitriol leads to an improvement in regulatory function and inhibitory effects on inflammatory mediators of innate immune cells, particularly splenocytes, in a rheumatoid arthritis model compared to untreated mesenchymal stem cells.
Collapse
Affiliation(s)
- Alireza Rafati
- Department of Medical Genetics, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Reihaneh Ramezani
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hadi Esmaeili Gouvarchin Ghaleh
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shabnam Bahrami
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Reza Masoudi
- School of Medical Sciences, Emam Reza Hospital Sirjan Faculty of Medical Sciences, Sirjan, Iran
| |
Collapse
|
4
|
Jia N, Zhang S, Chen R, He X, Dai C, El-Seedi HR, Chen W, Zhao C. Immunomodulatory functions of algal bioactive compounds. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 39901825 DOI: 10.1080/10408398.2025.2460634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Algae, a crucial constituent of marine systems, serve an indispensable function as primary producers, supporting the marine food web, contributing to carbon sequestration, and providing habitats that sustain biodiversity. This review focuses on the bioactive constituents of algae, including polysaccharides, polyphenols, polypeptides, and terpenoid compounds, and discusses their potential applications in treating immune-related diseases, as well as the mechanisms through which they modulate immune responses. The bioactive substances derived from algae, including polyphenols, bioactive peptides, terpenes, polysaccharides and other compounds, may play a preventive role by modulating allergic responses and reducing the incidence of inflammation and cancer.
Collapse
Affiliation(s)
- Nan Jia
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuangtao Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruoxin Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xinxin He
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Congjie Dai
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou, Fujian
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Hesham R El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Weichao Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Buckner JH. Antigen-specific immunotherapies for autoimmune disease. Nat Rev Rheumatol 2025; 21:88-97. [PMID: 39681709 DOI: 10.1038/s41584-024-01201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Antigen-specific therapies have a long history in the treatment of allergy but have not been successful in autoimmunity. However, in the past 20 years, advances in the definition of the self-antigens that promote autoimmunity and the growing understanding of the mechanisms that maintain tolerance in health but fail in autoimmunity have led to antigen-specific approaches being considered for the treatment of autoimmune diseases. The core goal of each antigen-specific treatment approach is to remove the immune response that promotes autoimmunity whilst sparing protective responses. Approaches to antigen-specific therapy range from targeted deletion of autoreactive lymphocytes to tolerization of autoreactive T cells and active inhibition of autoimmune responses. Technologies such as vaccines, nanoparticles, cell-based therapies and gene editing are being harnessed to achieve these goals. Remaining challenges include the selection of the best antigen to target, modality and timing of administration of these therapies and the disease in which the therapies are used; overcoming these challenges will be vital to move antigen-specific therapies forward. Once established, antigen-specific therapy has the potential to be applied broadly in the area of autoimmunity.
Collapse
Affiliation(s)
- Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| |
Collapse
|
6
|
Li Q, Marcoux G, Hu Y, Rebetz J, Guo L, Semple E, Provan D, Xu S, Hou M, Peng J, Semple JW. Autoimmune effector mechanisms associated with a defective immunosuppressive axis in immune thrombocytopenia (ITP). Autoimmun Rev 2024; 23:103677. [PMID: 39515406 DOI: 10.1016/j.autrev.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated thrombocytopenia and variable phenotype as some patients suffer no bleeding whilst others have bleeding from mild to severe, which may be fatal. This variability probably reflects the disease's complex pathophysiology; a dysregulated hyperreactive immune effector cell response involving the entire adaptive immune system (e.g. B and T cell subsets) that leads to platelet and megakaryocyte (MK) destruction. It appears that these effector responses are due to a breakdown in immune tolerance, and this is characterized by defects in several immunosuppressive cell types. These include defective T regulatory cells (Tregs), B regulatory cells (Bregs) and Myeloid-derived suppressor cells (MDSC), all of which are all intimately associated with antigen presenting cells (APC) such as dendritic cells (DC). The loss of this immunosuppressive axis allows for the activation of unchecked autoreactive T cells and B cells, leading to the development of autoantibodies and cytotoxic T cells (CTL), which can directly destroy platelets in the periphery and inhibit MK platelet production in the bone marrow (BM). This review will focus on the effector cell mechanisms in ITP and highlight the defective immunosuppressive axis that appears responsible for this platelet-specific immune hyperreactivity.
Collapse
Affiliation(s)
- Qizhao Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Geneviève Marcoux
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Yuefen Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Li Guo
- Bloodworks Northwest Research Institute, Seattle, USA; Division of Hematology and Oncology, University of Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | | | - Drew Provan
- Department of Haematology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden; Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Jamrasi P, Tazi M, Zulkifli NA, Bae JH, Song W. The potential role of exercise in mitigating fertility toxicity associated with immune checkpoint inhibitors (ICIs) in cancer patients. J Physiol Sci 2024; 74:57. [PMID: 39616333 PMCID: PMC11607910 DOI: 10.1186/s12576-024-00950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Over the last decade, therapeutic advances in cancer immunotherapy have rapidly progressed, leading to an expansion of clinical trials and the development of novel immune checkpoint inhibitors (ICIs) and combination treatments. While ICIs offer substantial clinical benefits, they are also associated with various side effects, notably concerning endocrine function and potential gonadal damage following the initiation of immunotherapy. Exercise has demonstrated promise in enhancing treatment efficacy, including symptom reduction in cancer patients. Research has also established the benefits of exercise in managing fertility and reproductive health. However, there is limited data on the effectiveness of exercise in mitigating fertility-related side effects specifically in patients undergoing ICIs therapy. Given that a significant number of cancer patients are of reproductive age, it is crucial to address potential sexual side effects and offer fertility preservation options. Ensuring that patients are well-informed and supported in their reproductive health decisions is vital. This review reports the prevalence of immune-related adverse effects linked to fertility in cancer patients undergoing ICIs, explores the potential mechanisms by which ICIs may impact reproductive health, and emphasizes the role of exercise in mitigating these adverse effects.
Collapse
Affiliation(s)
- Parivash Jamrasi
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Mia Tazi
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nur Afiqah Zulkifli
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Jun Hyun Bae
- Institute of Sport Science, Seoul National University, Seoul, Republic of Korea
- Institute On Aging, Seoul National University, Seoul, Republic of Korea
| | - Wook Song
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea.
- Institute of Sport Science, Seoul National University, Seoul, Republic of Korea.
- Institute On Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Chen H, Murphy RF. CytoSpatio: Learning cell type spatial relationships using multirange, multitype point process models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621408. [PMID: 39553984 PMCID: PMC11565948 DOI: 10.1101/2024.10.31.621408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Recent advances in multiplexed fluorescence imaging have provided new opportunities for deciphering the complex spatial relationships among various cell types across diverse tissues. We introduce CytoSpatio, open-source software that constructs generative, multirange, and multitype point process models that capture interactions among multiple cell types at various distances simultaneously. On analyzing five cell types across five tissues, our software showed consistent spatial relationships within the same tissue type, with certain cell types like proliferating T cells consistently clustering across tissue types. It also revealed that the attraction-repulsion relationships between cell types like B cells and CD4-positive T cells vary with tissue type. CytoSpatio can also generate synthetic tissue structures that preserve the spatial relationships seen in training images, a capability not provided by previous descriptive, motif-based approaches. This potentially allows spatially realistic simulations of how cell relationships affect tissue biochemistry.
Collapse
Affiliation(s)
- Haoran Chen
- Computational Biology Department, School of Computer Science, Carnegie Mellon University
| | - Robert F. Murphy
- Computational Biology Department, School of Computer Science, Carnegie Mellon University
| |
Collapse
|
9
|
Liu S, Zhang W, Tian S, Zhang Y, Yin Z, Huang G, Zhang H, Li F. B cell-intrinsic IFN-γ promotes excessive CD11c + age-associated B cell differentiation and compromised germinal center selection in lupus mice. Cell Immunol 2024; 405-406:104883. [PMID: 39503082 DOI: 10.1016/j.cellimm.2024.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 12/02/2024]
Abstract
CD11c+ age-associated B cells (ABCs) have emerged as a key component in protective and autoreactive B cell responses. Lupus is an autoimmune disorder linked to reduced efficacy of vaccines and increased susceptibility to infections. Previously, we reported that excessive CD11c+ ABCs not only significantly contribute to autoantibody production but also promote aberrant T cell activation and compromised affinity-based germinal center selection in response to immunization in lupus mice. Yet, the regulation of CD11c+ ABC differentiation is not fully understood. In this study, we show that B cell-intrinsic IFN-γ is required for excessive CD11c+ ABC differentiation in lupus mice. B cell-intrinsic IFN-γ is mainly produced by CD11c+ ABCs. IFN-γ-deficiency leads to decreased expression of ABC characteristic genes. We further show that ablating IFN-γ can normalize T cell overactivation and rescue antigen-specific GC responses in lupus mice. Our study offers insight into the crucial role of B cell-intrinsic IFN-γ in promoting excessive CD11c+ ABC differentiation, which compromises affinity-based germinal center selection and affinity maturation in lupus, providing a potential strategy to normalize vaccine responses in lupus.
Collapse
Affiliation(s)
- Shujun Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Wenqian Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Shihao Tian
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Yan Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Gonghua Huang
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Huihui Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China.
| | - Fubin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China.
| |
Collapse
|
10
|
Sengupta S, Sen M. Requirement of a Wnt5A-microbiota axis in the maintenance of gut B-cell repertoire and protection from infection. mSphere 2024; 9:e0020424. [PMID: 39140737 PMCID: PMC11423572 DOI: 10.1128/msphere.00204-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
We investigated the influence of a Wnt5A-gut microbiota axis on gut B-cell repertoire and protection from infection, having previously demonstrated that Wnt5A in association with gut commensals helps shape gut T-cell repertoire. Accordingly, Wnt5A heterozygous mice, which express less than wild-type level of Wnt5A, and their isolated Peyer's patches (PPs) were studied in comparison with the wild-type counterparts. The percentages of IgM- and IgA-expressing B cells were quite similar in the PP of both sets of mice. However, the PP of the Wnt5A heterozygous mice harbored significantly higher than wild-type levels of microbiota-bound B cell-secreted IgA, indicating the prevalence of a microbial population therein, which is significantly altered from that of wild-type. Additionally, the percentage of PP IgG1-expressing B cells was appreciably depressed in the Wnt5A heterozygous mice in comparison to wild-type. Wnt5A heterozygous mice, furthermore, exhibited notably higher than the wild-type levels of morbidity and mortality following infection with Salmonella typhimurium, a common gut pathogen. Differences in morbidity/mortality correlated with considerable disparity between the PP-B-cell repertoires of the Salmonella-infected Wnt5A heterozygous and wild-type mice, in which the percentage of IgG1-expressing B1b cells in the PP of heterozygous mice remains significantly low as compared to wild-type. Overall, these results suggest that a gut Wnt5A-microbiota axis is intrinsically associated with the maintenance of gut B-cell repertoire and protection from infection.IMPORTANCEAlthough it is well accepted that B cells and microbiota are required for protection from infection and preservation of gut health, a lot remains unknown about how the optimum B-cell repertoire and microbiota are maintained in the gut. The importance of this study lies in the fact that it unveils a potential role of a growth factor termed Wnt5A in the safeguarding of the gut B-cell population and microbiota, thereby protecting the gut from the deleterious effect of infections by common pathogens. Documentation of the involvement of a Wnt5A-microbiota axis in the shaping of a protective gut B-cell repertoire, furthermore, opens up new avenues of investigations for understanding gut disorders related to microbial dysbiosis and B-cell homeostasis that, till date, are considered incurable.
Collapse
Affiliation(s)
- Soham Sengupta
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Malini Sen
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Bio Bharati Life Science Pvt. Ltd., Kolkata, West Bengal, India
| |
Collapse
|
11
|
Dabravolski SA, Churov AV, Starodubtseva IA, Beloyartsev DF, Kovyanova TI, Sukhorukov VN, Orekhov NA. Vitamin D in Primary Sjogren's Syndrome (pSS) and the Identification of Novel Single-Nucleotide Polymorphisms Involved in the Development of pSS-Associated Diseases. Diagnostics (Basel) 2024; 14:2035. [PMID: 39335717 PMCID: PMC11431467 DOI: 10.3390/diagnostics14182035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder characterised by lymphocytic infiltration of the exocrine glands, which leads to dryness of the eyes and mouth; systemic manifestations such as arthritis, vasculitis, and interstitial lung disease; and increased risks of lymphoma and cardiovascular diseases. SS predominantly affects women, with a strong genetic component linked to sex chromosomes. Genome-wide association studies (GWASs) have identified numerous single-nucleotide polymorphisms (SNPs) associated with primary SS (pSS), revealing insights into its pathogenesis. The adaptive and innate immune systems are crucial to SS's development, with viral infections implicated as environmental triggers that exacerbate autoimmune responses in genetically susceptible individuals. Moreover, recent research has highlighted the role of vitamin D in modulating immune responses in pSS patients, suggesting its potential therapeutic implications. In this review, we focus on the recently identified SNPs in genes like OAS1, NUDT15, LINC00243, TNXB, and THBS1, which have been associated with increased risks of developing more severe symptoms and other diseases such as fatigue, lymphoma, neuromyelitis optica spectrum disorder (NMOSD), dry eye syndrome (DES), and adverse drug reactions. Future studies should focus on larger, multi-ethnic cohorts with standardised protocols to validate findings and identify new associations. Integrating genetic testing into clinical practise holds promise for improving SS management and treatment strategies, enabling personalised interventions based on comprehensive genetic profiles. By focusing on specific SNPs, vitamin D, and their implications, future research can lead to more effective and personalised approaches for managing pSS and its complications.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Alexey V. Churov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, 16 1st Leonova Street, 129226 Moscow, Russia
| | - Irina A. Starodubtseva
- Department of Polyclinic Therapy, NN Burdenko Voronezh State Medical University, 10 Studencheskaya Street, 394036 Voronezh, Russia;
| | - Dmitry F. Beloyartsev
- Vascular Surgery Department, A. V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, 117997 Moscow, Russia;
| | - Tatiana I. Kovyanova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia
| | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
| | - Nikolay A. Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
| |
Collapse
|
12
|
Yogeshwar SM, Muñiz-Castrillo S, Sabater L, Peris-Sempere V, Mallajosyula V, Luo G, Yan H, Yu E, Zhang J, Lin L, Fagundes Bueno F, Ji X, Picard G, Rogemond V, Pinto AL, Heidbreder A, Höftberger R, Graus F, Dalmau J, Santamaria J, Iranzo A, Schreiner B, Giannoccaro MP, Liguori R, Shimohata T, Kimura A, Ono Y, Binks S, Mariotto S, Dinoto A, Bonello M, Hartmann CJ, Tambasco N, Nigro P, Prüss H, McKeon A, Davis MM, Irani SR, Honnorat J, Gaig C, Finke C, Mignot E. HLA-DQB1*05 subtypes and not DRB1*10:01 mediates risk in anti-IgLON5 disease. Brain 2024; 147:2579-2592. [PMID: 38425314 PMCID: PMC11224611 DOI: 10.1093/brain/awae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/09/2023] [Accepted: 01/21/2024] [Indexed: 03/02/2024] Open
Abstract
Anti-IgLON5 disease is a rare and likely underdiagnosed subtype of autoimmune encephalitis. The disease displays a heterogeneous phenotype that includes sleep, movement and bulbar-associated dysfunction. The presence of IgLON5-antibodies in CSF/serum, together with a strong association with HLA-DRB1*10:01∼DQB1*05:01, supports an autoimmune basis. In this study, a multicentric human leukocyte antigen (HLA) study of 87 anti-IgLON5 patients revealed a stronger association with HLA-DQ than HLA-DR. Specifically, we identified a predisposing rank-wise association with HLA-DQA1*01:05∼DQB1*05:01, HLA-DQA1*01:01∼DQB1*05:01 and HLA-DQA1*01:04∼DQB1*05:03 in 85% of patients. HLA sequences and binding cores for these three DQ heterodimers were similar, unlike those of linked DRB1 alleles, supporting a causal link to HLA-DQ. This association was further reflected in an increasingly later age of onset across each genotype group, with a delay of up to 11 years, while HLA-DQ-dosage dependent effects were also suggested by reduced risk in the presence of non-predisposing DQ1 alleles. The functional relevance of the observed HLA-DQ molecules was studied with competition binding assays. These proof-of-concept experiments revealed preferential binding of IgLON5 in a post-translationally modified, but not native, state to all three risk-associated HLA-DQ receptors. Further, a deamidated peptide from the Ig2-domain of IgLON5 activated T cells in two patients, compared with one control carrying HLA-DQA1*01:05∼DQB1*05:01. Taken together, these data support a HLA-DQ-mediated T-cell response to IgLON5 as a potentially key step in the initiation of autoimmunity in this disease.
Collapse
Affiliation(s)
- Selina M Yogeshwar
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sergio Muñiz-Castrillo
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lidia Sabater
- Neuroimmunology Program, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Caixa Research Institute, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Vicente Peris-Sempere
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guo Luo
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Han Yan
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric Yu
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jing Zhang
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ling Lin
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Flavia Fagundes Bueno
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xuhuai Ji
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Géraldine Picard
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, 69372 Lyon, France
| | - Véronique Rogemond
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, 69372 Lyon, France
| | - Anne Laurie Pinto
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, 69372 Lyon, France
| | - Anna Heidbreder
- Kepler University Hospital, Department of Neurology, Johannes Kepler University, 4020 Linz, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Francesc Graus
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Josep Dalmau
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Spanish National Network for Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Joan Santamaria
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Alex Iranzo
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Bettina Schreiner
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40100 Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40100 Bologna, Italy
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, 501-1194 Gifu, Japan
| | - Akio Kimura
- Department of Neurology, Gifu University Graduate School of Medicine, 501-1194 Gifu, Japan
| | - Yoya Ono
- Department of Neurology, Gifu University Graduate School of Medicine, 501-1194 Gifu, Japan
| | - Sophie Binks
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Department of Neurology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sara Mariotto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Alessandro Dinoto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Michael Bonello
- Department of Neurology, The Walton Centre NHS Foundation Trust, L9 7LJ, Liverpool, UK
| | - Christian J Hartmann
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nicola Tambasco
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, 06156 Perugia, Italy
| | - Pasquale Nigro
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, 06156 Perugia, Italy
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
| | - Andrew McKeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarosh R Irani
- Department of Neurology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, 69372 Lyon, France
| | - Carles Gaig
- Neurology Service, Hospital Clínic of Barcelona, Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Carsten Finke
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117, Berlin, Germany
- Berlin Center for Advanced Neuroimaging, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Emmanuel Mignot
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Shah K, Leandro M, Cragg M, Kollert F, Schuler F, Klein C, Reddy V. Disrupting B and T-cell collaboration in autoimmune disease: T-cell engagers versus CAR T-cell therapy? Clin Exp Immunol 2024; 217:15-30. [PMID: 38642912 PMCID: PMC11188544 DOI: 10.1093/cei/uxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024] Open
Abstract
B and T cells collaborate to drive autoimmune disease (AID). Historically, B- and T-cell (B-T cell) co-interaction was targeted through different pathways such as alemtuzumab, abatacept, and dapirolizumab with variable impact on B-cell depletion (BCD), whereas the majority of patients with AID including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and organ transplantation benefit from targeted BCD with anti-CD20 monoclonal antibodies such as rituximab, ocrelizumab, or ofatumumab. Refractory AID is a significant problem for patients with incomplete BCD with a greater frequency of IgD-CD27+ switched memory B cells, CD19+CD20- B cells, and plasma cells that are not directly targeted by anti-CD20 antibodies, whereas most lymphoid tissue plasma cells express CD19. Furthermore, B-T-cell collaboration is predominant in lymphoid tissues and at sites of inflammation such as the joint and kidney, where BCD may be inefficient, due to limited access to key effector cells. In the treatment of cancer, chimeric antigen receptor (CAR) T-cell therapy and T-cell engagers (TCE) that recruit T cells to induce B-cell cytotoxicity have delivered promising results for anti-CD19 CAR T-cell therapies, the CD19 TCE blinatumomab and CD20 TCE such as mosunetuzumab, glofitamab, or epcoritamab. Limited evidence suggests that anti-CD19 CAR T-cell therapy may be effective in managing refractory AID whereas we await evaluation of TCE for use in non-oncological indications. Therefore, here, we discuss the potential mechanistic advantages of novel therapies that rely on T cells as effector cells to disrupt B-T-cell collaboration toward overcoming rituximab-resistant AID.
Collapse
Affiliation(s)
| | - Maria Leandro
- Centre for Rheumatology, UCLH, London,UK
- Department of Rheumatology, University College London Hospital, London, UK
| | - Mark Cragg
- University of Southampton Faculty of Medicine, Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Florian Kollert
- Roche Innovation Center Basel, Early Development Immunology, Infectious Diseases & Ophthalmology, Basel, Switzerland
| | - Franz Schuler
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Cancer Immunotherapy Discovery, Oncology Discovery & Translational Area, Schlieren, Switzerland
| | - Venkat Reddy
- Centre for Rheumatology, UCLH, London,UK
- Department of Rheumatology, University College London Hospital, London, UK
| |
Collapse
|
14
|
Engler-Chiurazzi E. B cells and the stressed brain: emerging evidence of neuroimmune interactions in the context of psychosocial stress and major depression. Front Cell Neurosci 2024; 18:1360242. [PMID: 38650657 PMCID: PMC11033448 DOI: 10.3389/fncel.2024.1360242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The immune system has emerged as a key regulator of central nervous system (CNS) function in health and in disease. Importantly, improved understanding of immune contributions to mood disorders has provided novel opportunities for the treatment of debilitating stress-related mental health conditions such as major depressive disorder (MDD). Yet, the impact to, and involvement of, B lymphocytes in the response to stress is not well-understood, leaving a fundamental gap in our knowledge underlying the immune theory of depression. Several emerging clinical and preclinical findings highlight pronounced consequences for B cells in stress and MDD and may indicate key roles for B cells in modulating mood. This review will describe the clinical and foundational observations implicating B cell-psychological stress interactions, discuss potential mechanisms by which B cells may impact brain function in the context of stress and mood disorders, describe research tools that support the investigation of their neurobiological impacts, and highlight remaining research questions. The goal here is for this discussion to illuminate both the scope and limitations of our current understanding regarding the role of B cells, stress, mood, and depression.
Collapse
Affiliation(s)
- Elizabeth Engler-Chiurazzi
- Department of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
15
|
Huynh NT, Ho TNT, Pham YND, Dang LH, Pham SH, Dang TT. Immunosuppressive Cyclotides: A Promising Approach for Treating Autoimmune Diseases. Protein J 2024; 43:159-170. [PMID: 38485875 DOI: 10.1007/s10930-024-10188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
The immune system maintains constant surveillance to prevent the infiltration of both endogenous and exogenous threats into host organisms. The process is regulated by effector immune cells that combat external pathogens and regulatory immune cells that inhibit excessive internal body inflammation, ultimately establishing a state of homeostasis within the body. Disruption to this process could lead to autoimmunity, which is often associated with the malfunction of both T cells and B cells with T cells playing a more major role. A number of therapeutic mediators for autoimmune diseases are available, from conventional disease-modifying drugs to biologic agents and small molecule inhibitors. Recently, ribosomally synthesized peptides, specifically cyclotides from plants are currently attracting more attention as potential autoimmune disease therapeutics due to their decreased toxicity compared to small molecules inhibitors as well as their remarkable stability against a number of factors. This review provides a concise overview of various cyclotides exhibiting immunomodulatory properties and their potential as therapeutic interventions for autoimmune diseases.
Collapse
Affiliation(s)
- Nguyen Thai Huynh
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Vietnam
| | - Thao N T Ho
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Yen N D Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Le Hang Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam.
| |
Collapse
|
16
|
Aterido A, López-Lasanta M, Blanco F, Juan-Mas A, García-Vivar ML, Erra A, Pérez-García C, Sánchez-Fernández SÁ, Sanmartí R, Fernández-Nebro A, Alperi-López M, Tornero J, Ortiz AM, Fernández-Cid CM, Palau N, Pan W, Byrne-Steele M, Starenki D, Weber D, Rodriguez-Nunez I, Han J, Myers RM, Marsal S, Julià A. Seven-chain adaptive immune receptor repertoire analysis in rheumatoid arthritis reveals novel features associated with disease and clinically relevant phenotypes. Genome Biol 2024; 25:68. [PMID: 38468286 PMCID: PMC10926600 DOI: 10.1186/s13059-024-03210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND In rheumatoid arthritis (RA), the activation of T and B cell clones specific for self-antigens leads to the chronic inflammation of the synovium. Here, we perform an in-depth quantitative analysis of the seven chains that comprise the adaptive immune receptor repertoire (AIRR) in RA. RESULTS In comparison to controls, we show that RA patients have multiple and strong differences in the B cell receptor repertoire including reduced diversity as well as altered isotype, chain, and segment frequencies. We demonstrate that therapeutic tumor necrosis factor inhibition partially restores this alteration but find a profound difference in the underlying biochemical reactivities between responders and non-responders. Combining the AIRR with HLA typing, we identify the specific T cell receptor repertoire associated with disease risk variants. Integrating these features, we further develop a molecular classifier that shows the utility of the AIRR as a diagnostic tool. CONCLUSIONS Simultaneous sequencing of the seven chains of the human AIRR reveals novel features associated with the disease and clinically relevant phenotypes, including response to therapy. These findings show the unique potential of AIRR to address precision medicine in immune-related diseases.
Collapse
Affiliation(s)
- Adrià Aterido
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
| | - María López-Lasanta
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
| | - Francisco Blanco
- Rheumatology Department, Hospital Juan Canalejo, A Coruña, Spain
| | | | | | - Alba Erra
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
- Rheumatology Department, Hospital Sant Rafael, Barcelona, Spain
| | | | | | - Raimon Sanmartí
- Rheumatology Department, Hospital Clínic de Barcelona and IDIBAPS, Barcelona, Spain
| | | | | | - Jesús Tornero
- Rheumatology Department, Hospital Universitario Guadalajara, Guadalajara, Spain
| | - Ana María Ortiz
- Rheumatology Department, Hospital Universitario La Princesa, IIS La Princesa, Madrid, Spain
| | | | - Núria Palau
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
| | | | | | | | | | | | - Jian Han
- iRepertoire Inc, Huntsville, AL, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sara Marsal
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
| | - Antonio Julià
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain.
| |
Collapse
|
17
|
Yan T, Yu L, Zhang J, Chen Y, Fu Y, Tang J, Liao D. Achilles' Heel of currently approved immune checkpoint inhibitors: immune related adverse events. Front Immunol 2024; 15:1292122. [PMID: 38410506 PMCID: PMC10895024 DOI: 10.3389/fimmu.2024.1292122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024] Open
Abstract
Immunotherapy has revolutionized the cancer treatment landscape by opening up novel avenues for intervention. As the use of immune checkpoint inhibitors (ICIs) has exponentially increased, so have immune-related adverse events (irAEs). The mechanism of irAEs may involve the direct damage caused by monoclonal antibodies and a sequence of immune responses triggered by T cell activation. Common side effects include dermatologic toxicity, endocrine toxicity, gastrointestinal toxicity, and hepatic toxicity. While relatively rare, neurotoxicity, cardiotoxicity, and pulmonary toxicity can be fatal. These toxicities pose a clinical dilemma regarding treatment discontinuation since they can result in severe complications and necessitate frequent hospitalization. Vigilant monitoring of irAEs is vital in clinical practice, and the principal therapeutic strategy entails the administration of oral or intravenous glucocorticoids (GSCs). It may be necessary to temporarily or permanently discontinue the use of ICIs in severe cases. Given that irAEs can impact multiple organs and require diverse treatment approaches, the involvement of a multidisciplinary team of experts is imperative. This review aims to comprehensively examine the pathogenesis, clinical manifestations, incidence, and treatment options for various irAEs.
Collapse
Affiliation(s)
- Ting Yan
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lun Yu
- Department of Positron Emission Tomography–Computed Tomography (PET-CT) Center, Chenzhou No. 1 People’s Hospital, Chenzhou, China
| | - Jiwen Zhang
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Yun Chen
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yilan Fu
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingyi Tang
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
18
|
Küççüktürk S, Karaselek MA, Duran T, Reisli İ. Evaluation of transcription factors and cytokine expressions of T-cell subsets in CD19 deficiency and their possible relationship with autoimmune disease. APMIS 2024; 132:122-129. [PMID: 38095318 DOI: 10.1111/apm.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 01/09/2024]
Abstract
CD19 deficiency is a rare, predominantly antibody deficiency, and there are few studies showing that it can be seen in autoimmune diseases. The aim of study was evaluated to transcription factor and cytokine expressions of helper T (Th)-cell subsets in CD19 deficiency and the possible mechanism role of this factor expression in autoimmune disease. Transcription factor and cytokine expressions of Th1, Th2, Th17, and regulatory T (Treg) cells were investigated by real-time polymerase chain reaction (qPCR) method. In the study, in the patient/control comparison, transcription factor and cytokine expressions of Th1 (T-bet, STAT1, and STAT4) were found to be significantly downregulated, but IFN-γ was significantly upregulated in patients. Th2 factor GATA3, STAT6, IL-4, and IL-5 were significantly downregulated. For Th17, RORγt was downregulated while IL-22 was upregulated. In the heterozygous/control comparison, there was no significant change in gene expressions other than IL-5. T-bet, STAT1, GATA3, IL-4, RORγt, FoxP3, and TGF-β were significantly downregulated in the patient/heterozygous comparison. It was revealed for the first time that the expression of the transcription factors and cytokines in CD19 deficiency. These findings might be showing the predominance of Th1 factors and suppressed Treg factors which could be related with autoimmunity in CD19 deficiency.
Collapse
Affiliation(s)
- Serkan Küççüktürk
- Department of Medical Biology, Medicine Faculty, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Mehmet Ali Karaselek
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Tuğçe Duran
- Department of Medical Genetic, Medicine Faculty, KTO Karatay University, Konya, Turkey
| | - İsmail Reisli
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
19
|
Padovani CM, Yin K. Immunosuppression in Sepsis: Biomarkers and Specialized Pro-Resolving Mediators. Biomedicines 2024; 12:175. [PMID: 38255280 PMCID: PMC10813323 DOI: 10.3390/biomedicines12010175] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Severe infection can lead to sepsis. In sepsis, the host mounts an inappropriately large inflammatory response in an attempt to clear the invading pathogen. This sustained high level of inflammation may cause tissue injury and organ failure. Later in sepsis, a paradoxical immunosuppression occurs, where the host is unable to clear the preexisting infection and is susceptible to secondary infections. A major issue with sepsis treatment is that it is difficult for physicians to ascertain which stage of sepsis the patient is in. Sepsis treatment will depend on the patient's immune status across the spectrum of the disease, and these immune statuses are nearly polar opposites in the early and late stages of sepsis. Furthermore, there is no approved treatment that can resolve inflammation without contributing to immunosuppression within the host. Here, we review the major mechanisms of sepsis-induced immunosuppression and the biomarkers of the immunosuppressive phase of sepsis. We focused on reviewing three main mechanisms of immunosuppression in sepsis. These are lymphocyte apoptosis, monocyte/macrophage exhaustion, and increased migration of myeloid-derived suppressor cells (MDSCs). The biomarkers of septic immunosuppression that we discuss include increased MDSC production/migration and IL-10 levels, decreased lymphocyte counts and HLA-DR expression, and increased GPR18 expression. We also review the literature on the use of specialized pro-resolving mediators (SPMs) in different models of infection and/or sepsis, as these compounds have been reported to resolve inflammation without being immunosuppressive. To obtain the necessary information, we searched the PubMed database using the keywords sepsis, lymphocyte apoptosis, macrophage exhaustion, MDSCs, biomarkers, and SPMs.
Collapse
Affiliation(s)
- Cristina M. Padovani
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Life Sciences of Rowan University, Stratford, NJ 08084, USA;
| | | |
Collapse
|
20
|
Chen K, Jiang M, Liu J, Huang D, Yang YR. DNA nanostructures as biomolecular scaffolds for antigen display. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1921. [PMID: 37562787 DOI: 10.1002/wnan.1921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
Nanoparticle-based vaccines offer a multivalent approach for antigen display, efficiently activating T and B cells in the lymph nodes. Among various nanoparticle design strategies, DNA nanotechnology offers an innovative alternative platform, featuring high modularity, spatial addressing, nanoscale regulation, high functional group density, and lower self-antigenicity. This review delves into the potential of DNA nanostructures as biomolecular scaffolds for antigen display, addressing: (1) immunological mechanisms behind nanovaccines and commonly used nanoparticles in their design, (2) techniques for characterizing protein NP-antigen complexes, (3) advancements in DNA nanotechnology and DNA-protein assembly approach, (4) strategies for precise antigen presentation on DNA scaffolds, and (5) current applications and future possibilities of DNA scaffolds in antigen display. This analysis aims to highlight the transformative potential of DNA nanoscaffolds in immunology and vaccinology. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Kun Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ming Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Jin Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Deli Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuhe R Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Zheng Y, Zhang Q, Zhou X, Yao L, Zhu Q, Fu Z. Altered levels of cytokine, T- and B-lymphocytes, and PD-1 expression rates in drug-naïve schizophrenia patients with acute phase. Sci Rep 2023; 13:21711. [PMID: 38066312 PMCID: PMC10709554 DOI: 10.1038/s41598-023-49206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Many studies have investigated the changes of immune cells and proinflammatory cytokines in patients with acute schizophrenia, but few studies have investigated the functional phenotypes of immune cells and the expression rate of programmed cell death protein 1 (PD-1)/ programmed cell death-Ligand 1 (PD-L1). The aim of this study was to investigate the extent of immune cells activation, PD-1/PD-L1 expressions, and altered cytokine levels in drug-naïve schizophrenia patients with acute-phase. 23 drug-naïve schizophrenia patients in acute-phase and 23 healthy individuals were enrolled in this study as experimental and control groups, separately. Socio-demographic information including gender, age, duration of illness, and smoking status was collected for each subject. Beckman DXFLEX triple laser thirteen-color flow cytometer and self-contained software CytoFLEX flow cytometric analysis software were used to detect the expressions of PD-1/PD-L1 on CD4+/CD8+ T lymphocytes, B lymphocytes, monocytes and NK cells. BD Bioscience was used to examine the levels of cytokines including interferon (IFN)-γ, tumor necrosis factor (TNF)-α, Interleukin (IL)-2, IL-4, IL-6, and IL-10. Drug-naïve schizophrenia patients in acute-phase had higher levels of peripheral blood CD4+ T lymphocytes and B lymphocytes, higher PD-1 expression in B lymphocytes, and lower levels of CD8+ T lymphocytes. In addition, IL-6 levels of peripheral blood were higher in schizophrenia patients (all P < 0.05). Significant immune stress was present in schizophrenia patients with acute-phase.
Collapse
Affiliation(s)
- Yali Zheng
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Qi Zhang
- Hangzhou Normal University, Hangzhou, China
| | - Xianqin Zhou
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Linjuan Yao
- Hangzhou Di'an Medical Laboratory Center Co., Ltd, Hangzhou, China
| | | | | |
Collapse
|
22
|
Janakiraman M, Leliavski A, Varadarajulu J, Jenne D, Krishnamoorthy G. An engineered Fc fusion protein that targets antigen-specific T cells and autoantibodies mitigates autoimmune disease. J Neuroinflammation 2023; 20:291. [PMID: 38057803 DOI: 10.1186/s12974-023-02974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Current effective therapies for autoimmune diseases rely on systemic immunomodulation that broadly affects all T and/or B cell responses. An ideal therapeutic approach would combine autoantigen-specific targeting of both T and B cell effector functions, including efficient removal of pathogenic autoantibodies. Albeit multiple strategies to induce T cell tolerance in an autoantigen-specific manner have been proposed, therapeutic removal of autoantibodies remains a significant challenge. Here, we devised an approach to target both autoantigen-specific T cells and autoantibodies by producing a central nervous system (CNS) autoantigen myelin oligodendrocyte glycoprotein (MOG)-Fc fusion protein. We demonstrate that MOG-Fc fusion protein has significantly higher bioavailability than monomeric MOG and is efficient in clearing anti-MOG autoantibodies from circulation. We also show that MOG-Fc promotes T cell tolerance and protects mice from MOG-induced autoimmune encephalomyelitis. This multipronged targeting approach may be therapeutically advantageous in the treatment of autoimmunity.
Collapse
Affiliation(s)
- Mathangi Janakiraman
- Research Group Neuroinflammation and Mucosal Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexei Leliavski
- Research Group Neuroinflammation and Mucosal Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jeeva Varadarajulu
- Research Group Neuroinflammation and Mucosal Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Dieter Jenne
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Gurumoorthy Krishnamoorthy
- Research Group Neuroinflammation and Mucosal Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
23
|
Odler B, Tieu J, Artinger K, Chen-Xu M, Arnaud L, Kitching RA, Terrier B, Thiel J, Cid MC, Rosenkranz AR, Kronbichler A, Jayne DRW. The plethora of immunomodulatory drugs: opportunities for immune-mediated kidney diseases. Nephrol Dial Transplant 2023; 38:ii19-ii28. [PMID: 37816674 DOI: 10.1093/ndt/gfad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 10/12/2023] Open
Abstract
In recent decades, insights into the molecular pathways involved in disease have revolutionized the treatment of autoimmune diseases. A plethora of targeted therapies have been identified and are at varying stages of clinical development in renal autoimmunity. Some of these agents, such as rituximab or avacopan, have been approved for the treatment of immune-mediated kidney disease, but kidney disease lags behind more common autoimmune disorders in new drug development. Evidence is accumulating as to the importance of adaptive immunity, including abnormalities in T-cell activation and signaling, and aberrant B-cell function. Furthermore, innate immunity, particularly the complement and myeloid systems, as well as pathologic responses in tissue repair and fibrosis, play a key role in disease. Collectively, these mechanistic studies in innate and adaptive immunity have provided new insights into mechanisms of glomerular injury in immune-mediated kidney diseases. In addition, inflammatory pathways common to several autoimmune conditions exist, suggesting that the repurposing of some existing drugs for the treatment of immune-mediated kidney diseases is a logical strategy. This new understanding challenges the clinical investigator to translate new knowledge into novel therapies leading to better disease outcomes. This review highlights promising immunomodulatory therapies tested for immune-mediated kidney diseases as a primary indication, details current clinical trials and discusses pathways that could be targeted in the future.
Collapse
Affiliation(s)
- Balazs Odler
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Johanna Tieu
- Faculty of Health and Medical Sciences, University of Adelaide; Adelaide, Australia
- Rheumatology Unit, The Queen Elizabeth Hospital, Adelaide, Australia
- Rheumatology Unit, Lyell McEwin Hospital, Adelaide, Australia
| | - Katharina Artinger
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Chen-Xu
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Laurent Arnaud
- National Reference Center for Rare Auto-immune and Systemic Diseases Est Sud-Est (RESO), Strasbourg, France
| | - Richard A Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
- Departments of Nephrology and Paediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Benjamin Terrier
- Department of Internal Medicine, National Reference Center for Autoimmune Diseases, Hôpital Cochin, Assistance Publique Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Jens Thiel
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Maria C Cid
- Department of Autoimmune Diseases, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Alexander R Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Kronbichler
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - David R W Jayne
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Bechara R, Vagner S, Mariette X. Post-transcriptional checkpoints in autoimmunity. Nat Rev Rheumatol 2023; 19:486-502. [PMID: 37311941 DOI: 10.1038/s41584-023-00980-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Post-transcriptional regulation is a fundamental process in gene expression that has a role in diverse cellular processes, including immune responses. A core concept underlying post-transcriptional regulation is that protein abundance is not solely determined by transcript abundance. Indeed, transcription and translation are not directly coupled, and intervening steps occur between these processes, including the regulation of mRNA stability, localization and alternative splicing, which can impact protein abundance. These steps are controlled by various post-transcription factors such as RNA-binding proteins and non-coding RNAs, including microRNAs, and aberrant post-transcriptional regulation has been implicated in various pathological conditions. Indeed, studies on the pathogenesis of autoimmune and inflammatory diseases have identified various post-transcription factors as important regulators of immune cell-mediated and target effector cell-mediated pathological conditions. This Review summarizes current knowledge regarding the roles of post-transcriptional checkpoints in autoimmunity, as evidenced by studies in both haematopoietic and non-haematopoietic cells, and discusses the relevance of these findings for developing new anti-inflammatory therapies.
Collapse
Affiliation(s)
- Rami Bechara
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France.
| | - Stephan Vagner
- Institut Curie, CNRS UMR3348, INSERM U1278, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Xavier Mariette
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Bicêtre, Department of Rheumatology, Le Kremlin Bicêtre, France
| |
Collapse
|
25
|
Zhang H, AbdulJabbar K, Moore DA, Akarca A, Enfield KS, Jamal-Hanjani M, Raza SEA, Veeriah S, Salgado R, McGranahan N, Le Quesne J, Swanton C, Marafioti T, Yuan Y. Spatial Positioning of Immune Hotspots Reflects the Interplay between B and T Cells in Lung Squamous Cell Carcinoma. Cancer Res 2023; 83:1410-1425. [PMID: 36853169 PMCID: PMC10152235 DOI: 10.1158/0008-5472.can-22-2589] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/05/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
Beyond tertiary lymphoid structures, a significant number of immune-rich areas without germinal center-like structures are observed in non-small cell lung cancer. Here, we integrated transcriptomic data and digital pathology images to study the prognostic implications, spatial locations, and constitution of immune rich areas (immune hotspots) in a cohort of 935 patients with lung cancer from The Cancer Genome Atlas. A high intratumoral immune hotspot score, which measures the proportion of immune hotspots interfacing with tumor islands, was correlated with poor overall survival in lung squamous cell carcinoma but not in lung adenocarcinoma. Lung squamous cell carcinomas with high intratumoral immune hotspot scores were characterized by consistent upregulation of B-cell signatures. Spatial statistical analyses conducted on serial multiplex IHC slides further revealed that only 4.87% of peritumoral immune hotspots and 0.26% of intratumoral immune hotspots were tertiary lymphoid structures. Significantly lower densities of CD20+CXCR5+ and CD79b+ B cells and less diverse immune cell interactions were found in intratumoral immune hotspots compared with peritumoral immune hotspots. Furthermore, there was a negative correlation between the percentages of CD8+ T cells and T regulatory cells in intratumoral but not in peritumoral immune hotspots, with tertiary lymphoid structures excluded. These findings suggest that the intratumoral immune hotspots reflect an immunosuppressive niche compared with peritumoral immune hotspots, independent of the distribution of tertiary lymphoid structures. A balance toward increased intratumoral immune hotspots is indicative of a compromised antitumor immune response and poor outcome in lung squamous cell carcinoma. SIGNIFICANCE Intratumoral immune hotspots beyond tertiary lymphoid structures reflect an immunosuppressive microenvironment, different from peritumoral immune hotspots, warranting further study in the context of immunotherapies.
Collapse
Affiliation(s)
- Hanyun Zhang
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - David A. Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Ayse Akarca
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Katey S.S. Enfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Department of Oncology, University College London Hospitals, London, United Kingdom
- Cancer Metastasis Lab, University College London Cancer Institute, London, United Kingdom
| | - Shan E. Ahmed Raza
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | | | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - John Le Quesne
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- NHS Greater Glasgow and Clyde Pathology Department, Queen Elizabeth University Hospital, London, United Kingdom
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
26
|
Gokhale S, Victor E, Tsai J, Spirollari E, Matracz B, Takatsuka S, Jung J, Kitamura D, Xie P. Upregulated Expression of the IL-9 Receptor on TRAF3-Deficient B Lymphocytes Confers Ig Isotype Switching Responsiveness to IL-9 in the Presence of Antigen Receptor Engagement and IL-4. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1059-1073. [PMID: 36883978 PMCID: PMC10073299 DOI: 10.4049/jimmunol.2200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
The pleiotropic cytokine IL-9 signals to target cells by binding to a heterodimeric receptor consisting of the unique subunit IL-9R and the common subunit γ-chain shared by multiple cytokines of the γ-chain family. In the current study, we found that the expression of IL-9R was strikingly upregulated in mouse naive follicular B cells genetically deficient in TNFR-associated factor 3 (TRAF3), a critical regulator of B cell survival and function. The highly upregulated IL-9R on Traf3-/- follicular B cells conferred responsiveness to IL-9, including IgM production and STAT3 phosphorylation. Interestingly, IL-9 significantly enhanced class switch recombination to IgG1 induced by BCR crosslinking plus IL-4 in Traf3-/- B cells, which was not observed in littermate control B cells. We further demonstrated that blocking the JAK-STAT3 signaling pathway abrogated the enhancing effect of IL-9 on class switch recombination to IgG1 induced by BCR crosslinking plus IL-4 in Traf3-/- B cells. Our study thus revealed, to our knowledge, a novel pathway that TRAF3 suppresses B cell activation and Ig isotype switching by inhibiting IL-9R-JAK-STAT3 signaling. Taken together, our findings provide (to our knowledge) new insights into the TRAF3-IL-9R axis in B cell function and have significant implications for the understanding and treatment of a variety of human diseases involving aberrant B cell activation such as autoimmune disorders.
Collapse
Affiliation(s)
- Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Eton Victor
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Jemmie Tsai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Eris Spirollari
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Brygida Matracz
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Shogo Takatsuka
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Rutgers Cancer Institute of New Jersey
| |
Collapse
|
27
|
Herrock O, Deer E, Amaral LM, Campbell N, Whitney D, Ingram N, Cornelius DC, Turner T, Hardy-Hardin J, Booz GW, Ibrahim T, LaMarca B. Inhibiting B cell activating factor attenuates preeclamptic symptoms in placental ischemic rats. Am J Reprod Immunol 2023; 89:e13693. [PMID: 36794639 PMCID: PMC10009902 DOI: 10.1111/aji.13693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
PROBLEM Preeclampsia (PE), new-onset hypertension during pregnancy, is associated with a pro-inflammatory state with activated T cells, cytolytic natural killer (NK) cells, dysregulated complement proteins, and B cells secreting agonistic autoantibodies to the angiotensin II type-1 receptor (AT1-AA). The reduced uterine perfusion pressure (RUPP) model of placental ischemia recapitulates these features of PE. Blocking CD40L-CD40 communication between T and B cells or B cell depletion with Rituximab prevents hypertension and AT1-AA production in RUPP rats. This suggests that T cell-dependent B cell activation contributes to the hypertension and AT1-AA associated with PE. B2 cells maturing into antibody producing plasma cells are the product of T cell-dependent B cell-interactions and B cell Activating Factor (BAFF) is an integral cytokine in the development of B2 cells specifically. Thus, we hypothesize that BAFF blockade will selectively deplete B2 cells, therefore reducing blood pressure, AT1-AA, activated NK Cells, and complement in the RUPP rat model of PE. METHOD OF STUDY Gestational Day (GD) 14 pregnant rats underwent the RUPP procedure, and a subset were treated with 1 mg/kg Anti-BAFF antibodies via jugular catheters. On GD19, blood pressure was measured, B cells and NK cells were measured by flow cytometry, AT1-AA was measured by cardiomyocyte bioassay, and complement activation was measured by ELISA. RESULTS Anti-BAFF therapy attenuated hypertension, AT1-AA, NK cell activation, and APRIL levels in RUPP rats without negatively impacting fetal outcomes. CONCLUSIONS This study demonstrates that B2 cells contribute to hypertension, AT1-AA, and NK cell activation in response to placental ischemia during pregnancy.
Collapse
Affiliation(s)
- Owen Herrock
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Evangeline Deer
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Lorena M. Amaral
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Nathan Campbell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Darby Whitney
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Nicole Ingram
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | | | - Ty Turner
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Ja’Nasa Hardy-Hardin
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - George W. Booz
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Tarek Ibrahim
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
28
|
Karagiannis TT, Dowrey TW, Villacorta-Martin C, Montano M, Reed E, Belkina AC, Andersen SL, Perls TT, Monti S, Murphy GJ, Sebastiani P. Multi-modal profiling of peripheral blood cells across the human lifespan reveals distinct immune cell signatures of aging and longevity. EBioMedicine 2023; 90:104514. [PMID: 37005201 PMCID: PMC10114155 DOI: 10.1016/j.ebiom.2023.104514] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Age-related changes in immune cell composition and functionality are associated with multimorbidity and mortality. However, many centenarians delay the onset of aging-related disease suggesting the presence of elite immunity that remains highly functional at extreme old age. METHODS To identify immune-specific patterns of aging and extreme human longevity, we analyzed novel single cell profiles from the peripheral blood mononuclear cells (PBMCs) of a random sample of 7 centenarians (mean age 106) and publicly available single cell RNA-sequencing (scRNA-seq) datasets that included an additional 7 centenarians as well as 52 people at younger ages (20-89 years). FINDINGS The analysis confirmed known shifts in the ratio of lymphocytes to myeloid cells, and noncytotoxic to cytotoxic cell distributions with aging, but also identified significant shifts from CD4+ T cell to B cell populations in centenarians suggesting a history of exposure to natural and environmental immunogens. We validated several of these findings using flow cytometry analysis of the same samples. Our transcriptional analysis identified cell type signatures specific to exceptional longevity that included genes with age-related changes (e.g., increased expression of STK17A, a gene known to be involved in DNA damage response) as well as genes expressed uniquely in centenarians' PBMCs (e.g., S100A4, part of the S100 protein family studied in age-related disease and connected to longevity and metabolic regulation). INTERPRETATION Collectively, these data suggest that centenarians harbor unique, highly functional immune systems that have successfully adapted to a history of insults allowing for the achievement of exceptional longevity. FUNDING TK, SM, PS, GM, SA, TP are supported by NIH-NIAUH2AG064704 and U19AG023122. MM and PS are supported by NIHNIA Pepper center: P30 AG031679-10. This project is supported by the Flow Cytometry Core Facility at BUSM. FCCF is funded by the NIH Instrumentation grant: S10 OD021587.
Collapse
Affiliation(s)
- Tanya T Karagiannis
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA.
| | - Todd W Dowrey
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA, USA
| | - Monty Montano
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Boston Pepper Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric Reed
- Data Intensive Study Center, Tufts University, Boston, MA, USA
| | - Anna C Belkina
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA; Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA
| | - Stacy L Andersen
- Department of Medicine, Geriatrics Section, Boston University School of Medicine, Boston, MA, USA
| | - Thomas T Perls
- Department of Medicine, Geriatrics Section, Boston University School of Medicine, Boston, MA, USA
| | - Stefano Monti
- Bioinformatics Program, Boston University, Boston, MA, USA; Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - George J Murphy
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA, USA; Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA; Department of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
29
|
Li K, Wei X, Jiao X, Deng W, Li J, Liang W, Zhang Y, Yang J. Glutamine Metabolism Underlies the Functional Similarity of T Cells between Nile Tilapia and Tetrapod. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2201164. [PMID: 36890649 PMCID: PMC10131875 DOI: 10.1002/advs.202201164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/25/2022] [Indexed: 06/18/2023]
Abstract
As the lowest organisms possessing T cells, fish are instrumental for understanding T cell evolution and immune defense in early vertebrates. This study established in Nile tilapia models suggests that T cells play a critical role in resisting Edwardsiella piscicida infection via cytotoxicity and are essential for IgM+ B cell response. CD3 and CD28 monoclonal antibody crosslinking reveals that full activation of tilapia T cells requires the first and secondary signals, while Ca2+ -NFAT, MAPK/ERK, NF-κB, and mTORC1 pathways and IgM+ B cells collectively regulate T cell activation. Thus, despite the large evolutionary distance, tilapia and mammals such as mice and humans exhibit similar T cell functions. Furthermore, it is speculated that transcriptional networks and metabolic reprogramming, especially c-Myc-mediated glutamine metabolism triggered by mTORC1 and MAPK/ERK pathways, underlie the functional similarity of T cells between tilapia and mammals. Notably, tilapia, frogs, chickens, and mice utilize the same mechanisms to facilitate glutaminolysis-regulated T cell responses, and restoration of the glutaminolysis pathway using tilapia components rescues the immunodeficiency of human Jurkat T cells. Thus, this study provides a comprehensive picture of T cell immunity in tilapia, sheds novel perspectives for understanding T cell evolution, and offers potential avenues for intervening in human immunodeficiency.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Xinying Jiao
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Wenhai Deng
- School of Laboratory Medicine and Life ScienceWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| |
Collapse
|
30
|
Hayward DA, Vanes L, Wissmann S, Sivapatham S, Hartweger H, Biggs O’May J, de Boer LL, Mitter R, Köchl R, Stein JV, Tybulewicz VL. B cell-intrinsic requirement for WNK1 kinase in antibody responses in mice. J Exp Med 2023; 220:e20211827. [PMID: 36662229 PMCID: PMC9872328 DOI: 10.1084/jem.20211827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/20/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023] Open
Abstract
Migration and adhesion play critical roles in B cells, regulating recirculation between lymphoid organs, migration within lymphoid tissue, and interaction with CD4+ T cells. However, there is limited knowledge of how B cells integrate chemokine receptor and integrin signaling with B cell activation to generate efficient humoral responses. Here, we show that the WNK1 kinase, a regulator of migration and adhesion, is essential in B cells for T-dependent and -independent antibody responses. We demonstrate that WNK1 transduces signals from the BCR, CXCR5, and CD40, and using intravital imaging, we show that WNK1 regulates migration of naive and activated B cells, and their interactions with T cells. Unexpectedly, we show that WNK1 is required for BCR- and CD40-induced proliferation, acting through the OXSR1 and STK39 kinases, and for efficient B cell-T cell collaboration in vivo. Thus, WNK1 is critical for humoral immune responses, by regulating B cell migration, adhesion, and T cell-dependent activation.
Collapse
Affiliation(s)
| | | | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Sujana Sivapatham
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | | | | | | | | | | | - Jens V. Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
31
|
Herrock OT, Deer E, Amaral LM, Campbell N, Lemon J, Ingram N, Cornelius DC, Turner TW, Fitzgerald S, Ibrahim T, Dechend R, Wallukat G, LaMarca B. B2 cells contribute to hypertension and natural killer cell activation possibly via AT1-AA in response to placental ischemia. Am J Physiol Renal Physiol 2023; 324:F179-F192. [PMID: 36417275 PMCID: PMC9844978 DOI: 10.1152/ajprenal.00190.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Preeclampsia, new onset hypertension during pregnancy, is associated with activated T helper cells (Th) and B cells secreting agonistic autoantibodies against the angiotensin II type 1 receptor (AT1-AA). The reduced uterine perfusion pressure (RUPP) model of placental ischemia recapitulates these characteristics. We have shown that Th-B cell communication contributes to AT1-AA and symptoms of preeclampsia in the RUPP rat. B2 cells are classical B cells that communicate with Th cells and are then transformed into memory B cells. We hypothesize that B2 cells cause hypertension, natural killer (NK) cell activation, and complement activation during pregnancy through the production of AT1-AA. To test this hypothesis, total splenic B cells and B2 cells were isolated from normal pregnant (NP) or RUPP rats on gestational day (GD)19 and adoptively transferred into GD12 NP rats. A group of recipient rats was treated with a specific inhibitor peptide of AT1-AA. On GD19, mean arterial pressure was measured, tissues were collected, activated NK cells were measured by flow cytometry, and AT1-AA was measured by cardiomyocyte assay. NP recipients of RUPP B cells or RUPP B2 cells had increased mean arterial pressure, AT1-AA, and circulating activated NK cells compared with recipients of NP B cells. Hypertension in NP recipients of RUPP B cells or RUPP B2 was attenuated with AT1-AA blockade. This study demonstrates that B cells and B2 cells from RUPP rats cause hypertension and increased AT1-AA and NK cell activation in response to placental ischemia during pregnancy.NEW & NOTEWORTHY This study demonstrates that placental ischemia-stimulated B2 cells induce hypertension and circulating natural killer cell activation and angiotensin II type 1 receptor production in normal pregnant rats.
Collapse
Affiliation(s)
- Owen T Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Evangeline Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lorena M Amaral
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nathan Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - James Lemon
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nicole Ingram
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ty W Turner
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sarah Fitzgerald
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ralf Dechend
- Experimental and Clinical Research Center, HELIOS Clinic, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Gerd Wallukat
- Experimental and Clinical Research Center, HELIOS Clinic, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
32
|
TLR7 and IgM: Dangerous Partners in Autoimmunity. Antibodies (Basel) 2023; 12:antib12010004. [PMID: 36648888 PMCID: PMC9844493 DOI: 10.3390/antib12010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The B cell antigen receptor (BCR)-repertoire is capable of recognizing a nearly unlimited number of antigens. Inevitably, the random nature of antibody gene segment rearrangement, needed in order to provide mature B cells, will generate autoreactive specificities. Once tolerance mechanisms fail to block the activation and differentiation of autoreactive B cells, harmful autoantibodies may get secreted establishing autoimmune diseases. Besides the hallmark of autoimmunity, namely IgG autoantibodies, IgM autoantibodies are also found in many autoimmune diseases. In addition to pathogenic functions of secreted IgM the IgM-BCR expressing B cell might be the initial check-point where, in conjunction with innate receptor signals, B cell mediated autoimmunity starts it fateful course. Recently, pentameric IgM autoantibodies have been shown to contribute significantly to the pathogenesis of various autoimmune diseases, such as rheumatoid arthritis (RA), autoimmune hemolytic anemia (AIHA), pemphigus or autoimmune neuropathy. Further, recent studies suggest differences in the recognition of autoantigen by IgG and IgM autoantibodies, or propose a central role of anti-ACE2-IgM autoantibodies in severe COVID-19. However, exact mechanisms still remain to be uncovered in detail. This article focuses on summarizing recent findings regarding the importance of autoreactive IgM in establishing autoimmune diseases.
Collapse
|
33
|
Baker D, Forte E, Pryce G, Kang AS, James LK, Giovannoni G, Schmierer K. The impact of sphingosine-1-phosphate receptor modulators on COVID-19 and SARS-CoV-2 vaccination. Mult Scler Relat Disord 2023; 69:104425. [PMID: 36470168 PMCID: PMC9678390 DOI: 10.1016/j.msard.2022.104425] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Sphingosine-one phosphate receptor (S1PR) modulation inhibits S1PR1-mediated lymphocyte migration, lesion formation and positively-impacts on active multiple sclerosis (MS). These S1PR modulatory drugs have different: European Union use restrictions, pharmacokinetics, metabolic profiles and S1PR receptor affinities that may impact MS-management. Importantly, these confer useful properties in dealing with COVID-19, anti-viral drug responses and generating SARS-CoV-2 vaccine responses. OBJECTIVE To examine the biology and emerging data that potentially underpins immunity to the SARS-CoV-2 virus following natural infection and vaccination and determine how this impinges on the use of current sphingosine-one-phosphate modulators used in the treatment of MS. METHODS A literature review was performed, and data on infection, vaccination responses; S1PR distribution and functional activity was extracted from regulatory and academic information within the public domain. OBSERVATIONS Most COVID-19 related information relates to the use of fingolimod. This indicates that continuous S1PR1, S1PR3, S1PR4 and S1PR5 modulation is not associated with a worse prognosis following SARS-CoV-2 infection. Whilst fingolimod use is associated with blunted seroconversion and reduced peripheral T-cell vaccine responses, it appears that people on siponimod, ozanimod and ponesimod exhibit stronger vaccine-responses, which could be related notably to a limited impact on S1PR4 activity. Whilst it is thought that S1PR3 controls B cell function in addition to actions by S1PR1 and S1PR2, this may be species-related effect in rodents that is not yet substantiated in humans, as seen with bradycardia issues. Blunted antibody responses can be related to actions on B and T-cell subsets, germinal centre function and innate-immune biology. Although S1P1R-related functions are seeming central to control of MS and the generation of a fully functional vaccination response; the relative lack of influence on S1PR4-mediated actions on dendritic cells may increase the rate of vaccine-induced seroconversion with the newer generation of S1PR modulators and improve the risk-benefit balance IMPLICATIONS: Although fingolimod is a useful asset in controlling MS, recently-approved S1PR modulators may have beneficial biology related to pharmacokinetics, metabolism and more-restricted targeting that make it easier to generate infection-control and effective anti-viral responses to SARS-COV-2 and other pathogens. Further studies are warranted.
Collapse
Affiliation(s)
- David Baker
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.
| | - Eugenia Forte
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gareth Pryce
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Angray S Kang
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Centre for Oral Immunobiology and Regenerative Medicine, Dental Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Louisa K James
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gavin Giovannoni
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Klaus Schmierer
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
34
|
Iborra Pernichi M, Ruiz García J, Martínez-Martín N. Quantification of Intracellular ATP Content in Ex Vivo GC B Cells. Methods Mol Biol 2023; 2675:109-115. [PMID: 37258759 DOI: 10.1007/978-1-0716-3247-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The study of immunometabolism is an important and emerging field in immunology. B-cell activation upon antigen recognition induces profound metabolic changes in the cell, leading to an increase in ATP production to sustain cell proliferation and differentiation. Current methods available to determine the amount of ATP are time-consuming, require extensive sample processing, and need a large amount of starting material. We set up an easy follow-up protocol to determine the relative amount of ATP in living cells, combining cell surface staining with quinacrine. This acridine dye emits a green fluorescent signal in the presence of intracellular ATP. This protocol allows us to determine ATP in small populations of cells using flow cytometry, such as the germinal center.
Collapse
Affiliation(s)
- Marta Iborra Pernichi
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jonathan Ruiz García
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Martínez-Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
35
|
Liu W, Luo Z, Liu Y, Sun B. Current landscape and tailored management of immune-related adverse events. Front Pharmacol 2023; 14:1078338. [PMID: 36950013 PMCID: PMC10025325 DOI: 10.3389/fphar.2023.1078338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Unprecedented advances have been made in immune checkpoint inhibitors (ICIs) in the treatment of cancer. However, the overall benefits from ICIs are impaired by the increasing incidence of immune-related adverse events (irAEs). Although several factors and mechanisms have been proposed in the development of irAEs, there is still incomprehensive understanding of irAEs. Therefore, it is urgent to identify certain risk factors and biomarkers that predict the development of irAEs, as well as to understand the underlying mechanisms of these adverse events. Herein, we comprehensively summarize the state-of-the-art knowledge about clinical features and the related risk factors of irAEs. Particularly, we also discuss relevant mechanisms of irAEs and address the mechanism-based strategies, aiming to develop a tailored management approach for irAEs.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Zhiying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yiping Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Bao Sun,
| |
Collapse
|
36
|
White AA, Lin A, Bickendorf X, Cavve BS, Moore JK, Siafarikas A, Strickland DH, Leffler J. Potential immunological effects of gender-affirming hormone therapy in transgender people - an unexplored area of research. Ther Adv Endocrinol Metab 2022; 13:20420188221139612. [PMID: 36533187 PMCID: PMC9747891 DOI: 10.1177/20420188221139612] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022] Open
Abstract
There are well-described sex-based differences in how the immune system operates. In particular, cisgender (cis) females have a more easily activated immune system; associated with an increased prevalence of autoimmune diseases and adverse events following vaccinations. Conversely, cis males have a higher threshold for immune activation, and are more prone to certain infectious diseases, such as coronavirus disease (COVID-19). Oestrogen and testosterone have immune-modulatory properties, and it is likely that these contribute to the sexual dimorphism of the immune system. There are also important immune-related genes located on the X chromosome, such as toll-like receptor (TLR) 7/8; and the mosaic bi-allelic expression of such genes may contribute to the state of immune hyperactivation in cis females. The scientific literature strongly suggests that sex-based differences in the functioning of the immune system are related to both X-linked genes and immune modulation by sex hormones. However, it is currently not clear how this impacts transgender (trans) people receiving gender-affirming hormonal therapy. Moreover, it is estimated that in Australia, at least 2.3% of adolescents identify as trans and/or gender diverse, and referrals to specialist gender-affirming care are increasing each year. Despite the improving social awareness of trans people, they remain chronically underrepresented in the scientific literature. In addition, a small number of case studies describe new onset autoimmune disorders in adult trans females following oestrogen use. However, there is currently minimal long-term research with an immunological focus on trans people. Therefore, to ensure the positive health outcomes of trans people, it is crucial that the role of sex hormones in immune modulation is investigated further.
Collapse
Affiliation(s)
- Alice A. White
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Ashleigh Lin
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Xander Bickendorf
- Telethon Kids Institute, University of Western Australia, WA, Australia
- Gender Diversity Service, Child and Adolescent Health Service, Nedlands, WA, Australia
| | - Blake S. Cavve
- Gender Diversity Service, Child and Adolescent Health Service, Nedlands, WA, Australia
| | - Julia K. Moore
- Gender Diversity Service, Child and Adolescent Health Service, Nedlands, WA, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Nedlands, WA, Australia
| | - Aris Siafarikas
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Gender Diversity Service, Child and Adolescent Health Service, Nedlands, WA, Australia
- Paediatrics, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | | | - Jonatan Leffler
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, 15 Hospital Ave., Nedlands, WA 6009, Australia
| |
Collapse
|
37
|
Bazzi SA, Maguire C, Holay N, Geltman J, Hurley K, DiPasquale C, Abigania M, Olson E, Ehrlich LIR, Triplett TA, Melamed E. Longitudinal COVID-19 immune trajectories in patients with neurological autoimmunity on anti-CD20 therapy. Mult Scler Relat Disord 2022; 68:104195. [PMID: 36223705 PMCID: PMC9511881 DOI: 10.1016/j.msard.2022.104195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES During the COVID-19 pandemic, B cell depleting therapies pose a clinical concern for patients with neuroimmune conditions, as patients may not mount a sufficient immune response to SARS-CoV-2 infection and vaccinations. Studies to-date have reported conflicting results on the degree of antibody production post-SARS-CoV-2 infection and vaccinations in B cell depleted patients, focusing primarily on short-term immune profiling. Our objective was to follow longitudinal immune responses in COVID-19 B cell depleted patients with neuroimmune disorders post-COVID-19 and SARS-CoV-2-vaccination. METHODS CD20 B cell depleted autoimmune patients and age/sex-matched controls positive for SARS-CoV-2 were recruited at Dell Medical School, UT Austin between 2020 and 2021, followed prospectively for 12 months and evaluated at multiple time points for spike S1 receptor binding domain (RBD) antibody titers, B and T cell composition, and frequency of T cells specific for SARS-CoV-2 antigens. RESULTS Immune responses post-SARS-CoV-2 infection and vaccination were evaluated in a cohort of COVID-19 B cell depleted neuroimmune patients (n = 5), COVID-19 non-B cell depleted autoimmune patients (n = 15), COVID-19 immunocompetent patients (n = 117), and healthy controls (n = 6) for a total of 259 samples in 137 participants. 4/5 B cell-depleted patients developed detectable anti-spike RBD antibodies, which were boosted by vaccination in 2 patients. While spike RBD antibodies were associated with presence of CD20+ B cells, very few B cells were required. In contrast, patients whose B cell compartment primarily consisted of CD19+CD20- Bcells during acute COVID-19 disease or vaccination did not seroconvert. Interestingly, circulating Bcells in B cell depleted patients were significantly CD38high with co-expression of CD24 and CD27, indicating that B cell depletion may impact B cell activation patterns. Additionally, all B cell depleted patients mounted a sustained T cell response to SARS-CoV-2 antigens, regardless of seroconversion. Specifically, all patients developed naïve, central memory, effector memory, and effector memory RA+ T cells, suggesting intact T cell memory conversion in B cell depleted patients compared to controls. DISCUSSION We present the longest COVID-19 immune profiling analysis to date in B cell depleted patients, demonstrating that both humoral and cellular immune responses can be generated and sustained up to 12 months post SARS-CoV-2 infection and vaccination. Notably, failure to establish humoral immunity did not result in severe disease. We also highlight specific T and B cell signatures that could be used as clinical biomarkers to advise patients on timing of SARS-CoV-2 vaccinations.
Collapse
Affiliation(s)
- Sam A Bazzi
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Cole Maguire
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Nisha Holay
- Department of Oncology Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Janelle Geltman
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Kerin Hurley
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | | | | | - Eric Olson
- Babson Diagnostics, Austin, TX, United States
| | - Lauren I R Ehrlich
- Department of Oncology Dell Medical School, University of Texas at Austin, Austin, TX, United States; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Todd A Triplett
- Department of Oncology Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
38
|
The Safety Profile of COVID-19 Vaccines in Patients Diagnosed with Multiple Sclerosis: A Retrospective Observational Study. J Clin Med 2022; 11:jcm11226855. [PMID: 36431332 PMCID: PMC9692274 DOI: 10.3390/jcm11226855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
In the current COVID-19 pandemic, patients diagnosed with multiple sclerosis (MS) are considered to be one of the highest priority categories, being recognized as extremely vulnerable people. For this reason, mRNA-based COVID-19 vaccines are strongly recommended for these patients. Despite encouraging results on the efficacy and safety profile of mRNA-based COVID-19 vaccines, to date, in frail populations, including patients diagnosed with MS, this information is rather limited. We carried out a retrospective observational study with the aim to evaluate the safety profile of mRNA-based COVID-19 vaccines by retrieving real-life data of MS patients who were treated and vaccinated at the Multiple Sclerosis Center of the Hospital A.O.R.N. A. Cardarelli. Three-hundred and ten medical records of MS patients who received the first dose of the mRNA-based COVID-19 vaccine were retrieved (63% female; mean age: 45.9 years). Of these patients, 288 also received the second dose. All patients received the Pfizer-BioNTech vaccine. Relapsing-Remitting Multiple Sclerosis (RRSM) was the most common form of MS. The Expanded Disability Status Scale (EDSS) values were <3.0 in 70% of patients. The majority of patients received a Disease Modifying Therapy (DMT) during the study period, mainly interferon beta 1-a, dimethyl fumarate, and natalizumab and fingolimod. Overall, 913 AEFIs were identified, of which 539 were after the first dose of the vaccine and 374 after the second dose. The majority of these AEFIs were classified as short-term since they occurred within the first 72 h. The most common identified adverse events were pain at injection site, flu-like symptoms, and headache. Fever was reported more frequently after the second dose than after the first dose. SARS-CoV-2 infection occurred in 3 patients after the first dose. Using historical data of previous years (2017−2020), the relapses’ rate during 2021 was found to be lower. Lastly, the results of the multivariable analysis that assessed factors associated with the occurrence of AEFIs revealed a statistical significance for age, sex, and therapy with ocrelizumab (p < 0.05). In conclusion, our results indicated that Pfizer-BioNTech vaccine was safe for MS patients, being associated with AEFIs already detected in the general population. Larger observational studies with longer follow-up and epidemiological studies are strongly needed.
Collapse
|
39
|
Campbell NE, Deer EM, Herrock OT, LaMarca BB. The Role of Different Lymphoid Cell Populations in Preeclampsia Pathophysiology. KIDNEY360 2022; 3:1785-1794. [PMID: 36514732 PMCID: PMC9717666 DOI: 10.34067/kid.0001282022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023]
Abstract
Preeclampsia (PE), new-onset hypertension during pregnancy, affects up to 10% of pregnancies worldwide. Despite being the leading cause of maternal and fetal morbidity and mortality, PE has no cure beyond the delivery of the fetal-placental unit. Although the exact pathogenesis of PE is unclear, there is a strong correlation between chronic immune activation; intrauterine growth restriction; uterine artery resistance; dysregulation of the renin-angiotensin system. Which contributes to renal dysfunction; and the resulting hypertension during pregnancy. The genesis of PE is thought to begin with insufficient trophoblast invasion leading to reduced spiral artery remodeling, resulting in decreased placental perfusion and thereby causing placental ischemia. The ischemic placenta releases factors that shower the endothelium and contribute to peripheral vasoconstriction and chronic immune activation and oxidative stress. Studies have shown imbalances in proinflammatory and anti-inflammatory cell types in women with PE and in animal models used to examine mediators of a PE phenotype during pregnancy. T cells, B cells, and natural killer cells have all emerged as potential mediators contributing to the production of vasoactive factors, renal and endothelial dysfunction, mitochondrial dysfunction, and hypertension during pregnancy. The chronic immune activation seen in PE leads to a higher risk for other diseases, such as cardiovascular disease, CKD, dementia during the postpartum period, and PE during a subsequent pregnancy. The purpose of this review is to highlight studies demonstrating the role that different lymphoid cell populations play in the pathophysiology of PE. Moreover, we will discuss treatments focused on restoring immune balance or targeting specific immune mediators that may be potential strategies to improve maternal and fetal outcomes associated with PE.
Collapse
Affiliation(s)
- Nathan E Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Evangeline M Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Owen T Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Babbette B LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
40
|
Beydoun N, Feinstein MJ. Heart Failure in Chronic Infectious and Inflammatory Conditions: Mechanistic Insights from Clinical Heterogeneity. Curr Heart Fail Rep 2022; 19:267-278. [PMID: 35838874 PMCID: PMC9283814 DOI: 10.1007/s11897-022-00560-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The balance between inflammation and its resolution plays an important and increasingly appreciated role in heart failure (HF) pathogenesis. In humans, different chronic inflammatory conditions and immune-inflammatory responses to infection can lead to diverse HF manifestations. Reviewing the phenotypic and mechanistic diversity of these HF presentations offers useful clinical and scientific insights. RECENT FINDINGS HF risk is increased in patients with chronic inflammatory and autoimmune disorders and relates to disease severity. Inflammatory condition-specific HF manifestations exist and underlying pathophysiologic causes may differ across conditions. Although inflammatory disease-specific presentations of HF differ, chronic excess in inflammation and auto-inflammation relative to resolution of this inflammation is a common underlying contributor to HF. Further studies are needed to phenotypically refine inflammatory condition-specific HF pathophysiologies and prognoses, as well as potential targets for intervention.
Collapse
Affiliation(s)
- Nour Beydoun
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew J Feinstein
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Pathology, Northwestern University, Chicago, IL, USA.
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern University Feinberg School of Medicine, 300 E. Superior St, Tarry 3-703, Chicago, IL, 60611, USA.
| |
Collapse
|
41
|
Wangriatisak K, Kochayoo P, Thawornpan P, Leepiyasakulchai C, Suangtamai T, Ngamjanyaporn P, Khowawisetsut L, Khaenam P, Pisitkun P, Chootong P. CD4 + T-cell cooperation promoted pathogenic function of activated naïve B cells of patients with SLE. Lupus Sci Med 2022; 9:9/1/e000739. [PMID: 36180106 PMCID: PMC9528597 DOI: 10.1136/lupus-2022-000739] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Objective To explore cooperation between activated naïve (aNAV) B cells and CD4+ T cells in the pathogenesis of SLE through autoantibody production, T-cell differentiation and inflammatory cytokine secretion. Methods Peripheral blood mononuclear cell samples were obtained from 31 patients with SLE and used to characterise phenotype of aNAV B cells (n=14) and measured the phosphorylation of B-cell receptor (BCR) signalling molecules (n=5). Upregulation of T-cell costimulatory molecules after BCR and toll-like receptor (TLR)-7/TLR-8 stimulation was detected in cells from four subjects. To explore the role of these cells in SLE pathogenesis via T cell-dependent mechanisms, four subjects were analysed to detect the promotion of CD4+ T-cell activation and antibody-secreting cell (ASC) differentiation after CD4+ T-cell–B-cell cocultures. The aNAV B cells from four patients were used to assess cytokine secretion. Results The aNAV B cells of patients with SLE had increased expression of surface CD40, HLA-DR and interleukin-21 receptor (IL-21R) and FCRL5 molecules. With BCR stimulation, these cells greatly increased PLCγ2 phosphorylation. Integrated BCR and TLR-7/TLR-8 signals induced overexpression of CD40, CD86, IL-21R and HLA-DR on lupus aNAV B cells. In T-cell–B-cell cocultures, lupus aNAV B cells (with upregulated costimulatory molecules) promoted CD4+ T-cell proliferation and polarisation toward effector Th2 and Th17 cells. Importantly, in this coculture system, CD4+ T-cell signals enhanced aNAV B-cell differentiation into auto-ASCs and produced anti-DNA antibodies. The interaction between CD4+ T cell and aNAV B cell increased production of inflammatory cytokines (IL-6, IL-8 and IL-23). Conclusion Cooperation between aNAV B cells and CD4+ T cells contributed to SLE pathogenesis by promoting both differentiation of pathogenic T cells (Th2 and Th17) and autoantibody secretion.
Collapse
Affiliation(s)
- Kittikorn Wangriatisak
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chaniya Leepiyasakulchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Thanitta Suangtamai
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pintip Ngamjanyaporn
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasong Khaenam
- Center of Standardization and Product Validation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Translational Medicine Program, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
42
|
Li Y, Sun Y, Liu Y, Wang B, Li J, Wang H, Zhang H, Wang X, Han X, Lin Q, Zhou Y, Hu L, Song Y, Bao J, Gong L, Sun M, Yuan X, Zhang X, Lian M, Xiao X, Miao Q, Wang Q, Li KK, Du S, Ma A, Li Y, Xu J, Tang S, Shi J, Xu Y, Yang L, Zhang J, Huang Z, Zhou L, Cui Y, Seldin MF, Gershwin ME, Yan H, Zou Z, Zuo X, Tang R, Ma X. Genome-wide meta-analysis identifies susceptibility loci for autoimmune hepatitis type 1. Hepatology 2022; 76:564-575. [PMID: 35184318 DOI: 10.1002/hep.32417] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Autoimmune hepatitis (AIH) is a rare and chronic autoimmune liver disease. While genetic factors are believed to play a crucial role in the etiopathogenesis of AIH, our understanding of these genetic risk factors is still limited. In this study, we aimed to identify susceptibility loci to further understand the pathogenesis of this disease. APPROACH AND RESULTS We conducted a case-control association study of 1,622 Chinese patients with AIH type 1 and 10,466 population controls from two independent cohorts. A meta-analysis was performed to ascertain variants associated with AIH type 1. A single-nucleotide polymorphism within the human leukocyte antigen (HLA) region showed the strongest association with AIH (rs6932730: OR = 2.32; p = 9.21 × 10-73 ). The meta-analysis also identified two non-HLA loci significantly associated with AIH: CD28/CTLA4/ICOS on 2q33.3 (rs72929257: OR = 1.31; p = 2.92 × 10-9 ) and SYNPR on 3p14.2 (rs6809477: OR = 1.25; p = 5.48 × 10-9 ). In silico annotation, reporter gene assays, and CRISPR activation experiments identified a distal enhancer at 2q33.3 that regulated expression of CTLA4. In addition, variants near STAT1/STAT4 (rs11889341: OR = 1.24; p = 1.34 × 10-7 ), LINC00392 (rs9564997: OR = 0.81; p = 2.53 × 10-7 ), IRF8 (rs11117432: OR = 0.72; p = 6.10 × 10-6 ), and LILRA4/LILRA5 (rs11084330: OR = 0.65; p = 5.19 × 10-6 ) had suggestive association signals with AIH. CONCLUSIONS Our study identifies two novel loci (CD28/CTLA4/ICOS and SYNPR) exceeding genome-wide significance and suggests four loci as potential risk factors. These findings highlight the importance of costimulatory signaling and neuro-immune interaction in the pathogenesis of AIH.
Collapse
Affiliation(s)
- You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ying Sun
- Department of Liver Disease, Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanmin Liu
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Li
- Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin, China
| | - Hanxiao Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Haiping Zhang
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyi Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xu Han
- Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin, China
| | - Qiuxiang Lin
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Zhou
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhu Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Gong
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Mengying Sun
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaoling Yuan
- Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhe Zhang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, ShenYang, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ke-Ke Li
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Anlin Ma
- Department of infection disease, China-Japan Friendship Hospital, Beijing, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, ShenYang, China
| | - Jie Xu
- Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanhong Tang
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, China
| | - Junping Shi
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital and Key Laboratory of Medical Molecular Virology (MOH & MOE), Shanghai Medical College, Fudan University, Shanghai, China
| | - Zuxiong Huang
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Michael F Seldin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, California, USA
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA
| | - Huiping Yan
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhengsheng Zou
- Department of Liver Disease, Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xianbo Zuo
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Institute of Dermatology and Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
43
|
Apinda N, Muenthaisong A, Chomjit P, Sangkakam K, Nambooppha B, Rittipornlertrak A, Koonyosying P, Yao Y, Nair V, Sthitmatee N. Simultaneous Protective Immune Responses of Ducks against Duck Plague and Fowl Cholera by Recombinant Duck Enteritis Virus Vector Expressing Pasteurella multocida OmpH Gene. Vaccines (Basel) 2022; 10:vaccines10081358. [PMID: 36016245 PMCID: PMC9415155 DOI: 10.3390/vaccines10081358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Duck enteritis virus and Pasteurella multocida are major duck pathogens that induce duck plague and fowl cholera, respectively, in ducks and other waterfowl populations, leading to high levels of morbidity and mortality. Immunization with live attenuated DEV vaccine containing P. multocida outer membrane protein H (OmpH) can provide the most effective protection against these two infectious diseases in ducks. We have recently reported the construction of recombinant DEV expressing P. multocida ompH gene using the CRISPR/Cas9 gene editing strategy with the goal of using it as a bivalent vaccine that can simultaneously protect against both infections. Here we describe the findings of our investigation into the systemic immune responses, potency and clinical protection induced by the two recombinant DEV-ompH vaccine constructs, where one copy each of the ompH gene was inserted into the DEV genome at the UL55-LORF11 and UL44-44.5 intergenic regions, respectively. Our study demonstrated that the insertion of the ompH gene exerted no adverse effect on the DEV parental virus. Moreover, ducklings immunized with the rDEV-ompH-UL55 and rDEV-ompH-UL44 vaccines induced promising levels of P. multocida OmpH-specific as well as DEV-specific antibodies and were completely protected from both diseases. Analysis of the humoral and cellular immunity confirmed the immunogenicity of both recombinant vaccines, which provided strong immune responses against DEV and P. multocida. This study not only provides insights into understanding the immune responses of ducks to recombinant DEV-ompH vaccines but also demonstrates the potential for simultaneous prevention of viral and bacterial infections using viral vectors expressing bacterial immunogens.
Collapse
Affiliation(s)
- Nisachon Apinda
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Anucha Muenthaisong
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Paweena Chomjit
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kanokwan Sangkakam
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Boondarika Nambooppha
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Amarin Rittipornlertrak
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pongpisid Koonyosying
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yongxiu Yao
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
- Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Nattawooti Sthitmatee
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence: ; Tel.: +66-53-948-017; Fax: +66-53-948-041
| |
Collapse
|
44
|
The C3d-fused foot-and-mouth disease vaccine platform overcomes maternally-derived antibody interference by inducing a potent adaptive immunity. NPJ Vaccines 2022; 7:70. [PMID: 35764653 PMCID: PMC9240001 DOI: 10.1038/s41541-022-00496-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
Vaccination prevents and controls foot-and-mouth disease (FMD). However, the current FMD vaccine remains disadvantageous since it cannot overcome maternally-derived antibody (MDA) interference in weeks-old animals, which suppress active immunity via vaccination. To address this, we developed the immune-enhancing O PA2-C3d and A22-C3d FMD vaccine strains that can stimulate receptors on the surface of B cells by inserting C3d (a B cell epitope) into the VP1 region of O PA2 (FMDV type O) and A22 (FMDV type A). We purified inactivated viral antigens from these vaccine strains and evaluated their immunogenicity and host defense against FMDV infection in mice. We also verified its efficacy in inducing an adaptive immune response and overcome MDA interference in MDA-positive (MDA(+), FMD-seropositive) and -negative (MDA(−), FMD-seronegative) pigs. These results suggest a key strategy for establishing novel FMD vaccine platform to overcome MDA interference and induce a robust adaptive immune response.
Collapse
|
45
|
Single B Cell Gene Co-Expression Networks Implicated in Prognosis, Proliferation, and Therapeutic Responses in Non-Small Cell Lung Cancer Bulk Tumors. Cancers (Basel) 2022; 14:cancers14133123. [PMID: 35804895 PMCID: PMC9265014 DOI: 10.3390/cancers14133123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/14/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This study presents novel insights on dysregulated B cell proliferation networks in non-small cell lung cancer (NSCLC). Within this network, a nine-gene signature demonstrated prognostic and predictive indications in more than 1400 NSCLC patients using their gene and protein expression profiles in bulk tumors. Furthermore, novel therapeutic candidates are identified to improve NSCLC treatment outcomes. Abstract In NSCLC, there is a pressing need for immunotherapy predictive biomarkers. The processes underlying B-cell dysfunction, as well as their prognostic importance in NSCLC, are unknown. Tumor-specific B-cell gene co-expression networks were constructed by comparing the Boolean implication modeling of single-cell RNA sequencing of NSCLC tumor B cells and normal B cells. Proliferation genes were selected from the networks using in vitro CRISPR-Cas9/RNA interfering (RNAi) screening data in more than 92 human NSCLC epithelial cell lines. The prognostic and predictive evaluation was performed using public NSCLC transcriptome and proteome profiles. A B cell proliferation and prognostic gene co-expression network was present only in normal lung B cells and missing in NSCLC tumor B cells. A nine-gene signature was identified from this B cell network that provided accurate prognostic stratification using bulk NSCLC tumor transcriptome (n = 1313) and proteome profiles (n = 103). Multiple genes (HLA-DRA, HLA-DRB1, OAS1, and CD74) differentially expressed in NSCLC B cells, peripheral blood lymphocytes, and tumor T cells had concordant prognostic indications at the mRNA and protein expression levels. The selected genes were associated with drug sensitivity/resistance to 10 commonly used NSCLC therapeutic regimens. Lestaurtinib was discovered as a potential repositioning drug for treating NSCLC.
Collapse
|
46
|
Chawla S, Jindal AK, Arora K, Tyagi R, Dhaliwal M, Rawat A. T Cell Abnormalities in X-Linked Agammaglobulinaemia: an Updated Review. Clin Rev Allergy Immunol 2022:10.1007/s12016-022-08949-7. [PMID: 35708830 PMCID: PMC9201264 DOI: 10.1007/s12016-022-08949-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/03/2022]
Abstract
X-linked agammaglobulinaemia (XLA) is a primary immunodeficiency (PID) resulting from a defect in the B cell development. It has conventionally been thought that T cells play a major role in the development and function of the B cell compartment. However, it has also been shown that B cells and T cells undergo bidirectional interactions and B cells also influence the structure and function of the T cell compartment. Patients with XLA offer a unique opportunity to understand the effect of absent B cells on the T cell compartment. In this review, we provide an update on abnormalities in the T cell compartment in patients with XLA. Studies have shown impaired memory T cells, follicular helper T cells, T regulatory cells and T helper 17 in patients with XLA. In addition, these patients have also been reported to have abnormal delayed cell-mediated immune responses and vaccine-specific T cell-mediated immune responses; defective T helper cell polarization and impaired T cell receptor diversity. At present, the clinical significance of these T cell abnormalities has not been studied in detail. However, these abnormalities may result in an increased risk of viral infections, autoimmunity, autoinflammation and possibly chronic lung disease. Abnormal response to SARS-Cov2 vaccine in patients with XLA and prolonged persistence of SARS-Cov2 virus in the respiratory tract of these patients may be related to abnormalities in the T cell compartment.
Collapse
Affiliation(s)
- Sanchi Chawla
- Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Ankur Kumar Jindal
- Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Kanika Arora
- Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Rahul Tyagi
- Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Manpreet Dhaliwal
- Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
47
|
Abbas AO, Alaqil AA, Mehaisen GMK, El Sabry MI. Effect of Organic Selenium-Enriched Yeast on Relieving the Deterioration of Layer Performance, Immune Function, and Physiological Indicators Induced by Heat Stress. Front Vet Sci 2022; 9:880790. [PMID: 35573399 PMCID: PMC9096893 DOI: 10.3389/fvets.2022.880790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress (HS) induces deleterious effects on the performance of laying hens and causes economic losses for poultry industry. This study was carried out to investigate the organic effect of selenium-enriched yeast (SY) on relieving the performance, immunity and physiological deterioration induced by heat stress in laying hens. A total of 324, 28-week-old, Hy-Line Brown commercial chicken layers were randomly distributed into 4 treatments according to a 2 × 2 factorial design, with 9 hens × 9 replicates per treatment (n = 81). From 30 to 34 weeks of age, layers were exposed to 2 temperature treatments (the HS treatment groups): a thermoneutral temperature at 24°C and a heat stress at 35°C. Layers were further assigned into the 2 subgroups according to dietary supplementation with organic selenium-enriched yeast (the SY treatment groups) at either 0 or 0.4 mg/kg diet. Results indicated that all the aspects of the layer performance during the experimental period were impaired by exposure to HS, while SY supplementation improved the layer performance in both the HS and non-HS layers. Intestinal villi disruptions and liver necrotic hepatocytes were observed in the layers exposed to HS, while villi integrity and hepatocytic normality were enhanced by SY treatment. A significant (P < 0.05) decrease in the total leukocyte count, sheep red blood cell (SRBC) antibody titer, and T- and B-lymphocyte proliferation along with an increase in the heterophils/lymphocytes (H/L) ratio were observed in the HS layers compared to non-HS layers. On the contrary, SY treatment significantly (P < 0.05) improved the immune function traits in both the HS layers and non-HS layers. Furthermore, the SY treatment plays an important role in mitigating the oxidative stress and inflammation induced by HS, displaying lower levels of plasma corticosterone, lipid peroxidation, interleukin-1β, and tumor necrosis factor-α in HS layers supplemented with SY compared to HS layers without SY supplementation. These results conclude that addition of SY to the diet of laying hens could be applied as a potential nutritional approach to relieve the deterioration effects of heat stress on the immunity, physiological status, and productive performance of laying hens.
Collapse
Affiliation(s)
- Ahmed O Abbas
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdulaziz A Alaqil
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Gamal M K Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed I El Sabry
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
48
|
Chen DP, Lin WT, Wen YH, Wang WT. Investigation of the correlation between immune thrombocytopenia and T cell activity-regulated gene polymorphism using functional study. Sci Rep 2022; 12:6601. [PMID: 35459882 PMCID: PMC9033768 DOI: 10.1038/s41598-022-10631-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/01/2022] [Indexed: 12/29/2022] Open
Abstract
Thrombocytopenia is a condition where the platelet count is under 100 × 109/L, which is caused by various disorders. However, the mechanism of thrombocytopenia is still unclear. Hence, we tried to investigate the correlation between immune thrombocytopenia (ITP) and single nucleotide polymorphisms (SNPs) of genes related to T cell activation. There were 32 ITP patients and 30 healthy controls enrolled in this study. PCR and sequencing were used to find out the significant SNPs, which we focused on the promoter region of CTLA4 and CD28. In this study, the ITP cases were divided into primary ITP group, secondary ITP group, and the combination of the two to the follow-up analysis. Moreover, dual-luciferase reporter assay was used to evaluate the transcription activity of the significant SNP. We found the − 1765_rs11571315 of CTLA4 gene was associated with primary ITP (p = 0.006), secondary ITP (p = 0.008), and the combination of the two (p = 0.003). Moreover, the −318_rs5742909 also had statistical significance in secondary ITP group that was only caused by autoimmune disease (p = 0.019). In functional study, the rs5742909 would decrease 19% of the transcription activity when it carried a T-allele at this position (p = 0.040). It was noted that CTLA4 gene polymorphism was related to ITP but not CD28. According to our results, we surmised that CTLA4 is involved in the pathogenesis of ITP, and the secondary ITP result from the lower CTLA4 expression that leads to T cell over-activation.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan, ROC. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan County, Taiwan, ROC. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan County, Taiwan, ROC.
| | - Wei-Tzu Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan, ROC
| | - Ying-Hao Wen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan, ROC.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Wei-Ting Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan, ROC
| |
Collapse
|
49
|
Tout I, Miossec P. The role of B cells and their interactions with stromal cells in the context of inflammatory autoimmune diseases. Clin Exp Rheumatol 2022; 21:103098. [PMID: 35417796 DOI: 10.1016/j.autrev.2022.103098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
Interactions between B cells and stromal cells have essential functions in immune cell development and responses. During chronic inflammation, the pro-inflammatory microenvironment leads to changes in stromal cells, which acquire a pathogenic phenotype specific to each organ and disease. B cells are recruited to the site of inflammation and interact with these pathogenic stromal cells contributing to the disease's severity. In addition to producing autoantibodies, B cells contribute to the pathogenesis of autoimmune inflammatory diseases by serving as professional antigen-presenting cells, producing cytokines, and through additional mechanisms. This review describes the role of B cells and their interactions with stromal cells in chronic inflammation, with a focus on human disease, using three selected autoimmune inflammatory diseases: rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis. Understanding B cells roles and their interaction with stromal cells will help develop new therapeutic options for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Issam Tout
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit, University of Lyon, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69437 Lyon, France
| | - Pierre Miossec
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit, University of Lyon, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69437 Lyon, France.
| |
Collapse
|
50
|
Amendt T, Jumaa H. Adaptive tolerance: Protection through self-recognition. Bioessays 2022; 44:e2100236. [PMID: 34984705 DOI: 10.1002/bies.202100236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023]
Abstract
The random nature of immunoglobulin gene segment rearrangement inevitably leads to the generation of self-reactive B cells. Avoidance of destructive autoimmune reactions is necessary in order to maintain physiological homeostasis. However, current central and peripheral tolerance concepts fail to explain the massive number of autoantibody-borne autoimmune diseases. Moreover, recent studies have shown that in physiological mouse models autoreactive B cells were neither clonally deleted nor kept in an anergic state, but were instead able to mount autoantibody responses. We propose that activation of autoreactive B cells is induced by polyvalent autoantigen complexes that can occur under physiological conditions. Repeated encounter of autoantigen complexes leads to the production of affinity-matured autoreactive IgM that protects its respective self-targets from degradation. We refer to this novel mechanism as adaptive tolerance. This article discusses the discovery of adaptive tolerance and the unexpected role of high affinity IgM autoantibodies.
Collapse
Affiliation(s)
- Timm Amendt
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
| | - Hassan Jumaa
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|